
Noname manuscript No.
(will be inserted by the editor)

Improving Query Performance on Dynamic Graphs

Gala Barquero · Javier Troya · Antonio Vallecillo

October 1, 2020

Abstract Querying large models efficiently often im-
poses high demands on system resources such as memory,
processing time, disk access or network latency. The sit-
uation becomes more complicated when data is highly
interconnected, e.g., in the form of graph structures,
and when data sources are heterogeneous, partly com-
ing from dynamic systems and partly stored in databases.
These situations are now common in many existing so-
cial networking applications and geo-location systems,
which require specialized and efficient query algorithms
in order to make informed decisions on time. In this
paper we propose an algorithm to improve the mem-
ory consumption and time performance of this type of
queries by reducing the amount of elements to be pro-
cessed, focusing only on the information that is relevant
to the query but without compromising the accuracy
of its results. To this end, the reduced subset of data
is selected depending on the type of query and its con-
stituent filters. Three case studies are used to evaluate
the performance of our proposal, obtaining significant
speedups in all cases.

Keywords Data Stream Processing · Dynamic
Graphs · Performance Optimisation · Pre-computing
Systems · Data Queries

Gala Barquero
ITIS Software, Universidad de Málaga, Spain,
E-mail: gala@lcc.uma.es

Javier Troya
ISA Research Group, Universidad de Sevilla, Spain,
E-mail: jtroya@us.es

Antonio Vallecillo
ITIS Software, Universidad de Málaga, Spain,
E-mail: av@lcc.uma.es

1 Introduction

Nowadays, many information processing systems need
to handle the data flows that are constantly generated
from different sources, such as social networks, geo-
location systems or e-commerce applications [16,17].
Companies and organizations use this information to
make informed decisions or detect situations of interest
in real time. For example, the Spanish BBVA bank
studied the economic impact of Barcelona’s 2012 Mobile
World Congress by analysing all credit cards transactions
during two weeks [13]. Another example of the need to
process data flows to extract useful information is the
detection of possible terrorist attacks analysing social
networks and web access logs [50,71]. In these cases, an
efficient query system needs to process the information
as fast as possible to identify those situations of interest
without delay. However, the large volume of data to be
efficiently processed represents a significant challenge to
current information processing systems.

To speed up the processing of the information, these
systems usually apply different mechanisms, such as
storing the information in clusters to be processed in
parallel [35,49,67], or selecting a subset of the data that
is finally queried [10,24,26,61]. These approaches usu-
ally deal with streams of data that represent sequences
of loosely related events. However, this is not the case
in many other applications, in which the information to
be processed is structured as a graph of highly intercon-
nected elements. It is well known that considering the
relationships among the system elements may have a
significant impact on the performance of the queries [55].

In addition, the information handled by many cur-
rent software applications is no longer exclusively static
or dynamic, but is composed of both persistent data re-
siding on disks and transient information events flowing

The final version of this paper is available from Springer's website:
http://link.springer.com/article/10.1007/s10270-020-00832-3

2 Gala Barquero et al.

in data streams. Persistent data is permanently stored
in the system and not frequently modified; for example,
the users in a social network or the products in an e-
commerce website. In turn, the transient information is
temporarily stored in the system and expires after some
period of time; e.g., user tweets or temporary product
offers. The way to effectively deal with these two types
of information in the same system, especially when they
are highly related, is still an open issue.

The proposal presented here derives from three pre-
vious works. First, in [61] the concept of Approximate
Model Transformations (AMT) was introduced to query
streams of independent events. The idea was to trade
accuracy for performance, using sampling techniques to
reduce the source datasets. Then, in [9] we proposed
a solution that works with graph-structured systems
composed of persistent data and streams of transient
information, based on CEP concepts and languages.
However, no techniques were proposed to improve the
performance of the queries. Finally, in [10] we extended
that work, proposing different mechanisms for reduc-
ing the source input data so that performance could
be improved at the cost of sacrificing correctness, i.e.,
obtaining approximate results. A proposal for the esti-
mation of the accuracy of the results was also presented.

This paper presents a new approach for querying
graph-structured information flows that is able to deal
with both persistent and transient data at the same
time, and that aims at improving the performance of
the queries by reducing the dataset to be processed
without compromising the accuracy of the results. For
this, we use models to represent the datasets, and a new
algorithm has been developed, called Source Dataset
Reduction (SDR), that obtains a subgraph of the com-
plete dataset (i.e., the model) with the elements that
are relevant to a given query. In this way we are able
to achieve speedups of more than 100x for some types
of queries, even in already-optimized systems. The al-
gorithm is executed before the query is performed for
the first time. After that, an incremental version of the
algorithm has also been developed, so that the relevant
query subgraph is automatically updated, at a very low
cost, when new information arrives or the system data
changes.

Our proposal has been evaluated using three case
studies: (i) a simplified version of the Amazon ordering
service; (ii) the New Yorker cartoon caption contest
application, and (iii) a machine learning application
for finding objects in Youtube videos. The first one is
used in Sect. 3.1 to illustrate our proposal, and uses
synthetic datasets in order to have control over the
possible configurations and sizes of the source data. The
datasets used in the other two case studies are the real

ones [57,52]. Our solution has been implemented using
the TinkerGraph in-memory graph database [58], since
its execution time is lower than other similar solutions.
Gremlin has been used as the query language because it
presents some relevant benefits over other graph query
languages (cf. Sect. 2.3 and [29]).

The structure of this paper is as follows. After this
introduction, Sect. 2 presents the basic technologies used
in the paper, and discusses the reasons that justify their
selection. Sect. 3 presents a case study that is used to
illustrate our proposal, and describes a classification of
query patterns that we have defined for the development
of the algorithm that builds the subset of the relevant
data depending on the query. Then, Sect. 4 presents the
algorithm, which is evaluated in Sect. 5, and the results
are presented in Sect. 6. Finally, Sect. 7 relates our work
to other similar proposals, while Sect. 8 concludes with
an outline on future work. In addition, two appendixes
explain the proposed algorithm in detail (A and B) and
a third appendix shows several figures and tables with
the results of our experiments.

2 Background

This section presents the information required for set-
ting the context of our approach and explaining the
technology used to implement it.

2.1 Streaming data processing and dynamic graphs

Data streaming applications were created to handle
and process large amounts of information coming from
external sources that generate flows of data at high
speeds (often gigabytes per second). In order to obtain
instantaneous responses when processing these data,
high-performance algorithms are required, which impose
stringent requirements in terms of resource consump-
tion (execution time and memory). Common approaches
to increase performance and decrease resource require-
ments include selecting a subset of the information to be
queried [10,24,26,61], e.g., in Complex Event Processing
systems [22,23,38,39], or dividing the data in subsets
that can be processed in parallel [49,35,67], such as in
Apache Kafka [33] and Apache Spark [4] platforms.

Generally, the information processed by these tech-
nologies is represented as sequences of simple events
without any strong relations between them, apart from
their partial order. However, many sources generate
information where data is organized into complex struc-
tures. In these cases, the data elements are connected
among themselves conforming trees or graphs. For ex-
ample, in social networks, users are connected to other

Improving Query Performance on Dynamic Graphs 3

users and can publish pictures or posts that can in turn
reference other users, pictures or posts. Our work focuses
on these kinds of graph-structured information flows.
In the literature, these kinds of graphs are commonly
referred to as dynamic graphs [16,17]. Although there
is also the term streaming graphs, it typically refers to
settings in which there is no initial data and streaming
is unbounded, i.e., one does not see the entire graph at
any given time. Although the difference is sometimes
blurred, we consider that the context of our work is
that of dynamic graphs. Nevertheless, we will still use
the term ‘data streaming applications’ to refer to those
applications where new data constantly arrive.

2.2 Graph Processing Systems

Information models are normally represented by graph
structures, which are composed of nodes and edges.
Nodes in a graph represent objects in the model, and
edges represent their relationships. By elements we will
refer to objects or relationships, indistinctly. Node prop-
erties represent object attributes.

Various technologies support efficient graph process-
ing. For instance, Apache Spark provides a component
for graph-parallel computation called GraphX [27]. It
uses RDDs to perform graph-related operations with
a set of basic operators (e.g., subgraph, joinVertices
or groupEdges) and operators for graph algorithms or
analytic tasks, e.g., PageRank [48]. The absence of a
domain-specific language for developing GraphX code
was initially an important limitation, because this leads
to the use of very complex patterns to define information
queries [9]. To overcome this drawback, Apache Spark
developed GraphFrames [5], which allow users to oper-
ate with graphs using Spark DataFrames. A DataFrame
is a distributed collection of data organized in columns
labeled by names. It provides the benefits of RDDs and
Spark SQL. GraphFrames enable users to perform the
same operations as GraphX, but in a more intuitive way
because it uses DataFrames for handling the data. How-
ever, these technologies do not provide efficient methods
for data updates since they were mainly designed to
perform queries, and not for storing data.

As an alternative, graph databases represent an ef-
fective solution to store, update and perform queries
over very large graph-structured datasets when the in-
formation is organized in terms of objects and rela-
tionships [68,70]. The queries are normally developed
with graph-query languages that provide an intuitive
and fast way to access the information stored in the
database. Some of the most popular graph-query lan-
guages are Gremlin [6], Cypher [45] and SPARQL [66].
Several graph databases store the data on disk, such

as Neo4j [44], JanusGraph [30] or OrientDB [18], while
others implement in-memory graph databases, such as
TinkerGraph [58], Memgraph [41] and in-memory im-
plementations of JanusGraph and OrientDB. Evidently,
in-memory graph databases perform queries faster than
those that store information on disk. In the following
section we justify the technology used in our approach.

2.3 Rationale for the Chosen Technology

In order to choose the most suitable technology to im-
plement our proposal, we analysed the benefits and
limitations of the solutions mentioned above.

First, our proposal uses a classification of queries that
can be performed over graph-structured data. For this
reason, the query language should have a clear syntax
that enables the easy identification of the appropriate
query patterns. This made us discard GraphX due to
the complexity of the query expressions and the absence
of clear syntax patterns for writing them. Second, our
approach has to deal with systems that are constantly
updated as new information arrives, and whose data
can be modified as consequence of the queries. Thus,
we discarded GraphFrame because it does not currently
support efficient graph updates.

As mentioned earlier in Sect. 2.1, one of the main
requirements when working with data flows is the need
to process data in real time. In order to find the most
suitable technology that fulfills these requirements, we
compared different graph databases, namely Neo4j,
Memgraph, TinkerGraph, JanusGraph, OrientDB,1 and
CrateDB2 using two cases studies taken from previous
works [9,55]. For the comparison, we measured the ex-
ecution times of each database with different types of
queries and the expressiveness of the languages used to
write them. A technical report with the results is avail-
able on our website [12]. We found that the requisite for
real-time processing is too restrictive for solutions that
need to access disk even when they use indexing tech-
niques. For this reason, we concluded that in-memory
solutions are the most suitable choice, and hence we
decided to discard Neo4j, CrateDB and JanusGraph.
Among the existing in-memory graph databases, we
analyzed TinkerGraph [58], Memgraph [41] and Ori-
entDB [18]. However, OrientDB showed higher execu-
tion time averages than disk implementations. Then, we
also decided to discard it. Regarding TinkerGraph and
Memgraph, even when both technologies are suitable

1 Note that we used the in-memory implementation for
OrientDB and the BerkeleyDB backend [28] for JanusGraph.

2 Even if CrateDB is not a graph database, we included it
in our study because of its high scalability.

4 Gala Barquero et al.

for implementing real-time applications, the results of
our study showed that TinkerGraph is faster than Mem-
graph in most cases. In addition, Memgraph showed
concurrency problems when creating new elements in
parallel with models of around 4 million elements.

Regarding the pros and cons of the query languages
provided by each solution, some studies (e.g., [29]), as
well as our own analyses, show that although Cypher
is usually easier to learn, the implementation of queries
that imply vicinity—a concept that is present in graph-
based structures [9]—is easier and more efficient with
Gremlin. Besides, although the performance of Tinker-
Graph and Memgraph engines was similar, the more
complete support of Gremlin by TinkerGraph, against
the lack of full support of Cypher by Memgraph, i.e., the
differences between Neo4j’s Cypher and Memgraph’s
openCypher implementation [37], made us decide for
TinkerGraph and Gremlin to implement our approach.
Note however that the algorithm presented in this pa-
per is technology-independent and therefore it could be
implemented using other technologies.

3 A Classification of Queries

This section introduces a case study that is used to
illustrate our proposal and describes a classification of
query patterns that we have defined for the development
of our algorithm.

3.1 Running Example

To explain our approach, we will use the Amazon order-
ing service already presented in [10]. It is a simplification
of the real Amazon ordering service but focusing on the
features that are relevant to our proposal.

The metamodel for this case study is depicted in
Fig. 1. It defines nine types of objects and differ-
ent kinds of relationships among them. It models a
system where customers can place orders on items
of certain products. Customers can also comment on
the products, and the system may create offers of
products to specific customers, and also create mar-
keting campaigns to advertise some products. Finally,
products belong to departments, and customers are
located in geographical areas, where they live.

We have designed six queries that represent different
features of interest to our proposal, realizing the query
patterns that we have identified (see Sect. 3.2).

Q1. ProductPopularity: considering a specific
product (e.g., the product with idProduct = ‘10’),
this query returns the customers who have ordered that

product. With this query, we can obtain the popular-
ity of a product within the Amazon ordering network.
It represents a query with a single selection filter or,
alternatively, one with a conditional expression.

Q2. AlternativeCustomer: given a featured
event, for example the Olympic Games, and a list of
products that are known to be more frequently ordered
than others during the event, this query obtains the
customers who do not have any order that contains
these products at that time. This query can be useful to
improve advertisement campaigns in order to increase
their success, recommending their products to those
customers who have not ordered them yet. It represents
a query that contains a negative application condition
(NAC), i.e., a negation pattern.

Q3. PackagePopularity: considering two different
products, i.e., with distinct idProduct, this query com-
putes the customers who have ordered both. With this
query, we obtain information about the frequency with
which a customer orders two specific products, some-
thing that can be useful to create recommendations to
customers who have ordered only one of them. This
query implements a conjunction of filters.

Q4. SimProductsPopularity: given two specific
products that are known to be similar (for example two
types of sports socks), this query gets the customers
that who ordered at least one of them. This query is
useful in order to discover the popularity of products
with common attributes. It represents a pattern that
implements a disjunction of filters.

Q5. PrefCustomer: This query returns the cus-
tomers who have ordered a specific popular product
more than 3 times. With this query we can create offers
to customers according to the products that they often
buy. This query implements an aggregation of filters.

Q6. PrefCustomerSimProducts: given two spe-
cific popular products that are similar, this query obtains
the customers that have ordered one of them at least
three times. This query is similar to Q5, since it is also
helpful for suggesting offers to customers, but it uses an
aggregation of selection filters.

3.2 Classification of queries

To reduce the source dataset according to the content of
a query, we need to follow a strategy, which will depend
on the type of the query. This is why we have defined a
classification of queries that will allow us to decide how
the algorithm should behave. This classification takes
into account the operators and clauses that constitute
the query. Of course, different patterns may appear in
the same query. For instance, if we find a where clause,

Improving Query Performance on Dynamic Graphs 5

Fig. 1: The Amazon Example Metamodel.

we talk about conditional pattern. Within the where
clause, we can find other queries that follow other pat-
terns. In the following, we describe the patterns that
are relevant to our algorithm. Each pattern is individu-
ally treated, i.e., they are described omitting any other
pattern that could also be present in the query.

3.2.1 Simple filter pattern

Queries that follow the simple filter pattern sieve the
information using only incoming and outgoing relation-
ships and property filters. By incoming and outgoing
relationship we mean a simple navigation step through
an association. A property filter is used to obtain one or
more elements of the graph according to the value of a
property, or the type of object or relationship. Examples
of property filters in the Amazon case study are a filter
that obtains all customers older than 25, or one that
obtains all objects of type Product.

Listing 1 shows a possible implementation in Grem-
lin of query Q1 that follows this pattern. First, it selects
all objects (line 1) and then it navigates through orders
and contains outgoing relationships (lines 2 and 3). Af-
ter that, it selects only those products whose idProduct
is ‘10’ (property filter, line 4). Note how the as and
select operators (lines 1 and 6) make the query return
only those objects labeled as a variable customers that
have ordered the products filtered in lines 2-4.

