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Abstract
In the next few years, mobile robots will become more and more common in

our daily life, landing in areas like education, health care, or assisting humans in

everyday tasks. To accomplish these tasks autonomously robots must be able to

recognize its working environment (i.e. to build a map) and be able to localize

them-self within it. These two problems need to be solved simultaneously, a key

robotic paradigm called SLAM (Simultaneous localization and mapping), which is

a huge topic of research nowadays. This bachelor’s thesis develops a SLAM sys-

tem using Pose-graph optimization, which achieves a solution of the sequence of

robot poses (position and orientation) in the plane (2D). Such system is denomi-

nated Full SLAM, since thewhole trajectory of the robot is estimated. Observations

from the environment are provided by a pair of calibrated stereo cameras on board

the robot from which 3D landmarks coordinates are gathered. Thus, the whole

process is termed Visual SLAM. An additional goal of this project is to implement

the Visual SLAM pipeline in such a way that it can be used for illustrative and

educational purposes in Computer Vision and Robotics related courses, with the

intent of showing how these trendy fields can work together. For that, computer

vision techniques are applied to the stereo images captured by the mobile robot

in order to extract keypoints from the images, establish reliable matches between

them, and triangulate the correspondence pairs to obtain 3D landmarks of the

space. In addition to the implementation of a Visual SLAM system with the afore-

mentioned features, this project also provides a virtual model of the environment,

making use of 3D Unity library, where mobile robots equipped with RGB cameras

can be simulated in order to generate datasets to feed the system.

Keywords: Mobile robots, Visual SLAM, Computer vision, Graph

optimization, Stereo cameras.
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Resumen
En los próximos años, los robots móviles serán más y más comunes en nuestra

vida cotidiana, llegando a áreas como educación, salud o asistir a humanos en tar-

eas del día a día. Para efectuar estas tareas de forma autónoma los robots deben

ser capaces de reconocer su entorno de trabajo (es decir, construir un mapa) y

ser capaces de localizarse dentro de ellos. Estos dos problemas deben resolverse

simultáneamente, un paradigma clave en robótica llamado SLAM (Simultaneous

localization and mapping), el cual es un importante área de investigación hoy en

día. Este trabajo de fin de grado desarrolla un sistema SLAM usando optimización

de grafo de poses, que logra una solución de la secuencia de poses (posición y ori-

entación) del robot en el plano (2D). Este tipo de sistemas se denominan Full SLAM,

ya que se estiman la trayectoria completa del robot. Observaciones del entorno

son dadas por un par de cámaras estéreo calibradas montadas en el robot desde

donde se obtienen las coordenadas 3D de los landmarks. Por esto, el proceso se

denomina SLAM Visual. Un objetivo adicional de este proyecto es implementar

el sistema de SLAM Visual de manera que pueda ser usada de forma ilustrativa y

educacional en clases relacionadas con la Visión por Computador y la Robótica,

con la intención de mostrar cómo estos campos que están de moda pueden traba-

jar juntos. Para ello, técnicas de visión por computador son aplicadas a las imá-

genes estéreo obtenidas por el robot móvil para extraer keypoints de las imágenes,

establecer correspondencias fiables entre ellos y triangular los pares correspon-

dientes para obtener landmarks 3D en el espacio. Además de la implementación

del sistema de SLAMVisual con las características previamente mencionadas, este

proyecto también proporciona un modelo virtual del entorno, haciendo uso de la

librería Unity 3D, donde robots móviles equipados con cámaras RGB pueden ser

simulados para generar datasets para ser usados por el sistema.

Palabras clave: Robots móviles, SLAM Visual, Visión por computa-

dor, Optimización de grafos, Cámaras estéreo.
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1
Introduction

Mobile robots are becoming more and more common in our daily life, being the different

Roomba’s models [17] a clear example of that. Recently, there have been many developments

towards making them able to have a greater grade of interaction with humans, like Astro

[1] from Amazon (see Fig.1), REEM [26] from PAL Robotics or Camello [25] from Outsaw

Digital. This kind of mobile robots work in an environment that is initially unknown and,

to be able to accomplish their tasks in an efficient way, they must be able to recognize their

working environment and be able to localize themselves within them. The combination of

these problems is known as Simultaneous Localization And Mapping (SLAM) [33], and it is

the problem that we are going to address in this project.

Figure 1: Amazon’s Astro interacting with a user.
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1.1 Motivation

A mobile robot is a robot capable of moving around its environment, which is usually un-

known to it. Mobile robots need to be autonomous, meaning that they must be capable of

navigating without the need of guidance by humans. To achieve this, it needs to create an in-

ternal representation of said working environment, which is called amap, and to know its pose

( position and orientation) within it. Those problems are usually solved online using a tech-

nique called SLAM (Simultaneous localization and mapping). There are two main approaches

when designing a SLAM system:

• Online SLAM: Only estimates the last pose of the robot, an example would be EKF (Ex-

tended Kalman Filter) [23].

• Full SLAM: Estimates the full path of the robot, an example would be Graph SLAM [40].

Full SLAM has a better accuracy for the estimations as it estimates the full path and makes

it consistent, which is the approach that we follow in this project. Specifically pose graph

SLAMwhich is a simplification of Graph SLAMwhere only the robot poses are optimized and

not the landmarks, as will be further described in this report.

With this in view, the main motivation behind this project is to build a Visual SLAM sys-

tem that results illustrative and educative about its constituent parts. Visual SLAM systems

rely on information obtained by cameras mounted on the robot. The images from cameras

are later processed in order to obtain keypoints (distinctive patches of the image), which are

matched with keypoints of other images in order to find correspondences. Those correspon-

dences, when projected back to space in a global, common reference frame (usually called the

world frame), become landmarks with an associated position, forming in this way the afore-

mentionedmap. With those landmarks and odometry information (wheel information on how

the robot has moved) the Visual SLAM system estimates both robot and landmarks location.

Visual SLAM systems are complex solutions with numerous steps, so they are usually hard

to understand as a whole. For doing so, the developed code will be part of a document built

with the Jupyter Notebook technology, which permits us to merge text, equations, figures,

videos, etc. with executable code cells, resulting in a powerful educational tool [28]. This re-

source is planned to be used in Computer Vision and Robotics related subjects at the University
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of Málaga.

1.2 Objetives

The main goal of this project is to develop a Visual SLAM system which receives informa-

tion from a pair of cameras mounted on a robot, computes the 3D position of the observed

keypoints and uses that information, combined with the odometry, to create a graph of poses

which is later optimized to make it more accurate. This way we are building a representation

of the environment and localizing within it at the same time.

