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Abstract: Type 1 diabetes mellitus (DM1) is a metabolic disease derived from falls in pancreatic
insulin production resulting in chronic hyperglycemia. DM1 subjects usually have to undertake
a number of assessments of blood glucose levels every day, employing capillary glucometers for
the monitoring of blood glucose dynamics. In recent years, advances in technology have allowed
for the creation of revolutionary biosensors and continuous glucose monitoring (CGM) techniques.
This has enabled the monitoring of a subject’s blood glucose level in real time. On the other hand,
few attempts have been made to apply machine learning techniques to predicting glycaemia levels,
but dealing with a database containing such a high level of variables is problematic. In this sense,
to the best of the authors’ knowledge, the issues of proper feature selection (FS)—the stage before
applying predictive algorithms—have not been subject to in-depth discussion and comparison in past
research when it comes to forecasting glycaemia. Therefore, in order to assess how a proper FS stage
could improve the accuracy of the glycaemia forecasted, this work has developed six FS techniques
alongside four predictive algorithms, applying them to a full dataset of biomedical features related
to glycaemia. These were harvested through a wide-ranging passive monitoring process involving
25 patients with DM1 in practical real-life scenarios. From the obtained results, we affirm that
Random Forest (RF) as both predictive algorithm and FS strategy offers the best average performance
(Root Median Square Error, RMSE = 18.54 mg/dL) throughout the 12 considered predictive horizons
(up to 60 min in steps of 5 min), showing Support Vector Machines (SVM) to have the best accuracy
as a forecasting algorithm when considering, in turn, the average of the six FS techniques applied
(RMSE = 20.58 mg/dL).

Keywords: diabetes mellitus; machine learning; feature selection; time series forecasting

1. Introduction

Type I diabetes mellitus (DM1) is generally accompanied by excessive blood sugar
levels caused by the fact that the body is failing to create insulin. Within healthy subjects,
blood glucose levels are regulated by glucose homeostasis, a closed-loop system [1]. The
pancreas is the home of β cells that react to excessive glucose levels and create insulin to
combat hyperglycemia. In DM1 subjects, such regulatory processes do not occur. DM1
is an autoimmune disease that causes the immune system to attack the pancreas’ insulin-
producing cells. This is the most aggressive type of diabetes. DM1 subjects are incapable of
producing insulin so they have to rely on either exogenous injections of the hormone or by
wearing an insulin pump for regulation of glucose levels [2]. Management of diabetes aims
to maintain homeostasis and to keep blood glucose at close to normal levels, alongside the
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avoidance of ketoacidosis, hypoglycemia, and additional longer term problems such as
cardiovascular disease [3].

Normal levels of blood glucose are assumed to be between 80 and 120 mg/dL. Values
below and above such a range would lead to hypoglycemia and hyperglycemia, respec-
tively, and both situations could be inadvisable for the patient. Therefore, the desired
interval is not too wide. In this sense, subjects with diabetes have to undertake frequent
capillary blood glucose monitoring in order to maintain close to normoglycemia. Thank-
fully, the requirements for such monitoring have been removed from any patients with
the advent of continuous glucose monitoring (CGM) technology, e.g., the Dexcom G6
(Dexcom Inc, San Diego, CA, USA). Such cutting-edge CGM technology is effective in
reducing HbA1c (Hemoglobin A1C), achieving the HbA1c target and leading to reductions
in fluctuations in glucose levels [4].

Despite the above, patients must also consider their diet and lifestyle to determine
the amounts of insulin they require each day [5]. Basically, patients continuously make
predictions as to where their blood glucose level will be in the future and the quantity
and timing of insulin supplementation they will need to retain metabolic control in order
to stave off hyperglycemia and hypoglycemia. Making an accurate self-forecast of blood
glucose levels to set the correct dosage of insulin is a complex process. Patients must
take a number of important elements into consideration and this can skew the subjective
assessment of their needs result in errors. Thus, before being faced with an accurate
calculation of insulin doses, it is necessary to achieve a glucose prediction that has an
acceptable margin of error. The glucose prediction is therefore the first step.

The goal of a completely operative and functional artificial pancreas (AP) is an
ambitious target to be reached. Thinking of a device capable of being autonomously
maintain, in every situation, the blood glucose levels within a healthy range—free from
hypo/hyperglycemia events—is nowadays far from being a tangible reality. Therefore, it
is more reasonable to first consider intermediate steps, focusing on those aims which are
more critical and, once they are under control, go further. In 2009, Kowalski suggested a
pathway in the long trip to design an AP [6], in which one of the preliminary steps—before
obtaining a proper calculation of the insulin doses that would be dispensed through an
insulin pump—is undoubtedly to have a sufficiently accurate prediction. In fact, the ab-
sence of an accurate forecast of the evolution of glycaemia in a few minutes (taking into
account past circumstances) could lead to errors in insulin dosage and, consequently, to
poor management of blood glucose levels, which can be fatal.

It is fortunate that greater sophistication has been introduced into the technology
for DM1 patients. Nowadays, advances in microcontrollers allow for the implementation
of model predictive control (MPC) solutions that open the door to new options in the
management of DM1, among other possibilities [7]. New wearable electronic technol-
ogy may be a significant addition to the management scheme, providing a totally novel
new prospect for managing diabetes and significantly improving the forecast accuracy
of glucose levels. There are many forms of wearable technology that could be used for
monitoring not only glucose levels but also a variety of physiological elements. Examples
include taking electrocardiographs, monitoring heart rate, registering activity and exercise
levels, and monitoring interstitial/blood glucose levels. There is a considerable amount
of wearable technology that can register an individual’s daily activities and physiological
condition many times each minute. Using such resources, we have developed a full dataset
of biomedical features related to glycaemia. We harvested these by undertaking an in-
depth passive-monitoring program in the real world with 25 DM1 patients, helping us to
effectively identify patterns which allow us to model the crucial elements of glucose levels.

