

Graduado en Ingeniería del Software

Traducciones en tiempo real mediante procesamiento del
lenguaje natural en un entorno de realidad aumentada

Real-time translations using natural language processing in

augmented reality

Realizado por
Álvaro Lloret López

Tutorizado por
Leonardo Franco

Departamento
Lenguajes y Ciencias de la Computación

MÁLAGA, junio de 2022

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA

GRADUADO EN INGENIERÍA DEL SOFTWARE

Traducciones en tiempo real mediante procesamiento del

lenguaje natural en un entorno de realidad aumentada

Real-time translations using natural language processing

in augmented reality

Realizado por

Álvaro Lloret López

Tutorizado por

Leonardo Franco

Departamento

Lenguajes y Ciencias de la Computación

UNIVERSIDAD DE MÁLAGA

MÁLAGA, JUNIO DE 2022

Fecha defensa: julio de 2022

1

Abstract
Human language is one of the most amazing faculties of living beings, but the

existence of so many different languages creates a barrier that limits the com-

munication between people. Thanks to the work of translators and automated

translation techniques, this problem can be alleviated in most cases, however,

real-time automated translations are still a challenge problem to be solved.

The main purpose of this project is to build an application able to recognize

what someone is saying, translate it in real-time and show the results in an aug-

mented reality environment so that the user can see both the translation and the

other person through the camera. The application aimed to be implemented in

mobile phones has been developed using the Swift programming language. Once

permission to use microphone and camera are granted, the user can freely acti-

vate and deactivate the microphone with the push of a button. Then, the speech

recognition automatically starts and the user will see the translated text and the

outside world through the camera at the same time.

Key aspects of the present project are the demonstration how different tech-

nologies can be integrated, and also how fast speech recognition and translation

can work so that it can be consider a real-time application, meaning that the pro-

cess happens in a milliseconds scale.

Keywords: Natural LanguageProcessing, Artificial Intelligence, Aug-
mented Reality, Language translation, Speech Recognition.

2

Resumen
El lenguaje humano es una de las facultadesmás asombrosas de los seres vivos,

pero la existencia de tantos idiomas diferentes crea una barrera que limita la comu-

nicación entre las personas. Gracias al trabajo de los traductores y a las técnicas

de traducción automática, este problema se puede paliar en la mayoría de los ca-

sos, sin embargo, las traducciones automáticas en tiempo real siguen siendo un

reto por resolver.

El objetivo principal de este proyecto es construir una aplicación capaz de

reconocer lo que alguien está diciendo, traducirlo en tiempo real y mostrar los

resultados en un entorno de realidad aumentada para que el usuario pueda ver

tanto la traducción como a la otra persona a través de la cámara. La aplicación,

destinada a ser implementada para teléfonos móviles, ha sido desarrollada uti-

lizando el lenguaje de programación Swift. Una vez se otorga el permiso para

usar el micrófono y la cámara, el usuario puede activar y desactivar libremente el

micrófono con solo presionar un botón. Hecho esto, el reconocimiento de voz se

inicia automáticamente y el usuario verá el texto traducido y el mundo exterior a

través de la cámara al mismo tiempo.

Los aspectos clave del presente proyecto son la demostración de cómo difer-

entes tecnologías pueden ser integradas, y también qué tan rápido pueden fun-

cionar el reconocimiento de voz y la traducción para que pueda considerarse una

aplicación en tiempo real, lo que significa que el proceso ocurre en una escala de

milisegundos.

Palabras Clave: Procesamiento del Lenguaje Natural, Inteligencia

Artificial, Realidad Aumentada, Traducción de Idiomas, Reconocimiento

de Voz.

3

4

Contents
1 Introduction 7

1.1 Motivation . 7

1.2 Objectives . 8

1.3 Structure of the document . 8

2 State of the art 11

2.1 Machine translations and artificial intelligence 11

2.2 Speech recognition . 13

2.3 Augmented reality . 15

3 Methodology and Software tools 19

3.1 Methodology . 19

3.2 Software tools . 20

3.2.1 Swift and SwiftUI . 20

3.2.2 Speech and AVFoundation frameworks 22

3.2.3 Combine framework . 23

3.2.4 Azure AI Translator . 24

4 Implementation of the application 27

4.1 Speech recognition module . 28

4.2 Augmented reality module . 34

4.3 Translation module . 38

4.4 Results . 41

5 Conclusions and Futures Studies 45

5.1 Conclusions . 45

5.2 Future Studies . 46

6 Conclusiones y Líneas Futuras 49

6.1 Conclusiones . 49

5

6.2 Líneas Futuras . 50

Bibliography 53

Appendix A User Manual 57

Appendix B Installation Guide 59

6

1
Introduction

1.1 Motivation

Breaking down the language barrier between societies with different languages has been one

of the main problems that humanity has tried to solve since the beginning of civilization. In

the interconnected and globalized world we live in today, this problem is even more relevant

now than it was a few decades ago. Thanks to advances in automated translation techniques

and natural language processing models, asynchronous communication problems can be al-

leviated in most cases. Nevertheless, real-time translation techniques need to improve quite

a bit in order to be applied in consumer applications. The main objective of this work was to

discover whether a translator system using speech recognition, natural language processing

and augmented reality can be feasible for the requirements of a real-time application deployed

on a smartphone.

Besides the analysis of the previous main goal , the idea of this project is to advance in

areas like asynchronous programming for mobile application development [Dig15], checking

if complex applications with several modules can take advantage of concurrency techniques

to optimize execution time. Moreover, it is also of interest to study different software tools

that can be used to develop a project of this complexity trying to exploit them to see what

their limits are.

Another huge motivation of this project is that it is worth trying to get closer to a world

where someone could travel to any country and speak naturally to local people. To achieve

that, the translation tool should allow the user to see both the translations and the other

person simultaneously in real-time, and this fact will be explored using augmented reality

technologies.

To summarize the overall motivation is to explore, utilize, combine and optimize applica-

7

tions from speech recognition, automatic translation and augmented reality to try build a real

time application that can be implemented in mobile telephones.

1.2 Objectives

The primary goal of this project is to overcome the challenge of integrating different libraries

to build a real-time translator application that can operate in real time, i.e., all the modules

combined should work in the milliseconds scale. The mobile application should be able to

transcribe what someone is saying to text, translate the text and show the results along the

outside world using augmented reality.

Achieving the previous goals, implies that the following four sub-goals need to be fulfilled:

1. To implement a speech recognition module capable of transcribing audio to text contin-

uously.

2. To implement a translation module that works in real-time.

3. To implement the augmented reality module to show the external world and the trans-

lations in synchrony with the previous modules.

4. To combine all themodules andmake sure that the flow of information in the application

built is fast enough for a real-time application.

1.3 Structure of the document

This work is organized in six main parts: Introduction (1), State of the art (2), Methodology

and Software Tools (3), Implementation of the application (4), Conclusions and Future Studies

(5) and ”Conclusiones y Líneas Futuras” (6).

The first chapter (Introduction) essentially states the motivation and objectives of the

project. The second chapter (State of the art) covers some historical background and the cur-

rent state of the technologies involved in the development of the project: automatic transla-

tions and artificial intelligence, speech recognition and augmented reality. The third chapter

(Methodology and Software tools) aims to present and explain the methodology that has been

followed to carry out this project and also the main technologies and tools that will be used, in

8

addition to the analyzing and justifying why they have been chosen over different alternatives.

The fourth chapter (Implementation of the application) is the core of the study, where the de-

velopment phases are comprehensibly detailed, and relevant developments of the software

modules are explained. Chapter five (Conclusions and Future Studies) contains a summary of

what it has been accomplished by doing this project. Furthermore, there is a discussion about

what could be done in the future to extend the present work . Chapter six (”Conclusiones y

Líneas Futuras”) is the spanish translation for chapter five.

9

10

2
State of the art

This section introduces the different disciplines related to the implementation of this project.

Specifically, the technologies involved are discussed, starting with machine translations and

their relationship with artificial intelligence, focusing on the field known as natural language

processing. Then the field of speech recognition is analyzed and discussed, in particular how

this technology have improved in recent years. Finally, the current state of augmented reality

and the different existing types and ways to use it nowadays is presented and analyzed.

2.1 Machine translations and artificial intelligence

Language translation has come a long way since the beginning of the internet era. In the

past, the only two ways to communicate with people with a different language was by using

a dictionary, the slow method, or by hiring an interpreter, the expensive method.

Nowadays, thanks to the advancements of artificial intelligence and natural language pro-

cessing, people can almost communicate in a free and efficient way. Adding the fact that the

majority of the population owns a smartphone, it can be argued that everybody carries a mo-

bile interpreter in their pocket. The popularization of translation apps in smartphones have

provided people with the tools necessary to be able to solve most asynchronous communica-

tion tasks in a fast and inexpensive way.