Listing 1: Implementation of Q1.ProductPopularity.
1 g . V () . as (" customers ") // element type filter
2 . out (" orders ") // relationship step
3 . out (" contains ") // relationship step
4 . has (" idProduct " , "10") // property filter step
5 // returns the customers of the first step :
6 . select (" customers ")

Listing 2: Q1.ProductPopularity with where operator.
1 g . V () // element type filter - all objects
2 .where(// " where " step starts
3 __ . out (" orders ") // relationship step
4 . out (" contains ") // relationship step
5 . has (" idProduct " ,"10") // property filter step
6) // " where " step ends

3.2.2 Condition pattern

Queries that follow the condition pattern select the
information using a where clause, which specifies a sub-
query with the condition that defines the filter.

Listing 2 shows an implementation of query Q1 that
follows this pattern. It filters the objects that have a
path indicated within the where clause (line 2). This
path is composed by two relationships (lines 3 and 4) and
a property filter (line 5), like in the previous example.

3.2.3 Negation pattern

Queries that follow the negation pattern sieve the in-
formation using a negative condition, selecting those

6 Gala Barquero et al.

Listing 3: Implementation of Q2.AlternativeCustomer.
1 g . V () . as (" customers ") // element type filter
2 . out (" orders ") // relationship step
3 . not (// " not " step starts :
4 __ . out (" contains ") // relationship step
5 . has (" idProduct " , P . within (idProducts))
6 // property filter step
7) // " not " step ends .
8 // returns the customers of the first step :
9 . select (" customers ")

Listing 4: Implementation of Q3.PackagePopularity.
1 g . V () // element type filter
2 .and(// " and " step starts :
3 // PREDICATE 1
4 __ . out (" orders ") // relationship step
5 . out (" contains ") // relationship step
6 . has (" idProduct " , "10") , // property filter step
7 // PREDICATE 2
8 __ . out (" orders ") // relationship step
9 . out (" contains ") // relationship step

10 . has (" idProduct " , "20") // property filter step
11) // " and " step ends

elements that do not fulfil the condition expressed in a
not clause. Listing 3 shows an implementation of query
Q2 that follows this pattern. In this case, the query se-
lects the customers whose orders do not (line 3) contain
any product of a list called idProducts (lines 4 and 5).

3.2.4 Conjunctive pattern

Queries that follow the conjunctive pattern select the
information with an and clause that contains two or
more predicates. The query selects those elements that
satisfy all predicates.

To illustrate an example of a query that follows this
pattern, Listing 4 shows an implementation of query Q3.
This query is composed of two predicates (lines 4-6 and
8-10). The first one filters customers who have ordered
the product with idProduct = ‘10’ (line 6) and the
second one filters those who have ordered the product
with idProduct =‘20’ (line 10).

3.2.5 Disjunctive pattern

Queries that follow the disjunctive pattern select the
information with an or clause that contains two or more
predicates. The resulting elements must meet at least
one of these predicates.

Changing the and clause of Listing 4 (line 2) by an
or clause, we obtain an implementation for query Q4,
which is an example of a query that follows this pattern.
The query selects the customers who have ordered a
product with idProduct=‘10’ or idProduct=‘20’.

Listing 5: Implementation of Q5.PrefCustomer.
1 g . V () // element type filter
2 . has (" idProduct " , "10") // property filter step
3 . in (" contains ") // relationship step
4 . in (" orders ") // relationship step
5 .groupCount () . unfold () // aggregation operation
6 .where(// aggregation filter
7 __ . select (values) . i s (P . gte (3))
8)

3.2.6 Aggregation pattern

Queries that follow the aggregation pattern first group
the information with aggregation operators, and then
filter it with relational operators.

An example of a query that follows this pattern is
presented in Listing 5, which shows an implementation
of Q5 in Gremlin. Note the aggregation operator used
in line 5. It groups the customers by the number of times
that they ordered the product with idProduct =‘10’
(lines 1-5). Then, it selects the customers who ordered
this product at least 3 times (line 7).

4 The SDR algorithm

We have developed an algorithm for optimizing the per-
formance of queries over graph-structured information
models, by means of reducing the source dataset to
be used by the query to the subset of the information
that is relevant to it. Hence the name Source DataSet
Reduction (SDR) algorithm.

This section describes the two versions of the SDR al-
gorithm that we have developed. The first one is devised
to be executed before the query is run for the first time,
and computes the appropriate subgraph for the query
(Sect. 4.1). The second version incrementally updates
that subgraph when new elements arrive to the system,
or the persistent information changes (Sect. 4.2).

An overall view of our proposal and all its compo-
nents are depicted in Fig. 2. The implementation of the
SDR algorithms and all artefacts used in their evaluation
are available from [11].

4.1 The main SDR Algorithm

The SDR algorithm for computing the subgraph of the
complete information model that is relevant to a given
query is inspired by Google’s PageRank algorithm [48].
Given a set of web pages, the PageRank algorithm ob-
tains a ranking of the most relevant web pages according
to the number of pages that point to them, and their
respective weights. To obtain such a ranking, the algo-
rithm assigns a weight (a real number between 0 and

Improving Query Performance on Dynamic Graphs 7

Fig. 2: Overall view of queries using the SDR algorithm.

1) to each web page. A page’s weight represents the
probability that a person randomly clicking on Web
links arrives at this particular page. For computing the
weights, the algorithm performs several iterations. In
the first iteration, it assigns the same probability to all
pages: 1 divided by the total number of pages. This prob-
ability is modified in the next iterations according to
the number of links that the web page receives, and the
weights of its neighbor pages in the previous iteration.

In a similar way, the SDR algorithm analyzes a query
in order to assign a weight to all objects in the graph
according to their relevance for the query. The algo-
rithm returns a subgraph with the objects with a weight
greater than 0 and the relationships among them. This
subgraph contains all the elements that are relevant to
the query. Note that, since the subgraph is obtained
from the objects with a weight greater than 0, the nu-
merical weight could be replaced by a Boolean value.
However, even taking into account that this value is
not relevant to the approach presented here, its calcula-
tion has been designed for future extensions that could
integrate approximate algorithms, so that a further re-
duction in execution time and memory consumption
could be achieved. This feature makes the current im-
plementation more flexible.

A query is composed of different clauses, operations
and filters, which in the context of this work we will call
steps. That is, we consider that a step is any kind of
clause, filter or operation that is applied to the elements
of a model as specified by a query. According to the
query patterns presented in Sect. 3.2, we consider eight
types of steps: element type filter, property filter, rela-
tionship, and operation, or operation, not operation,
where operation, and aggregation. A step can be, in
turn, divided in sub-steps.

Let us illustrate the steps of a query with the Pro-
ductPopularity query of the Amazon case study, shown

in Listing 2. It retrieves the users who have ordered
the product with idProduct=‘10’. This query has two
main steps, namely an element-type-filter step and a
where step (lines 1 and 2, respectively). In our proposal,
the aim of an element-type-filter step is to make the
query focus on either the objects or the relationships of
the graph. In this case, it focuses on the objects (line 1).
Then, the where step selects the relevant objects, using
three sub-steps: the orders and contains relationship
steps (lines 3 and 4), which traverse the graph through
the orders and the contains relationships, respectively;
and a property filter step (line 5), which filters products
by property idProduct. Our algorithm traverses all the
query steps, starting from the most specific one, in order
to assign a weight to the objects that match each step.
We consider that the most specific step is always the
last one (the where step in this example; the contained
subquery, in turn, will be traversed starting from the
filter-property step). The algorithm starts from the last
step and traverses backwards the rest of the query steps.

The algorithm is executed in parallel on every single
object. This parallel computation is possible by making
use of Tinkerpop’s VertexProgram [60], which imple-
ments the vertex-centric programming model [40,34].
This programming model consists in an iterative process
over a user-defined function that stops when a satisfy-
ing threshold is reached, or after executing a certain
number of times. This process is executed in BSP (Bulk
Synchronous Parallel) mode, which means the message
passing among the objects is synchronized in order to
avoid inconsistencies. In this way, VertexProgram is an
interface for distributed graph computation, where each
object is a “worker” that executes a program in paral-
lel. Then, in each step of the query, the object sends a
message through the relationships relevant to the step,
and counts the number of messages that its neighbors
sent to it in the previous iteration. The weight is com-
puted using the number of received and sent messages.
The complete flow of the SDR algorithm is shown in
Algorithm 1, which is described next. The inputs of the
algorithm are the query Q and the graph G ; the result
is the subgraph with the objects that are relevant to Q.

As stated before, the SDR algorithm traverses the
steps of the query in several iterations. To achieve this,
the function SDRVertexCentric(Q,v) is run in each
object in parallel. For each step of the query, it checks
whether object v satisfies the conditions to be assigned
a weight. Variable guardCondition stores the results
of these checks.

Similar to Google’s PageRank algorithm, the first
two iterations of the SDR algorithm are slightly dif-
ferent than the rest. PageRank uses an initial itera-
tion, called iteration 0, to count the number of pages.

8 Gala Barquero et al.

Algorithm 1 The main SDR algorithm

Data: A query Q and a Graph G(V,E)
Result: A subgraph SG(VSG,ESG)
1: v.weight = SDRVertexCentric(Q,v) ∀ v ∈ V
2: ListSGIds add {vw.id, vw.weight} ∀ vw ∈ V where
vw.weight 6= 0

3: return SG = G − {vd ∈ V where vd.id /∈ ListSGIds}

Function SDRVertexCentric(Q, v)
1: Obtain the set S of steps of Q
2: iteration = 0, weight = 0
3: while iteration <= S.size do
4: guardCondition = true
5: if iteration == 0 then
6: s = S.get(S.size – 1)
7: weight = WeightInitialisation(s, v)
8: else
9: Select s = S.get(S.size – iteration)
10: if iteration == 1 then
11: weight = InWeightPropagation(s, v, weight)
12: else
13: weight = FurWeightPropagation(s, v, weight)
14: end if
15: end if
16: iteration++
17: end while
18: return weight

Function WeightInitialisation(s, v)
1: if s is property filter then
2: if v matches the filter then
3: pRel = previous relationship step of s
4: cNeighbors = No. neighbors of v through pRel
5: guardCondition = cNeighbors > 0?
6: else
7: guardCondition = false
8: end if
9: else if s is a relationship then
10: cNeighbors = No. neighbors of v through s
11: guardCondition = cNeighbors > 0?
12: else if s is a TraversalParent filter then
13: Obtain subqueries SQ from s
14: for q : SQ do
15: weightsSQ = SDRVertexCentric(q, v), q ∈ SQ

16: weight = TraversalParentType(weightsSQ)
17: end for
18: end if
19: if guardCondition then
20: weight = weight + cNeighbors
21: end if
22: return weight

Function InWeightPropagation(s, v, weight)
1: if s is relationship and weight > 0 then
2: Send messages through s
3: else if s is property filter or TraversalParent then
4: pRel = previous relationship of s
5: iteration++
6: if weight > 0 then
7: Send messages through pRel
8: end if
9: end if
10: return weight

Function FurWeightPropagation(s, v, weight)
1: cMessages = sum(received messages)
2: if cMessages > 0 then
3: if s is relationship then
4: cNeighbors = No. neighbors of v through s
5: guardCondition = cNeighbors > 0?
6: Send messages through s
7: else if s is a property filter then
8: pRel = previous relationship of s
9: iteration ++
10: if v match the filters then
11: cNeighbors=No. neighbors of v thru pRel
12: guardCondition = cNeighbors > 0?
13: Send messages through pRel
14: else
15: guardCondition = false
16: end if
17: end if
18: end if
19: if guardCondition then
20: weight = weight + cNeighbors + cMessages
21: end if
22: return weight

Then, in iteration 1, this number N is used to calculate
the initial weights of the pages (which is the same for
all: 1/N). After this, the pages inform their neighbor-
ing pages about their current weight, so that weights
can be updated in the following iterations according
to the links to the page and the weights of the linked
pages. In a similar manner, the SDR algorithm uses the
initial iteration (function WeightInitialisation(s, v))
to compute an initial weight of those objects that
are relevant to the first step of the query. To com-
pute this initial weight, the algorithm counts the
number of relationships to the objects that are rele-
vant to the step. Then, in the second iteration (func-
tion InWeightPropagation(s, v, weight)), the objects

inform, through those relationships, their neighboring
objects about their current weight. The remaining iter-
ations (function FurWeightPropagation(s, v, weight))
will compute the objects’ weights according to their rele-
vance for the query and the relationships with the other
relevant objects. In the following, an overview of the
algorithm is explained by organizing it in three different
subsections. A detailed exemplification of the algorithm
with a concrete query is described in Appendix A.

4.1.1 Iteration 0 - Weight Initialisation

When the algorithm starts, it calls the function
SDRVertexCentric(Q, v) that will run over all objects

Improving Query Performance on Dynamic Graphs 9

in parallel (line 1). Then, this function retrieves (line 6
of SDRVertexCentric) the last step of the query, s, and
calls the function WeightInitialisation(s, v), (line 7
of SDRVertexCentric) that checks the type of s. De-
pending on the type of s, WeightInitialisation may
proceed in different ways:

– If s is a property-filter step (line 1), it checks
whether v matches the filter (line 2) or not. If not,
guardCondition is set to false (line 7). Otherwise,
the algorithm traverses the query backwards until
it finds a relationship step and counts the number
of neighbors of v that can be reached through that
relationship. If this number is 0, guardCondition is
set to false (line 5).

– If s is a relationship step (line 9), the function
counts the number of neighbors that the object v
reaches through this relationship and checks whether
this number is greater than 0. Otherwise, guardCon-
dition is set to false (line 11).

– If s is a traversal3 step (line 12), the function makes
a recursive call to the SDRVertexCentric function
for each subquery of s and uses the appropriate strat-
egy to compute the weight depending on the type
of traversal (lines 13-17). All the different strategies
are explained and exemplified in Appendix B.

– Steps of types element-type-filter and aggrega-
tion are not considered because they do not affect
the weight of v. The first ones are only used to se-
lect the objects or relationships that will serve as
starting point of the query, while the second ones
are used for grouping the information obtained in
the previous steps. For this reason, the aggregation
steps are removed from the query before making any
call to the SDR algorithm, so that the algorithm
skips this step when analysing the query.

After that, the weight of v is computed if guardCon-
dition is true (line 19 of WeightInitialisation). The
weight is calculated as the addition of two parameters
(line 20 of WeightInitialisation): the accumulated
weight and the number of neighbors reachable through
the relevant relationship to s (cNeighbors value). Af-
ter updating the weight, the WeightInitialisation
function concludes and the SDRVertexCentric function
starts the next iteration (line 16 of SDRVertexCentric).

4.1.2 Iteration 1 - Initial Weight Propagation

After WeightInitialisation, all objects have a weight
but they are not aware of their neighbors’ weights. This
is the goal of the InWeightPropagation(s, v, weight)

3 A TraversalParent in Gremlin includes steps that imply
one or more subqueries, namely where, and, or and not.

function, which proceeds with the same step s (lines 9 to
12 of SDRVertexCentric). The behavior of InWeight-
Propagation depends on the kind of step, as above:

– If s is a relationship step, and weight is greater
than 0 (line 1), it means that v met the guardCon-
dition in the initial iteration, so it sends a message
through that relationship to its neighbors (line 2).

– If s is a property filter or a traversal step (line
3), there is no relationship through which object v
can send the messages, and therefore the algorithm
searches backwards in the query for the next re-
lationship step, pRel (line 4), and increments the
iteration counter accordingly (line 5). This incre-
ment is needed because two steps are analyzed in
this case: s and pRel. Note that in cases with mul-
tiple calls to property filter steps, they are grouped
and considered as a single step. In the same way, a
chain of several traversal steps is processed as an
and step, which is also considered a single Traversal-
Parent. Then, v sends the messages through pRel if
its weight is above 0 (line 7).

After that, the InWeightPropagation function con-
cludes and the SDRVertexCentric function starts the
new iteration (line 16 of SDRVertexCentric).

4.1.3 Remaining iterations-Further Weight Propagation

For the rest of the iterations, SDRVertexCentric calls
the FurWeightPropagation(s, v, weight) function (line
13), which checks whether the object v is relevant to the
step s (i.e., it received messages in the last iteration) or
not, and proceeds depending on the type of s:

– If s is a relationship step (line 3), and v has neigh-
bors through s, it sends messages to its neighbors;
otherwise guardCondition is set to false (line 5).