With these data, we can then develop an accurate glycaemia forecast. Some very
successful MPC-based solutions for glycaemia prediction, which make use of microcon-
trollers, have been presented in the literature [8]. Although time series values-prediction is
well-trodden in the field of Machine Learning (ML), it is common to perform appropriate
feature selection such as pre-processing, in order to enhance the efficacy of the predictive
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algorithm. Many of these predictive algorithms have only been applied to blood glucose
prediction, but to the best of the authors’ knowledge, there has been no comparative study
not only of the prediction techniques, but also of the feature selection techniques. We
find that it is complex to make fair comparisons with their results since each one uses
different databases, with different added features, evaluating them in different ways (at
different predictive horizons, different error evaluation metrics, etc.) and throughout dif-
ferent monitoring times. With all this, it is complicated to reach a conclusion on which one
behaves better and it is not possible to extract overall conclusions. In addition, the previous
phase of variable selection has not been compared either, so the influence of this on the
improvement of the prediction has not been studied. The aim of the paper is therefore
to make a fair comparison of these algorithms with a complete database. Moreover, the
inclusions of the variables collected in our database are rarely seen in studies on blood
glucose prediction.

Thus, in this paper, a rich and complete dataset has been acquired alongside a novel
process of features selection that enhances the performance and comparison of the predic-
tion has been developed. We believe that this paper will enable a confident combination
of feature selection and forecasting techniques to achieve more precise predictions in an
assumable predictive horizon (PH).

In short, the main contributions of this paper are as follows:

- A brief literature review on variable selection and prediction methods for glycaemia
values in diabetics.

- To use an innovative database in the field of DM1, both in terms of the number of
patients/variables considered and the monitoring time covered.

- To test different variable selection techniques.
- To combine these feature selection techniques with different predictive algorithms.
- To discuss the influence of the variable selection techniques on the performance of the

predictive algorithm, as well as to study the accuracy achieved.

This research has employed a number of cutting-edge modeling and forecasting
techniques. Implementation and analysis have been undertaken using six feature selection
techniques alongside four forecasting techniques. The paper is organized as follows:
Section 2 describes some previous works on forecasting glycaemia in DM1 to frame our
research. In Section 3, we present the feature selection techniques and predictive algorithms.
The monitoring campaign is depicted in Section 4, while Section 5 details the methodology
followed in our work, with descriptions of the ML techniques. Section 6 offers the main
results and discussion, and finally, we conclude the paper in Section 7.

2. Related Works

As mentioned in Section 1, it is crucial that an accurate range of variables and effective
data collection methodology is employed when predicting blood glucose levels and that
note is taken in the way they have previously been used. These variables must be related as
time-series data, as the level of historical occurrences is considered as significant. Feature
selection using a time-series is not the same as feature selection using standard data. With
standard static data, target values only refer to the features’ contemporary values. However,
with feature selection in time-series, the target values are related to feature values at various
points in the past as well as the contemporary value. This means that it is essential in
feature selection in time-series to excise redundant/irrelevant variables and features, and
selecting the relevant previous values for the creation of an effective dataset. In order
to forecast glucose levels, it is widely recognized that the effect of previous values has
importance. One example is the research of Eskaf et al. [9] who found, by employing
discrete Fourier transformations, that blood glucose levels vary as a result of meals within a
single timeframe of eating. This means that there is the capacity (which is crucial) to select
the correct influential variables and so reduce the dimensionality. This is an important
stage in processing [10] prior to applying a data mining algorithm to any dataset.
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Feature selection methodologies with time-series can be separated into filter, wrapper,
and embedded techniques [11]. Filter techniques simply use the data in deciding on the
features for retention. Wrapper techniques employ a learning algorithm wrapped around
the feature search, selecting the features on the basis of its performance. With embedded
methods, weighting is employed to control parameter values. In all cases, applications of
variable selection methods can affect the course of diabetes mellitus. Balakrishnan et al. [12]
applied Support Vector Machines (SVM) to rank variables affecting type 2 diabetes, and
some hybrid methods have been proposed to optimize the diagnosis of diabetes [13].
However, there have not been many studies that apply variable selective methods to
features that affect the immediate course of blood glucose in patients with type 1 DM.
This could be due to some variables only recently being considered for predicting blood
sugar [14]. In 2019, a sequential backward selection algorithm was successfully applied
using a linear model in a cross-validation (CV) setting, obtaining an optimized and reduced
subset [15]. Despite this, a study comparing the performance of different feature selection
methods applied to diabetic patients’ glycaemia has not been developed.

Numerous attempts have been made to develop a reliable prediction of glucose
in DM1 patients. In this case, there have been approaches from a univariate point of
view [16], using Autoregressive Integrated Moving Average (ARIMA), Random Forest
(RF) and Support Vector Machines (SVM) with acceptable results. However, although
univariate approximations can be interesting in computationally restricted environments,
multivariate methods have demonstrated higher accuracy [17]. In this regard, some
forecasting strategies need to be highlighted where results will be improved after a proper
feature selection preliminary stage.

Linear Regression (LR) is probably the simplest methodology. This group of models
endeavors to discover an assessment of the parameters of the model with the goal that the
summation of the squared errors is minimized. Although it is the simplest, its accuracy
could be sufficient, and due to its simplicity, it is easily executable even by limited hardware.
In any case, recent approximations using Least Absolute Shrinkage and Selection Operator
(LASSO) regression have achieved acceptable accuracy and good performance [18].

There are other methods using the same sort of techniques, for example, Gaussian Pro-
cesses (GP) with Radial Basis Function Kernels (RBF) [19], which permit overall uniformity
and limitless levels of basic functions. However, these are not often employed, although
some researchers have used such techniques and the results have shown promise [20].
Some recent research has also looked at GP [21], examining the potential for automatic
insulin delivery that could reduce the number of hypoglycemic events.

GP is a non-parametric methodology that revolves around creating a model of observ-
able responses from a number of points in the training data (function values) and using
them as multivariate normal random variables [22]. It is assumed that the function values
will be distributed in such a way that the function will operate smoothly. Specifically, when
closeness exists (in an Euclidean distance context) between matching input vectors that
decay with divergences, the two function values will be closely correlated. Employing an
assumed distribution by applying a basic probability manipulation allows for posterior
distribution of hitherto unpredicted function values.

RF algorithms use a method referred to as bagging, which re-samples data instances a
number of times in order to create several training subsets on the same training data [23]. A
decision tree is then designed for every training subset until a tree ensemble has been built.
Every tree then inputs a unit vote influencing the outcomes of the incoming data instance
cost label. Xu [24] diagnosed DM1 employing RS with a public hospital dataset, and
this methodology performed better (85% success) than a number of other methodologies
such as the ID3 (Iterative Dichotomiser 3) algorithm (78.57%), the naïve Bayes algorithm
(79.89%), and the AdaBoost algorithm (84.19%).

