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Una rafaga de aire frio

un molino de viento hace girar,

va rodando sobre su eje

describiendo una trayectoria mds.
Espacio y tiempo jugando ajedrez,

somos la incognita de una triste ecuacion
que el sistema desea resolver,

aun sabiendo que no hay solucion.

Somos coordenadas de una recta comun,
que en el infinito se ha de cortar;

la raiz cuadrada que no existe aun

o un punto de corte sin solucionar.

Somos la suma de dngulos del destfino,
una formula mds por aprender,

la combinatoria de un problema complicado,
sumando la tangente y el coseno a la vez.
Matriz, vector o derivada

nada que se pueda calcular,

porque nuestras vidas son la incognita
que aun falta por despejar.

Pilar Luque

Enero de 1996.
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A mi madre.
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Introduction

In the 1930s and 1940s the works of ). Ore and K. Asano already mentioned
systems of quotients in rings, but it was not until the end of the 1950s that

the subject really developed with the contributions of many authors (R. E.
Johnson, Y. Utumi, A. W. Goldie and J. Lambek among others).

The classical notion of ring of quotients of a given ring R corresponds to a
ring () containing R in such a way that the regular elements of R (which may
not be invertible in R) have an inverse in ). In fact, one of the first things
that one comes up with when starts to study Algebra is an example of this

situation, namely, the field of fractions of an integral domain.

Of course, trying to find a ring of quotients of a given ring is no easy task.
This motivated @). Ore to give a condition for a ring of quotients to exist,
nowadays known as the left Ore condition: For every a € Reg(R) and b € R
there exist ¢ € Reg(R) and d € R such that ¢b = da. The reader can see in
[44, §9] an example provided by Mal’cev of a ring R which does not have any

ring of quotients even though R has very nice properties like being a domain.

The next step was done by Utumi in 1956. He gave a more general notion
of left quotient ring, in [73], that would generalize the rest of the quotient
rings: An overring @ of a ring R is said to be a (general) left quotient ring
of R if given p,q € @, with p # 0, there exists a € R satisfying ap # 0 and
aq € R.

In his paper, Utumi proved that there exists a maximal left quotient ring
for every ring without total right zero divisors (for example for semiprime

or unital rings), called the Utumi left quotient ring of R and denoted by

l
mazx

(R). Since the notion of (general) left quotient ring includes all the

I11
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others (fields of fractions, classical left quotient rings, etc), the maximal left

l

max (1) 1s the biggest ring of quotients we can consider.

quotient ring )

Our work is framed in the area of Algebra, and specifically in the theory
of associative systems, i.e., algebras, pairs and triples. Neither commutativity
nor the existence of a unit are required.

The main part of the thesis can be regarded as a development of the
theory of systems of quotients of these algebraic objects, so that one of the
aims is to construct systems of quotients in several settings where the lack
of them is evident, and thus (in addition to the clear interest that having
suitable notions of quotients in new settings has by itself) as a consequence,
to be able to obtain new breakthroughs in the knowledge of the structure of
certain systems via this theory of quotients.

The latter scheme has been extensively used in the past by a large number
of authors. For instance, the pioneering work of R. E. Johnson on nonsingular
rings [39] is a classic example of this situation, where a characterization of
these type of rings is given in terms of ring-theoretic properties of their maxi-
mal rings of quotients. Concretely, Johnson’s Theorem characterizes those
rings R for which Q! .. (R) is von Neumann regular [44, (13.36)].

Gabriel’s Theorem [44, (13.40)] goes a step further by showing that the
rings R for which Q! . (R) is semisimple (a finite direct product of matrices
over division rings) are precisely the left nonsingular rings with finite left
uniform dimension.

Also, this notion of maximal left quotient ring has been proved to be very
useful in the study of Fountain-Gould orders in rings not necessarily unital
(see [30] and the related references therein).

In addition, another obvious use of the maximal ring of left quotients is
that it provides an appropriate framework where to settle different rings of
quotients such as the classical one, the Martindale symmetric ring of quotients
(introduced by Martindale for prime rings and by Amitsur for semiprime
rings -see [16]- and extended to general rings by McCrimmon in [55]), or the

maximal symmetric (discovered by Schelter -see [68]-).
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Hence, as new constructions we achieve a satisfactory maximal graded left
quotient algebra as well as notions of maximal left quotient associative pair (in
a more general situation than the previously considered by M. Gémez Lozano
and M. Siles Molina in [29]) and of maximal left quotient triple system.

Among the applications of the maximal left quotient systems, we show
some Morita-invariance results (by means of corners of rings) and a Johnson-
like theorem for a certain type of Z-algebras.

During the author’s stay in the University of Colorado, G. Abrams brought
to his attention the Leavitt path algebras of graphs. These algebras include
some of those which had been appearing in our previous dissertations. In
particular they include the Laurent polynomial algebra K[z, z~'], which is
(in our understanding) the simplest example where the notions of maximal
graded left quotient algebra and maximal left quotient algebra (without grad-
ing) differ.

Thus, the last chapter of this thesis is devoted to these algebras. Our
task consists in finding necessary and sufficient graph-theoretic conditions on
a graph such that the Leavitt path algebras associated to it have a certain
ring-theoretic property. Concretely, we manage to do so with the simplicity
and the purely infinite simplicity.

Once we have a better understanding of the structure of these algebras,
we are hopeful that these recently obtained results could help us to somehow
unravel the behaviour of their maximal graded left quotient algebras. That
would enable us to include some of our maximal graded left quotient algebras

results in more general ones.

We describe now in more detail the contents of the chapters and their
sections.

In chapter 1, we begin by recalling the notion of (general) left quotient ring
and its associated maximal left quotient ring @', .. (R), introduced by Utumi
in [73], which is, as we have already mentioned, a widely present notion in
the mathematical literature (see [16], [44], [45] and [72], for example).

It is natural to ask if given an idempotent e in a ring R without total
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right zero divisors, the maximal left quotient ring of a corner (Q! . (eRe))

l
max

and the corner of the maximal left quotient ring (e@;,,,.(R)e) are isomorphic.
We prove in the first section that this is true for every full idempotent e of
a ring R without total left zero divisors and without total right zero divisors
(this fails in general, as it is shown in (1.2.9)). In fact, we prove a more general

result:

Theorem 1.2.6. Let R be a ring and Q := Q' ,.(R). Then, for every idem-

potent e € Q) such that eR + Re C R and lang(Re) = rang(eR) = 0 we have:
L w(eRe) = e@! (R)e.

max max

No less natural is to wonder if a similar commutativity result between
matrices and maximal left quotient rings also holds as it does in the unital

case. That is indeed the case.

Proposition 1.3.6. For a ring R without total right zero divisors we have:
maz (M (R)) = My (@0 (1))

max max

The previous results can be applied to Morita-invariance theory. It is well-
known that if R and S are two unital Morita equivalent rings, then Q! = (R)

maz
and Q! . (S) are Morita equivalent too. This contrasts heavily with the unital
case: It is shown in (1.3.8) that there exist rings which are Morita equivalent to
division rings but do not satisfy this property. However in section 2 we obtain,
among other things, that if R and S are two Morita equivalent idempotent
rings, then the ideals they generate inside their own maximal left quotient

rings are Morita equivalent:

Theorem 1.3.10. Let R and S be two Morita equivalent idempotent rings,

A= ]}\%7 ]\;) the Morita ring of a surjective Morita context and denote
Q1= QL. (R), Qy:=Q .(S). Then Q1 RQ; and Q25Q; are Morita equiva-

lent tdempotent rings.

The reader may find a classification of properties regarding whether or

not they are (or under which circumstances) Morita-invariant in [10]. In this
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chapter we have followed the ideas and results shown in the work of M. Gémez

Lozano, M. Siles Molina and the author, [11].

Although the theory of maximal left quotient rings has been widely studied
in the non graded case, it has not been so deeply investigated in the context
of graded algebras. Several authors though, have considered torsion theories
for graded rings with unit (see for example the works of O. Goldman [27], C.
Nastasescu and F. van Oystaeyen [56]). Concretely, in 1978 van Oystaeyen
studied in [59] graded rings and modules of quotients from a categorical point
of view by considering unital rings.

Our aim is to study left quotient algebras for (not necessarily unital) al-
gebras without total right zero divisors. To do so, we follow here a different
approach to the categorical one just mentioned, mainly to avoid several tech-
nical difficulties which arise when considering categories of modules over an
arbitrary ring (perhaps not even idempotent).

So, in chapter 2, after some definitions and preliminary results in the
first section, we devote the second one to the notions of graded left quotient
algebra and weak graded left quotient algebra. While every (weak) graded
left quotient algebra is a (weak) left quotient algebra, the converse fails since
not every (weak) left quotient algebra of a graded algebra can be graded in
order to be a graded overalgebra.

Being a graded left quotient algebra can be characterized by using absorp-

tion by graded dense left ideals.

Proposition 2.2.18. Let A be a gr-subalgebra of a gr-algebra B = @ycq B, .
The following statements are equivalent.

(i) B is a gr-left quotient algebra of A.

(i1) For every nonzero q € B there exists a gr-dense left ideal I of A such
that 0 # Iq C A.

(111) For every nonzero q, € B, there exists a gr-left ideal I of A with
rang(I) ={a € A:Ia =0} =0 such that 0 # Iq, C A.

We close the section by exploring the behaviour of gr-left quotient algebras
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when local algebras at elements are involved, and obtain the graded analogue
to a known result which relates left quotient algebras with local algebras at

elements.

The study of the gr-left singular ideal is done in the third section. This has
been shown to be a powerful tool when studying maximal rings of quotients
(see for example the works of A. Fernandez Lépez, E. Garcia Rus, M. Gémez
Lozano and M. Siles Molina in [22], the third and fourth authors in [29] and
the third author in [28]).

In the fourth section we follow the idea of Y. Utumi in [73] (the same
as that of F. van Oystaeyen in [59]) in order to construct a maximal graded
left quotient algebra of a given G-graded algebra without homogeneous total
right zero divisors, and obtain it as a direct limit of graded homomorphisms

of left modules from graded dense left ideals into the algebra.

The graded maximal left quotient algebra is a subalgebra of the maxi-
mal left quotient algebra, and they do not coincide necessarily. For instance,
when we consider the algebra of polynomials K [x] then, since it is an inte-

gral domain, it is well-known that Q' , (K|[z]) = K(z), its field of fractions.

max

Nevertheless, it is known that a division ring cannot be Z-graded (with a non-
l

max

trivial grading), so that @;,,,(K[z]) could never be the maximal graded left

quotient algebra of K[z]. In fact, one obtains that Q' (K[z]) = K[z, 27!,

gr—max

the algebra of Laurent polynomials.

For a graded algebra A, and a graded left quotient algebra B of A, the
maximal graded left quotient algebra of A can be also obtained as the direct
limit of graded homomorphisms (of left A-modules) from graded dense left

ideals of A into B.

In the last section we study when, for a superalgebra A, the 0-component

of its graded maximal left quotient algebra, (Q!,_,.q..(A))o, coincides with

the maximal left quotient algebra of the 0-component of A, Q! (Ay). This

max

result is false in general. If Ay = Ay A;, a monomorphism from (@, _,,..(4))o

into Q',,.(Ap) is guaranteed. If, moreover, A has no homogeneous total left

zero divisors, then they do coincide:
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Proposition 2.5.8. Let A be a left and right faithful superalgebra (equiva-
lently, right faithful and with lana, (A1) = 0) such that Ag = A1Ay. Then

( lgr—max(A>)0 = lmaa:(AO)

under an isomorphism which fizes the elements of Ay, viewing Ay inside

gr—maz(A).

gr—max

The majority of the results of this chapter belong to [13].

In the associative context, not only rings (or algebras) can be considered.
The study of systems of quotients in structures such as associative pairs or
associative triple systems (without letting aside the inherent interest it has)
could be crucial in order to shed some light on the structure theory of Jordan
systems (algebras, pairs or triples) and of Lie algebras, via the theory of quo-
tients. This approach is having a great development (see the works [53], [69],
[24], [5], [60] on the theory of quotients of Jordan systems and Lie algebras).

Associative pairs play a fundamental role in the new approach (see [21])
to Zelmanov’s classification of strongly prime Jordan pairs, and have been
already used by O. Loos in the classification of the nondegenerate Jordan
pairs of finite capacity [50].

In contrast with the classical binary operations (in groups, rings, algebras,
vector spaces, modules, etc), both associative pairs and triple systems are
(associative) ternary systems, that is: we can only multiply three elements at
a time. For example, if we pick a,c € M, «,(K), then we cannot perform the
usual product of matrices ac (for m # n), although we have abc € M, ,,(K),
for b € My (K). Thus, (M, (K), My xm(K)) is an example of associative
pair while M,,.,(K) has not a clear binary product. In the same fashion
M, «xn(K) is a triple system with the triple product (a, b, ¢) — ab'c.

Graded algebras (superalgebras and 3-graded algebras) are related to asso-
ciative pairs and triple systems. Concretely, if A = Ay @ A; is a superalgebra
then A; can be seen as a triple system, while if B = B_; & By @ B, is a
3-graded algebra, then (B_1, By) has a structure of associative pair. And con-

versely, every associative pair A = (A", A7) (or triple system T') can be
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embedded in an algebra & with an idempotent e such that (A%, A7) ((T,T)
in the triple system case) can be identified with (e£(1 —e), (1 — e)Ee).
This algebra £ has a supergrading £ = & & &, where

Eo=eCed(1—e)é(1l—¢€),& =€eE(1l—€) D (1 —e)e,
and a 3-grading £ =& 1 ® & D &, for
Ei=(1—-e)e,&=efed (1 —e)f(1—e)and & =e&(1 —e).

So that it seems to be quite natural to relate the study of graded left quotient
algebras of a graded algebra (in chapter 2 a construction of the maximal
graded left quotient algebra of a not necessarily unital gr-algebra is already
accomplished) to that of left quotient systems of an associative triple system
or pair.

On the other hand, in some cases (for example, when £ is simple) every
standard envelope gives rise to a surjective Morita context for not necessarily
unital rings, and conversely, every pair of bimodules of a Morita context has
a natural structure of associative pair. Hence, in particular, all this can be
considered as an approach to the study of maximal rings of quotients of
Morita contexts for not necessarily unital rings, and thus as an extension to
the theory developed in chapter 1.

In chapter 3 we give a pair and triple system version of the maximal left
quotient ring. A first attempt was made in [29], where the authors found
the maximal left quotient pair of a right faithful associative pair in the left
faithful or left nonsingular cases.

This chapter is divided into seven sections. After a preparatory section
where the study of right faithfulness -begun in chapter 2- is completed for
this setting, we introduce in section 1 the notion of subpair of a 3-graded
algebra. Proposition (3.2.3) provides a useful tool to compute the standard

envelope of any right faithful associative pair by yielding the following

Corollary 3.2.4. Let A be a right faithful associative pair, and (A, p) be a

gr-envelope of A. Then the following are equivalent:
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(1) (A, ) is tight on A,
(ii) A is right faithful,
(111) (A, @) is isomorphic to the standard envelope of A.

In section 2 we study the left supersingular ideal of a not necessarily unital
superalgebra A = Ay @ A; and relate it to the singular ideals of Ay (as an
algebra) and of A; (as an associative triple system). We show that in the

particular case of our interest, these notions are closely linked.

Corollary 3.3.8. For a right faithful superalgebra A with Ag = A1A; the
following conditions are equivalent:

(i) A is left supernonsingular (as a superalgebra).

(11) Ay is left nonsingular (as an algebra).

(11i) Ay is left nonsingular (as a triple).

In the following section we introduce the notions of (weak) right faith-
ful superalgebra in an oversuperalgebra and relate left quotient algebras,
left quotient triple systems and left quotient superalgebras: Suppose that
A=Ay P Ay, with Ay = A1 Ay, is a weak right faithful superalgebra in an
oversuperalgebra B. Then B is a gr-left quotient algebra of A if and only if
By is a left quotient triple system of A; and By is a left quotient algebra of
Ap.

Weak right faithfulness is just the condition needed to have a result al-
lowing to go back and forth between left quotient algebras and left quotient
systems to left quotient superalgebras. Examples of right faithful subsuper-
algebras in overalgebras are every left quotient algebra of a faithful, or left
nonsingular superalgebra.

As a consequence of the previous results, in section 5 we construct the
maximal left quotient pair of a right faithful associative pair. This maximal
left quotient pair is given in terms of the maximal left quotient algebra of its
envelope, which coincides with the graded maximal left quotient algebra of

this envelope, considered as a 3-graded algebra, or as a superalgebra.
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Theorem 3.5.10 and Definition 3.5.11. Let B be a left quotient pair of an
associative pair A such that A is right faithful in B, and denote by A, (€4, ¢)
and B, (E8,e) the standard envelopes and standard embeddings of A and B,
respectively. Then:

(1) Q1= Qg (A) = Qs (A) = @1 (B) = Qe (B).

(i1) Q := (eQ(1 —e), (1 —e)Qe) is a left quotient pair of A.

(111) Q is the mazximal left quotient pair among all left quotient pairs in
which A is right faithful.

We show that this construction cannot be improved. In section 6 we pro-
ceed analogously in the triple system case.

This chapter is closed with some applications of the previous results to
the context of finite Z-graded simple associative algebras obtaining, among
other things, a Johnson-like theorem for these type of algebras.

A theorem by Zelmanov ([74], see Theorem 4.1) classifies the simple M-
graded Lie algebras over a field whose characteristic is either zero or else large
enough. Smirnov shows in [71, Theorem 5.4] that a Lie algebra satisfying the
conditions in Zelmanov’s Theorem has a nontrivial 5-grading. This result is
obtained as a consequence of the description of finite Z-gradings of simple
associative algebras.

In Smirnov’s paper [71], the author shows that if a graded associative
simple algebra A = ®}__, Ay is unital, any such grading arises from a Peirce
decomposition of the algebra with respect to a complete system of orthogonal
idempotents {eg, e1,...,e,} in such a way that A, = > 77" .,
{—n,...,n}.

On the one hand, it is proved that for a graded algebra A = @®}_

e;Aej for k €

Ag

a 3-grading can be given in some of the cases in Zelmanov’s Theorem. This

—n

3-grading comes from a Peirce decomposition of A relative to an idempotent
e lying in an overalgebra £ containing A as a dense left and right ideal.

On the other hand it is shown that, as a consequence of a more general
result, when A is simple (unital or not) every finite Z-grading is induced

by a complete system of orthogonal idempotents {eq, e, ..., e,} lying in the
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maximal left quotient algebra @ of A. That is, Ay = > /" ;_, e;Ae; and Q =
@r__,,Qk, where Q = Z?_jzk e;Qe; (hence @ is just the graded maximal left
quotient algebra of A).

These results are used to obtain the following Johnson-like theorem.

Theorem 3.7.10. Let A = ®}__, Ay be a graded algebra such that A =
id(A_,) and A = AgAAy. Then the following conditions are equivalent:

(i) A is graded left nonsingular.

(i1) A is left nonsingular.

(111) Qb as(A) exists and it is graded von Neumann regular.

(iv) Q' . (A) exists and it is von Neumann reqular.

If these conditions are satisfied, then Q' . (A) = Q' (A).

maxr gr—max

Finally, as another application, we prove the following result: Let L be a
Lie algebra satisfying the hypotheses of Zelmanov’s Theorem. Then L has a
nontrivial 3-grading if: (i) L has the form [A7), A]/Z, where A = Y, A\
is a simple associative M-graded algebra and Z is the center of [A(7) A,
(ii) L is the Tits-Kantor-Koecher construction of the Jordan algebra of a
symmetric bilinear form, or (iii) L is an algebra of the type Gs, Fy, or Es.

In the remaining cases, i.e., for [K(A, x), K(A,)]/Z, where A =}, _, Ax
is a simple associative M-graded algebra with involution * : A — A, A* = A,
and Z is the center of [K (A, %), K(A, )], it is not always possible to find 3-
gradings, and for L an algebra of one of the types Fg, 7 or Dy, 3-gradings
are not possible.

The original results of this chapter have been taken mostly from [12], while

the last section of applications is part of [70].

Finally, this thesis is completed with the study, in chapter 4, of Leavitt
path algebras. These algebras can be viewed as a family which includes some
of the previously considered algebras of Laurent polynomials K[z, z!] and
matrix algebras M, (K).

Leavitt path algebras have their origins in Leavitt’s seminal paper [48],

where he describes a class of K-algebras (nowadays denoted by L(m,n)




MENU SALIR

XIV INTRODUCTION

which are universal with respect to an isomorphism property between finite
rank free modules (K denotes an arbitrary field).

In [49], Leavitt goes on to show that the algebras of the form L(1,n) are
simple. More than a decade later, Cuntz [19] constructed and investigated the
C*-algebras O,, (nowadays called the Cuntz algebras), showing, among other
things, that each O, is (algebraically) simple.

When K is the field C of complex numbers, then O,, can be viewed as the
completion, in an appropriate norm, of L(1,n). Soon after the appearance of
[19], Cuntz and Krieger [20] described the significantly more general notion
of the C*-algebra of a (finite) matrix A, denoted Oy .

Among this class of C*-algebras one can find, for any finite graph E, the
Cuntz-Krieger algebra C*(E), defined originally in [40]. These C*-algebras,
as well as those arising from various infinite graphs, have been the subject of
much investigation (see e.g. [64], [65], and [15]).

Recently, the ‘algebraic analogs’ of the C*-algebras O, have been pre-
sented in [7]; these are denoted by CK4(K). By restricting attention to a
specific set of allowable matrices, the simplicity of the algebra CK4(K) for
some subset of these allowable matrices has been determined (although the
condition for simplicity is not explicitly given in terms of the matrix A).

When FE is finite without sources and sinks, then L(E) can be realized as
an algebra of the form CK4(K) for some matrix A. Moreover, the classical
Leavitt algebras L(1,n) (as well as matrix rings M, (K) and Laurent poly-
nomial algebras K[z, 27!], as noted before) appear as algebras of the form
L(E) for various graphs E. Furthermore, the class of algebras of the form
L(FE) significantly broadens the collection of algebras studied by Leavitt in
his aforementioned seminal papers.

Analogously to the relationship that exists between L(1,n) and O,,, L(E)
has the property that when K = C, then C*(F) can be viewed as the com-
pletion, in an appropriate norm, of L(E) [64, Proposition 1.20].

After some preparatory notions and results in the first sections, we study

in section 3 the property of being simple and thus in the main result of that
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section, (4.3.12), we finally achieve to give necessary and sufficient conditions
on the row-finite graph E which imply that L(E) is simple. Concretely we

prove the following:

Theorem 4.3.12. Let E be a row-finite graph. Then the Leavitt path algebra
L(FE) is simple if and only if E satisfies the following conditions.
(i) The only hereditary and saturated subsets of E° are O and E°, and

(i1) Every cycle in E has an exit.

This parallels a similar theorem for C*-algebras of the form C*(E) given in
[64, Theorem 4.9 and subsequent remarks]. However, the techniques utilized
here are significantly different than those used in the analytic setting.

These results extend those presented in [7], in that: They apply also to
some important algebras which are not explicitly considered in [7]; they apply
also to algebras which arise from infinite matrices; and they provide necessary
conditions on £ for the simplicity of L(F).

Also, in section 4 we follow the same philosophy for the notion of being
purely infinite simple, and after some partial results we get the following

graph-theoretic characterization:

Theorem 4.4.15. Let E be a row-finite graph. Then L(E) is purely infinite
simple if and only if E has the following properties.

(i) The only hereditary and saturated subsets of E° are ) and E°.

(ii) Every cycle in E has an exit.

(111) Every vertex connects to a cycle.

Several authors (P. Ara and E. Ortega among them) are currently work-
ing on computing the maximal left quotient algebra for these Leavitt path
algebras (as well as for path algebras), whereas our aim will be to try to
work out the corresponding graded maximal structure in the near future. For
instance, in chapter 2 it is shown that Q! ,.(K[z]) = K[z,2"'] and as a

consequence

l (K[z,z7")) = K[z, 2]

gr—max
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Also, it is well-known that Q' . (M, (K)) = M,,(K) and analogously

max

l (M, (K)) = M, (K).

gr—max

In other words, both K[z, x~!] and M, (K) are gr-max-closed. We observe
that, however, although M, (K) is also max-closed, K[z, z '] is not (in fact
L o(K[z,27Y) = K(x)). Thus, the fact that every L(E), for a finite graph
E, is max-closed vanishes, but the question that naturally arises now is: Are

all the finite Leavitt path algebras L(F) gr-max-closed?
We think that the results of this chapter (and hopefully some more we

could achieve) might assist us in a possible answer to it.
In this chapter we have followed closely (sometimes with more detailed

proofs and showing further examples) the presentations and original results

contained in the works [1] and [2] by G. Abrams and the author.
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Resumen en espanol
Spanish abstract

En los anos 30 y 40 los trabajos de ©. Ore y K. Asano ya mencionaban
sistemas de cocientes en anillos, pero no fue hasta el final de los 50 cuando
la investigacion se desarroll6 con las contribuciones de muchos autores (R. E.
Johnson, Y. Utumi, A. W. Goldie y J. Lambek entre ellos).

La nocién clésica de anillo de cocientes de un anillo dado R corresponde a
otro anillo @) conteniendo a R de tal forma que los elementos de R (que pueden
no ser inversibles en R) tengan un inverso en ). De hecho, una de las primeras
cosas con las que uno se encuentra cuando comienza a estudiar Algebra es
un ejemplo de dicha situacién, concretamente, el cuerpo de fracciones de un
dominio de integridad.

Desde luego, intentar encontrar un anillo de cocientes de un anillo dado
no es en general tarea sencilla. Esto motivo a (). Ore a dar una condicién para
la existencia de un anillo de cocientes, hoy en dia conocida como condicién
de Ore por la izquierda: Para cualesquiera a € Reg(R) y b € R existen ¢ €
Reg(R) y d € R tales que c¢b = da. El lector puede ver en [44, §9] un ejemplo
dado por Mal’cev de un anillo R que no tiene ningun anillo de cocientes a
pesar de que R tiene muy buenas propiedades como ser un dominio.

El siguiente paso fue dado por Utumi en 1956. El dio una nocién més
general de anillo de cocientes por la izquierda, en [73], que generalizaria al
resto de anillos de cocientes: Un anillo ) conteniendo a un anillo R se dice
que es un anillo (general) de cocientes por la izquierda de R si dados p,q € @Q,
con p # 0, existe a € R satisfaciendo ap # 0y aq € R.

En su articulo, Utumi probd que existe un anillo maximal de cocientes

XVII
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por la izquierda para todo anillo que no tenga divisores totales de cero por la
derecha (por ejemplo para anillos semiprimos o unitarios), llamado el anillo
de cocientes de Utumi por la izquierda de R y denotado por Q! . (R). Como

la nocién de anillo (general) de cocientes por la izquierda incluye todas las

demads (cuerpos de fracciones, anillos cldsicos de cocientes por la izquierda,

l

»an(R) es el anillo més

etc), el anillo maximal de cocientes por la izquierda )

grande de cocientes que podemos considerar.

Nuestro trabajo se enmarca en el area de Algebra, y especificamente en
la teoria de sistemas asociativos, esto es, algebras, pares y triples. No se
requieren ni la conmutatividad ni la existencia de un elemento identidad.

La mayor parte de esta tesis puede entenderse como un desarrollo de la
teoria de sistemas de cocientes de estos tipos de objetos algebraicos, asi que
uno de los objetivos es construir sistemas de cocientes en varios contextos
donde la ausencia de ellos era evidente, y asi (ademds del claro interés que
contar con adecuadas nociones de estructuras de cocientes en nuevas situa-
ciones tiene por si mismo) como consecuencia, ser capaces de obtener nuevos
avances en el conocimiento de ciertos sistemas mediante esta teoria de co-
cientes.

El anterior esquema ha sido ampliamente estudiado en el pasado por un
gran nimero de autores. Por ejemplo, el trabajo pionero de R. E. Johnson en
anillos no singulares [39] es un cldsico ejemplo de esta situacién, donde una
caracterizacion de este tipo de anillos es dada en términos de propiedades

tedricas de sus anillos maximales de cocientes. Concretamente, el Teorema de
!

I .(R) es regular von

Johnson caracteriza aquellos anillos R para los que @)
Neumann [44, (13.36)].

El Teorema de Gabriel [44, (13.40)] va un paso mas alld mostrando que
!

max () son semisimples (un producto directo finito

los anillos R tales que Q)
de anillos de matrices sobre anillos de divisién) son precisamente los anillos
no singulares por la izquierda con dimensiéon uniforme por la izquierda finita.

Asimismo, esta nociéon de anillo maximal de cocientes por la izquierda

ha demostrado ser muy 1util en el estudio de 6rdenes Fountain-Gould en ani-
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llos no necesariamente unitarios (véase [30] y las referencias relacionadas ahi
contenidas).

Es mas, otro uso obvio del anillo maximal de cocientes por la izquierda
es que éste proporciona un marco apropiado donde viven diferentes anillos
de cocientes como el clasico, el anillo de cocientes simétrico de Martindale
(introducido por Martindale para anillos primos y por Amitsur para anillos
semiprimos -ver [16]- y extendido a anillos generales por McCrimmon en [55]),
o el maximal simétrico (descubierto por Schelter -ver [68]-).

Asi, como nuevas construcciones logramos una satisfactoria dlgebra de
cocientes por la izquierda graduada maximal junto con nociones de par aso-
ciativo de cocientes por la izquierda maximal (en una situaciéon més general
que la previamente considerada por M. Gémez Lozano y M. Siles Molina en
[29]) v de sistema triple de cocientes por la izquierda maximal.

Entre las aplicaciones de los sistemas de cocientes por la izquierda maxi-
males, mostramos algunos resultados sobre Morita-invariabilidad (mediante
anillos cérner) y un teorema tipo Johnson para cierta clase de dlgebras gra-
duadas por Z.

Durante la visita del autor a la Universidad de Colorado, G. Abrams
llamé su atencién sobre las algebras de caminos de Leavitt sobre grafos. Es-
tas algebras incluyen algunas de las que habian estado apareciendo en nues-
tras disertaciones previas. En particular incluyen las algebras de polinomios
de Laurent K[z,x™'], que son (en nuestra opinién) el ejemplo mds simple
donde difieren las nociones de dlgebra de cocientes por la izquierda graduada
maximal y dlgebra de cocientes por la izquierda maximal (sin graduacién).

Asi, el dltimo capitulo de esta tesis esta dedicado a estas dlgebras. Nues-
tra tarea consiste en encontrar condiciones tedricas sobre un grafo, necesarias
y suficientes, de forma que las dlgebras de caminos de Leavitt correspondi-
entes, consideradas como anillos, tengan un cierta propiedad. Concretamente,
conseguimos hacer esto para la simplicidad y el caracter puramente infinito.