– If s is a property filter step (line 7), it finds the
preceding relation through s, pRel, and proceeds as
in the InWeightPropagation function.

Then, FurWeightPropagation updates the value of
weight by adding parameters cNeighbors and cMessages
(the number of messages received in the last iteration),
as shown in lines 19 to 21. Once SDRVertexCentric
is executed on the objects of the initial model, the
subgraph composed of the non-zero weight objects and
the relationships among them will contain the subgraph
that is relevant to the query. This subgraph is calculated
in two steps. First, we create a list that contains all the
ids of the non-zero weight objects and store it in memory
(line 2 of Algorithm 1). We call this list ListSGIds.
Second, we obtain the induced subgraph from the objects
that appear in the list (line 3 of Algorithm 1).

10 Gala Barquero et al.

Algorithm 2 The Incremental SDR algorithm
Data: A set of objects Vn, a query Q and a Graph G(V,E)
Result: A subgraph SG(VSG,ESG)
1: Obtain steps S from Q
2: Initialise an empty subgraph SGi(Vi,Ei)
3: for s : S do
4: if s represents a relationship then
5: SGi = SGi ∪ createSubGraph(s, Vn)
6: else if s represents a TraversalParent then
7: Obtain subqueries SQ from s
8: for q : SQ do
9: Obtain steps SSQ from q
10: for sSQ : SSQ do
11: if sSQ represents a relationship then
12: SGi = SGi ∪ createSubGraph(sSQ, Vn)
13: end if
14: end for
15: end for
16: end if
17: end for
18: vi.weight = SDRVertexCentric(Q, vi) ∀ vi ∈ Vi

19: ListWeights = get weight and id from SGi

20: Update ListSGIds with ListWeights
21: return SG = G − {vd ∈ V where vd.id /∈ ListSGIds}

Note that computing such a subgraph can be done in
parallel, since different threads can calculate the weights
of distinct subsets of objects.

4.2 The Incremental SDR Algorithm

Our approach is designed for dynamic systems that are
constantly updated with new information. Executing
the main SDR algorithm (Sect. 4.1) on all objects every
time the graph changes would be too costly in terms of
time and memory. For this reason, we have developed
a so-called Incremental SDR algorithm that updates
the weights of the graph nodes when new elements are
added or existing elements are updated or discarded.
This represents the arrival of new information to the
system, changes in the graph persistent data or the
removal of old information. This way, the main SDR
algorithm needs to be executed only once, and then
updated every time the graph information changes.

When new elements are added, updated or removed
from the graph, we analyze the query and obtain a list
of the neighbors of these objects that can be reached
through the relationships of the query, with the aim
of updating their weights. This is performed by the
Incremental SDR algorithm shown in Algorithm 2. Our
approach only updates the weight of the objects that
arrive or are modified in the system, since removed
objects do not need to have their weights updated. It also
updates the weight of the objects that can be affected
because of a change in the graph structure, i.e. the

objects that can be reached from the added, updated or
removed objects through the relationships of the query.

Typically, more than one object will be added, dis-
carded or modified in the graph at the same time, be-
cause events usually arrive in batches. Thus, the inputs
of Algorithm 2 are a set of objects Vn, the query Q

and the graph G(V,E). The set Vn contains those ob-
jects that are added or updated in the graph, plus the
set of neighbors of the recently removed objects. The
Incremental SDR algorithm traverses the relationship
steps of the query (lines 3-17) to find all objects that are
connected through these relationships with the objects
of set Vn. With this information, it creates a subgraph
SGi and calls the vertex-centric function of the SDR
algorithm with the objects contained in SGi and Q as
inputs (line 18). Once the SDR algorithm finishes, it re-
turns the subgraph SGi with its corresponding weights
. Then, the algorithm extracts from SGi the objects’
ids and their corresponding weights (line 19). After the
execution of the Incremental SDR algorithm, the re-
sulting ListWeights is analyzed to obtain the updated
weights of the objects of SGi, and the list ListSGIds
(cf. Sect. 4.1.3) is updated with the new weights of
these objects (line 20). Finally, the algorithm returns
the updated subgraph SG to be queried (line 21).

The Incremental SDR algorithm uses the function
createSubGraph, whose pseudo-code is shown in Al-
gorithm 3. It receives as inputs the current relation-
ship step s of the query and the set of objects Vn,
and returns all neighbors of the objects Vn that can
be reached through s in the query. First, the function
selects the step s and its forward and backward re-
lationships (lines 2 and 3) in order to get the neigh-
bors of Vn that can be reached through them (lines
4–6), and returns the subgraph composed by the set
Vn and their neighbors. Note that forward and back-
ward relationships do not necessarily imply outgoing and
incoming edges, respectively. They refer to the relation-
ship steps found when we traverse the query forwards
and backwards. For instance, if we start to analyze the
query g.V().hasLabel("Order").in("orders") from
the hasLabel step, the next step obtained when we tra-
verse the query in the forward direction is the in step,
which implies an incoming relationship.

The fact that the Incremental SDR algorithm has to
update only the weights of the neighbors of the newly
added, updated or discarded objects from the graph
does not represent a significant performance overhead,
since the complexity of the algorithm is O(v ·r ·n), where
v is the size of Vn (i.e., the number of new, updated or
neighbors of discarded elements), r is the number of re-
lationships of s, and n is the number of neighbors of Vn
through s. Given that these numbers are normally small,

Improving Query Performance on Dynamic Graphs 11

Algorithm 3 Function createSubGraph
Data: A step s and an a set of objects Vn

Result: A subgraph SG(VSG,ESG)
1: Initialise an empty subgraph SG(VSG,ESG)
2: nextr = s ∪ forward relationships of s
3: previousr = backward relationships of s
4: for n : nextr ∪ p : previousr do
5: SG = SG ∪ neighbors of Vn through n and p
6: end for
7: return SG

the execution time of this algorithm is not significant
when compared to the execution of the query. Besides,
this incremental algorithm is executed in parallel with
the queries, so it does not affect their performance. The
only introduced penalty is due to the final update of the
query subgraph after the execution of the incremental
algorithm, since the update procedure uses a lock to
avoid inconsistencies in the subgraph. In this way, if a
new modification (addition, deletion or update) takes
place in the source graph while the SDR algorithm is
running, the algorithm finishes its execution on the data
that was available when the execution was launched.
Then, the new modification occurs and the SDR algo-
rithm is launched again in order to calculate the new
subgraph.

5 Evaluation

To evaluate our proposal, we are interested in answering
the following research questions:

– RQ1: How much is the graph reduced by the
SDR algorithm? Given a query and a graph, ap-
plying the SDR algorithm returns a subgraph with
the information needed for running the query. Our
hypothesis is that the ratio of size reduction is related
to the type of patterns used in the query. Therefore,
we want to know the relation between the query
patterns and the ratio of size reduction.

– RQ2: What is the performance gain when
running the query on the subgraph, instead
of running it on the original graph? Our hy-
pothesis is that running queries on the reduced sub-
graph is much faster and consumes less memory than
running them on the original graph. However, de-
pending on the pattern followed by the query the
performance improvement might differ, and be more
or less significant. We want to analyze this.

– RQ3: Considering data streaming applica-
tions, what is the break-even point of our
approach? The SDR algorithm implies additional
time and memory costs when initially computing the
subgraph. Our hypothesis is that these initial costs

are compensated as soon as the query is executed
several times. We want to analyze the break-even
point, i.e., how many queries are needed to amortize
such initial costs, making our approach worthwhile.

5.1 Experimental Setup

5.1.1 Case studies

In order to evaluate our proposal, we have performed
our experiments in three case studies:

1. Amazon: It was described in Sect. 3.1.
2. NY Caption Contest: this case study is extracted

from the New Yorker caption contest dataset [57].
This dataset provides approximately 89 million rat-
ings over 750,000 captions in 155 contests. The con-
tests are part of the “Cartoon caption contest,” where
users have to rate cartoons and captions according to
how funny they are through two types of questions:
– Dueling questions: two captions are shown for

the same cartoon and users have to choose the
funniest one.

– Cardinal questions: a cartoon with a caption
is displayed and users have to score how funny
they are by selecting either ‘unfunny’, ‘somewhat
funny’ or ‘funny’.

3. YouTube videos: this case study uses the YouTube-
BoundingBoxes dataset [52], which consists of ap-
proximately 380,000 video segments of 15 to 20 sec-
onds extracted from 240,000 Youtube videos. In these
segments, the presence or absence of 23 different ob-
jects were annotated by humans. The dataset is
aimed at training machine learning algorithms.

The metamodels and queries of all case studies are
described in detail on our project’s website [12].

5.1.2 Source Models

Our experiments have been run on models of different
sizes in order to analyze the performance of our ap-
proach. The number of objects and relationships for
each model are shown in Table 1. Since the models of
the different case studies conform to different metamod-
els, the size of the models have been chosen to have
a similar growth curve. Note that the smaller models
have between 1.5 and 2.5 million elements (adding ob-
jects and relationships), while the larger models contain
between 12 and 16 million elements.

Models are named according to the approximate sum
of the number of their objects and relationships.

12 Gala Barquero et al.

Case study Name Objects Relationships

Amazon

2M 286,804 2,399,746
4M 424,368 4,113,948
8M 699,517 7,547,815
15M 1,251,025 14,431,225

Contest

1M 279,170 929,010
4M 1,162,164 3,591,820
9M 2,240,240 6,789,472
12M 3,096,948 9,333,592
16M 4,010,120 12,048,874

YouTube

2M 944,945 971,781
4M 1,888,351 1,942,056
6M 2,830,563 2,911,132
8M 3,775,098 3,882,562
10M 4,717,843 4,852,181
12M 5,661,552 5,822,785

Table 1: Summary of the models used in the experiments.

5.1.3 Queries

As described in Sect. 3.2, queries can follow different
patterns. To determine the performance of our proposal
we have defined several queries, each one following a
different pattern. The number of steps of the queries
ranges between 3 and 11. The analysis of our approach
with queries that combine more than one pattern is left
as part of future work.

Table 2 summarizes all the queries we have used.
They are fully described and implemented on our
Git repository [11]. Note that the objects of queries
that involve a specific object (e.g., a particular prod-
uct in ProductPopularity or a particular contest in
ContestPart) consider the worst-case scenario, i.e., they
select the object with a higher number of relationships
with the rest of the network. This makes our algorithm
build the largest possible subgraph.

5.1.4 Execution environment

All experiments have been executed on a machine run-
ning the Ubuntu operating system 16.04.5 LTS 64 bits,
Linux kernel 4.4.0-151-generic, with 64GB of RAM, and
an Intel Xeon CPU E5-2680 processor with 16 cores
of 2.7 GHz. Our implementation used TinkerGraph-
Gremlin version 3.3.4 [58], Java version 1.8.0_144 with
Oracle JDK vendor and Gremlin-Java version 2.6.0. Be-
sides, we set to 30G the memory allocation pool of the
JVM to obtain the maximum size.

5.2 Experiments and data collection

We have performed two sets of experiments. The first one
focuses on querying static information on large models.

The second one queries new information as it is added
to the model, i.e., it deals with streams of information.

Note that we consider additions in these experiments,
since they imply an increment in the volume of the graph,
i.e., they are the most costly operation when working
with streams. Then, results reflect the behavior of our
approach in the worst-case scenario. This way, we aim
to evaluate both our SDR Algorithm (Sect. 4.1) and its
incremental version (Sect. 4.2). Both sets of experiments
are described next.

5.2.1 Experiments with static information

The idea of these experiments is to perform queries on
both the original graph and the subgraph obtained by
the SDR algorithm. We want to compare three aspects,
namely (i) execution time, (ii) memory consumption
and (iii) number of elements in the graphs.

For this, we applied the SDR algorithm to all models
and queries listed in Tables 1 and 2, respectively. Table 3
shows the ratio of elements that are removed from the
original graph as a result of running the SDR algorithm
in each specific case study for each particular query.
Columns 1, 2 and 3 indicate the case study, the name
of the query, and its type, respectively. Columns 4 to 9
show the ratio R of elements that are removed for each
model. That ratio is calculated as R = 1−#Tsg/#Tg,
where #Tg and #Tsg represent the number of elements
(objects and relationships) in the graph and subgraph,
respectively. Hence, R = 0.94 means that the subgraph
contains only 6% of the elements of the original graph.

In addition, Figures 3, 5 and 6 show the results of
memory consumption and execution time for all queries
of the three case studies. The information displayed in
each chart is the following:

– Each chart is labeled with the pattern followed by
the query used for the experiment.

– The model size is displayed on the X axis using the
names indicated in Table 1.

– The values of the execution times are displayed on
the left-hand-side of the Y axis in milliseconds. As
indicated in the charts captions, the blue solid line
represents the execution time of the query over the
subgraph, whereas the orange dotted line represents
the execution time of the query when executed over
the original graph.

– The values for memory consumption are displayed
on the right-hand-side of the Y axis in Gigabytes.
The yellow dashed line represents the memory con-
sumption of the query over the graph, whereas the
gray dashed line represents the memory consumption
of the query over the subgraph.

Improving Query Performance on Dynamic Graphs 13

Case study Query name Query pattern Description

Amazon

ProductPopularity Simple Description of Q1 given in Sect. 3.1
ProductPopularityC Conditional Description of Q1 given in Sect. 3.1
AlternativeCustomer Neg Description of Q2 given in Sect. 3.1
PackagePopularity Conjunctive Description of Q3 given in Sect. 3.1

SimProductsPopularity Disjunctive Description of Q4 given in Sect. 3.1
PrefCustomer Aggregation Description of Q5 given in Sect. 3.1

PrefCustomerSimProducts Aggregation Description of Q6 given in Sect. 3.1

Contest

RecentPart Simple Participants who have answered at least one question in
the last month

ContestPart Conditional Participants who have answered at least one question in a
specific contest

UnchosenCap Conjunctive Counts how many times a caption appeared in a dueling
contest question and was not chosen

FunniestCaption Aggregation Gets the highest scored caption in a cardinal contest
Abandon Aggregation Participants who answered only one question

FunniestCaptionU Agg and Conj Gets the highest scored caption in a cardinal contest

YouTube

GetAnimalVideos Conditional Get all videos that contain an animal
NotPresent Neg Segments where the object is not present

AnimalPerson Conjunctive Videos that contain at least one animal and one person
PresentSoon Conjunctive Videos where the object is present during the first 3 sec.

Pets Disjunctive Gets all frames that contain a cat or a dog
InCast Aggregation Videos where the object is present in at least 10 segments

Table 2: Summary of the queries used in the experiments.

To avoid measurement disruptions due to the warm
up phase and transitory loads, all experiments were exe-
cuted six times on the same machine, and the resulting
values have been calculated as the average of the last
three runs.

Table 4 summarizes in tabular format the informa-
tion displayed in Figures 3, 5 and 6 with the times (in
ms) of the queries when executed on the complete graph
(Tg), on the reduced subgraph as calculated by the SDR
algorithm (Tsg), and the corresponding speedups (S).
Note that we are able to obtain results below 1 second
in most cases, when the queries on the complete graph
took much longer. Recall that the results shown in Fig-
ures 3, 5 and 6 and Table 4 are obtained with static
experiments, i.e., we consider that the first execution
of the SDR algorithm has already been performed. For
this reason, we only compare the execution times of the
query on the subgraph with the execution times of the
query on the entire graph. Dynamic experiments are
explained in the following section, which consider the
first run of the SDR algorithm in their results.

5.2.2 Experiments with streams of information

The second set of experiments is devoted to analyze our
approach when dealing with dynamic graphs. For this,

we need to mimic the arrival of new information. In
particular, we consider the arrival of new records, where
a record is composed of a set of elements that may be
related to already existing information. In each case
study, a record implies a different number of elements,
approximately 2, 8 and 5 in the Amazon, Contest and
YouTube applications, respectively.

To evaluate the speedup achieved by the incremental
SDR algorithm, we have performed queries after a cer-
tain number of records arrive at the system. For these
experiments, we have followed two approaches:

– CG execution: the query is always performed in
the complete graph without running the SDR al-
gorithm, i.e., in the graph that contains the initial
information plus the new records.