SVM is a dual learning algorithm that undertakes example processing just by comput-
ing the dot-product. It is possible to efficiently compute such dot-products between feature
vectors, employing a kernel function that does not obliterate every corresponding feature.
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Once the SVM learner has been supplied with the kernel function, it seeks out a hyperplane
that can separate negative and positive examples and simultaneously maximize the size of
their separation (margin). SVM is not prone to over-fitting and performs well in generaliza-
tion as a result of the max-margin criterion employed throughout optimization. Although
MLP solutions may solely be a local optimum, SVMs will always converge to a global
optimum as a result of corresponding convex optimization formulations. The work [25]
offered a useful method of hypoglycemic detection based on SVM, employing a galvanic
skin response using skin temperatures, monitoring of heart rates, and a small band. Re-
grettably, the size and type of the dataset used in this research has unintentionally limited
the applicability of the results. SVM revolves around employing high-dimensional feature
spaces (built using transformational original variables) and the application of penalties to
the resulting complexities by using a penalty term integrated within the error function [26].
Other approaches like the stacking-based General Regression Neural Network (GRNN)
ensemble model are truly promising [27–29], but it has not been previously applied to DM1.
In this sense, the authors of this work intend to analyze it in future research.

In relation to the foregoing, it can be concluded that these techniques have shown
promise in terms of forecasting the dynamics of glycaemia. Nevertheless, as far as the
authors are aware, no research has yet been undertaken employing selection techniques
and a variety of forecasting algorithms utilizing real-world data and a proper feature set to
reveal the most accurate of the options available.

3. Feature Selection and Forecasting Time Series
3.1. Feature Selection Techniques

Feature selection (FS) involves taking a particular dataset and selecting the most useful
and applicable features from it. If we have a dataset with d input features, feature selection
will create a set of k features in such a way that k < d, with k being the smallest possible
collection of relevant and important features [30]. This means that the ML algorithm can be
trained more quickly, the model becomes less complex and easier to decipher, forecasting
power is improved, and overfitting is decreased through the selection of accurate feature
arrangements, amongst other benefits.

Three types of feature selection methods are available [31], these being wrapper
methods, filter methods, and embedded methods. Wrapper methods employ a combination
of factors for decisions on the strength of forecasting. Standard wrapper techniques include
Subset Selection, Forward Stepwise, and Backward Stepwise (RFE) [32]. The wrapper
technique finds the optimal combination of features. This technique runs every variable
past a test model created, using them for outcome assessment [33]. Of the three techniques,
this demands the most computational power. Using the Subset selection technique, the
model is fitted with all possible combinations of N features [34]. With Forward Stepwise
techniques, we commence with a null model, i.e., one with only one variable, adding
features singly and selecting the optimal model that scores the highest depending on the
metrics used (f.i. A valuation of error). Having selected a predictor with this strategy, the
model will never regress in the second stage. The process continues until we have the
optimal feature subset, employing a stop criterion that sets the rules for the completion
of the feature selection process. Conversely, Backward Stepwise Selection (Recursive
Feature Elimination) raises features as it processes. Since these techniques are not applied
to every feature combination, they require significantly less computational power than
straightforward subset selection [35]. Essentially, this technique is the opposite of the
Forward Stepwise selection technique. The process begins with every predictor being
present, erasing one after another and selecting the best model from the results. This
requires essentially the same amount of computational power as Forward Selection. Some
research has employed and made comparisons between Filter and Wrapper strategies [36].

Filter strategies are also referred to as Single Factor Analysis. Employing such tech-
niques, an assessment is undertaken of each individual variable (feature)’s predictive
power. A variety of statistical methods may be employed to ascertain how robust the
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predictions are [37]. One way of doing this is to undertake correlation of the features and
the objectives (our predictions). The optimal features are those with the highest correlation.

The embedded Method (Shrinkage) represents a selection strategy using inbuilt vari-
ables. In this strategy features are neither selected nor excised. Certain controls are applied
to parameter values (weights). Another technique is LASSO Regression. With this method,
regularization is undertaken and certain regression coefficients tend towards zero [38]. As
the coefficients fall towards zero they are dropped/rejected. Another technique is Ridge
Regression (Tikhonov regularization), which incorporates a punishment increasing with
the square of the coefficient greatness [39]. Every coefficient is diminished by an identical
factor (which means no predictor undergoes elimination).

A selection of the above techniques will be employed in this research using a Ranker
Strategy [40], which minimizes the metric Root Mean Squared Error (RMSE) and leads to
reductions in the feature set. Both groups have differing approaches, one univariate and
one multivariate. Univariate techniques are quicker and easier to scale, but they do not take
account of variable dependencies. Conversely, multivariate techniques can model feature
dependencies, but they are not as fast or as easy to scale as univariate techniques [41]. The
methodology section will give further details on the selected techniques. If we minimize
the metric, this leads to improvements in forecasting.

3.2. Forecasting

Once the FS is complete, we can begin the forecasting task in time series. Wolpert and
Macready [42] stated that when we lack the information regarding the underlying model,
we cannot say with certainty that any particular model will always outperform another.
This means that the optimal strategy is to experiment with a number of techniques in order
to discover the most effective model. This research has used both linear and non-linear
techniques to focus on the algorithms that show the greatest promise.

Linear regression is one of the simplest techniques. In this model, we search for an
estimate of the model parameters in order to minimize the sum of the squared errors [43].
The modifications incorporate partial least squares/penalized models, e.g., ridge regression
or LASSO.

One advantage from the proponents of such models is that they are easy to interpret.
Relationships are indicated by the coefficients and these are generally very simple to calcu-
late, meaning that we can afford to employ a number of features. However, performance
with these models may be limited [44]. Good results are achieved if the predictor/response
relationship falls on a hyperplane. If we have higher-order relationships, e.g., like, cubic,
or quadratic, such models may not accurately capture nonlinear relationships and thus we
have to look for a different approach [45].

