
Coevolutionary Generative Adversarial Networks for Medical
Image Augmentation at Scale

Diana Flores
ALFA, MIT CSAIL

floresd@alumn.mit.edu

Erik Hemberg
ALFA, MIT CSAIL

hembergerik@csail.mit.edu

Jamal Toutouh
ALFA, MIT CSAI
toutouh@mit.edu

Una-May O’Reily
ALFA, MIT CSAI

unamay@csail.mit.edu

ABSTRACT
Medical image processing can lack images for diagnosis. Generative
Adversarial Networks (GANs) provide a method to train genera-
tive models for data augmentation. Synthesized images can be
used to improve the robustness of computer-aided diagnosis sys-
tems. However, GANs are difficult to train due to unstable training
dynamics that may arise during the learning process, e.g., mode
collapse and vanishing gradients. This paper focuses on Lipizzaner,
a GAN training framework that combines spatial coevolution with
gradient-based learning, which has been used to mitigate GAN
training pathologies. Lipizzaner improves performance by taking
advantage of its distributed nature and running at scale. Thus, the
Lipizzaner algorithm and implementation robustness can be scaled
to high-performance computing (HPC) systems to provide more
accurate generative models. We address medical imaging data aug-
mentation to create chest X-Ray images by using Lipizzaner on the
HPC infrastructure provided by Oak Ridge National Labs’ Summit
Supercomputer. The experimental analysis shows improved per-
formance by increasing the scale of the Lipizzaner GAN training.
We also demonstrate that distributed coevolutionary learning im-
proves performance even when using suboptimal neural network
architectures due to hardware constraints.

CCS CONCEPTS
• Computing methodologies→ Unsupervised learning; Neu-
ral networks; Distributed algorithms.

KEYWORDS
Generative adversarial networks, coevolution, high performance
computing, medical imaging
ACM Reference Format:
Diana Flores, Erik Hemberg, Jamal Toutouh, and Una-May O’Reily. 2022.
Coevolutionary Generative Adversarial Networks for Medical Image Aug-
mentation at Scale. In Proceedings of ACM Conference (Conference’17). ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Dual artificial neural networks (ANN) adversarial structures have
emerged as effective means of deep learning in which the train-
ing of a deep ANN for a specific task is assisted by another deep
ANN training for an adversarially coupled task. They have found
traction in certified robustness [18], generative modeling [20], and
reinforcement learning [37].

This paper focuses on generative adversarial networks (GANs) [20],
which train generative models through an adversarial process.
GANs provide a method for learning an estimate of the training
data distribution to produce new information units (samples) that
approximate the original data set. Thus, GANs combine two ANN:
a generator and a discriminator, which optimize their network
weights to address a minmax optimization problem by applying an
adversarial paradigm. The training objective of the discriminator is
to distinguish real samples in the training data set from samples
synthesized by the generator. The generator aims to deceive the
discriminator with the samples it produces from a latent input space
and a non-linear function. After a successfully converged training,
the generator serves as a generative model.

GANs have been successfully applied tomany problems, e.g., gen-
erating images and video [34]. One important application area for
GANs is medical assistance [24], where they provide new insights
to the interpretation of medical information stored in different
media, such as X-ray images. However, despite their competitive
results, GANs are notoriously hard to train. GANs learning pro-
cess frequently shows a variety of unstable training dynamics or
pathologies, such as collapse, discriminator collapse, and vanishing
gradients [4, 17, 52].

Co-evolutionary algorithms (coEA) can help address GAN train-
ing pathologies. These methods optimize the minmax objective of
GAN training by evolving two populations: a population of gen-
erators and a population of discriminators [12, 14, 16, 21]. The
main idea is to apply the same solutions that coEAs provide to
mitigate similar pathologies as those observed in GAN training.
In coEAs, degenerate behaviors, such as focusing, relativism, and
loss of gradient, are attributed to a lack of diversity [38]. Thus,
spatially distributed populations (cellular algorithms) have shown
to be effective in mitigating and resolving these types of problems.

This paper focuses on Lipizzaner [21], a GAN training frame-
work that implements GAN training by applying a spatially dis-
tributed competitive coEA. In each cell of a spatial grid, an individ-
ual of each population is located, i.e., a pair generator-discriminator.
During the evolutionary process, Lipizzaner fosters an arms race

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Flores et al.

between the two populations. Thus, in each cell at each training
epoch in parallel, the discriminator is evaluated against all the gen-
erators collected from the cell and its adjacent neighbors, the same
with the generator. Then they apply a selection/replacement proce-
dure to update the sub-population with the best networks (genera-
tor/discriminator).

Previous studies have shown that Lipizzaner provides robust-
ness that arises from the diversity driven by the use of populations
and multiple competitions [47]. The generative models trained by
Lipizzaner improves their quality when larger grids are used, but
the scale of the hardware platform used to run the algorithm lim-
its their size. Thus, using a high-performance computing (HPC)
platform may lead Lipizzaner to achieve better results.

The emergence of accurate image processing and analysis meth-
ods based on machine learning (ML) has improved computer-aided
diagnosis (CAD) systems [11, 26]. Most of the learning models ap-
plied to CAD require a vast number of medical images for training,
which are not easy to acquire [24, 41]. So image data augmentation
is a possible solution to increase the number of images used to train
the CAD models. Different authors have studied the use of GANs
to generate diagnostic images [5, 28, 53]. We explore data augmen-
tation of medical images with co-evolutionary GANs, specifically
to generate chest X-Ray images of COVID-19 patients. This can
help improve the CAD of novel emerging medical conditions.

Mainly, this research is devoted to discussing the following re-
search questions: RQ1: What is the effect on the accuracy of the
generative model trained with a cellular algorithm when the spatial
grid scales? RQ2: Can large-scale overcome a sub-optimal selection
in the network architecture in the event of hardware limitations?
RQ3: How can spatially distributed GAN training benefit from large-
scale hardware platforms? RQ4: Is the combination of both distributed
GAN training and HPC useful to address medical imaging generation?

The paper is organized as follows. Section 2 presents the back-
ground of this research. Section 3 introduces the parallel distributed
coEA GAN training analyzed to address medical image data aug-
mentation on HPC environments. Section 4 describes the imple-
mentation work performed to adapt Lipizzaner to make the most
of an HPC platform. The experimental setup is in Section 5 and
results in Section 6. Finally, conclusions are drawn and future work
is outlined in Section 7.

2 BACKGROUND
This paper focuses on using GANs to generate chest X-Ray images
of COVID-19 patients. The following subsections discuss relevant
studies about (a)GANs in CAD (b) data augmentation applied to the
generation of chest X-Ray images (c) coEA GAN training methods.