– SubG execution: the SDR algorithm is run once at
the beginning on the initial graph, and the query is
performed on the resulting subgraph. As new records
arrive to the graph, the incremental version of the
SDR algorithm is run in order to keep the subgraph
updated. The time taken by the initial SDR algo-
rithm is included in the analysis, but the time taken
by the incremental algorithm is not because it is
executed in parallel with the queries. Note that the
incremental SDR algorithm is always listening for a
change in the graph (addition, modification or dele-

14 Gala Barquero et al.

Case study Query Name Pattern Models

Amazon

2M 4M 8M 15M

ProductPopularity Simple 0.9912 0.9949 0.9973 0.9926
ProductPopularityC Cond. 0.9912 0.9949 0.9973 0.9926
AlternativeCustomer Neg. 0.4739 0.5140 44.23 0.5206
PackagePopularity Conj. 0.9861 0.9921 0.9959 0.9880

SimProductsPopularity Disj. 0.9817 0.9895 0.9945 0.9859
PrefCustomer Aggr. 0.9039 0.8902 0.8815 0.8757

PrefCustomerSimProducts Aggr. 0.8970 0.8858 0.8790 0.8734

Contest

1M 4M 9M 12M 16M

RecentPart Simple 0.9663 0.9806 0.9898 0.9926 0.9942
ContestPart Cond. 0.9226 0.9803 0.9896 0.9924 0.9941
UnchosenCap Conj. 0.9086 0.9668 0.9825 0.9872 0.9901

FunniestCaption Aggr. 0.8427 0.7657 0.7444 0.7429 0.7435
Abandon Aggr. 0.7721 0.7564 0.7525 0.7513 0.7506

FunniestCaptionU Aggr.&Conj. 0.8658 0.9548 0.9584 0.9603 0.8634

YouTube

2M 4M 6M 8M 10M 12M

GetAnimalVideos Cond. 0.9951 0.9951 0.9951 0.9951 0.9951 0.9951
NotPresent Neg. 0.9688 0.9683 0.9683 0.9685 0.9685 0.9685

AnimalPerson Conj. 0.9946 0.9945 0.9945 0.9945 0.9945 0.9945
PresentSoon Conj. 0.9815 0.9817 0.9817 0.9817 0.9817 0.9816

Pets Disj. 0.9588 0.9582 0.9574 0.9573 0.9574 0.9578
InCast Aggr. 0.5456 0.5460 0.5464 0.5462 0.5464 0.5464

Table 3: Elements savings ratio when running the SDR algorithm.

tion of elements). Whenever there is a change, it is
executed.

The results of the experiments for the three case
studies are shown in Table 5 and Tables 12 and 13 of
Appendix C. Queries are executed every time α new
records arrive, i.e., are added to the graph. In order to
limit the number of records that arrive at the system,
and to evaluate our approach with the arrival of different
numbers of records, executions are stopped after β new
records have arrived. For instance, if α = 5 and β = 100,
it means that the query is executed every time 5 new
records arrive, and the experiment finishes after 100 new
records are finally added (and the query finishes).

Each table displays the results of the experiments
with a different case study. The numbers represent the
ratio of execution time gain. When it is negative, it
means that our approach (SubG) is slower than CG. The
execution times in absolute terms for all experiments
are shown on our project’s website [12]. As we can
see in the tables, results are organized by values of α
and β, queries, and size of models. For each value of
α and each model, the results are to be read vertically.
Values in bold represent the first value of β where the
execution time of SubG is faster than CG. For instance,
consider the values for the query ProductPopularity in
Table 5 with α = 5 and model 2M. When the experiment
is executed with β = 50 (50 new records), the value
is −0.0274, meaning SubG is 2.74% slower than CG.

However, as we let more records arrive to the system,
the time gained by running the query on the subgraph
starts to compensate. For instance, if we consider 100
new records (β = 100), SubG saves 11.98% of the time
taken by CG. The formula used to represent the time
gain is Tgain = 1− TSubG/TCG, where TSubG and TCG

represent, respectively, the times taken by the query
using our subgraph and the complete graph.

Note that some numbers are not shown in Table 12.
This is because the queries performed on CG take too
long and the break-even point has already been reached.

Table 6 summarizes the number of times the query
needs to be executed for our algorithm to pay off, i.e.,
when our approach is worthwhile. In some cases such a
number is 1, meaning that we achieve a better perfor-
mance from the very first query. Of course, the larger the
model the better our algorithm performs. This will be
discussed in the next section. As previously, all queries
were executed six times on the same machine, and the
results have been calculated as the average of the last
three runs.

5.3 Functional Correctness

In order to test the proposed algorithms and to check
that their behavior is correct, we have conducted exten-
sive functional tests that try to ensure that all queries

Improving Query Performance on Dynamic Graphs 15

0
5
10
15
20
25

0
2,000
4,000
6,000
8,000
10,000
12,000

2M 4M 8M 15M

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

ProductPopularity

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(a) SDR results for Q1 (Simple pattern).

0
5
10
15
20
25

0
2,000
4,000
6,000
8,000
10,000
12,000
14,000

2M 4M 8M 15M

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

ProductPopularityC

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(b) SDR results for Q1 with where clause
(Conditional pattern).

0
5
10
15
20
25

0
1,000
2,000
3,000
4,000
5,000

2M 4M 8M 15M

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

AlternativeCustomer

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(c) SDR results for Q2 (Negative pattern).

0
5
10
15
20
25

0
2,000
4,000
6,000
8,000
10,000
12,000
14,000
16,000
18,000

2M 4M 8M 15M

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

PackagePopularity

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(d) SDR results for Q3 (Conj. pattern).

0
5
10
15
20
25

0
3,000
6,000
9,000
12,000
15,000
18,000
21,000

2M 4M 8M 15M

M
em

or
y	
Co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)
SimProductsPopularity

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(e) SDR results for Q4 (Disj. pattern).

0
5
10
15
20
25

0
100
200
300
400
500
600
700
800
900

1,000

2M 4M 8M 15M

M
em

or
y	
Co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

PrefCustomer

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(f) SDR results for Q5 (Aggr. pattern).

0

5

10

15

20

25

0
100
200
300
400
500
600
700
800
900

1,000

2M 4M 8M 15M

M
em

or
y	
Co
ns
um

pt
io
n	
(G
B
)

Ex
ec
ut
io
n	
ti
m
e	
(m

s)

PrefCustomerSimProducts

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(g) SDR results for Q6 (Aggr. pattern).

Fig. 3: Performance results of the SDR algorithm for the Amazon queries.

always return the same results for both the original
graph and the subgraph.

Since the query is the same for the graph and the
subgraph, the only way to get a wrong answer would
be if the subgraph did not contain some elements or
relations of the original graph that were relevant to that
query. However, what our algorithm tries to obtain is
precisely the set of elements and relationships that are
relevant to the query, discarding those that are not. In
this sense, our algorithm tries to generate a subgraph
that is correct by construction.

Having said that, and despite the functional tests
that checked that the algorithm was correct using dif-
ferent query suites and models, a formal proof of cor-
rectness could be interesting as part of our future work.

6 Results

This section answers the three research questions and
discusses the results of the experiments described in the
previous section. Threats to the validity of our study

and an overview about the SDR algorithm’s relationship
to indexing are also discussed at the end.

6.1 RQ1: Graph size reduction

To answer the first research question, Table 3 displays
how much the size of the subgraph obtained by the
SDR algorithm is reduced compared to the size of the
original graph. Each row shows the saving of elements
for a specific query and for different graph sizes. The
values are practically constant in each row. Also note
that since the SDR algorithm obtains the subgraph
according to the query structure, the saving of elements
is independent of the model size.

The influence of the type of query pattern on the
graph size reduction is also of interest. In this regard,
queries that follow simple, conditional, conjunctive and
disjunctive patterns achieve a reduction of more than
90% in all cases and nearly 100% in many of them.
This suggests that, in these cases, the SDR algorithm
obtains a subgraph that is close to the minimal subgraph

16 Gala Barquero et al.

Query Name Pattern Models

2M 4M 8M 15M

Amazon Case Tg Tsg S Tg Tsg S Tg Tsg S Tg Tsg S

ProductPopularity Simple 684 43 15.91 1,121 36 31.14 2,333 37 63.05 11,793 291 40.53
ProductPopularityC Cond. 1,495 40 37.38 1,607 35 45.91 3,855 31 124.35 15,178 327 46.46
AlternativeCustomer Neg. 439 82 5.35 1,182 239 4.95 2,258 1,194 1.89 4,785 3,788 1.26
PackagePopularity Conj. 1,027 75 13.69 1,641 53 30.96 3,152 67 0.4704 17,561 505 34.77

SimProductsPopularity Disj. 1,739 105 16.56 2,556 83 30.80 4,985 104 0.4793 21,283 625 34.05
PrefCustomer Aggr. 117 81 1.44 175 120 1.46 333 252 1.32 852 674 1.26

PrefCustomerSimProducts Aggr. 131 98 1.34 197 146 1.35 324 247 1.31 958 834 1.15

1M 4M 9M 12M

Contest Case Tg Tsg S Tg Tsg S Tg Tsg S Tg Tsg S

RecentPart Simple 298 96 3.10 1,470 78 18.85 4,047 78 51.88 4,250 74 57.43
ContestPart Cond. 610 88 6.93 2,954 81 36.47 5,642 64 88.16 6,479 86 75.34
UnchosenCap Conj. 497 62 8.02 2,562 123 20.83 4,832 94 0.5140 5,613 92 61.01

FunniestCaption Aggr. 56,377 499 112.98 197,117 4,045 48.73 375,390 8,641 43.44 556,320 12,167 45.72
Abandon Aggr. 245 189 1.30 1,695 893 1.90 2,844 1,939 1.47 4,365 2,808 1.55

FunniestCaptionU Aggr. & Conj. 15,535 312 49.79 21,617 314 68.84 39,343 669 58.81 40,790 757 53.88

2M 4M 6M 8M

YouTube Case Tg Tsg S Tg Tsg S Tg Tsg S Tg Tsg S

GetAnimalVideos Cond. 1,485 15 99.00 2,851 21 135.76 3,931 22 178.68 4,283 35 122.37
NotPresent Neg. 280 17 16.47 795 30 26.50 929 49 18.96 1,818 72 25.25

AnimalPerson Conj. 1,400 29 48.29 3,470 39 88.97 3,432 49 70.04 4,513 54 83.57
PresentSoon Conj. 1,200 46 26.09 2,743 87 31.53 3,122 95 32.86 3,849 109 35.31

Pets Disj. 2,166 138 15.70 4,075 256 15.92 8,199 379 21.63 10,696 552 19.38
InCast Aggr. 688 289 2.38 1,817 864 2.10 2,745 1,081 2.54 2,883 1,444 2.00

Table 4: Execution times (ms) of queries with the complete graph (Tg), the subgraph (Tsg), and speedups (S).

required for matching the query. In contrast, the results
are not that good for queries that follow the aggregation
pattern. This is due to the fact that the algorithm does
not consider the aggregation step when obtaining the
subgraph (cf. Sect. 4.1). In addition, the size reduction
also depends on the number of elements that pass the
query filters before the aggregation operator, so the
more restrictive the filters, the better.

Finally, the reduction achieved in the case of queries
that follow a negative pattern directly depends on the
number of elements that match the predicate of the not
clause, because the subgraph will contain the comple-
ment of the set of such elements. This explains the differ-
ent reduction results obtained for the two queries that
follow a negative pattern (Amazon-AlternativeCustomer
and YouTube-NotPresent).

6.2 RQ2: Performance improvement

Figures 3, 5 and 6 display the results for memory con-
sumption and execution time for the three case studies
when executing queries that follow different patterns. In
all cases, both the execution times and the memory con-
sumption are smaller because of the reduction achieved
for the graph, as expected.

Charts for queries that follow the simple (Figures 3a
and 5a), conditional (Figures 3b, 5b and 6a), conjunctive
(Figures 3d, 5c, 6c and 6d) and disjunctive (Figures 3e
and 6e) patterns show that the execution time and
memory consumption when executing the queries on the

original graph increase as the model size grows. However,
for the subgraph, these values are almost constant. This
is because of the high reduction performed by the SDR
algorithm on the original graph, as shown in Table 3,
which in these cases reduces almost 99% of the elements.
Note that, for these patterns, the query on the subgraph
takes only a few tenths of second, which yields a speedup
higher than 15 in most cases.

The performance of queries that follow aggregation
patterns is highly dependent on the time and memory
taken for resolving the query aggregation operators and
filters (see lines 5–7 of Listing 5 for an example). Figures
3f, 3g, 5e and 6f show situations where the performance
using the graph and subgraph is practically the same,
because these steps are very costly (in Table 4, their
speedups are nearly 1). In contrast, the performance of
other queries, such as those that return only one element,
is much better (Figures 5d and 5f), mainly because the
aggregation filter is solved faster. In these queries, the
speedup is above 40 in all cases (Table 4).

Figures 3c and 6b show the results for queries that
follow a negative pattern. Again, the more elements
matching the pattern, the better the performance im-
provement.

6.3 RQ3: Execution time gains with data streams

Tables 5, 12 and 13 show the results of running the algo-
rithms when dealing with data streaming applications
(cf. Sect. 5.2.2), where queries are executed while new

Improving Query Performance on Dynamic Graphs 17

Query Name Models

α = 5 α = 10

β 2M 4M 8M 15M 2M 4M 8M 15M

ProductPopularity
(Simple)

50 -0.0274 -0.0104 0.0486 0.0155 -0.2043 -0.1492 -0.0649 -.0986
100 0.1198 0.1834 0.2032 0.1875 -0.0176 -.0220 0.0760 0.0602
150 0.1874 .2274 .2647 0.2718 -0.0101 0.0827 0.1272 .1585
200 0.2021 .2771 0.3018 0.3363 0.0656 .1215 0.1821 .1920
250 .2053 .3302 0.3414 0.3772 0.0721 0.1658 0.2175 .2469

ProductPopularityC
(Conditional)

50 -0.0334 -.0244 0.0119 0.0666 -0.2080 -.1541 -0.1271 -.0677
100 0.0704 0.1319 0.1468 0.2048 -0.0708 -.0163 0.0456 0.0572
150 0.1546 .2095 0.2110 0.2915 0.0347 0.0522 0.1095 .1537
200 0.1930 .2479 0.2586 .3392 0.0232 .0828 0.1402 .1910
250 0.2145 .2913 0.3001 0.3508 0.0588 .1312 0.1728 0.2315

AlternativeCustomer
(Negative)

50 -0.2713 -0.2519 -0.1435 -0.1760 -0.2514 -.2908 -0.2229 -0.1628
100 -0.0989 -0.1047 -0.0367 -0.0555 -0.1472 -.1421 -0.1212 -0.0990
150 -0.0805 -.0218 0.0006 0.0034 -0.0985 -.0880 -0.0805 -0.0337
200 -0.0461 0.0186 0.0283 0.0522 -0.0588 -0.0535 -0.0486 -0.0290
250 -0.0280 0.0614 0.0728 0.1121 -0.0581 -0.0192 -0.0311 -0.0116

PackagePopularity
(Conjunctive)

50 -0.0778 -0.0850 -0.0113 -0.0107 -0.3188 -.2222 -0.1674 -0.0938
100 0.0704 0.1187 0.1596 0.1632 -0.0485 -.0714 -0.0594 0.0112
150 0.1396 0.2072 0.2123 0.2764 -0.0445 0.0305 0.0692 0.0792
200 0.1730 0.2486 0.2499 0.3607 0.0123 .0585 0.0910 0.2189
250 0.1849 0.2927 0.2936 0.3875 0.0455 .1282 0.1289 0.2496

SimProductsPopularity
(Disjunctive)

50 -0.0207 -.0092 0.1372 0.1514 -0.2326 -.1121 -0.1092 -0.0574
100 0.1525 0.1721 0.2617 0.2718 -0.0111 0.0096 0.0463 0.1414
150 0.2337 0.3121 0.3335 0.3965 0.0477 .1059 0.1632 0.2507
200 0.2722 0.3508 0.3838 0.4497 0.0969 .1861 0.1834 0.2659
250 0.3029 0.3918 0.4038 .4753 0.0828 .2052 0.2215 0.3278

PrefCustomer
(Aggregation)

50 -0.3316 -.3102 -0.3002 -0.3041 -0.3724 -.3595 -0.3509 -0.3238
100 -0.2860 -0.2479 -0.2088 -0.1554 -0.2951 -.2926 -0.2500 -0.2115
150 -0.2145 -0.1989 -0.1652 -0.0751 -0.2395 -.2121 -0.1850 -0.1140
200 -0.2006 -0.1295 -0.1283 -0.0547 -0.2191 -.1526 -0.1230 -0.0772
250 -0.1826 -0.0999 -0.0932 -0.0185 -0.2061 -0.1125 -0.0984 -0.0440

PrefCustomerSimProducts
(Aggregation)

50 -.2663 -0.2892 -.2294 -0.3203 -0.3024 -0.3723 -0.2916 -0.3652
100 -0.2282 -0.2215 -.1509 -0.1806 -0.2734 -.2464 -0.2089 -0.2137
150 -0.1746 -0.1753 -.1190 -0.1055 -0.2083 -.1865 -0.1715 -0.1146
200 -0.1550 -0.0871 -.1061 -0.0601 -0.1808 -.1361 -0.1128 -0.0745
250 -0.1377 -0.0807 -.0696 -0.0194 -0.1775 -.1097 -0.0987 -0.0379

Table 5: Gain ratio when using the incremental algorithm in the Amazon case study.

data is constantly arriving and being added to the model.
These results are summarized in Table 6. Recall that
β is the total number of records added per experiment,
while α represents the size of the new records batch that
have arrived at the system each time the query is run.
This means that, for a constant value of α, the higher
the value of β, the higher number of times the query of
each experiment is executed.