Certain models are capable of understanding non-linear trends. We do not need to
know the precise type of nonlinearity prior to constructing our model. One of the most
widely used models is Support Vector Machines (SVM). These are dual learning algorithms
that compute the dot-products of data in processing [46]. Proper computation of such
dot-products between variable rates may be achieved using a kernel function [47]. Using
such a function, SVM learners seek out the hyperplane separating the examples with the
maximum separation (margin) between them. It is recognized that SVMs are resistant
to overfitting and perform well in terms of generalization as a result of the max-margin
criterion employed during the optimization process. Additionally, although alternative
solutions produce only local optimums, SVM will converge to a global optimum due to the
corresponding convex optimization formulation [48].

There has been considerable interest in the Regression Trees family of modeling
algorithms in recent times. Tree-based modeling employs if/then statements to find the
predictors that will be used for data partitioning. In such subsets, a model is employed for
forecasting outcomes [49]. Statistically, the addition of randomness when constructing the
tree helps to reduce correlations between predictors. This is used in the Random Forests



Appl. Sci. 2021, 11, 1742 7 of 20

(RF) technique [50]. All models from the set are employed in building predictions for new
datasets, and an average is taken of the predictions, which supplies the ultimate forecast.

RF models undertake variance reductions through the selection of robust complex
learners with low bias levels. This decreases the number of errors and additionally proves
strong in overcoming noisy responses [51].

Gaussian Processes (GPs) with Radial Basis Function Kernels (RBF) [52] and other
forms of comparative strategy create consistency overall and allow for a limitless quantity of
basic functions, but these are rarely used, even though some past research has demonstrated
that it can show promise [53].

GP methodology is nonparametric, with a focus on taking discernible reactions from
a variety of training data points (function values) and modeling them as multivariate
standard random features [54]. It is assumed that there is a priority distribution of these
function data values, guaranteeing that the function will operate smoothly.

When the comparing vectors are close (in the sensitivity and separation), the func-
tion values will be closely correlated, with decay occurring upon divergence. We may
subsequently calculate how the unpredicted function data is distributed by employing an
assumed distribution and applying a basic probability manipulation.

4. Database, Available Features and Target to Be Forecasted
4.1. Description of the Experiment

In order for this research to harvest a complete empirical collection of features, we
created a new dataset by employing new ways of monitoring subjects. The glycaemia of
25 subjects underwent continuous monitoring for up to 14 days as they went about their
normal routines. This monitoring campaign was awarded approval by the Ethical Research
Commission of the University of Murcia on 25 January 2018 (Id.16 83/2017).

Each volunteer suffers DM1 being treated with a basal-bolus strategy, either employing
slow insulin like Lantus, Levemir or Lantus—which creates a flat action curve—or fast
insulin like Humalog-Lispro. Using slow insulin in basal coverage lasts for over 24 h; fast
insulin is used to counter rises in glycaemia which may occur when eating or to counter
hyperglycemia arising from other causes. Each subject signed an informed consent form
prior to participation in the research.

There were 11 women and 14 men in the study cohort, each one receiving professional
supervision and medical care. The monitoring undertaken was of a passive form that
made no intervention in patient treatment, with every subject advised to continue with
the instructions of their physicians. The subjects ranged from 18- to 56-year-olds, with
an average age of 24.51 years, with the majority of subjects falling into the young adult
category.

All patients had been suffering from diabetes for a minimum of five years; this time
was set to ensure all patients had familiarity with the way the disease progresses.

All subjects were given complete information regarding the research aims. Generally,
the subjects’ condition was well controlled, all of them having a glycated hemoglobin(hbA1c)
of between 6% and 7% when the experiment began.

Every patient claimed to be leading a healthy lifestyle, with none of them undertaking
fewer than three sporting activities per week. Some scheduling was factored in in an
attempt to make sure that every patient was following some form of routine without
making drastic alterations to their daily routines. Each subject consumed a balanced diet
that met their calorific needs. Subjects were asked to maintain their usual life habits and to
continue following their endocrinologist’s advice.

The patients in this research were given CGM sensors to wear, the model being the
Freestyle Libre made by Abbott Company. This revolutionary device comprises a patch
and a measuring device, permitting patients to make simple checks of their glycemic state
(interstitial-glucose levels rather than blood-glucose levels). A notable feature of this device
is that it allows the patient to check their glucose levels as frequently as they wish and
collect data every 60 s. This device has been quite revolutionary as it is economically priced
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and achieves a reasonable level of accuracy (11.4% Mean Absolute Relative Difference,
MARD). The subjects were asked to note down what fast-insulin dosages that had slow-
insulin dosages, and also the carbohydrates they consumed through food, meaning that
the data were empirical rather than subjective.

The CGM has a maximum lifespan of 14 days, but it can cease functioning prior to
that. As it cannot be reattached once it has fallen off, it can cease working through accident,
failed adhesion, or excessive humidity. In addition, the initial days of use can be inaccurate
as the calibration is not solidified. It was proposed that data should be harvested from nine
days of the usage period, with the initial days being excised as calibration was still taking
place, and the final one is excised as the device may not have been able to cover the full
14-day lifespan. Thus, the experimental phase had 5400 h of data to consider.

Freestyle Libre is a device using flash glucose monitoring. Glucose levels are trans-
mitted instantaneously when required, employing Near Field Communication (NFC)
which needs the patient to actively require the data. Certain devices act as transductors
NFC-Bluetooth (e.g., the popular miao-miao: https://miaomiao.cool/?lang=en, accessed
January 2021). The Libre sensor can be attached to the device and this means that data can
be transmitted to a smartphone at regular intervals.

The dataset was rounded out by use of the smart band Fitbit Charge HR©. This
advanced fitness device automatically tracks various data and monitors the wearer’s heart
rate at all times. It can record sleep time, attitude climbed, step numbers, distance travelled,
and heart rate. It connects using Bluetooth-low-energy and was linked with a computer
and a small phone so that all necessary trends could be monitored. A number of other
researchers have already employed Fitbit trackers to monitor the subjects’ health [55]. All
volunteers were given smart watches to keep a continuous record of their physical activity
(step numbers) over the fortnight, along with heart rate and sleep data. Although these
devices are not designed for precise medical use, it has been demonstrated that they are
sufficiently accurate for the data to be used in research.

This monitoring was undertaken in 2018 and was continually supervised by the
Endocrinology Departments of the Virgen de la Arrixaca and Morales Meseguer hospitals,
two well-respected facilities in Murcia, Spain.