2.1 Generative Adversarial Networks in CAD
GANs are machine learning methods applied to learn the specific
distribution of a given training data set to generate new synthe-
sized samples that follow the same estimated distribution. GANs
consist of (at least) two ANNs: a generator and a discriminator,
which optimize their parameters by solving a minmax optimization
problem by applying adversarial learning [20]. During the learning
process, the discriminator is trained to distinguish between the real
samples from the training data set from the artificial/synthesized

samples produced by the generator. Simultaneously, the generator
learns how to transform inputs from a random latent space into
synthesized samples to deceive the discriminator.

Generally, the generator and the discriminator optimize the min-
max GAN objective by performing simultaneous gradient-based up-
dates to their parameters, which rarely converges to an equilibrium
suffering from degenerate behaviors or training pathologies [27].

Learning models have been applied to develop CAD systems.
Given diagnostic procedure results, such as medical images, these
learning models provide new insights to help the interpretation of
these results by the physicians. These models rely on large data sets,
and the lack of data limits their accuracy. In the particular case of
X-Ray images data sets, it is not always easy to access a fair number
of them to train a model [5, 28, 53]. In this scenario, (image) data
augmentation techniques can help overcome the lack of images to
train these intelligent models for diagnostic assistance. Thus, GAN
image data augmentation approaches provide a generative model
to synthesize new images that follow the same distribution as the
real images. Figure 1 schemes this proposal.

Figure 1: Scheme on GANs chest X-Ray images generation.

2.2 Chest X-Ray image data augmentation
Chest X-Ray images are used to train classification models to de-
velop CAD systems to detect health problems such as pneumonia.
The accuracy of these classifiers has increased by applying chest
X-Ray image data augmentation methods. Thus, GAN data augmen-
tation was applied to train AlexNet, SqueezeNet, GoogLeNet, and
ResNet-18 models with only 10% of real data and 90% of synthe-
sized data. [23]. The same problem (i.e., detecting pneumonia) was
studied by training a deep convolutional ANN (CNN) classifier with
synthesized and real chest X-Ray images [6]. The generator and dis-
criminator architectures grow to deal with higher resolution images
during the training process. The main results showed that using
GANs as a data augmentation technique improves the robustness
of the classifier models, making them less prone to overfitting.

Focusing on the automatic detection of COVID-19 based on chest
X-Ray images [22, 42], it is still a challenging task mainly because
of the limited number of publicly available COVID-19 chest X-Ray
image data sets. Thus, GANs are applied to create new synthesized
images. Most of these studies proposed to address a multinomial
classification problem considering the following labels: normal,
COVID-19, and another kind of pneumonia (e.g., virus or bacterial

Coevolutionary Generative Adversarial Networks for Medical Image Augmentation at Scale Conference’17, July 2017, Washington, DC, USA

pneumonia). The same approach proposed by Khalifa et al. [23]
was applied to address this classification problem. The synthesized
images were able to contribute to improving classification accuracy.
Augmenting chest X-Ray images for training a CNN classifier using
GANs was also studied [53]. The experimental analysis showed
that the detection accuracy improved from 85% to 95%. A semi-
supervised CycleGAN was applied to augment the training data
set [5]. The proposed classifier achieved 94% of accuracy. A prelimi-
nary research analyzed a simplified parallel version of Lipizzaner
to synthesize COVID-19 chest X-Ray images, which was able to pro-
duce new X-Ray images with lungs affected with COVID-19 [46].

2.3 Robust GAN training using coEAs
Avoiding or mitigating GAN training pathological behaviors is still
an open question. A promising research line proposes training
simultaneously multiple generators and/or discriminators, which
has been shown to improve training robustness [9, 30, 32, 32, 45].

Evolutionary computation (EC) has been used to address deep
learning problems, e.g., optimizing the ANN parameters through
neuroevolution and evolving ANN architectures [8, 29, 44, 55]. In
turn, EC has been specifically applied to GANs training. Evolu-
tionary GAN (E-GAN) evolves a population of generators that are
mutated by randomly switching the loss function [54]. Evolved
GAN applies a genetic algorithm (GA) to evolve the architectures
of the generators and discriminators [19]. A cooperative coEA has
been proposed to conduct adversarial multi-objective optimiza-
tion [12]. The minmax optimization problem is decomposed into
two sub-problems (generation and discrimination). Each problem is
solved by separated populations of generators and discriminators
that evolve by their own evolutionary algorithm (EA).

GAN training can be seen as a two-player game solved using
gradient-based updates to optimize a minmax objective simultane-
ously. Comp-coEA-based GAN training methods have also been
proposed to co-evolve two populations of ANNs (one of generators
and one of discriminators) against each other towards convergence.
Co-evolutionary GAN (COEGAN) combines a Comp-coEA and and
neuroevolution [14, 15]. A Comp-coEA models the training of two
populations of generators and discriminators that are trained using
an all vs. all approach. The genes of the individuals represent their
architecture, which is modified by applying a mutation operator.

Theoretical studies and empirical results showed that the
spatially distributed Comp-coEA GAN training mitigates non-
convergence pathologies [1, 21, 51]. This paper focuses on
Lipizzaner, which locates the individuals of the generator and
discriminator populations on each cell (i.e., each cell contains a
generator-discriminator pair). Overlapping Von Neumann neigh-
borhoods determine the communication among the cells to prop-
agate the models through the grid. Each generator is evaluated
against all the discriminators of its neighborhood. The same hap-
pens with each discriminator. An SGD-based mutation is applied to
the best individuals (generator and discriminator) by training them
against a randomly chosen adversary in their neighborhood. These
mechanisms evaluation and mutation intentionally foster diversity
to address GAN training pathologies. Lipizzaner is a high-level
GAN training framework. Therefore, any GAN alternative (e.g.,
Cycle-GAN) can be trained using Lipizzaner [21].

Mustangs, a version of Lipizzaner based on E-GANs, randomly
selects a loss function to train each cell for each generation to in-
crease diversity [50]. The spatial distribution of the cells allows data
decomposition to train GANs in each cell with different subsets
of data, which fosters diversity across the grid [48]. Lipizzaner
returns a generative model that consists of an ensemble of genera-
tors defined by the best sub-population of generators. Evolutionary
strategies are used to learn the ensemble [49]. Lipizzaner and its
variations have shown competitive results on standard benchmarks.

Distributed GAN training represents a high-dimensional op-
timization problem with high computational requirements. Par-
allel/distributed implementation of algorithms allows improving
their scalability. Focusing on EC solutions applied to ML, there are
several examples of such parallel implementations, for example, a
parallel version of GA to train deep CNNs on hundreds of CPU
cores [43] and HPC environments [56]; a parallel version of natural
evolution strategies to address a collection of reinforcement learn-
ing benchmark problems [39]; and EC-Star, a distributed genetic
programming framework that runs upon commercial volunteer
resources [33]. Likewise, Lipizzaner maximizes the scalability by
running the sub-population training on independent computational
resources CPUs or GPUs [21, 36]. However, there is no previous
research on large-scale Lipizzaner experimentation on HPC.