Una vez que tenemos una mejor idea de la estructura de estas algebras,

tenemos la esperanza de que estos resultados recientemente obtenidos puedan
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ayudarnos a desvelar de alguna manera el comportamiento de sus algebras
maximales de cocientes por la izquierda graduadas. Esto nos permitiria incluir
algunos de nuestros resultados sobre algebras de cocientes por la izquierda

graduadas maximales en otros mas generales.

Pasamos ahora a describir con mayor detalle los contenidos de los capitulos
y sus secciones.
En el capitulo 1 empezamos recordando la nocién de anillo (general) de

cocientes por la izquierda (y su anillo maximal de cocientes por la izquierda

l

asociado Q..

(R)), introducida por Utumi en [73], que es, como ya hemos
mencionado, una nociéon ampliamente presente en la literatura matematica
(véanse [16], [44], [45] y [72], por ejemplo).

Es natural preguntarse si dado un idempotente e en un anillo R sin di-

visores totales de cero por la derecha, el anillo maximal de cocientes por la
!

max(€R€)) y el corner del anillo de cocientes por

izquierda de un cérner (

l

la izquierda maximal (e@),,.

(R)e) son isomorfos. Probamos en la primera
seccién que esto es verdad para todo idempotente pleno e del anillo R si éste
no tiene divisores totales de cero por la izquierda ni por la derecha (esto no es
cierto siempre, como se muestra en (1.2.9)). De hecho, probamos un resultado

mas general:

l
max

Teorema 1.2.6. Sea R un anillo y Q := (R). Entonces, para todo
idempotente e € () tal que eR+Re C R ylang(Re) = rang(eR) = 0 tenemos:
L o(eRe) = eQ!l (R)e.

max max

No menos natural es preguntarse si se tendra, como en el caso unitario,
un resultado similar de conmutatividad entre matrices y anillos maximales

de cocientes por la izquierda. Ciertamente éste es el caso.

Proposiciéon 1.3.6. Para un anillo R sin divisores totales de cero por la

derecha tenemos: QL ,.(M,(R)) = M, (Q",..(R)).

max max

Los resultados previos pueden ser aplicados a la teoria de Morita-

invariabilidad. Es bien conocido que si R y S son dos anillos unitarios Morita
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equivalentes, entonces Q' (R) y Q! . (S) son también Morita equivalentes.
Esto contrasta fuertemente con el caso unitario: Se muestra en (1.3.8) que
existen anillos que son Morita equivalentes a anillos de division pero no sa-
tisfacen esta propiedad. Sin embargo, en la secciéon 2 obtenemos, entre otras
cosas, que si Ry S son dos anillos idempotentes Morita equivalentes, entonces
los ideales que generan dentro de sus propios anillos maximales de cocientes

por la izquierda son Morita equivalentes.

Teorema 1.3.10. Sean R y S dos anillos idempotentes Morita equivalentes,

A= (]}\%[ ]\b/{) el anillo de Morita del contexto sobreyectivo y denotemos

Q1 = QL (R), Qs = Q'  (S). Entonces Q1RQ, y Q25Q, son anillos

idempotentes Morita equivalentes.

El lector puede encontrar una clasificaciéon de las propiedades (si son o
no, o bajo qué circunstancias) Morita-invariantes en [10]. En este capitulo
hemos seguido las ideas y resultados que aparecen en el trabajo de M. Gémez

Lozano, M. Siles Molina y el autor, [11].

A pesar de que la teoria de anillos de cocientes por la izquierda maximales
ha sido ampliamente estudiada en el caso no graduado, no ha sido tan pro-
fundamente investigada en el contexto de algebras graduadas. Aun asi, varios
autores han considerado teorias de torsién para anillos graduados con unidad
(véanse por ejemplo los trabajos de O. Goldman [27], C. Nastasescu y F.
van Oystaeyen [56]). Concretamente, en 1978 van Oystaeyen estudi6 en [59]
anillos y modulos graduados de cocientes desde un punto de vista categdrico
y considerando anillos unitarios.

Nuestro objetivo aqui es estudiar algebras de cocientes por la izquierda
graduadas para algebras (no necesariamente unitarias) sin divisores totales
de cero por la derecha. Para hacerlo, seguimos una aproximacion diferente
a la categdrica recién mencionada, pricipalmente para evitar varias dificul-
tades técnicas que surgirian al considerar categorias de médulos sobre anillos

arbitrarios (quiza ni siquiera idempotentes).
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Asi, en el capitulo 2, después de varias definiciones y resultados prelimi-
nares de la primera seccién, dedicamos la segunda seccién a las nociones de
algebra de cocientes por la izquierda graduada y algebra de cocientes débil
por la izquierda graduada. Mientras toda algebra de cocientes (débil) por
la izquierda graduada es un algebra de cocientes (débil) por la izquierda, el
reciproco falla ya que no toda dlgebra de cocientes (débil) por la izquierda de
un algebra graduada puede a su vez ser dotada de una graduacién de forma
que tengamos un algebra graduada mayor que contenga a la pequena.

Ser un algebra de cocientes por la izquierda graduada puede ser caracte-

rizado usando absorciéon por ideales densos por la izquierda graduados.

Proposicién 2.2.18. Sea A una subdlgebra graduada de un dlgebra graduada
B = ®,eqB,. Las siguientes afirmaciones son equivalentes.

(i) B es un dlgebra graduada de cocientes por la izquierda de A.

(i1) Para todo elemento no nulo q € B existe un ideal por la izquierda
gr-denso I de A tal que 0 # Iq C A.

(11i) Para todo elemento no nulo q, € B, eziste un ideal por la izquierda

graduado I de A conrans(l) ={a € A:Ia=0} =0 y tal que 0 # Iq, C A.

Cerramos esta seccién explorando el comportamiento de las algebras de
cocientes por la izquierda graduadas cuando se involucran dlgebras locales
en elementos, y obtenemos el andlogo graduado a un resultado conocido que
relaciona las algebras de cocientes por la izquierda con las algebras locales en
elementos.

El estudio del ideal singular por la izquierda graduado se hace en la ter-
cera seccién. Este ha demostrado ser una poderosa herramienta en el estudio
de anillos maximales de cocientes por la izquierda (véanse por ejemplo los
trabajos de A. Fernandez Lopez, E. Garcia Rus, M. Gémez Lozano y M. Siles
Molina [22], el tercer y cuarto autor en [29] y el tercero en [28]).

En la cuarta seccién se sigue la idea de Utumi en [73] (la misma que
la de van Oystaeyen en [59]) para poder construir un &lgebra maximal de

cocientes por la izquierda graduada de una algebra G-graduada dada que no
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tenga divisores totales de cero homogeneos por la derecha, y obtenerla como
limite directo de homomorfismos graduados de médulos por la izquierda desde
ideales densos por la izquierda graduados del algebra.

El algebra de cocientes por la izquierda graduada maximal es una
subélgebra del algebra de cocientes por la izquierda maximal (sin graduar),
pero no coinciden necesariamente. Por ejemplo, cuando consideramos el
algebra de polinomios K |[x] entonces, como es un dominio de integridad, es
bien conocido que Q! (K[z]) = K(z), su cuerpo de fracciones. Sin embargo,

max

es conocido que un anillo de divisién no puede ser Z-graduado (con una gra-
!

duacién no trivial), de forma que Q.

(K[z]) jamds podria ser el dlgebra de
cocientes por la izquierda graduada maximal de K[z]. De hecho, se obtiene
que Q.40 (K[z]) = K[z, 27"], el dlgebra de los polinomios de Laurent.

Para un algebra graduada A, y un algebra de cocientes por la izquierda
graduada B de A, el dlgebra maximal de cocientes por la izquierda graduada
de A puede ser también obtenida como el limite directo de homomorfismos
graduados (de A-moédulos graduados) desde ideales densos por la izquierda
graduados de A en B.

En la dltima seccion estudiamos cuando, para una superalgebra A, la

componente 0 de su dlgebra maximal de cocientes por la izquierda graduada,

(@) az(A))o, coincide con el dlgebra maximal de cocientes por la izquierda

l
max

de la componente 0 de A, @' .. (Ag). Este resultado es falso en general. Si

Ay = A1 Ay, un monomorfismo de (Q" (A))ga @' . (Ap) esta garantizado.

gr—max max

Si, ademads, A no tiene divisores totales de cero por la izquierda, entonces si

que coinciden.

Proposicién 2.5.8. Sea A una superdlgebra fiel a derecha e izquierda (equiva-

lentemente, fiel a derecha y con lany (A1) = 0) tal que Ag = A1 Ay. Entonces

( ‘lqrfma:c(A))O = inax(AO)
bajo un isomorfismo que fija los elementos de Ay, viendo Ag dentro de
ﬁ;r—max( )

La mayoria de los resultados de este capitulo pertenecen a [13].
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En el contexto asociativo, no sélo anillos (o algebras) pueden ser consi-
derados. El estudio de sistemas de cocientes en estructuras tales como pares
asociativos o sistemas triples asociativos (sin dejar de lado el interés inhe-
rente que tiene) podria ser crucial para arrojar algo de luz en la teoria de
estructuras de sistemas de Jordan (élgebras, pares o triples) y de dlgebras de
Lie, mediante la teoria de cocientes. Esta aproximacion esta teniendo un gran
desarrollo (véanse los trabajos [53], [69], [24], [5], [60] en la teoria de cocientes

de sistemas de Jordan y algebras de Lie).

Los pares asociativos juegan un papel fundamental en la nueva aproxi-
macién (ver [21]) a la clasificacion de Zelmanov de los pares de Jordan fuerte-
mente primos, y han sido ya usados por O. Loos en la clasificacién de los

pares de Jordan no degenerados de capacidad finita [50].

En contraste con las operaciones binarias cldsicas (en grupos, anillos,
algebras, espacios vectoriales, mddulos, etc), tanto los pares asociativos
como los sistemas triples son sistemas ternarios (asociativos), esto es: sélo
podemos multiplicar tres elementos de una vez. Por ejemplo, si tomamos
a,c € My,xn(K), entonces no podemos realizar el producto usual de matri-
ces ac (para m # n), mientras que abc € M,,«n(K), para b € M,y (K).
Ast, (Myn(K), M, (K)) es un ejemplo de par asociativo mientras que
M5 (K) no tiene un producto binario claro. De la misma manera, M, x,, (K)

es un sistema triple con el producto triple dado por (a,b,c) — ab‘c.

Las algebras graduadas (superalgebras y dlgebras 3-graduadas) estan rela-
cionadas con los pares asociativos y los sistemas triples. Concretamente,
si A = Ay ® A; es una superalgebra, entonces A; puede ser vista como
un sistema triple, mientras que si B = B_; @& By & By es un &lgebra 3-
graduada, entonces (B_1, ;) tiene una estructura natural de par asociativo.
Y reciprocamente, todo par asociativo A = (AT, A7) (o sistema triple T)
puede ser monomoérficamente incluido en un algebra £ con un idempotente e
tal que (AT, A7) ((T,T) en el caso del sistema triple) puede ser identificado
con (e£(1 —e), (1 —e)€e).
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Este dlgebra £ tiene una supergraduacion £ = & @ &, donde
Eo=efed(l—e)f(1—e), & =eE(1l —€) D (1 —e)e,
y una 3-graduacién € = E_1 @ & ® &1, para
Ei=(1—-efe&=efed(l—e)f(l—e)y & =eE(l—e).

Asi que parece bastante natural tratar de relacionar el estudio de las algebras
de cocientes por la izquierda graduadas de un é&lgebra graduada (en el
capitulo 2 ya se consiguié una construccion del algebra de cocientes por la
izquierda graduada maximal de un -no necesariamente unitaria- algebra gra-
duada) con el de los sistemas de cocientes por la izquierda de un sistema
triple asociativo o par.

Por otra parte, en algunos casos (por ejemplo, cuando £ es simple) toda
envolvente estandar da paso a un contexto de Morita sobreyectivo para anillos
no necesariamente unitarios, y reciprocamente, todo par de bimédulos de un
contexto de Morita tiene una estructura natural de par asociativo. Asi, en
particular, todo esto puede ser considerado como un acercamiento al estudio
de los anillos de cocientes maximales de contextos de Morita para anillos
no necesariamente unitarios, y por tanto, como una extensiéon de la teoria
desarrollada en el capitulo 1.

En el capitulo 3 damos una versién para pares y sistemas triples del anillo
maximal de cocientes por la izquierda. Un primer intento fue realizado en [29],
donde los autores encontraron el par de cocientes por la izquierda maximal
de un par fiel por la derecha en los casos en que el par fuera o bien también
fiel por la izquierda o bien no singular por la izquierda.

Este capitulo estd dividido en siete secciones. Después de una seccion
preparatoria donde el estudio de la fidelidad por la derecha -ya comenzado
en el capitulo 2- es completado en este contexto, introducimos en la seccién 1
la nocién de subpar de un algebra 3-graduada. La Proposicién (3.2.3) pro-
porciona una herramienta poderosa para computar la envolvente estandar de

cualquier par asociativo fiel por la derecha con el siguiente
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Corolario 3.2.4. Sea A un par asociativo fiel por la derecha, y (A, ) una
envolvente graduada de A. Entonces son equivalentes:

(1) (A, ) es ajustada en A,

(ii) A es fiel por la derecha,

(111) (A, @) es isomorfa a la envolvente estindar de A.

En la seccién 2 estudiamos el ideal supersingular de una superalgebra
no necesariamente unitaria 4 = Ay @ A; y lo relacionamos con los ideales
singulares de Ay (como algebra) y de A; (como sistema triple asociativo).
Mostramos que en el caso particular que nos interesa, estas nociones estan

fuertemente ligadas.

Corolario 3.3.8. Para un dlgebra fiel por la derecha A con Ay = A1A; las
siquientes condiciones son equivalentes:

(i) A es no singular por la izquierda (como superdlgebra).

(i1) Ay es no singular por la izquierda (como dlgebra,).

(111) Ay es no singular por la izquierda (como triple).

En la siguiente secciéon introducimos las mnociones de superdlgebra
(débilmente) fiel por la derecha en otra superdlgebra que la contenga y rela-
cionamos algebras de cocientes por la izquierda, sistemas triples de cocientes
por la izquierda y superalgebras de cocientes por la izquierda: Supongamos
que A= Ay & Ay, con Ay = A1 A;, es un superalgebra débilmente fiel por la
derecha en otra superdlgebra B. Entonces B es un dlgebra de cocientes por la
izquierda graduada de A si y s6lo si By es un sistema triple de cocientes por
la izquierda de A; y By es un algebra de cocientes por la izquierda de Ajy.

La fidelidad débil por la derecha es precisamente la condiciéon que se nece-
sita para tener un resultado de ida y vuelta entre algebras de cocientes por
la izquierda, sistemas de cocientes por la izquierda y superalgebras de co-
cientes por la izquierda. Ejemplos de subsuperalgebras fieles por la derecha
en algebras que las contengan son todas aquellas algebras de cocientes por la

izquierda fieles o no singulares por la izquierda.




MENU SALIR

SPANISH ABSTRACT XXVII

Como consecuencia de los resultados previos, en la secciéon 5 construimos
el par de cocientes por la izquierda maximal de un par asociativo fiel por la
derecha. Este par maximal por la izquierda estd dado en términos del algebra
de cocientes por la izquierda maximal de su envolvente, que coincide con el
algebra de cocientes por la izquierda graduada maximal de esta envolvente,

considerada como &algebra 3-graduada, o como superalgebra.

Teorema 3.5.10 y Definicién 3.5.11. Sea B un par de cocientes por la
izquierda de un par asociativo A tal que A es fiel por la derecha en B, vy
denotemos por A, (E4,¢) y B, (EF,€) las envolventes estdndar y unitarias de
A y B, respectivamente. Entonces:

(1) Q= Qe (A) = Qe (A) = Qe (B) = @y (B).

(11) Q := (eQ(1—e), (1 —e)Qe) es un par de cocientes por la izquierda de
A.

(111) Q es el par de cocientes por la izquierda mazimal de entre todos los

pares de cocientes por la izquierda donde A es fiel por la derecha.

Mostramos que esta construccién no puede ser mejorada. En la seccién 6
procedemos andlogamente para el caso de un sistema triple.

Este capitulo se cierra con algunas aplicaciones de los resultados previos
en el contexto de algebras asociativas con Z-graduacion finita obteniendo,
entre otras cosas, un teorema tipo Johnson para estas algebras.

Un teorema de Zelmanov (ver [74, Theorem 4.1]) clasifica las dlgebras de
Lie simples M-graduadas sobre cuerpos cuya caracteristica sea zero o suficien-
temente grande. Smirnov muestra en [71, Theorem 5.4] que un algebra de Lie
satisfaciendo las condiciones del Teorema de Zelmanov tiene una 5-graduacién
no trivial. Este resultado se obtiene como consecuencia de la descripcion de
las dlgebras asociativas simples con Z-graduaciones finitas.

En el articulo de Smirnov [71], el autor prueba que si un algebra graduada

asociativa A = @}__ Ay es unitaria, cualquier graduacién de esa forma surge

—n

de una descomposcién de Peirce del dlgebra respecto a un sistema completo de

idempotentes ortogonales {eg, €1, . .., €, } de tal forma que A; = Z?_j:k e;Ae;
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para k € {—n,...,n}.

Por una parte se prueba que para un édlgebra graduada A = @®}__ A
una 3-graduacién puede ser dada en algunos de los casos del Teorema de
Zelmanov. Esta 3-graduacion viene de una descomposicion de Peirce de A
relativa a un idempotente e que vive en un élgebra mayor £ conteniendo a A
como ideal denso por la izquierda y por la derecha.

Por otra parte se muestra que, como consecuencia de un resultado mas
general, cuando A es simple (unitaria o no) toda Z-graducién finita esta
inducida por un sistema completo de idempotentes ortogonales {eg, €1, . . ., €, }
que viven en el algebra de cocientes por la izquierda maximal () de A. Esto
es, Ay = >0 _peide; vy Q = @F__,Q, donde Qy = 377" ., eiQe; (asi, @
es simplemente el dlgebra de cocientes por la izquierda graduada maximal de
A).

Estos resultados permiten obtener el siguiente teorema tipo Johnson.

Teorema 3.7.10. Sea A = ®}__, Ar un dlgebra graduada tal que A =
id(A_,) y A= AgAAy. Entonces las siguientes condiciones son equivalentes:
(i) A es graduada no singular por la izquierda.
(ii) A es no singular por la izquierda.
(i1i) Q! (A) existe y es graduada reqular von Neumann.

gr—max

(iv) Q' (A) existe y es reqular von Neumann.

Si estas condiciones se satisfacen, entonces Qb (A) = QL. 0. (A).

Finalmente, como otra aplicacién, se prueba el siguiente resultado: Sea
L un algebra de Lie satisfaciendo las hipdtesis del Teorema de Zelmanov.
Entonces L tiene una 3-graduacién no trivial si: (i) L tiene la forma
[AC), A /Z donde A = > xea Ax es un dlgebra M-graduada simple asocia-
tiva y Z es el centro de [A(7), A7), (ii) L es la construccién de Tits-Kantor-
Koecher del dlgebra de Jordan de una forma bilineal simétrica, o (iii) L es un
algebra del tipo Go, Fy, o Es.

En los casos restante, es decir, para [K(A,x), K(A,%)]/Z, donde A =

> xea Ax es un algebra M-graduada simple asociativa con involucién * : A —
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A, AY = A,y Z es el centro de [K(A,x*), K(A,x)], no es siempre posible
encontrar 3-graduaciones, y para L un algebra de uno de los tipos Fg, 7 o
Dy, no son posibles las 3-graduaciones.

Los resultados originales de este capitulo han sido tomados mayormente

de [12], mientras que la tltima seccién de aplicaciones es parte de [70].

La tesis se completa con el estudio, en el capitulo 4, de las algebras de
caminos de Leavitt. Estas algebras pueden ser vistas como una familia que
incluye algunas de la previamente estudiadas, como las algebras de polinomios
de Laurent K|z,z7!] y las &lgebras de matrices M, (K).

Las algebras de caminos de Leavitt tienen sus origenes en el articulo semi-
nal [48], donde se describe una clase de K-algebras (hoy en dia denotadas por
L(m,n)) que son universales respecto a una propiedad de isomorfismo entre
modulos libres de rango finito. (K denota un cuerpo arbitrario.)

En [49], Leavitt muestra que las dlgebras de la forma L(1,n) son simples.
Mis de una década més tarde, Cuntz [19] construyé e investigd las C*-dlgebras
O,, (hoy en dia llamadas algebras de Cuntz), mostrando, entre otras cosas,
que cada O, es (algebraicamente) simple.

Cuando K es el cuerpo C de nimeros complejos, entonces O,, puede ser
visto como la compleccién, en una norma apropiada, de L(1,n). Justo después
de la aparicién de [19], Cuntz y Krieger [20] describieron la nocién significa-
tivamente més general de la C*-dlgebra de una matriz (finita) A, denotada
por O4.

Entre esta clase de C*-dlgebras uno puede encontrar, para cualquier grafo
finito FE, el dlgebra de Cuntz-Krieger C*(FE), definida originalmente en [40].
Estas C*-dlgebras, asi como aquéllas que aparecen de varios grafos infinitos,
han sido el objeto de mucha investigacién (ver por ejemplo [64], [65], v [15]).

Recientemente, los andlogos algebraicos de las C*-dlgebras O 4 han sido
presentados en [7]; estos se denotan por CK 4(K). Restringiendo la atencién
a un conjunto especifico de matrices permitidas, la simplicidad del algebra
CK 4(K) para algin subconjunto de estas matrices permitidas ha sido deter-

minada (aunque la condicién para la simplicidad no estd dada explicitamente
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en términos de la matriz A).

Cuando F es finito sin fuentes ni sumideros, entonces L(E) puede ser
construida como un algebra de la forma CIC4(K) para alguna matriz A. Las
algebras cléassicas de Leavitt L(1,n) (asi como los anillos de matrices M, (K)
y las dlgebras de polinomios de Laurent K[z, 2 !], como ya se comenté an-
teriormente) aparecen como &algebras de la forma L(FE) para varios grafos
E. Es mas, la clase de dlgebras de la forma L(E) amplia significativamente
la coleccion de algebras estudiadas por Leavitt en sus articulos previamente
citados.

Andloga a la relaciéon que existe entre L(1,n) y O,, L(F) tiene la
propiedad de que cuando K = C, entonces C*(E) puede ser vista como la
compleccién, en una norma apropiada, de L(E) [64, Proposition 1.20].

Después de varias nociones preparatorias en las primeras secciones, estu-
diamos en la seccion 3 la propiedad de ser simple y asi, en el resultado principal
de esa seccidn, (4.3.12), conseguimos dar condiciones necesarias y suficientes
sobre el grafo E de filas finitas que implican que L(F) es simple. Concreta-

mente probamos lo siguiente:

Teorema 4.3.12. Sea E un grafo de filas finitas. Entonces el dlgebra de
caminos de Leavitt L(E) es simple si y sdlo si E satisface las siguientes condi-
Clones.

(i) Los tinicos subconjuntos hereditarios y saturados de E° son ) y E°, y

(ii) todo ciclo en E tiene una salida.

Este resultado es paralelo a un teorema para C*-dlgebras de la forma
C*(F) dado en [64, Theorem 4.9 y notas siguientes]. Sin embargo, las técnicas
utilizadas aqui son significativamente diferentes a las usadas en el contexto
analitico.

Estos resultados extienden a los presentados en [7], ya que: Se aplican
también a algunas algebras importantes que no son explicitamente conside-
radas en [7]; se aplican también a &lgebras que surgen de matrices infinitas;

y proporcionan condiciones necesarias y suficientes en E para obtener la sim-
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plicidad de L(E).
También, en la seccién 5 se sigue la misma filosofia para la nocién de ser
puramente infinito simple y, después de varios resultados parciales, se llega a

la siguiente caracterizacion mediante propiedades del grafo:

Teorema 4.4.15. Sea E un grafo de filas finitas. Entonces L(E) es pura-
mente infinita simple si y solo si E tiene las siguientes propiedades:
(i) Los tinicos subconjuntos hereditarios y saturados de E° son () y E°,
(ii) todo ciclo en E tiene una salida, y

(111) todo vértice conecta con un ciclo.

Varios autores (P. Ara y E. Ortega entre ellos) estan en la actualidad
trabajando en calcular el algebra de cocientes por la izquierda maximal de
este tipo de algebras de caminos de Leavitt (asi como en dlgebras de caminos),
mientras que nuestra intencion sera tratar de hallar el correspondiente algebra
de cocientes por la izquierda graduada maximal en un futuro préximo. Por
ejemplo, en el capitulo 2 se muestra que @', ..(K[z]) = K[z, 2] y como

consecuencia

l (K[z,z7']) = K[z, z7"].

gr—max

Asimismo, es bien conocido que Q' . (M, (K)) = M, (K) y andlogamente

max

l (M, (K)) = M, ().

gr—max

En otras palabras, tanto K|z, '] como M,,(K) son gr-max-cerrados. Ob-

servamos que, sin embargo, aunque M, (K) es también max-cerrado, K[z, 7]
no lo es (de hecho Q! (K|x,z71]) = K(z)). Asi, el hecho de que todo L(E),
para un grafo finito F/, es max-cerrado se desvanece, pero la pregunta que
ahora nos surge naturalmente es: ;Son todas las algebras de caminos de Lea-
vitt finitas L(FE) gr-max-cerradas?

Creemos que los resultados de este capitulo (y esperamos que algunos mas
que podamos probar) podrian ayudarnos en una posible respuesta a dicha

cuestion.




MENU SALIR

XXXII RESUMEN EN ESPANOL

En este capitulo hemos seguido de cerca (a veces con demostraciones mas
detalladas o con un mayor numero de ejemplos) las exposiciones y resultados

originales contenidos en los trabajos [1] y [2] de G. Abrams y el autor.
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Chapter 1

Maximal left quotient rings and
corners

In this chapter we will be dealing with associative rings (not necessarily com-
mutative or unital). We will omit the proofs of some preliminary well-known
facts because we will extend these to the more general setting of graded al-

gebras in the next chapter.

1.1 Rings of quotients

The construction of the rational numbers Q as the field of fractions of the
integers Z is perhaps one of the first constructions one may encounter at the
beginning of a manual of basic algebra. (Another extensively used construc-
tion is the field of rational functions K (x) of the polynomial ring K|[z], for
K any field.) In essence, the idea here is to suddenly make invertible (in a
bigger ring) any nonzero element of a given ring.

In general, for such construction to succeed, we could start with an inte-
gral domain D (a commutative unital ring with no zero divisors) and then
we would obtain its field of fractions K, which is uniquely determined and
satisfies a certain universal property.

Needless to say, such a wonderful construction is not always at hand. One
might, for instance, want to perform a similar one for rings with a poorer

structure. For example: If our ring R does contain zero divisors, then it is clear
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that neither of those zero divisors could ever be invertible in any overring ).
Despite of that, we do not surrender and invert only the regular elements of
R (that is, the elements which are neither left zero divisors nor right zero

divisors). This is mainly the idea behind the notion of left order.

Definition 1.1.1. Let R C () be rings. The ring R is said to be a left order

in ), or () is a classical left quotient ring of R if
(i) Every regular element of R is invertible in Q).

(ii) Every element ¢ € @ has the form ¢ = a™'b for some a € Reg(R) and
beR.

Of course, the field of fractions of an integral domain is always a classical
left (and right) quotient ring of that integral domain. The converse is not

true:

Example 1.1.2. Consider the rings

(7 3)=a-(23)

Then R is a left order in @ even though @ is not a field (of fractions of R,
neither is R an integral domain). The same happens with R = M, (Z) C

M., (Q).

So what if we do not even have a unit in )7 We would not be allowed
to speak of invertible elements then. However, Utumi still found a suitable

notion of ring of quotients for this setting.

Definition 1.1.3. Recall that an overring ) of a ring R is said to be a
(general) left quotient ring of R if given p,q € @ with p # 0, there
exists a € R satisfying ap # 0 and aq € R. Right quotient rings are defined

analogously.

Again, any classical left quotient ring ) of a ring R is also a left quotient

ring of it for if we take p,q € @, with p # 0, we may find certain a € Reg(R)
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and b € R such that ¢ = a='b, and therefore we get ag = b € R and ap # 0,
because otherwise ap = 0 would imply that (a is invertible in Q) p = 0.

As we have just stated, as soon as we do not have a unit element, we lose
all the chances for a ring () to be a classical left quotient ring of another ring
R, although it may remain a left quotient ring of R. Easy examples of that
situation are R = M,,(4Z) C @ = M,,(2Z). For a more interesting case see
the following:

Example 1.1.4. Consider V a K-vector space of infinite dimension. Let @)
be the ring of all endomorphisms Endg(V'), and R be the subring of finite

rank endomorphisms
FV)=A{f:V =V | dimg f(V) < oo}.

In fact, R is the socle of Q). Now, although @) is unital, it is not a classical left
quotient ring of R. If we wrote 1 = a~'b for some a,b € R, since R = Soc(Q)
is an ideal, we would get that 1 € R, that is dimg(1(V)) < oo, but this
contradicts the fact of V' being infinite dimensional.

Despite of that, () is a left quotient ring of R: Take p,q € @, with p #£ 0.
Take B = {e;}°, a basis for V. Since p # 0, there exists e; € B such that
0 # plej) = > p_; i€, for some a; € K. Let H be the finite dimensional
subspace {e;,...,e; } and consider r = Iy the projection over H. Then,
rp # 0 because rp(e;) = p(e;) # 0, and since dimr(V) = dimr(H) =n < oo,
then r € R <@ and therefore rq € R.

It is not difficult to prove (this is done in the next chapter in more gen-
erality) that if @ is a left quotient ring of R then, given ¢, ..., ¢, € @, with
¢1 # 0, there exists an element » € R such that rq; # 0 and r¢; € R for
every i € {1,...,n}. From now on, we will use this “common denominator
property” without even an explicit mention to it.

The question now is: Does there exist a left quotient ring ) of R such
that whenever we consider any other left quotient ring 7" of R, we could find

a monomorphism from 7" to Q7
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Utumi answered in the affirmative as long as the ring R is not terribly bad
(in the sense that it is at least right faithful). First, let us recall the definition
of right faithfulness.

Definitions 1.1.5. A nonzero element x € R is a total right zero divisor
if Rz = 0. A ring R is right faithful if it has no total right zero divisors.
That is, Rx = 0 implies z = 0. Similarly, a nonzero element z in R is said to
be a total left zero divisor if xR = 0, and a ring is left faithful if it has

no total left zero divisors.