A clear example of this type of application can be ”Google Translate”, which makes use of

Google Neural Machine Translation (GNMT) [Wu+16], a natural language processing model

that applies example-based machine translation techniques [TP01] to improve the accuracy

of the translations. Example-based machine translations, firstly introduced by Makoto Nagao

[Wik21] in 1984, are characterized by using huge datasets of pairs of sentences in two different

languages. In short, every sentence in one language inside the dataset is related to the trans-

lated sentence in the other language. This technique is best suited for translating sentences

11

that are context-dependent like those containing phrasal verbs. By using example-based ma-

chine translations, Google is providing a state-of-the-art translator to millions of users around

the world.

Artificial intelligence, specifically, the intersection between Deep learning and Natural

Language Processing, has been the key to unlock machine translations that are almost as good

as human translations. The major contributor to the improvements in machine translation

techniques is the fact that deep learning models with billions of parameters and terabytes

of data can be trained in a reasonable amount of time. The best example of this is the NLP

(Natural Language Processing) model trained by Open AI, GPT-3 [Bro+20], which has 175

billion parameters and is trained with a 45 terabytes text dataset.

Figure 1: Relationships between AI, NLP, ML and DL. Source: Author’s own elaboration.

Asynchronous translations are not considered a problem anymore, as several online trans-

lators can get the job done nowadays quite efficiently. Current natural language processing

models are capable of translating text into any language with a performance almost similar

to human accuracy. The problem arises in synchronous or real-time translations because the

speed and memory size of these enormous deep learning models are not feasible for the re-

quirements of real-time applications.

A key aspect to solve this problem is finding a light and fast model able to translate text

with an accuracy similar to those huge deep learning models like GPT-3. State of the art

examples that try to achieve this can significantly reduced parameter size and compress the

model size up to four times without compromising too much on performance [TZT19].

12

Figure 2: Bar chart comparing the number of parameters of different machine learningmodels.

Source: [Bha20]

The common problem of these lightweight natural language processingmodels is that their

goal is not translating text, but doing simpler tasks like natural language inference, paraphrase

detection and dialogue response selection. Translating usually involves several of these usual

natural language tasks, so small models tend to be designed to perform these tasks meanwhile

larger models tend to be designed to being able to translate text.

Real-time translations usually involves lots of trade-offs. If larger NLP models are being

used for the translation, the speed is not usually good enough to being able to carry a conversa-

tion in a synchronous way. However, if smaller NLP models are being used for the translation,

the accuracy of the translations might be worse, so even if they are fast, there might be inter-

pretation errors in the conversation. The most common approach for real-time translators is

defining a speed requirement at the start of the development phase and after setting that up,

building the largest NLP model possible that satisfies the speed requirement.

2.2 Speech recognition

In recent years, speech recognition technologies have improved to the point of becoming one

of the main input methods along with clicking and typing. A simple definition of speech

recognition could be the process of converting human sound signals into words by a machine,

which could be used as instructions.

Specifically, speech recognition is a sub-field found in the intersection of computer science

13

and linguistics. The main goal of this sub-field is automating the transformation of regular

spoken language into text using the power of computers, that is why sometimes it is usually

called speech-to-text as well.

Figure 3: Visual explanation of speech recognition. Source: Author’s own elaboration.

Speech recognition technology works by, firstly, digitizing the voice of a speaker person,

then breaking up the recorded speech into discrete segments formed by different tones which

are visualized in the form of spectograms. These spectograms are analyzed and transcribed

individually using a natural language processing module that links the current spectogram to

the words with the highest probability in the vocabulary of a specific language. In most cases,

there is another natural language module that works as a contextual layer, this final layer tries

to make sure that all the transcriptions makes sense and that they do not have grammatical

errors.

Nowadays, thanks to the improvements mentioned in the previous section, natural lan-

guage processing models have achieved almost human accuracy, therefore, speech recogni-

tion has improved tremendously in the last ten years. A clear example of this can be seen

with Google. Since 2012, Google’s word error rate has fallen by more than 30% thanks to the

addition of neural networks [Nov17] into their systems.

The use of artificial intelligence, specifically, natural language processing models have

made speech recognition more accurate, however, speech recognition libraries also need to

be fast to provide a good user experience. In order to accelerate speech recognition, two

main approaches exist, the first one is simply doing the speech recognition processing locally

[GP21], trying to avoid making requests to external servers. The problem of this approach

is that the accuracy tends to be lower because, unlike speech recognition in external servers,

14

there is not a contextual layer using natural language processing to try to correct the results of

the raw transcriptionmade locally. The second approach is subdividing the speech recognition

in asynchronous tasks, for example, one task is continuously recording the live audio and

sending it to another task that is constantly transcribing a piece of audio to text, after that,

an additional task receives the raw transcription and tries to correct errors. This way, the

different parts of the speech recognition system can be executed concurrently, improving the

speed of the module significantly.

The accuracy and speed improvements of speech recognition has led to the incorporation

of this technology inmany commercial products, examples of this are smart home hubs, speak-

ers, text editors, smartphones, etc. The estimated number of voice assistant users for 2022 in

the United States is 135.6 million people [Sta20], AI personal assistants like Siri or Alexa, have

become mainstream thanks to the mentioned enhancements in speech recognition techniques

and natural language processing models.

2.3 Augmented reality

Augmented reality, usually abbreviated as AR, is a sub-field of computer science that aims to

enhance the physical world by presenting information in a natural way in the environment of

the user. In most cases, this is usually achieved by showing relevant digital visual elements or

by using spatial audio technology.

Figure 4: A clear example of an AR application. Source: [Vod21]

15

Augmented reality applications that need a deep understanding of the surroundings of the

user often use SLAM (Simultaneous localization and mapping) [Rei+10]. By using SLAM algo-

rithms the application can construct a map of an unknown environment and simultaneously

keep track of the position of the user. Once the application has a virtual environment version

of the physical surroundings, it can start showing relevant contextual information near the

user’s position. Maintaining coherence with virtual objects is the main reason that SLAM is

used, this means that moving in the physical world should not affect the position of the object,

nevertheless, the size should change based on where you are now. For example, if you place a

virtual statue in top of a table, the statue should remain in the same position even if you move

across the room, but the size should change accordingly.

Figure 5: A room being scanned by an SLAM algorithm so that digital objects can adapt to the

environment. Source: [Occ16]

On the other hand, many augmented reality programs do not need to keep track of the

environment or the user. The essence of AR is showing useful information while simultane-

ously allowing the users to see their physical surroundings. Some examples of this could be

presenting a news feed or showing the current weather, even though these are useful applica-

tions, they do not need to create a map of the environment, the reason for this is that the data

could be constantly presented in superposition to the view of the physical world that the user

has. In these type of applications, the users have the ability to show or hide the information

that is currently in their field of view.

There are two main ways to use augmented reality applications nowadays, using a smart-

phone or using early AR glasses. Up until now, AR glasses have been focused on industry use

cases, however, there are a few early consumer’s AR glasses in the market. The problem with

this early AR glasses is that the technical specifications are not excellent because they need to

16

put the power of a computer into the size of normal looking glasses, so the applications tend

to be simple and they do not show the full potential of AR.

Figure 6: Early AR glasses example, Nreal Air. Source: [Nre22]

Alternatively, smartphones are a mainstream technology that have already proven their

usefulness to the world. Smartphones do not squeeze the potential of AR to the maximum,

however, it is a good gateway to show what augmented reality is capable of. For instance,

Pokemon Go is the most popular AR application. The technical specifications of smartphones

excels the technical specifications of AR glasses, specially when you compare CPU speed and

battery time. AR applications on smartphones are more complex and can easily be integrated

with software libraries and hardware sensors that smartphones already use. Furthermore,

more than 83% of the population owns a smartphone [Ban22], so this is why it is a good idea

to develop AR applications on this platform meanwhile AR glasses technology is improving.

Figure 7: Growth of smartphone users 2016-2027. Source: [Sta22]

17

18

3
Methodology and

Software tools
3.1 Methodology

In this section, the methodology used to carry out this project will be discussed. The philoso-

phy of agile methodologies [Abr+02] was followed to complete this work, given the amount

of possible changes this application could have due to its innovative nature. A set of general

features was defined at the start, but with the evolution of the project, this set of features has

been evolving as well. In order to get done the different sections, these sections were divided

into smaller tasks, that way the tasks were specific and well-defined, moreover the progress

was incremental and steady.

Now, the main phases of the development of this project will be presented. Although, the

following enumeration is a numbered list, this does not mean that their execution was done

sequentially, in fact, some of these phases were executed simultaneously to make sure that

there were not compatibility issues. Despite of this, it was a good idea to set up an order for

the different parts to establish a path to follow.

1. Researching and documenting about the state of the art of the different technologies

used in this project.

2. Developing the speech recognition module.

3. Developing the augmented reality module.

4. Developing the real-time translation module.

5. Merging the different software modules and making sure they work properly.

19

6. Writing the memory.

3.2 Software tools

Regarding the technologies used to develop this project, a description for each of them will be

provided along with the reasons why they have been chosen over different alternatives. All

of these technologies have been carefully chosen to fit the real time requirement needed to

successfully carry out this project.