The analysis of related works allows concluding that no previous
proposals have explored the application of large-scale distributed
GAN training, i.e., large-scale Lipizzaner. Furthermore, this re-
search proposes addressing the relevant problem of data augmenta-
tion for medical images, specifically COVID-19 chest X-Ray images.
We do not intend to create a new GANs method for image genera-
tion but to demonstrate how the scalability of Lipizzaner allows
improving the results of any GAN trained with this framework.

3 LIPIZZANER PARALLEL DISTRIBUTED COEA
GAN TRAINING

Lipizzaner GAN training algorithm is summarized in this section.
The Lipizzaner algorithm is fully described in [21].

3.1 General GAN training
GANs train a generator g𝑔 and a discriminator d𝑑 in an adversar-
ial setup. Here, g𝑔 and d𝑑 are models parametrized by 𝑔 and 𝑑 ,
where 𝑔 ∈ G and 𝑑 ∈ D with G,D ⊆ R𝑝 represent the respective
parameters space of both models.

Let 𝐺∗ be the unknown target distribution to which we would
like to fit our generative model [3]. The generator g𝑔 receives a
vector from a random latent space 𝑧 ∼ 𝑃𝑧 (𝑧) and creates a sample
from data space 𝑥 = g𝑔 (𝑧) (in our case a chest X-Ray image). The
discriminator d𝑑 assigns a probability 𝑝 = d𝑑 (𝑥) ∈ [0, 1] that rep-
resents the likelihood that the 𝑥 belongs to the real training data
set, i.e., 𝐺∗ by applying a measuring function 𝜙 : [0, 1] → R. The
𝑃𝑧 (𝑧) is a prior distribution on 𝑧. The goal of GAN training is to
find 𝑑 and 𝑔 parameters to optimize the objective function L(𝑔,𝑑).

min
𝑔∈G

max
𝑑∈D
L(𝑔,𝑑), where (1)

L(𝑔,𝑑) = E𝑥∼𝑃𝑑𝑎𝑡𝑎 (𝑥) [𝜙 (d𝑑 (𝑥))] + E𝑥∼g𝑔 (𝑧) [𝜙 (1 − d𝑑 (𝑥))]

Conference’17, July 2017, Washington, DC, USA Flores et al.

The optimization problem is addressed by a gradient-based learn-
ing process inwhich g𝑔 approximates the latent data distribution. At
the same time, d𝑑 learns a binary classifier that is the best possible
discriminator between real and fake data (see Figure 1).

3.2 Distributed coEA GAN training
Lipizzaner evolves a population of generators G = {𝑔1, . . . , 𝑔𝑍 }
and a population of discriminators D = {𝑑1, . . . , 𝑑𝑍 } by competi-
tion between each other. Individuals of each population are lo-
cated in each cell of a toroidal grid. Thus, in each cell of the grid,
there is a pair generator-discriminator named center. The neighbor-
hood concept is applied to define the sub-population of generators
(G) and discriminators (D) that participate in the training phase.
Lipizzaner uses Von Neumann neighborhoods, which includes
the cell itself and the ones in the adjacent cells to the North, South,
East, and West (see Figure 2).

Figure 2: Lipizzaner neighborhoods and sub-population.

The coEA training is performed by a parallel cellular model
for EAs [2]. Algorithm 1 presents the key steps of this method,
which begins the parallel execution of the training on each cell by
initializing their own learning hyper-parameters (Line 2). Then,
the training process consists of a loop repeated 𝑇 (generations or
epochs) times with three main phases: migration, in which the
cells gather the ANNs, i.e., individual neighbors, to build the sub-
population (𝑛); train and evolve, in which each cell updates the center
by applying the coEA GANs training described in Algorithm 2; and
learning rate evolution by using a Gaussian mutation operator. After
that, each cell creates a generative model by learning an ensemble
of generators using evolutionary strategies to compute the mixture
weights 𝜔 (Line 8). Finally, the master process evaluates the final
score of all computed generative models to select the best one.

Each cell, in parallel, applies the Comp-coEA shown in
Algorithm 2 for each generation. After the evaluation of the sub-
populations, The method starts by evaluating both sub-populations
applying an all-vs-all strategy. The fitnessL𝑔,𝑑 of a given individual
is evaluated according to a loss function, e.g., binary-cross-entropy
loss using a randomly chosen batch of data 𝐵𝑟 . Then, it selects the
best pair of individuals, a generator and a discriminator named
𝑔𝑏 and 𝑑𝑏 , respectively (Lines 1 to 3). The offspring is created by
training 𝑔𝑏 and 𝑑𝑏 against randomly chosen adversaries from the
sub-populations (i.e., applying gradient-based mutations) for each
batch of data (Lines 4 to 8). Then, the new individuals (i.e., mutated
𝑔𝑏 and 𝑑𝑏) are added to the sub-populations. Thus, the coEA GAN
training epoch ends by a a replacement procedure that removes the
weakest individuals and updates the center selecting the individuals
with the best fitness (Lines 11 to 13).

Algorithm 1 Lipizzaner key steps
Input: T: Total generations, 𝐸: Grid cells, 𝑠: Neighborhood size,
𝜃𝐷 : Training dataset, 𝜃𝐶𝑂𝐸𝑉 : Parameters for CoevGANsTraining,
𝜃𝐸𝐴: Parameters for MixtureEA, 𝜃𝐸𝑆 : Parameters for UpdateLR
Return: 𝑛: neighborhood, 𝜔 : mixture weights

1: parfor 𝑘 ∈ 𝐸 ⊲ Asynchronous parallel execution of all cells in grid
2: 𝑛,𝜔 ← initializeCells(𝑘, 𝜃𝐷) ⊲ Initialization of cells
3: for generation do ∈ [0, . . . ,T] ⊲ Iterate over generations
4: 𝑛 ← copyNeighbours(𝑘) ⊲ Collect neighbor cells
5: 𝑛 ← CoevGANsTraining (𝑛, 𝜃𝐷 , 𝜃𝐶𝑂𝐸𝑉 , 𝑙𝑟) ⊲ Coevolve GANs
6: 𝑛𝛿 ← mutateLR(𝑛𝛿 , 𝜃𝐸𝑆) ⊲ Update learning rate
7: end for
8: 𝜔 ← MixtureEA(𝜔,𝑛, 𝜃𝐸𝐴) ⊲ Build optimal ensemble
9: end parfor
10: 𝑠𝑐𝑜𝑟𝑒𝑘 ← FinalScore(𝜔,𝑛) ⊲ Compute the ensemble final score
11: 𝑠𝑐𝑜𝑟𝑒𝑘 ← CollectScore(𝑛) ⊲ Collect the ensemble final score
12: return (𝑛,𝜔)∗ ⊲ Cell with best generator mixture

Algorithm 2 coEA GAN training
Input:𝑛: Cell neighborhood subpopulation,𝜃𝐷 : Training dataset, 𝜏 :
Tournament size, 𝛽 : Mutation probability
Return: 𝑛 : Cell neighborhood subpopulation trained