To analyze the results for each type of query pattern,
recall that, in the tables, the point at which the time
gain becomes positive, which depends on the value of β,
is highlighted in bold. This is what we call the break-
even point. In Tables 5, 12 and 13, the break-even point
is shown as gain ratio, while Table 6 displays the break-
even point in number of query executions, i.e., how many

executions of the query are necessary for the gain to be
positive.

Our hypothesis is that time gain—in other words,
how fast the break-even point is reached—is directly
proportional to the value of β and inversely proportional
to the value of α. Another hypothesis is that time gain
also increases with the model size. Tables 5, 12 and 13
confirm both hypothesis since, in general, time gains
increase with the increase of (i) model size, (ii) data
arrival and (iii) number of queries execution. This is
also the tendency according to Table 6. We can see that
for some queries and some model sizes, the break-even
point is reached after only one execution of the query,
which is a very good result.

18 Gala Barquero et al.

Case study Query Name Pattern Models

Amazon

2M 4M 8M 15M
ProductPopularity Simple 15 11 6 8
ProductPopularityC Conditional 16 13 9 6
AlternativeCustomer Negative 37 32 30 29
PackagePopularity Conjunctive 19 17 12 10

SimProductsPopularity Disjunctive 13 11 7 5
PrefCustomer Aggregation 68 51 49 37

PrefCustomerSimProducts Aggregation 67 46 50 37

Contest

1M 4M 9M 12M

RecentPart Simple 41 12 1 1
ContestPart Conditional 31 6 2 1
UnchosenCap Conjunctive 38 10 4 1

FunniestCaption Aggregation 1 1 1 1
Abandon Aggregation 38 15 5 3

FunniestCaptionU Aggregation & Conjunctive 1 2 2 2

YouTube

2M 4M 6M 8M

GetAnimalVideos Conditional 49 3 1 1
NotPresent Negative 67 24 4 1

AnimalPerson Conjunctive 47 11 6 1
PresentSoon Conjunctive 43 11 5 3

Pets Disjunctive 5 4 1 1
InCast Aggregation 45 22 15 1

Table 6: Number of query executions needed to obtain a positive gain for each query.

Having a look at the different query patterns, we can
observe that, generally, disjunctive queries achieve the
highest gain (see SimProductsPopularity in Table 5 and
Pets in Table 13), followed by simple and conditional
queries, which have a similar gain (see ProductPopular-
ity and ProductPopularityC in Table 5, RecentPart and
ContestPart in Table 12 and GetAnimalVideos in Table
13), where conditional queries have a slightly higher
gain than simple queries. Then, conjunctive queries (see
PackagePopularity in Table 5, UnchosenCap in Table 12,
and AnimalPerson and PresentSoon in Table 13) have a
higher gain than negative queries (AlternativeCustomer
in Table 5 and NotPresent in Table 13). Regarding ag-
gregation queries, they present very different gain values
in the three case studies. For example, observe how the
FunniestCaption query in Table 12 has a gain higher
than 70% for all α and β values, whereas PrefCustomer
in Table 5 does not present any positive gain for any α
and β values.

In summary, we conclude that the query patterns in
which the break-even points are reached faster are, in
this order, disjunctive, conditional, simple, conjunctive
and negative. Regarding results for aggregation patterns,
they are quite different from each other. Typically, the
break-even point of queries following this pattern de-
pends on the overload imposed by the aggregation op-
erators and their corresponding filters: the lighter they
are, the sooner the break-even point is reached, and
vice-versa.

6.4 SDR algorithm and Indexing techniques

Indices are a very popular and efficient technique to
improve query performance. In fact, some of the tech-
nologies that we studied to develop our proposal (cf.
Section 2.3) have some support to implement them.
Some examples are the indexing of objects and rela-
tionships from TinkerGraph [59], the indexing of labels
and properties from Neo4j [46], or Memgraph label and
label-property indices [42].

According to the classification presented in Section
3.2, a valid indexing schema for our queries needs to
provide two fundamental features: (i) efficient lookups
to identify the initial objects of the query, i.e. the ob-
jects that match with the last step of the query, and
(ii) it may guide the traversals during query evaluation.
However, although some works provide mechanisms to
create graph indexing techniques [43], this is still an
open issue to be addressed [65]. For this reason, in the
present paper, we have addressed the improvement of
query performance on graphs from a different perspec-
tive that does not use indices. Nevertheless, our work
does not pretend to replace indexing techniques, but to
complement them in order to achieve further improve-
ments. In this way, a possible approach may use the
efficient indexing searches in order to identify the param-
eterized objects of our queries (e.g those that refer to
the most specific step of the query, which is the last step
in our approach), together with the dataset reduction

Improving Query Performance on Dynamic Graphs 19

obtained from the SDR algorithm. In addition, since the
objects weight calculated with the SDR algorithm is a
numerical value, our approach is designed to be applied
in the context of approximate queries. This application
is not contemplated by indexing techniques, so it may
complement them too in order to speed up the queries.
However, all these applications are out of the scope of
this paper, so we consider them as future work.

6.5 Threats to Validity

In this section we discuss the threats that can affect the
validity of our proposal and results. We describe four
types of threats according to Wohlin et al. [69].

6.5.1 Construct validity threats

These threats are concerned with the relationship be-
tween theory and what is observed. A common construct
validity threat, known as the mono-method bias, is re-
lated to the use of one single metric in the evaluation.
In our experiments, we have considered different met-
rics, namely execution time, memory consumption and
source data set reduction. Given that results obtained
by the different metrics are consistent when drawing the
conclusions, we consider the mono-method bias threat
neutralized.

6.5.2 Conclusion validity threats

The main issue that can affect the validity of our conclu-
sions is the transient effects of noise by other components
of the system under study. To mitigate this, we ran the
experiment 6 times and took the average of the last 3
runs. Furthermore, the raw data and scripts for repli-
cating our experiments are available on our project’s
website [11,12].

6.5.3 Internal validity threats

These threats are related to those factors that might
affect the results of our evaluation. To mitigate them, we
have used models of different size. Since our approach
is targeted at optimizing queries when the volume of
information is high, all models were large (with between
1.5 to 16 million objects and relationships). Besides,
we analyze the behavior of our approach with data of
different nature, since they belong to three case studies
whose graphs have different topology.

The way we have tried to mimic the arrival of new
information to the initial data set might have also af-
fected the validity of our results. In order to mitigate
this threat, we have analyzed how our approach behaves

in different dynamic scenarios, and combined (i) the
amount of information that arrives at every time step,
(ii) how often such information arrives and (iii) the use
of models of different sizes (cf. Tables 5, 12 and 13).

6.5.4 External validity threats

External validity threats have to do with the extent
to which it is possible to generalize the findings of the
experiments. The first threat is that the results of our
experiments have been obtained with three case studies,
which externally threatens the generalizability of our
results. To mitigate this, we have tried to select case
studies from different and real contexts, where only
one has been created by us. In that case study, we
tried to reflect the main parts of the Amazon ordering
service, and created models of different sizes in which
connections among objects are similar to the ones we
could have in models containing real data. The other
two case studies have been taken from real data sets, so
that this threat is minimized.

Although we checked that all queries returned in
all cases the same results for both the graph and the
subgraph, and conducted exhaustive functional tests on
the algorithm, formally proving the correctness of the
algorithm could be of interest, too.

A third threat to the external validity of our solution
is related to the language and technologies used to im-
plement our approach. As described in Section 2.3, we
studied different technologies and selected the ones that
we considered most appropriate, namely TinkerGraph
and Gremlin. While we believe our approach can be
implemented with other technologies, doing so might
lead to slightly different performance results.

The final threat to external validity identified is
related to the classification of queries provided. In fact,
our SDR algorithm works depending on the type of
query, which in turn depends on the constructs offered by
the query language. Should we have provided a different
classification for the queries, the implementation of our
algorithm would have been different and the results
might have varied.

7 Related Work

Our work mainly derives from three of our previous
works. First, in [61] we introduced the concept of Approx-
imate Model Transformations (AMT) to query streams
of independent events. The idea was to trade accuracy
for performance, using sampling techniques to reduce
the source datasets. However, we did not consider graph-
structured data but unrelated events Then, in [9] we
used CEP concepts and languages to be able to deal

20 Gala Barquero et al.

with graph-structured systems composed of persistent
data and streams of transient information. However, we
did not propose any solution to speed-up the queries.
Finally, in [10] we extended that work, proposing differ-
ent mechanisms for reducing the source data to improve
performance at the expense of sacrificing correctness,
i.e., obtaining approximate results. A proposal for the
estimation of the resulting error of such approximations
in terms of precision, recall and accuracy was also pre-
sented. The present work aims at improving performance
without sacrificing correctness, by using a precomputa-
tion step that takes into account the syntax of the query
to reduce the source graph.

Two surveys about approximate query processing
mention a precomputation step in order to select impor-
tant information for the query before it is executed [21,
36]. This information is stored as a summary of the
source data and it is used to perform the query faster.
Other works propose precomputation with sampling
techniques in order to select only part of the informa-
tion with the aim of speeding up queries [1,2,7,19,20].
However, these precomputation proposals typically dif-
fer from ours in three aspects, namely (i) they only
consider queries that return an aggregated result, (ii)
they are not applied to graph-structured information,
and (iii) the accuracy of the aggregated answer is not
optimal, since this aggregation does not contain all rele-
vant information to the query. Up to our knowledge, the
closest work to ours regarding precomputation has been
proposed by Fan et al. [26], who study how to query a
graph with bounded resources. They propose an algo-
rithm to calculate an approximation that depends on
the query and on a parameter that indicates the limit of
resources. The algorithm assigns a weight to each object
according to their importance for the query. The ap-
proximation contains as many objects as the parameter
of the limit indicates, taking the most relevant ones and
discarding the rest. In this way, they get the minimum
possible error considering the bounded resources. How-
ever, differently from our approach, they only consider
static graphs and not data streaming applications with
information continuously coming in.

Other related proposals do consider the arrival of
new information. In a previous work by Fan et al. [25],
they define algorithms for incremental graph pattern
matching when the graph is updated. However, their
evaluation considers graph sizes of 65,000 elements at
most (counting objects and relationships). Moreover, our
approach uses the type of pattern followed by the query
to improve graph reduction and query performance,
whereas they do not make use of this information.

There are other works that deal with incremental
queries using crowdsourcing techniques [62,63]. However,

these works have a different perspective. Crowdsourcing
techniques construct the results incrementally starting
from an initial small dataset. At this point, since the
source information does not contain enough relevant
data, the results have a low accuracy. As new informa-
tion arrives to the system, the results are refined. Our
approach, instead, considers all relevant information to
the query from the beginning (typically a large dataset)
so that an accurate result can be obtained at first. We
use the incremental SDR algorithm to maintain the
subgraph uptaded.

Some other works that deal with the arrival of new
information propose incremental transformations, where
the input model changes over time [14,31,32,51,54,64].
They present partial and incremental model transfor-
mations using EMF-IncQuery and EMF-IncQuery-D
frameworks [14,64,54], an incremental algorithm for
ATL [32], a framework for the instant and incremental
transformation of changes among models [31], and a par-
tial evaluator prototype called QvtMix [51]. Therefore,
these papers are not focused on graph databases. In
addition, they only consider two types of queries: simple
(with two elements at most) and complex (with more
than two elements that are linked through one or more
joins). In this way, our proposal uses a more exhaustive
query classification schema with six different types of
query patterns.

Bergmann et al. [15] present a solution that sup-
ports incremental queries over models in the VIATRA2
framework. The implementation is based on the RETE
algorithm, which improves speed at the expense of con-
suming more memory. Their solution stores the pattern
matches, and updates them as new changes occur in
the model. Evaluation results report an average scale
of up to 9% with respect to normal executions, which
implies a speedup of about 11. This approach works
differently from ours because it propagates the changes
of the model to the resultset (so a resultset must always
be available), while our approach propagates them to
the dataset that will be queried, which corresponds to
the subgraph. Besides, the SDR algorithm works with
graph databases while VIATRA2 works with models.
For these reasons, and since both approaches pursue a
similar goal, we believe they are complementary.

Other projects propose incremental queries with
graph databases, such as the ingraph query engine [56]
and OrientDB’s LiveQuery [47]. The first difference is
that the SDR algorithm is implemented for the Grem-
lin language, whereas ingraph works with Cypher and
LiveQuery uses a SQL dialect. Also, ingraph propagates
the changes of the graph to the resultset, while LiveG-
raph returns the latest changes (but not the complete

Improving Query Performance on Dynamic Graphs 21

resultset). This is similar to the VIATRA2 approach, as
mentioned earlier.

Two other works classify graph queries according
to their structure and calculate their complexity. First,
Barceló et al. [8] propose a classification of queries ac-
cording to the paths they contain. However, they do not
consider the property filters or the operator types. An-
gles et al. [3] propose a more complete classification that
considers the operations that can be found in a query.
The authors mainly distinguish between basic and com-
plex graph patterns. The former ones cover the property
filters that can be queried with variables or constants;
the latter ones extend the basic graph patterns with
different operations like union, projection or difference.
They describe each type of pattern and illustrate them
using three of the most popular graph query languages,
namely Gremlin, SPARQL and Cypher. This approach
is very similar to ours, since it also considers filters. How-
ever, our classification further divides complex graph
patterns into six individual subcategories, namely condi-
tion, negation, conjunctive, disjunctive, and aggregation.
This refinement is relevant for analysing the behavior
and performance of the proposed algorithm.

Finally, our algorithm was developed considering
the rationale behind Google’s PageRank algorithm [48].
This algorithm calculates a probability for each web page
according to its importance but without considering the
context of any search. In our approach, instead, the
relevance of graph objects is influenced by the query
contents. In a similar way, Richardson and Domingos
propose a probabilistic model for a more intelligent
PageRank algorithm [53] that calculates the probability
that a web page contains the terms of a specific search
query. However, they do not consider the structure and
operators of the query itself, which we have seen have a
significant impact on the results.

8 Conclusions and Future Work

In this paper, we have designed and developed an algo-
rithm that implements an offline technique to optimize
the performance of queries on dynamic graphs. This al-
gorithm identifies a subgraph of the original model that
contains the data relevant to the query, and on which
the query can be more efficiently executed. Inspired by
Google’s PageRank algorithm, it does so by assigning
a weight to all objects in the graph according to their
relevance for the query. The algorithm returns the sub-
graph with the objects with a weight greater than 0 and
the relationships among them, which corresponds to the
subgraph that contains all the elements that are relevant
to the query. Furthermore, as new information arrives

and is added to the system, the subgraph is updated
using another algorithm, the so-called Incremental SDR.

We have also defined six types of patterns that can
be found in queries over graph-structured data accord-
ing to their structure, and used them to improve the
performance of the algorithms.

Our experiments show that, by querying the sub-
graph obtained by the SDR algorithm instead of the
complete source graph, an improvement in the perfor-
mance of all query patterns is achieved. We have also
shown that these improvements increase with the origi-
nal graph size, as well as with the number of times the
query is executed.