3.2.1 Swift and SwiftUI

First of all, the operating system where this application will be deployed is iOS. There are sev-

eral reasons for this, the first one is that the A15, Apple’s CPU for iPhone 13, is the fastest and

most powerful mobile CPU in the market, beating the Snapdragon 888, the current Android’s

flagship CPU. In real-time applications, the flow of information must be as fast as possible to

provide the best user experience, by using the most powerful smartphone on the market we

make sure that the speed of the instructions will not be a problem.

Figure 8: Benchmark comparison between A15 and Snapdragon 888. Source: [Nan21].

Besides the powerful hardware, iOS also provides many software libraries that will be very

useful to carry out this project successfully, these technologies will be explained individually

in the following paragraphs, but one key thing about them is how well they work together.

The interoperability between software modules and also hardware, is the reason why their

applications are able to squeeze the power of their hardware products to the maximum.

20

The last reason is that Apple is planning to launch an augmented reality (AR) headset in

the upcoming years. They already confirmed that this upcoming product will use a modified

version of iOS, so by using Apple software libraries, this project could be smoothly ported to

this AR headset in the future.

Now, we will present Swift [App14a], which is an open-source programming language

created by Apple [App14e]. This modern programming language was released to the public

in 2014, the main goal of this release was to make it the primary language developers use to

build applications in Apple’s ecosystem. The main features of this programming language are

the following:

• Object-oriented programming [Str91].

• Automatic Reference Counting [App14b] for high-performance memory management.

• A dynamically typed language with the possibility to become strongly typed if desired.

• Expressive, simple and easy to learn syntax.

• Support for lambda expression/anonymous functions.

• Traditional data types with the addition of Optionals and Generics.

• Uses the LLVM [LA04] as its compiler framework.

• Complete support for Apple’s software tools and main programming language to de-

velop iOS, macOS, watchOS and tvOS applications.

As it can be seen from the list of features, Swift combines a powerful type inference and a

simple but expressive syntax so that laborious ideas can easily be written in a clear and short

way. If you add the support of Apple’s software libraries and its high-performance, Swift is

the trouble-free choice to develop rich real-time applications on Apple’s devices.

Concerning SwiftUI, as the name suggests, it is a framework to develop user interfaces built

on top of Swift. This user interface toolkit allows developers to design apps in a declarative

way for any Apple platform. SwiftUI works as a cross-platform layer for the design of your

applications, this means that the same user interface will work across iOS, macOS, tvOS and

watchOS.

21

One of the toughest aspects of user interface development is synchronizing the state of the

application across all the views, this means that when the state is changed, the changes must

be reflected accordingly in all the user interfaces. In other frameworks like UIKit or AppKit,

the developer needs to pass this information across views manually, however, this does not

happen with SwiftUI. In SwiftUI, the view is not the result of a sequence of events. A view is

a function of state, this means that when the state of the application changes, the views will

change as well, eliminating all the problems and bugs that this might have caused.

The powerful thing about Swift and SwiftUI is that by learning one language and one user

interface framework you can deploy your code in smartphones, laptops, smartwatches and

TVs without the hustle to make many changes for each platform.

3.2.2 Speech and AVFoundation frameworks

In order to manage real-time audio and video, two libraries have been used. For audio, the

Speech framework [App16a] was selected because it is able to perfom speech recognition on

live audio, although it can also work on prerecorded audio if needed. On the other hand,

the AVFoundation framework [App08a] was the chosen one to manage video, this library

is capable of working with time-based audiovisual media formats like QuickTime movies,

MPEG-4 files, HLS streams and more, however, in this application it will be used to get access

to the camera view.

Both of these Apple libraries are able to work simultaneously, there are not interoperability

issues, so applications can do real-time speech recognition through the microphone and make

use of the camera at the same time without compromising the application performance.

It is relatively simple to get transcriptions of live audio using the Speech library, however,

it requires a lot of work to also get the transcriptions in real-time. By default, this library sends

the live audio to Apple servers by making an HTTP request, once the information has been

processed and the transcription is ready, the information needs to go back to the smartphone.

In this case, this process is too slow for a real-time application because there is a notable

difference between the time the user speaks and the time the transcription is shown in the

screen. To solve this, the Speech framework gives the possibility to do the processing of the

information on-device, which is ideal for privacy-focus applications or real-time applications

like this project.

22

The main use case of the AVFoundation in this project is providing the augmented reality

layer. This will be achieved by allowing the application to access the view of the camera, which

will be crucial to show the translations and the outside world concurrently.

3.2.3 Combine framework

The Combine framework provides a Swift API that can easily be imported in any project to

process data over time. Using Combine, developers can customize handling of asynchronous

events by combining event-processing operators. In simple terms, Combine have two key con-

cepts, publishers and subscribers. Publishers are in charge of exposing values that can change

over time, meanwhile subscribers are the ones to receive those values from the publishers.

The primary use case is using it to know when an important variable of the state of your

application has changed. Many times developers want to trigger an specific action when cer-

tain variable changes, by using this framework this behaviour could easily be implemented

without worrying about when the asynchronous event is going to change the variable.

A useful and common example of this is wanting to trigger a view update whenever a

field of a class changes. To achieve this, a developer would only need to do two things us-

ing the Combine framework, creating a class that implements the ObservableObject protocol

[App19b] and then marking a property of the class with the @Published property wrapper

[App19a]. A protocol in Swift is very similar to an interface in Java, but in addition protocols

can also specify properties that must be implemented.

In the figure below, a simple example using ObservableObject and @Published is pre-

sented. In the code snippet a class called PlanetViewModel implements the ObservableObject

protocol, so now the property flagged with @Published, in this case name, will automatically

trigger an update when its value changes for all the user interfaces that were using it.

Figure 9: A code snippet of ObservableObject and @Published. Source: Author’s own elabo-

ration.

23

3.2.4 Azure AI Translator

Concerning the technology used to perform translations, the Azure AI Translator was chosen

between a large number of different candidates. To be able to make a decision, first, we need

to have a deep understanding about machine translation and what the application needs.

The main requirement of this application is being fast enough to provide a good user ex-

perience for a real-time application. To achieve this, the speech recognition, the translation

and showing the result to the user should happen in less than one second. Besides being fast,

the translator API (Application Programming Interface) must be accessible through a REST

API (Representational state transfer) [IBM20], that way Swift will be able to send and receive

information from the service by following a standard through the HTTP protocol, without

needing a custom library made just for Swift. This is also important for the reusability and

interoperability of the module, because by using a REST API we make sure that this module

could be used by other programming languages by making the same HTTP requests.

In the figure below, there is a comparison between different translation APIs showing the

latency of the request. In this case, that is the time between sending the text to translate and

receiving the translation result.

Figure 10: Comparison of different translation APIs. Source: [Rap22].

24

First of all, the APIs with more than 700 milliseconds of latency were discarded. After

that, there were three APIs remaining that satisfied this requirement, they were the Google

Cloud translate service, Microsoft Azure AI translator and MyMemory translation service.

MyMemory is poorly documented and their usage limit is very constrained, less than 5000

characters per day, so this option was discarded too. In the case of the Google Cloud and

Azure solutions, both of them were very well documented and they offered a REST API to get

access to the service, however, the Azure free tier of the translator service (2,000,000 characters

per month) was more generous than Google Cloud (500,000 characters per month), and in case

the application needs to scale up, the superior tiers were also more affordable with Azure.

To sum up the reasons, the Azure AI translator [Mic22] was chosen due to having low

latency, providing a well documented REST API and being the cheapest and most scalable

solution.

25

26

4
Implementation of

the application
In this section, the different modules implemented to build this application will be thoroughly

explained. This project consist of three layers: speech recognition, augmented reality and

translation. The code will also be detailed along the ways these different modules have been

integrated with each other. To follow up, a summary of the implementation is presented.

In the following figure, the first step of the implementation was creating the base SwiftUI

project. The implementation continued by developing a basic speech recognitionmodule using

an Apple template. This initial module worked in simulators but after testing it on a physical

device the performance was slow. The reason was that the template was constantly sending

information to Apple servers. After deeply understanding how the Speech frameworkworked,

a new module was created from scratch using only the needed functions. As it was expected,

the speed of the speech recognition module improved significantly.

Simultaneously, the augmented reality module was being developed. The first thing to

do was coding all the necessary camera classes and structs that will be explained in their

corresponding subsection. After that, it was time to make sure that the camera view was

properly presented in the screen. Next, we tried to place text over the view of the camera.

After achieving this, the speech recognition and augmented reality modules were the first to

be integrated, this was done by placing the transcriptions from the speech recognition module

into the camera view of the augmented reality module.

The translation module implementation was started with a long phase of research. We

found out two software libraries that could work for real-time applications, Google translator

API and Azure AI translator. Azure AI translator was chosen for being the cheapest and most

scalable solution. Finally, all themodules were integrated to show the translated transcriptions

27

over the camera view and we checked they worked fast enough for a real-time application.