1: 𝐵𝑟 ← getRandomBatch(𝜃𝐷) ⊲ Random batch to evaluate GAN pairs
2: L𝐺,𝐷 ← evaluate(𝐷,𝐺, 𝐵𝑟) ⊲ Evaluate sub-population, i.e., GAN pairs
3: 𝑔𝑏 , 𝑑𝑏 ← select(𝑛, 𝜏) ⊲ Tournament selection
4: for 𝐵 ∈ 𝜃𝐷 do ⊲ Loop over the batches in 𝜃𝐷

5: 𝑑 ← getRandomOpponent(d) ⊲ Get random discriminator
6: 𝑔𝑏 ← updateNN(𝑔𝑏 , 𝑑, 𝐵) ⊲ Update 𝑔𝑏 with gradient
7: 𝑔← getRandomOpponent(g) ⊲ Get uniform random generator
8: 𝑑𝑏 ← updateNN(𝑑𝑏 , 𝑔, 𝐵) ⊲ Update 𝑑𝑏 with gradient
9: end for
10: g, d← updatePopulations(G, D, 𝑔𝑏 , 𝑑𝑏) ⊲ Add 𝑔𝑏 and 𝑑𝑏
11: L𝐺,𝐷 ← evaluate(𝐺,𝐷, 𝐵𝑟) ⊲ Evaluate sub-population, i.e., GAN pairs
12: 𝑛 ← replace(𝑛, g, d) ⊲ Replace the networks with worst loss
13: 𝑛 ← setCenter(𝑛) ⊲ Best gen. and disc. are placed in the center
14: return 𝑛

Focusing on the parallelism, Lipizzaner performs an asynchro-
nous parallel execution of all cells in the grid (see Algorithm 1).
Thus, a master process starts the running by (1) performing the
data distribution, (2) assigning the populations to the grid cells, and
(3) creating the communication channels according to the defined
neighborhood. Figure 3 outlines this process by detailing it for a
given cell. Along the evolutionary process, communication between
the processes is performed to exchange relevant information (such
as ANNs parameters that define the individuals).

4 IMPLMENTATION DETAILS
This section describes the main development work performed to
adapt Lipizzaner to HPC environments to be able to define larger
grid sizes than the ones already investigated1.

Better use of HPC resources. One roadblock when running
Lipizzaner with large grid sizes was that the original code re-
quired a square grid [40]. The master process code was modified to
find the largest rectangle that can be made with the successfully

1Source code - https://github.****

Coevolutionary Generative Adversarial Networks for Medical Image Augmentation at Scale Conference’17, July 2017, Washington, DC, USA

Figure 3: Scheme of how Lipizzaner runs in parallel.

connected clients to set the grid up. Besides, the overhead of com-
puting the final score on the master was mitigated by moving the
final score computation into the clients to run it in parallel.

With large grid sizes, training iterations could become out of
sync, leaving some clients behind the rest. This can lead to the
master process waiting too long to return the results. Thus, the
Lipizzaner master process was allowed to end the run as soon
as a proportion of the client nodes had successfully finished and a
specific waiting time had expired. Previous studies have shown that
allowing the Lipizzaner training to finish its execution before all
clients finish does not degrade its performance [31].

Handling failures. Handling errors is critical when running
Lipizzaner on large grids because the probability is higher for
any client to fail. As most of these errors depend on the HPC sys-
tem, we cannot avoid them but instead make Lipizzaner resilient
by developing a checkpointing procedure. The main idea is to make
the clients save their running status (i.e., a checkpoint) and send it
to the master process to store or update it. A checkpoint consists
of the parameters of the ANNs (generator and discriminator) in the
center of the cell and the values of the hyperparameters that drive
Lipizzaner. These checkpoints allow a master process to re-start
any GAN training that abruptly halted from the last stored status
as long as the necessary computational resources (client nodes) are
available as long as you have the necessary computational resources.
The frequency of this checkpointing operation is a configurable
parameter of Lipizzaner.

Another requirement for the resiliency of Lipizzaner was to
allow the client nodes to continue the training even if there is a
failure. Thus, the cells in the dead client’s neighborhood simply do
not try to communicate with it or update their sub-populations by
copying its center ANNs. However, it is essential to set a maximum
number of nodes that could fail during a run. If the number is
too high, the training can be misdirected and ends up without
converging to an accurate generative model.

HPC Resource Constraints. HPC can have different resource con-
straints compared to e.g desktop and cloud computing. Summit has
various wall-time restrictions for each experiment run. To mitigate
this, it was necessary to improve checkpointing in Lipizzaner.
Checkpointing is the process of saving intermittent data if an ex-
periment is killed or paused and needs to be resumed later.

When saving checkpoints for large grid sizes, the strictest limi-
tation is memory. Storing information about a significant number
(over 100) of network models should consider this limitation. As

a result, the goal for saving checkpoints was to ensure that no
redundant or repeating information gets stored.

We update the code to checkpoint data to only store information
about the central models in the cell (i.e., the best individuals of
the sub-population) instead of the original method that saved in-
formation about all models in the neighborhood. Upon re-starting
training, each cell contacts its neighborhood and pulls information
from them instead. The frequency of checkpointing is a configurable
setting in Lipizzaner.

Further, it is difficult to guarantee the exact number of clients
that will successfully connect on Summit. Lipizzaner client con-
nection has a small probability of failure that impacts experiments
of large grid sizes. As a result, guaranteeing that successive jobs
will successfully connect the exact same number of clients is not
always possible, which can cause inconsistency issues when an
experiment requires multiple rounds of checkpointing to complete.
To mitigate this, we implement configurable grid sizes. We add the
fields max_clients and min_clients to the configuration files that
dictate training parameters and update the Lipizzaner master code.

5 EXPERIMENTAL SETUP
The experimental analysis was carried out on two data sets: MNIST,
which consists of low dimensional (28×28 pixels) hand-written dig-
its images from 0 to 9, and COVID-19 positive chest X-Ray images
provided by Cohen et al. [13] (Figure 4) shows two samples). The
MNIST data set was used on additional preliminary experiments.
As GPU memory constraints prohibited the use of CNNs to deal
with 128×128 image generation for COVID-19 experiments, these
image generation analyses considered two different lower image
resolutions: 28×28 and 64×64 pixels. At the time of the experiments,
the COVID-19 data set contained 190 images. A SMOTE [10] pre-
process was applied to increase the number of COVID-19 images
in the training data set.

Figure 4: Chest X-Ray images data samples [13].

Experiments considered different types of ANN architectures:
basic multi-layer perceptrons (MLP) and CNNs. In general, MLPs
based GANs achieve less competitive results than the CNNs ones.
Thus, the idea of evaluating these two types of ANN architectures
was to show that scaling Lipizzaner can overcome the limitation
of using non-optimal ANN architectures. Three ANN architectures
were evaluated: four-layer MLPs (named 4LP), CNNs for grayscale
images of 28×28 pixels (named CNN28), and CNNs for grayscale
images of 64×64 pixels (named CNN64). Table 1 summarizes the
main parameters of the defined ANN architectures by showing the
number of neurons in the input size, the number of neurons in the
output size, and the number of trainable parameters. The number
of trainable parameters is representative of the ANN complexity.