Now suppose that () exists and consider € R such that Rx = 0 and
x # 0. Since x € R C @ and @ is a left quotient ring of R, then there exists
r € R such that rx # 0, which is a contradiction. The converse can be found
in Utumi [73].

Clearly, when such a ring () exists, since it is defined by a universal pro-

perty, it is unique up to isomorphism and it is denoted by Q! (R).

max

Definitions 1.1.6. This ring is called the Utumi left quotient ring of R,

or the maximal left quotient ring of R.

The Utumi left quotient ring of a ring without total right zero divisors

can be characterized as follows. First, some notation and a definition.

Definition 1.1.7. A left ideal L of a ring R is said to be dense if for every
x,y € R, with z # 0, there exists a € R such that ax # 0 and ay € L. As

it is not difficult to see, this is equivalent to saying that R is a left quotient

ring of L. We denote by Zy(R) the family of dense left ideals of R.

Notation 1.1.8. Throughout this thesis, we will be dealing with homomor-
phisms of left R-modules f € Homg(grL,g R) (mainly when constructing the
homomorphisms in (1.1.9) (3)). In order to make more readable some proofs
and arguments, we use for these homomorphisms the notation (z) f to denote
the action of f on an arbitrary element x € L. This occurs mainly in sections
1.1, 1.2, 2.4, 2.5 and 3.7.

However, we use the traditional notation ®(z) when we deal with other

kind of maps.
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The following proposition can be found in [45, Corollary in p. 99].

Proposition 1.1.9. Let R be a ring without total right zero divisors, and
let S be a ring containing R. Then S is isomorphic to Q' ,.(R), under an

1somorphism which is the identity on R, if and only if S has the following

properties:
(1) For any s € S there exists L € Zy(R) such that Ls C R.
(2) For s € S and L € Ty (R), Ls =0 implies s = 0.

(3) For any L € Zy(R) and f € Homg(rL, rR), there exists s € S such that
(x)f =xs forallx € L.

Remark 1.1.10. The conditions (1) and (2) in (1.1.9) are equivalent to say-
ing that S is a left quotient ring of R. This can be proved by using [45, Lemma
4.3.2]. So that condition (3) can be thought as the “maximality condition”.

Several examples of maximal left quotient rings are the following:

Example 1.1.11. Fields of fractions. If D is an integral domain and K is its
field of fractions, then Q! (D)= K.

We have already stated that K is a left quotient ring of D so it remains
to check the maximality condition: Take I € Zy(D) (in particular I # 0) and
f € Homp(pl,p D). Pick 0 # i € I and construct s := { € K for j = (i)f.

Now it is easy to see that (z)f = xs for every x € I: By multiplying on
the left hand side by « € I in (i)f = 7 and using that f is D-lineal, we get
xj =x(i)f = (xi)f = i(z)[f so that (z)f = 2l = xs.

This example includes the cases we started talking about: Q! ..(Z) = Q
and Q' (K[z]) = K(z).

max

Example 1.1.12. The socle of a ring of endomorphisms. Let V be a K-
vector space and @ = Endg (V) be the ring of endomorphisms. The socle of
() is precisely the set of finite rank endomorphisms, Soc(Q) = F (V). In this
situation @', (F(V)) = Q.

This example includes (when V is finite dimensional) matrix rings:

maz (M (K)) = M, (K).

maxr
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Example 1.1.13. Of course the maximal left and maximal right quotient
rings need not coincide. Consider the ring
K K K

R=| 0 K 0
0 0 K

As it shown in [44, p. 372], Q! ..(R) = M3(K) while Q7 ..(R) = My(K) x

max max

M, (K), and they are not isomorphic.

There exist different algebraic constructions of the maximal left quotient

ring. Perhaps the two most used are:

Proposition 1.1.14 (Lambek’s construction). (See [46].) Let R be a
ring with identity. Denote by I = E(R) the injective hull of R and by H =
Homg(Ig, Ir) (the centralizer of Ig). Let Q = Hompy(yl,nzI) (the second
centralizer of Ir). Then there is a natural injection of R into Q and @ is the

maximal left quotient ring of R.

Proposition 1.1.15 (Utumi’s construction). (See [44, §13].) Let R be a
ring with identity. Then Q',,.(R) can be identified as the ring whose elements
are classes of R-homomorphisms f : I — R where I is a dense left ideal of
R. Two such R-homomorphisms f:1 — R and g : J — R are regarded to be
in the same class if f =g in I N J. The classes are added by taking the class

f+g:INJ — R, and they are multiplied by taking the class fg : g~ (I) — R.

In the next chapter we develop a (graded and not necessarily unital) cons-
truction with partial homomorphisms and (graded) dense left ideals as in
Utumi’s construction. The other construction of Q! (R) (that of injective
hulls) is preferred when working from a more categorical perspective.

We want to point out the good behaviour of the maximal left quotient
ring by recalling some of its well-known properties (the reader can see [44]) in
the case of unital rings. Some of these remain true in the case of right faithful

rings, as we prove in the more general setting of graded algebras in the next

chapter.
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Proposition 1.1.16. Let R C T and R; (fori in a set of indices A) be unital

rings. Then:

(i) QL ..(R) is always a unital ring.

(ZZ) Qinax(H Rl) = H leax(Rl)
(“Z) ernax(Mn(R>> = Mn( fnax(R»
(iv) T is a left quotient ring of R if and only if Q' . (R) = Q! . (T).

(0) Qiaa(Qiaa(R) = Qo (R).

We do not have to go to the maximal left quotient ring R in order to inherit

properties of R: Some of them are already inherited by any left quotient ring
of R.

Proposition 1.1.17. Let R be a right faithful ring and Q o left quotient ring
of R.

(1) If I is a nonzero ideal of Q then I N R is a nonzero ideal of R.
(11) If R is simple (resp. prime, semiprime, commutative), then so is Q.

(111) If R has an identity then so has @, and they coincide.

Proof. (i) Take 0 # x € I and apply that @ is a left quotient ring of R to
find a € R such that 0 # ax € R. Then 0 # ax € I N R.

(ii) The simple, prime and semiprime cases follow easily from (i). Let us
see the commutativity: Suppose that R is commutative and that we have
z,y € Q with xy — yx # 0. There exists a € R such that a(zy — yx) # 0 and
axr,ay € R. Again, we find b € R such that ba(zy — yz) # 0 and bz, by € R.

Now we use the commutativity in R to reach a contradiction:

(ba)(zy) = blax)y = (ax)(by) = ((by)a)r = (ab)yx = (ba)(yx).

(iii) Let 1 be the identity in R. Suppose that there exists ¢ € ) such that
1g — g # 0. In this case we would find @ € R such that 0 # a(lg — q) =
(al)q — aq = aq — aq = 0, a contradiction. Analogously one sees that g1 = ¢

for every q € Q. ]
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The maximal left quotient ring of a ring R is also a powerful tool in order
to understand the structure of the ring. In that sense we want to recall the

following classical results which can be found in [44].

Theorem 1.1.18 (Johnson’s). Let R be a unital ring. Then R is left non-

l

maz(R) s von Neumann regular.

singular if and only if Q

Theorem 1.1.19 (Gabriel’s). Let R be a unital ring. Then R is left nonsin-

l

gular and has finite left uniform dimension if and only if Q.. (R) is semisim-

ple.

1.2 The maximal left quotient ring of a corner

By a corner we understand a subring of the form eRe for some idempotent
e = €2 € R. The name comes from the classic example of corner in matrix
rings, that is, given R = Mj(.9), for any unital ring S, the idempotents eq;

and eqgq give rise, respectively, to the following corners matrices:

S 0 0 0
611R611 = ( 0 0 ) and 622R€22 = < 0 S > .

These corner rings have very nice properties sometimes. For instance, one
can relate the ideals of a ring to that of its corner rings and vice versa, or one
can translate some properties from a ring to its corners. Also, corners possess
good behaviours in different contexts: For example, in the Jacobson radical
theory it is shown that

J(eRe) = eJ(R)e,

or for unital rings it is proved that

L w(eRe) =eQ! (R)e.

max max

In this section we focus on the latter and we weaken the hypotheses under
which we can guarantee such a relation to hold. First, we need to relate the
dense left ideals of a corner with the dense left ideals of the ring, and by doing

so, we could construct an isomorphism from @', . (eRe) to eQ!, .. (R)e.
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The highest generality was pursued in the next results on dense left ideals
of corners.
Let R and S be rings with R C S. For every X C S the left annihilator

is defined as:

lang(X):={re€ R|rz =0 for all z € X},
and analogously the right annihilator is

rang(X) :={re R|xr =0 for all z € X}.

Proposition 1.2.1. Let R and S be rings with R C S, and consider an
idempotent e € S such that eR + Re C R and lang(Re) = rang(eR) = 0.
Then, for every eLe € Ty(eRe), ReLe @ lang(e) € Zy(R). In particular, if
ee R,

eLe — RelLe & lang(e)

defines an injective (inclusion-preserving) map from the dense left ideals of

eRe and those of R.

Proof. The sum of ReLe and lang(e) is direct because lang(e) = R(1 — e).
Let p and ¢ be in R with p # 0. Since lang(Re) = 0, pse # 0 for some s € R.
Then rang(eR) = 0 allows us to find v € R such that eupse # 0.

Using twice eLe € Zy(eRe) we obtain: 0 # etet’eupse and et’euqe € eLe,
for some ete, et’'e € eRe. Then etet'eu € R satisfies etet’eup # 0 and

etet'euq = etet'euqe + etet’euq(l — e) € ReLe + lang(e).

Finally, suppose e € R. If eLe,el’e € Zy(eRe) are such that RelLe @
lang(e) = ReL'e @ lang(e), then ReLe = Rel'e: Take x = xe € ReLe and
then x = y+ 2 for some y € Rel/e and z € lang(e). Then z = xe = ye+ ze =
y + 0, so that x € RelL’e. Analogously Rel’e C RelLe.

Now, from the fact that eLe and eL’e are left ideals of e Re we can deduce
eLe = eeeLe C (eRe)eLe C eLe and also eL'e = eReL’e. This easily implies
that eLe = eL’e. This proves the injectivity. ]
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The map defined in the previous lemma is not always surjective, as we see

in the following example.

10

Example 1.2.2. Take R = My(Z), I = M(2Z) and e = ( 00

lang(Re) = rang(eR) = 0, I € Zy(R) and since

1wma:(g %),

we deduce I # ReLe & lang(e) for every eLe € Zy(eRe).

) . Then

Proposition 1.2.3. Let R and S be rings with R C S, and consider an
idempotent e € S such that eR + Re C R and rang(eR) = 0. Then for every
L eZy(R), eLe € Zy(eRe). Moreover, if e € R and lang(Re) = 0, then

L— elLe

defines a surjective (inclusion-preserving) map from the dense left ideals of R

and those of eRe.

Proof. Take exe,eye € eRe, with exe # 0. Since L € Zy(R) we can find t € R
satisfying texe # 0 and tey € L. Now rang(eR) = 0 implies estexe # 0 for
some element s € R. Then este € eRe satisfies estexe # 0 and esteye € eLe.

Finally, suppose e € R and lang(Re) = 0. If eLe € Zy(eRe) then RelLe @
R(1 —e) € Zy(R) (see (1.2.1)) and e[ReLe & R(1 — e)]e = eLe. This shows
the surjectivity. O]

The map L — eLe is not always injective, as it is shown in the following

example.

Example 1.2.4. Take R = My(Z), n,m € Z with m # n and e = ((1] 8)
Consider L, L' € Zy(R) defined by

([ Z mZ ;[ Z nZ
L_(Z mZ) and L_<Z nZ)'
Then lang(Re) = rang(eR) = 0 and eLe = eL’e € Zy(eRe), while L # L.

Next lemma relates left quotient rings with corners of the rings.
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Lemma 1.2.5. Let R C @ C S be rings and consider an idempotent e € S
such that eR + Re C R, eQ + Qe C @ and rang(eR) = 0. If Q is a left
quotient ring of R, then eQe is a left quotient ring of eRe.

Proof. Given epe, eqe € eQe, with epe # 0, use that @) is a left quotient ring
of R to find r € R satisfying repe # 0 and rep, req € R. Since rang(eR) = 0,
etrepe # (0 for some t € R. Moreover, etrege € eRe. n

Now we prove the main result of this section, which was proved by M.
Gomez Lozano, M. Siles Molina and the author in [11, Theorem 1.8] in which
we find conditions under which the isomorphism Q! .(eRe) = eQ', . (R)e

holds.

Theorem 1.2.6. Let R be a ring and Q == Q! .. (R). Then, for every idem-

potent e € Q such that eR + Re C R and lang(Re) = rang(eR) = 0 we have
L w(eRe) = e@!l (R)e.

max max

Proof. By (1.2.5), eQe is a left quotient ring of eRe and this implies the
conditions (1) and (2) of (1.1.9). Now, we prove the third one.

Take eLe € Ty(eRe) and f € Homege(creele, cre€Re). Define

f: ReLe®lang(e) — R
Y oriele +t — > ri(ele)f

By (1.2.1), ReLe & lang(e) € Za(R).

The map f is well-defined: Suppose 0 = 3 relie +t € ReLe @ lang(e).
Then 0 = t = > rel;e and Y r(el;e)f must be zero; otherwise, since

rang(eR) = 0 there would be an element s € R such that

0 #es Z ri(elie) f = Z esrie (ele) f = (Z esriel;e) f = (es Zrielie)f =0,

which is a contradiction.
Moreover, f is a homomorphism of left R-modules: For rele+t € ReLe &

lang(e) and s € R, s(rele+t)f = sr(ele) f = (srele + st)f.
Apply (1.1.9) to find ¢ € @ such that

(rele + 1) f = (rele +t)q for all rele +t € ReLe @ lang(e).
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We prove ¢ = eqe. For every rele +t € ReLe @ lang(e) we have
(rele +t)q = (rele + 1) f = r(ele) f = r(ele) fe = relege = (rele + t)eqge.

This implies (ReLe @ lang(e))(q — eqe) = 0, and by (1.1.9) (2), ¢ — eqe = 0.
Finally, take erele € eReLe. Then (erele)f = (erele)f = ereleq =
ereleqe.
Hence (ele)f = elege for every ele € eLe because eRelLe is a dense left
ideal of eRe, and two eRe-homomorphisms which coincide on a dense left

ideal of e Re coincide on their common domain. This completes the proof. [

Definition 1.2.7. We recall that an idempotent e of a ring R is called a full
idempotent if ReR = R.

As an easy corollary, we state a more common situation in which we have

maz (€Re) = eQy 0 (R)e.

max

Corollary 1.2.8. Let R be a left and right faithful ring, and consider a full
idempotent e* = e € R. Then Q' . (eRe) = eQ' . (R)e.

max max

Proof. We only need to check the condition on the annihilators in (1.2.6). For
that we use the fullness of the idempotent e € R: Take = € lang(Re), that
is, zRe = 0. Then z(ReR) = xR = 0 also, and since R is left faithful we get

x = 0. Analogously one can see rang(eR) = 0. O

The hypothesis of fullness of the idempotent cannot be dropped in (1.2.8),

as it is shown in the following example.

Example 1.2.9 (P. Ara). There exists a non full idempotent e in a ring R
such that Q! (eRe) % eQ! . (R)e.

max max

Proof. Consider the ring R of lower triangular matrices 3 x 3 over a field K
which have the term (2,1) equal to zero, that is:
K 0 0

R=| 0 K 0
K K K
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Let e be the (not full) idempotent diag(1,1,0).

K K 0
Then QL (R) = My(K) and @l (R)e = [ K K 0 | 2 My(K),
0 0 O
K 0 0
while @, .(cRe)=eRe=| 0 K 0 | ¥KxK. O
0 0 0

In the next result we provide a method of computing the maximal left
quotient ring when we know the maximal left quotient rings of some particular

corners of the ring.

Corollary 1.2.10. Let R and S be rings with R C S and S a left quotient
ring of R, and suppose R left faithful. Then, for every full idempotent e € R
such that RfR = R, for f :=1 — e, we have:

(i) S = Qlnaa(R) if and only if eSe = Q;,q,(eRe) and fSf = Q.. (fRf).

(i) In particular, Q! .. (R) = Q1 + Q1RQy + Q2RQy + Q2, where Q =

Proof. We prove only (i) because (ii) follows immediately from it. The only

part follows from (1.2.8).
I

max

Conversely, write @ := @,,,.(R). Since S is a left quotient ring of R, we

may consider R C S C (). Moreover,

eSf =ceeeSf CeSeRSf=eSeRfRSf CeSeRfSf CeSf
implies eSf = eSeRfSf, and in a same fashion,

fSe = fSeeee C fSReSe = fSRfReSe C fSfReSe C fSe

implies fSe = fSfReSe.
Analogously we prove eQf = eQeRfQf and fQe = fQ fReQe. Hence
S=eSe@eSf®fSed® fSf=eQeDeQf ® fQed fQf = Q. ]

The hypothesis of e being in R cannot be eliminated. We show it in the

following example.
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Example 1.2.11. Let V' be a left vector space over a field K of infinite
dimension, () = Endg (V) and R = Soc(Q). Consider two idempotents e, f €
@) such that e, f ¢ R and e + f = 1. Then

T'=eQedeQeRfQf © fQfReQe @ fQf

satisfies RC T C Q = Q' . (R), eTe = eQe and fTf = fQf, while T #

Q because eQeRfQf & eQf (for example eQf contains endomorphisms of
infinite rank whereas eQeRfQ f does not).

Notice that we cannot apply (1.2.10) to the ring 7" since e is not a full
idempotent of T

We note here that some of the results of this section have been successfully
generalized by E. Ortega in [58, Propositions 2.12; 2.13 and Corollaries 2.14,

2.15] for the maximal symmetric ring of quotients @, (R). Concretely:

Proposition 1.2.12. Let R C S be rings such that S is a two-sided quotient
ring of R. Let e € R be an idempotent.

(1) If R is nonsingular semiprime or e is full, then Q,(eRe) = eQy(R)e.

(11) If both e and f := 1 — e are full, then S = Q,(R) if and only if eSe =
Qs (eRe) and fSf = Qo(fRS).

(iii) Qo(Mn(R)) = M,(Qo(R)).

1.3 Morita invariance and maximal left quo-
tient rings

In this final section we explore the connections between maximal left quo-
tient rings, Morita contexts and Morita invariance of some properties and
constructions. First, we need to recall the notions of Morita equivalence in
this setting of not necessarily unital rings.

Let R and S be two rings, gNg and Mg two bimodules and (—,—) :
NxM— R, [-,—]: M x N — S two maps. Then the following conditions

are equivalent:
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N\ . . . : :
1. ( 1 ) is a ring with componentwise sum and product given by:

M S
™ nq 9 No _ 179 + (77/1, mg) 1Mo + N1So
mq S1 Mmoo  So mire + S1Mo [ml, ng] + 8182
2. [—, —] is S-bilinear and R-balanced, (—, —) is R-bilinear and S-balanced

and the following associativity conditions hold:
(n,m)n =n[m,n'] and [m,n]m' =m(n,m’).

[—, —] being S-bilinear and R-balanced and (—, —) being R-bilinear and
S-balanced is equivalent to having bimodule maps ¢ : N ®¢ M — R
and ¥ : M ®gr N — S, given by

p(n@m) = (n,m) and ¥(m & n) = [m,n
so that the associativity conditions above read
en@m)n’ =np(m@n') and Y(m@n)m' = me(n @ m').

Definition 1.3.1. A Morita context is a sextuple (R, S, N, M, ,1) satis-
fying the conditions given above. The associated ring is called the Morita
ring of the context. By abuse of notation we sometimes write (R, S, N, M)
instead of (R, S, N, M, ¢,1) and suppose R, S, N, M contained in the Morita
ring associated to the context. The Morita context is called surjective if both

the maps ¢ and v are surjective.

In classical Morita theory it is shown that two rings with identity R and
S are Morita equivalent (i.e., R-mod and S-mod are equivalent categories)
if and only if there exists a surjective Morita context (R, S, N, M, , ). The
approach to Morita theory for rings without identity by means of Morita
contexts appears in a number of papers (see [25] and the references therein)
in which many consequences are obtained from the existence of a Morita
context for two rings R and S.

In particular it is shown in [41, Theorem]| that, if R and S are arbitrary

rings having a surjective Morita context, then the categories R—Mod and
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S—Mod are equivalent. It is proved in [25, Proposition 2.3| that the converse
implication holds for idempotent rings (a ring R is said to be idempotent if
R*=R).

For an idempotent ring R we denote by R—Mod the full subcategory of the
category of all left R-modules whose objects are the “unital” nondegenerate
modules. Here a left R-module M is said to be unital if M = RM, and M is
said to be nondegenerate if, for m € M, Rm = 0 implies m = 0. Note that,

if R has an identity, then R—Mod is the usual category of left R—modules.

Definition 1.3.2. Given two idempotent rings R and S, we say that they
are Morita equivalent if the respective full subcategories of unital nonde-

generate modules over R and S are equivalent.

The following result can be found in [25, Proposition 2.5 and Theorem

2.7].

Theorem 1.3.3. Let R and S be two idempotent rings. Then the categories
R—Mod and S—Mod are equivalent if and only if there exists a surjective

Morita context (R, S, M, N).

The first result referring Morita contexts is obtained as a consequence of
(1.2.10), and it is the following.

.. R M
Proposition 1.3.4. Let T = N

R and S, with R unital, MN = R and NM = S, and denote by ()1 and Q)
the Utumzi left quotient rings of R and S, respectively. Then

! _ @1 Q1 MQ2
mas( 1) = (QQNQl Q2 ) .

Notice that the ring R in (1.3.4) must be unital, as we show in the following

be a Morita context for two rings

example.

Example 1.3.5. Let V be a left vector space over a field K of infinite di-
mension, ) = Endg (V) and R = Soc(Q). Consider two idempotents e, f € @
such that e, f ¢ R and e + f = 1. Then the ring

[ eRe eRf
T_(fRe fRf)
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gives rise to a Morita context for the non-unital rings eRe and fRf, and

g_ ( eQe eQeRfo)
fQfReQe  fQf

does not coincide with Q! __(T) = @ because there are elements in eQ f with
infinite left uniform dimension, while every element of eQeRf(Q) f has finite

left uniform dimension.

The following result is well-known for unital rings (see, for example [72,

X.3.3]). Here, we prove it for non-necessarily unital rings.

Proposition 1.3.6. For a ring R without total right zero divisors we have:
maz (M (R)) = M (@00 (1))

max max

Proof. The proof is by induction on n. For n = 1 there is nothing to prove.

Suppose the result valid for n and denote Q := Q' . (R). Consider the ring

max

o= <Mng<@> ngﬁ?é?)))

and the idempotents

e:(g ?)EQ and f=1—e

Since Q is a left quotient ring of itself, e and f are full idempotents of Q,
O = Qh(FQ) (FOS = Q = QL (@) and eQe = Q) (¢Qe) (by the
induction hypothesis eQe = M,,(Q) = Q! .. (M, (Q))), we can apply (1.2.10)
to obtain that @ = Q! (Q). Denote

R:(mﬁm>ﬁﬁ$0'

Since Q is a left quotient ring of R, we have Q' = (R) = Q. ]

max

The previous result can be applied to get an alternative proof for unital
rings of the fact that the maximal left quotient rings of Morita equivalent

rings are also Morita equivalent.

Proposition 1.3.7. Let R and S be two unital Morita equivalent rings. Then:
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(i) QL ..(R) and Q' . (S) are Morita equivalent ([72, X.3.2]).

(ii) If R = Qpas(R), then S = Q,,,(S).

Proof. Since R and S are Morita unital equivalent rings, there exist n € N
and a full idempotent e € M, (R) such that S = eM,,(R)e. Then Q',,,.(S) =
maz (M (R)e) = Q0 (Mo (R))e (by (1.2.8)) = eM,(Qpea(R))e (by

(1.3.6)), and this implies (i).
If Q..(R) = R we have Q.,,.(S) = eM,(R)e = S. O

Again, there is an example showing that the “unital” condition cannot be

dropped in (1.3.7).

Example 1.3.8. Consider a simple and non unital ring R which coincides

with its socle, and take a minimal idempotent e € R. Then
eRe eR
Re R

provides a Morita context for the rings eRe and R.

On the one hand, by [45, Proposition 4.3.7], (R) = Enda(V), with
V' a left vector space of infinite dimension over a division ring A (which is

(eRe) = eRe = A.

max

isomorphic to eRe), and also Q!
But Enda (V) and A are not Morita equivalent rings because if two unital
rings are Morita equivalent and one of them is left artinian, then the other

one must be so.

Now we prove a technical lemma involving orthogonal decompositions of

idempotents.

Lemma 1.3.9. Let A be a ring without total right zero divisors which is
a subring of a unital ring B, and suppose that there exists a pair (e, f) of
orthogonal idempotents of B such that 1g = e+f and Ae+eA C A. Then there
A) such that u+ v = 1g,

exist two orthogonal idempotents u,v € Q := Q' (

ea = ua, ae = au, fa =wva and af = av for every a € A.
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Proof. Consider the maps
pe: A — A pp: A — A

a +— ae a +— af

Clearly, pe,p; € Homa(4A,4A) and so u := [A,p.] and v := [A, pyf| are
idempotents in Q',,,(A). Moreover u + v = 1g (which implies that u and v

max

are orthogonal) and for every a € A,

[A, pe][A, pa] = [A, pea] € A

(1)
[A, pal[A, pe] = [A; pac] € A

implies ua = ea and au = ae (notice that A can be identified with the subring

{[A, pa) | a € A} of Q). And analogously fa =wva and af = av. O

Although we have seen that the maximal left quotient rings of Morita
equivalent idempotent rings R and S may not be Morita equivalent, we show,
in the last theorem of this chapter, that at least the ideals R and S generate
inside their maximal left quotient rings are. This was proved by M. Gémez

Lozano, M. Siles Molina and the author in [11, Theorem 2.8].

Theorem 1.3.10. Let R and S be two Morita equivalent idempotent rings,
R M

A= ) the Morita ring of a surjective Morita context and denote

N S
Qr:=Q  (R),Qy:=@Q (S). Then Q1RQ; and Q25Q, are Morita equiva-

lent idempotent rings.

R' M
N St
the unitizations of R and S, respectively. This ring has two orthogonal idem-

(1p 0 (0 0
e‘( 0 o) and f‘(o 151)
such that e+ f = 15 and Ae+eA C A.
By (1.3.9), there exist two orthogonal idempotents u,v € Q := Q! (A)

such that v +v = 1g and R = vAu, S = vAv, M = uAv, N = vAu C Q.
Moreover, Q; = Q!,..(R) = Q! .. (uAu) = (by (1.2.6), which can be used

max max

because Au + uA C A and lang(Au) = rana(ud) = 0) u@! . (A)u. And
analogously Q, = Q' . (5) = Q! ..(vAv) 2 vQ! (A)wv.

max max max

Proof. Consider the unital ring B = , where R' and S! denote

potents
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This means that M, N, @)1 and ()3 can be considered inside ) as uQwv,
vQu, uQu and vQu, respectively. We claim that

T — (QlRQl QlMQz)
QNQ1  Q25Q:

is a surjective Morita context for the idempotent rings ()1 RQ)1 and QQ25Q):

1 RQ1Q1 RO, € Q1RQ, = Q1RRRRQ, C Q1 RQ1Q1RQ,

implies that ()1 RQ; is an idempotent ring. Analogously we obtain that (Q2.S5Q)

is an idempotent ring.
O RQIQIMQ2 C QiIMQy = QRMQy = QIRRRM@Q; C Q1RQ1Q1MQ>.

Hence Q1 MQs = Q1 RQ1Q1MQ2. Analogously QQ25Q2Q2NQ1 = Q2N Q.
Finally,

QIMQ2Q2NQ1 = QiMQNQy = QuMNMQNQ, €
Q1RQ1 = QIMNMNMNQ; C Qi MQ2Q2NQ;.

This implies Q1 MQ2Q2NQ, = Q1 RQ1. And analogously Qo NQ1Q1MQs =
Q25Qs. O
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Chapter 2

Maximal graded algebras of left
quotients

2.1 Introduction and definitions

In this chapter we deal with structures graded by a group. Thus, all the
objects considered (rings, algebras, modules, homomorphisms, etc) will be
assumed to be graded, unless otherwise specified. The non graded case can
be therefore regarded as an special case of this setting by considering trivial
graded structures.

Throughout this chapter all algebras are considered over a unital associa-
tive commutative ring ® and not necessarily unital. Recall that given a group

G (not necessarily abelian) an algebra A is said to be G-graded if
A= BseqAs,
where A, is a ®-submodule of A and
A,A; C A, for every o, 7 € G.

We say that A is strongly graded if A,A. = A,.. Note that A, is a subal-
gebra of A and that every A, is a A.-bimodule. In the sequel, we sometimes
use “graded” instead of “G-graded” when the group is understood. As usual,
by the prefix “gr-” we mean “graded-”. For example: “Gr-(left) noetherian”

means that the algebra A satisfies ACC on the graded left ideals.

21
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The grading is called finite if its support Supp(A) = {oc € G : A, # 0} is
a finite set. When G = Z, we speak about a superalgebra. In the particular
case of G = 7Z with finite support, the algebra A can be written as the finite
direct sum A=A_, & ... d A,, and we say that A is (2n + 1)-graded. We
use as a standard reference for graded algebras and modules [56]. Most of the
original results presented in this section have been taken from [13].

Graded rings and algebras abound in the mathematical literature. Several

well-known examples may be the following:

1. The algebra of polynomials, R = K|x] is a Z-graded algebra with grad-
ing given by R, = Kz" if n > 0 and R,, = 0 otherwise.

2. The group algebra, R = A[G] = {3_ cqay9 finite} where A is an ar-
bitrary algebra. The sum of R is given by ag + bg = (a + b)g and the
product by

Zagg : Zbgg = Z(Z azby)g.

geG geG geG zy=g
The grading is clearly R, = Ag. This is the classical example of a G-
graded algebra.

3. The Laurent polynomial algebra, is the polynomial algebra R =
K|z, 27! in the commutative variables z, 271, with the relations zz =1 =
1 = z7'2. This algebra is also Z-graded with R, = Kz". In contrast
with the first example, this algebra is strongly graded. We would like
to point out that this algebra is a particular case of the example above:

precisely the group algebra K|[Z].

4. Matriz algebras, R = M, (S) are (2n — 1)-graded with
Rk = Z Sei,j
{i.je{1l,...,n}| i—j=k}

for k < n and R, = 0 otherwise.