To the best of the authors’ knowledge, unfortunately there is no previous work
within the scientific literature with comprehensive data acquisition, since some previously
published studies consider only partial monitoring, and collect only some of the features
that can be recorded, or simply focus on a limited number of patients and/or data collection
for just a few days.

Once all data had been acquired, preprocessing was undertaken on the dataset with
outliers and gaps being cleaned. For cleaning outliers, extreme value analysis was em-
ployed, either by looking at scatter plots or by searching the values that were deviated
more than double the mean. With gaps, interpolation methods were employed, with finger
stick glucose values being added where possible. The sampling period was set at five
minutes, sufficient to indicate tendencies and rapid changes but not so high that the ML
algorithms would be overloaded. Data storage was undertaken in compliance with the
highest level of data protection regulations regarding personal information. Additionally,
the Ethics Committee of the Universidad de Murcia, Spain, understood supervision of the
way the patients were monitored.

The data gathered will be of great assistance to this research and other researchers
in the future. Table 1 shows a variety of data relating to the population covered by
our monitoring.

https://miaomiao.cool/?lang=en
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Table 1. Data regarding the patients considered in the study.

Population Feature Value

Subjects (Number) 25

Sex 14 men–11 women
Occupation 16 students–9 office workers

Population Feature Median Min Max
Age (years) 24.51 18 56

Body Mass Index (BMI, kg/m2) 22.20 19.42 24.80
Duration of diabetes (years). 9 5 29

Fingersticks per day. 7 5 12
Insulin units per day (fast insulin +

slow insulin, median). 47 36 59

HbA1C (%). 6.8 6.3 7.8

4.2. Available Features and Targets to Be Forecasted

Currently, the majority of past research into diabetes management systems has only
considered insulin and glycemic levels, with some estimating the effect of meals; it would
appear to be logical to add other variables that can affect glucose levels if they are suscepti-
ble to estimation or measurement. Overall, researchers have agreed that the remarkable
variables should be meals, glycaemia, and insulin [56], which are the parameters used in
most research. Some research recently has looked at other variables, chiefly exercise, both
in vivo and in silico [57]. Additionally, they have also looked at temperature and heart
rates. In this research we have harvested the following data every five minutes, with each
element having some effect on a patient’s glucose level:

- Glycaemia: A collection of previous measurements.
- Insulin injections: Previous values for fast insulin doses. For diabetic patients this

hormone, generated exogenously, is the primary controller of how far blood glucose
levels will fall.

- Meals: Previous values, as with insulin. It is noteworthy that the patient cohort all
were experienced in counting their carbohydrates. All food by humans is converted
and absorbed in the form of glucose, which is then released into the bloodstream,
causing a virtually instantaneous rise in glycaemia.

- Exercise: Relevant historical data, with measurements in terms of steps taken. The
muscles demand more glucose during physical activity; physical activity also enhances
the circulation of the blood, making insulin more effective during exercise as the
cellular barriers have greater permeability, meaning glucose has easier access to
the cells.

- Heart rate: Contemporary and past values. The heart rate can be increased for a wide
variety of reasons. Clearly it will rise during physical activity, but stress can be a
contributor, as can hypo or hyperglycemia.

- Sleep: We collected data that only showed whether the subject was awake or asleep. It
would appear logical to register sleep as being related to the length of sleep previously
enjoyed. Poor quality nighttime sleep may cause insulin resistance and imbalances in
glucose dynamics.

5. Methodology
5.1. The Waikato Environment for Knowledge Analysis (WEKA)

The University of Waikato, New Zealand, has produced the open source software
Waikato Environment for Knowledge Analysis (WEKA v.3.8) (https://waikato.github.
io/weka-wiki/, accessed December 2020). This free software is licensed with the GNU
General Public License. WEKA comprises various algorithms and visualization tools to
analyze data to use in predictive modeling, alongside graphical user interfaces allowing
such functions to be easily accessed. A number of standard data mining routines can

https://waikato.github.io/weka-wiki/
https://waikato.github.io/weka-wiki/
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be performed with this software, particularly forecasting, modeling, feature selection,
visualization, regression, classification, clustering, and data preprocessing.

The use of WEKA facilitates data entry, algorithm execution and visual context in the
management of the entire process. This software has been successfully applied many times
before, and is still being applied in recent literature. This way, Hussain et al. used WEKA
in 2018 to study educational aspects with data mining techniques [58], and Kiranmai et al.
also considered such software to classify electrical power problems [59]. WEKA is presently
booming and new modules are developed every year, like those presented in 2009 by Lang
et al. for deep learning [60].

WEKA includes specific libraries to tune the hyperparameters for each algorithm.
In this sense, the Auto-WEKA package has been used [61]. Auto-WEKA considers the
problem of simultaneously selecting a learning algorithm and setting its hyperparameters,
overcoming the limitations of previous methods that address these issues in isolation.
Auto-WEKA performs such task by using a fully automated approach, taking advantage
of recent innovations in Bayesian optimization. Auto-WEKA helps to more effectively
identify machine learning algorithms and hyperparameter settings, thereby achieving an
improved performance.

5.2. Computer Hardware

Due to the computational demands of the ML algorithms considered in this work,
they have been executed by a high-performance computer equipped with an AMD Ryzen
7 1700X processor, operating at 3.8 GHz with 32 GB DDR4 RAM at 2666 MHz CL19 and a
Solid State Disk Samsung 970 Evo Plus M.2 1000 GB PCI-E 3.0.

5.3. Data Cleaning, Regularization and Lagged Variables

The database will undergo a transformation to provide the values that have been
cleaned and a number of gaps that have been filled. Since the influence of certain features
could be delayed, every feature apart from the date lacked 72 values (i.e., the previous
six hours accounted for). WEKA’s TimeSeriesLagManager permits lagged variables to be
created when necessary.

5.4. Features Selection

Feature selection can be undertaken in WEKA with its intuitive graphical interface.
The AttributeSelection module permits the specification of a variety of Attribute Evaluators
and Search Methods. The testing of a number of combinations will be undertaken and
an evaluation of them will be performed at the forecasting phase. Whichever features set
provides the most accurate predictions will be selected.

5.4.1. Search Method

As mentioned above, a Ranker Strategy has been employed. This means of searching
evaluates each feature one after the other and ranks them in order [62]. We can employ the
identical name Ranker for the ordering within the AttributeSelection module.