Queries that follow aggregation patterns behave
slightly different than the rest, since they depend on the
aggregation filters and operators that they contain. For
this reason, we plan to study these kinds of queries more
deeply as part of our future work. We also plan to study
how to improve the performance of negative patterns.
For example, we plan to implement a second scan of the
query that would remove unnecessary elements in the
subgraph using data cleansing techniques.

Our work can be extended towards several directions,
which may constitute interesting research lines. First, in
this paper we have considered queries that follow mostly
one pattern, in order to characterize their behavior. The
analysis of more complex queries with more patterns
could also be of interest. Furthermore, since the SDR al-
gorithm is technology-independent, we could implement
this algorithm with a different technology and compare
the results. Another interesting research line has to do
with the penalty introduced in the latest update of the
query subgraph when executing the incremental algo-
rithm. In particular, it is worth studying whether such
penalty is influenced by (i) the execution frequency of
the incremental algorithm, (ii) the number of objects
contained in the batch and (iii) the type of query.

Finally, we also aim to consider other techniques
that are typically used to improve the performance of
queries, such as indexing or approximation techniques,
and how they can be combined with our proposal. For
example, indexing could be applied to the entire graph
in order to obtain the subgraph calculated with the
SDR algorithm faster, while approximation techniques
could be applied to the subgraph obtained with the
SDR algorithm. The combination with approximation
techniques could also be of interest, e.g., by selecting
only those elements whose relevance to the query, as
indicated by their weights, was above a certain threshold.
In addition, spatial and temporal windows [10] as well
as random techniques could be also applied to reduce
the subgraph size. In these cases, the improvement on

22 Gala Barquero et al.

performance would be in detriment of the accuracy of
the results.

Verifiability

For the sake of verifiability, our prototype as well as all
artifacts of the experiments and their descriptions are
available on our project website [12] and Github [11].

Acknowledgements

This work is partially supported by the European Com-
mission (FEDER) and the Spanish Government under
projects APOLO (US-1264651), HORATIO (RTI2018-
101204-B-C21), EKIPMENT-PLUS (P18-FR-2895) and
COSCA (PGC2018-094905-B-I00).

References

1. Acharya, S., Gibbons, P.B., Poosala, V.: Congressional
samples for approximate answering of group-by queries.
In: Proc. of SIGMOD’00, pp. 487–498. ACM (2000). DOI
10.1145/342009.335450

2. Agarwal, S., Panda, A., Mozafari, B., Iyer, A.P., Madden,
S., Stoica, I.: Blink and it’s done: Interactive queries on
very large data. PVLDB 5(12), 1902–1905 (2012). DOI
10.14778/2367502.2367533

3. Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter,
J.L., Vrgoc, D.: Foundations of modern query languages
for graph databases. ACM Comput. Surv. 50(5), 68:1–
68:40 (2017). DOI 10.1145/3104031

4. Apache Spark: Spark Streaming Programming (accessed
May 2019). https://spark.apache.org/docs/latest/
streaming-programming-guide.html

5. Apache Spark: GraphFrames (accessed November
2019). https://graphframes.github.io/graphframes/
docs/_site/index.html

6. Apache TinkerPop: The Gremlin Graph Traversal Ma-
chine and Language (accessed January 2020). https:
//tinkerpop.apache.org/gremlin.html

7. Babcock, B., Chaudhuri, S., Das, G.: Dynamic sample
selection for approximate query processing. In: Proc. of
SIGMOD’03, pp. 539–550. ACM (2003). DOI 10.1145/
872757.872822

8. Barceló, P.: Querying graph databases. In: Proc. of
PODS’13, pp. 175–188. ACM (2013). DOI 10.1145/
2463664.2465216

9. Barquero, G., Burgueño, L., Troya, J., Vallecillo, A.: Ex-
tending complex event processing to graph-structured in-
formation. In: Proc. of MODELS’18, pp. 166–175. ACM
(2018). DOI 10.1145/3239372.3239402

10. Barquero, G., Troya, J., Vallecillo, A.: Trading accuracy
for performance in data processing applications. Journal
of Object Technology 18(2), 9:1–24 (2019). DOI 10.5381/
jot.2019.18.2.a9

11. Barquero, G., Troya, J., Vallecillo, A.: SDR algorithm
git repository (accessed January 2020). https://github.
com/atenearesearchgroup/SDRalgorithm.

12. Barquero, G., Troya, J., Vallecillo, A.: SDR algorithm
website (accessed January 2020). http://atenea.lcc.
uma.es/projects/SDRAlg.html.

13. BBVA: The impact of the Mobile World
Congress in a dynamic visualization by BBVA
and CartoDB (2013) (accessed January 2020).
https://www.bbva.com/en/impact-mobile-world-
congress-dynamic-visualization-bbva-cartodb/.

14. Bergmann, G., Horváth, Á., Ráth, I., Varró, D., Balogh,
A., Balogh, Z., Ökrös, A.: Incremental evaluation of model
queries over EMF models. In: Proc. of MODELS’10, pp.
76–90 (2010). DOI 10.1007/978-3-642-16145-2_6

15. Bergmann, G., Ökrös, A., Ráth, I., Varró, D., Varró, G.:
Incremental pattern matching in the VIATRA model
transformation system. In: Proc. of GRAMOT’08, pp.
25–32. ACM (2008)

16. Besta, M., Fischer, M., Kalavri, V., Kapralov, M., Hoe-
fler, T.: Practice of streaming and dynamic graphs:
Concepts, models, systems, and parallelism. CoRR
abs/1912.12740 (2019)

17. Besta, M., Peter, E., Gerstenberger, R., Fischer, M., Pod-
stawski, M., Barthels, C., Alonso, G., Hoefler, T.: Demys-
tifying graph databases: Analysis and taxonomy of data
organization, system designs, and graph queries. CoRR
abs/1910.09017 (2019)

18. Callidus Software Inc.: OrientDB. The database designed
for the modern world. (accessed June 2020). https:
//orientdb.com/

19. Chaudhuri, S., Das, G., Datar, M., Motwani, R.,
Narasayya, V.R.: Overcoming limitations of sampling for
aggregation queries. In: Proc. of ICDE’01, pp. 534–542.
IEEE Computer Society (2001). DOI 10.1109/ICDE.2001.
914867

20. Chaudhuri, S., Das, G., Narasayya, V.R.: A robust,
optimization-based approach for approximate answering
of aggregate queries. In: Proc. of SIGMOD’01, pp. 295–
306. ACM (2001). DOI 10.1145/375663.375694

21. Chaudhuri, S., Ding, B., Kandula, S.: Approximate query
processing: No silver bullet. In: Proc. of SIGMOD’17, pp.
511–519. ACM (2017). DOI 10.1145/3035918.3056097

22. Cugola, G., Margara, A.: Processing flows of information:
From data stream to complex event processing. ACM
Comput. Surv. 44(3), 15:1–15:62 (2012). DOI 10.1145/
2187671.2187677

23. Etzion, O., Niblett, P.: Event Processing in Action. Man-
ning Publications (2010)

24. Fan, W., Geerts, F., Cao, Y., Deng, T., Lu, P.: Querying
big data by accessing small data. In: Proc. of PODS’15,
pp. 173–184. ACM (2015). DOI 10.1145/2745754.2745771

25. Fan, W., Li, J., Ma, S., Tang, N., Wu, Y., Wu, Y.: Graph
pattern matching: From intractable to polynomial time.
PVLDB 3(1), 264–275 (2010). DOI 10.14778/1920841.
1920878

26. Fan, W., Wang, X., Wu, Y.: Querying big graphs within
bounded resources. In: Proc. of SIGMOD’14, pp. 301–312.
ACM (2014). DOI 10.1145/2588555.2610513

27. Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw, D.,
Franklin, M.J., Stoica, I.: GraphX: Graph Processing in
a Distributed Dataflow Framework. In: Proc. of OSDI’14,
pp. 599–613 (2014)

28. Group, C.M.D.: BerkeleyDB (accessed July 2020). https:
//dbdb.io/db/berkeley-db

29. Holzschuher, F., Peinl, P.D.R.: Performance of Graph
Query Languages: Comparison of Cypher, Grem-
lin and Native Access in Neo4j. In: Proc. of
GraphQ@EDBT/ICDT’13, pp. 195–204 (2013). DOI
10.1145/2457317.2457351

https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://graphframes.github.io/graphframes/docs/_site/index.html
https://graphframes.github.io/graphframes/docs/_site/index.html
https://tinkerpop.apache.org/gremlin.html
https://tinkerpop.apache.org/gremlin.html
https://github.com/atenearesearchgroup/SDRalgorithm
https://github.com/atenearesearchgroup/SDRalgorithm
http://atenea.lcc.uma.es/projects/SDRAlg.html
http://atenea.lcc.uma.es/projects/SDRAlg.html
https://www.bbva.com/en/impact-mobile-world-congress-dynamic-visualization-bbva-cartodb/
https://www.bbva.com/en/impact-mobile-world-congress-dynamic-visualization-bbva-cartodb/
https://orientdb.com/
https://orientdb.com/
https://dbdb.io/db/berkeley-db
https://dbdb.io/db/berkeley-db

Improving Query Performance on Dynamic Graphs 23

30. JanusGraph: Distributed, open source, massively scal-
able graph database (accessed June 2020). https://
janusgraph.org/

31. Johann, S., Egyed, A.: Instant and incremental transfor-
mation of models. In: Proc. of ASE’04, pp. 362–365. IEEE
Computer Society (2004). DOI 10.1109/ASE.2004.10047

32. Jouault, F., Tisi, M.: Towards incremental execution of
ATL transformations. In: Proc. of ICMT’10, LNCS, vol.
6142, pp. 123–137. Springer (2010). DOI 10.1007/978-3-
642-13688-7_9

33. Kafka, A.: Apache Kafka. A distributed streaming plat-
form (accessed May 2019). https://kafka.apache.org/
intro

34. Kalavri, V., Vlassov, V., Haridi, S.: High-level program-
ming abstractions for distributed graph processing. IEEE
Trans. Knowl. Data Eng. 30(2), 305–324 (2018). DOI
10.1109/TKDE.2017.2762294

35. Lee, K., Liu, L.: Scaling queries over big RDF graphs with
semantic hash partitioning. PVLDB 6(14), 1894–1905
(2013). DOI 10.14778/2556549.2556571

36. Li, K., Li, G.: Approximate query processing: What is
new and where to go? - A survey on approximate query
processing. Data Science and Engineering 3(4), 379–397
(2018). DOI 10.1007/s41019-018-0074-4

37. Ltd, M.: Memgraph. Difference from Neo4j’s
Cypher Implementation (accessed September 2020).
https://docs.memgraph.com/memgraph/reference-
overview/differences

38. Luckham, D.C.: The Power of Events: An Introduction
to Complex Event Processing in Distributed Enterprise
Systems. Addison-Wesley (2002)

39. Luckham, D.C.: Event Processing for Business: Organizing
the Real-Time Enterprise. Wiley (2012)

40. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C.,
Horn, I., Leiser, N., Czajkowski, G.: Pregel: a system for
large-scale graph processing. In: Proceedings of the ACM
SIGMOD International Conference on Management of
Data, SIGMOD 2010, Indianapolis, Indiana, USA, June
6-10, 2010, pp. 135–146 (2010). DOI 10.1145/1807167.
1807184

41. Memgraph Ltd: Memgraph graph database (accessed
November 2019). https://memgraph.com/

42. Memgraph Ltd: Memgraph Indexing (accessed Septem-
ber 2020). https://docs.memgraph.com/memgraph/
concepts-overview/indexing

43. Mhedhbi, A., Gupta, P., Khaliq, S., Salihoglu, S.:
A+ indexes: Lightweight and highly flexible adjacency
lists for graph database management systems. CoRR
abs/2004.00130 (2020)

44. Neo4j: Neo4j Graph Platform (accessed January 2020).
https://neo4j.com/

45. Neo4j: Cypher Query Language (accessed November
2019). https://neo4j.com/developer/cypher-query-
language/

46. Neo4j: Neo4j - Indexes for search performance (accessed
September 2020). https://neo4j.com/docs/cypher-
manual/current/administration/indexes-for-search-
performance/index.html

47. OrientDB: LiveQuery (accessed July 2020). https://
orientdb.com/nosql/livequery/

48. Page, L., Brin, S., Motwani, R., Winograd, T.: The pager-
ank citation ranking: Bringing order to the web. Tech.
rep., Stanford Digital Library Technologies Project (1998)

49. Peng, P., Zou, L., Chen, L., Zhao, D.: Adaptive distributed
RDF graph fragmentation and allocation based on query
workload. IEEE Trans. Knowl. Data Eng. 31(4), 670–685
(2019). DOI 10.1109/TKDE.2018.2841389

50. Perliger, A., Pedahzur, A.: Social network analysis in the
study of terrorism and political violence. PS: Political
Science & Politics 44(1), 45–50 (2011). DOI 10.1017/
S1049096510001848

51. Razavi, A., Kontogiannis, K.: Partial evaluation of model
transformations. In: Proc. of ICSE’12, pp. 562–572.
IEEE Computer Society (2012). DOI 10.1109/ICSE.2012.
6227160

52. Real, E., Shlens, J., , Pan, S.M.X., Vanhoucke, V.:
YouTube-BoundingBoxes Dataset (accessed October
2019). https://research.google.com/youtube-bb/

53. Richardson, M., Domingos, P.M.: The Intelligent surfer:
Probabilistic Combination of Link and Content Informa-
tion in PageRank. In: proc. of NIPS’01, pp. 1441–1448.
MIT Press (2001)

54. Szárnyas, G., Izsó, B., Ráth, I., Harmath, D., Bergmann,
G., Varró, D.: IncQuery-D: A distributed incremental
model query framework in the cloud. In: Proc.of MOD-
ELS’14, pp. 653–669 (2014). DOI 10.1007/978-3-319-
11653-2_40

55. Szárnyas, G., Izsó, B., Ráth, I., Varró, D.: The Train
Benchmark: cross-technology performance evaluation of
continuous model queries. Software & Systems Modeling
17(4), 1365–1393 (2018). DOI 10.1007/s10270-016-0571-8

56. Szárnyas, G., Marton, J., Maginecz, J., Varró, D.: Re-
ducing property graph queries to relational algebra for
incremental view maintenance. CoRR abs/1806.07344
(2018)

57. The New Yorker: Data from the New Yorker Caption
Contest (accessed October 2019). https://github.com/
nextml/caption-contest-data

58. TinkerPop: Apache TinkerGraph (accessed October
2019). http://tinkerpop.apache.org/docs/current/
reference/#tinkergraph-gremlin

59. TinkerPop: TinkerGraph Indices (accessed September
2020). https://tinkerpop.apache.org/javadocs/3.2.
2/full/org/apache/tinkerpop/gremlin/tinkergraph/
structure/TinkerGraph.html#vertexIndex

60. Tinkerpop, A.: Interface VertexProgram (accessed Jan-
uary 2020). http://tinkerpop.apache.org/javadocs/
3.1.4/core/org/apache/tinkerpop/gremlin/process/
computer/VertexProgram.html.