5. Morita contexts, T := (M g

N ) are Zs-graded algebras with T :=
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R 0 0 N .
( 0 S ) and T} := ( M0 ) They are also Zs-graded with T" =

RO@RI@RQ,belngR():Ib,Rl:<O N)andRQZ(]OW 8>

6. Leavitt path algebras, which are thoroughly studied in chapter 4, are

also examples of Z-graded algebras.

7. Every algebra R can be endowed with the trivial grading for any
group G by doing R. = R and R, = 0 for g # e.

In a graded algebra A = ®,cqA,, each element of A, is called a homo-
geneous element. The set of all homogeneous elements of the algebra is
denoted by h(A). The neutral element of G is denoted by e. Recall that a
left ideal I of a G-graded algebra A is a graded left ideal of A provided
I'=% cc(INA;). That is, given x € I, if we decompose x into its homoge-

neous components r = » Z,, then z, € I for all o € G.

oceG

In a similar way we define graded right ideal and (two-sided) graded ideal.
As an example, given A = K|[z], the Z-graded K-algebra of polynomials, a
principal ideal [ =< f >= {fg : g € K[z]} is a graded ideal if and only if f

is a monomial.

2.2 Graded algebras of left quotients

Following the idea introduced by Utumi of giving a notion of maximal ring of
left quotients of a non unital associative ring R as the direct limit of homo-
morphisms of (left, say) dense ideals into R, we are interested in extending
such definition to the more general case of G-graded ®-algebras. First, we

need some definitions.

Definition 2.2.1. If A is a G-graded algebra and M is an A-module, we say
that M is a G-graded A-module provided M = ®,caM, and A, M, C M,
for every o,7 € G. If N and M are G-graded A-modules and N is an A-
submodule of M, we say that N is a gr-submodule of M if N, C M, for
every o € G.
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Definition 2.2.2. Let A = ®,cqA, be a graded algebra, and N = @®,cq N,
be a gr-submodule of a graded A-module M = ®,cqM,. We say that N is
a gr-dense submodule of M if given 0 # x, € M, and y, € M, there
exists a, € A, satisfying a,z, # 0 and a,y, € N,,. If N is a gr-submodule
of a module M, we write N < M. Let us denote by Sy,_q(M) the set of all

gr-dense submodules of M.

The following lemma is a graded version of the generalized common de-
nominator property for rings of left quotients and will be used in the sequel

without any explicit mention to it.

Lemma 2.2.3. If N is a gr-dense submodule of a G-module M, then given
0# x, € M, and y.. € M., withi € {1,...,n}, there exists a, € Ay such
that aqxs # 0 and ayL. € Na,.

Proof. Take 0 # x, € M, and y. € M, for i € {1,...,n}. We use induction
on n. For n = 1 we simply apply the definition of gr-dense. Let us suppose
we have found a, € A, with a,z, # 0 and a,y. € N, fori e {1,...,n—1}.
Apply the definition of gr-density to the elements a,z, # 0 and a,y; €
M, to find b; € As such that bsa,z, # 0 and bs(a,y; ) € Nsyr,.
Now c¢s, := bsa, € As, is the desired element because b(;avyii € AsN,,, C
(N is a G-graded A-module) Ny, for i € {1,...,n — 1}, as desired. O

Lemma 2.2.4. Let M, N and P be G-graded A-modules such that M <
N < P. Then M is a gr-dense submodule of P if and only if N is a gr-dense
submodule of P and M s a gr-dense submodule of N.

Proof. First, suppose that M is a gr-dense submodule of P. Let us check that
N is also a gr-dense submodule of P. To achieve that, take 0 # p, € P,
and ¢. € P;. By hypothesis there exists a, € A, such that a,p, # 0 and
a,qr € M,, C (M is a gr-submodule of N) N,,. Now consider 0 # n, € N,
and m, € N;; since N is a gr-submodule of P, then n, € P, and m, € P,
and then we find a, € A, verifying a,n, # 0 and a,m, € M.
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To see the converse, assume 0 # p, € P, and ¢, € P,. Use that N is a
gr-dense submodule of P and (2.2.3) to find b, € A, such that 0 # b,p,,
b.ps € N,» and b,q; € N, Apply that M is a gr-dense submodule of N
to get ¢y € A, with ¢,b,p, # 0 and cyb,q- € M,,, so that the element

Ay, = cyb, € Ay, verifies a,,ps # 0 and a,,q- € My(,r), as we needed. O

Given a graded A-module M = @®,c¢M, and a gr-submodule N =
@yeagN, of M, HOMA(N, M), denotes the abelian group of all gr-
morphisms of degree o, that is, f € HOM (N, M), if and only if f: N —
M is a homomorphism of A-modules and (N,)f C M,, for every o € G.
When o = e (the identity element of the group G) we simply say graded
homomorphism. The abelian group @,eqHOM (N, M), will be denoted by
HOM4(N, M).

Analogously right and graded homomorphisms are defined. We recall that
we are writing the homomorphisms of left modules acting on the right hand
side. It is clear that, when M = N, the composition of a morphism of degree

o with one of degree 7 is of degree o7.

Lemma 2.2.5. Let M = ®,cqM, be a graded A-module, with A = G,cqAs
a graded algebra. Then:

(i) For every N, P € Sy,_q(M) we have N + P, NN P € Sy_q(M).

(it) For every N, P € Sy_q(M) and every f € HOMs(N, M), f=>"_ fs,
we have Ny [ (P) € Syr_a(M). In particular, f € HOMs(N, M), implies
f7HP) = Goecf T (Py) € Sgr—a(M).

(iii) If N, P € Syr—q(M) and f € HOMa(N, M) are such that P C N and
fir =0, then f =0.

Proof. (i) To see N + P € S, _q(M) apply (2.2.4) to the chain of gri-
submodules N < N + P < M. Let us see NN P € S, _q(M). Take
0 # z, € M, and y, € M,. Apply (2.2.3) to find b, € A, such that b,z, # 0,
byyr € N, and byz, € N,p.
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Now, there exists ¢s € As such that csbyz, # 0 and csb,y. € Pys,. But
asy 1= csby is such that as 2z, # 0 and as,y, € Psyr N AsNyr C Psyr N Noyr =
(PO N) sy)r-

(ii) For every o € G, f;1(P) is a gr-submodule of M: If z € f,}(P) and
T =3 ccTr € DreaN; then

@)fs = (S wn)fs = S @) fs € My P,
TEG TEG
Now f, being a morphism of degree o implies that {(z,)f,} is indeed the
set of homogeneous components of (x)f, so that (z,)f, € P, since P is a
gr-submodule of M. Therefore z, € f;1(P) for every 7 € G.

Now, consider 0 # x, € M, and y, € M, and choose ag € Ag such
that agr, # 0 and ag(Yafo) € Paas for every o in the support of f, that is,
a5Ya € Nofy ' (Poac) = (Nof5 (P))ga-

(iii) Suppose xzf # 0 for some = € N. This implies z,fs # 0 for some
a,f € G. Take a, € A, such that 0 # a.(v.f3) and a,z, € P,,. Then
0# ar(xa)f = (arxa)f € (Pra)f € (P)f =0, a contradiction. O

Given G-graded algebras A and B with A a subalgebra of B, we say that
A is a graded subalgebra (or gr-subalgebra for short) of B if A, C B,
for all o € G.

At this point we have already gathered all the ingredients to give the
definition of graded left quotient algebra of a graded algebra.

Definitions 2.2.6. Let A = ®,cqA, be a gr-subalgebra of a gr-algebra
Q = PrecQ,. We say that @ is a gr-left quotient algebra of A if 4A is a
gr-dense submodule of 4@Q). If given a nonzero element ¢, € (), there exists
x, € A, such that 0 # z,q, € A,,, we say that () is a weak gr-left quotient
algebra of A.

Remark 2.2.7. These definitions are consistent with the non-graded ones in
the sense that for a subalgebra A of an algebra @, if we consider A and @ as
graded algebras with the trivial grading, then @ is a (weak) gr-left quotient
algebra of A if and only if @ is a (weak) left quotient algebra of A.
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A natural question imposes itself: When does an algebra have a gr-left
algebra of quotients? In the subsequent results we give an answer to this
question.

A homogeneous element z, of a gr-algebra A = @©,cc¢A, is called a ho-
mogeneous total right zero divisor if it is nonzero and a total right zero

divisor, that is, Az, = 0.

Lemma 2.2.8. Let A = ©,cqA, be a gr-algebra and x € A. If Ix = 0 for
some gr-left ideal I of A, then Ix, =0 for every o € G.

Proof. Fix 7 € G. First we see I,x, = 0 for every ¢ € G. Otherwise there
exists y, € I such that y,x, # 0 for some o € G. Now since y, is nonzero
homogeneous element we can deduce that y,x is nonzero and y,x € I.x C (I

is graded) Iz = 0, a contradiction. Hence Iz, = &, ,x, = 0. O

Lemma 2.2.9. A G-graded algebra A has no homogeneous total right zero

divisors if and only if it has no total right zero divisors.

Proof. Suppose that A has no homogeneous total right zero divisors, and
let  be an element in A such that Az = 0. By (2.2.8) Az, = 0 for every
o € (. This implies z, = 0 for every ¢ € G. Thus, x = 0. The converse is

obvious. [
Lemma 2.2.10. Let A be a G-graded algebra. The following conditions are
equivalent.
(i) A is a gr-algebra of left quotients of itself.
(1) A has a gr-algebra of left quotients .
(11i) A has no homogeneous total right zero divisors.
(iv) A has no total right zero divisors.
Proof. (i) = (ii) is obvious.
(ii) = (i) is a consequence of (2.2.4).

(i) = (iii). Take x, with Az, = 0. If 2, # 0 by hypothesis there exists

a, € A, such that a,z, # 0 which is a contradiction. So necessarily z, = 0.
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(iii) = (i). Consider 0 # z, € A, and y, € A,. Then Az, # 0 and
by hypothesis we find a € A such that azx, # 0. Write a = Z%G a,. But
r, being homogeneous implies that there exists a, with a,z, # 0. Finally,
auyr € A A C A

(iii) & (iv) is (2.2.9). O

We proceed to study the relation between being a (weak) gr-left quotient
algebra and being a (weak) left quotient algebra. In the optimal case of gr-

subalgebras, these concepts turn out to be the same.

Lemma 2.2.11. Let A be a gr-subalgebra of a gr-algebra B = ®,cqB,. Then
B is a gr-left quotient algebra of A if and only if it is a left quotient algebra
of A.

Proof. Assume first that B is a gr-left algebra of quotients of A. Take elements
p,q € B, p # 0 and decompose them into its homogeneous components
P =>..Ps ¢ =, ¢qr where of course both sums are indeed finite. There
exists py, # 0, and the set S = {7 € G : ¢, # 0} is finite so we can find
r € A, € A such that rp,, # 0 and rq, € A, € A forall 7 € S and
then for all 7 € G because if 7 ¢ G then rq, = 70 = 0 € A. Now, since
r € A, we know that rp = > _1p, € €@, A,s is the decomposition into
homogeneous components of rp, so rp,, # 0 implies rp # 0. On the other
hand, r¢ =) _r¢. € A, as we needed.

To prove the converse, take p € B,, ¢ € B, with p # 0. By hypothesis
there exists r € A satisfying 0 # rp and rq € A. Write r = Z#GG r, and
again p being homogeneous yields that ) o Tup is in fact the decomposition
into homogeneous components of the element rp, the latter being nonzero.
Then we can choose r,, € A,, with r,,p # 0 and moreover, r,,g € A,
because rq = Z# ruqg € A,B; C @u B, so these are the homogeneous
components of the element rq seen inside B, but we know it belongs to A
too, so if we decompose it into its homogenous components inside A, say
rq = >ty (with t, € A;), we could see it inside B (thanks to A being a

gr-subalgebra of B), and since the homogeneous components are unique, we
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deduce t, = r,,-1q € A, so we finally get in particular r,,q € A, ; and the

proof is complete. O

Lemma 2.2.12. Let A be a gr-subalgebra of a gr-algebra B = ®,cqB,. Then
B is a weak gr-left quotient algebra of A if and only if it is a weak left quotient
algebra of A.

Proof. Suppose that B is a weak left quotient algebra of A. Then, given
0 # q, € B, there exists a € A such that 0 # aq, € A. Then 0 # a.q, € A,
for some 7 € G.

Conversely, consider 0 # ¢ = > | ¢,, € B. By reordering the ¢,,’s, we
may suppose ¢,, # 0. Apply that B is a weak gr-left quotient algebra of
A to find z; € A, satisfying 0 # x1¢,,. We need to find x € A such that
0# xzq € A. If x1q,, = 0 for every i € {2,...,n}, then x = z; satisfies this
condition. Otherwise, we may suppose 0 # z1¢,, € B;,4,- Pick x5 € A, such
that 0 # 2221q,,. If 22219,, = 0 for every i € {3,...,n}, then z = zox
satisfies ¢ = 22214y, + T271¢5, € AryAroy ® Aryrio, € A, and xq # 0 since
xq,, # 0, and we have finished. Otherwise we repeat this process and conclude

the proof in a finite number of steps. O

Remark 2.2.13. Although every gr-left quotient algebra is a weak gr-left
quotient algebra the converse is not true: According to Utumi’s example (see
[73]) of a weak left quotient algebra which is not a left quotient algebra, we
could use (2.2.12) to quickly find an example of a weak gr-left quotient algebra

which is not a gr-left quotient algebra.

Remark 2.2.14. Though every (weak) gr-left quotient algebra is a (weak)
left quotient algebra, the converse fails in general. Consider, for example, the
Z-graded algebra K|[x], for a field K. The algebra of fractions K(z) is a left
quotient algebra of K [x] but it is not a (weak) Z-graded left quotient algebra.
However we have shown that it is true when we speak about a (weak) left

quotient algebra of a gr-subalgebra. (See (2.2.11) and (2.2.12).)

Another example of this situation is the following: Take B = K|[x] the
graded polynomial algebra with its usual Z-grading, and take A = K[z] with
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the trivial Z-grading, that is: A,, = 0 if and only if m # 0 and Aqg = A. If
we forget about the grading, it is obvious that B = A is a (left) algebra of
quotients of itself because A is unital. But taking ¢ € B,,,, m # 0 and p # 0,
we cannot find any r € A = A satisfying rp # 0 and rq € Apr, = A = 0,
because rq = 0 would imply r = 0, the latter being absurd.

As one might expect, the notion of gr-density is going to play a very im-
portant role in the construction process and theory of the maximal quotients

in graded algebras, associative pairs and triple systems.

Definition 2.2.15. Given a gr-left ideal I of an algebra A, we say that [ is a
gr-dense left ideal of A if 41 is a gr-dense submodule of 4A. Let us denote

by T, 4(A) the set of all gr-dense left ideals of A.

Recall that given a subalgebra A of an algebra B and an element q € B,
the following set is a left ideal of A:

(A:q)={x e A|zqe A}

Lemma 2.2.16. If B = ®,ecB, is a gr-left quotient algebra of a gr-
subalgebra A, then (A : q,) is a gr-dense left ideal of A for every q, € B,.

Proof. By (2.2.11) and the theory for non-graded algebras, (A : ¢,) is a
dense left ideal. Now, we are going to see that it is a gr-left ideal. Consider
r€(A:q). Thenzgy, =) . 7:q, € Aimplies 2,q, € A (i.e., 2 € (A: q,))
for every 7 € G. ]

The following lemma shows that, as expected, for gr-left ideals the notions

of dense and gr-dense coincide.

Lemma 2.2.17. For a gr-left ideal I of a gr-algebra A = ®y,ecA,, the fol-

lowing statements are equivalent.
(1) I is a dense left ideal of A.
(11) I is a gr-dense left ideal of A.

(111) A is a left quotient algebra of 1.
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(iv) A is a gr-left quotient algebra of I.

Proof. (1)< (iii) is well-known, and (ii)<>(iv) can be proved analogously. The
equivalence (iii)<(iv) follows from (2.2.11). O

A gr-left quotient algebra of a gr-algebra A can be characterized by using
absorption by gr-left ideals of A.

Proposition 2.2.18. Let A be a gr-subalgebra of a gr-algebra B = ®,cqB,.

The following statements are equivalent.
(i) B is a gr-left quotient algebra of A.

(i1) For every monzero q € B there exists a gr-dense left ideal I of A such
that 0 # Iq C A.

(11i) For every nonzero q, € B, there exists a gr-left ideal I of A with
rang(I) ={a € A:Ia =0} =0 such that 0 # Iq, C A.

Proof. (i)=(ii) Consider a nonzero element ¢ = > ¢, € B. Let A := {0 €
G such that ¢, # 0}. By (2.2.5)(1) and (2.2.16), I := Nyea(A : q,) is a
gr-dense left ideal of A satisfying 0 # Iq C A.

(ii)=-(iii) Follows from the equivalence (iii) < (ii) in (2.2.17).

(iii)=(i) Consider 0 # p, € B, and ¢, € B,. By the hypothesis there
exists a gr-left ideal I of A with rany(/) = 0 such that 0 # Ip, C A. In
particular, 0 # y,p, € Aao for some y, € I,. If y,q, = 0 we have finished.
Otherwise there exists a gr-left ideal J of A satisfying ranas(J) = 0 and
0 # Jyaqr € A. Then 0 # zgy.p, for some z3 € Jg and 23Yaqs € Agao- O

For the sake of completeness, we are going to explore the inheritance of gr-
left quotient algebras to their local algebras at elements. These local algebras
at elements were first introduced by Meyberg [54] as an attempt to construct
another class of algebras which convey many properties of the original algebra.
Several examples of that use are the works [22] of A. Fernandez Lépez, E.

Garcfa Rus, M. Gémez Lozano and M. Siles Molina; [30] and [29] of the
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third and fourth authors. We shall follow the construction in the non-graded
context by making slight differences.

Let A be a graded algebra and consider a € h(A), a € A, say. We want
to define a new product A with the rule x -, y = xay; but in order to achieve
that we must modify the graded structure in the following way: Let us write
A¢ = A,-1, as sets. It is obvious that A% := @_ . A? is a ®-module since it
is just the ®-module A, but with some reordering in the indices. In fact, as

sets, we have A = A% We use this to assure (see [28]) that by preserving the

®-module structure and modifying the product to
T -qYy = Tay,

then A becomes a ®P-algebra (this new product is called the a-homotope
product). It is in order to check that A% is also a graded algebra that the
reordering in the homogeneous components is needed: If we take x € A% and
y € Af then =y = zay € Ag-10AcAs-15 C Ao-tago-15 = Ag-1ap = Alpg.
Thus, A® is a graded algebra. Now, again using the nongraded case, we know

that
Ker(a) :== {x € A: axa =0}

is a two-sided ideal of A%. But moreover, since a is an homogeneous element,
it turns out that Ker(a) is a (two-sided) graded ideal of A“.

Indeed, consider z = )z, € Ker(a). Then 0 = axa = ), ax,a, but all
of those summands are in different components because otherwise we have
ocay0 = ogago for some oy # ao, which is absurd by simplifying ¢ in both
sides in the previous equality. So we have just seen that az,a are indeed the
homogeneous components of axa = 0 in A%, and therefore axz,a = 0 for all
7 € G. That is: x, € Ker(a) for every 7 € G. We can perform the quotient
algebra

AI" = A%/ Ker(a)

and give it a graded structure by defining (A9"), = A% 4 Ker(a). It is quite
obvious that (A9"),(A9")s C (A9")ap and that AI" = >~ (AI"),.
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The fact that this sum is direct is due to Ker(a) being graded: Suppose
0+ Ker(a) = > (z; + Ker(a)), that is: ) _x, € Ker(a), which implies z, €
Ker(a) for all 7 € G, as needed. At the end of the day, we have constructed
a graded algebra

A7 = @A),

TEG

which we call the graded local algebra at a. Sometimes we refer to that
graded algebra with just A,, and the reason for doing so is that, if we forget
about gradings, it is precisely the algebra local at a of the non-graded case.

Meanwhile the nongraded local algebra at an element exists for every
a € A, the graded one can only be performed in this way when taking a
homogeneous element a € A,.

We can construct an algebra gr-isomorphic (for the definition of gr-
isomorphism (2.4.2) see the following sections) to that given above without
going outside the algebra A. For a € A,, we can consider aAa which is clearly

a ®-submodule of A. Now we can change the product into
ara - aya = araya

It is well defined because if axa = ax’a and aya = ay'a then axa - aya =
(aza)ya = (ax’a)ya = az'(aya) = az’ay’a = az’a - ay'a.

It is straightforward to check that with these operations aAa becomes an
algebra. We can give it a graded structure by (aAa), := a(A,-1,)a. Indeed,
if axa € (aAa), and aya € (aAa)s, then v € A,—1, and y € A,-15. Thus,

ray € Ao—laAUAU—lﬂ - Aa—laao'_lﬁ = Aa—la[%

that is aza - aya = azaya € (aAa)qs. And it is clear that aAa = P _(aAa),.

Moreover, the map:
v: alda — A9
ara +— r+ Ker(a)

is an algebra isomorphism, as can be easily checked: It is well defined because
if ara = ar’a then a(r — r")a = 0, that is, r — r’ € Ker(a). It is evident that

¢ is a homomorphism of ®-modules.
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Regarding the algebra structure we compute p(aza - aya) = ¢(araya) =
zay + Ker(a) = (x + Ker(a)) - (y + Ker(a)) = p(aza) - p(aya). It is obviously
surjective, and the injectivity is also easy, for if p(aza) = 0 = z 4 Ker(a),
then = € Ker(a), in other words: axza = 0, as needed.

Moreover, ¢ is a graded isomorphism since ¢((aAa),;) = p(aA,-1,a) C
A,—1, + Ker(a) = A? 4+ Ker(a) = (A7),.

For the definition of gr-semiprimeness see the following section (2.3.2).

Proposition 2.2.19. Let A and B be graded algebras such that A is a gr-
subalgebra of B. Consider a € A,. Then:

(1) A9 is a gr-subalgebra of BY".

If we suppose A to be gr-semiprime, then:

(11) If B is a gr-left quotient algebra of A then BY" is a gr-left quotient algebra
of AJ".

Proof. The inclusion map we use to prove (i) is the natural one:
1 Agr — B
r+Kera(a) — x4+ Kerg(a)

This map is well defined because if x + Kers(a) = y + Kera(a) then 2 —y €
Kery(a) C Kerg(a). It is injective because if i(x + Kera(a)) = i(y + Kera(a))
then x + Kerg(a) = y + Kerg(a), this is: x — y € Kerg(a). Since Kery(a) =
Kerg(a) N A and x —y € A, then z + Kera(a) = y + Kera(a). It is clear
that ¢ is a homomorphism of graded algebras. With this in mind, we write
the cosets as T with no danger of ambiguity.

Let us prove (ii). To achieve that, let us consider 0 # p € (B?"), and
g € (BY")s. This means that p € B,-1,, ¢ € B,-13 and apa # 0. Since the
latter is an homogeneous element and B is a gr-left quotient algebra of A, we
can find =, € A, such that z apa # 0, z apa € A and x,aq € A. The first
two conditions, jointly with A being gr-semiprime, allow us to take y € A
with z,apayz.apa # 0.

But since x,apa is an homogeneous element, we are able to find ys5 € R;s

with x,apaysx,apa # 0, which implies in particular that aysz,apa # 0, that
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18:

0 7& YsTAaAP = Y5Lry "a 2_9

On the other hand we have ys7, -, ¢ = ys7,aq € AJ. So we have found

T =1sTy € (AT ) sy With 7, p # 0 and 7+, ¢ € AY", as needed. O

a a )

2.3 The graded left singular ideal of a graded
algebra

We begin by stating the graded characterizations of gr-(semi)primeness as we

have in the non-graded case.

Lemma 2.3.1. Let A be a graded algebra. The followings statements are

equivalent.

(i) A has no nonzero graded ideals of square zero.

(i) A has no nonzero graded left ideals of square zero.
(111) A has no nonzero graded right ideals of square zero.

(v) ayAa, = 0 implies a, = 0, for all a, € h(A).

Proof. Obviously both (ii) and (iii) imply (i). Let us see (iv) = (ii): Consider
I <4 A with I? = 0. If we take y = Yy, € I, then y, € I implies y, Ay, C
I(AI) C I? = 0, and our hypothesis gives y, = 0, and consequently y = 0,
and therefore I = 0. In a similar fashion (iv) implies both (i) and (iii).

The proof will be over once we are able to establish the implication
“(i) = (iv)”: Suppose A has no nonzero graded ideals of square zero. Let
us consider [ = {a € A: AaA = 0}.

It is an straightforward calculation to see that [ is an ideal. And it is also
graded because if we take y = >y, such that AyA = 0, then Ay, A = 0 as
well. Otherwise we might find r*, s* € A such that 33, r'yas’ = 37, 5 rhyas, #
0, so we could fix og € G with b:= Y75, rhyast # 0, but then

0£ > 50> ye)sl € AyA=0,

far=o0 T
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because the gg-component of the latter is b # 0 (we are taking into account
that if we expand the previous sum for any other 7 # «, the summands
corresponding to y, lie in Ag,, which have zero intersection with Ag,..) So
have reached a contradiction.

On the other had it is clear that I® = 0 (and hence I* = 0). Applying (i)
twice we see I = 0. Now if we consider a,Aa, = 0, we have that Aa,A is a
graded ideal of square zero, and then again by (i) we have Aa, A = 0, that is,
a, € I =0, as we needed. O

Definition 2.3.2. If a graded algebra A satisfies the equivalent conditions

above, we say that A is gr-semiprime.

In a similar fashion we can prove an analogue to (2.3.1) for the gr-

primeness, concretely:

Lemma 2.3.3. Let A be a G-graded algebra. The following statements are

equivalent.

(i) If 1, J <y A with IJ =0, then [ =0 or J =0.
(i) If I, J Qgr—y A with IJ =0, then I =0 or J = 0.
(iii) If 1, J Qg A with IJ =0, then I =0 or J = 0.

(v) a, Ab, = 0 implies a, =0 or b, =0, for all a,,b. € h(A).

Definition 2.3.4. As above, if a graded algebra A satisfies these equivalent

conditions, we say that A is gr-prime.

It is obvious that for a graded algebra, (semi)primeness implies graded-
(semi)primeness . The converses are not true. For that matter, we exhibit
an example. However, we note here that the converses do hold for Z-graded
rings: use [56, Proposition I1.1.4 (1)] (note that the ideal {0} is always graded
and that following their definition, a ring is graded if and only if so is the zero
ideal {0}) and (2.3.3) (iv) for the prime case, with obvious generalizations to

the semiprime case.
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Definition 2.3.5. For a commutative algebra F', the algebra of dual num-

bers over F'is defined by
A=F(e)=F-1@® F-¢, with 2 =0.

Lemma 2.3.6. A = F(e) is a commutative unital non-(semi)prime non-
simple algebra. If char(F') = 2, then A may be equipped with a non-standard
Zo-grading given by

Ay=F-1 |, A ={a-14a-c:a€F}.
If F is a field, then the only non-trivial ideal of A is
I=F-¢.

Moreover, A is gr-simple and consequently it is both gr-semiprime and gr-

prime.

Proof. If F' is commutative, it is a straightforward computation to show that
A is indeed a commutative algebra. In order to prove that it is not semiprime
(and consequently not prime) we just take into account that the subspace
I given above is a nonzero ideal with square zero. It is easy to see that Ay
and A; are subspaces of A such that A = Aqg ® Ay, AgA; = A1 Ay C Ay and
ApAp C Ag. We use char(F') = 2 just to ensure AjA; C Ag, because in that
situation we get
(I+e)P =142+ =1

Thus, A is a Zs-graded algebra as well.

Suppose now that F is a field. If J € Z(A), J # A, then for every
0O#£a€ Fandbe F wehave a-1+b-ec¢ J. Otherwise

(a'-1—=ba? e)a-1+b-e)=1-1€J

would lead to J = A. So J C I. Now F being a field easily forces either J =0
or J =1, as we needed.

It is obvious that although [ is an ideal, it is not graded: If we consider
the element ¢, then its homogeneous components (g = —1 and g1 = 1 + ¢)

no longer belong to I. ]
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The idea of singular ideal of an algebra appears in a number of papers and
it has been proved to be a useful tool when studying both maximal rings of
left quotients (as we mentioned) and Fountain-Gould left orders (see e.g. [30]
and [28]). We proceed to give a similar notion in a graded context and use it
to prove results in coming sections of this thesis (it will become a key tool in
the graded version of Johnson’s Theorem, for example). First, we need some

lemmas.

Definition 2.3.7. We say a nonzero graded left ideal [ is a graded left
essential ideal of A if given any other nonzero graded left ideal J of A, we

have I'NJ # 0. We denote this property by /<, ; A.

Now we are able to adapt a series of results in [56] to the non unital

context.

Lemma 2.3.8. Let A be a graded algebra without total (homogeneous) right

zero divisors and consider 1<y, A and K<, A (not necessarily graded). Then:

(i) I <, A if and only if for every 0 # x, € A, there exists a, € A, such
that 0 # a,xs € L;4.

(11)) K <¢ A if and only if for every 0 # x € A there exists a € A such that
0#are K.

(iii) If A is a weak gr-left algebra of quotients of I or 1< _, A, then <€, _, A

gr—l1 gr—1***

(iv) If A is a weak left algebra of quotients of K or K < A, then K <¢ A.
(v) 1<, ; A if and only if I <§ A.

gr—l1

Proof. Let first see (i): Suppose I<g, ;A and take 0 # 7, € A,. Now as A has
no homogeneous total right zero divisors, we have that Az, (being a graded
left ideal) is nonzero. Our hypothesis applies now to give 0 # I'N Ax,. Choose
a € A with 0 # ax, € I. If we decompose the latter into its homogeneous
components az, = ) _a,%,, then at least one is nonzero, and as I is graded
we find a, € A, with 0 # a,z, € I.

To prove the converse take 0 # J <y A, then we could find 0 # j, € J, C

A, and then by an application of the hypothesis, there exists a, € A, such
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that 0 # a,j, € I. But a,j, € AJ C J. That is, I N J # 0. Forgetting about
the grading, one may prove in an similar way (ii). These two propositions
immediately imply (iii) and (iv).

To prove (v) we use the characterizations given in (i) and (ii). Suppose
that I <¢,_; A and take 0 # a = }__a, € A. Use induction on # Supp(a),
where Supp(a) := {0 € G : a, # 0}. In the basis case we have that a is
homogeneous, and we finish. Suppose on the contrary that # Supp(a) =n >
1. Thus, we find 0 # a,, and we are in conditions to apply our hypothesis to
find u € A such that 0 # ua,, .