Conference’17, July 2017, Washington, DC, USA Flores et al.

Table 1: ANN architectures main parameters.

ANN arch. Input size Output size Train. params.

4LP
generator 64 784 1 041 432
discriminator 784 1 798 673

CNN28
generator 100 784 1 964 896
discriminator 784 1 1 156 544

CNN64
generator 100 4 096 3 575 617
discriminator 4 096 1 2 764 481

The metrics considered in the evaluation were the Frechet incep-
tion distance (FID) and the inception score (IS), which is commonly
used for evaluating images generated by GANs [7], for MNIST and
COVID-19 experiments, respectively. They aim at objectively as-
sessing the quality of generated images via two relevant properties
that are evaluated simultaneously: likeliness to a specific object to
be generated and diversity. FID score compares (i.e., evaluates the
distance between) the distribution of generated images with the
distribution of real images that were used to train the generator.
Therefore, a lower FID score indicates a better generative model;
a perfect FID score would be close to zero. IS is within the range
(1.0,𝑀), being𝑀 the highest IS for the considered dataset. Besides,
the computational clock time of each run was also evaluated.

The scalability of Lipizzaner was evaluated by ruining the
parallel training performed in each grid cell in a different number
of HPC clients depending on the grid size. Thus, Lipizzaner was
executed on 3×3, 6×6, 12×12, and 18×18 grid sizes by using 9, 36,
144, and 324 clients, respectively. The main settings used for the
experiments are summarized in Table 2.

Table 2: Main GAN training parameters.

Parameter MNIST COVID-19
coEA main parameters

Generations (epochs) 200 200
Population size per cell 1 1
Tournament size 2 2

ANN training main parameters
Loss function binary-cross entropy binary-cross entropy
Activation function 𝑡𝑎𝑛ℎ 𝑡𝑎𝑛ℎ

Batch size 100 70
Learning Rate Mutation

Optimizer Adam Adam
Initial learning rate 0.0002 0.0002
Mutation rate 0.0001 0.0001
Mutation probability 0.5 0.5

In order to perform the experiments, we have modified
Lipizzaner framework [21, 40] using Python and Pytorch li-
brary [35]. The experiments were performed on the Summit Super-
computer housed at Oak Ridge National Labs (ORNL) [25]. This
HPC environment provided us with a number of nodes with two
IBM POWER9𝑇𝑀 processors with 1600GB of non-volatile memory
and six GPUs NVIDIA Volta V100s with 32GB GPU memory.

6 RESULTS AND DISCUSSION
This section presents the results and the analyses of the studied
GAN training problems. We demonstrate how spatially distributed
GAN training can benefit from large scale HPC, how it overcomes
the limitations of neural network architecture due to hardware
constraints, and how it can generate medical images.

First, the preliminary experiments on MNIST are evaluated in
terms of FID score, generated images, and computational cost time.
Then, the experimental analysis on the COVID-19 data are discussed
in terms of IS, synthesized images, and computational effort. Due
to the limited access to the Summit Supercomputer HPC platform,
different independent runs were performed for each grid size and
ANN architecture complexity.

6.1 MNIST experimental results
Table 3 summarizes the experimental results by showing the num-
ber of independent runs performed for each grid size and the mean,
standard deviation (stdev), minimum (min), and maximum (max)
FID scores. Besides, the table presents the average run time.

The results achieved by the 3×3 grid experiments are close to the
ones obtained in previous studies by using the same grid size [21].
The results indicated that the best generative models were trained
by using the largest grid size, i.e., 18×18. The trend shown in Table 3
indicates that the larger the grid size, the better the results, i.e.,
lower FID scores. This improvement does not lead to an increase in
computational time cost. The table shows that all grid sizes require
a similar average run time (around 81 minutes).

Table 3: MNIST 4LP FID score (lower is better) results and
average run time (in minutes). Best value in italic.

Grid size Indep. runs Mean Stdev Min Max Run time

3×3 30 41.23 2.36 36.87 47.64 82
6×6 30 24.63 2.35 20.04 29.16 80
12×12 15 19.89 2.54 15.41 25.91 81
18×18 8 17.20 1.61 14.72 19.65 80

Table 4 presents the p-values from computing the tie-corrected
Rank-sum between each pair of grid size experimental results (FID
score distributions) to assess the significance of the difference be-
tween them. Results in tables 3 and 4 illustrate how the difference
between the results provided by different gird sizes decreases as the
grid size increases. Note that all the Rank-sum p-values are lower
than 0.01 but the p-value between 12×12 and 18×18 results is higher
than 0.01. This suggests how well Lipizzaner can perform with
the 4LP architecture and that a GAN based on this 4LP architecture
cannot improve its results much more.

Table 4: MNIST 4LP Rank-sum p-values.

6×6 12×12 18×18
3×3 3.02𝑒10−11 6.46𝑒10−8 1.88𝑒10−5
6×6 1.05𝑒10−5 1.88𝑒10−5
12×12 1.83𝑒10−2

Coevolutionary Generative Adversarial Networks for Medical Image Augmentation at Scale Conference’17, July 2017, Washington, DC, USA

Figure 5 shows a random selection of generated images for each
grid size. Each grid size is able to produce a generative model that
synthesizes what visually appears to be well-balanced and accurate-
looking digits. It can be observed that the least clear digits are those
produced by the generator trained with the 3×3 grid.

(a) 3×3 grid (b) 6×6 grid

(c) 12×12 grid (d) 18×18 grid

Figure 5: Generated MNIST images with 4LP.

6.2 Chest X-Ray images experimental results
Table 5 summarizes the experimental by reporting the mean, stan-
dard deviation (stdev), minimum (min), and maximum (max) IS
scores, and the average run time for each ANN architecture type
and grid size. Unlike the FID score, better generative models syn-
thesize images that provide higher IS.

Table 5: Covid-19 IS (higher is better) results and average run
time (in minutes). Best value in italic.

Arch. Grid size Mean Stdev Min Max Run time

4LP
3×3 1.26 0.046 1.18 1.32 138
6×6 1.29 0.035 1.24 1.34 164
12×12 1.21 0.016 1.19 1.24 166

CNN28
3×3 1.31 0.021 1.28 1.34 197
6×6 1.46 0.019 1.44 1.50 203
12×12 1.49 0.013 1.47 1.51 208

CNN64
3×3 1.37 0.011 1.36 1.39 215
6×6 1.53 0.016 1.50 1.55 219
12×12 1.61 0.011 1.59 1.62 226

Considering the different ANN architectures (and same grid
sizes), as the ANN complexity (in terms of the number of trainable

parameters) increases, the accuracy of the generated samples im-
proves. Thus, the lowest IS are shown by the samples generated by
using 4LP and the highest scores by the ones synthesized by CNN64.