Figure 11: General scheme of the implementation of the application developed in this project.

Source: Author’s own elaboration.

4.1 Speech recognition module

Speech recognition is the core of the application because, in order to translate what the users

are saying, we first need to transcribe their speech. This process must be done accurately but,

specially for this project, it also needs to work as fast as possible, in the milliseconds scale. In

28

the following paragraphs, it will be detailed how this has been achieved. The main steps to

develop the speech recognition module are presented below:

1. Asking permission to use the microphone and do speech recognition.

2. Checking all necessary preconditions.

3. Creating and starting the speech recognition task.

4. Finishing the speech recognition task when requested.

Before starting to use the Speech framework, first, we need to add privacy keys to the

Info.plist file of the project. This must be included because if it is not present, the application

will stop working when attempting to request authorization or trying to use the APIs of the

Speech framework.

To achieve this, the project needs to be opened with the Xcode IDE (Integrated Develop-

ment Environment), after that, we need to add two different keys to the Info.plist file, these

are ”Privacy - Speech Recognition Usage Description” and ”Privacy - Microphone Usage De-

scription”. Furthermore, the privacy keys need a text description of why the application is

going to make use of them, this is important to build trust with the users and make them feel

safe using the application.

Figure 12: Privacy keys added to Info.plist related to speech recognition. Source: Author’s

own elaboration.

29

After successfully adding the privacy keys, the next step is requesting permission to the

user. This must be done the first time the user opens the application, so when the main view

of the application is first displayed, the permission request should appear as well. This process

has been encapsulated in a function as it can be seen from the following code snippet.

Figure 13: The implementation of the requestPermission function. Source: Author’s own

elaboration.

The variable permissionStatus is an enumeration from the Speech framework [App16d]

that must be authorized in order to make use of the framework. The permission is actually re-

quested using SFSpeechRecognizer.requestAuthorization [App16b], putting the decision of the

user into the authState variable, after that the only thing left is checking its value and giv-

ing permissionStatus the corresponding value. The reason why there is an if-else structure

is because we cannot simply assign the value of authState to permissionStatus because auth-

State may have corrupted values that may crash the application, we only want the values

we specified. Finally, the requestPermission() function will simply be invoked by using onAp-

pear{requestPermission()} [App19c] on the main view of the application.

Now that the application has permission to access the microphone and do speech recog-

nition, it is time to explain how this is done. Following a similar approach to when requesting

user permission, the process of starting and performing speech recognition has been encap-

sulated in a function called startSpeechRecognition.

At the start of this method, we first need to prepare and start the audio engine. This audio

engine is capable of performing complex real-time audio processing. It is commonly used

to simplify audio operations and input/output tasks, however, in this case it will be used to

30

capture the audio of a real-time conversation. In order to do this, we must access the input

node of the audio engine and setting the buffer size and the format, which in this case, it will be

the recording format. After doing that, wemust append the buffer to the request variablewhich

is an instance of the SFSpeechAudioBufferRecognitionRequest class. This class is in charge of

making a request to recognize speech from captured audio content, such as audio from the

microphone. Finally, audioEngine.prepare() is executed to preallocate the required resources

to start the audio engine and audioEngine.start() to start up the engine.

Figure 14: The beginning of the startSpeechRecognition function. Source: Author’s own elab-

oration.

Themiddle part of the startSpeechRecognition function consists in making all the necessary

checks to make sure there are no problems when trying to start the speech recognition task.

To understand the guard-let conditional statement, it is important to know a little bit more

about Swift. The guard statement is very similar to the if statement, however, the code block

inside an if statement will be executed when a certain condition is met, meanwhile the code

block inside a guard statement is only executed if the condition is false, furthermore, theymust

have a return statement, so they are designed to exit the current function or loop when the

condition fails. It can be understood as an if-else statement that only has the code block of the

else statement. The guard statement is usually used to verify that some conditions are correct

up from and only doing something when this does not happen. The let statement by itself is

used to define constants, however, when it is used inside a conditional statement (guard or

if), it allows to define a variable that can also unwrap an optional value. If the optional value

ends up being nil (equivalence of null in Swift) the condition will be considered false, but if

the optional value is a normal datatype (Int, String, etc) the condition will be considered true.

Now that the guard-let statement has been clarified, the meaning of the first verification

31

Figure 15: The middle part of the startSpeechRecognition function. Source: Author’s own

elaboration.

can be explained. The first check means that creating an object calling SFSpeechRecognizer()

should create an instance of the SFSpeechRecognizer class [App16c], but if the value is nil, this

means that the speech recognition is not available for the user locale and the flow of execution

should exit the current function. The second verification is tested using a normal if statement,

when the variablemySpeechRecognizer is not available this means that speech recognition task

cannot be created at the moment, this could be caused by other applications making use of

the microphone or the current language not being supported.

Once this has been done, it is time to finally create the speech recognition task. This is

done by assigning the value of mySpeechRecognizer.recognitionTask(with: request) to the vari-

able task of the SFSpeechRecognitionTask class. This class is used to monitor the speech recog-

nition progress, specifically to determine the state of a speech recognition task, cancelling an

ongoing task or signaling the end of the task, which will be useful later on. The response vari-

able will contain the transcription but first there is a verification using the guard-let statement

to see if response is nil or not, in case it is nil, we set the corresponding error message. If it

turns out that response is not nil, the flow of execution continues by defining a constant called

message, the value of this constant will be a string of the best transcription made by the speech

recognition module. In the end, we translate the value of message using the makeTranslation-

Request function which will be explained in the ”Translation module” section later on. The

value of the transcription variable will be displayed in an augmented reality environment, this

variable will contain the result of performing the translation to the message captured using

speech recognition.

As it has been mentioned in the previous paragraph, the SFSpeechRecognitionTask class is

used tomonitor the speech recognition progress, specifically to determine the state of a speech

recognition task, cancelling an ongoing task or signaling the end of the task. By using the task

32

Figure 16: The final part of the startSpeechRecognition function. Source: Author’s own elab-

oration.

variable, which is an instance of SFSpeechRecognitionTask created in the startSpeechRecognition

function, it is possible to give the user the possibility to stop the speech recognition when

desired.

In the following code snippet, the cancelSpeechRecognition function is shown, its main goal

is cancelling or ending all the processes started in the startSpeechRecognition function. To be

precise, the speech recognition task, the audio engine and the instance of the SFSpeechAu-

dioBufferRecognitionRequest class are halted. That way, when the user decides to start the

speech recognition again, the startSpeechRecognition function will be executed again and these

processes will have a fresh start.

Figure 17: The implementation of the cancelSpeechRecognition function. Source: Author’s

own elaboration.

33

4.2 Augmented reality module

The augmented reality layer of this application allows the user to see the translations in real

time and the other person talking simultaneously. The approach that was followed to achieve

this was, firstly, getting access to the views of the frontal and back cameras, secondly, overlay

the real time translations over the views of the cameras.

The AVFoundation library was used to achieve the first task. This library, previously ex-

plained in ”Methodology and Software tools”, is capable of working with time-based audiovi-

sual media formats likeQuickTime movies, MPEG-4 files, HLS streams and more, however, in

the context of this application it will be used to get access to the camera view.

Similarly to the speech recognition module, the augmented reality module also needs to

add some privacy keys to the Info.plist file of the project. In this case, the added keys are called

”Privacy - Camera Usage Description” and ”Privacy - Photo Library Usage Description”. These

keys also need a description to explain the user why they are needed. The three main pieces

of code that has been developed to achieve the goal of this layer are the following, they are

ordered from the highest to the lowest level of abstraction:

1. CameraPreview struct.

2. CameraModel class.

3. CameraService class.

The CameraPreview struct is in charge of providing the user interface view that will show

the outside world through the cameras of the mobile phone. Inside of this struct, there is a

class defined called VideoPreviewView, this class inherits from the UIView class, so an object

of this class could be used as the user interface of the application, at the same time, it also

uses the AVCaptureVideoPreviewLayer class from AVFoundation, this class provides a preview

of the content the camera captures. After that, there are two functions that needed to be

implemented to make CameraPreview conform to the UIViewRepresentable protocol, these are

makeUIView and updateUIView, although the second one will not be needed in this project,

the first one, makeUIView, is responsible for returning the user interface view of what the

cameras are capturing. This is achieved by returning an instance of the VideoPreviewView

34

class mentioned before. SwiftUI will later catch this view and show it as the main view of the

application.

Figure 18: The implementation of the CameraPreview struct. Source: Author’s own elabora-

tion.

TheCameraModel class is high-level implementation forCameraService that provides some

useful utility functions. These functions are configure, which will request permission to access

the camera, flipCamera and zoom. These functions are simply invoking functions from the

CameraService class, which will be explained afterwards. It is important to mention that the

configure function is executed the first time the user opens the application.