Another objective of this project is to design a virtual environment where mobile robots

equipped with stereo cameras can be instantiated. This way, the virtual environment serves

as a sandbox where simulations can be done while recovering information relative to robot

poses and stereo images, that is, capturing datasets to support the development of Visual SLAM

systems. This will be implemented in the Unity 3D ecosystem [37].

The result of this project will be integrated into illustrative and educational Jupyter Note-

books profitable in Computer Vision and Robotics related courses. The Computer Vision part

corresponds to the so-called frontend, which is what obtains the information using keypoint

detection, matches these keypoints with those detected in the other frame of the stereo pair,

and applies triangulation to obtain 3D coordinates of what the robot is seeing. The coordinates

of these keypoints are later used in the backend, which corresponds to the Robotics part, to

build the pose graph using the information given by the frontend and additional information

retrieved from the robot like the odometry estimation from the motion. The backend also

optimizes the graph using a Gauss-Newton optimization [12].

1.3 Methodology

During the development of this project the following software engineering methodology was

used:

• The implementation followed an iterative development method, having multiple inter-

mediary versions of the program to test different parts.

• To save the different versions of the program we used Git and a remote repository in

Bitbucket.
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• To test the correct output of the programwe generated a dataset in a virtual environment

created with Unity, exploiting the ground truth of the robot paths to see how well the

system approximated the robot’s poses in the environment.

• For development the chosen programming language was python, the editor was Vim

and for debugging pudb [2] was used.

1.4 Structure

The document is structured as follows:

• Chapter 1: Introduction. Describes the context of this project, provides the motiva-

tion behind it and the objectives to accomplish.

• Chapter 2: Background. Contains information that is necessary to understand the

task of visual SLAM and how it is addressed in the literature.

• Chapter 3: Used technologies. Describes the libraries, frameworks and technologies

used in this project.

• Chapter 4: Implementation. Explains how the Visual SLAM system works, what

the main problems we faced are, how we tried to solve them and how we use Unity to

generate the dataset.

• Chapter 5: Results. Shows the outcomes of different benchmarks used to determine

how accurate and performant the system is.

• Chapter 6: Conclusions and future work. Contains a discussion of the work done

in this project and possible future lines of work.
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2
Background

SLAM (Simultaneous localization and mapping) is a problem that is composed of two very

important problems in mobile robotics: i) localization, which is the ability to determine the

position and orientation of the robot within its frame of reference, and ii) mapping, which is

the ability to create a representation of the environment. Due to their correlation they are

usually solved at the same time which leads to the SLAM problem.

To be able to build a map and localize itself within it the mobile robot must be able to

perceive its environment. To do this many different sensors can be used, for example, lasers,

sonars or cameras. Cameras are sensors that are cheap and efficient, because they provide

information using few resources, SLAM systems that use cameras to obtain information are

called Visual SLAM systems. Several SLAM systems exist that use cameras, as far as we know,

the first Visual SLAM system was A. Davison’s Mono-SLAM in the beginning of the century

[6]. Mono-SLAM uses keypoints to represent landmarks in the map, uses frame-to-frame

matching to obtain their 3D coordinates and updates the state vector (which is composed of

the last robot pose plus each feature 3D position) using an Extended Kalman Filter (EKF) [23].

On the other hand the first stereo-based visual SLAM system was proposed in 2002 by Set

et al[32] which used SIFT [22] features to detect landmarks and the stereo pair to get the 3D

coordinates of the keypoints in absolute scale.

In this project we use a pair of stereo cameras, since using only one camera and monocular

vision wouldn’t be able to get the absolute scale of the scene, which means that stereo-based

systems are more accurate.

To implement a SLAM system the robot also needs to obtain odometry information, which

is an estimation of its movement. For this it can use techniques such as Visual odometry, which

is the process of estimating the motion of a robot using only the associated camera images, or

wheel odometry, reading how much the wheels rotate using sensors. Odometry, technically,
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is a measurement rather than a control action, but usually treated as control to simplify the

modeling.

In the context of this project Pose graph SLAM is used (see Fig.2), which is a simplication

of the full SLAM technique based on Graph SLAM [40] that only optimizes robot poses and

not landmarks. Pose graph SLAM consists of building a graph which is made of nodes that

represent the different robot positions, that have edges between them which are the odometry

commands that serve as a constraint, and landmark observations (red stars) that also serve as

a constraint when they are observed from multiple poses.

Figure 2: Pose graph [10].

Loops in the graph create inconsistencies as the robot movement is not perfect, these in-

consistencies create errors and we can use these errors to optimize the poses, i.e. minimize

the overall square error of the relative poses.

But this approach has a few problems that we need to solve, the first one is detecting and

matching features. We need a good algorithm to detect and describe the features but it also

needs to be fast as this is a real time problem. We also need to obtain the odometry, either by

calculating it using visual odometry or by using the wheel odometry.

Another problem is that Visual SLAM systems are very sensitive to incorrect data, so bad

matches are a big problem. To reduce the amount of bad matches many approaches can be

used, one of them is using RANSAC [35] in cases when we have a model to fit.

SLAM systems are very complex and due to this they are usually divided into two parts:

frontend and backend. The frontend’s job is to build the graph, that is, obtain all the informa-

tion needed and transform it in a way the backend can use it. On the other hand, The backend
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has the responsability to optimize the graph using techniques like Gauss-Newton optimization

[12].

2.1 Components of a Visual SLAM system

2.1.1 Motion estimation

Odometry or motion estimation consists in using data from sensors to estimate how the posi-

tion has changed over time [4]. It’s mainly used by robots with legs or wheels to estimate their

position relative to a starting point. The ability to estimate motion is imperative to SLAM sys-

tems as it gives us a first estimation of the path. As we have mentioned earlier in this section,

odometry is technically a measurement insted of a control action but is considered a control

action to simply the modeling.

There are three main ways to estimate motion:

• Wheel odometry: Is based on sensors that provide data for the rotation of the robot’s

wheels.

• Visual odometry: Consists of determining the pose of the robot by analyzing the im-

ages it captures [31].

• Dead reckoning: Is the process of estimating the current position of a moving object

using a previous known position then adding estimates of speed, direction and elapsed

time [42].

All these approaches suffer from cumulative errors and loop closure techniques are a ne-

cessity to keep these errors from getting too big. For this reason, robust systems need to

implement constraints from odometry and loop closure to have an accurate system.

2.1.2 Map generation

To be able to solve the mapping problem, the robot needs to be able to generate a repre-

sentation of the working environment, which is commonly referred as map. As previously

commented, to accomplish this the robot must be able to perceive its environment, for which

different sensors can be used (cameras, laser scanners, sonars, etc.). Different types of sensors
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lead to different SLAM algorithms which make their own premises. Systems based on cameras

and systems based on lasers are similar as they provide detail for many points or landmarks

within an area, and it’s that information what is used to generate a map.