Focusing on the grid sizes, in general, larger grids provide more
accurate generative models (higher IS), which implies that scale
can mitigate the effects of training a poor network. However, when
evaluating 4LP results in Table 5, there is a decrease in performance
at the 12×12 grid experiments. This may be due to the increase in
diversity (when using populations of 144 individuals) is preventing
the algorithm from converging in the desired equilibrium when
training generators and discriminators based on 4LP architecture.

Table 6 presents the p-values from computing the tie-corrected
Rank-sum between each pair of grid size for each ANN architecture
type to assess the statistical significance among the results. The re-
sults reported in the table show statistically significant differences
when the grid size increases. However, the decrease in performance
at the 4LP 12×12 grid experiments provokes that there is no signif-
icant difference between its results and the ones achieved by the
4LP 3×3 (0.01>p-value).

With the support of the FID scores in Table 3 and the IS in
Table 5, we can answer the RQ1: What is the effect on the accuracy
of the generative model trained with a cellular algorithm when the
spatial grid scales?. Answer: The generative models trained with
Lipizzaner, i.e., a coEA cellular algorithm, improve their accuracy
as the spatial grid scales.

Table 6: Covid-19 Rank-sum p-values for different grid sizes
and same architecture.

Arch. 6×6 12×12

4LP 3×3 5.07𝑒10−3 9.16𝑒10−2
6×6 4.92𝑒10−3

CNN28 3×3 4.99𝑒10−3 4.99𝑒10−3
6×6 6.36𝑒10−2

CNN64 3×3 4.85𝑒10−3 4.77𝑒10−3
6×6 4.85𝑒10−3

Comparing only the GANs based on CNNs, when the CNN28 was
trained using the 6×6 and 12×12 grids was able to provide more ac-
curate generative models (higher IS) than the GAN based on CNN64
trained on the 3×3 grid. With the support of this observation, we
can answer the RQ2: Can large-scale overcome a sub-optimal selec-
tion in the network architecture in the event of hardware limitations?.
Answer: Yes; scaling was enough to overcome the selection of
sub-optimal ANNs, allowing CNN28 to perform better than a more
complex ANN architecture (i.e., CNN64).

The improvement on the obtained generative model when in-
creasing the grid size does not lead to a significant increase in
computational time costs (see Table 5). This is mainly due to the
asynchronous parallelism applied by Lipizzaner. The delays that
may occur in a cell do not generate delays in the cells of its neigh-
borhood since the communication between them is asynchronous.

The highest run time increments occur when increasing the grid
sizes when training 4LP based GANs (from 138 to 166 minutes
required by 3×3 and 12×12, respectively, which implies a 20% of
time increase). Evaluating the computational time for the same grid

Conference’17, July 2017, Washington, DC, USA Flores et al.

sizes when training CNNs, the increment is of 6% and 5% for CNN28
and CNN64, respectively.

According to the computational time cost results, we see that
when the distributed coEA Lipizzaner GAN training relies on
large-scale HPC platforms to scale the grid sizes, there is a non-
significant increase in the run time. This allows scaling the dis-
tributed GAN training without significant additional computational
time requirements.

Figure 6 shows a random selection of generated images for each
ANN architecture and grid size. The quality of the generated images
is in line with the results in Table 5. It can be seen that the 4LP
architecture could not properly generate the details of the chest
X-Ray images. In addition, it is shown how the 4LP results worsen
when increasing the grid size from the 6×6 grid to the 12×12 grid.

Analyzing the images generated by both CNNs, i.e., the CNN28
and CNN64 architectures (figures from 6d to 6i), it can bee seen the
improvement as the grid sizes increase. The most accurate chest
X-Ray images were generated by the CNN64 trained in a 12×12 grid.

According to the results reported in this section, we can answer
RQ3: Is the combination of both distributed GAN training and HPC
useful to address the generation of medical imaging? Answer: Yes, the
results in terms of IS and the generated images in Figure 6 showed
that coupling GAN training and HPC is effective to train generative
models to synthesize medical images.

Finally, according to the experimental analysis performed in this
study, the answer to the RQ4: How can spatially distributed GAN
training benefit from large-scale hardware platforms? is the follow-
ing one. Answer: The related literature showed that increasing
diversity leads to robust GAN training[21, 47, 50]. Thus, large-scale
hardware platforms, such as Summit Supercomputer, allow apply-
ing the spatially coEA GAN training on large grid sizes, which is
robust and achieves more accurate generative models.

7 CONCLUSION AND FUTUREWORK
The empirical analysis of running the spatially distributed coEA
GAN training applied by Lipizzaner on an HPC environment
showed that it scales when computational resources are available.
The preliminary results on the MNIST data set illustrated that, in
general, significant improvements in FID scores (and image quality)
are achieved when grid sizes grow (from 3×3 to 18×18 grids).

Focusing on the medical image generation (i.e., chest X-Ray im-
ages), the experimental analysis confirmed that the results improve
with the scale of the grid. Except in the case of 4LP architecture
trained on the 12×12 grid that showed worst IS than the same
architecture trained the 6×6 grid. Thus, using the same CNN net-
work architecture to train the generative models, the synthesized
chest X-Ray images are more accurate (higher IS) as the grid size
increases. When comparing the results achieved by both CNNs,
it can be observed that scale may make up for reduced network
complexity. Thus, CNN28 provided more accurate generative models
than CNN64 when increasing the scale. The improvements observed
when scaling Lipizzaner are achieved while not incurring sig-
nificant additional computational effort requirements, i.e., longer
execution times.

The main lines for future work are extending the experimental
evaluation by increasing the grid sizes to what the actual peak

(a) 3×3 grid 4LP (b) 6×6 grid 4LP

(c) 12×12 grid 4LP (d) 3×3 grid CNN28

(e) 6×6 grid CNN28 (f) 12×12 grid CNN28

(g) 3×3 grid CNN64 (h) 6×6 grid CNN64

(i) 12×12 grid CNN64 (j) Training data set samples

Figure 6: Generated and real COVID-19 samples.

Coevolutionary Generative Adversarial Networks for Medical Image Augmentation at Scale Conference’17, July 2017, Washington, DC, USA

of performance could be and studying data sets with medical im-
ages with larger dimensions. We will analyze the application of
Lipizzaner to train other GAN solutions that have been already
used to synthesize medical images, such as Cycle GAN. We will
assess the robustness when using different types of neighborhoods
on large grid sizes. Finally, we will analyze the evolution of the
network weights through the generations to better understand the
dynamics of this type of GAN training.