The CameraService provides many low level functions useful to camera applications. In

the context of this application, it will mainly do two things, checking camera permissions and

configuring the cameras that are going to be used. The checkForPermissions function defined

in CameraService is very similar to the requestPermission function explained in the ”Speech

recognition module” section. In the case of configuring the cameras, this is done in the config-

ureSession function. As it can be seen from the code snippet below, this is done inside a do-catch

statement in case the cameras are not accessible. First of all, we create an object of the AV-

CaptureDevice class called defaultVideoDevice, this object will be the virtual representation of

the camera used. Next, the if-let statement tries to create a constant called backCameraDevice

with the value of the virtual representation of the back camera, if this is not nil, the value of

35

Figure 19: The implementation of the CameraModel class. Source: Author’s own elaboration.

36

backCameraDevice will be assigned to defaultVideoDevice, otherwise, the same is done for the

front camera. After that, we check if defaultVideoDevice is nil or a virtual representation of

any of the cameras, in case it is nil, the setup of the cameras must be considered failed. The

flow of execution continues by creating a AVCaptureDeviceInput object out of the videoDevice

recently created, according to Apple [App08b], an object of the AVCaptureDeviceInput class

”provides media input from a capture device to a capture session”. At last, the videoDeviceIn-

put is added to the current session, so now the cameras are configured and ready to showwhat

they are capturing.

Figure 20: Configuring the cameras to be used in the application. Source: Author’s own

elaboration.

Finally, after setting up all the code necessary for the augmented reality layer (CameraPre-

view struct and the CameraModel and CameraService classes), the last thing left was showing

what the camera is capturing as a view of the application. Fortunately, the CameraPreview

struct implements the UIViewRepresentable protocol, so it can directly be shown in Swif-

tUI as an user interface. To achieve this, it is as a simple as calling CameraPreview(session:

model.session) inside the body of a SwiftUI view. In the code snippet below, CameraPre-

view(session: model.session) has been executed along with some modifiers. Modifiers are extra

pieces of code to enrich an user interface, in this case, the gesture modifier has been used to

37

make zoom when the drag gesture is done. The second modifier, onAppear, allows to execute

a function when the view is first shown, in this case model.configure() is executed to ask for

camera permissions. Another modifier used is alert, which will warn the user when an error

happens. The most important modifier is overlay, this modifier allows to show things over the

current view, that way, the translated transcriptions will be shown to the user at the same

time he sees the outside world through the camera.

Figure 21: The user interface that shows what the camera is capturing and the translated

transcriptions simultaneously. Source: Author’s own elaboration.

4.3 Translation module

The last module of this application is the real time translation module. As it was explained

in the ”Methodology and Software tools” section, the Azure AI translator [Mic22] was chosen

among a handful of candidates due to having low latency, providing a well documented REST

API and being the cheapest and most scalable solution.

At the start of the TranslationService.swift file, there are two structs used to decode the

response JSON that we will receive from Azure AI Translator. In Swift, the decodification of

JSONs needs to be done with the JSONDecoder class [App22]. JSONDecoder will automatically

38

be able to decode JSONs that follow the structure of a struct that implements the Codable

protocol. The structs implemented in this case are shown below.

Figure 22: Structs to decode the response JSON and get the translation data. Source: Author’s

own elaboration.

Below there is a screenshot of the response JSON that Azure AI translator sends back. The

TranslationBody struct will be used to decode the inner object with the ”text” and ”to” keys.

On the other hand, the Translation struct will be used to decode the external object with the

”translations” key.

Figure 23: Response JSON that Azure AI translator sends back. Source: Author’s own elabo-

ration.

The makeTranslationRequest function is in charge of translating the transcriptions. This

methods takes english text as input and it outputs the spanish translation for that text. First

of all, there is an initialization of a Semaphore [ZP08], which will be used when making the

request to control the flow of execution of the asynchronous event. After that, the variable

translation_body is created, this variable contains a dictionary with a ”text” key and the input

of the function as the corresponding value of this key. Next, this translation_body needs to

be converted into an object of the Data class so that it can later be used as the HTTP body

of the request, the transformation is done using the JSONSerialization.data function taking

the translation_body as input. The flow of execution continues by defining the URL where

the requests will be made to, following this up, the actual request is created. The URLRequest

39

constructor takes the recently created URL as a parameter, after that it was important to set

the type of REST request, which in this case is a POST request. The only two things left of the

initial part of themakeTranslationRequest function are setting up all the needed HTTP headers

(Content type, API key, API region, client id) and assigning the JSON data to the HTTP body

of the request. The JSON data that was added to the request contains the text that will be

translated by the service.

Figure 24: Initial part of the makeTranslationRequest function. Source: Author’s own elabo-

ration.

The final part of the makeTranslationRequest function starts by defining translationResult,

a String variable that will be the output of this method. Right after this, the task that invokes

the translation request is created. This task makes use of the dataTask(with: request) function

from the URLSession.shared object. This object from the URLSession class provides a shared

singleton [Sel22] session that can be used to fetch something from a URL in a simple way.

The shared session achieves this by using the dataTask(with: request) function, that takes the

recently created request associated with the URL as input. Next, the block of code inside the

task can be seen, this code will be executed asynchronously by the task. Asynchronous events

can be tricky because the function may return the translationResult without the request being

completed, so translationResult may not have the intended value. To solve this concurrency

problem, a Semaphore [ZP08] has been used to control the flow of execution. Below the

definition of the task, this asynchronous event is started using task.resume(), right below this

function, the semaphore variable waits until the same semaphore variable sends a signal inside

the body of the task, this assures that the translationResult will be returned with the intended

40

value. Coming back to the block of code inside the task, the result of the request will be in

the data variable. After making sure that there are no errors and the data is not corrupt, the

decodification of this data variable is done using the JSONDecoder mechanism explained at

the start of this section. After decoding the response JSON, it can be accessed as a common

dictionary, so we access the text of the translation and assign it to the translationResult variable

that will be the output of thismakeTranslationRequest function. The value of translationResult

will later be shown to the user through the augmented reality environment that was previously

explained.

Figure 25: Final part of the makeTranslationRequest function. Source: Author’s own elabora-

tion.

4.4 Results

Regarding the results, some measurements needed to be taken first. The primary method to

measure the different modules was by creating a function called timeElapsedInSecondsWhen-

RunningCode. This method makes use of the CFAbsoluteTimeGetCurrent function [App06]

which returns the current absolute time. The timeElapsedInSecondsWhenRunningCode func-

tion will capture the absolute time at the start, then the function to be measured will be exe-

cuted and the time elapsed will be the subtraction of the current absolute time and the time

41

captured previously. This is returned as a Double to have sub-second accuracy as best as the

system stores it.

Figure 26: Implementation of the function used to make measurements. Source: Author’s own

elaboration.

To appropriately take measurements, the modules needed to be isolated, that way only

the execution time of a module would be measured, in order to achieve that, the functionToBe-

Measured function on the following code snippet will be substituted by the isolated function

of a module. In case of the translation module, the time between receiving the transcription

text, making the request and returning the translated text will be measured. For the speech

recognition module, we will measure the time between the speech recognition receives the

audio input and the moment it transcribes the live audio to text. Finally, for the augmented

reality module, the time between receiving the translated text and showing it in the camera

view will be measured. The results of these measurements are the following:

• Execution time range for Translation module: [300ms, 500ms].

• Execution time range for Speech recognition module: [100ms, 250ms].

• Execution time range for Augmented reality module: [50ms, 75ms].

These measurements were the results of testing a set of strings that varies from single

words to whole compound sentences that go up to 250 characters per sentence. As it can

be seen from the results, the addition of the measurements would produce a [450ms, 825ms]

range, being 825ms the worst case scenario, which beats our main goal of producing a real-

time translator app that works in less than 1 second.

The results are good, but the asynchronous execution of the different modules improves

the speed of the application even more. The first time a sentence is translated, it will produce

the results seeing above, but after that, the asynchronous execution of the modules will reduce

the waiting time that the user experiences. For example, meanwhile the first sentence is being

42

translated, the user has already said the second sentence, so the speech recognition module

can transcribe the second sentence to text meanwhile the first sentence is translated by the

translation module. Moreover, this does not end here because there can be more than one

task of the samemodule being executed concurrently, for example, there can be more than one

translation task being executed at the same time, so the time between showing the translations

will get even shorter.

Figure 27: Diagram showing the concurrent execution of the modules. Source: Author’s own

elaboration.

In this case, the main contribution is the use of asynchronous tasks to accelerate the speed

of the complete workflow of the application. Specifically, the core component of this im-

provement has been taking advantage of the Task struct [App14d] to exploit the concurrency

[App14c] capabilities of the Swift programming language [App14a]. This approach can simi-

larly be applied to other programming languages and technologies to speed up the execution

time when asynchronous tasks are a possibility. In conclusion, the challenge of being able to

create a real-time translator, that is able to integrate all the modules with an execution time

of less than one second has been overcome successfully.

43

44

5
Conclusions and
Futures Studies

5.1 Conclusions

The main goal of this project was to overcome the challenge of integrating different libraries

to build a real-time translator application, essentially implying that all the operating modules

combined should produce results in less than a second. In this section, the results and con-

tributions of this project will be shown along the key aspects that permitted to accomplished

the proposed goal. Furthermore, I will personally talk about all the takeaways and knowledge

I have gained by successfully carrying out this project.