Repeating an argument used above, we may find in fact 0 # u, € A, with
0 # ura,, € 1. If now u, ZU?&U” a, = 0 then u.a = u,a,, € I and we would
have finished. If that is not the case, we apply the induction hypothesis to find
z € A (in fact z, € A,) with 0 # b = z,u,(a—a,,) € I, which implies z,u,a €
I and it is nonzero because b is nothing but part of its decomposition into

homogeneous components. This proves I < A. The converse is obvious. [

Some properties relating gr-semiprimeness and algebras of left quotients
remain true in the graded context. First we give a lemma which contains basic
facts about the construction of graded algebras of left quotients and ideals

therein.

Lemma 2.3.9. Let A be a graded algebra and I <, A. Then the quotient
algebra A := A/I may be endowed with a G-graded structure by

Ay, = A, +1
and thus the natural algebra epimorphism @ : A — A becomes a graded algebra

epimorphism. Moreover, for every J <g, A we may find J Qg A such that
J))=J=J.

Proof. The only thing which is not completely obvious in the first assertion
is that the sum ) A is direct, and this is due to the fact of I being graded:
Indeed, if 0 = > (2, + 1) = (3., z5) + I then > _x, € I, and that implies
z, € I. That is, x, + I = 0 for every o € G.
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If we are given now J <, A, it is well-known that J := 7= 1(J)<A, but it is
also graded since if we consider =) _x, € J, then n(z) = > _n(z,) € J.
But 7 is a graded morphism of degree e € G, and therefore 7(x,) € A,, that
is {m(z,) : 0 € G} is the decomposition into homogeneous components of
7(x). And since J is a graded ideal, then 7(z,) € J, that is: z, € J. Now

since 7 is surjective, it is evident that J=J. ]

We will be using the following lemma even without an explicit reference

to it.

Lemma 2.3.10. Let A be a graded algebra Ly, Ly <g—; A, Ry, Ry <gr—r A and
Ty € A,. Then:

(Z) Ll + LQ, LlLQ, Ll N LQ, lea Lgr—1 A.
(ZZ) Rl + RQ, RlRQ, Rl N RQ, .ZCU-Rl <]gr7r A.
(iii) lan(Ry) <gr A and ran(Ly) <, A.

Proof. 1t is well-known that all of them are left (respectively right, two-sided)
ideals. For example, to see that L;Ly is indeed graded, we would consider
x = Y .a;b; with a; € Ly and b; € L. Then a; = > _al with a} € L,
since L; is graded. Analogously b; = Y _b%, b. € Ly. If we decompose z into
homogeneous components, in the end we obtain sum of some elements of the
form a’ b:, all of them living inside L; L.

The case of the sum and intersection are similar. Now if we have z =
yr, € L1x,, decomposing y = )y, with y, € Ly, since z, is homogeneous,
we know that ) _y,z, is indeed the decomposition into homogeneous com-
ponents of z, all of them in Lyz,. To see that lan(R;) is graded we consider
r =7y x €lan(Ry), thatis xRy = 0. We see that z.(R;), = 0. Otherwise we
would find r, € Ry with .7, # 0, which would imply that 0 # xr, € tR; =0
a contradiction. Thus, z, Ry = z.(B, (R1)a) = D, z-(R1)s = 0. That is,
z, € lan(Ry). O

Lemma 2.3.11. Let A be a gr-semiprime algebra and I <, A. Then:
(1) lan(!) = ran(l) = ann(!)(:= lan(/) Nran(1)) <, A.
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(11) I Nann(l) = 0.

(iii) The quotient algebra A := A/ ann(I) is gr-semiprime.

(i) I <, A if and only if ann(l) = 0.

(v) I ©ann(I) <, A.

(vi) T <, A.

Proof. Let us see (i). By (2.3.10) we know all of them are two-sided graded
ideals. We prove lan(I) C ran(I). For that, we consider z = ) _z, € lan(])
and hence z,, € lan(I). Again by (2.3.10) we have that Iz,<, A and ([x,)? =
I(xs1)x, = I(0)x, = 0. But A being gr-semiprime and (2.3.1) imply Iz, = 0,
that is, 2, € ran([). Therefore x = )z, € ran(I), as needed. Analogously
one can prove ran(/) C lan(7), and hence both lan(/) and ran(/) drop down
to ann([).

To see (ii) we use again (2.3.10) to see that I Nann(/) <, A. But (I N
ann(I))? C I ann(/) = 0. Now the result follows from the gr-semiprimeness
of A.

We turn our attention to (iii). Let us consider [J <y, A with J% = 0.
Apply (2.3.9) to find J <, A with J = J. So we have T = 0, or equivalently
J? C ann([). But by (2.3.10), JI is a graded ideal and moreover: (JI)* =
J(IJ)I C J?I =0 since J? C ann(]). Now the gr-semiprimeness of A applies
to get JI = 0, that is: J C lan(I) = ann(!) by (i). Thus, we have reached
J=J=0.

We prove now (iv). Suppose that ann(/) = 0 and consider 0 # J <, A,
that implies J & ran(/) =(;) ann(/) = 0 then 0 # IJ C I N J. Thus, we have
just proved I <, A. The converse is even more obvious with (ii).

Now (v) is quite easy because: By (ii) the sum is indeed direct and by
(2.3.10) we know that I @ann(/) is a graded ideal. Let M be the graded ideal
ann(/ @ ann(/)). Thus, MI =0 = M ann(I) and then

M Clan(]) Nlan(ann(/)) = ann(/) N ann(ann(7))

by (i). But the latter is zero by (ii). Now (iv) applies.
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Let us deal with (vi). First, by (iii) A is gr-semiprime and now by (iv)
we just need to prove that 0 = annz(I) =(; lanyg(I). Take then T € A with
zI = 0, that is, 21 C ann(I) N I =(;) 0. Therefore = € lan(I) =@, ann(/). In

other words, T = 0, as we needed. O

We are trying to get a notion of singular ideal in the graded context. With

this in mind, we are ready to prove the following lemma.
Lemma 2.3.12. The following propositions hold:
(1) If © € h(A) then lan(x) = {y € A : yx = 0} is a graded left ideal of A.

(i) If we denote Zg 1(A)y = {x € A, : lan(z) <¢,_; A}, then it is a ®-
submodule of A and Zg_1(A) := B, cq Zgr—i1(A)s is a two-sided graded ideal
of A.

ceG

Proof. 1f we consider p, :4 A —4 A given by p,(y) = yx, it is obvious that
it is a ®-module homomorphism and then lan(z) = Ker(p,) which we know
is a ®-submodule of A. If is also a left ideal because if a € A and y € lan(x)
then yx = 0. Thus, ayx = 0 as well, that is: ay € lan(z).

Moreover, it is a graded left ideal because it is the kernel of a graded
homomorphism: Say = € A,, then it is trivial that p, € HOM4(A, A), and
then if we take y = >y, € Ker(p,), we get 0 = p.(y) = > pa(yr) € D, Asr,
that is, p,(y,) = 0. This proves (i).

Let us see (ii). Take z,y € Zg1(A)y, and a € ®. Thus, lan(z), lan(y) <,
A. As x —y,ax € h(A) we can apply (i) to get that lan(x — y),lan(ax) are
both graded left ideals. Now lan(x) Nlan(y) C lan(z — y) implies that the
former is essential as well. The same holds with lan(x) C lan(ax). All this
shows that Z,,_;(A) is a ®-submodule of A.

Take now a, € A,. On one hand we have lan(z,) C lan(z,a,) which
jointly with the fact that z,a, € h(A) and hence lan(z,a,)<,— A, give z,a, €
Zgr—1(A)or. On the other hand we are left to show that lan(a,z,) <¢,_; A. We

already know that it is a graded left ideal, and to prove the essentiality we

e
gr—1

consider J «¢

or—1 A. We pick up a nonzero homogeneous element j, € J, and
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we have two different cases: If j,a,2, = 0 then 0 # j, € lan(a,z,) N J,. In
case j,a;T, # 0, then a, being a homogeneous element easily implies that
Ja, # 0 is a graded left ideal, and lan(z,) being essential as a graded left
ideal implies Ja, Nlan(z,) # 0. We may therefore take y € J with 0 # ya,
and ya, € lan(z,). So we have 0 # y € J Nlan(a,z,) again. Now extending
by linearity we have AZ,,_;(A), Zy—1(A)A C Z,._;(A). We have constructed
it to be also graded. O]

Definition 2.3.13. The ideal Z,_;(A) in the lemma above is called the
graded left singular ideal of A. In a similar way we could talk about the
graded right singular ideal of A (denoted by Z,,_,(A)). The graded singular
ideal of A is defined as Z,,(A) = Zy—i1(A) N Zy—(A).

Remark 2.3.14. It is indeed a good generalization because if we consider A

with trivial grading, then Z,,_;(A) = Z;(A).

Proposition 2.3.15. The following assertions hold:

(i) Zgt(A) ={z € A: Iz =0 for some I <,_, A}.

gr—I

(it) In particular, Zg_(A) C Z;(A), but they need not coincide.

Proof. Consider first * = )z, such that lan(z,) € I, ,(A). As the set

Supp(x) is finite, we can conclude that

(A).

gr—l

I:= ﬂ lan(z,) € Z¢

o€Supp(x)
A straightforward computation shows that Iz = 0. On the other hand, sup-
(A) with Iz = 0. Let us see that indeed
Iz, =0, for every o € G. If that is not the case, we have Ix, # 0. Take y € [

pose we have z € A and I € Ip,
with yx, # 0. But 2, being homogeneous and [ being graded imply that there
exists y, € I with y,z, # 0, and consequently 0 # y,x € [x = 0, which is an
absurd. Thus, we have proved that I C lan(x,), the former being essential,

and the latter being a graded left ideal imply that lan(x,) € Z¢. ,(A), as we

gr—I
needed.
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To see (ii), recall (see [32, p. 30]) that
Zi(A) ={zx € A: Iz =0 for some I < A} = {zx € A:lan(x) < A}

and apply (i) and (2.3.8) (v). To show an example of these two ideals being
different, we could go back to the example of (2.3.6). First of all, since A is
unital, then 1 ¢ Z;(A). On the other hand we have

lan(e) = F'- e € I} (A) implies 0 # ¢ € Z;(A).
Then it easily follows Z,,_;(A) =0 # I = Z;(A). O

We continue with some properties which hold in the non-graded context

as well. First, we introduce two definitions.

Definitions 2.3.16. Let M be a graded module. We say that M is gr-left
singular if Z,_;(M) = M, and we say that M is gr-left nonsingular if
Zge—1(M) = 0. Given A a graded algebra, we say that A is gr-left singular

(resp. gr-left nonsingular) if so is 4 A

Remark 2.3.17. Note that the notions of gr-left singular and gr-left non-
singular for modules (and hence for algebras) are not opposite one another,
since there exist modules that are neither left singular nor left nonsingular.
[32]. By considering trivial gradings, one gets examples of graded algebras

(Z-algebras) which are neither gr-singular nor gr-nonsingular.

The graded left singular ideal has nice properties when we work either
in a context of graded algebras of left quotients or under the assumption
of gr-semiprimeness. In the proposition which follows we consider the first

situation.

Proposition 2.3.18. Let A and B be graded algebras such that B is a graded
left quotient algebra of A. Then:
(i) If 0 # I <gp—; B, then 0 # I N A <y A.

(i1) If A is gr-(semi)prime, then so is B.
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(111) If X C A, then lana(X) = ANlang(X).
() If X, Y C A, thenlany(X) Clana(Y) if and only if lang(X) C lang(Y).
(v) Zgri(A) = AN Zg(B).

(vi) A is gr-left nonsingular if and only if so is B.

Proof. To see (i) we make use of (2.2.17) to apply [28, Lemma 1.1.5] to obtain
0 # I N A, the latter being a graded left ideal of A, as it is easily seen.

To prove (ii) we suppose we are given nonzero ideals I, .J <, B such that
IJ = 0. We may apply (i) to obtain 0 # I N A, J N A which are (left) graded
ideals of A with (INA)(JNA) C IJ = 0, which contradicts A being gr-prime.
We might do the same for gr-semiprimeness.

(iii) and (iv) are straightforward.

Let us turn our attention to (v): Consider r = } Jr, such that lan(r, )<,
A. We already know that lang(r,) <4 B. Let us see the essentiality: If
0 # Jgy B, by (i) 0 # JN A<y A so 0 # JNANlanag(rs) =i
JNANlang(r,) N A C JNlang(ry).

To see the other inclusion we take x = >z, such that z € A and
lang(z,) <. B. As A is a graded subalgebra of B, we deduce that z, € A,

or_1 A We use
(2.3.8) (i): Take 0 # b, € A, and find d, € B, such that 0 # d,b, € lang(z,).
But B being a gr-left algebra of quotients of A allows us to pick e, € A, with
0 # (eady)b, € Apyr. Thus, d bz, = 0 implies 0 # (eqd,)b, € lana(z,) as

needed.

as well. We would have finished if we could establish lan(x,)<

Now (vi) is straightforward using (v). If we suppose 0 = Z,_(A) =
AN Z,_(B), then by (i) we get Z,—;(B) = 0. The converse es even more

obvious. O

For commutative algebras, there is a strong connection between gr-

semiprimeness and the gr-left singular ideal. Concretely we can prove:

Proposition 2.3.19. Let A be a graded commutative algebra. Then A is

gr-semiprime if and only if A is gr-nonsingular.
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Proof. Let us suppose that A is gr-semiprime and let us take z, € Zy_;(A),.
Then lan(z,) <
but the (left and hence two-sided) graded ideal generated by x, inside A.
Now if x, # 0, then obviously I(x,) # 0 and therefore lan(z,) N I(z,) # 0

but its square equals zero because if we take y, z € lan(z,) N I(z,) and write

or—1 A. We consider then I(z,) = Az, + ®x, which is nothing

Yy = 1T, + A\, then as A is commutative yz = r(zz,) + A(2x,), which is
zero since z € lan(x,). But this contradicts the fact of A being gr-semiprime
and thus we must refuse the hypothesis of x, # 0. That is, z, = 0 for every
oeq.

Suppose on the contrary that A is gr-nonsingular and consider a, € A,
with a,Aa, = 0. By (2.3.1) we must show that a, = 0. In order to prove
that, it is enough to see that a, € Z,_;(A), = 0. Take then 0 # I <,,_; A and
an element 0 # x € I. We have two different cases. First, if xa, = 0, then
0 # z € lan(a,) N I. While if za, # 0, as we have a,za, € a,Aa, =0, and A
is commutative, then za? = 0, that is: 0 # za, € lan(a,) N I. And we have

seen that, in both cases we reach lan(a,) NI # 0. O

In some typical graded algebras like the algebra of polynomials in one
indeterminate x, or the algebra of generalized polynomials in x and z~! with
rox~! = 7'z = 1, the computation of the gr-left singular ideal is very well
possible. Concretely, in the following example one can see that there is indeed
a connection between the gr-left singular ideal of a graded algebra and its

non-graded left singular ideal.

Proposition 2.3.20. Let A be any algebra (not necessarily unital). And con-
sider the graded algebras Alx] and Az, z™1] with the usual Z-gradings. Then:

Zyi(Ale)) = Z(A)e] and Zyyi(Alz,a™)) = Zi(A)z, 2],

Proof. We prove that Z,_;(Alz]) = Z;(A)[z] (in a similar fashion one can
prove the other equality). Looking at these two algebras, it is obvious that
both are graded subalgebras of A[x]. Thus, in order to prove that these
algebras do coincide, it is sufficient to show that they have the same n-

componentes, for every n € N.
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First, we take a € Z,_;(A[z]),. Then a € Alz], with lan(a) <
Alx].
We are going to prove that lan(r) <¢ A: Consider 0 # I ¢4 A. We can

Alz].

gr—1
That is, a = ra™ with lan(ra") <, _,
form I[z| the polynomial algebra with coefficients in I, which is a nonzero
graded left ideal of A[z] and therefore lan(rz™) N I[z] # 0. Thus, there exists
0#i(zr) =ag+ ...+ apz™ with a; € I and a,, # 0, such that i(z)rz" = 0.
But the latter implies a,,r = 0 and therefore lan(r) NI # 0, as needed. We
have seen that a = rz™ € Z;(A)[z],.

To prove the converse, we take rz"™ € Z;(A)[z], and consider 0 # J <y
Alx]. As J is graded we can assure that there exists some 0 # a,,2™ € J, and
then the set of all m-components of elements of J, I :=II,,(J), is nonzero.

It is also clear that it is a left ideal of A by the way the product of
polynomials is performed and the fact of J being a graded left ideal of A[z].
Now, I Nlan(r) # 0 and we may take 0 # ¢ € I such that ir = 0. We find
jlx) = ... +idix™+ ... € J, and since J is graded, then 0 # iz™ € J. But
(iz™)(ra") = (ir)z™*t" = 0, that is, 0 # iz™ € J Nlan(rz™). We have just
proved that lan(rz™) <¢,_, A[z| and thus ra™ € Z,,_;(Alx]),. O

gr—I

We come back to the gr-semiprimeness context and prove several pro-
perties. First we recall and generalize the notion of pseudo-uniformness for

elements that we had in non-graded ring theory.

Proposition 2.3.21. Let A be a graded algebra and 0 # a, € A,. The

following conditions are equivalent:
(1) lan(a,) = lan(a,x,) for every x. € A, such that a,x, # 0.

(i1) ran(a,) = ran(x,a,) for every x, € A, such that x,a, # 0.

Proof. We will prove that (i) implies (ii) and we would proceed in analogous
fashion with (ii) implying (i). Let us consider then x, € A, such that z,a, #
0, and suppose y € ran(z,a,). We could have proved a right analogue of
(2.3.12) (i), and then y,, € ran(z,a,). That is: z,a,y, = 0, or in other words,

z, € lan(ay,y, ), for every a € G.
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Now suppose we can find oy € G with a,y,, 7 0. In that case, by hypoth-
esis we get lan(a,yq,) = lan(a,) and therefore x, € lan(a,) which is absurd.
Then we have a,y, = 0 for every o € G, that is a,y = 0, or y € ran(a,). And

we have proved one containment. The converse is trivial. O

Definition 2.3.22. Any (homogeneous) element a, in a graded algebra A
satisfying the equivalent conditions above is called a pseudo-uniform ele-

ment.

Here, we collect good properties of the gr-singular ideal within the gr-

semiprime setting.

Proposition 2.3.23. Let A be a gr-semiprime graded algebra and I <4, A.
Then:

(i) Zgeo(I) = I 0 Zgy_y(A) and Zgp_(I) = I N Zyp_r(A).

(i) If I <, A, then: I is left (respectively right) nonsingular if and only if so
is A.

1) Neither Z,._j(A) nor Z,_.(A) contain nonzero pseudo-uniform ele-
g g

ments.

(iv) If A satisfies the ascendent chain condition (a.c.c.) for the annihilators of

the form lan(z) with x € h(A) then A is both gr-left and gr-right nonsingular.

Proof. We see the left hand side part of (i) (the right one is similar since
the notion of gr-semiprimeness is left-right symmetric). We take then x =
Yoo € Zgr—(I). This means that x, € I, and lanl(xa)qzrfll. It is clear that
lan 4 (x,)<g—1A and we want to see that it is indeed essential. For that purpose,
we consider 0 # J<,,_; A and distinguish two cases. The first being 0 = I'NJ.
If we are in this situation then on one hand we have z,J CIJ CINJ =0
and on the other hand we have by (2.3.10) that Jxz, <,_; A. Joining those
things with (Jz,)* = J(z,J)z, = 0, and the gr-semiprimeness of A we finally
deduce that Jx, = 0, that is, J C lans(z,) and then J Nlanx(z,) = J # 0.
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The second case is 0 % I N J. In here we would have a nonzero graded
ideal of I and therefore 0 # INJNlan;(z,) € JNlana(z,). In both situations
we reach 0 # J Nlany(z,).

We prove now the reverse inclusion. We take x = )" _x, € I N Z,_(A).

What we have then is that z, € I, (since [ is graded) and lan(z,) <¢, , A

gr—1
(by the very definition of left singular ideal).

Now it is clear that lan;(x,)<4—; I, and we are left to show that the latter
is in fact essential. We pick up 0 # M <,,_; I and consider IM C M which
is in fact a graded left ideal of A. If IM = 0 then (MA)M C IM = 0.
But since M # 0 and it is graded, we might find 0 # y, € M, but then
Yo Ay, € MAM = 0 and since A is gr-semiprime we would obtain y, = 0

which is a contradiction. Therefore, this case cannot happen. Thus, we have

no other option than IM # 0 and consequently
0# IM Nlana(z,) € M N (I Nlang(z,)) = M Nlang(z,).

Then we have completed the proof of (i) and (ii) follows easily from it.

To prove (iii), suppose that we may find 0 # z, € Z,_;(A), which is
a pseudo-uniform element. Since A is gr-semiprime we find a € A such that
r,ax, # 0. And moreover, if we write a = ) _a, then it is clear that we could
find at least one a, with z,a,x, # 0. Now by (2.3.10) we have Az, a, # 0 and
since lan(z,) <, ;A we end up with Az,a,Nlan(z,) # 0 and then there exists
z € A such that zz,a, # 0 and zz,a,z, = 0 which implies, jointly with the
fact of x, being a pseudo-uniform element, that z € lan(z,a,x,) = lan(z,), a
contradiction. Now the left-right symmetry of (2.3.21) applies to prove that
Zgr—r(A) does not contain pseudo-uniform elements.

Let us prove (iv). Suppose 0 # Z,,_;(A), then the family K = {lan(z,) :
0 # 2z, € Zg—1(A)} is nonempty. Thus we may apply our hypothesis to find
a maximal element lan(z,) € K. Then given z,a, # 0, as Zy_(A) is an
ideal, we have that lan(z,a,) € K and it is obvious that lan(z,) C lan(z,a,),
and hence by maximality we have the equality. This proves that z, is a
nonzero pseudo-uniform element inside Z,,_;(A), a contradiction with (iii).

Analogously one proves that Z,,_,(A) = 0. O
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We are heading now to give the first steps towards a graded version of
Johnson’s Theorem which will be completely accomplished in a special case
of Z-algebras in the last chapter. First, we need to recall the definition of

graded von Neumann regularity.

Definition 2.3.24. Any (homogeneous) element a, in a graded algebra A is
said to be graded von Neumann regular if there exists b,-1 € A such that
a,b,—1a, = a,. A graded algebra is said to be gr-von Neumann regular if

so is every homogeneous element in A.

Remark 2.3.25. Graded von Neumann regularity is nothing but von Neu-
mann regularity plus homogeneity. In other words, an homogeneous element
a, € A, is graded von Neumann regular if and only if it is von Neumann
regular, because if we have b € A with a,ba, = a,, then by writing b =>__b,
we see that although every element a,b,a, is homogeneous, all of them are in
different homogeneous components. Otherwise we would find 71, 5 € G with
71 # To and o1 0 = o7po. Simplifying in both sides now we would get 7 = 7,
a contradiction. Besides, ) _asb;a, = a, is already homogeneous, so there

1

must exist only one component (the one with 70 = o), that is 7 = o~ .

Then, b = b,-1. The converse is trivial.

Proposition 2.3.26. Let A be a nonzero graded algebra. Then:
(1) If A is gr-left nonsingular then A is right faithful.

1) Neither Z,._i(A) nor Z,._.(A) contain nonzero gr-von Neumann reqular
g g

elements.

Proof. The part (i) is easy: If we have z, € A,, a total (homogeneous) right
zero divisor, then obviously lan(z,) = A which is always essential if A # 0.
Now, by hypothesis, z, € Z;_;(A), = 0.

Let us see (ii). Suppose we have 0 # z, € Z,_;(A), a gr-von Neumann
regular element, then we find y,-1 € A,-1 with z,y,-12, = z,. Then [ :=
Az,ys—1 + Px,yy,—1 is nonzero. Moreover, it is a graded left ideal by (2.3.10).
So we have 0 # I Nlan(z,) and there exist @ € A and A € ® such that
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0 # ar,Ys-1 + AToys—1 and 0 = ax,Ys-1T, + A\o¥Ys-1T, = ATy + AT, but
then (ax, + A\xy)y,-1 = 0, which is a contradiction. O

2.4 The maximal graded algebra of left quo-
tients

When constructing the maximal ring of left quotients of a ring R, Utumi (see
[73]) considered the family of dense left ideals of R. So, it seems to be natural
to consider gr-dense left ideals in order to obtain a maximal gr-left quotient
algebra.

Let A = @,ecA, be a gr-algebra without (homogeneous) total right zero

divisors. Consider
X={(f,1) : T €Ty_4(A), f € HOMu(I,A)},
and define the following relation on X: (f,I) = (g, J) if and only if f = g on

I'NJ, equivalently (by (2.2.5) (iii)) if and only if there exists K € Z},_,(A),

such that K C INJ and f = g on K. It is easy to see that this relation is
reflexive and symmetric. For the transitivity we apply (2.2.5) (iii).
Consider X/ = and write [f, I] to denote the class of an element (f,I) €
X. Then the quotient X/ =, with the following operations,
f 1+ g, )= [f + 9,100 ],
K1) = [kf. 1) (for k€ ),
[fv I][ga J] = [fg7 ﬂUEsz;l(‘])]?
which do not depend on the representatives of the equivalence classes (apply

(2.2.5)), becomes a G-graded P-algebra Q) = ®,cc@,, where

Qo ={[fs.1] : fr € HOMA(I,A),, I €T, _4(A)}.

Note that whenever we have a sum of the form >~ | [f,,, I;], we can always

assume that all the ideals appearing in that expression are the same by doing:

Zf%? i Zfamm] Z[fffmﬂjj]‘
=1 =1 j=1
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Now it is easy to see that @ = > .. Q,: For if [f,I] € X/ =, then f =
Y ooec for With fo € HOMy(I, A)o. Hence [f, 1] = .[fs, 1] and [fs,I] €
Qo Let us check that the sum is direct. Suppose Q, N> 4o @, # 0 and take
0# Z#g[fn Il € Q,. Then I # 0 and therefore 1, # 0 for some a € G. Take
Yo € I, and then y, f, € A, so that y, Z#U fr € (Z#U Apr) NAue =0, a
contradiction.

Denote the obtained algebra by Q. _,...(A).

We collect now some good properties of this algebra.

Theorem 2.4.1. Let A = @®,cqA, be a gr-algebra without (homogeneous)

total right zero divisors. Then:
(i) The following is a gr-monomorphism of gr-algebras

p: A — Q! (A)

gr—max

r = ZaeG [prav A]

where for every a € A, and 0 € G, ap,, = ar,.

Identify A with Im .

(ii) Q" (A) is a gr-left quotient algebra of A. This implies that there

gr—max

exists an algebra monomorphism from Q! (A) into Q' . (A) which is the

gr—max max

identity on A, where Q' (A) denotes the maximal left quotient algebra of A.

max

(111) QL paz(A) is mazimal among the gr-left quotient algebras of A in the
sense that if B is a G-graded algebra and a gr-left quotient algebra of A, then
the following is a gr-monomorphism of gr-algebras, which is the identity on
A:

v B — l (4)

gr—max

b= Y ealpr, (A bs)]
Proof. (i) The map ¢ is a homomorphism of gr-algebras: Consider z,y €
A Then o(ey) = Tolpen Al = oo, oAl and (pley)), =
05,20y, _»Al- On the other hand, o(z)@(y) = (X sealpzs A (Xoealrv. Al)
implies (¢(¥)(Yy))e = Y cqlPe Alloy 1 Al = D reglpepry 1Al =

>reclPrry, 1, Al = (@(2y))o-
The map is injective because ) _[p.,, A] = 0 implies [p,,, A] = 0, hence

Az, = 0 and, consequently, z, = 0.
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The equations ¢(z +y) = ¢(z) + ¢(y) and ¢(kx) = ko(z) follow easily
from py4y = py + py and pi, = kp,. Note also that by construction we have
©(Ay) C [Q)_ 1as(A)ls s0 that ¢ is a gr-homomorphism of degree zero, as
we claimed.

(i) Consider 0 # [f,,I] € Q, and [g-,I] € Q. (notice that we may
take the same [ for f, and g, by virtue of (2.2.5) (i)). Then we find y €
I such that 0 # (v)fo = Q- va)fo = 2ouWa)fs € @, Aas. (Note that
(o) fo makes sense because [ is a graded ideal, and so y, € I.) Choose
Yo € I, € A, with 0 # (yo)fo € Ano. Apply that I is a gr-dense left ideal
of A and (2.2.17) to find ug € Iz such that 0 # ug(Yafs) € Igao. Then
[yes Allfo, 1] = [pyafo, 1] # 0 since (ug)pyofo = (upya)fo = us(yafs) # 0.
Moreover, [py,, Allgr, I] = [py9r: 1] = [pyage:I] = [Pyag.. Al € Aar since
Pyag. € HOMA(A, A)qr.

By (2.2.11) Q! _,,..(A) can be viewed as a gr-subalgebra of Q/,,,(A).

(iii) Suppose that B is a gr-left quotient algebra of A and consider the map
1 given in the statement. It is well defined by (2.2.16) and a gr-homomorphism

(it can be proved analogously to the proof of ¢ being a gr-homomorphism).

The rest is easy to prove. 0

The following is a Passman-like (see [61] for the case of the symmetric ring
of quotients) characterization of this gr-algebra @, as we have for the maximal
(non-graded) left quotient algebra. First, we recall the notion of isomorphism

of graded algebras.

Definition 2.4.2. We say two G-graded ®-algebras A and B are gr-
isomorphic whenever there exists a ®-algebra isomorphism f : A — B
making (A)f a graded subalgebra of B, equivalently, (A,)f = B, for all
oeq.

Corollary 2.4.3. Let A be a gr-subalgebra of a gr-algebra B = @,cqB,, and

suppose that A has no (homogeneous) total right zero divisors. Then B is
!

gr—max

gr-isomorphic to Q) == Q) (A) if and only if the following conditions are

satisfied:
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(i) Given b, € By, there exists I € T, _,(A) such that Ib, C A.
(ii) For by € By and I € I.._,(A), Ib, = 0 implies by = 0.
(iii) For I € T!

or—a(A) and f € HOMa(I, A), there exists b € B such that
f=p.

Remark 2.4.4. The conditions (i) and (ii) in (2.4.3) are equivalent to:

(ii) B is a gr-left quotient algebra of A.

Indeed, if B is a gr-left quotient algebra of A, by (2.2.18) (ii) the condition
(1) is satisfied. (ii) follows immediately since every gr-dense left ideal of A has
zero right annihilator in B (I € Z!._;(A) implies, by (2.2.17), A is a left
quotient algebra of I. Hence, by (2.2.4), B is a left quotient algebra of I and
this implies rang(I) = 0.).

Conversely, take 0 # b, € B,. By (i), there exists I € Z),_,(A) such that
Ib, C A and by (ii), 0 # Ib,. This implies (by applying (2.2.18)) (ii)’.