ACKNOWLEDGEMENTS
The work had support from Oak Ridge National Labs for project
“Towards A Robust and Scalable Adversarial Learning Frame-
work” (CSC387), and from MIT CSAIL Systems That Learn. It
was partially funded by the Univ. de Málaga under grant UMA18-
FEDERJA003; under grant PID 2020-116727RB-I00 funded by
MCIN/AEI/ 10.13039/501100011033; and TAILOR ICT-48 Network
(No 952215) funded by EU Horizon 2020 research and innovation
programme. University of Málaga, Andalucía Tech.

REFERENCES
[1] Abdullah Al-Dujaili, Tom Schmiedlechner, Erik Hemberg, and Una-May O’Reilly.

Towards distributed coevolutionary GANs. In AAAI Fall Symposium, 2018.
[2] Enrique Alba, Gabriel Luque, and Sergio Nesmachnow. Parallel metaheuris-

tics: recent advances and new trends. International Transactions in Operational
Research, 20(1):1–48, 2012.

[3] Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, and Yi Zhang. General-
ization and equilibrium in generative adversarial nets (GANs). arXiv preprint
arXiv:1703.00573, 2017.

[4] Wissam J Baddar, Geonmo Gu, Sangmin Lee, and Yong Man Ro. Dynamics
transfer GAN: Generating video by transferring arbitrary temporal dynamics
from a source video to a single target image. arXiv preprint arXiv:1712.03534,
2017.

[5] Ghazal Bargshady, Xujuan Zhou, Prabal Datta Barua, Raj Gururajan, Yuefeng
Li, and U. Rajendra Acharya. Application of cyclegan and transfer learning
techniques for automated detection of covid-19 using x-ray images. Pattern
Recognition Letters, 153:67–74, 2022.

[6] Vedant Bhagat and Swapnil Bhaumik. Data augmentation using generative adver-
sarial networks for pneumonia classification in chest xrays. In 5𝑡ℎ International
Conference on Image Information Processing, 2019.

[7] Ali Borji. Pros and cons of gan evaluation measures: New developments. Com-
puter Vision and Image Understanding, 215:103329, 2022.

[8] Andrés Camero, Jamal Toutouh, and Enrique Alba. Random error sampling-based
recurrent neural network architecture optimization. Engineering Applications of
Artificial Intelligence, 96:103946, 2020.

[9] Tatjana Chavdarova and François Fleuret. Sgan: An alternative training of gen-
erative adversarial networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 9407–9415, 2018.

[10] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer.
Smote: Synthetic minority over-sampling technique, 2002.

[11] Nabil Karim Chebbah, Mohamed Ouslim, and Sorore Benabid. New computer
aided diagnostic system using deep neural network and svm to detect breast
cancer in thermography. Quantitative InfraRed Thermography Journal, 0(0):1–16,
2022.

[12] Shiming Chen, Wenjie Wang, Beihao Xia, Xinge You, Qinmu Peng, Zehong
Cao, and Weiping Ding. Cde-gan: Cooperative dual evolution-based generative
adversarial network. IEEE Transactions on Evolutionary Computation, 25(5):986–
1000, 2021.

[13] Joseph Cohen, Paul Morrison, and Lan Dao. COVID-19 Image Data Collection,
2020. Preprint arXiv:2003.11597v1.

[14] Victor Costa, Nuno Lourenço, João Correia, and Penousal Machado. Coegan:
Evaluating the coevolution effect in generative adversarial networks. In Pro-
ceedings of the genetic and evolutionary computation conference, pages 374–382,
2019.

[15] Victor Costa, Nuno Lourenço, João Correia, and Penousal Machado. Neuroevolu-
tion of generative adversarial networks. In Deep Neural Evolution, pages 293–322.
Springer, 2020.

[16] Victor Costa, Nuno Lourenço, and Penousal Machado. Coevolution of gener-
ative adversarial networks. In International Conference on the Applications of
Evolutionary Computation (Part of EvoStar), pages 473–487. Springer, 2019.

[17] Chris Donahue, Julian McAuley, and Miller Puckette. Synthesizing audio with
generative adversarial networks. arXiv preprint arXiv:1802.04208, 2018.

[18] Krishnamurthy Dvijotham, Sven Gowal, Robert Stanforth, Relja Arandjelovic,
Brendan O’Donoghue, Jonathan Uesato, and Pushmeet Kohli. Training verified
learners with learned verifiers. arXiv preprint arXiv:1805.10265, 2018.

[19] Unai Garciarena, Roberto Santana, and Alexander Mendiburu. Evolved gans
for generating pareto set approximations. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 434–441, 2018.

[20] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.
In Advances in neural information processing systems, pages 2672–2680, 2014.

[21] Erik Hemberg, Jamal Toutouh, Abdullah Al-Dujaili, Tom Schmiedlechner, and
Una-May O’Reilly. Spatial coevolution for generative adversarial network train-
ing. ACM Trans. Evol. Learn. Optim., 1(2), jul 2021.

[22] Aras M Ismael and Abdulkadir Şengür. Deep learning approaches for covid-
19 detection based on chest x-ray images. Expert Systems with Applications,
164:114054, 2021.

[23] N. Khalifa, Mohamed Taha, Aboul Hassanien, and Sally Elghamrawy. Detection of
Coronavirus (COVID-19) Associated Pneumonia based on Generative Adversarial
Networks and a Fine-Tuned Deep Transfer Learning Model using Chest X-ray
Dataset, 2020. arXiv preprint 2004.01184, accessed 06/2020.

[24] Vassili Kovalev and Siarhei Kazlouski. Examining the capability of GANs to re-
place real biomedical images in classification models training. In Communications
in Computer and Information Science, pages 98–107. Springer, 2019.

[25] Oak Ridge National Laboratory. SUMMIT oak ridge national laboratory’s 200
petaflop supercomputer. https://www.olcf.ornl.gov/olcf-resources/compute-
systems/summit/l, 2019. Accessed: 2022-12-30.

[26] Howard Lee and Yi-Ping Phoebe Chen. Image based computer aided diagnosis
system for cancer detection. Expert Systems with Applications, 42(12):5356–5365,
2015.

[27] Jerry Li, Aleksander Madry, John Peebles, and Ludwig Schmidt. On the limita-
tions of first-order approximation in GAN dynamics. In Jennifer Dy and Andreas
Krause, editors, Proceedings of the 35th International Conference on Machine Learn-
ing, volume 80 of Proceedings of Machine Learning Research, pages 3005–3013.
PMLR, 10–15 Jul 2018.

[28] Mohamed Loey, Florentin Smarandache, and NourEldeen Khalifa. Within the
lack of chest COVID-19 x-ray dataset: A novel detection model based on GAN
and deep transfer learning. Symmetry, 12(4):651, 2020.

[29] Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Daniel Fink,
Olivier Francon, Bala Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy,
and Babak Hodjat. Chapter 15 - evolving deep neural networks. In Robert Kozma,
Cesare Alippi, Yoonsuck Choe, and Francesco Carlo Morabito, editors, Artificial
Intelligence in the Age of Neural Networks and Brain Computing, pages 293–312.
Academic Press, 2019.