On a personal level, the challenge of building a real-time translator that shows the trans-

lations using augmented reality is something I have been wanting to do for several years. Due

to the complexity of the task, I decided to postpone it until the final year of my software engi-

neering degree, so when I finally started the project I was happy and motivated to do my best

and learn everything I can in the process. This project has helped me to go deeper into ad-

vanced topics like natural language processing, asynchronous programming or real-time app

development, and also to consider the requirements of a mobile application in a serious way.

The main two takeaways of this project has been, firstly, all the experts I have met in areas

like augmented reality, natural language processing and speech recognition, and secondly, all

the knowledge I have gained in those areas that I can now apply in my future professional life.

Regarding the results, I analyze the overall key contributions made and the ones specific

for each of the involved technologies. On a general level it was quite relevant to analyze

the different available libraries and frameworks in which this project can be based, choosing

the proper ones, bearing in mind that they should be integrated for a common goal. Despite

choosing the appropriate tools, making them work in real-time using concurrency techniques

45

is a key aspect of the work of this project, and much effort was put to optimize this.

In case of the speech recognition module, the main contribution has been making the

processing of the speech on-device instead of sending the audio to external servers, which

was the default configuration at the start. This is the main reason why the speech recognition

module is fast enough for the real-time requirements established at the start of this work.

For the augmented reality module, the core aspect has been finding out how to get access

to the cameras and show the actual view of the cameras following the SwiftUI standards.

Furthermore, finding out how to use view modifiers to overlay text to custom camera views

has been a great effort.

Regarding the translation module, researching and selecting the translation API that fits

the best for the real-time requirements has been key for the successful implementation of this

module. Creating asynchronous translation tasks that can be executed concurrently with the

other modules has been the main contribution. This has been extremely important to reduce

execution time and achieve the real-time requirements of this application.

As an overall conclusion, I am very happy and proud of this project as I have not only

learned several useful and novel software libraries and technologies, but also achieve my long

term goal of build a real-time translator application.

5.2 Future Studies

Regarding future studies, there are a few things that could be worked on. The current project is

able to translate from English to Spanish, and thus adding more languages would be a relevant

improvement. In fact, the translation module could already do this with very few changes.

Nevertheless, problems arise when trying to do speech recognition with languages other than

English, because the accuracy of the transcriptions will not be at the same level, as libraries

are not so optimized. In other words, in order to add more languages to translate, improving

the accuracy of speech recognition for other languages would be necessary.

Another improvement for the foreseeable future could be adding a NLP machine learning

model that works as a contextual layer [Dev22] for the speech recognition module. This NLP

model would be able to distinguish if the current word transcribed from the speech recognition

module makes sense in the context of the whole sentence. For example, when having two

words with similar pronunciations, dish and fish, in the context of a phrase like ”I went to the

46

beach and caught a <word>”, this model would be able to pick fish as the word that fits the

best in that situation, improving even more the accuracy of the speech recognition module.

Something that could be useful to some users is automatically clearing up the text of the

translation every few sentences. The reason why this has not been done is because some

people may need more time to read the translated sentences, so a button was provided to

clear up the text when needed. Another feature that could be implemented, specially for

business use cases, is recording a conversation along with the translations so that the user

can access them later. In case this was added, there should be a prior agreement between

the different people having the conversation and the application should explicitly say that the

current conversation is being recorded.

One of the many reasons why this project was developed using Apple technologies was to

smoothly port this application to the upcoming Apple augmented reality headset. As it was

mentioned in the ”Methodology and Software tools” section, SwiftUI is a cross-platform tech-

nology that works for all Apple products. Furthermore, Apple is the company that cares the

most about the interoperability of their product ecosystem, so when the AR headset launches,

this application would be in a good position to be the first AR translator available in the plat-

form.

47

48

6
Conclusiones y
Líneas Futuras

6.1 Conclusiones

El objetivo principal de este proyecto era superar el desafío de integrar diferentes bibliotecas

para crear una aplicación de traducción en tiempo real, lo que esencialmente implica que to-

dos los módulos combinados deberían producir resultados en menos de un segundo. En esta

sección se mostrarán los resultados y aportes de este proyecto junto con los aspectos clave

que permitieron lograr el objetivo propuesto. Además, hablaré personalmente sobre todos los

aprendizajes y conocimientos que he adquirido al llevar a cabo con éxito este proyecto.

A nivel personal, el reto de construir un traductor en tiempo real que muestre las traduc-

ciones usando realidad aumentada es algo que quería hacer desde hace varios años. Debido

a la complejidad de este tarea, decidí posponerlo hasta el último año de la carrera de Inge-

niería del Software, así que cuando finalmente comencé el proyecto estaba feliz y motivado

para dar lo mejor de mí y aprender todo lo que pudiera en el proceso. Este proyecto me ha

ayudado a profundizar en temas avanzados como el procesamiento del lenguaje natural, la

programación asíncrona o el desarrollo de aplicaciones en tiempo real, y también a considerar

seriamente los requisitos de una aplicación móvil. Las dos cosas principales que me ha apor-

tado este proyecto han sido, en primer lugar, todos los expertos que he conocido en áreas como

la realidad aumentada, el procesamiento del lenguaje natural y el reconocimiento de voz, y en

segundo lugar, todo el conocimiento que he adquirido en esas áreas que ahora puedo aplicar

en mi vida profesional.

En el caso del módulo de reconocimiento de voz, la principal contribución ha sido realizar

el procesamiento de la voz en el propio dispositivo en lugar de enviar el audio a servidores

49

externos, que era la configuración predeterminada al principio. Esta es la razón principal por

la que el módulo de reconocimiento de voz es lo suficientemente rápido para los requisitos de

tiempo real establecidos al inicio de este trabajo.

Para el módulo de realidad aumentada, el aspecto central ha sido descubrir cómo acceder a

las cámaras y mostrar la vista real de las cámaras siguiendo los estándares de SwiftUI. Además,

descubrir cómo usar modificadores para superponer texto en vistas personalizadas de cámaras

ha sido un gran esfuerzo.

Con respecto al módulo de traducción, investigar y seleccionar la API de traducción que

mejor se adapte a los requisitos en tiempo real ha sido clave para la implementación exitosa

de este módulo. La principal contribución ha sido crear tareas de traducción asincrónicas

que puedan ejecutarse simultáneamente con los otros módulos. Esto ha sido extremadamente

importante para reducir el tiempo de ejecución y lograr los requisitos de tiempo real de esta

aplicación.

Como conclusión general, estoy muy contento y orgulloso de este proyecto, ya que no

solo he aprendido sobre varias tecnologías y librerías de software útiles y novedosas, sino que

también he logrado mi objetivo a largo plazo de crear una aplicación de traducción en tiempo

real.

6.2 Líneas Futuras

En cuanto a las líneas futuras, hay varias cosas en las que se podría trabajar. El proyecto

actualmente puede traducir del inglés al español, y por lo tanto agregar más idiomas sería una

mejora relevante. De hecho, el módulo de traducción ya podría hacer esto con muy pocos

cambios. Sin embargo, los problemas surgen al intentar hacer reconocimiento de voz con

idiomas distintos al inglés, porque la precisión de las transcripciones no estarán al mismo

nivel, ya que las bibliotecas no están tan optimizadas. En otras palabras, para agregar más

idiomas para traducir, sería necesario mejorar la precisión del reconocimiento de voz para

otros idiomas.

Otra mejora que podría hacerse en el futuro sería añadir un modelo de machine learning

de procesamiento del lenguaje natural que funcione como una capa contextual [Dev22] del

módulo de reconocimiento de voz. Este modelo de procesamiento del lenguaje natural sería

capaz de distinguir si la palabra actual transcrita por el módulo de reconocimiento de voz tiene

50

sentido en el contexto de la oración completa. Por ejemplo, al tener dos palabras con pronun-

ciaciones similares, mercado y pescado, en el contexto de una oración como ”Fui a la playa y

capturé un <palabra>”, este modelo sería capaz de elegir pescado como la palabra que encaja

mejor en esa situación, mejorando incluso más la precisión del módulo de reconocimiento de

voz.

Algo que podría serle útil a algunos usuarios es limpiar automáticamente el texto de la

traducción cada pocas oraciones. La razón por la que esto no se ha hecho es porque algunas

personas pueden necesitar más tiempo para leer las transcripciones traducidas, por lo que

se proporcionó un botón para limpiar el texto cuando sea necesario. Otra característica que

podría implementarse, especialmente para empresas, es grabar la conversación junto a las

traducciones para que el usuario pueda acceder a ellas más tarde. En caso de que se agregue

esto, debe haber un acuerdo previo entre las diferentes personas que tienen la conversación y

la aplicación debe decir explícitamente que la conversación actual está siendo grabada.