There a different types of maps but the most important to SLAM systems are:

• Landmarks-based: Landmarks are represented by their position in the world frame

plus a descriptor to distinguish them between each other. It’s used by systems based on

cameras or laser scanners.

• Occupancy grid: Consists of a representation of an evenly spaced field of binary ran-

dom variables, each variable corresponds to the presence of an obstacle at that location.

It’s mainly used in systems with noisy and uncertain sensors like sonars and lasers.

In the context of a visual SLAM system, to obtain the landmarks a computer vision algo-

rithm is needed. Usually SIFT [22] or SURF [3] are chosen for this as they are invariant to

lighting, scale and rotation. They consist of a detector that finds keypoints, and a descriptor

that is later used to determine how similar two keypoints are for matching purposes. With

these algorithms visual SLAM systems solve multiple problems like obtaining the 3D coor-

dinates of a point to be able to place it on a landmark map, or detect that the robot is in a

position that it has already visited as it is observing something that it has seen before.

ORB [30] was created as an alternative to SIFT and SURF, and sees plenty of use as the

computation cost is usually lower, the matching performance is similar and unlike ORB, SIFT

and SURF are both patented software.

2.1.3 Loop closure

Loop closure is the ability to recognize that the robot has returned to a previously visited

location. This is an important part of a SLAM system as when the robot moves it accumu-

lates errors and might lead to significant errors in the motion estimation. These errors cause

incompatibilities, as a single region of the map might have multiple representations.

In recent years, there have appeared approaches based on building a database of the images

obtained online by the robot, calculating the closest one previously seen and, if they are close

enough, creating a loop closure. Many of these algorithms are based on comparing the images
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as numerical vectors in the bag of words space. Bag of words approaches are often competent

and fast image matchers, but they are not fail-proof. Because of this a verification step is

needed later to check that the matching images are geometrically consistent as introducing

erroneous loop closure can result in disastrous errors. One example of this approach is DBoW

[9] developed by Gálvez-López and Tardós in 2012, where they use FAST+BRIEF features to

improve the computation time it takes to extract features from the images as this is the step

that takes the most amount of time.

Loop closure is a way to make systems more robust and provide better estimations but,

surprisingly, the work of Prokhorov et al [27] showed that using ORB-SLAM2 [24], a world

reference project in visual SLAMwith a loop closuremodule based on a bag of words apporach,

and using common open source datasets for RGB-D cameras like TUM RGB-D [36] with the

loop closure module activated and deactivated, loop closure didn’t significantly influence the

robustness of the system.

2.1.4 Pose estimation

Pose estimation is the last component of a SLAM system. This component refines the approxi-

mation obtained from motion estimation using the information obtained from the sensors. As

we have mentioned before, the amount of poses the system has to optimize is defined by the

type of SLAM system we have: Online SLAM techniques as EFK [23] only estimate the last

pose of the robot and every pose of the landmarks; Full SLAM techniques like Graph SLAM

[40] estimates the full path of the robot plus every landmark in the map, because of this, Full

SLAM solutions are very computationally expensive (both in memory usage and execution

time), but Full SLAM solutions usually result on more accurate pose estimations.

Landmarks reobserved by the robot create inconsistencies because when they are reob-

served, they are estimated to be in different positions than the previous observations. This is

due to the fact that neither the robot movement nor the sensors are perfectly accurate.

Using these inconsistencies and the motion estimation as restrictions, SLAM systems are

able to move around the different poses to minimize the error made in the observations and

the movement trying to achieve global consistency of the state vector (robot pose, or robot

pose plus landmarks positions, depending on the SLAM method).
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3
Used Technologies

3.1 Unity

Unity (see Fig.3) is a game engine that has support for desktop, mobile, console and virtual

reality platforms [38].

The engine can be used to create 3D and 2D games, and also real world simulations. The

engine has been used in industries outside of video games like cinema, automobile, engineer-

ing and the United States Armed Forces [37].

Figure 3: Unity example.

Unity can be used along Blender, 3ds Max or Maya among others to create 3D models

and import them to the scene. In 2D environments, Unity permits importing sprites and a 2D

world renderer. In 3D environments, Unity permits specifying mipmaps, texture compression,

and resolution settings for every platform that the game engine supports, and also supports
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parallax mapping, dynamic shadows using shadow maps, bump mapping, screen space am-

bient occlusion (SSAO), full-screen post-processing effects, render-to-texture and reflection

mapping. [39]

One of the most important things about Unity is how big the community is. This gives us

access to plenty of documentation, communities and free or paid assets from the store which

can be used to speed up development.

In this project it is used with the project Robot@VirtualHome[8] to create a simulation

of a robot moving within a house. We use this simulation to generate the dataset to test the

project.

3.2 OpenCV

OpenCV (Open Source Computer Vision Library) is an open source computer vision and ma-

chine learning software library. Its main purpose is to offer a base infrastructure for computer

vision applications and to increase the usage of machine perception in commercial products.

[16]

OpenCV launched in 1999, it began as an Intel Research initiative to advance computer

vision-based commercial applications. [18] The project was formed by optimization experts

from Intel Russia and Intel’s Performance Library Team. The main goals of the project were

[19]:

• Provide open source and optimized code for computer vision infrastructure.

• Create a common infrastructure for engineers to build on, so that the code could bemore

readable and portable.

• Push ahead commercial vision applications by making the code available for free with

a license that allowed the code to be proprietary.

In this project we are using many of the tools provided by the OpenCV library such as the

ORB [30] detector and descriptor, the brute force matcher and the functionality to calculate

the fundamental matrix of a camera to use RANSAC.
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3.3 Jupyter Notebook / Python

Jupyter Notebook [28] (see Fig.4) is a web-based interactive environment that can be used to

create notebook documents. The term "notebook" can be used to refer to multiple different

ideas, mainly the Jupyter web application, the python Jupyter web server or the document

format Jupyter, depending on the context. A Jupyter notebook document is a JSON document

following a versioned schema that contains a sorted list of input/output cells which can contain

code, text (using Markdown), mathematical expressions, graphics and rich text, which usually

ends with the extension ".ipynb". Jupyter Notebook is an open source project which creates

a platform that lets you use different programming languages. It lets you create a notebook

which can execute code and write text alongside LaTeX ecuations, video and everything that

a browser can display.

Figure 4: Jupyter Notebook example.

A notebook can be converted to multiple output formats such as HTML, slides, LaTeX or

PDF among others.

A Jupyter Notebook has two main components:

• Kernel: It’s responsible of executing the code in the notebook. By default it executes

python code but other kernels for different programming languages can be installed.

• Dashboard: It displays the notebooks and manages the different kernels.