61. Troya, J., Wimmer, M., Burgueño, L., Vallecillo, A.: To-
wards approximate model transformations. In: Proc. of
AMT@MoDELS’14, pp. 44–53. CEUR-WS (2014)

62. Trushkowsky, B., Kraska, T., Franklin, M.J., Sarkar, P.:
Crowdsourced enumeration queries. In: Proc. of ICDE’13,
pp. 673–684 (2013). DOI 10.1109/ICDE.2013.6544865

63. Trushkowsky, B., Kraska, T., Franklin, M.J., Sarkar, P.:
Answering enumeration queries with the crowd. Commun.
ACM 59(1), 118–127 (2016)

64. Ujhelyi, Z., Bergmann, G., Hegedüs, Á., Horváth, Á.,
Izsó, B., Ráth, I., Szatmári, Z., Varró, D.: EMF-IncQuery:
An integrated development environment for live model
queries. Sci. Comput. Program. 98, 80–99 (2015). DOI
10.1016/j.scico.2014.01.004

65. Uta, A., Ghit, B., Dave, A., Boncz, P.A.: [Demo] Low-
latency Spark Queries on Updatable Data. In: Proc. of
SIGMOD’19, pp. 2009–2012 (2019). DOI 10.1145/3299869.
3320227

66. W3C RDF Data Access Working Group: SPARQL Query
Language (accessed January 2020). https://www.w3.org/
TR/rdf-sparql-query/

67. Wang, Y., Parthasarathy, S., Sadayappan, P.: Stratifi-
cation driven placement of complex data: A framework
for distributed data analytics. In: Proc. of ICDE’13,

https://janusgraph.org/
https://janusgraph.org/
https://kafka.apache.org/intro
https://kafka.apache.org/intro
https://docs.memgraph.com/memgraph/reference-overview/differences
https://docs.memgraph.com/memgraph/reference-overview/differences
https://memgraph.com/
https://docs.memgraph.com/memgraph/concepts-overview/indexing
https://docs.memgraph.com/memgraph/concepts-overview/indexing
https://neo4j.com/
https://neo4j.com/developer/cypher-query-language/
https://neo4j.com/developer/cypher-query-language/
https://neo4j.com/docs/cypher-manual/current/administration/indexes-for-search-performance/index.html
https://neo4j.com/docs/cypher-manual/current/administration/indexes-for-search-performance/index.html
https://neo4j.com/docs/cypher-manual/current/administration/indexes-for-search-performance/index.html
https://orientdb.com/nosql/livequery/
https://orientdb.com/nosql/livequery/
https://research.google.com/youtube-bb/
https://github.com/nextml/caption-contest-data
https://github.com/nextml/caption-contest-data
http://tinkerpop.apache.org/docs/current/reference/#tinkergraph-gremlin
http://tinkerpop.apache.org/docs/current/reference/#tinkergraph-gremlin
https://tinkerpop.apache.org/javadocs/3.2.2/full/org/apache/tinkerpop/gremlin/tinkergraph/structure/TinkerGraph.html#vertexIndex
https://tinkerpop.apache.org/javadocs/3.2.2/full/org/apache/tinkerpop/gremlin/tinkergraph/structure/TinkerGraph.html#vertexIndex
https://tinkerpop.apache.org/javadocs/3.2.2/full/org/apache/tinkerpop/gremlin/tinkergraph/structure/TinkerGraph.html#vertexIndex
http://tinkerpop.apache.org/javadocs/3.1.4/core/org/apache/tinkerpop/gremlin/process/computer/VertexProgram.html
http://tinkerpop.apache.org/javadocs/3.1.4/core/org/apache/tinkerpop/gremlin/process/computer/VertexProgram.html
http://tinkerpop.apache.org/javadocs/3.1.4/core/org/apache/tinkerpop/gremlin/process/computer/VertexProgram.html
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/

24 Gala Barquero et al.

pp. 709–720. IEEE Computer Society (2013). DOI
10.1109/ICDE.2013.6544868

68. Webber, J., Robinson, I., Eifrem, E.: Graph Databases.
O’Reilly Media (2013)

69. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell,
B.: Experimentation in Software Engineering. Springer
(2012)

70. Wood, P.T.: Graph database. In: Encyclopedia of
Database Systems, Second Edition. Springer New York
(2018). DOI 10.1007/978-1-4614-8265-9_183

71. Yang, C.C., Ng, T.D.: Terrorism and crime related weblog
social network: Link, content analysis and information
visualization. In: Proc. of ISI’07, pp. 55–58. IEEE (2007).
DOI 10.1109/ISI.2007.379533

A APPENDIX – ProductPopularity with SDR
algorithm

To demonstrate how the SDR algorithm works for a specific
query, a small graph for Amazon case study is shown in Fig. 4.
In this case, the graph contains two Customers (C1 and C2)
and two products (P10 and P20). C1 orders two Orders (O1C1
and O2C1), whereas C2 orders one (O1C2). We want to apply
the SDR algorithm for this graph with the ProductPopularity
query showed in Listing 2. The updates of the weight for
each object as iterations run are displayed in Table 7. In
the following, each function and iteration of the algorithm
displayed in Algorithm 1 is explained in detail. Note that
when we refer to line numbers, unless otherwise specified, we
are referring to the following:

– Text of the section: line numbers that are mentioned
in the normal text of this section refer to the lines of
SDRAlgorithm depicted in Algorithm 1.

– Non-enumerated lists: line numbers that are men-
tioned in non-enumerated lists refer to the lines of
SDRVertexCentric function.

– Enumerated lists: line numbers that are mentioned
in enumerated lists refer to the lines of func-
tions WeightInitialisation, InWeightPropagation or
FurWeightPropagation, depending on the specific case.

First, the SDR algorithm calls the SDRVertexCentric func-
tion for each object in the graph (line 1). This function starts
the initial iteration (iteration = 0) and it has the following
execution flow:

– First, it establishes guardCondition to true (line 4).
– Since iteration meets the condition of line 5 (iterar-

ion==0), the function selects the last step of the query
to be analysed (line 6).

– Then, it calls WeightInitialisation function (line 7).
Note that at this point iteration = 0 and S.size = 2.
WeightInitialisation works as follows:
1. First, the function checks the type of the step s. In

ProductPopularity query, the last step is a where step.
As a where step is a traversal step that has only one
statement, the function gets into the if clause of line 12
and obtains the subquery contained in this statement
(line 13).

2. Then, it makes a recursive call with this subquery as
input data of the SDRVertexCentric function (line 15).
Note that at this point iteration = 0 and S.size =

4, since the subquery has 4 steps4. This call has the
following flow for each iteration:
– guardCondition is established to true (line 4).
– iteration meets the condition of line 5, so the

function selects the last step of the subquery and
stores it in s (line 6).

– Then, it calls WeightInitialisation function,
that works as follows:
(a) Now, the step s corresponds with the has

step (line 5 in Listing 2).
(b) Same as for the query, the function checks

its type. In this case, s is a property filter,
so the function gets into the if clause of
line 1 and checks if v matches the filter (line
2). As shown in Figure 4, only the object
P10 matches the filter, so for v = P10 the
function gets into the if clause of line 2. For
the rest of objects the function establishes
guardCondition to false (line 7).

(c) Then, for v = P10, the function searches
the previous step of the subquery that corre-
sponds with a relationship (line 3). As can
be viewed in Listing 2, this step is the rela-
tionship step contains.

(d) Therefore, it counts the number of neigh-
bors that P10 can reach through relationship
contains (line 4). Since P10 can reach O1C1
through relationship contains, cNeighbors is
equal to 1.

(e) As cNeighbors is higher than 0, guardCondi-
tion is established to true (line 5).

(f) Once the function finishes the if-then-else
clause of lines 1 to 18, it checks the value of
guardCondition. For v = P10, this value is
true, so the function gets into the if clause
of line 19 and calculates the weight of P10.
Since weight is 0 and cNeighbors is 1, the new
value of weight is 1 (line 20). On the contrary,
as stated before, for v 6= P10 guardCondition
is false so weight remains 0. Note how in the
second column of Table 7 the object P10 has
weight = 1, whereas the remaining objects
have weight = 0.

(g) Finally, it returns the weight value (line 22)
and the function finishes.

– Then, the SDRVertexCentric function increments
iteration counter (line 16) and the next iteration
starts (at this point iteration = 1 and S.size =
4).

– As iteration is less than S.size, the
SDRVertexCentric function stays in the
while loop of line 3 and sets guardCondition to
true (line 4).

– As iteration = 1, it gets into the else clause of
line 8 and selects the same value for s than the
initial iteration (line 9).

– Then, it gets into if clause of line 10 and it calls
InWeightPropagation function (line 11). This
function works as follows :
(a) First, it checks the type of s. As

stated in the previous iteration (re-

4 The SDR algorithm adds an initial graph step at the
beginning of a traversal subquery. For this reason, a traversal
subquery always has one more step than its size, i.e. S.size =
4 in this case.

Improving Query Performance on Dynamic Graphs 25

call that WeightInitialisation and
InWeightPropagation analyse the same
step), s is a property filter so it gets into if
clause of line 3.

(b) Same as in the WeightInitialisation func-
tion, it searches the previous step that corre-
sponds to a relationship and stores it in pRel
(line 4). This relationship is contains.

(c) Then, iteration is incremented (line 5),
which means that iteration = 2.

(d) The algorithm checks if the calculated weight
in the previous iteration is higher than 0 (line
6). This is true only for v = P10, so, in this
case, it sends a message through relationship
contains to O1C1 (line 7).

(e) Finally, the InWeightPropagation function
finishes and it returns the same weight cal-
culated in WeightInitialisation function
(line 10). Note that in columns 2 and 3 of
Table 7 all weights are the same.

– Then, SDRVertexCentric increments iteration
and the new iteration starts, which means that
iteration = 3 and S.size = 4.

– As iteration is smaller or equal to S.size,
SDRVertexCentric stays into while loop of line 3
and sets guardCondition to true (line 4).

– iteration 6= 0, so the function gets into else clause
of line 8 and selects the relationship step orders
(line 3 in Listing 2) for s (line 9).

– Besides, iteration 6= 1, so SDRVertexCentric
gets into else clause of line 12 and it calls
FurWeightPropagation function, that works as
follows:
(a) First, it counts the number of messages sent

from the previous iteration to v (line 1). Note
that in the previous iteration only P10 sent
a message to O1C1 through the relationship
contains, so for v = O1C1 cMessages has
value 1, while for the rest it is 0.

(b) Therefore, for v = O1C1, the function gets
into if clause of line 2 and checks the type
of s.

(c) As stated before, s is the relationship step
orders, so the function gets into if clause of
line 3, it counts the number of neighbors that
can be reached for v through s and stores
this number in cNeighbors. For v = O1C1,
cNeighbors has value 1, since O1C1 can reach
C1 through relationship orders.

(d) Then, for this value of v, guardCondition is
set to true (line 5) and a message is sent
through relationship orders to C1 (line 6).

(e) Finally, as guardCondition is true for every
object of the graph, the function updates the
value of weight for all of them (lines 19-21).
However, since cNeighbors and cMessages are
0 for v 6= O1C1, the weight value remains the
same as in the previous iteration for this case.
On the other hand, for v = O1C1, cMessages
= 1 and cNeighbors = 1, so weight is updated
to 2. Updated values for this iteration can be
viewed in column 4 of Table 7.

(f) FurWeightPropagation returns the updated
weight and it finishes (line 22).

– Now, SDRVertexCentric increments iteration
(line 16) and the next iteration starts (at this
point iteration = 4 and S.size = 4).

– guardCondition is set to true (line 4).
– iteration 6= 0, so SDRVertexCentric gets into else

clause of line 8 and selects the added graph step
at the beginning of the subquery for s (line 9).

– Besides, iteration 6= 1, so the SDRVertexCentric
gets into else clause of line 12 and
FurWeightPropagation starts again:
(a) First, it counts the number of messages sent

from the previous iteration to v (line 1). In
the previous iteration, only O1C1 sent a mes-
sage to C1 through the relationship orders.
For this reason, for v = C1, cMessages has
value 1, and 0 for the rest of objects.

(b) Then, for v = C1, the function gets into if
clause of line 2 and checks the type of s. How-
ever, since s is a graph step, the algorithm
gets out of this if clause without any change.

(c) Finally, as guardCondition is true for every
object of the graph, the algorithm updates
the value of weight for all of them (lines
19-21). However, since cNeighbors and cMes-
sages are 0 for v 6= C1, the weight value
remains the same as in the previous iteration
for this case. On the other hand, for v = C1,
cMessages = 1 and cNeighbors = 0, so weight
is updated to 1. Updated values for this it-
eration can be viewed in column 5 of Table
7.

(d) FurWeightPropagation returns the updated
weight and it finishes (line 22).

– Then, iteration is incremented by
SDRVertexCentric in line 16 and since
iteration = 5, which is higher than S.size, the
function escapes the while loop of line 3 and
returns the value of weight (line 18).

3. Once the results of the recursive call are obtained, the
function computes weights according to the type of
traversal (line 16). The computation process for the
different types of traversal steps is explained more in
detail in Appendix B.

4. Then, the function escapes the if clause of line 12 and
checks the guardCondition value (line 19).

5. Since guardCondition remains true, it updates the
weight value (line 20). However, as cNeighbors value
is equal to 0 for every object in the graph, the value
of weight is updated with the result of the recursive
call of lines 15 and 16.

– Finally, iteration is incremented by SDRVertexCentric in
line 16 (note that at this point iteration = 1 and S.size
= 2, since the query has 2 steps).

– guardCondition is set to true (line 4).
– iteration = 1, so SDRVertexCentric gets into else clause

of line 8 and selects the last step of the query for s (line
9).

– Then, it gets into if clause of line 10 and calls
InWeightPropagation function (line 11):
1. First, it checks the type of s. As stated in the previous

iteration, s is a traversal so it gets into if clause of
line 3.

2. Then, it searches for the previous step that corresponds
to a relationship and stores it in pRel (line 4). However,
since there are no more relationship steps in the query,
pRel does not contain any relationship.

26 Gala Barquero et al.

C1 C2

O1C1 O2C1 O1C2

P10 P20

orders orders
orders

contains contains contains

Fig. 4: Graph 1: example for Amazon case

3. Then, iteration is incremented (line 5), so that
iteration = 2 and S.size = 2.

4. The function checks if the calculated weight in the
previous iteration is higher than 0 (line 6). This is
true only for P10, O1C1 and C1 so, in this case, the
function tries to send a message through pRel (line
7). But since pRel does not contain a relationship, no
messages are sent.

5. Finally, weight value remains the same as in the previ-
ous iteration (line 10). Note that weights in columns
5 and 6 of Table 7 are the same.

– Then, iteration is incremented by SDRVertexCentric and
it is equal to 3. In this case, iteration is higher than S.size,
so SDRVertexCentric escapes the while loop of line 3, it
returns weight value (line 18) and the execution finishes.

Once SDRVertexCentric finishes, the SDR Algorithm ob-
tains a subgraph with the objects with weight higher than 0,
and the relationships among them (lines 2 and 3). In this ex-
ample, this subgraph only contains C1, O1C1 and P10 objects
and the relationships between them. Note that if Product-
Popularity query is run either over this subgraph or over the
complete graph of Figure 4, the result will be object C1 for
both executions.

B APPENDIX – Traversals with SDR
algorithm

In this appendix, we explain the strategies to compute the
weights for the different types of traversal steps in Algorithm
1. We distinguish four types of traversal steps: where, not, and
and or. For a better understanding about how the SDR algo-
rithm computes them, we describe several examples applied
to the Amazon graph shown in Figure 4.

B.1 Where Step

The where step is used to filter objects according to a predicate.
This predicate is based on the path history of an object. In
this way, an object is selected by the filter if it has the path
indicated in the where step predicate.

Let us consider the sample query shown in Listing 2, which
contains a where step. In this query, the graph objects that

Object/Iteration It 0 It 1
C1 0 0 0 1 1
C2 0 0 0 0 0
O1C1 0 0 2 2 2
O2C1 0 0 0 0 0
O1C2 0 0 0 0 0
P10 1 1 1 1 1
P20 0 0 0 0 0

Table 7: Object weights for ProductPopularity query
with SDR Algorithm

order an Order that contains a Product with the idProduct =
‘10’ are filtered. For this query to be applied to the graph of
Figure 4, the SDR algorithm first obtains the weights of the
where clause, iterating the steps of the subquery contained in
the predicate. The results of the calculated weights for each
iteration and each object of the graph are shown in columns 2
to 6 of Table 7. Once the algorithm finishes the calculation of
the where step, the resulting weights calculated for this step
are assigned to each object of the graph for the next iteration.
Note in column 6 of Table 7 that the weights of all objects
are the same as in the last iteration of the computation of the
where step (column 5). This is because iteration It1 does not
modify the weights, since it only sends messages, as explained
in Section 4.1. After that, the algorithm continues the normal
execution updating the calculated weights according to the
remaining steps of the query.

B.2 Not Step

Same as where step, the not step is used to filter the objects
according to a predicate. However, not step removes from the
result the objects that satisfy this predicate and returns the
rest.

Let us observe again the example shown in Listing 2 and
suppose we change the where step for a not step in this
query. In this case, the graph objects that do not order an
Order that contains a Product with the idProduct = ‘10’ are
filtered. Applying this query to the graph of Figure 4, the
SDR algorithm first traverses the steps of the predicate of the
not clause. At first, the algorithm calculates the weights in the
same way as in the where step. However, in the last iteration
it performs the following operation with the weight values:

weight =

{
0 if weight > 0
1 if weight ≤ 0

+ pItWeight

Therefore, if the calculated weight is higher than 0, then
the algorithm changes it to 0, and the other way around. After
this conversion, if the object was relevant to the previous steps
of the query, it will have a weight 0 and, therefore, it will be
discarded when obtaining the subgraph. To avoid this, the
algorithm adds the weight calculated for that object in the
penultimate iteration (pItWeight). This process is exemplified
for the graph of Figure 4 in column 5 of Table 8.