5.4.2. Attribute Evaluators

Of the available feature selection methods in WEKA, the two most frequently em-
ployed will be chosen:

- Wrapper methods: employing the ClassifierAttributeEval routine within WEKA will
permit evaluation or certain approaches. The predictors below will be executed.

# Linear Regression: This allows for swift computation, with coefficients being
fixed for all features.

# Random Forest: As previously stated, this is a tree-based algorithm frequently
employed for classification.

# Multilayer Perceptron (MLP): This algorithm makes an estimation of the rela-
tive contributions of input units (which represent the attributes) and the output
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neurons (those which correspond with the problem classes) and uses the in-
formation to identify a subset of pertinent usable attributes to be employed in
supervised pattern classification [63].

# Instance-Based k-nearest neighbor algorithm (IBk) [64]: this is a K-nearest
neighbor classifier that selects a suitable value for K on the basis of CV; it can
also perform distance weighting.

- Filter Methods. For univariate methods, we will employ the predictors listed below.

# Relief Attribute (Rlf) [65]: Relief feature selection works on the basis of cre-
ating a score by identifying feature value differences for nearest neighbor
instance pairs.

# Principal Component Analysis (PCA) [66]: With this method, we introduce a
novel set of orthogonal coordinate axes, simultaneously maximizing sample
data variants. This makes other directions with more minor variants have less
significance and so they can be cleaned from the dataset. PCA is extremely
effective in transforming data at lower dimensions and can also show us
simplified underlying data patterns.

5.4.3. Generated Subsets

With a combination of exposed techniques as illustrated in Table 2, it is possible
to generate seven subsets included in the original dataset without FS and subtests with
reduced data. This can then be evaluated in the forecasting phase. For every exposed case
of FS, the RMSE metric is the one that will undergo optimization. Additionally, we look
at the prediction strategies that can be found in the subsection below from the original
dataset. Table 3 is a tabulation of the various commands employed with WEKA, showing
the parameters used.

Table 2. Applied Feature Selection techniques.

Search Method Attribute Evaluator Predictor Acronym

Ranker
Wrapper (Classifier)

LR Rnk-LR

RF Rnk-RF

MLP Rnk-MLP

IBk Rnk-IBk

Filter
Relief Rnk-Rlf

PCA Rnk-PCA
Rnk: Ranker; LR: Linear Regression; RF: Random Forest; MLP: Multi-Layer Perceptron; IBk: Instance-Based
K-nearest neighbor; Rlf: Relief Attribute; PCA: Principal Component Analysis.

5.5. Data Modeling and Forecasting

Having obtained the seven reduced data subsets alongside the original dataset, we
attempted to create predictions for future values in light of the previous time series collated
for every dataset. An attempt has been made to forecast glycaemia for the subsequent
12 values. Since it is measured every five minutes, the maximum PH is fixed to 60 min.
This allowed us to evaluate those predictions using real data. The training and test have
been undertaken using Cross Validation for the time series [67,68]. This way, the data used
in the training has been excluded from the training dataset.
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Table 3. WEKA commands for Feature Selection.

Technique Command

Ranker weka.attributeSelection.Ranker -T -1.8E308 -N -1

Classifier LR weka.attributeSelection.ClassifierAttributeEval -execution-slots 100 -B weka.classifiers.functions.LinearRegression -F 5 -T 0.01 -R 1 -E
RMSE – -S 0 -R 1.0E-8 -num-decimal-places 4” -S “weka.attributeSelection.Ranker -T -1.8E308 -N 100

Classifier RF weka.attributeSelection.ClassifierAttributeEval -execution-slots 100 -B weka.classifiers.trees.RandomForest -F 5 -T 0.01 -R 1 -E RMSE –
-P 100 -I 100 -num-slots 1 -K 0 -M 1.0 -V 0.001 -S 1” -S “weka.attributeSelection.Ranker -T -1.8E308 -N 100

Classifier MLP weka.attributeSelection.ClassifierAttributeEval -execution-slots 1 -B weka.classifiers.functions.MultilayerPerceptron -F 5 -T 0.01 -R 1 -E
RMSE – -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a” -S “weka.attributeSelection.Ranker -T -1. 1.8E308 -N 100”

Classifier IBk
weka.attributeSelection.ClassifierAttributeEval -execution-slots 1 –B weka.classifiers.lazy.IBk -F 5 -T 0.01 -R 1 -E RMSE – -K 1 -W 0 -A
\”weka.core.neighboursearch.LinearNNSearch -A \\\”weka.core.EuclideanDistance -R first-last\\\”\”“ -S

“weka.attributeSelection.Ranker -T -1.8E308 -N 100”

Rlf “weka.attributeSelection.ReliefFAttributeEval -M -1 -D 1 -K 10” -S “weka.attributeSelection.Ranker -T -1.8E308 -N 100”

PCA weka.attributeSelection.PrincipalComponents -R 0.95 -A 5” -S “weka.attributeSelection.Ranker -T 1.8E308 -N -1

LR: Linear Regression; RF: Random Forest; MLP: Multi-Layer Perceptron; IBk: Instance-Based K-nearest neighbor; Rlf: Relief Attribute;
PCA: Principal Component Analysis.

To do this, we employed a WEKA (v.1.027) timeseriesForecasting module [69]. There-
fore, the following algorithms will be used as crosses with every dataset, and also in relation
to RMSE:

- Linear Regression (LR)
- Support Vector Machines (SVM)
- Random Forest (RF)
- Gaussian Process (GP)

Section 3.2 provides descriptions of all methods. Table 4 details the WEKA commands
and each method’s parameters.

Table 4. WEKA commands for forecasting.

Technique Command

LR weka.classifiers.functions.LinearRegression -S 0 -R 1.0E-8 -num-decimal-places 4

RF weka.classifiers.trees.RandomForest -P 100 -I 100 -num-slots 1 -K 0 -M 1.0 -V 0.001 -S 1

SVM weka.classifiers.functions.SMOreg -C 1.0 -N 0 -I “weka.classifiers.functions.supportVector.RegSMOImproved -T 0.001 -V
-P 1.0E-12 -L 0.001 -W 1” -K “weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007”

GP weka.classifiers.functions.GaussianProcesses -L 1.0 -N 0 -K “weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C
250007” -S 1

LR: Linear Regression; RF: Random Forest; SVM: Support Vector Machines; GP: Gaussian Process.