Una de las muchas razones por las que este proyecto se desarrolló utilizando tecnologías

de Apple fue para trasladar facilmente esta aplicación a las próximas gafas de realidad aumen-

tada de Apple. Como se mencionó en la sección ”Metodología y herramientas de software”,

SwiftUI es una tecnología multiplataforma que funciona para todos los productos de Apple.

Además, Apple es la empresa que más se preocupa por la interoperabilidad de su ecosistema

de productos, por lo que cuando se lancen los gafas de realidad aumentada, esta aplicación

estaría en una buena posición para ser el primer traductor de realidad aumentada disponible

en la plataforma.

51

52

Bibliography
[Str91] Bjarne Stroustrup. What is ‘‘Object-Oriented Programming’’? 1991. uRl: https:

//www.stroustrup.com/whatis.pdf.

[TP01] Davide Turcato and Fred Popowich. What is Example-Based Machine Translation?

2001. uRl: https://aclanthology.org/2001.mtsummit-ebmt.7.pdf.

[Abr+02] Pekka Abrahamsson et al. Agile Software Development Methods: Review and Analy-

sis. 2002. uRl: https://arxiv.org/ftp/arxiv/papers/1709/1709.08439.pdf.

[LA04] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Pro-

gram Analysis and Transformation. 2004. uRl: https://llvm.org/pubs/2004-
01-30-CGO-LLVM.pdf.

[App06] Apple. Official documentation of CFAbsoluteTimeGetCurrent function. 2006. uRl:

https://developer.apple.com/documentation/corefoundation/1543542-
cfabsolutetimegetcurrent.

[App08a] Apple. Official documentation for the AVFoundation framework. 2008. uRl: https:
//developer.apple.com/av-foundation/.

[App08b] Apple. Official documentation of AVCaptureDeviceInput class. 2008. uRl: https://
developer.apple.com/documentation/avfoundation/avcapturedeviceinput.

[ZP08] Julie Zelenski andNick Parlante.Thread and Semaphore Examples. 2008. uRl: https:
//see.stanford.edu/materials/icsppcs107/23-Concurrency-Examples.
pdf.

[Rei+10] Gerhard Reitmayr et al. “Simultaneous Localization and Mapping for Augmented

Reality”. In: International Symposium on Ubiquitous Virtual Reality 0 (July 2010),

pp. 5–8. doi: 10.1109/ISUVR.2010.12.

[App14a] Apple. About Swift. 2014. uRl: https://docs.swift.org/swift-book/.

[App14b] Apple. Automatic Reference Counting. 2014. uRl: https://docs.swift.org/
swift-book/LanguageGuide/AutomaticReferenceCounting.html.

53

https://www.stroustrup.com/whatis.pdf
https://www.stroustrup.com/whatis.pdf
https://aclanthology.org/2001.mtsummit-ebmt.7.pdf
https://arxiv.org/ftp/arxiv/papers/1709/1709.08439.pdf
https://llvm.org/pubs/2004-01-30-CGO-LLVM.pdf
https://llvm.org/pubs/2004-01-30-CGO-LLVM.pdf
https://developer.apple.com/documentation/corefoundation/1543542-cfabsolutetimegetcurrent
https://developer.apple.com/documentation/corefoundation/1543542-cfabsolutetimegetcurrent
https://developer.apple.com/av-foundation/
https://developer.apple.com/av-foundation/
https://developer.apple.com/documentation/avfoundation/avcapturedeviceinput
https://developer.apple.com/documentation/avfoundation/avcapturedeviceinput
https://see.stanford.edu/materials/icsppcs107/23-Concurrency-Examples.pdf
https://see.stanford.edu/materials/icsppcs107/23-Concurrency-Examples.pdf
https://see.stanford.edu/materials/icsppcs107/23-Concurrency-Examples.pdf
https://doi.org/10.1109/ISUVR.2010.12
https://docs.swift.org/swift-book/
https://docs.swift.org/swift-book/LanguageGuide/AutomaticReferenceCounting.html
https://docs.swift.org/swift-book/LanguageGuide/AutomaticReferenceCounting.html

[App14c] Apple. Concurrency in Swift. 2014. uRl: https : / / docs . swift . org / swift -
book/LanguageGuide/Concurrency.html.

[App14d] Apple. Official documentation of Task struct. 2014. uRl: https : / / developer .
apple.com/documentation/swift/task.

[App14e] Apple. The Swift programming language Github’s repository. 2014. uRl: https :
//github.com/apple/swift.

[Dig15] Danny Dig. Refactoring for Asynchronous Execution on Mobile. 2015. uRl: http:
//dig.cs.illinois.edu/papers/refactoringAsync.pdf.

[App16a] Apple. Official documentation for the Speech framework. 2016. uRl: https : / /
developer.apple.com/documentation/speech.

[App16b] Apple. Official documentation of requestAuthorization method. 2016. uRl: https:
/ / developer . apple . com / documentation / speech / sfspeechrecognizer /
1649892-requestauthorization.

[App16c] Apple. Official documentation of SFSpeechRecognizer class. 2016. uRl: https://
developer.apple.com/documentation/speech/sfspeechrecognizer.

[App16d] Apple. Official documentation of SFSpeechRecognizerAuthorizationStatus enumer-

ation. 2016. uRl: https://developer.apple.com/documentation/speech/
sfspeechrecognizerauthorizationstatus.

[Occ16] Occipital. Occipital Brings AR to Life In Any Room. 2016. uRl: https : / / www .
youtube.com/watch?v=vpcO_K7l5wg.

[Wu+16] Yonghui Wu et al. Google’s Neural Machine Translation System: Bridging the Gap

between Human and Machine Translation. 2016. uRl: https://arxiv.org/pdf/
1609.08144.pdf.

[Nov17] Jordan Novet.Google has slashed its speech recognition word error rate by more than

30% since 2012. 2017. uRl: https://venturebeat.com/2017/01/11/google-
has-slashed-its-speech-recognition-word-error-by-more-than-30-
since-2012/.

[App19a] Apple.Official documentation for the@Published propertywrapper. 2019. uRl: https:
//developer.apple.com/documentation/combine/published.

54

https://docs.swift.org/swift-book/LanguageGuide/Concurrency.html
https://docs.swift.org/swift-book/LanguageGuide/Concurrency.html
https://developer.apple.com/documentation/swift/task
https://developer.apple.com/documentation/swift/task
https://github.com/apple/swift
https://github.com/apple/swift
http://dig.cs.illinois.edu/papers/refactoringAsync.pdf
http://dig.cs.illinois.edu/papers/refactoringAsync.pdf
https://developer.apple.com/documentation/speech
https://developer.apple.com/documentation/speech
https://developer.apple.com/documentation/speech/sfspeechrecognizer/1649892-requestauthorization
https://developer.apple.com/documentation/speech/sfspeechrecognizer/1649892-requestauthorization
https://developer.apple.com/documentation/speech/sfspeechrecognizer/1649892-requestauthorization
https://developer.apple.com/documentation/speech/sfspeechrecognizer
https://developer.apple.com/documentation/speech/sfspeechrecognizer
https://developer.apple.com/documentation/speech/sfspeechrecognizerauthorizationstatus
https://developer.apple.com/documentation/speech/sfspeechrecognizerauthorizationstatus
https://www.youtube.com/watch?v=vpcO_K7l5wg
https://www.youtube.com/watch?v=vpcO_K7l5wg
https://arxiv.org/pdf/1609.08144.pdf
https://arxiv.org/pdf/1609.08144.pdf
https://venturebeat.com/2017/01/11/google-has-slashed-its-speech-recognition-word-error-by-more-than-30-since-2012/
https://venturebeat.com/2017/01/11/google-has-slashed-its-speech-recognition-word-error-by-more-than-30-since-2012/
https://venturebeat.com/2017/01/11/google-has-slashed-its-speech-recognition-word-error-by-more-than-30-since-2012/
https://developer.apple.com/documentation/combine/published
https://developer.apple.com/documentation/combine/published

[App19b] Apple. Official documentation for the ObservableObject protocol. 2019. uRl: https:
//developer.apple.com/documentation/combine/observableobject.

[App19c] Apple. Official documentation of onAppear instance method. 2019. uRl: https://
developer.apple.com/documentation/SwiftUI/View/onAppear(perform:).

[TZT19] Yi Tay, Aston Zhang, and Luu Anh Tuan. Lightweight and Efficient Neural Natural

Language Processing with Quaternion Networks. 2019. uRl: https://arxiv.org/
pdf/1906.04393.pdf.

[Bha20] Manick Bhan. What the commoditization of search engine technology with GPT-3

means for Google and SEO. 2020. uRl: https://www.searchenginewatch.com/
2020/08/21/what-the-commoditization-of-search-engine-technology-
with-gpt-3-means-for-google-and-seo/.

[Bro+20] Tom B. Brown et al. Language Models are Few-Shot Learners. [GPT-3]. 2020. uRl:

https://arxiv.org/pdf/2005.14165v4.pdf.

[IBM20] IBM. What is a REST API? 2020. uRl: https://www.youtube.com/watch?v=
lsMQRaeKNDk.