Then, as with the where step, the algorithm continues the
normal execution updating the calculated weights according to
the remaining steps of the query. Note in column 6 of Table 8
that the weights for each object are the same as the weights of
the last iteration of the computation of the not step (column
5), since in the It1 only messages are sent to other objects.

Improving Query Performance on Dynamic Graphs 27

Object/Iteration It 0 It 1
C1 0 0 0 (1 → 0) + 0 = 0 0
C2 0 0 0 (0 → 1) + 0 = 1 1
O1C1 0 0 2 (2 → 0) + 2 = 2 2
O2C1 0 0 0 (0 → 1) + 0 = 1 1
O1C2 0 0 0 (0 → 1) + 0 = 1 1
P10 1 1 1 (1 → 0) + 1 = 1 1
P20 0 0 0 (0 → 1) + 0 = 1 1

Table 8: Object weights for ProductPopularity query
with not step with SDR Algorithm

B.3 And Step

The and step is used to filter objects according to two or
more predicates and it ensures that filtered objects meet all
predicates. Therefore, since in this case there are more than
one predicate, there are more than one subquery where to
compute the weights too.

Object/Iteration It 0 It 1 It 2 It 3
C1 0 0 0 1
C2 0 0 0 1
O1C1 0 0 0 0
O2C1 0 0 2 2
O1C2 0 0 2 2
P10 0 0 0 0
P20 2 2 2 2

Table 9: Object weights for subquery example with SDR
Algorithm

Let us consider Listing 4, where PackagePopularity query
of Amazon case study is shown. In this case, the objects that
order an Order that contains the Product with the idProduct
= ‘10’ and order an Order that contains the Product with
the idProduct = ‘20’ are filtered. Note that this query has
two subqueries: the first one is equivalent to the subquery of
the where step in ProductPopularity query, and the second
one is similar but with a different property filter step. The
weights computed for the second subquery are shown in Table
9—note that 4 iterations are displayed in the table because
it is focused on the subquery. In this way, results for both
subqueries with the SDR algorithm are shown in columns 2
to 5 of Tables 7 and 9, respectively. For the and step, the
algorithm computes the weights for both queries separately
and performs the following operation to merge them:

weight =

n∑
i=1

pItWeighti +

n∏
i=1

weighti

If n is the number of predicates contained in the and
step, weighti is the calculated weight of the subquery of
the predicate i, and pItWeighti is the calculated weight of
the predicate i in the penultimate iteration. Results of the
weights computed for the PackagePopularity query are shown
in Table 10. Note we add pItWeighti to avoid that the object
has weight 0 if it is relevant to the steps previous to the first
one, similar to the situation described in Section B.2.

B.4 Or Step

Similar to the and step, the or step is used to filter the objects
according to two or more predicates. However, in this case,

Object/Iteration It 0 It 1
C1 (0+0) + (1*1) = 1 1
C2 (0+0) + (0*1) = 0 0
O1C1 (2+0) + (2*0) = 2 2
O2C1 (0+2) + (0*2) = 2 2
O1C2 (0+2) + (0*2) = 2 2
P10 (1+0) + (1*0) = 1 1
P20 (0+2) + (0*2) = 2 2

Table 10: Object weights for PackagePopularity example
with SDR Algorithm

it ensures that the filtered objects meet at least one of the
predicates.

Let us consider we modify in Listing 4 the and step with
an or step, obtaining the query SimProductsPopularity of
Amazon case example. In this case, the objects that order
an Order that contains the Product with the idProduct =
‘10’ or order an Order that contains the Product with the
idProduct = ‘20’ are filtered. Starting from the results shown
in columns 2 to 5 of Table 7 and Table 9, the or step performs
the following merge of subqueries:

weight =

n∑
i=1

weighti

Being n the number of predicates contained in the or
step and weighti the calculated weight of the subquery of
the predicate i. Results for SimProductsPopularity query over
the graph of Figure 4 are shown in Table 11. Note that with
the simple graph of Figure 4, all the objects in the graph
are assigned weights > 0. This would not be the case in a
real system, where many elements would be discarded, as we
describe in Section 5.

Object/Iteration It 0 It 1
C1 (1+1) = 2 2
C2 (0+1) = 1 1
O1C1 (2+0) = 2 2
O2C1 (0+2) = 2 2
O1C2 (0+2) = 2 2
P10 (1+0) = 1 1
P20 (0+2) = 2 2

Table 11: Object weights for SimProductsPopularity
example with SDR Algorithm

C APPENDIX – Additional charts and tables
displaying experiments results

To improve the readability of the manuscript, this appendix
contains some of the tables and figures that show the results
of the evaluations. Specifically, Figures 5 and 6 show the
execution time and memory consumption of the experiments
with static information of Contest and YouTube case studies,
respectively. Then, Tables 12 and 13 show the gain results of
the experiments with dynamic information of the same case
studies.

28 Gala Barquero et al.

0

5

10

15

20

0
1,000
2,000
3,000
4,000
5,000
6,000
7,000

1M 4M 9M 12M 16M

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

RecentPart

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(a) SDR results for Simple pattern.

0
5
10
15
20
25

0
2,000
4,000
6,000
8,000
10,000
12,000

1M 4M 9M 12M 16M

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

ContestPart

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(b) SDR results for Conditional pattern.

0
5
10
15
20
25

0
2,000
4,000
6,000
8,000
10,000

1M 4M 9M 12M 16M

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

UnchosenCap

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(c) SDR results for Conjunctive pattern.

0

5

10

15

20

0
100,000
200,000
300,000
400,000
500,000
600,000
700,000
800,000

1M 4M 9M 12M 16M

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

FunniestCaption

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(d) SDR results for Aggregation pattern.

0
5
10
15
20
25

0

2,000

4,000

6,000

8,000

1M 4M 9M 12M 16M

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)
Abandon

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(e) SDR results for Aggregation pattern.

0

5

10

15

20

0
50,000
100,000
150,000
200,000
250,000

1M 4M 9M 12M 16M

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

FunniestCaptionU

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(f) SDR results for Aggregation and Con-
junctive pattern.

Fig. 5: Performance results for SDR algorithm in Contest example queries.

0
5
10
15
20
25

0
2,000
4,000
6,000
8,000
10,000

2M 4M 6M 8M 10M 12M

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

GetAnimalVideos

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(a) SDR results for Conditional pattern.

0

5

10

15

20

0

1,000

2,000

3,000

2M 4M 6M 8M 10M 12M

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

NotPresent

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(b) SDR results for Negative pattern.

0
5
10
15
20
25

0
2,000
4,000
6,000
8,000
10,000

2M 4M 6M 8M 10M 12M

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

AnimalPerson

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(c) SDR results for Conjunctive pattern
with 2 predicates.

0
5
10
15
20
25

0

2,000

4,000

6,000

8,000

2M 4M 6M 8M 10M 12M

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

PresentSoon

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(d) SDR results for Conjunctive pattern
with 3 predicates.

0
5
10
15
20
25

0

5,000

10,000

15,000

20,000

2M 4M 6M 8M 10M 12M

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

Pets

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(e) SDR results for Disjunctive pattern.

0
5
10
15
20
25

0

2,000

4,000

6,000

2M 4M 6M 8M 10M 12M

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

InCast

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(f) SDR results for Aggregation pattern.

Fig. 6: Performance results for SDR algorithm in YouTube example queries.

Improving Query Performance on Dynamic Graphs 29

Query Name Models

α = 5 α = 10

β 1M 4M 9M 12M 1M 4M 9M 12M

RecentPart
(Simple)

50 -0.1308 -0.0055 0.1260 0.1457 -0.3042 -0.0773 0.0280 0.2001
100 -0.1054 0.0915 0.2004 0.2934 -0.2289 0.0222 0.0985 0.2966
150 -0.0577 0.1104 0.2330 0.3446 -0.1527 0.0423 0.1244 0.3302
200 -0.0255 0.1674 0.2534 0.3645 -0.1142 0.0527 0.1417 0.3496
250 -0.0100 0.1892 0.2645 0.3729 -0.0917 0.0615 0.1518 0.3535

ContestPart
(Conditional)

50 -0.1821 0.0413 0.1419 0.2094 -0.3830 -0.0405 0.0304 0.1322
100 -0.0419 0.1647 0.2586 0.3449 -0.2266 0.0628 0.1177 0.2944
150 0.0118 0.1940 0.2991 0.4030 -0.1631 0.1046 0.1829 0.3461
200 0.0306 0.2027 0.3240 0.4312 -0.1186 0.1230 0.2156 0.3778
250 0.0680 0.2399 0.3426 0.4520 -0.0887 0.1327 0.2389 0.3947

UnchosenCap
(Conjunctive)

50 -0.2574 -0.0145 0.0781 0.1573 -0.4187 -0.0631 -0.0055 0.0563
100 -0.1289 0.1242 0.1820 0.3161 -0.2622 0.0616 0.1023 0.2383
150 -0.0660 0.1622 0.2300 0.3849 -0.2190 0.0972 0.1568 0.2964
200 -0.0437 0.1799 0.2588 0.4205 -0.1754 0.1129 0.1847 0.3208
250 -0.0113 0.1850 0.2736 0.4354 -0.1531 0.1173 0.1975 0.3346

FunniestCaption
(Aggregation)

0 0.7680 0.6378 0.6803 0.8520 0.7680 0.6378 0.6803 0.8520
10 0.8762 0.8013 0.8473 0.9410 0.8215 0.7257 0.7903 0.9129
20 0.9090 0.8326 - - 0.8571 0.7735 0.8292 0.9314
50 0.9317 0.8794 - - - - - -
100 0.9479 0.8929 - - - - - -

Abandon
(Aggregation)

50 -0.3239 -0.0549 0.0783 0.0992 -0.3074 -0.0394 -0.0162 0.0008
100 -0.1580 0.0647 0.1569 0.2389 -0.1605 0.0626 0.0611 0.1491
150 -0.1302 0.0784 0.1746 0.2938 -0.1036 0.0921 0.1132 0.2011
200 -0.0805 0.0873 0.1932 0.3147 -0.0823 0.1084 0.1468 0.2327
250 -0.0688 0.0875 0.2022 0.3276 -0.0619 0.1043 0.1635 0.2517

FunniestCaptionU
(Aggregation and

Conjunctive)

0 0.3517 -0.2278 -0.1412 -0.0071 0.3517 -0.2278 -0.1412 -0.0071
10 0.6859 0.2869 0.3416 0.4921 0.5461 0.1331 0.1371 0.3585
20 0.7596 0.4458 - - 0.6181 0.2902 0.2865 0.5142
50 0.8145 0.6193 - - - - - -
100 0.8563 0.6602 - - - - - -

Table 12: Ratio Incremental gain results for Contest case study.

30 Gala Barquero et al.

Query Name Models

α = 5 α = 10

β 2M 4M 6M 8M 2M 4M 6M 8M

GetAnimalVideos
(Conditional)

50 -0.0626 0.0443 0.0761 0.1770 -0.1712 0.0113 0.0317 0.1305
100 -0.0330 0.1455 0.1619 0.2601 -0.1202 0.0976 0.1033 0.2007
150 -0.0390 0.1802 0.1923 0.2843 -0.1004 0.1242 0.1272 0.2213
200 -0.0228 0.1960 0.1988 0.2932 -0.0821 0.1361 0.1432 0.2260
250 -0.0184 0.2081 0.2161 0.3049 -0.0763 0.1441 0.1561 0.2301

NotPresent
(Negative)

50 -0.3172 -0.1148 0.0296 0.0617 -0.2094 -0.0930 -0.0118 0.1231
100 -0.2305 -0.0230 0.1106 0.1157 -0.1359 0.0168 0.0790 0.2155
150 -0.2195 0.0087 0.1466 0.1262 -0.1112 0.0526 0.1095 0.2374
200 -0.2090 0.0301 0.1561 0.1314 -0.0967 0.0800 0.1141 0.2540
250 -0.2057 0.0413 0.1632 0.1354 -0.0872 0.0962 0.1225 0.2609

AnimalPerson
(Conjunctive)

50 -0.2379 0.0048 0.0635 0.1892 -0.3417 -0.0806 -0.0405 0.0653
100 -0.1288 0.1011 0.1633 0.2757 -0.2473 0.0081 0.0563 0.1768
150 -0.0918 0.1296 0.2044 0.2978 -0.1910 0.0431 0.0887 0.2154
200 -0.0624 0.1446 0.2272 0.3150 -0.1496 0.0582 0.1050 0.2322
250 -0.0582 0.1479 0.2374 0.3209 -0.1427 0.0631 0.1215 0.2453

PresentSoon
(Conjunctive)

50 -0.2427 -0.0130 0.0273 0.1051 -0.1661 -0.0780 -0.0275 0.0162
100 -0.1376 0.0806 0.1389 0.2266 -0.1034 0.0341 0.0728 0.1608
150 -0.0982 0.1264 0.1737 0.2646 -0.0879 0.0790 0.1092 0.2064
200 -0.0730 0.1437 0.1963 0.2967 -0.0687 0.1009 0.1285 0.2228
250 -0.0235 0.1549 0.2064 0.3048 -0.0601 0.1104 0.1435 0.2277

Pets
(Disjunctive)

50 0.0540 0.1135 0.1910 0.2368 -0.0213 -0.0009 0.1418 0.1334
100 0.1654 0.2239 0.3177 0.3244 0.0533 0.1239 0.2193 0.2351
150 0.2142 0.2662 0.3569 0.3649 0.861 0.1757 0.2585 0.2761
200 0.2495 0.2896 0.3747 0.3837 0.0913 0.1980 0.2812 0.3027
250 0.2587 0.3027 0.3843 0.3971 0.0998 0.2112 0.2961 0.3200

InCast
(Aggregation)

50 -0.2888 -0.0601 -0.0695 0.0419 -0.3103 -0.1052 -0.0306 0.0649
100 -0.1728 -0.0020 0.0411 0.1372 -0.1885 -0.0016 0.0379 0.1518
150 -0.1280 0.0230 0.0933 0.1723 -0.1480 0.0325 0.0706 0.1801
200 -0.0871 0.0376 0.1084 0.1839 -0.1314 0.0510 0.0871 0.1822
250 -0.0746 0.0422 0.1201 0.1893 -0.1198 0.0653 0.0955 0.1853

Table 13: Ratio Incremental gain results for Youtube case study.

Improving Query Performance on Dynamic Graphs 31

Author biographies

Gala Barquero is PhD student at
the University of Málaga, Spain. She
worked as Java developer at Viewnext
company from the IBM group before
that time (2015-2017). She graduated
as Telecommunications Engineer at
University of Jaén, Spain (2015). Her
current research interests include
Model-based Software Engineering,

Real-time Analytics and Software Quality. Contact her at
E-mail: gala@lcc.uma.es.

Javier Troya is Associate Pro-
fessor of Software Engineering at the
University of Seville, Spain. Before,
he was a post-doctoral researcher in
the TU Wien, Austria (2013-2015),
and obtained his International PhD
with honors from the University of
Málaga, Spain (2013). His current
research interests include Model-based

Software Engineering, Software Testing and Software
Quality. Contact him at E-mail: jtroya@us.es, or visit
http://www.lsi.us.es/~jtroya/.

Antonio Vallecillo is Professor of
Software Engineering at the Univer-
sity of Málaga, Spain, where he leads
the Atenea Research Group. His cur-
rent research interests include Model-
based Software Engineering, Open
Distributed Processing, and Software
Quality. More information about his
publications, research projects and
activities can be found at http://

www.lcc.uma.es/~av. He can be contacted at E-mail:
av@lcc.uma.es.

http://www.lsi.us.es/~jtroya/
http://www.lcc.uma.es/~av
http://www.lcc.uma.es/~av

	Introduction
	Background
	A Classification of Queries
	The SDR algorithm
	Evaluation
	Results
	Related Work
	Conclusions and Future Work
	APPENDIX – ProductPopularity with SDR algorithm
	APPENDIX – Traversals with SDR algorithm
	APPENDIX – Additional charts and tables displaying experiments results