6. Results and Discussion: Forecasting Performance

The different variable selection algorithms give rise to six reduced data subsets which,
together with the original dataset, has led to seven cases on which to run the predictive
techniques. Since the data of 25 patients were available, 150 processes of variable selection
have been executed and together with the original dataset result in 175 data sets. The
four predictive techniques have been applied to each of them, and a future prediction of
the values for the following hour has been generated with five-minute intervals, that is,
the prediction is made to the next 12 values, executing a CV. It should be noted that, as
following the subject-wise scheme cannot be done, this could be a drawback of the study.

As an example of the first phase (training), from which a trained model is obtained,
the graph in Figure 1 is obtained. It can be seen how the model generated with the subset
generated after applying RF to patient ‘01’ is used to predict at 60 min using RF as a
predictive technique. As expected, the best inaccuracies correspond to periods of rapid
oscillation and sharp variation in blood glucose, thus minimizing the error in hours without
ups and downs.



Appl. Sci. 2021, 11, 1742 13 of 20

Figure 1. Example of training stage with RF algorithm of the subset RF from patient ‘01’ for a 60 min PH glycemia prediction.
Red, real data of glycaemia; Blue, modeled data.

The results of the forecasting task are tabulated in Table 5. With each predictive
algorithm, and for each subset of data, we calculated the accuracy of the next 60 min
(12 steps) of the glycaemia data. Using the CV technique, we obtained the RMSE (mg/dL)
for each future step as an average of the 25 patients. Later, as a measure of performance,
we further obtained an average of the 12 values of RMSE regarding each FS technique
(RMSE). We also estimated the standard deviation in each predicted series with the aim
to infer the accuracy’s variability. We performed the Shapiro–Wilk test to determine if the
data presented a normal distribution for each 12-step prediction. The results showed that
the data were normally distributed (p-values > 0.05).

As stated in Table 5, we obtained the lower RMSE averaged between the 12 predictions
(RMSE) using RF as a foresight algorithm with the RF dataset (RMSE = 18.54 mg/dL) and
in an average of the FS technique, the best performance is obtained using SVM as predictive
technique (RMSE = 20.58 mg/dL) but we have to note that the better performances are
located on the early predictions (5, 10, 15 min), and then they rise. Figure 2 shows the
evolution of the accuracy per forecasting algorithm with the different FS approaches.

In relation to Figure 2, we can observe how LR as a forecasting technique (upper left)
offers an adequate behavior, but mainly in low PHs (5 or 10 min). Later, the error goes up
for a further PH. It can be seen how the application of a variable selection method means a
general improvement in performance, in light of the differences between the “no FS” line
and the others.

This difference in performance according to FS technique is also observed in the RF
predictive technique (above right). RF stands out as the best approach to select variables.
In this case, RF as a forecasting technique generates good short-term accuracy, and in the
long term it stabilizes at a value that may be acceptable under the best selective techniques.

SVM as a predictive algorithm (bottom left) presents an excellent performance at near
PHs but in the long term it rises in a linear fashion. Again, it is observed how the selection
of variables is necessary to reduce the error, but not all the techniques used result in a
similar behavior. Lightweight RF as FS provides the best result.

GP shows the worst performance in terms of the prediction algorithm. The variability,
according to the selection technique, is wide, the worst precision being when not using
variable selection and the best when RF is used for this task.
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Table 5. RMSE in test stage up to 12-steps glycemia forecasting. Averaged results of 25 subjects.

RMSE (mg/dL)

Subset FS 5 10 15 20 25 30 35 40 45 50 55 60 RMSE Stnd Dev.

Forecasting technique: LR

No F.S. 9.32 15.15 18.94 22.72 26.23 29.30 31.26 33.33 35.48 37.69 40.03 42.55 28.50 10.32

LR 9.00 14.17 16.84 20.07 21.79 23.52 25.41 27.36 29.29 31.24 33.25 35.33 23.94 7.98

RF 9.29 14.53 17.16 20.26 21.82 23.38 25.08 26.84 28.58 30.32 32.09 33.91 23.60 7.41

MLP 9.22 14.44 17.09 20.25 21.89 23.51 25.26 27.06 28.83 30.61 32.42 34.29 23.74 7.57

IBk 9.51 14.88 17.57 20.69 22.26 23.83 25.54 27.31 29.07 30.84 32.63 34.48 24.05 7.50

Rlf 9.75 15.68 18.91 22.47 24.31 26.05 27.91 29.81 31.64 33.39 35.07 36.71 25.98 8.19

PCA 9.53 14.97 17.77 21.04 22.77 24.42 26.20 28.11 29.92 31.81 33.75 35.74 24.67 7.89

RMSE 24.93

Forecasting technique: RF

No F.S. 13.17 20.87 24.78 28.65 31.03 31.78 32.40 32.92 33.33 33.66 33.92 34.15 29.22 6.50

LR 9.75 14.96 17.89 20.71 22.37 22.84 23.20 23.43 23.61 23.70 23.76 23.80 20.84 4.45

RF 7.91 13.21 16.22 19.08 19.74 20.21 20.57 20.83 21.01 21.16 21.26 21.33 18.54 4.14

MLP 8.88 14.18 17.14 19.97 21.68 22.18 22.53 22.78 22.94 23.04 23.10 23.10 20.13 4.52

IBk 7.95 13.29 16.27 19.12 20.81 21.30 21.87 22.15 22.35 22.50 22.58 22.59 19.40 4.63

Rlf 12.39 17.42 20.38 23.25 25.06 25.74 26.27 26.72 27.10 27.40 27.64 27.82 23.93 4.84

PCA 11.93 17.10 20.08 21.35 22.80 23.80 24.67 25.03 25.65 26.17 26.56 26.85 22.67 4.47

RMSE 22.10

Forecasting technique: SVM

No F.S. 2.38 9.16 16.35 20.10 22.62 25.13 27.69 29.84 32.11 34.25 36.43 38.63 24.56 11.07