Proof of (2.4.3). We use (2.4.4). First, notice that @) satisfies (iii) obviously
and (i)’ by (2.4.1)(ii).

Conversely, suppose that conditions (i)’ and (iii) are satisfied. Then the
gr-monomorphism given in (2.4.1) (iii) is surjective by (iii). O

The proposition above allows us to give the following
Definition 2.4.5. The algebra ngrfmm(A) is called the maximal graded
left quotient algebra of A.

Before we give more properties of @, ..(A), we must check that it is a
good generalization of the non graded case:

Lemma 2.4.6. If A is trivially G-graded, then the rings Q' (A) and

gr—max

l

b a(A) are isomorphic.

Proof. For simplicity, let us denote @', .,.(A) just by Q. The first observa-
tion to be made is that in this case we have [ is a graded left ideal if and only

if I is a left ideal. This easily implies that Q, = Q! _(A). The second one is

max
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that for 0 # e and f € HOMy(I, A), then (I)f = (I.)f C Ay = Ay = 0,
that is f = 0. So @, = 0 whenever o # e. It is a straightforward that the

ring isomorphism above holds. O]

Thus, just by grading trivially, one can find examples where these two
rings do coincide.

The following example shows that the maximal gr-left quotient algebra
and the maximal left quotient algebra of a gr-algebra without (homogeneous)

total right zero divisors do not always coincide.

Example 2.4.7. Consider K [z], the K-algebra of polynomials with the usual
grading. First, we recall several well-known facts (see for instance [44]): If K
is a division ring, then Q' (K) = K. If Q is a left quotient algebra of A

max

then QL (Q) = Q' ..(A). And if we consider D an integral domain and
K its field of fractions, then K is always a left (and right) quotient ring
of D. These things imply Q! . (K|x]) = K(z), the latter being the field of

max

fractions of K[xz]. Now, recall that @, ..(K[z]) € Q,..(K[z]), but those
rings cannot be equal because if A is a G-graded division ring and G is
totally ordered then, the grading must be trivial [56], which is not the case

since K[z], C Q' (K[x]), for every n € Z.

gr—max

In fact, we can prove the following

Lemma 2.4.8. There exists a graded isomorphism of K-algebras between
! e (Kla)) and Ko,271).
Proof. We are dealing with commutative algebras, so here left and right boil
down to two-sided. First, we find all (left) graded ideals of K[z]. From basic
commutative algebra we know K [z] is a commutative principal ideal domain,
so all ideals are of the form I = (p(z)) = {p(x)q(x) : ¢(x) € K[z]}. All
of them are indeed dense as can be easily seen. And if we write p(x) =
ao + a1z + ...+ a,z”, I being graded implies ag, a1z, ...,a,2™ € I, and a
degree argument shows that ag = ... = a,_; = 0, and finally, I = (z"). It is

evident that this ideal is in fact graded. Thus, the family of graded ideals of
K{z] reduces to {(z") : n € N}.
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If f:(2") — KJz]| is a homomorphism of K[z]-modules, then I being
principal, leaves no other option than (a(z)z™)f = a(x)p(x) for a suitable
p(x) € K[z] (which is a K and K[z]-module homomorphism indeed). If we
assume f to be of degree m € Z then p(z) € K[z]|,im, so if n +m > 0 then

n-+m

p(r) = ax (and we denote it by saying f = paem). If n +m < 0 then
p(x) =0 and then f = 0.

This gives us the idea to prove that for all m € Z we have K-module
isomorphisms between Kz™ and Q,, (shorthand for Q" (K[z])m). Ifm >

gr—max

0 then we may consider
p: (Ka™+) —  (Qm+)
ar™ = [pagm, K[]]
which is obviously well-defined, and a K-module monomorphism. The surjec-
tivity follows from the argument above because if [f, I] € Q,, then I = (z")
and f = pazm (n+m >0), so [f,I] = [pazm, K[z]] = p(ax™). And this case
is done.
If we are given m < 0 then we make some slight changes in order for this
construction to work. Concretely, we define:
oi (Ka™4) = (Qmt)
ar™ = [pagm, (7))
where p,,m is the notation explained before. Again the only critical point
is surjectivity: Take [f,I] € Q, so again I = (z*) and now we have two
different cases: First, if k+m < 0, we find z € N with (k+ z) +m > 0. Thus,
(2%T2) C (2%) which allows us to write [f, (z%)] = [f, (2FT*)] = [f, (z™)] with
n = k+z and n+m > 0. The other option is k +m > 0, here we take n = k.
So in any case we may assume [ = (z") with n +m > 0 and we are able to
write [f, (2")] = [paam, (2")] = [paam, (x77)] = p(az™).

Thus, we have
Q=P e.=2P K" =Kza,
nez ne”Z

were = denotes an isomorphism of K-modules. The fact that it is also a ring

homomorphism follows from the equation pazmpgzs = pagem+s. ]
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Remark 2.4.9. Recall that a unital gr-algebra A is strongly graded if and
only if 1 € A, A, for all o € G (see [56]). In this case Q. .. (A) is strongly
graded too. The example above also provides us an example of an algebra
which is not strongly graded but its maximal graded left quotient algebra is.
By considering trivial gradings, one can construct also examples of maximal

graded left quotient algebras which are not strongly graded themselves.
Some properties of left quotient algebras can be translated to graded ones:

Lemma 2.4.10. Let A be a gr-subalgebra of a gr-algebra B = ®,cqBy. If B is
a gr-left quotient algebra of A then Q' (B) = Q" (A). In particular,

gr—max gr—max

i]r—maa:( ér—maaz(A)) = ér—max(A)'

Proof. Note that from the hypothesis, we can deduce that neither A nor
B have homogeneous total right zero divisors, so there exist their maximal

graded left quotients algebras. By (2.4.1) (ii), Q' (B) is a gr-left quotient

gr—max

algebra of B and consequently of A (apply (2.2.4)). By (2.4.1) (iii) we may
consider A C B C Q! (B) € @ (A). Since Q! (B) is maximal

gr—max gr—max gr—max
l

gr—max

algebra of B, Q! (B) = Q! (A). The particular case follows if we

gr—max gr—max

consider B = Q! (A). O

gr—max

among all gr-left quotient algebra of B and () (A) is a gr-left quotient

We present now an alternative construction of QéT_maw(A) to that given
before as it will provide the method of proving some results in the following
sections.

Let A be a gr-subalgebra of a G-graded algebra B = ®,c¢ B, and suppose

that B is a gr-left quotient algebra of A. Consider the set
X =A{(f,1), with I € T.,_,(A), and f = f, € HOM(I, B)}

and define on X the following relation: (f,I) = (g, J) if and only if f and g
coincide on I N J. Then = is an equivalence relation and, arguing as in the
construction of the maximal graded left quotient algebra, and using (2.2.5),

the quotient set X/ = can be endowed, in a similar way, with the structure
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of a G-graded ®-algebra. This is just the direct limit

lim  HOM,(I, B).

I€T], 4 (A)
Theorem 2.4.11. For any gr-left quotient algebra B of a G-graded algebra
A,
lim  HOMA(I, B) = Qy,_0n(A),

gr—max
I€T], 4 (A)

1somorphic as graded algebras. In fact,

T: h_H1> HOMA(I7 B) - ngr—mua}( i)r—max (A))
I€T], 4, (A)
{f. 1} = lps, QI
where Q == Q' ..(A) and
pf QI — Q

S dy = > d W)

18 a graded isomorphism with inverse

T i]rfma:(;( lgrfmax(A)) - hLI% HOMA<[, B)
{EI‘(Z;de(A)
[, P] —  {h, (Nh; (PN A)) N A}

where R
h: (NGh'(PNA)NA — PNA
x — xh

Proof. By (2.4.1), we can consider A and B inside Q. It is clear that QI is a
graded left ideal of ). For the density observe I C QI C @) and that @ is a
gr-left quotient algebra of I.

We prove that p; is well-defined: Y " ¢'y" = Z?leitj € @I implies
u =" =P f) = 0. Otherwise, for some o € G, u, #
0. Apply that @ is a gr-left quotient algebra of A to find 7 € G, a, €
A, satisfying 0 # a,u, and aqui, anL € A, for any p € G. Then 0 #
a;u =" (a-q')(y' f) = 25— (a-p?) (¥ f) = ([ is a homomorphism of left A-
modules) (Y7 (arq' )y’ — S0 (arp ) f = ar (S0 g’y — S50, i) f = 0,

which is a contradiction.
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Since py is a gr-homomorphism of left ()-modules, the map T is well
defined. It is not difficult to see that it is a gr-homomorphism of gr-algebras.
Moreover, it is injective: If for some

{f,iI} € lim  HOMa(J, B),
JET,, 4(A)
we have [pg, QI] = 0, then p; = 0 on some gr-dense left ideal J of () contained
in QI. Hence p; = 0 by (2.2.5) (iii) and, consequently, f =0 on J NI, which
is a gr-dense left ideal of I, and so f = 0 by condition (iii) in (2.2.5).
We go on to check T'Y = 1: Consider [h, P] € Q' (Q! (A)), with

gr—max gr—max

P eI, ,(Q)and h € HOMg(P,Q). We claim that
(Neh'(PNA)NAETI, ,(A).

Indeed, it is a graded left ideal of A, which is a left quotient algebra of it:
Given a,b € A, with a # 0, apply twice that B is a left quotient algebra
of PN A to find, first, u € P N A satisfying ua # 0 and ub € PN A and,
second, v € PN A such that vua # 0 and v(ubh,) € PN A for every o € G.
Then w = vu satisfies wa # 0 and wb € (N,h, (P N A)) N A (because
(wb)hy, = v(ubh,) € PN A).

Now, (2.2.17) applies to prove that T’ is well-defined. Finally,

([h, PNY'Y = ({h, (N-h7 (PN A)) NANT = [h, Q((N-h (P N A)) N A,
where h: >0 g'xt — Y ¢i(2th) = (301, ¢'z')h implies

[h, Q((Nahy (PN A)) N A)] = [h, P,

and so Y'Y = 1.
To finish the proof, notice @', ..(Q) ., ..(4) = QL _,...(4) (by
(2.4.10)). O

2.5 The case of a superalgebra

Let A = @,ccA, be a gr-algebra without (homogeneous) total right zero
divisors. We know that A, has an algebra structure. If this algebra happens
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to be right faithful, then by chapter 1, there would exist Q! _(A.). On the

max

l

other hand we can also consider (Qy,_,q.

(A))e with its algebra structure.
The question that arises is whether or not (or under which circumstances)
those are isomorphic. Although a general answer is not known, we may assure
that in the case of a superalgebra (and with some extra hypotheses) both are
isomorphic. This has been the idea which motivated this section.

In the next three lemmas we study the relations between A and Ay with

respect to right faithfulness, gr-left quotient algebras and gr-dense ideals.

These will be a valuable tool in the sequel.

Lemma 2.5.1. Let A = Ay @ Ay be a right faithful superalgebra such that
Ag = A1Aq. Then Ay is right faithful too.

Proof. If ay € Ag satisfies Agag = 0, then ag = 0. Otherwise, by the hypothe-
sis, 0 # z1a9 € Aag. By the hypothesis again, 0 # Aziag = Agria0+Ai1x100 =
A1A1[E1(lo —+ Alxlao Q AlA()CLQ + Aoao = O, a contradiction. ]

Lemma 2.5.2. Let A C B be superalgebras and suppose Ag = A1A;. If B is
a gr-left quotient algebra of A, then By is a left quotient algebra of Ag.

Proof. Consider pg,qy € By, with pg # 0. By the hypothesis there exists
a; € A; such that a;py # 0 and a;pg, a;q0 € A;. If i = 0 we have finished.
Suppose ¢ = 1. Since A has no homogeneous total right zero divisors, 0 #
Aaipg = Apaipo + Araipg = A1Araipy + Araipo and it is possible to find
by € A; satisfying 0 # biaipg. Then ¢ = biay € Ag satisfies 0 # copg and
coqo € Ap. O

Lemma 2.5.3. Let A be a superalgebra without (homogeneous) total right
zero divisors, and suppose Ag = A1A1. If [ = Iy ® I is a gr-dense left ideal
of A, then:

(i) A is a left quotient algebra of I =1, & I 1.

(11) I I and, consequently, Iy are dense left ideals of Ay.
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Proof. (1) (1) Consider pg,qo € A with py # 0. Apply that A is a gr-left
quotient algebra of I (2.2.17) to find y; € I; satisfying 0 # y;po and y;qo € I;.

For i = 1 : Apply again that A is a gr-left quotient algebra of I to find:
z1 € I; such that 0 # z,y1pg, in which case z1y1q0 € I11; C I and we have
finished, or zy € I such that 0 # zpy1po; by the hypothesis (A has no total
right zero divisors and Ay = A1 A1) 0 # byzoyi1po for some by € A; and so
bizoyigo € LTy C 1.

For ¢« = 0: By the hypothesis 0 # a1yopo for some a; € A; and we proceed
as in the case 7 = 1.

(2) Take 0 # po € Ao, 1 € Ay. Apply that A is a gr-left quotient algebra
of I to find y; € I; satisfying 0 # y;po and y;q1 € L;y1.

For i = 0: Apply again that A is a gr-left quotient algebra of I to choose:
z1 € I; such that 0 # z1ygpo, in which case z1yoq1 € I11; C I and we have
finished, or zy € Iy such that 0 # zgyopo. By the hypothesis, 0 # a;zoyopo for
some a; € A;. Notice that aizoyoqn € 1111 C [~, which completes the proof.

For ¢ = 1 apply the hypothesis to assure 0 # a,y;py for some a; € A; and
use the previous case.

(3) Consider 0 # p; € Ay and gy € Ap. By the hypothesis 0 # a;p; for
some a; € A; and we proceed as in (2) for a;p; and a;qo.

(4) If p1,q1 € Ay, with p; # 0, apply the hypothesis and take a; € A,
such that 0 # ayp;. Then ayp; and a;q; are in the case (1).

(ii) By (i), A is a gr-left quotient algebra of I. By (2.5.2) Ay is a left
quotient algebra of I11y, i.e., 11, € Z(Ay). Finally, I;I; C Iy C Ay implies
that I is a dense left ideal of Aj. O

The following theorem provides a first approach to our goal of showing

the existence of a isomorphism between (QL _,,.(4))o and Q,,.(Ao).

Theorem 2.5.4. Let A be a right faithful superalgebra such that Ag = A1 A;.
Then the following is a monomorphism of algebras which fixes Ag, considered
as a subalgebra of Q' (A):

gr—max




MENU SALIR

62 2.5. The case of a superalgebra

A ( i]r—max(A))o I lea:c(AO)
[fo, Io © 1] = [fo, To]

Proof. The map A is well-defined (apply (2.5.3) (ii)), and it is clear that A,

remains invariant under A. To prove the injectivity, suppose we have [fo, Iy ®
L) e (@ (A))O such that [fo, Io] = 0. Then fy|;, = 0. If y; fo # 0 for some

gr—maz
y1 € I, apply that A is right faithful and Ay = A1 A; to find a; € A; such that
ai(y1fo) # 0. Since A is a left quotient algebra of Iy (2.5.3) (ii), there exists
Yo € lo satistying 0 # yoai(y1fo) and yoaryr € lo. Then 0 # yoar(y1fo) =
(fo is a left A-homomorphism) (yoa1y1)fo € Iofo = 0, a contradiction. Hence,

f0|]1 =0 and so [fo,]o@]l]zo. ]
The following example presents an algebra where it is shown that condition
Ap = A1 A in (2.5.4) is indeed necessary.

K K
0 O

K 0 0 K
A0—<O 0)&1’1(1141—(0 O)

Notice that A1 A; = 0 # Ag. It is easy to show that My (K) is a left quotient
algebra of A: For take a = (a;;),b = (b;;) € My(K) with 0 # (a;;). Then

Example 2.5.5. Consider K a field and A = ( ) = Ay ® Ay, where

there exists ay; # 0. Consider the element ¢ = ey, € A and thus, ca =
€1k Zijaijeij = ap1ep1 + aperz # 0 and cb € A clearly. Then it is also a

gr-left quotient algebra because A is also a gr-subalgebra of My(K'). Then,

Q = Ma(K) C Q, (A) € Qraz(A) € Qraa(Ma2(K)) = Ma(K).

gr—max max max

Hence, Q! (Ay) = Ay, Qo = ( [0( [(z. ) and there are no monomorphisms

of K-algebras from Qg into Q' , (Ag) leaving Ay invariant.

max

Next lemma gives a method to construct a gr-left ideal of a graded algebra

starting with a left dense ideal of the algebra A..

Lemma 2.5.6. Let A be a G-graded algebra. Let 1. be a dense left ideal of
A, and define, for every o € G, o # e,
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1, = {l’g €A, ‘ Az, C Ie}.
Then:

(i) Boeccls is a gr-left ideal of A.

(11) If for every o,7 € G, 0 # 7, Aya, = 0 implies a, = 0, and a; A, = 0
implies a, = 0, then [ := @,eql, is a graded dense left ideal of A.

Proof. It is clear that I is closed under finite sums. Now, let = >z, be
inAandy =73y, €1l Foro#e, (2y)s = ToYe + D, Tor1yr € I, since
A1 (2y)e C Ag-1ZoYe + A1 3 4o Tor—1Yr © AcYe + 3,4, Ar-1y- C Lo, and
the e-component (zy)., which coincides with z.y. + ) 4o Tr=1Yr lies in I,.
This shows (i).

(ii) Consider 0 # z, € A, and y, € A,. By the hypothesis there exist
ay-1, € Ay-1,, by—1 € A.-1 such that b,-1x,a,-1, # 0. Apply that I, is a
graded dense left ideal of A, to find 2, € A, satisfying z.b,-1x,a,-1, # 0 and
2ebr-1y; € I.. Then z.b,-1 € A1 satisfies z.b,-12, # 0 and 2.b,-1y, € . [

Lemma 2.5.7. Let A be a superalgebra without (homogeneous) total right
zero divisors, and suppose Ag = A1A1. Then, lany, (A1) = {ao € Ay | apA; =
0} = 0 if and only if A has no (homogeneous) total left zero divisors.

Proof. Suppose first lang, (A1) = 0. If ay € Ag satisfies 0 = agA = ag(A1+Ao),
then apA; = 0 and hence a9 = 0. If a; € A; — {0}, apply that A has no
homogeneous total right zero divisors and Ay = A;A; to find b; € A; such
that bja; # 0. Apply the previous case to assure bja; A # 0, that is, ay is
not a total left zero divisor, and we have proved that A has no total left zero
divisors.

Conversely, if A has no total left zero divisors, then for every nonzero
ap € Ao, 0 # agA = ap(Ag & A1) = ag(A141 & A1) = agA1 A @ apAy; hence,
ap ¢ lany, (A1) and lany,(A;) = 0. O

We are now in position to prove the main result of this section.
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Theorem 2.5.8. Let A be a left and right faithful superalgebra (equivalently,
without total right zero divisors and with lana, (A1) = 0) such that Ay = A1 A;.
Then
( fqrfma:z:(A))g = ﬁnax(AO)
under an isomorphism which fizes the elements of Ag, viewing Ag inside
lgr—mam(A)'

Proof. Let Iy € TY(Ap) and consider I := I, & I, the left ideal of A obtained
from Iy as in (2.5.6). We may apply (2.5.6)(ii) to obtain Iy & I € Z},_,(A).

Now, denote @', _,...(A) by Q and consider the map
2 Q{max(AO) - h_Hl) HOMA(I’ Q)
IeT], 4 (A) 0
£, o) = {ps, Lo ® I}
where { , } denotes the class of an element in ~ lim  HOM4(I, Q) and
—
IeT! _ ,(A)
pr: lo®L — Q

Yo + % = [pyof + Pyt A]

pyof . AO EB Al — AO @ Al
ap+ar +—  (ap+a)(yof)
pylfl AO@AI — AO@AI
Yimwvitar o~ 3w (i) f A+ (@) f
We claim that W is an algebra isomorphism.
(1) Since f is a homomorphism from A, to itself, then yof is an element of
Ag. The right multiplication by an element in the o-homogeneous component

is obviously a homomorphism of degree o as well. Thus, it is clear that py,;

is an element of HOM (A, A)o.
(2) py s € HOMA(A, A)1: We are going to see that it is well defined; the rest

is an easy verification.
Suppose Y I uiv] + a; = YT At + b € Ay @ Ay, with
ui vl ay, 21, t), by € Ay. Then

Zuzi(vim)va (ary1)f — <Z Ay f + (bly1)f>

J=1
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must be zero. Otherwise, since a1 = by, 0 # w = > ul(viy)f —
> 2(tly)f € Ay By the hypothesis (A has no total right zero di-
visors and Ay = A1Ay), myw # 0 for some z; € A;. Hence 0 #

S () (Vi) f — Z?Zl(xlz{)(t{yl)f = (f is a homomorphism of left Ag-
modules) (:vl <Z?;1 ujvy — >0 z{t{) y1> f =0, which is a contradiction.
By (1) and (2), ps is well defined and this implies that ¥ is well-defined
too. It is easy to see that it is a gr-algebra homomorphism.
To see the injectivity, suppose [f, Iy] € Q,,.(Ao) such that {p;, [,®I;} =
0. Then [f, Iy] = 0. Otherwise, yof # 0 for some yo € Iy. Apply that Ay has
no total right zero divisors (2.5.1) to find zy € Ay such that 0 # 2zo(yof) =

20(yopy), but this is not possible since py = 0.

Name
Ty = lim  HOMa(I,Q)
IeT], 4 (A) 0
and consider the map
L TO - leacc(AO)

{90, o L} +—  [90,90 (Io)]
where g € HOMA(Iy ® I1,Q)o for Iy & I, € Ié,,_d(A), and xg, = xgo for
every = € gy (1p).
Notice that I = Iy @ [; is a gr-dense submodule of 4Q. By (2.2.5) (iii),
g (1) = g5 ' (Io) @ gp *(11) is a gr-dense left ideal of A, and by (2.5.3) (ii),
g5 1(Ip) is a dense left ideal of Ay. This shows that ¥’ is well-defined.
We claim that WU = 14,. Indeed, take {go, Io ® I1} € Ty. Then

({90, Lo & Li}) W' = ([go. Gy (L0)]) ¥ = {pg, 90" (Lo) & K1},

where Ky ={a; € A; | Aja; C go_l(lo)}.

We are going to prove {go, Io ® L1} = {pg,, 90 (Io) & Ki}: If ug +u; €
J = (Io® 1) N (g5 (Lo) © K1), then (uo + u1)pg, = [Puogy + Purgys Al

For every ag + a1 € Ay @ Ay, write ag = Y ., bici, with b, ¢} € A;.
Then (ag + a1)((uo + u1)pg,) = (a0 + @1)(Puog, + Puwg,) = (a0 + a1)uego +
> iy bi(ctun)go + (arun)go = ((ao + ar)uo + (ao + ar)ui)go = ((ao + ar)(uo +
u1))go = (a0 + a1)((uo + u1)go)-
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Hence (ug + u1)pg, = Puogy + Purg, = (Yo + u1)go, which implies pg, = go
on J, and so V'V = 11, which implies the surjectivity of W.
To complete the proof, apply (2.4.11). ]
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Chapter 3

Associative systems of left
quotients

3.1 Introduction

In this chapter and unless otherwise specified we will deal with associative
systems (algebras, pairs, and triple systems) over an arbitrary (unital com-
mutative associative) ring of scalars ®.

Recall that an associative pair over ® is a pair of ®-modules (A*, A7)

together with a pair of trilinear maps
<,, > A" X AT x A7 — A7, o ==,
satisfying
<< xy,z>%u,v>'=<x, <y z,u> %v>=<ux9< z,u,v >7>

for any z,z,v € A%, y,u € A7?, 0 = +.
Similarly, an associative triple system A over ® is a ®-module equipped

with a trilinear map
<,, > AXAXA— A
satisfying
<< Ty, 2 > U0 >=< 2, < Y, 2,u >0 >=< x,Y,< Z,U,V >>,
for any x,y, z,u,v € A.

67
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We can also consider the opposite associative pair A = (AT A7)
obtained by reversing the products of A (< z,y,2 >3 =< z,y,7 >7).

As for pairs, one can consider the opposite triple system A° of A.

Due to associativity, there is no risk of ambiguity when deleting the brack-
ets “ <> 7, thus, the products above will be usually denoted by juxtaposition,
just like in the associative algebra case.

An associative algebra A gives rise to the associative triple system A
by simply restricting to odd length products. By doubling any associative
triple system A one obtains the double associative pair V(A) = (A, A)
with obvious products. From an associative pair A = (A", A7) one can get
a the polarized associative triple system T(A) = AT & A~ by defining
@Eros)yrey )zt o) =aty 2t oayt

Given an associative pair A = (A", A7), and elements x,z € A7,y € A7,

o = =+, recall that left, middle and right multiplications are defined by:
ANz, y)z = plz, 2)y = ply, 2)z = zyz. (1)
From the associativity and (1), for any z,u € A%, y,v € A,
MMz, y)AM(u,v) = Mzyu,v) = Az, yuv), (2)

and similarly
plu, v)p(z,y) = pl, yuv) = playu, v). (3)

As a consequence of (2) and (3), it is clear that the linear span of all operators
T: A% — A7 of the form T' = \(z,y), for (z,y) € A x A=7, or T' = Id4- is
a unital associative algebra; it will be denoted by A(A%, A=7). Clearly A7 is
a left A(A%, A=7)-module. Similarly, we define II(A~7, A7) as the linear span
of all the right multiplications and the identity on A%, so that A% becomes a
left II(A~7, A%)-module.

The well-known notions of left and right ideals of an associative algebra
have the following analogues for pairs and triple systems: Given an associative
pair A, we define the left ideals L. C A7 of A as the A(A7, A~7)-submodules
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of A%, and the right ideals R C A“ as the I[I(A~7, A%)-submodules. A two-
sided ideal B C A7 is both a left and a right ideal. An ideal I = (I*,17)
of A is a pair of two-sided ideals of A such that A°I~7A? C I?,0 = +.

For an associative triple system A, the left and right ideals of A are simply
those of the pair V(A), while an ideal I of A is a left and right ideal also
satisfying AIA C [, i.e., a d-submodule I of A such that V(I) is an ideal of
V(A).

Notice that, if I is a left or right ideal of an associative algebra A, then
it is a left or right ideal, respectively, of the associative triple system Ar.
Similarly, an ideal of A is always an ideal of Ar.

We will say that a graded algebra is 3-graded if G =Z and A= A_| &
Ao @ A;.

A nonzero element a € A of an associative pair is called a total right
zero divisor if A2A7%a = 0. A pair not having nonzero total right zero

divisors will be called right faithful.

Definitions 3.1.1. A total right zero divisor in an associative triple sys-
tem S is a nonzero element s € S such that SSs = 0, equivalently, s is a total
right zero divisor in the associative pair V(S5). An associative triple system

without total right zero divisors will be called right faithful.

Given a superalgebra A = Ay @ Ay, the odd part has a structure of asso-
ciative triple system, while the even part is an algebra. Now, we show the

relation of faithfulness among the three structures.

Lemma 3.1.2. Let A = Ay & Ay be a superalgebra. If Ay and Ay are right
faithful, then A is right faithful too. The converse is true if Ag = A1 A;.

Proof. Suppose Ay = A1 A; and that A has no total right zero divisors. By
(2.5.1), Ap has no total right zero divisors. If a; € A; satisfies A;Aja; = 0,
then AACLl = <A1A1+A1)(A1A1+A1)CL1 g (A1A1A1A1+A1A1A1+A1A1)a1 =

0. Apply twice that A is right faithful to have a; = 0.

The converse is straightforward. O]
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Remark 3.1.3. The condition Ay = A;A4; in (3.1.2) cannot be removed. If a
superalgebra A = Ay @ A; is right faithful, then Ay is a right faithful algebra
(2.5.1) , but A; is not necessarily a right faithful associative triple system:
Let F be an arbitrary field and consider the F-algebra A = F[z]/ < 2° >,
where < 2% > denotes the ideal generated by x* inside F[z]. For an element
u € F[z], let w stand for the class of u in A. Then the superalgebra A =
Ag® Ay, with Ay the subalgebra of A generated by {1,7°} and A; the vector
subspace of A generated by {Z}, is a right faithful algebra but A, is not a
right faithful associative triple system because A; 4,7 = 0 while T # 0. Notice
that A;A; # Ay because 1 ¢ (F{x})%

Remark 3.1.4. Although we always work with systems of left quotients, the
results in this chapter have their right-side analogues, with obvious changes in
the definitions, just reversing products in the proofs or applying the left-side

results to the opposite systems.

3.2 Algebra envelopes of associative pairs

In this section we give a method to determine the standard envelope of an
associative pair without total right zero divisors by means of any graded
algebra containing the pair in a suitable way and generated by it.

Associative pairs are really “abstract off-diagonal Peirce spaces” of asso-
ciative algebras: Let £ be a unital associative algebra. Consider the Peirce
decomposition & = E11 @ E15 D E91 D Ep of € with respect to an idempotent
eeé, e,

Enn=efe, Epn=eE(l—e), En=(1—e)fe and Eyp=(1—e)E(1—e¢).

From the Peirce multiplication rules, (€12, ) is a subpair of V(&). Con-
versely, every associative pair A = (A", A7) can be obtained in this way
(see [51, 2.3]): Let C be the ®-submodule of B = Endg(A™) X Endg(A™)%P
spanned by e; = (Ida+,Ids-) and all (A(z,y), p(z,y)), and similarly, let D be
the submodule of B spanned by ey = (Id4+, Ids-) and all (p(y, x), A(y, 7))
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where (z,y) € AT x A~. By associativity, these ®-linear spans are really

subalgebras. Clearly, A" is an (C, D)-bimodule if we set
cr =c"(x), xd=d" (v)

for x € AT and ¢ = (¢",¢7) € C,d = (d¥,d”) € D. Similarly, A~ is a
(D, C)-bimodule. Now we define bilinear maps on A% x A¥ with values in C,

respectively, D, by

zy = (A\z,y), p(z,9)), yxr = (py,v), My, )).

Then it is easy to check that (C, AT, A=, D) is a Morita context which gives
rise to a unital associative algebra € (cf. [51, 2.3]). If we set e = ey, then the
pair A = (A", A7) is isomorphic to the associative pair (£12,Es1). Moreover
&1 (respectively, £) is spanned by e and all products x12y2; (resp., 1 —e

and all products ya1212) for 215 € 19, Yo1 € Ea1, and has the property that
r11€12 = Eqywy = 0= x11 = 0, T92E91 = E19T2 = 0 == 795 = 0. (1)
Let A be the subalgebra of £ generated by £15 U &a1, i.e.,
A= E12 @ E12E51 @ En&12 @ Ear.