13



The result of this project will be used in a Jupyter Notebook for Computer vision and

Robotics related courses as a way to see how both fields can work together.
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4
Implementation

4.1 System overview

The developed system for 3D Visual SLAM (see Fig.5) consists of: i) a frontend that is respon-

sible for collecting all the information necessary and creating a graph (see Fig.6), and ii) a

backend which is responsible for optimizing the graph.

Figure 5: Flowchart of the Visual SLAM system.

For supporting the system development, we simulate a mobile robot in a real world en-

vironment called Robot@VirtualHome [8] using the game engine Unity (see Sec. 4.2). This

robot moves freely on the floor using its wheels, so the movement is planar which means that

we only need to estimate its x, y and θ which correspond to the position in the plane (x, y) and

the rotation (θ). From now on, the combination of position and rotation will be called a pose.

In real world environments, the robot movement is not perfect as things like wheel slippage

can happen, so we need an estimation of the movement of the robot, the odometry, which in

this project is provided by the Unity environment.

To estimate the pose of the robot we also need to use information obtained using a cali-

brated stereo camera system. This system gives us 3D points of the features detected in the

images coming from the cameras, and these 3D points are what are called landmarks. The
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frame of reference of the robot is a plane so, to simplify, the landmarks are assumed to be on

the floor.

The system pipeline is as follows:

1. For each step the robot moves:

1.1 Using the movement command, we add the odometry (which exhibits errors) to

the graph (see Sec.4.3.1).

1.2 The robot uses the stereo pair to detect keypoints and triangulate their positions in

3 dimensions. These detections also present inaccuracies (see Sec.4.3.2 to Sec.4.3.4).

1.3 Each point is composed with the robot pose to obtain its position in the world

reference frame.

1.4 As each point has a descriptor, we use those descriptors to match the current

observation to previous observations, creating loops in the graph (Sec.4.3.5 and

Sec.4.3.6).

Figure 6: Pose graph [7]. Where the triangles represent the robot (Xk), stars represent ob-

served landmarks(mj) and the edges between them represent odometry constraints (Uk) and

observations of landmarks by the robot (Zk,j) in each instant of time k. Filled figures represent

the estimated poses, where we think they are, and blank figures represent the true pose, where

they actually are in the real world.
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2. After the movement is done, the optimization step begins (see Sec.4.4):

2.1 Calculate the inverse of the error’s covariance matrix.

2.2 Iterate until the result converges or the limit of iterations is reached. In each iter-

ation:

2.2.1 Calculate the jacobians of the error vector.

2.2.2 Calculate delta (the changewhich is going to be applied to the estimated poses)

using the inverse of the covariance as weight.

2.2.3 Subtract delta to the estimated poses.

4.2 The virtual environment

To generate the dataset of stereo images and robot poses used during the system development,

we modified an existing virtual environment called Robot@VirtualHome [8] (see Fig.7).

Figure 7: A screenshot of the unity editor during a simulation using the Robot@VirtualHome

environment.

This environment offers up to 30 virtual houses, these houses have been designed based

on real world resources (plans, images, point clouds, etc.) from houses hosted in Idealista.com.

To transverse the environment Robot@VirtualHome offers multiple types of virtual agents:

• Wanderer: The robot visits every room in the house, the order can be specific or ran-

dom.
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• Grid: Multiple nodes are generated in the house where the robot will be placed to per-

form a 360º turn capturing data.

• Manual: The robot can be controlled using a keyboard, namely w, a, s, d to move and

q, e to turn the camera horizontally.

To be able to capture data, the robot must be equipped with a sensor. Robot@VirtualHome

includes two different sensors:

• Smart camera: This camera can capture intensity and depth images.

• Laser scanner: A virtual scanner that, unlike real world lasers, can measure to infinity.

This can be limited to make them more realistic, the field of view and resolution can

also be configured.

Robot@VirtualHome also provides already built robots, they are in the Prefab folder. These

robots come with one Smart Camera by default but, as we want to generate a stereo dataset,

we need to add another to the virtual agent prefab to form a stereo pair. This stereo pair has

been modeled after some industry common products to provide a more realistic setup. The

main parameter is the baseline (the distance between the cameras) that will be used in section

4.3.4. Our choice for the baseline is 20cm, close to the 17.5cm of the Zed 2 [20] for example.

As the system is not prepared for robots with multiple cameras, the script of the virutal

agents also has to be modified to capture images with both cameras. The result is a mov-

ing robot which navigates around a house and captures stereo images and its position when

getting said images (see Fig.8).

Figure 8: A pair of images taken by the stereo pair at the same instant of time during a simu-

lation of the Robot@VirtualHome environment.
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4.3 Frontend

4.3.1 Odometry

The frontend builds the graph, to do so, each time the robot moves, the frontend computes

the movement the robot has done to create an odometry restriction. It includes a node in the

graph which represents the current robot pose and an edge (which is the restriction) between

that node and the previous one representing the movement command given to the robot (see

Fig.9).

Figure 9: Pose graph with only robot poses and no landmarks [21], the triangles represent the

different robot poses and the edges represent the odometry restrictions.

The movement in the real world is not perfect, things like wheel slippage can happen

making the movement not perfect. To take this into consideration we have to model the

uncertainty of the robot pose. The pose is represented as a random variable (Xt) that follows

a normal distribution.

Xt ∼ N (x̄t,Σxt)

Since the data we are working on comes from a simulation, the movement is perfect so the

true robot pose and the odometry pose are exactly the same (and the project would finish!). To
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consider a more realistic scenario, some noise is added to themovement command, making the

true pose the same as in the simulated environment in Unity and the odometry pose different

from the true pose. This movement command (ut or ∆xt) also follows a normal distribution

where the covariance of the movement (Σut) is the noise we have added.

ut ∼ N (ū,Σut)

As the robot moves the uncertainty keeps growing, so we have to calculate the new co-

variance every time the robot moves to have it available for the backend. To calculate this we

have to take into account the current covariance (Σxt−1) and the modeled covariance of the

movement (Σut). This way, the covariance associated with the robot position at time instant t

is retrieved by:

Σxt ≈
∂g

∂xt−1

Σxt−1

∂g

∂xt−1

T

+
∂g

∂Σ∆xt

Σ∆xt

∂g

∂Σ∆xt

T

where the jacobians are:

∂g

∂xt−1

=


1 0 −∆xt cos θt−1 −∆yt sin θt−1

0 1 ∆xt cos θt−1 −∆yt sin θt−1

0 0 1



∂g

∂Σ∆xt

=


cos θt−1 − sin θt−1 0

sin θt−1 cos θt−1 0

0 0 1


and the function g is the composition of poses (also represented as the symbol⊕) and is defined

as:

p1 ⊕ p12 =


x1 + x12 cos θ1 − y12 sin θ1

y1 + x12 sin θ1 + y12 cos θ1

θ1 + θ12


4.3.2 Detecting keypoints

If we only had odometry restrictions the graph would be in a consistent state, to fix this we

need to add a new type of restriction that is generated by observing the same landmark from
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multiple poses. This restriction comes from the fact that when we observe a landmark for the

first time we place it in the map with the pose composition mi = pi ⊕ zi which takes into

account the current pose of the robot pi (see Sec.4.3.6).