[30] Gonçalo Mordido, Haojin Yang, and Christoph Meinel. Dropout-gan: Learning
from a dynamic ensemble of discriminators. arXiv preprint arXiv:1807.11346,
2018.

[31] Urmi Mustafi. Investigating system resilience in distributed evolutionary GAN
training. Master’s thesis, Massachusetts Institute of Technology, 2021.

[32] Behnam Neyshabur, Srinadh Bhojanapalli, and Ayan Chakrabarti. Stabilizing
gan training with multiple random projections. arXiv preprint arXiv:1705.07831,
2017.

[33] Una-May O’Reilly, Mark Wagy, and Babak Hodjat. EC-Star: A massive-scale, hub
and spoke, distributed genetic programming system. In Genetic programming
theory and practice X, pages 73–85. Springer, 2013.

[34] Zhaoqing Pan, Weijie Yu, Xiaokai Yi, Asifullah Khan, Feng Yuan, and Yuhui
Zheng. Recent progress on generative adversarial networks (GANs): A survey.
IEEE Access, 7:36322–36333, 2019.

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019.

[36] Emiliano Pérez, Sergio Nesmachnow, Jamal Toutouh, ErikHemberg, andUna-May
O’Reily. Parallel/distributed implementation of cellular training for generative
adversarial neural networks. In 2020 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pages 512–518. IEEE, 2020.

[37] David Pfau and Oriol Vinyals. Connecting generative adversarial networks and
actor-critic methods. arXiv preprint arXiv:1610.01945, 2016.

[38] Elena Popovici, Anthony Bucci, R Paul Wiegand, and Edwin D De Jong. Coevolu-
tionary principles. In Handbook of natural computing, pages 987–1033. Springer,
2012.

[39] Tim Salimans, Jonathan Ho, Xi Chen, and Ilya Sutskever. Evolution strategies as
a scalable alternative to reinforcement learning. arXiv:1703.03864, 2017.

https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/l
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/l

Conference’17, July 2017, Washington, DC, USA Flores et al.

[40] Tom Schmiedlechner, Ignavier Ng Zhi Yong, Abdullah Al-Dujaili, Erik Hem-
berg, and Una-May O’Reilly. Lipizzaner: A system that scales robust generative
adversarial network training. In NIPS 2018 Workshop on Systems for ML, 2018.

[41] Jarrel Seah, Jennifer Tang, Andy Kitchen, Frank Gaillard, and Andrew Dixon.
Chest radiographs in congestive heart failure: Visualizing neural network learn-
ing. Radiology, 290(2):514–522, 2019.

[42] Connor Shorten, Taghi M Khoshgoftaar, and Borko Furht. Deep learning appli-
cations for covid-19. Journal of big Data, 8(1):1–54, 2021.

[43] Kenneth O. Stanley and Jeff Clune. Welcoming the era of deep neuroevolution -
uber engineering blog. https://eng.uber.com/deep-neuroevolution/, December
2017.

[44] Kenneth O Stanley, Jeff Clune, Joel Lehman, and Risto Miikkulainen. Designing
neural networks through neuroevolution. Nature Machine Intelligence, 1(1):24–35,
2019.

[45] Ilya O Tolstikhin, Sylvain Gelly, Olivier Bousquet, Carl-Johann Simon-Gabriel,
and Bernhard Schölkopf. Adagan: Boosting generative models. In Advances in
Neural Information Processing Systems, pages 5430–5439, 2017.

[46] Jamal Toutouh, Mathias Esteban, and Sergio Nesmachnow. Parallel/distributed
generative adversarial neural networks for data augmentation of covid-19 training
images. In Sergio Nesmachnow, Harold Castro, and Andrei Tchernykh, editors,
High Performance Computing, pages 162–177, Cham, 2021. Springer International
Publishing.

[47] Jamal Toutouh, Erik Hemberg, and Una-May O’Reilly. Analyzing the components
of distributed coevolutionary gan training. In Thomas Bäck, Mike Preuss, André
Deutz, Hao Wang, Carola Doerr, Michael Emmerich, and Heike Trautmann,
editors, Parallel Problem Solving from Nature – PPSN XVI, pages 552–566, Cham,
2020. Springer International Publishing.

[48] Jamal Toutouh, Erik Hemberg, and Una-MayO’Reilly. Data dieting in gan training.
In Hitoshi Iba and Nasimul Noman, editors, Deep Neural Evolution: Deep Learning

with Evolutionary Computation, pages 379–400. Springer Singapore, Singapore,
2020.

[49] Jamal Toutouh, Erik Hemberg, and Una-May O’Reily. Re-purposing heteroge-
neous generative ensembles with evolutionary computation. In Proceedings of
the 2020 Genetic and Evolutionary Computation Conference, pages 425–434, 2020.

[50] Jamal Toutouh, Erik Hemberg, and Una-May O’Reilly. Spatial evolutionary
generative adversarial networks. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’19, page 472–480, New York, NY, USA, 2019.
Association for Computing Machinery.

[51] Jamal Toutouh and Una-May O’Reilly. Signal propagation in a gradient-based
and evolutionary learning system. In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 377–385, 2021.

[52] Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. Mocogan: Decom-
posing motion and content for video generation. arXiv preprint arXiv:1707.04993,
2017.

[53] Abdul Waheed, Muskan Goyal, Deepak Gupta, Ashish Khanna, Fadi Al-Turjman,
and Placido Rogerio Pinheiro. CovidGAN: Data augmentation using auxiliary
classifier GAN for improved covid-19 detection. IEEE Access, 8:91916–91923,
2020.

[54] Chaoyue Wang, Chang Xu, Xin Yao, and Dacheng Tao. Evolutionary generative
adversarial networks. IEEE Transactions on Evolutionary Computation, 23(6):921–
934, 2019.

[55] Pak-KanWong, Man-LeungWong, and Kwong-Sak Leung. Probabilistic grammar-
based deep neuroevolution. In Proceedings of the Genetic and Evolutionary Com-
putation Conference Companion, pages 87–88, 2019.

[56] Steven R Young, Derek C Rose, Travis Johnston, William T Heller, Thomas P
Karnowski, Thomas E Potok, Robert M Patton, Gabriel Perdue, and Jonathan
Miller. Evolving deep networks using hpc. In Proceedings of the Machine Learning
on HPC Environments, page 7. ACM, 2017.

	Abstract
	1 Introduction
	2 Background
	2.1 Generative Adversarial Networks in CAD
	2.2 Chest X-Ray image data augmentation
	2.3 Robust GAN training using coEAs

	3 Lipizzaner parallel distributed coEA GAN training
	3.1 General GAN training
	3.2 Distributed coEA GAN training

	4 Implmentation details
	5 Experimental setup
	6 Results and discussion
	6.1 MNIST experimental results
	6.2 Chest X-Ray images experimental results

	7 Conclusion and Future Work
	References