It is immediate that A is an ideal of £. We will call A the standard envelope
of the associative pair A, and will write 7 = (71, 77) for the natural inclusion

7: A% — A of A into A. When it is necessary to emphasize the existence

-
of the idempotent e we will write (A, e) instead of merely A. The pair (£, ¢)

is called the standard embedding of A.

Definition 3.2.1. Let A be an associative pair, A = A_; & Ay ® A; be a
3-graded associative algebra, and ¢ = (¢T,¢ ™), where ¢7 : A2 — A is an
injective ®-linear map, o = +. We will say that A is a subpair of (A, ¢) if

(i) T (AT) C Ay, o (A7) C A4, and

(ii) ¢ : A — V(A) is a pair homomorphism (hence monomorphism).
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When A is a subpair of (A, ) then

P (A7) + T (AT)p (A7) + ¢ (A7) (A7) + 97 (A7)
is a subalgebra of A. If it coincides with A (i.e. T (AT) U @ (A7) generates
A as an algebra), the pair (A, p) is called a graded envelope of A (gr-

envelope for short).

In this case, and equivalently,

(ifl) Ay = ¢ (AY), Ay = 07 (A7), Ag = ¢ (A7) (A7) + 7 (A7) (AT).
Remark 3.2.2. Notice that for an associative pair A the standard envelope
(A, 7) of A, which can be seen as a 3-graded algebra by considering A; =
E12, Ay = E12E21 B E91E12 and A_; = &5, is a gr-envelope of A in the sense
above.

If an associative pair A is a subpair of a (A, ¢), with A a 3-graded algebra,
in the sense of (3.2.1), then A is a subpair of (A, ) in the sense already
considered by J. A. Anquela, T. Cortés, M. Gomez Lozano and M. Siles
Molina in [4, 1.3] because T (AT) N (A7) C A NA 4 =0.

An envelope (A, p) of A will be called tight if every nonzero ideal of 4
hits A (that is, I N (T (AT) U@ (A7)) # 0 for every nonzero ideal I of A).
We will say that (A, ¢) and (A, ) are isomorphic envelopes of A if there
exists an algebra isomorphism 1 : A — A such that ¢ o ' =¢% o= =.

The proof of the following result follows partially [4, 1.5]. Notice that it
is more general in the sense that we have replaced left and right faithfulness

with right faithfulness by considering gr-envelopes instead of envelopes.
Proposition 3.2.3. Let A= A_1 & Ay D Ay be a 3-graded algebra which is
a gr-envelope of a right faithful associative pair A. Then:
(i) Every one-sided gr-ideal of A not hitting p(A) is contained in Ay.
Define, as in [4, 1.5], the ideal T given by
{r e (AT)p™ (A7) + ¢ (A7)p"(AT) | 27(A7) = 0 = p7(A7)z, 0 = £}
={z € " (AN)p (A7) | 2" (AT) =0 = (A7)z} +
+Ha € (A7) (AT) [ 29~ (A7) = 0= T (AT)x}.
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(1)) T C Ay, it is the biggest gr-ideal of A not hitting ¢(A) and it satisfies
ZA;, = AT =0 fori=0,=*l1.

(iii) Define ¢°: A — AJT  where @ denotes the class of the ele-
7 = p7(a7)
ment a of A inside AJT, 0 = £. Then (A/Z,¢) is a gr-envelope of A gr-

isomorphic to the standard envelope of A.

Proof. (i) Let J = J_1® Jo @ J1 be a one-sided gr-ideal of A not hitting
@(A). Since J11 CITNAL CTNp(A) =0,T C A.

(ii) From (3.2.1), it is clear that 7 is an ideal of A and that both definitions
of Z agree. Moreover, by (i) and the definition, Z C A, and A;z = 2. A; = 0,
for any x € 7 and every ¢ = 0, £1.

Now, let J be a gr-ideal of A not hitting ¢(A). By (i), J C Ay. Take
0 # yo € J and write

vo = D¢ (e () + 3¢ () (),

with uf,vf € A7, ¢ = +. Suppose Oom At uy ), S pluf uy)) # 0.
Then, by the proof of [29, 2.6], there exists a= € A~ such that 0 #
S a ufuy . Since ¢ is an injective ®-linear map, and by (3.2.1) (ii),
0# Yo (@)™ (W )e (ui) = ¢ (a)y € TNy (A7) = 0, a con-
tradiction. Hence
(D w3 <u:,u;>) -
=1

Similarly,

(ZA i) ZpJ,J>_0

+ mo 4 —
i= 1Uzu z —0721215’7 Uy Uy =

This means that for every (z7,27) € A, > "
0, > atv;vy =0and 37 vivfa” =0.
Apply ¢ and (3.2.1) (ii) to these identities to obtain:

0::§:¢ﬁ(u?MfYUZ%fTw+): <§:9f(U?%p0%)>9f(x+)—zm¢+@ﬁ%
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0= Z ™27t () (uy) = ¢~ (z7) Z T (uh)e™ (u7) = ¢ (&7 )yo,
0=> ¢ (@) (v;)p" (v]) = p*(a™) Z e (7)ot (v)) = T (7)o,

0=>> ¢ (v;)pt (W] ) (z7) = (Z w(%)w*(ﬁ)) P~ (27) = yop~ (z7).

This shows yo € Z.

(iii) To see the injectivity of the ®-linear map ¢“, for ¢ = =+, consider
1° € A such that ¢7(27) = 0. This means ¢°(z%) € ¢’ (A%)NZT = 0.

It is straightforward that (A/Z,¢) satisfies (3.2.1) (i)—(iii). This means
that it is a gr-envelope of A.

Let (A, 7) be the standard envelope of A. We can define a linear map
Y : A — A given by

W (w*(:ﬁ) e (Z (e (yr) + Zs@(zj)sf(zj*)) @so(U)> =
Do TN ey T )T e W),

for any x*, y;" ,z+ € A",y , 27 ,u” € A”. Indeed, if

a — g0+($+) ® <Z (p+<yi+ “(y; _|_ng z; ) de (u)=0,

then 0 = ¢ (%) = ¢~ (u~) and by the injectivity of ¢, 27 =0 and v~ = 0.
Hence 71 (27) =0 and 7~ (u™) = 0.

Moreover, 3~ o™ (4, )™ (i) + 32,9~ (27 )¢t (2]) = 0 implies, if we mul-
tiply by ¢~ (a”™) € ¢™(A7),

0 = Zs@ Wy (y;
= Zs@ (@ )" (4™ (v (Za yy)
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By the injectivity of ¢, 0 =", a"y;y; and thus

=T‘<Za‘y?y5> ZT )T (v ZT i) (y);

similarly, for any ¢ (a™) € T (A"), O, 77 (v )7 (y; )7 (a*) = 0, which
implies >, 77(y;" )77 (y;) = 0 by the equations in (1); in a similar way,
> T (2)7F (7 ) =0, and we get that ¢ is well defined.

It is clear that v is a surjective algebra homomorphism of graded algebras
satisfying ¢ o 7 = 79, 0 = +. By the very definition of ¢, an element a as
above lies in Ker ) if and only if a = 37 % (v )0~ (y:7) + 22,07 (2 )™ (2])
with 37, 75 (y, )7 () @22, 7 (2;)77(2]") = 0, which is shown to be equiva-
lent to ap?(A%) = p?(A%)a = 0, 0 = £, again using (1).

Thus Ker ¢ = Z, and we can define 1) : A/T — Aby 1&(6) = ¢(a), which

turns out to be an algebra isomorphism satisfying @ o¢p? =77, 0 =+. O

We obtain now a corollary which will be very used repeatedly for easily

computing the envelopes of associative pairs, needed in the following sections.

Corollary 3.2.4. Let A be a right faithful associative pair, and (A, ) be a

gr-envelope of A. Then the following are equivalent:
(i) (A, ) is tight on A,
(ii) A is right faithful,

(iii) (A, ) is isomorphic to the standard envelope of A.

Proof. Apply (3.2.3) together with the obvious fact that the set of total right

zero divisors of an algebra is an ideal. O]

Notation 3.2.5. To simplify notation, from now on, when dealing with a
subpair A of (A, ¢) we will assume that A7 C A, the maps ¢ will be simply
the inclusion maps, and will write A instead of (A, ¢). This will also be

applied to the particular case of (A, ¢) being an envelope of A.
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3.3 The left supersingular ideal of a superal-
gebra

The notion of singularity appears naturally in many questions in the theory
of modules and rings. In [31], the singular functor of a Grothendieck category
is introduced. In particular, for an M in the category R-gr of graded modules
over a unital ring R, the graded singular submodule of M is the largest graded
submodule contained in Z (M) (the singular submodule of M).

Here we study the left supersingular ideal of a (not necessarily unital)
superalgebra A = Ay @ A; and relate it to the singular ideals of Ay (as an
algebra) and of A; (as an associative triple system).

We recall that by Z,,_;(A) and Z¢

or—1(A) we denote respectively the sets of

left superideals of A and essential left superideals of A respectively, while
Z(A), Z)(A) and Z;(A) stand for the sets of two-sided ideals, left ideals
and essential left ideals of A. Throughout this section we will assume that
o,7,a,p € {0,1}, and we will make use of the results on gr-singular ideals
obtained in the previous chapter.

We adapt the following graded definitions for the case of superalgebras.

Definitions 3.3.1. If A is a superalgebra, the ideal Z,,_;(A) defined in (3.3.1)
is called the left supersingular ideal of A. In a similar way we could talk
about the right supersingular ideal of A (denoted by Z,,_,(A)). The su-
persingular ideal of A is defined as Z,,(A) = Z,_1(A) N Zy—-(A).

Definitions 3.3.2. Let A be a superalgebra. We say that A is left super-
singular if Z,_;(A) = A, and we say that A is left supernonsingular if

Zy1(A) = 0.

When we take G = Z/Zs in the definition of gr-left quotient algebra we
will speak about a left quotient superalgebra and a weak left quotient
superalgebra.

Under the hypotheses of supernonsingularity we have a relation between
the notion of weak left quotient superalgebra and that of gr-left essential

ideal.
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Lemma 3.3.3. Let A be a nonzero left supernonsingular superalgebra and let

I be a left superideal of A. Then:
(i) A is right faithful.

(i) I € Ig, ,(A) if and only if A is a weak left quotient superalgebra of I.

Proof. (i) If z, € A, is a total (homogeneous) right zero divisor, then
lan(z,) = A implies z, € Z,_(A), = 0.

(ii) Suppose I € Iy (A). If 0 # z, € A, then Iz, # 0 (otherwise
I C lan(z,) would imply z, € Z,_;(A) = 0, a contradiction). Take y, € I
such that y,x, # 0. By (i), Ay,z, is a nonzero left superideal of A and by
the essentiality of I, 0 # a,y;Ts € loyrio for some a, € A, (notice that

any- € I). For the converse, apply (i), (2.2.17) and (2.3.8) (iii). O

Remark 3.3.4. The previous lemma still holds if we consider algebras, left
ideals and the notions of left singular, right faithful and weak left quotient

algebras instead of the analogous graded ones.

Remark 3.3.5. Note that if A is right faithful, then left nonsingularity im-
plies left supernonsingularity while the converse is not true: See the example
in (2.3.6) and (2.3.15). Moreover, such an A is an example of an algebra which

is neither nonsingular nor singular.

We are interested in relating the different types of singular ideals we can
consider in the different structures we are dealing with, namely, superalgebras,
associative pairs and associative triple systems.

Let A be an associative pair and let X C A%, o = +. The left annihilator
of X in A is defined to be the set:

lan(X) = lana(X) :={be A7 : bXA° =0, A°bX = 0}.
It can be shown [29, 1.2] that if A is a right faithful associative pair then

lanyg (X)) ={be A77: A7bX =0}.




MENU SALIR

78 3.3. The left supersingular ideal of a superalgebra

For an associative triple system T and a subset X C T, the left annihi-

lator of X in T is defined as:
lany (X)) = lany(1)(X),

the latter being equal to lany (1) (X?), o = +.

For a right faithful associative pair A, if we define
Z1(A) ={z € A% : lana(z) € I/ (A)}, 0 = =,
then it turns out that
Zi(A) = (Z(A)", Zi(A)7)

is an ideal of A [29, 1.6], called the left singular ideal of the associative pair
A.

Definition 3.3.6. For an associative triple system T we can define the left

(triple) singular ideal as

If A= Ay @ A, is a superalgebra, then the supernonsingularity of A is
in fact related with that of Ay and A;. In this regard, we have the following

results.

Proposition 3.3.7. Let A be a right faithful superalgebra such that Ag =
AlAl. Then:

(i) If I € L, (A) then Iy =0 if and only if I = 0.
(ii) Zgr—1(A)g = Z1(As), 0 =0,1.

Proof. (i) If Iy = 0 and we take 0 # y; € I3, then by (3.1.2), 0 # A;Ajy; C

Aily = 0, a contradiction. Conversely, if [; = 0 and we consider 0 # y, € Iy,

then (3.1.2) implies 0 # Apyo = A1 A1y C A1} = 0 a contradiction again.
(ii) Consider first 0 = 1 and 0 # a3 € Z;(A;). Take 0 # L = Lo & L; €

Zyr—1(A). By (i) Ly # 0 # L. Since Ly is a left ideal of Ay, our hypothesis gives

g
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us some 0 # [; € Ly Nlang, (ay), that is, Ajlja; = 0. On the other hand, by
(3.1.2) A; is right faithful, so we find b; € A; such that 0 # byl; € LNlany(ay).

To see the other containment, consider 0 # a; € A; such that lana(a;) €
Z5, 1 (A). If we take 0 # J € Z;(A,), applying that A is right faithful we can
find 0 # vy, € J with 0 # Ay, € Z,,_1(A). So Ay; Nlang(a;) # 0 and by (i)
there exists by € A; satisfying 0 # byy; € lany(aq). Since Ay = AjA; is right
faithful by (3.1.2), we find dy € A; such that 0 # dibyy; € J Nlany, (a;).

For the 0 = 0 case we start by taking 0 # ag € Ap such that lana,(ag) €
Z7(Ap). If we consider 0 # K = Ko ® Ky € Zy(A), by (i) Ko # 0, and since
it is a left ideal of Ay we can find 0 # kg € Ky such that ky € lang,(ag) C
lana(ap).

To prove the other containment we consider 0 # ag € Ay with lana(ag) €
(A). Take 0 # Jy € Z;(Ap), and again 0 # Ayy € Z;(A) for some yy € Jy.
Since Ayp Nlana(ag) # 0, applying (i) we can find by € Ay such that 0 #

_'Z'e

gr—l

boyo € Jo N lanAO (ao). ]

Finally, we give the relation of the different types of nonsingularity under

the assumption Ay = A;A; for the superalgebra.

Corollary 3.3.8. For a right faithful superalgebra A with Ay = A1 A; the

following conditions are equivalent:

(1) A is left supernonsingular (as a superalgebra).

(11) Ay is left nonsingular (as an algebra).

(111) Ay is left nonsingular (as a triple).

Remark 3.3.9. Ay left nonsingular does not imply A left nonsingular (the

superalgebra A considered in (2.3.6) and (2.3.15) satisfies Ay = A1 Ay, Ap is

left nonsingular and A itself is not).

3.4 Systems of left quotients

Let A = Ay ® A; be a subsuperalgebra of a superalgebra B = By & Bj.
In this section we will study when B being a gr-left quotient algebra of A
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is equivalent to By and B; being a left quotient algebra and a left quotient
triple system of Ay and A;, respectively. See [29] for results on left quotient
pairs.

There, a notion of left quotient pair is introduced. Let A = (A*, A7)
be a subpair of an associative pair Q = (Q1, Q7). We say that @ is a left
quotient pair of A if given p,q € Q7 with p # 0 (and 0 = + or 0 = —)
there exist a € A7, b € A7 such that

abp #0 and abg € A°.

Every right faithful associative pair is a left quotient pair of itself.

The notion of left quotient pair extends that of Utumi of left quotient ring
since given a subalgebra A of an algebra @, @ is a left quotient algebra of A
if and only if V(Q) is a left quotient pair of V(A).

Definition 3.4.1. Let S be a subsystem of an associative triple system 7.
We say that T is a left quotient triple system of S if given p,q € T, with
p # 0, there exist a,b € S such that abp # 0 and abg € S, equivalently, if
V(T) is a left quotient pair of V'(5).

Definitions 3.4.2. Let A be a subsuperalgebra of a superalgebra B. For
every ¢; € B;, with i = 0, 1, define

(A:q)={a€ A : ag; € A}.
We will say that A is weak right faithful in B if
for every qo € By, rang, (A : qo) = 0.
We will say that A is right faithful in B if
for every ¢; € B;,ranp, (A : ¢;) = 0 for each i € {0, 1}.

This definition has been motivated by the following fact: When B = A,
the previous condition means A right faithful, so that every right faithful
superalgebra A is right faithful in itself.
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Proposition 3.4.3. Let A be a subsuperalgebra of a superalgebra B and sup-
pose Ag = A1 A;.

(1) If B is a left quotient superalgebra of A, then By is a left quotient algebra
of Ay and By is a left quotient triple system of A;.

(i1) If By is a left quotient algebraof Ay, By is a left quotient triple system of
Ay and A is weak right faithful in B, then B is a left quotient superalgebra of
A and, consequently, a left quotient algebra of A.

Proof. (i) The fact of By being a left quotient algebra of Ay was proved in
(2.5.2).

To see that By is a left quotient triple system of Ay, consider py,q; € By,
with p; # 0. Since B is a left quotient superalgebra of A = Ay + A; and
Ay = A1Aq, 0 # tip; for some t; € A;. Apply that By is a left quotient
algebra of Ag to find ag € Ag such that agt1p; # 0 and agt1p1, agt1qn € Ag. By
(3.1.2), Ag has no total right zero divisors, hence 0 # Agapt1pr = A1 A apt1pr-
Choose b; € A; satisfying 0 # byagtipr. Then uy = bjag € Ay and t; verify:
uitipr # 0 and uqt1q; € Ay. This shows our claim.

(ii) Consider pg, qo € By, with py # 0. Since By is a left quotient algebra
of Ag, there exists ag € Ay such that agpy # 0 and agqy € Ap.

Now, consider 0 # p; € By, q0 € By. Apply 0 # (A : qo)p1 to find a; € A;
satisfying 0 # a;p; and ajqo € A;.

For the third case, take 0 # py € By, q1 € B;. Since By is a left quotient
algebra of Ag, 0 # Agpo = A1A1po, so that 0 # t1py for some t; € A;. Apply
the previous case to find a; € A; satisfying 0 # a;t1py and a;t1q1 € A;. Then
u = a;t; is an homogeneous element of A such that 0 # upy and ug; € AgUA;.

Finally, given pi,q1 € By, with p; # 0, apply that By is a left quotient
triple system of A; to find a1, b; € A; such that a1b1p; # 0 and a;b1q; € A;.
Then uy = a1b; € Ay satisfies 0 # ugp; and upq; € Aj. O

Remark 3.4.4. By (3.1.3), (3.4.3) (i) may fail if Ay # A1 A;.

Other examples of right faithful subsuperalgebras in overalgebras (differ-

ent from the case A = B for a right faithful algebra A) can be found in the
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following result.

Lemma 3.4.5. Let B be an oversuperalgebra of a superalgebra A satisfying
Ag = A1 Ay and suppose that By is a left quotient algebra of Ay and that B
15 a left quotient triple system of A;.

(1) If A is left faithful then A is right faithful in B.

(11) If A is left supernonsingular (in particular, if it is left nonsingular) then

B is a left quotient algebra of A and A is right faithful in B. Moreover,

(i) The left faithfulness of A in (i) can be replaced by the left faithfulness of
A; fori=0 ori=1.

(i1) The left supernonsingularity of A in (ii) can be replaced by the left non-
singularity of A; fori =10 ori=1.

Proof. (i) We will prove the case ¢ = 0. The other one is similar. Suppose
0 # by € rang, (A : qo) for some gy € By. Apply that By is a left quotient
triple system of A; to find uy,v; € Ay such that 0 # uyv1b; € A;. Since A is
left faithful and Ay = A; Ay, there exists w; € A; such that u;v1b1w; # 0. By
being a left quotient algebra of Ay implies aguiv1b1w; # 0 and aguiv1qo € Ao
for some ag € Ag. Now, apuiv; € (A : qo) and by € rang, (A : qp) imply
aoui1v1by = 0, a contradiction.

(ii) We prove first that B is a left quotient algebra of A.

Given pg,qo € By, with pg # 0, apply that By is a left quotient algebra
of Ay to find ay € Ay such that agpy # 0 and agqy € Ao. If p1,qn € By,
with p; # 0, by using that B; is a left quotient triple system of A; we find
uy, v € Ap satistying 0 # uqvip; and uv1q; € A;. Now, consider 0 # py € By
and q; € By; apply that By is a left quotient algebra of A to find ag € Ay such
that 0 # agpy € Ap. Since A is right faithful (by (3.3.3)) and Ay = A A;,
biappy # 0 for some b; € A;. Notice that V(Bj) is a left quotient pair of
V(A;) and that V(A;) is left nonsingular (by (3.3.3) (i) and (3.3.8)); by [29,
2.4] (A1 : biaoqr)bragpo # 0, hence there exists ¢; € A; satisfying ¢;b1a0pg # 0
and cibiapq € A;p. The element ug = c1biag € Ag satisfies: ugpg # 0 and
upqr € Ay.
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Finally, given 0 # p; € By and qg € By, apply that By is a left quotient
triple system of A; to find a; € Ay such that a;p; # 0. By the previous case
there exists uy € Ap satisfying 0 # upa1p; and ugaiqo € A;.

The equality rang, (A : ¢;) = 0 for every ¢; € B; and every i = 0,1
follows from the fact of B being a left quotient superalgebra of A.

(i)’ Under the conditions of the main statement, A is left faithful if and
only if Ay and A; are left faithful (by (3.1.2)). Suppose A left faithful, and
consider a; € Ay such that a;A;A; = 0. If ay # 0, Aja; # 0 by the right faith-
fulness of A;.Apply that Ag is left faithful to have 0 # Aja; Ag = Aja1 A1 Ay,

which is a contradiction.

Now, suppose A; left faithful, and consider ag € Ay satisfying agAy = 0.
Then agA1A1A; = agApA; = 0. Since A; has no total right zero divisors,
apA; = 0. If ag # 0, apply the right faithfulness of Ay to have 0 # Agag =
A1 Ajag. Apply again the left faithfulness of A; to obtain 0 # AjagA;A;, a

contradiction.

(ii)’ follows from (3.1.2) and (3.3.8). O

Remark 3.4.6. The converses of (i) and (ii) in (3.4.5) are not true: Con-
sider A = B and take into account that right faithfulness implies neither left

faithfulness nor left supernonsingularity.

Corollary 3.4.7. Let A be a right faithful subsuperalgebra of a superalgebra
B and suppose Ag = A1Ay. If A is left faithful (equivalently gr-left faithful)
or gr-left nonsingular, then B is a left quotient superalgebra of A if and only
if By is a left quotient algebra of Ag and B is a left quotient triple system of
A

Proof. Apply (3.4.3) (i) and (3.4.5). O
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3.5 The maximal left quotient system of an
associative pair

Let A be an associative pair and denote by (€, e) and A its standard embed-
ding and standard envelope, respectively. Then A and £ can be considered

as superalgebras by defining
Ao = A1 Aoy © Aot Az, Ay i= A @ Ay

and
Eo=eed(1—e)(1—e), & :=A4A

Moreover, Ay = A1 Ay, although the same is not true, in general, for &.
When & = & &1, then £ = A and A is said to be a unital associative
pair. As it is not difficult to see, the pair A is unital if and only if e is a
full idempotent in &, if and only if A = & = & @ & is a strongly graded
superalgebra.

Notice that the standard envelope of an associative pair A is not neces-
sarily a strongly graded superalgebra. For a commutative ring R, take

<zt> <z>
A= ) ,
<zr> <>

where < f(x) > denotes the ideal generated by {f(z)} in the polynomial ring
R[x].

Then the standard envelope of the associative pair A = V(< z >) is
isomorphic to A (consider A as a subpair of (A, p), where p = (o7, ¢7) is
given by:

et AT — A e~ AT — A

N — . (00
0 0 a0

and apply (3.2.4)). Moreover,

<z?> 0 0 <> 0 <3 >
AOAI_( 0 <x2>><<x> 0 >_<<x3> 0 >7é“41'

Lemma 3.5.1. Let B be a left quotient pair of an associative pair A, and

denote by A and B their standard envelopes. Then:
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(i) Ajibi # 0 for every 0 # b; € By, 1,7 € {1,2}.
(11) By; is a left quotient algebra of A;; for i € {1,2}.

Proof. Notice that by [29, 2.5 (i)], A C B.

(i) The case i # j is [29, 2.6]. Now, suppose i = j. By the previous
case, apby; # 0 for some ay; € Ay, with k # ¢ and k,i € {1,2}. Apply
that B is a left quotient pair of A to find (z4, zx;) € (A, Ax;) such that
0 # zpixgapby € AgiAiiby;. This shows Ay;by; # 0.

(ii) Consider by, c; € By, with b; # 0. By (i) there exists a;; € Aj,
with j # ¢ and j € {1,2}, such that a;;b; # 0. Apply that B is a left
quotient pair of A and take (x;;,x;) € (Aij, Aji) satisfying x ;25050 # 0
and z;;x;;a5,ci; € Aj;.

Since A is right faithful, y;;z;;xi;a;bi # 0 for some y;; € A;;. Then
Wi = YijTjiTija; € Ay satisfies u;;b; # 0 and i € Ay O

In order to construct the maximal left quotient systems for pairs, we will
have to deal with idempotents and “abstract off-diagonal Peirce spaces” which
are pairs of the form (eA(1 — e), (1 — e)Ae). Thus, the relation between left
quotient algebras and corners studied in chapter 1 turns out to be very useful

here.

Corollary 3.5.2. Let A be a right faithful associative pair and denote by A
and (€, e) its standard envelope and standard embedding, respectively. Then

e€e is a left quotient algebra of eAe.

Proof. We first show ran4(eA) = 0. Suppose 0 # = € rang(eA). If z1; # 0
then, by (3.5.1) (i), 0 # Apz1; = ApAsiz; C eAxe = 0, a contradiction.
If 212 # 0 then (since A has no total right zero divisors) 0 # Ajs A9 w12 C
eAzx(l —e) = 0, a contradiction. Analogously we obtain x5y = z9; = 0 and

hence x = 0. Now, the result follows from [29, 1.5] and (1.2.5). O

Lemma 3.5.3. Let A be a right faithful associative pair, and denote by A and
(€, e) its standard envelope and standard embedding, respectively. Then, for
every left quotient algebra Q of A such that Qe+eQ+Q(1—e)+(1—e)Q C Q
we have that Q := (eQ(1 —e), (1 — e)Qe) is a left quotient pair of A.
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Proof. Notice that the products uQu, for u,v € {1,e,1 — e} make sense by
considering 1,u, v, @ inside Q' _(Q) = (by [73, 1.14]) Q! ..(A) = (by [29,

1.5 (ii)] and [73, 1.14]) Q' . (£).

Consider pia,q12 € €Q(1 — €), with p12 # 0. Since Q is a left quotient
algebra of A there exists a € A such that ap;s # 0 and ap2, agi2 € A.

Suppose first ay1p1a # 0. Then aq1p12, a11q12 € eA(1 — €). Apply that A
is a left quotient pair of A to find x19, 797 € A satisfying xox91a11p12 # 0,
T12T21011G12 € Aie. Notice that xo1a11 € Asgy.

Now, suppose a91p12 # 0. Since A has no total right zero divisors,
0 # Aanpiz C Apaxpiz + Anaapiz = Apaaipiz + Az Ai2a21p12; hence

bigasip1a # 0 for some by € Ajy. The element ¢ = bipas; € A satisfies

c11pi2 7 0, c11p12, c11q12 € A, and the previous case applies. O

Remark 3.5.4. The situation studied by M. Gémez Lozano and M. Siles

Molina in [29, 2.5 (ii)] is a particular case of the previous result.

Lemma 3.5.5. Let B be a left quotient pair of an associative pair A. Denote
by (B, e) and (A, e) their standard envelopes and by QF and Q* their mazimal
left quotient algebras. Then uQPu is a left quotient algebra of uwAu, for u €

{e,1 —e}. In particular, uQ*u is a left quotient algebra of uAu.

Proof. We will prove the result for u = e. Notice that by [29, 2.5 (i)] the

idempotent e is the same for A and B; moreover, we may consider
ACBC QP

We show rang.(eBB) = 0. Indeed, consider 0 # be € Be; by [29, 1.5]
Bbe # 0, so eBbe # 0 or (1 — e)Bbe # 0; in the first case, be ¢ rang.(eB); in
the second one, choose ¢ € B satisfying 0 # (1 — e)cbe € B and apply that
B is a left quotient pair of A to find (z,y) € A such that 0 # yx(1 — e)cbe €
Ao Bbe = Ag1eBbe; then be ¢ rang.(el3).

Now we see rang_)(eB) = 0. Consider b € B such that b(1 —e) # 0. By
29, 1.5], Bb(1 —e) # 0. If eBb(1 — e) # 0 we have b(1 —e) ¢ rangg_¢)(eB). If
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(1—¢e)Bb(1—e)#0, by (3.5.1) (i) 0# eA(l —e)Bb(1 —e) and so b(1 —e) ¢
rang(i—c(eB).

Since rang(eB) = rang.(eB) ® rang_)(eB) = 0, we may apply (1.2.5) to
the algebras B and OF and to the idempotent e to obtain that eQPe is a left
quotient algebra of eBe. If we apply (3.5.1) (ii) and the transitivity of the

relation “being a left quotient algebra of”, we finish the proof. O

Definition 3.5.6. Let A be a subpair of an associative pair B C B, where B
is the standard envelope of B. We will say that A is right faithful in B if:

rang,, (As : szizplﬁ) =0 and rang, (A;: quﬂ]{é) =0
i=1 j=1
for every finite family (ply,ph,), (¢, q3) € B, with (i,5) € {1,...,m} x

{1,...,n}.

Definition 3.5.7. An associative triple system A is said to be right faithful
in an associative triple oversystem B when V' (A) is a right faithful associative

pair in V(B).

Lemma 3.5.8. Let A be a subpair of an associative pair B C B, where B is
the standard envelope of B, and denote by A the graded algebra generated by
A inside B.

(1) A is right faithful in B if and only if A is weak right faithful in B.
Suppose that B is a left quotient pair of A.

(i1) A is the standard envelope of A.