To get these observations zi, the robot captures images with the stereo pair and detects

keypoints (see Fig.10) using the ORB [30] detector from the OpenCV [16] library.

Figure 10: Image from the "ManualAgent2" dataset with keypoints detected by the ORB algo-

rithm drawn.

The ORB detector was chosen after benchmarking several detector and descriptor combi-

nations in a multitude of different environments. It turned to be the best one (the one finding

the most keypoints) while being orders of magnitude faster (see Sec.5.1).

ORB is the combination of FAST keypoint detector [29] and BRIEF descriptor [5] with

modifications to improve the performance. ORB first uses FAST to detect keypoints, then

applies a Harris corner measure [13] to find the top N points as ORB only returns a limited

amount of keypoints that can be configured. In this work we use the default parameter in the

OpenCV library of 500 keypoints.
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4.3.3 Matching the keypoints and applying RANSAC

After we have detected the keypoints seen in the images taken by the stereo pair, we need

to match them to know their correspondences in the other image. To do this we use the

brute force matcher of OpenCV with the hamming norm as the distance measurement as ORB

uses modified BRIEF descriptors [5] which are binary strings. The hamming distance is more

efficient to compute than the often used L2 norm for other descriptors.

To improve the quality of the matches, which is primordial to ensure that the systemworks

correctly, for each keypoint only matches that are bidirectional are considered, that is, for

every keypoint in image A that has a descriptor i and every keypoint in image B that has a

descriptor j, we only consider the match if j is the best match for descriptor i and viceversa.

This is an alternative to the ratio test introduced by D.Lowe in the SIFT paper [22].

When we match two images usually we have matches that are not correct (because the

descriptors are similar) (see Fig.11) but the landmarks they are associated to are far away from

each other in the world frame, so we can use the distance between the landmarks to filter

those matches.

Figure 11: Matches before applying RANSAC.

But even then incorrect matches can still occur and they will negatively impact the accu-

racy of the estimations. To reduce the amount of bad matches even further (see Fig.12) we use

an algorithm called RANSAC (RANdom SAmple Consensus) (see Fig.13), which is an itera-

tive method to estimate parameters of a mathematical model from a set of observed data that

contains outliers [35].

The algorithm takes a random sample from the data to compute a model. Then calculates

the model parameters using samples and scores it by the fraction of inliners within a threshold
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Figure 12: Matches after applying RANSAC.

of the model. This is repeated until a good enough model is found or the maximum number

of iterations is reached. The data that do not fit the model (outliers) are discarded.

Algorithm 1 RANSAC
1: Select a random subset of the original data. This subset is called "hypothetical inliners".

2: Create a model using the previous set.

3: The rest of the data is tested against the created model. The points that fit the estimated

model are considered to be part of the consensus set.

4: The model is accepted if enough points are classified as part of the consensus set.

5: If the model isn’t good enough, go to 1 if the maximum number of iterations hasn’t been

reached yet.

Figure 13: RANSAC example [34].
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4.3.4 Triangulation

After we have detected, matched and filtered the information in the images, we need to move

that information from the camera frame to the world frame for the robot to be able to use it.

To do this we have to do 3D triangulation to transform the pixel coordinates of each match

into 3D coordinates.

The stereo camera pair in this work exhibits an ideal configuration (see Fig.14), which is

defined as:

• Identical cameras.

• Parallel axes: Yl = Yr = Y; yl = yr = y; Zl = Zr = Z.

• The right camera is along the X axis at a distance b (baseline): Xl = Xr + b.

Figure 14: Stereo pair frames [41].

So now we just have to apply the following formula to get the 3D coordinates:

Xl =
kxb

di

[
1
kx
(ul − u0)

1
ky
(vl − v0) f

]T
=

b

di

[
(ul − u0) (vl − v0) kf

]T
Where di is the disparity in pixels.
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After we have the 3D points with


X

Y

Z

, we have to compose the coordinates with the

robot pose to obtain where what we are seeing is in the world frame. Given that the sensor

frame and the robot frame are not the same, we have to change the point to

 Z

−X

 to make

the axis of the sensor frame be the same as the robot frame (see Fig.15). Also we are applying

two simplifications, one is that we are only considering the point to be 2D, i.e. we are putting

the point "in the floor" and we are also considering that the origin of the robot frame and the

stereo pair one is the same, so there is no distance between both.

Figure 15: Representation of the world, camera and camera sensor frames and how they cor-

respond to each other [11].

With all of this in mind we just have to apply the pose composition operator but with 2

dimensions, and we get the coordinates of the landmark in the world frame. This results:

mj = pi ⊕ pij =

xi + xij cos θi − yij sin θi

yi + xij sin θi + yij cos θi


Wheremj is the landmark, pi is the robot pose and pij is the point of the correspondence.

4.3.5 The association problem

At this point we have almost all the pieces of the puzzle, the only thing we are missing is the

landmark restrictions that we mentioned earlier in section 4.3.2, which we said that we are

going to obtain by seeing the same landmark from two different poses. We calculated all the

landmarks in the previous step and now we only need to know which ones are the same but

seen from another pose.
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To do this we are going to use the descriptors associated to each point we used to generate

the landmark and OpenCV to match them. This is something that have been already done

before in this project, specifically when we matched keypoints in the stereo pair (see 4.3.3).

When we did that we had the problem of having bad matches and we managed to solve that

by using RANSAC. However, this time we can’t use RANSAC because we don’t have a model.

To face this issue we used the distance in a straight line between matched landmarks to

filter them (euclidean distance), that is, if two matched landmarks are too far away from each

other we don’t consider that match. This solves the problem for matches that are very far

from each other, but it doesn’t take into consideration thing like walls, so we could have a bad

match between landmarks that are on opposite sides of a wall. Thankfully this is not a big

problem and can be safely ignored in this project.

4.3.6 Generating the error vector

At this point we have everything needed to generate the error vector required by the backend

for optimization (see next section). We have two kinds of errors that we call "Odometry" errors

and "Landmark" errors:

• Odometry error: models the difference between the motion command we sent to the

robot and the relative pose between the pose before the movement and after the move-

ment, so this errors starts as 0 and grows when we move the poses around. When we

optimize them, this works as a restriction for how far the new estimated poses can be

from each other. Odometry errors are calculated as:

eijodom = ⊖pi ⊕ pj − pij = pj ⊖ pi − pij

where ⊖ represents the inverse pose composition.