LR 1.99 7.64 13.53 16.45 18.37 20.39 22.51 24.27 26.11 27.85 29.65 31.48 20.02 8.96

RF 2.33 5.70 11.64 14.57 16.50 18.52 20.63 22.37 24.19 25.92 27.71 29.52 18.30 8.55

MLP 0.99 6.65 12.56 15.51 17.48 19.54 21.69 23.47 25.32 27.09 28.93 30.78 19.17 9.06

IBk 3.56 7.73 13.66 16.57 18.48 20.50 22.61 24.36 26.18 27.92 29.73 31.57 20.24 8.69

Rlf 4.02 8.44 14.82 18.02 20.14 22.30 24.40 25.98 27.62 29.12 30.65 32.16 21.47 8.82

PCA 3.26 7.77 13.74 16.67 18.62 20.64 22.76 24.52 26.35 28.09 29.89 31.71 20.33 8.79

RMSE 20.58

Forecasting technique: GP

No F.S. 15.96 26.16 37.01 43.79 45.80 47.29 47.62 47.98 48.31 48.66 49.03 49.43 42.25 10.68

LR 12.08 25.82 31.17 33.37 34.34 34.79 35.02 35.15 35.23 35.28 35.32 35.35 31.91 6.83

RF 5.32 17.40 22.37 24.49 25.43 25.86 26.07 26.18 26.24 26.28 26.30 26.32 23.19 6.20

MLP 7.11 19.96 25.26 27.51 28.51 28.97 29.19 29.31 29.38 29.42 29.45 29.47 26.13 6.60

IBk 10.30 23.40 28.52 30.64 31.57 32.01 32.24 32.36 32.43 32.47 32.50 32.52 29.25 6.53

Rlf 7.84 24.73 32.56 36.34 38.26 39.28 39.84 40.17 40.38 40.51 40.60 40.66 35.10 9.78

PCA 15.62 24.24 27.85 29.37 30.02 30.31 30.44 30.50 30.53 30.54 30.55 30.55 28.38 4.42

RMSE 30.89

F.S.: Feature Selection; LR: Linear Regression; RF: Random Forest; SVM: Support Vector Machines; GP: Gaussian Process; MLP: Multi-Layer
Perceptron; IBk: Instance-Based K-nearest neighbor; Rlf: Relief Attribute; PCA: Principal Component Analysis.
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Figure 2. Test stage. RMSE up to 12-step glycemia forecasting. Averaged results of 25 subjects. Upper left, LR. Upper right,
RF. Lower left, SVM. Lower right, GP. F.S.: Feature Selection; LR: Linear Regression; RF: Random Forest; SVM: Support
Vector Machines; GP: Gaussian Process; MLP: Multi Layer Perceptron; IBk: Instance-Based K-nearest neighbor; Rlf: Relief
Attribute; PCA: Principal Component Analysis.

In general, according to the mean values in Table 5, SVM is the best forecasting tech-
nique with an RMSE value of 20.58 mg/dL (considering all the FS techniques employed),
and the best FS algorithm is RF. The latter (RF as the best FS technique) can be seen in the
four predictive cases. It is also worth noting that the selection of variables always improves
accuracy, and in some cases the technique itself can provide significant differences. Addi-
tionally, it is necessary to show that, for very short PHs, SVM works very well, but more
broadly, RF could be a more balanced option. Variations in the error values at each step
between the various 25 patients (standard deviation) are generally contained and do not
present large variations between methods.

Figure 3 shows an example of how that prediction behaves at 60 min (12 steps). As can
be seen, the blue line (prediction) follows the red line (actual data) quite closely, although
the error increases at situations of variation. This does not happen under situations of
glycemic stability. Therefore, the patient’s own control will influence the accuracy of the
prediction. For this reason the predictions have been made with a CV method which
has foreseen all types of real situations (stability and oscillations) throughout the days of
monitoring of each subject.
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Figure 3. Example of forecasting stage with RF algorithm of the subset RF from patient ‘01’ for a 60 min PH glycemia
prediction. Red, real data of glycaemia; Blue, predicted data.

7. Conclusions and Future Works

In today’s world, DM1 is a disease that requires multidisciplinary attention and
research, not only from the medical field, but also from other disciplines such as data
engineering. One of the first necessary phases before automating an artificial pancreas is to
obtain a prediction of future glucose values in the most accurate possible way. Although
some works have approached this aspect, a complete monitoring of the diabetic patient
can provide more variables to refine the predictive process.

In this work, a monitoring time of 14 days was performed, including 25 DM1 patients,
leading to an innovative dataset. Thus, it should be noted that the acquired dataset includes
not only CGM estimations from a wide scope of people over a long timescale and in real
life situations, but also incorporates other features such as insulin and eating times, and
other related variables: heart rate, sleeping time and exercise.

During the glucose prediction process, it makes sense to establish an adequate pre-
liminary phase of variable selection. Unfortunately, this significant phase has not always
received the attention it deserves. This explains the reason why it is necessary to check
to what extent the application of different feature selection techniques has influenced the
accuracy of predictive algorithms. The results of the present work indicate that such facts
are definitively relevant. Firstly, the precision obtained in the absence of any variable
selection technique is clearly poorer than when incorporating it. In fact, among these
techniques, the RF has been shown to be the best capable to refine the accuracy of glycemic
prediction. In addition, numerous results have been obtained that indicate which fore-
casting algorithms clearly work better—that is, RF and SVM—and which FS techniques
improve the performance of such techniques. In view of the obtained results, we can affirm
that Random Forest (RF), as both a predictive algorithm and an FS strategy, offers the best
average performance (Root Median Square Error, RMSE = 18.54 mg/dL) throughout the
12 considered predictive horizons (up to 60 min in steps of 5 min), showing Support Vector
Machines (SVM), the best accuracy as forecasting algorithm when considering, in turn, the
average of the six FS techniques applied (RMSE = 20.58 mg/dL).

Future work will be focused on analyzing some promising previous approaches like
the enhanced k-NN algorithm, which was successfully tested in [70] for biometric recog-
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nition, and the gradient boosting algorithm, using other databases like the D1NAMO
project [71], which implied the monitoring of 20 healthy subjects and 9 patients by record-
ing their electrocardiograms, breathing, accelerometer signals as well as glucose levels,
including more biosensors that provide more variables in real time and thereby improving
the accuracy of the glycaemia prediction and extending the PH within the glycemic series,
and providing early warning of health monitoring [72].
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