[Sta20] Statista. Number of voice assistant users in the United States from 2017 to 2022.

2020. uRl: https://www.statista.com/statistics/1029573/us- voice-
assistant-users/.

[GP21] SantoshGondi andVineel Pratap. “Performance Evaluation of Offline Speech Recog-

nition on Edge Devices”. In: Electronics 10 (Nov. 2021), p. 2697. doi: 10.3390/
electronics10212697.

[Nan21] NanoReview. Snapdragon 888 vs A15 Bionic. 2021. uRl: https://nanoreview.
net/en/soc-compare/qualcomm-snapdragon-875-vs-apple-a15-bionic.

[Vod21] Vodafone. Descubre Nreal Light con Vodafone 5G Reality AR. 2021. uRl: https:
//www.youtube.com/watch?v=g3huPp6EW8g&t=55s.

[Wik21] Wikipedia. Makoto Nagao biography. 2021. uRl: https://en.wikipedia.org/
wiki/Makoto_Nagao.

[App22] Apple.Official documentation of JSONDecoder class. 2022. uRl: https://developer.
apple.com/documentation/foundation/jsondecoder.

55

https://developer.apple.com/documentation/combine/observableobject
https://developer.apple.com/documentation/combine/observableobject
https://developer.apple.com/documentation/SwiftUI/View/onAppear(perform:)
https://developer.apple.com/documentation/SwiftUI/View/onAppear(perform:)
https://arxiv.org/pdf/1906.04393.pdf
https://arxiv.org/pdf/1906.04393.pdf
https://www.searchenginewatch.com/2020/08/21/what-the-commoditization-of-search-engine-technology-with-gpt-3-means-for-google-and-seo/
https://www.searchenginewatch.com/2020/08/21/what-the-commoditization-of-search-engine-technology-with-gpt-3-means-for-google-and-seo/
https://www.searchenginewatch.com/2020/08/21/what-the-commoditization-of-search-engine-technology-with-gpt-3-means-for-google-and-seo/
https://arxiv.org/pdf/2005.14165v4.pdf
https://www.youtube.com/watch?v=lsMQRaeKNDk
https://www.youtube.com/watch?v=lsMQRaeKNDk
https://www.statista.com/statistics/1029573/us-voice-assistant-users/
https://www.statista.com/statistics/1029573/us-voice-assistant-users/
https://doi.org/10.3390/electronics10212697
https://doi.org/10.3390/electronics10212697
https://nanoreview.net/en/soc-compare/qualcomm-snapdragon-875-vs-apple-a15-bionic
https://nanoreview.net/en/soc-compare/qualcomm-snapdragon-875-vs-apple-a15-bionic
https://www.youtube.com/watch?v=g3huPp6EW8g&t=55s
https://www.youtube.com/watch?v=g3huPp6EW8g&t=55s
https://en.wikipedia.org/wiki/Makoto_Nagao
https://en.wikipedia.org/wiki/Makoto_Nagao
https://developer.apple.com/documentation/foundation/jsondecoder
https://developer.apple.com/documentation/foundation/jsondecoder

[Ban22] Bankmycell. How Many Smartphones Are In The World? 2022. uRl: https://www.
bankmycell.com/blog/how-many-phones-are-in-the-world#part-1.

[Dev22] Jacob Devlin. Contextual Word Representations with BERT and Other Pre-trained

Language Models. 2022. uRl: https://web.stanford.edu/class/cs224n/
slides/Jacob_Devlin_BERT.pdf.

[Git22] Github. Repository with the source code of this TFG. 2022. uRl: https://github.
com/lloretalvaro/lengu.

[Mic22] Microsoft.Azure AI translator reference page. 2022. uRl: https://azure.microsoft.
com/en-us/services/cognitive-services/translator/.

[Nre22] Nreal. Official Nreal Air website. 2022. uRl: https://www.nreal.ai/air/.

[Rap22] RapidAPI. Google Translate APIs and Alternatives. 2022. uRl: https://rapidapi.
com/collection/google-translate-api-alternatives.

[Sel22] Toni Sellarès.TheSingleton Pattern. 2022. uRl: https://ima.udg.edu/~sellares/
EINF-ES1/SingletonToni.pdf.

[Sta22] Statista. Number of smartphone subscriptions worldwide from 2016 to 2027. 2022.

uRl: https://www.statista.com/statistics/330695/number-of-smartphone-
users-worldwide/.

56

https://www.bankmycell.com/blog/how-many-phones-are-in-the-world#part-1
https://www.bankmycell.com/blog/how-many-phones-are-in-the-world#part-1
https://web.stanford.edu/class/cs224n/slides/Jacob_Devlin_BERT.pdf
https://web.stanford.edu/class/cs224n/slides/Jacob_Devlin_BERT.pdf
https://github.com/lloretalvaro/lengu
https://github.com/lloretalvaro/lengu
https://azure.microsoft.com/en-us/services/cognitive-services/translator/
https://azure.microsoft.com/en-us/services/cognitive-services/translator/
https://www.nreal.ai/air/
https://rapidapi.com/collection/google-translate-api-alternatives
https://rapidapi.com/collection/google-translate-api-alternatives
https://ima.udg.edu/~sellares/EINF-ES1/SingletonToni.pdf
https://ima.udg.edu/~sellares/EINF-ES1/SingletonToni.pdf
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/

Appendix A
User Manual

In this appendix, we are going to show how to use the visual interface of the application.

First of all, the user interface of the application has one view formed by three components.

These components will be named up component, middle component and bottom component.

The main component is the middle one, where the user will be able to see the outside world

through the camera view and the translations simultaneously. The translations will be in a

text label placed at the center of the camera view, if the length of the translations increases,

the text will adjust automatically while always maintaining a certain padding.

Figure 28: User interface of the application. Source: Author’s own elaboration.

The up component contains two buttons that activate the main functionality of the appli-

cation. If the user wants to activate the speech recognition to start translating he should push

57

the ”Press to start” button. Once this is done, the app will automatically catch everything the

person is saying, translate the transcribed text and finally show the translations in the mid-

dle component. If the user wants to stop the speech recognition from capturing what he is

saying, he should push the same button that he pushed to start it, but now the button text

should be ”Press to finish”. After doing that, all speech recognition tasks will be canceled and

the application will stop making use of the microphone. The last translation text will stay in

the middle component so that the user has time to read it. If the user decides to clear the text,

he can push the ”Clear text” button, for a better experience this button should only be pushed

when the microphone is not activated, that is when the button below has the ”Press to start”

text.

Finally, the bottom component has a label containing the available translation, in this case

English to Spanish. Next to the label, there is a button with the icon of a camera that will

change the camera that is being used, this camera can be either the frontal or back camera,

the switch of cameras will be seen in the middle component.

58

Appendix B
Installation Guide

In this appendix, we are going to show how to install the application to be able to execute

it in a physical iPhone. The requirements are the following: having a computer with macOS

Monterey, an iPhone with iOS 15.0 or higher and Xcode version 13.0.0 or higher.

The first step is downloading the provided source code. The name given to the project is

”Lengu” so the ”Lengu.zip” file will have all the source code of this application. Alternatively,

the source code of this project is publicly available on GitHub, so it can also be downloaded

from there in the following reference [Git22]. After decompressing the ”Lengu.zip” file, there

will be another folder called ”Lengu” and a file called ”Lengu.xcodeproj”. By simply clicking

this ”Lengu.xcodeproj” file, Xcode should open the project and configure everything needed.

Figure 29: Content inside Lengu.zip. Source: Author’s own elaboration.

Once Xcode opens this project, make sure that the requirements written at the start of this

appendix are met (macOS, iPhone and Xcode). Next, the physical iPhone should be connected

to the computer using a Lightning-to-USB-C cable, Xcode should automatically detect the

connection and it will get the iPhone ready for development. After that, the iPhone should

be selected as the target of the execution. In order to run the application, it is as simple as

clicking the play button found in the top left corner of Xcode. In the following figure, the play

59

button and the iPhone selected as development target are inside green rectangles to facilitate

their localization.

Figure 30: View of the project inside Xcode. Source: Author’s own elaboration.

60

E.T.S de Ingeniería Informática
Bulevar Louis Pasteur, 35
Campus de Teatinos
29071 Málaga
 E.T.S. DE INGENIERÍA INFORMÁTICA

	Introduction
	Motivation
	Objectives
	Structure of the document

	State of the art
	Machine translations and artificial intelligence
	Speech recognition
	Augmented reality

	Methodology and Software tools
	Methodology
	Software tools
	Swift and SwiftUI
	Speech and AVFoundation frameworks
	Combine framework
	Azure AI Translator

	Implementation of the application
	Speech recognition module
	Augmented reality module
	Translation module
	Results

	Conclusions and Futures Studies
	Conclusions
	Future Studies

	Conclusiones y Líneas Futuras
	Conclusiones
	Líneas Futuras

	Bibliography
	Appendix User Manual
	Appendix Installation Guide