• Landmark error: this error is the difference between two observations of the same

landmark, that is, if we observe the same thing twice it should have the same world

coordinates, but it doesn’t because the robot is not where it should be according to the

motion commands we sent. The landmark error is calculated as:

eijland = mj −mi = pj ⊕ zj − pi ⊕ zi
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where m is the landmark, p is the robot pose and z is the observation in Cartesian

coordinates (coordinates of the correspondence in the robot local frame).

To build the final error vector we just concatenate odomety and landmark errors:

e =
[
. . . eijodom . . . eijland . . .

]T
Finally, in addition to the error vector, we also need the covariance associated with those

errors, which is used to weight each error individually. The covariance matrix of the observa-

tion error eijland is:

Σeij = Σmi + Σmj

Σmi =
∂mi

∂pi
Σi(

∂mi

∂pi
)T +

∂mi

∂zi
Qi(

∂mi

∂zi
)T

WhereΣi is the covariance of the robot pose andQi is the covariance of the sensor. Notice

that the covariance of the odometry error is just Σi as that is the accumulated uncertainty of

the movement of the robot after moving to the pose i.

4.4 Backend

The backend performs an estimation of the poses in the full trajectory of the robot. These

robot poses are the nodes of the graph while the dependencies between them (recall Sec.4.3.6)

are spatial constraints, each with an associated weight given by their covariance, previously

calculated by the frontend and represented as edges in the graph.

To compute this estimation we want to obtain the configuration of poses p̂i that minimizes

the overall square error:

{p̂i} = argmin{pi}

[
eTΣ−1

e e
]

Where e is the error vector and Σe is the covariance of the vector as formulated in the

previous section.

To solve this ecuation we propose using a standar Gauss-Newton non-linar least squares

optimization algorithm [12]. This approach requires a good initial estimation to start iterating
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until the algorithm converges. For this initial estimation we use the odometry of the robot

(recall Sec.4.3.1) as it’s the best approximation we have of the full robot path.

The implemented algorithm for the Gauss-Newton optimization works as follows:

Algorithm 2 Gauss-Newton optimization
1: x← odometry poses

2: while norm(δ) > tolerance and iteration < maximum_iterations do

3: δ ← (JT
e Σ

−1
e Je)

−1JT
e Σ

−1
e e

4: x← x− δ

5: end while

Delta represents the changes we have to apply to the poses. The algorithm runs until the

maximum number of iterations is reached or until it has converged, i.e. the norm of delta is

bigger than a given tolerance value.

In each step we need Σ−1
e which is the inverse of the covariance of the vector error, which

is just a matrix where every position is 0 and along the diagonal there is a covariance matrix

for each error and it is defined as the inverse of:

Σe =


Σxk

0 . . . 0

0 Σxk+1
. . . 0

... ... . . . ...

0 0 . . . Σeij


We also need Je which is the jacobian of the vector error with respect to the estimated

poses and represents how the errors change when the poses change. It is defined as:

Je =



∂pij
pi

∂pij
pj

. . . 0

0
∂pjk
pj

. . . 0
... ... . . . ...

0 0 . . . ∂mx

∂py


We have two kinds of jacobians, one for each type of error, and are calculated as follows:
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• Odometry error jacobians:

∂pij
pj

=


cos θi sin θi 0

− sin θi cos θi 0

0 0 1



∂pij
pi

=


− cos θi − sin θi −(xj − xi) sin θi + (yj − yi) cos θi

sin θi − cos θi −(xj − xi) cos θi + (yj − yi) sin θi

0 0 −1


• Landmark error jacobian: 

1 0 −xj sin θi − yj cos θi

0 1 xj cos θi − yj sin θi

0 0 1
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5
Results

The main priorities when developing a SLAM system are achieving a high accuracy and a

low execution time. On the one hand, to test the accuracy we used the datasets we generated

using the Robot@VirtualHome [8] environment (see Fig.16). This environment consists of 30

virtual houses modeled from real houses’ resources (plans, images, point clouds, etc.) taken

from Idealista.com where a mobile robot and their sensors can be simulated. This way, a robot

can move from point to point providing us with the ground truth of its pose, so it is possible

to determine how accurate the SLAM system estimations are. On the other hand, to evaluate

execution times a computer with an Intel®Core©i5-8400 at 4GHz and 16GB DDR4 RAM at

2400 MHz is used.

Figure 16: Picture of the environment of the dataset "Home05".
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As for the system configuration, for every execution in this section we have used a tol-

erance of 1 × 10−5 and a maximum number of iterations of 100 for the Gauss-Newton opti-

mization (recall Sec.4.4). Every image of the dataset has a resolution 640x480 pixels, and as

the cameras are ideal their intrinsic parameters are:


kx 0 u0

0 ky v0

0 0 1

 =


608.1718 0 320

0 667.2514 240

0 0 1


The focal length (f) is 2.28 and the stereo pair has a baseline (b) of 20cm. To simplify the

problem we assume that the cameras have no distortion.

5.1 Feature detection

There are many detector and descriptors that can be used to obtain the landmarks of the

environment (recall Sec.4.3.2). In this section we are going to analyze a few combinations of

them using pairs of stereo images from our datasets (see Fig.17) in order to select the more

suitable one to be used in the project.

Different descriptors are invariant to different things like changes of lighting, scale or

rotation. Choosing an adequate algorithm is essential for the overall accuracy of the system,

as the more information it has from the environment the better the approximations are going

to estimate. The combinations that we are going to test are: Harris [13] + NCC (Normalized

cross correlation), Harris + ORB (descriptor), ORB [30] and SIFT[22]. The last two are used

for both detecting and describing features.

The first metric that we are going to analyze is the number of keypoints detected. Ideally,

the more information gets detected in the images, the better, as it is going to let us detect

landmarks in the environment that are absolutely necessary for the system to work. The

results of this experiment are shown in Tab.1. As we can see both combinations using the

Harris detector perform very poorly on all the images. On the other hand ORB is the clear

winner being the one that detects the higher number of keypoints with SIFT falling a bit behind

in most datasets and having a much worse performance in the home05 dataset.

Next, we are going to analyze the number of matches between keypoints. For that we

resort to the hamming distance for the ORB-based descriptors, the norm L2 for the SIFT one
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(a) Home02 dataset. (b) Home05 dataset.

(c) Home23 dataset. (d) ManualAgent2 dataset.

Figure 17: Left camera images of the different datasets used in this section.

Harris + NCC Harris + ORB ORB SIFT

home02 20 20 500 348

home05 11 11 313 90

home23 9 9 125 58

ManualAgent2 24 24 500 460

Average 16 16 359.5 239

Table 1: Average number of keypoints detected in the pair of images taken from various

datasets using different detector + descriptor combinations.

(also know as the euclidean norm) as it has been shown to produce the best results for this

algorithm, and for the NCC descriptor where we have to use small patches of the image and
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try to match the template in the other image. We also only take the best match for each

keypoint except for SIFT where we use the K best matches with a K value of 2. This metric is

also extremely important as these matches let’s us triangulate the 3D position of the observed

keypoints, being what ultimately creates the restriction between the robot poses confirming

that we are seeing the same thing from different poses.

Harris + NCC Harris + ORB ORB SIFT

home02 14 18 323 144

home05 5 7 116 29

home23 9 7 69 26

ManualAgent2 16 18 273 240

Table 2: Number of matches detected in images taken from various datasets using different

detector + descriptor combinations.

The Tab.2 reports the output of this test. Again the ORB algorithm is the best performer

by a landslide having the highest amount of matches in every dataset.

Now, we are going to analyze the time execution it takes for each algorithm to compute

these results. This is relevant since even if an algorithm is the best at detecting and matching

features, if it takes too long, it would not be suitable for a SLAM system. First we see the time it

takes for each algorithm to detect the keypoints in Tab.3. ORB is simply faster by magnitudes

of difference, while the other three combinations are close in time with SIFT being the worst

by a slight margin.

Harris + NCC Harris + ORB ORB SIFT

home02 3.29e-02 3.14e-02 8.95e-05 1.42e-01

home05 6.01e-02 5.98e-02 9.68e-05 2.68e-01

home23 7.44e-02 7.39e-02 2.14e-04 3.94e-01

ManualAgent2 2.69e-02 2.64e-02 6.00e-05 1.27e-01

Table 3: Time taken in seconds to detect keypoints in seconds in images taken from various

datasets using different detector + descriptor combinations.

And lastly, the final test we are going to perform is to see the time it takes to compute

34



the matches between the images, which results are reported in Tab.4. This time the only

combination that performs noticeably worse than the rest is the Harris + NCC algorithm,

while Harris + ORB, ORB and SIFT have similar performances each of them being the fastest

depending on the dataset.

Harris + NCC Harris + ORB ORB SIFT

home02 1.83e-02 2.56e-05 1.66e-05 4.31e-06

home05 2.63e-02 5.71e-06 4.66e-06 5.17e-06

home23 1.19e-02 5.71e-06 2.17e-06 4.23e-06

ManualAgent2 1.78e-02 3.33e-06 3.77e-06 7.13e-06

Table 4: Time taken in seconds to match descriptors in seconds in images taken from various

datasets using different detector + descriptor combinations.

After all the benchmarks we have a clear winner, that is the ORB algorithm as it’s the best

detector that generates the most amount of matches while also taking the least amount of time

overall executing.

5.2 Graph optimization performance

The overall time to optimize the graph has a big variance mainly depending on how many

iterations are needed to converge. Here we present a table with the real time (see Tab.6) and

CPU time (see Tab.7) needed to perform the various steps in the optimization process.

The information showed in these tables have been obtained when working with the dif-

ferent datasets with the parameters shown in Tab.5. It can be noticed that the amount of

odometry errors is equal to the amount of poses to optimize as the initial pose doesn’t need

to be optimized as it has no error and there is a move command between every pose and the

immediate previous one.

So overall the backend takes less than a second to perform the optimization step (see Tab.6),

as we can see there is no major bottle neck in any specific step as there isn’t any that is taking

an unacceptable amount of time. The performance of the system is mainly affected by the

amount of iterations it takes to converge.
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Iterations to

converge

Poses to

optimize

Landmark

errors

Error covariance

matrix size

Maximum distance

between matched

landmarks

home02 12 36 388 884 x 884 0.5

home05 9 26 108 294 x 294 0.5

home23 24 36 271 650 x 650 5

ManualAgent2 6 13 431 901 x 901 5

Table 5: Parameters used for the execution of each dataset.

Full process
Calculate inverse

covariance matrix

Average time

calculating jacobians

Average time

calculating delta

home02 0.86s 0.016s 0.096s 0.003s

home05 0.19s 0.0018s 0.003s 0.0005s

home23 1.27s 0.008s 0.0015s 0.0074s

ManualAgent2 0.355s 0.017s 0.0079s 0.0045s

Average 0.67s 0.0107s 0.0271s 0.0039s

Table 6: Real time in seconds taken to compute each part of the backend in each dataset.

Full process
Calculate inverse

covariance matrix

Average time

calculating jacobians

Average time

calculating delta

home02 5.08s 0.084s 0.057s 0.016s

home05 1.122s 0.0099s 0.018s 0.003s

home23 7.54s 0.042s 0.0088s 0.044s

ManualAgent2 2.054s 0.089s 0.046s 0.0242s

Average 3.949s 0.056s 0.032s 0.0218s

Table 7: CPU time in seconds taken to compute each part of the backend in each dataset.

5.3 Pose estimation accuracy

As the main goal of a Visual SLAM system is to estimate the trajectory of the robot, a study on

the accuracy of the estimations is necessary. To do this we can use the datasets we generated

with the Robot@VirtualHome environment as it contains the ground truth of the robot path

and we can compare it to our estimations. The most popular metrics to test the accuracy of

SLAM systems are ATE (Absolute Trajectory Error) and RPE (Relative Pose Error).
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The Absolute Trajectory Error (ATE) measures the difference between points of the true

and the estimated path, this metrics takes into account the global consistency. ATE is generally

a good metric to measure the performance of visual SLAM systems. On the other hand, the

Relative Pose Error (RPE) computes the error in the relative motion between pairs of poses.

RPE is used to measure the drift of a visual odometry system, as our odometry comes from

wheel odometry the most interesting metric we can use is ATE.

Usually, to be able to compute the ATE a pre-processing step is needed to associate the

ground truth poses to the estimated poses using the timestamps. This is done because the

trajectories might be expressed in different reference frames but, as our data comes from a

simulation, it is expressed in the same reference frame so this step in unnecessary.

To calculate the ATE, each pose Pi ∈ SE(3) is assigned to the corresponding ground truth

pose Qi ∈ SE(3) based on the timestamp values. SE(3) is the group of all rigid transforma-

tions in R3. Then, since both trajectories can be expressed w.r.t. arbitrary coordinate frames,

they are aligned using the rigid-body transformation S that can be obtained using the Horn

method [27].

The ATE is defined as the root mean square error (RMSE):

RMSE = (
1

n

n∑
i=1

||trans(Ei)||2)
1
2

where Ei is the absolute trajectory error matrix defined as:

Ei := Q−1
i SPi

and trans(M) := t returns the translation components t of matrixM .

With this metric we have tested the datasets home02 and home05 with a maximum dis-

tance between matched landmarks of 0.5 and the datasets home23 and ManualAgent2 with

a maximum distance of 5 (for a visual representation of the trajectories of the robot in each

dataset see Fig.18).

As we can see in the Tab.8, the average error between the estimated poses and the ground

truth for every dataset is lower than the ATE of the initial odometry estimation, showing that

the optimization step increases the precision of the estimations obtained by the odometry.
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(a) Home02 dataset. (b) Home05 dataset.

(c) Home23 dataset. (d) ManualAgent2 dataset.

Figure 18: Paths of the robot while navigating the different datasets used in this section.

home02 home05 home23 ManualAgent2

ATE Before optimization 0.135 0.192 0.164 0.095

ATE After optimization 0.116 0.182 0.148 0.082

Table 8: ATE (Absolute Trajectory Error) of the approximations of the datasets inmeters before

and after graph optimization.
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6
Conclusions and

future work
6.1 Conclusions

This bachelor’s thesis proposes a Visual SLAM system based on pose graph optimization with

the objective to be used as a pedagogical resource in robotics and computer vision related

courses at the University of Málaga.

This document has first described the typical components that form a Visual SLAM system,

also offering different state of the art approaches for building them. Then, we have modified

the Robot@VirtualHome [8] environment to generate datasets of a robot traversing through

multiple real word based houses capturing images with a pair of stereo cameras to feed and

test the system. After that, we considered multiple open source implementations for the fea-

ture extraction part of the system. The performance of the feature extraction component

is extremely important for the overall accuracy of the system, as well as its execution time.

Specifically we decided to implement a solution based on the ORB [30] detector and descriptor

as it proved to be the one that produced the most keypoints and matches while also not taking

an unacceptable amount of time to process the images (see Sec.5.1).

Next, we started implementing the backend using a Gauss-Newton optimization to opti-

mize the poses of the graph and also developed a simple frontend which was the base for the

rest of the implementation. The backend was tested using simple circular paths to prove that

it worked correctly. After that we implemented the final version of the frontend based on

the aforementioned ORB algorithm. It was detected that the system suffers plenty from bad

information due to bad matches between descriptors, so two solutions were implemented:

RANSAC [35] when we had a model, and a solution based on the distance between landmarks
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otherwise.

Lastly, we have benchmarked the system to test the accuracy of the estimated poses and

the execution time of the system. We weren’t able to find any bottle necks in the performance

as the time it takes grows mainly with the amount of iterations the algorithm takes to con-

verge, which largely depends on the dataset used, that is, the features in the scene and their

distribution.

6.2 Future work

Even though the project has reached its main goal, there’s still room for improvement in cer-

tain areas like:

• Better reduction of incorrect matches. As commented, the algorithm suffers a lot from

incorrect loops in the graph which are caused by incorrect matches. Because of this

we have to be very restrictive with our matches, so to accomplish a better reduction of

incorrect matches things like Huber loss [15] or M-estimator [14] could be implemented.

• In this project every frame from the stereo pair is being considered, but in a real world

application where a camera might record new observations 30 times per second only

keyframes should be considered to reduce the number of nodes in the graph, as each

frame represents another pose to optimize.

• Loop closure. If we go back to the same pose we have previously been to, this algorithm

considers them as two different poses, but we could add loop closure there if we were

able to recognize them as the same. To do this we could use a Bag of Words approach

like DBoW2 [9].
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7
Conclusiones y
lineas futuras

7.1 Conclusiones

Este trabajo de fin de grado propone un sistema de SLAM Visual basado en optimización de

grafo de poses con el objetivo de ser usado como un recurso pedagógico en clases de la Uni-

versidad de Málaga relacionados con la visión por computador y la robótica.

Este documento primero ha descrito los componentes típicos que forman parte de un sis-

tema de SLAM Visual, también ofreciendo diferentes enfoques del estado del arte para de-

sarrollarlos. Después, hemos modificado el entorno Robot@VirtualHome [8] para generar

datasets de un robot recorriendo múltiples casas basadas en el mundo real capturando imá-

genes con un par de cámaras estéreo para probar el sistema. Después de eso, hemos consid-

erado diferentes implementaciones open source para la parte de extracción de features. El

rendimiento del componente de extracción de features es extremadamente importante para la

precisión general del sistema, además de su tiempo de ejecución. Específicamente hemos deci-

dido implementar una solución basada en el detector y descriptor ORB [30], ya que demostró

ser el que producía más keypoints y correspondencias a la vez de no tardar una cantidad de-

masiado elevada de tiempo para procesar las imágenes (ver Sec.5.1).

Después, empezamos a implementar el backend usando una optimización deGauss-Newton

para optimizar el grafo de poses y también desarrollamos un frontend simple que fue la base

para el resto de la implementación. El backend fue testeado usando una trayectoria ciruclar

simple para probar que funcionaba correctamente. Después de eso implementamos la versión

final del frontend basada en el algoritmo antes mencionado, ORB. Se detectó que el sistema

sufría mucho por la información incorrecta debida a malas correspondencias entre descrip-

41



tores, así que dos soluciones fueron implementadas: RANSAC [35] cuando teníamos un mod-

elo y una solución basada en la distancia entre landmarks cuando no.

Por último, hemos probado el sistema para comprobar la precisión de la estimación de las

poses y el tiempo de ejecución del sistema. No fuimos capaces de encontrar ningún cuello de

botella en el rendimiento, ya que el tiempo de ejecución crece, principalmente, con el número

de iteraciones que el algoritmo necesita para converger, lo cual depende del dataset usado, es

decir, de las features de la escena y su distribución.

7.2 Lineas futuras

Aunque el proyecto ha cumplido su objetivo principal aún hay posibilidad de mejora en algu-

nas áreas como:

• Mejor reducción de correspondencias erróneas. Como hemos comentado, el algoritmo

sufre mucho debido a los bucles incorrectos en el grafo que son causados por las corre-

spondencias erróneas. Por esto tenemos que ser muy restrictivos con las corresponden-

cias, por lo que para conseguir una reducción de las correspondencias erróneas técnicas

como Huber loss[15] o M-estimator [14] pueden ser implementadas.

• En este proyecto todas las imágenes del par estéreo son consideradas, pero en una apli-

cación del mundo real donde una cámara puede capturar nuevas observaciones 30 veces

por segundo solo se deberían considerar los keyframes para reducir el número de nodos

en el grafo, ya que cada imagen representa una pose más a optimizar.

• Cierre de bucle. Si volvemos a una pose que ya hemos visitado anteriormente este algo-

ritmo las considera como dos poses distintas, pero podríamos añadir un cierre de bucle

en ese caso si fuéramos capaces de reconocer que ambas son la misma pose. Para esto

podemos usar un enfoque basado en una bolsa de palabras como DBoW2 [9].
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