(111) If A is left faithful or left nonsingular then A is right faithful in B. In
particular A is right faithful in B.

Proof. Consider (qi1,q22) € (Bi1, Ba2), and put o := g11 + ¢22. Then
rang, (A : qo) = rang,,(As : q11) @ rang,, (A1z @ gao). (2)

Indeed, the containment “C” is not difficult to prove. For the converse,

consider by € rang,,(As; : ¢11). Since we want to prove (A : qo)bo = 0, take
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a € (A : qo). Then ag, Asjay; belong to (Agr @ ¢i1) and so agbip = 0 =
Asia11b12. Since B is a left quotient pair of A, a;1b15 = 0, which proves our
claim. Analogously we obtain rang,, (A2 : ¢22) C rang, (A : qo).

Now, (i) follows immediately from (2).

(ii) By (3.2.4) it is enough to prove that A is right faithful, equivalently
(by (2.2.9)) A is right superfaithful. If Aa; = 0 for some a; € A; := ATH A,
then Aja; = 0. Since A is right faithful (equivalently 4, is right faithful),
a; = 0. Suppose now Aag = 0 for some ay € Ay = A1 A;. Since B is right
faithful, by [29, 1.5] B is right faithful. Hence, a¢ is not a total right zero
divisor in B.

Apply B = By ® B, = B1B; ® By to find x; € B; satisfying xya9 # 0. Since
B is a left quotient pair of A (equivalently B is a left quotient triple system
of Ay) there exist by, c; € A; such that bycizia9 # 0 and byc;x; € A;. But
bicixiagArag C Aag = 0, a contradiction.

(iii) If A is right faithful, and left faithful or left nonsingular, by [29, 1.5
and 2.14], A is right faithful, and left faithful or left nonsingular.

On the other hand, B is a left quotient algebra of A (apply [29, 2.5]).
Notice that Ag = A;.A;. Moreover, B; is a left quotient triple system of A;
(since B is a left quotient pair of A), and By is a left quotient algebra of A,
(apply (3.5.1)), which imply, by virtue of (3.4.5), A right faithful in B. Now
the result follows from (i). O

Remark 3.5.9. The converse of (3.5.8) (iii) is not true, that is, there are
examples of associative pairs A C B, with B a left quotient pair of A, and A
right faithful in B, and such that A is neither left faithful nor left nonsingular:
Take A = B. Then being A right faithful in A says merely A is right faithful,
but right faithfulness implies neither left faithfulness nor left nonsingularity:

For the first example, consider a field F' and take

(D0 E)

which is a right but not a left faithful associative pair.
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For the second one take, for example, A = (A, A), for A a right faithful

algebra with Q! = (A) not being von Neumann regular.

Next theorem is the main result of this section. It will allow us to success-

fully define maximal left quotient systems for pairs and triples.

Theorem 3.5.10. Let B be a left quotient pair of an associative pair A such
that A is right faithful in B, and denote by A, (£4,¢) and B, (E5,e) the

standard envelopes and standard embeddings of A and B, respectively. Then:

(Z) Q = ngr—maz("4> - inam(A> - lmax(‘8> = ér—max(B)'
(i1) Q = (eQ(1 —e), (1 —e)Qe) is a left quotient pair of A.

Proof. (i) By (3.5.1) (ii), By is a left quotient algebra of Ay; since B; is a left
quotient triple system of A; (because B is a left quotient pair of A) and A
is right faithful in B (by (3.5.8) (i)), we obtain from (3.4.3) (ii) that B is a
left quotient superalgebra of A and, consequently, a left quotient algebra of
A. Hence, by [73, 1.14], (2.4.10) and (2.2.11), @ := Q! ..(A) = Q! .. (B) and

max max

! _ Nl :
tr—maz(A) = Qup_mar(B). To finish the proof, apply (2.2.17), (2.4.3), (2.4.4)
and the fact that Q is graded and contains A as a gr-subalgebra (notice that
the grading is given by the idempotent e).

(if) is (3.5.3). 0

Definition 3.5.11. Given a right faithful associative pair A with standard
envelope and embedding A and (&, €), respectively, write Q := Q! = (A). By
(3.5.3), @ := (eQ(1 —e),(1 — e)Qe) is a left quotient pair of A. Moreover,
if B is a left quotient pair of A such that A is right faithful in B, then by
(3.5.10) (i), @ = Q% _,.0.(B) and hence there exists a monomorphism (of
associative pairs) from B into () which is the identity when restricted to A.
The associative pair () is called the maximal left quotient pair of A and
will be denoted by Q! (A). It is maximal among all left quotient pairs of A

max

in which A is right faithful in the sense previously explained.

Remark 3.5.12. The previous definition strictly generalizes that of [29, 2.11].

Moreover, it cannot be improved.
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Proof. Indeed, when A is an associative pair without total right and total left
zero divisors, or it is left nonsingular, the definition coincides with the given
in [29, 2.11] because by (3.5.8) (ii), under these conditions, A is right faithful
in every left quotient pair of A. It strictly generalizes [29, 2.11] by virtue of
(3.5.9).

For the second sentence, suppose that B is a left quotient pair of A such
that there exists a monomorphism (of associative pairs) from B into @ :=

(et (A)(1—e),(1—-e)Q! . (Ae) which is the identity when restricted to

max max

A.

Identify B with its image inside () and denote by Q the standard envelope
of Q. Then AC BC Q C QC @Q,..(A) (notice that Q and Q!,,.(A) may
not coincide -see [29, 2.12] for an example-). Then, Q being a gr-left quotient
algebra of A implies (by (2.2.16) and (2.2.17)) that for every ¢y € Qp, A is a
left quotient superalgebra of (A : ¢y) and so Q is a left quotient superalgebra
of (A : qo).

Hence rang, (A : q) = 0. By (3.5.8) (i), A is right faithful in @). Now,
denote by B the graded algebra generated by B inside Q. Then B is the
standard envelope of B: Since @ is a left quotient pair of A and A C B C @,
Q is a left quotient pair of B.

This implies, by (3.5.8) (ii), our statement. Finally, for every finite family
{(Ph2,P51)} C (Buz, Bay), rang,, (Asr : 32, piopyy) = rang,, (Azi 1 32, piapi) N
Bio = 0. This fact and the analogue obtained by exchanging the roles of 1
and 2, complete the proof. O

3.6 The maximal left quotient system of a
triple system

We give here the definition of maximal left quotient triple. We just have to
translate the situation for pairs in the previous sections to the triple system
setting. Thus, the hard work is almost done already.

Let A be an associative triple system and denote by A the standard
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envelope of V(A) := (A4, A). Consider the natural inclusion (77,77), with
77 : V(A)? — A, for 0 = +£.
Then the linear map 7: A1 & Ag b A1 — A1 & Ay © A; satisfying

(7 (u) + Yo 7 (a) ™ (0) + Yo7 ()T (di) + 7 (v) =
7 (w) + 27 (@) (be) + 227 (e) T (i) + 7 (v)

for every u,v,a;,b; € A, is an involutory gr-homomorphism of gr-algebras,

e, 72 =14, 7(a) € Ay, for I = —1,0,1, and 7(ab) = 7(a)7(b).

Theorem 3.6.1. Let A be a right faithful associative triple system and let A

and T be as above. Denote Q_1 & Qo ® Q1 = Q 1= Qgr maz(A) = Qhon(A).
Then:

(i) T can be extended to an involutory gr-homomorphism of gr-algebras

T:9 1809 B9 -9 109y P D

which coincides with T when restricted to A.

(ii) Q = Qp with the triple product given by: x -y -z = zy 2 (being the
Juztaposition the product in Q and y™ the image of y via 7) is an associative

triple system and a left quotient triple system of A.

(111) Q is mazimal among all left quotient triple systems of A in which A is
right faithful in the sense that if T is a left quotient triple system of A, then
there exists a monomorphism from T into Q (of associative triple systems)

which is the identity when restricted to A.

Proof. (i) It is easy to see that A is a gr-left quotient algebra of a gr-ideal 7
if and only if A is a gr-left quotient algebra of Z7 and that for any

fe HOMA(T™, A),

the map 7 : Z" — A given by f7(y") := f(y)” lies in HOM4(Z", A)_,, for
[ = —1,0,1. Moreover, 7 : @ — Q defined by [f,Z]” = [f7,Z7] satisfies the

desired conditions.
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(ii) It is immediate to see that @ is a left quotient triple system with the
triple product given. Now, let p, ¢ be in @, with p # 0. Apply (3.5.10) (ii) to
find (a,b) € V(A) such that 0 # abp =a-b" -pand a-b" - ¢ = abg € A. This
proves that A is a left quotient triple system of A.

(iii) If B is a left quotient triple system of A in which A is right faithful
then, by (3.4.1), V(B) is a left quotient pair of V(A). Clearly, the right
faithfulness of A inside B can be read as the right faithfulness of V(A)
inside V(B). By (3.5.11) @ = @ (EWV(B)) = Q. ..(EV(B))) =

gr—max max

b maz(E(V(A))) = QL..(E(V(A))), where £(V(—)) denotes the envelope

of V(—), and (Q_1, Q1) is a left quotient pair of V(A). By (i) and (ii), B can
be seen as a subtriple of Q). n

Definition 3.6.2. For every associative triple system A the left quotient
triple system @ defined in (3.6.1) is called the maximal left quotient triple
system of A.

3.7 Applications to finite graded algebras.
Johnson’s Theorem

We specialize in this section the study of graded algebras to the case of finite
Z-graded algebras.

A grading of a Z-graded algebra A is a set of ®-submodules { Ay }kez such
that A = ®pez Ay is Z-graded. The grading is called nontrivial if A # A,.

Following Smirnov [71], a set of submodules P = {A;; : 0 < 1,5 < n} of
an algebra A is said to be a Peirce system if A = Zijo Aij, AijA C Ay
it j =k and A;;A =01t j # k.

With any Peirce system P = {A4;; : 0 < 4,5 < n} of an algebra A, a
pregrading can be associated: A = )", Ay, where A, = >ijei Aij. We
will say that this pregrading is induced by P. A system of submodules
{H;:i=0,...,n} of an algebra A is said to be complete if HAH = A, for
H =3%"" ,H;, and orthogonal if H;H; = 0 for i # j.
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Given a graded algebra A = ®}__, Ay, define:

H, .= AA_A,_;, for 0 <i<n, and
Hij = HiAHj, for 'L,] S {O, ce ,n}.
For a subset X of an algebra A, we will use id(X) to denote the ideal of A

generated by X.

Lemma 3.7.1. Let A = A_1 ® Ay D A; be a graded algebra such that A =
id(A_y) and A = AyAAy. Then:

(Z) Ro = RlRl, where Ro = Ao and Rl = Afl ) Al-

(11) If A is right faithful, then it is isomorphic to the standard envelope of the

associative pair (A_1, Ay).

Proof. (i) By [71, Lemmas 4.1 and 4.5, we have that H = {H, : p = 0,1} is

an orthogonal and complete system of submodules which induces the grading

in A, so:
A_l = H()AHl
Ay = HyAHy® H,AH, ; (3).
A1 == HlAHO

Hence,

A=id(A ) =A1+A A+ AA 1+ AA 1A=
(apply (3) and the orthogonality of the H;’s)

— HoAH, + HyAH,(H\AH, + H,AHy) + (HyAH, + H, AHo)HyAH,
V(HyAHy + Hy AH))HyAH,(H\AH, + HyAHy) = HyAH, + HyAH, H,AH,
+HyAH H\AHy+ HyAHyHyAH, + HiAHyHyAH, + HyAHyHyAH,H, AH,
+HyAHyHyAH\H\AHy + HHAHyHyAH\H,AH, + HHAHyHyAH,H,AH, C

HyAH, + HyAH, + HAH H\AHy + HyAH, + HHAHyHyAH, +
HyAH, + HYAHH\AHy + HHAH\HyAH, + H,AH,.

Therefore AO = HoAHlHlAHO + HlAHoHUAHl = (by (1)) AflAl -+
AlA—l = (A_l D Al)Q.
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(ii) By (i) we may apply (3.1.2) to have that R; is a right faithful associa-
tive triple system, equivalently, the associative pair (A_1, A;) is right faithful.
Since Ry = R1Ry;, A=A_1® Ay @ A; is a graded envelope of (A_1, A;), and
applying (3.2.4) (note that A is right faithful) the result follows. O

A family {Si} of submodules of an algebra A is said to be independent

if >, Sk is a direct sum.
Proposition 3.7.2. Let A = ®}__ Ay be a graded right faithful algebra with
nontrivial grading such that A =1id(A_,) and A = AgAAy. Then:
(i) A= &};_oHi; and {H;; : i,5 €{0,...,n}} is a Peirce system.
(i1) A has a nontrivial 3-grading A = R_1 @ Ry @ Ry satisfying: A = id(R_,)
and A = RyAR,, where:
R,1 == H()A(Hl + ..+ Hn)
Ry = HyAHy+ (Hi+ ...+ H,)AH,+ ...+ H,)
Ry = (Hy+...+ H,)AH,.

(1i1) A is the standard envelope of the associative pair (R_1, Ry).

Proof. (i) By [71, Lemmas 4.1 and 45|, H :== {H, : p =10,...,n} is a
complete orthogonal system of submodules and the grading on A is induced
by H,ie., Ay =) H,AH,. Apply [71, Theorem 5.2 (i)] to obtain that
A has a nontrivial 3-pregrading induced by the complete orthogonal system

{Ho, H1}, with Hy = Hy and H; = H1+...+ H,, that is, A = R_1+ Ro+ Ry,

p—q=Fk

where:
Ry = Y HAH,=HA(H + ...+ H,)
p—g=-1
Ry = > MyAH,= HoAHo+ (Hy+ ...+ H,)A(H, + ...+ H,)
p—q=0
Ry = > MyAM,=(Hi+...+ H,)AH,
p—q=1

To see the independence of the H;;’s, it is enough to prove that the sum of

the H,; appearing in each A; is direct.
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Suppose that for some k € {—n,...,n} there is a nonzero a;; € H;; N
(D gk (p) (i) HpAHg). Since A is right faithful there exists [ € {0,...,n}
such that 0 ;é Alaij = Zp_q:l H,AH,a;; = (the H,,’s are orthogonal)
H AH;a;.

But a;; € )

H,AH,=> .. H,AH, ; implies

P—q=k,(p,q)#(,j) pFi

Hy ;AH;a;; C Hyy AH, Z H,AH, } =0,
p#i
(because H;H,, = 0 for every p # i), which is a contradiction.

(ii) The pregrading A = R_1 + Ry + R is, in fact, a grading, as it follows
from (i). It is nontrivial because 0 # A_,, = HyAH, C R_;. Moreover,
A=id(A_,)and A_, C R_yimply A =id(R_1),and Ay = >, ,_,H,AH, =
>, HyAH, C Ry implies A = AgAAy C AgAAy, so AgAA, = A.

(iii) Now, by (ii) we may apply (3.7.1) (ii) to conclude that A is in fact

the standard envelope of the associative pair (R_1, Ry). O

Let S be a unital algebra. A family {ey, ..., e,} of orthogonal idempotents
in S is said to be complete if Y  e; = 1. Suppose A = &}__, A; to be a
graded subalgebra of S.

Definitions 3.7.3. We will say that the Z-grading of A is induced by
the complete system {ej,...,e,} of orthogonal idempotents of S if
H;j = e;Ae;.

In particular, for n = 1 the grading is induced by a complete orthogonal

system of idempotents {e, 1 — e} if

A, = (1—e)Ae
Ay = eAed(1—e)A(1—ce)
A = eA(l —e).

In this case we will say, simply, that the 3-grading is induced by the idem-

potent e.

Corollary 3.7.4. Every graded simple Z-graded algebra A has a nontrivial
3-grading induced by an idempotent e € Q' . (A).
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Proof. Let A = @}__, Ag be graded simple, with A_,, # 0. By the proof of [71,
Theorem 4.6], A = ApAAy. Obviously, A =id(A_,,). Since A is right faithful
(the set I of all homogenous total right zero divisors of A is an ideal, and with
similar ideas to those of (2.2.9) it is easy to see that it is graded. Being A
graded simple implies: (i) I = A, in which case A has zero product, but this
is not possible because A is graded simple, or (ii) I = 0, what means A right

faithful), by (3.7.2) (ii), A has a nontrivial 3-grading A= R_1® Ry & R;. O

Remark 3.7.5. The idempotent e in (3.7.4) lies in a unital 3-graded algebra €
containing A as an ideal and as a dense left submodule ([29, Lemma 1.5]). The

pair (&, e) is just the standard embedding of the associative pair (R_1, Ry).

Proposition 3.7.6. Let A = A1 & Ay & Ay be a nonzero right faithful
graded algebra such that (A_1 ® A))? = Ag. Then Q! . (A) = @ (A)

max gr—max

and there exists an idempotent e € Q 1= Q. ..(A) = Q_1 ® Qo ® Q1 which
induces the grading on A and on Q). Moreover, A is the standard envelope

of the associative pair (A_1, A1) and the idempotent e lies in the standard

embedding of (A_q, Ay).

Proof. Consider A as a superalgebra, i.e., A = Ry ® Ry, with Ry = Ay and
Ry = A1 @ A,. Notice that Ry = R} and reasoning as in (3.7.1) (ii) we

obtain that A is isomorphic to the standard envelope of the associative pair

(A_1, Ay).
Denote by (&, e) the standard embedding of the pair. By [29, Lemma 1.5],
A is a dense left ideal of &; this implies Q' _(A) = Q! . (£). Denote this

algebra by ) and consider A and £ as subalgebras of (). Then
A1 =(1-e)le,Ay=ele® (1 —e)A(l —e) and A; = eA(1 —e).
Moreover, if we define
Q1:=(1—-¢e)Qe,Qp:=eQed (1 —e)Q(1 —e) and Q; :=eQ(1 —e),

then A= A_1® Ay P Ay becomes a graded subalgebra of Q = Q_1 P Qo Q.
By the maximality of the maximal graded left quotient algebra (see (2.4.1)),
Q=20Q (A1 @ Ag @ Ay). O

gr—max
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Theorem 3.7.7. Let A = ®}__, Ar be a right faithful algebra such that

A=id(A_,) and A = AgAAy. Then:

(1) There exists a complete system of orthogonal idempotents {eg, ..., e,}
in Q such that the grading of A is induced by this set. Moreover, A, =
Di—j=re;Ae; and for Q;; = e;Qej, A = @ijoeiAej is a graded subalgebra
of Q = &7 ;_oQij- This implies that A = ®y__, Ay 1s a graded subalgebra of
Q = Dj__,Qk, where Qy := ®;_j—1Qij.

Proof. First of all we construct a complete system of orthogonal idempotents.

Notice that by (3.7.2) (i), { Hi;} is an independent family and A = ©};_oH;
For each pair (i,j), with 4,5 € {0,...,n}, denote by m;; : A — H;; the

j.
projection on H;j;. Define, for £ =0,..., n:

fr = Zm’k R— ZHik-
=0 =0

(1) We claim that fr € HOM4(A, A)o.
Each f; is a graded R-homomorphism of graded left modules: Consider
a = Zij Q5,4 b= Zr,s brs € A. Then:

(ai0) fr = (aij Zbrs) fr = ({Hi;} is a Peirce system ) (Z aijbﬁ) I

aijbjk = ({HZ]} is a Peirce System )aij Z brk = Qi (Z bm> fk
Q5 (b) fr-

Since fi is a group homomorphism, this shows (ab) fr = a(b) fx.
Now, take z; € A; = ) H;AH;, and write z; = )
by A the set of j’s appearing in the previous sum.

he S n-{ 0, L

— Ti+k k
i—j=l

i—j=l i—j=l Lij- Denote

implies (A4;) fr C A;.
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Deﬁne €L ‘= [A fk] € Q Qgr ma:c(A) k*—an

(2) {eo,...,e,} is a complete system of orthogonal idempotents in Q.
Indeed, take a =}, s a;; € A.
The e;,’s are idempotents: For any k € {0,...,n},

() )= (S-S

The e’s are orthogonal: For k # [,

(@) (fufi) = ((z) fk) = (z) f—o

The set {eq,...,e,} is a complete system:
a) (Z fk) = (Z aij) (Z fk> = Z <Z(Gij)fk> = Zzaik = a.
k=0 irj k=0 \ i, k=0 i
(3) The grading A = @,;H,; is induced by the system of orthogonal idem-
potents.
Observe that A is considered as a graded subalgebra of @', ,.(A) by

identifying any element x € A with the element [A, p,|, where p, maps a € A
to ax € A. We are going to see A;; = e;Ae; by taking into account the
described identification. Indeed, consider a@ = >, ;a; € A. For any b =

Zr,s bTS € A’

(b) (fipaf;) = (Z b,.sfl-> Pafj = (Z ) paf; =

- ((z) ()
<

= (H Hkl—OfOTI]?él meazl>

= (braq € Hy) = Z briaij = (b)pa,

implies fip,fj = pa;; and therefore our claim.




MENU SALIR

3. Associative systems of left quotients 99
(4) QLon(A) = QL 02(A) and the rest of the statements in the theorem
are true.
Write 7 := @',..(A) and define T}; := e;Te;, for i,j € {0,...,n}, and

Ty =3 j Tij, for k € {—n,...,0,...,n}. Then T' = &p__, T} is a finite
Z-grading such that A = @}__ Ay is a graded subalgebra of T". This implies
@ = T because of the uniqueness of the maximal graded left quotient algebra

of a graded algebra (see (2.4.3)). O

The following result completes [71, Theorem 4.6] in the sense that
Smirnov’s result shows that any grading of a simple Z-graded algebra A is in-
duced by a complete orthogonal system of submodules, and we prove that the
grading is, in fact, induced by a complete system of orthogonal idempotents

lying in the maximal (graded) left quotient algebra of A.

Corollary 3.7.8. Let A = ®}__, Ay be a graded simple algebra and A_,, # 0.

Then there exists a complete system of orthogonal idempotents {ey, ..., e,}
in Q = Q..(A) = Q. _.4s(A) which induces the grading on A and on Q.
The set H :={H; : i=0,...,n}, which is a mazximal complete orthogonal

system of submodules of A, is unique with this property.

Proof. Clearly, A simple implies right faithful and A =id(A_,,); moreover, in
[71, proof of Theorem 4.6] it is said that A = AygAAg, hence we may apply
(3.7.7). The uniqueness of H was obtained there too. O

Now we will use the results of the previous sections and the results of
chapter 2 in order to obtain a Johnson-like theorem for Z-graded algebras

(with a finite grading).

Proposition 3.7.9. Let A = A_1 ® Ag ® Ay be a graded algebra such that
(A_1 @ A))? = Ay. The following conditions are equivalent:

(i) A is graded left nonsingular.

(i1) A is left nonsingular.

(111) Q' as(A) exists and it is graded von Neumann regular.
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(iv) Q' . (A) exists and it is von Neumann reqular.

If these conditions are satisfied, then Q' = (A) = Q" (A).

maxr gr—max

Proof. The last statement is (3.7.6).

(ii)<(iv) is Johnson’s Theorem [44, 13.36].

(i)=(ii). If A is graded left nonsingular, then (2.3.26) (i) implies A right
faithful. By (3.3.8), A;®A_; is left nonsingular as an associative triple system,
equivalently, (A_q, A;) is a left nonsingular associative pair. Since A is the
standard envelope of (A_1, A;) (3.7.6), [29, Proposition 1.9] applies to obtain
that A is left nonsingular.

(iii)=(i) is clear since Z,_;(A) does not contain homogeneous von Neu-
mann regular elements by (2.3.26) (ii).

(iv)=(iii) because @', (A) = Q' (A) (3.7.6). O

max gr—max

As a consequence we obtain a Johnson-like Theorem for Z-graded algebras.

Theorem 3.7.10. Let A = ®}__ Ax be a graded algebra such that A =

k=—n

id(A_,) and A = AgAAy. Then the following conditions are equivalent:
(1) A is graded left nonsingular.

(11) A is left nonsingular.

(iii) Q' pan(A) exists and it is graded von Neumann regular.
(iv) QL (A) exists and it is von Neumann reqular.
If these conditions are satisfied, then @, ,.(A) = Q% _ ... (A).

Proof. The last statement is (3.7.7) (i).

(ii)<(iv) is Johnson’s Theorem [44, 13.36].

(i)=(ii), (iii), (iv). The graded left nonsingularity of A implies, by (2.3.26)
(i), that it is right faithful. By (3.7.2) there is a grading A= R_1 & Ry ® R,
(see the description there) satisfying A = id(R_;) and A = RyAR,. Moreover,
by (3.7.1), (R_1 ® Ry)* = Ry. By (3.7.9) Q := @',,,.(A) is von Neumann reg-
ular (and (iv) has been proved); this implies (iii) and, by applying Johnson’s
Theorem [44, 13.36], (ii).
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(ili)=(i) is clear since Z,,_;(A) does not contains homogeneous von Neu-

mann regular elements (2.3.26) (ii).

(iv)=-(i) follows because @', .(A) = Q! (A). O

max agr—max

We close this chapter with another application of the previous results to
finding gradings for simple M-graded Lie algebras.

Let A be a torsion-free abelian group and consider a A-graded Lie algebra
L = 3" ca L. such that the set M = {\ € A : Ly # 0} is finite. Then L is
called M-graded, and the number

d(M) = min{[¢(M)| : ¢ € Hom(A, Z), ¢ # 0}

is called the width of M.
For (A, %) an associative algebra with involution, K (A, %) stands for {a €
A 1 a* = —a}. In the cases I and II in the following theorem, the quotients

are taken over the center, Z, of the corresponding algebra.

Theorem 3.7.11 (Zelmanov [74]). Suppose L = > .\ Lx is a simple
M-graded Lie algebra over a field of characteristic at least 2d(M)+1 (or of
characteristic 0) and L # Lo. Then L is isomorphic to one of the following
algebras:

(1) [AD), AD/Z, where A = Y, Ay is a simple associative M-graded
algebra.

(1) [K(A, ), K(A,*)|/Z, where A = Y.\ Ax is a simple associative M -
graded algebra with involution x : A — A, and A}, = A,.

(III) The Tits-Kantor-Koecher construction of the Jordan algebra of a sym-
metric bilinear form.

(IV) An algebra of one of the types G, Fy, Eg, E7, Eg or Dy.

In the cases I and II the isomorphism preserves the M-grading.

Suppose L is a simple Z-graded Lie algebra under the assumptions of
(3.7.11). If L is in the case I then, by (3.7.4), A has a nontrivial 3-grading,

which is inherited by L. If L is in the case II, we cannot assure the existence
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of a nontrivial 3-grading for the associative algebra A, preserved by the invo-
lution (see [71, Example in pg. 182]). Every Lie algebra in the case III has a
nontrivial 3-grading, as it is well-known. Finally, for the algebras Fjs, 7 and
Dy, 3-gradings can be given (coming from their maximal roots), while Gy, Fj
and Eg do not have (see [57, 3.5], where it is explained the way of finding
Z-gradings).

For L an M-graded simple Lie algebra under the assumptions of (3.7.11),
reasoning as in [71, Theorem 5.4], we can assume A = Z, and the previous

argument shows the validity of the following result.

Theorem 3.7.12. Let L be a simple (nontrivial) M -graded Lie algebra over
a field of characteristic at least 2d(M) + 1 (or of characteristic 0). If L is
wn the cases I, 111, or it is Fg, E; or Dy, then it has a nontrivial 3-grading.
The algebras of type Gy, Fy and Eg do not have 3-gradings. In the case II, it

cannot be assured.
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Chapter 4

Leavitt path algebras

4.1 Preliminaries

We begin by defining the mathematical objects under investigation in this
chapter: graphs and several algebraic structures related to them. Thus, after
some basic notions on graph theory and notational conventions, we remind
the reader of the construction of the standard path algebra of a graph. Then

we give the definition, examples and basic properties of Leavitt path algebras.

Definitions 4.1.1. A (directed) graph E = (E°, E', r, s) consists of two
countable sets £°, E' and maps 7, s : E* — E°. The elements of E° are called
vertices and the elements of E' edges. For each edge ¢, s(e) is the source
of e and r(e) is the range of e. If s(e) = v and r(e) = w, then we also say

that v emits e and that w receives e, or that e points to w.

Graphs with uncountably many vertices (or edges) could also be consi-
dered though they would not be suitable for defining the algebraic objects we
deal with here.

The following are graphs we will be using in the sequel:

Example 4.1.2. The finite line, is the graph M, defined by M? =
{vi, ..., vn}, MY = {er,...,en1}, s(e)) = v; and 7(e;) = vy for i =

1,...,n— 1. That is:

el e ; €n—1
oVl — > @V2 — ~ > @U3 co. @Un—1 — 5 @Un

103
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Example 4.1.3. The infinite line on the right, is the graph M, defined by
M2 = {v;}2,, ML = {e;}2,, s(e;) = v; and r(e;) = v;y for every i > 1.
That is:

el [} €n—1
0Vl — > @2 — > @U3 ... @Un—1 — 5 @Un .o

Example 4.1.4. The single loop, Ry, is defined by R = {v}, R{ = {x}:

v N\ g
o

Example 4.1.5. The rose with n leaves, R, for n > 2 is the graph given by
RY = {v}, R, ={y1,...,yn}, whose diagram is:

Y3
Y2

U
L eY Y1
Definitions 4.1.6. A vertex which does not receive any edge is called a

source. A vertex which emits no edges is called a sink.

Thus, for instance, the vertex v; in the finite line M, is the only source,
and v, in the same graph is the only sink. The graph M, contains a source

(v1) but no sinks.

Definitions 4.1.7. A graph E is finite if EY is a finite set. If s7!(v) is a
finite set for every v € E°, then the graph is called row-finite.

All the previously considered graphs are row-finite. All of them except
M, are also finite. These are independent notions since of course there exist

graphs which are finite but not row-finite, for example:

Definitions 4.1.8. A path p in a graph E is a sequence of edges pt = i1 .. . fip,
such that r(u;) = s(pip1) fori =1,... ,n— 1. In such a case, s(u) := s(uq1) is
the source of p, r(u) := r(u,) is the range of y and n is the length of the
path.
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For example, p1 = ejeqes is a path (with range vy and source vy) in M,
while v = ejezey is not. Every sequence of edges in R, is a path as it has only

one vertex.

Definitions 4.1.9. If s(p) = r(p) and s(w;) # s(u;) for every i # j, then p

is a called a cycle. F is acyclic if £ contains no cycles.

Although every edge in R, is a cycle, no path of length greater than one
is a cycle in R,, as any such path would visit v more than once.

The set of paths of length n > 0 is denoted by E™. The set of all paths
(and vertices) is E* 1= U,>oE™.

Our interest in graphs is that they provide nice (visual) representations
of some well-known algebras and allow us to construct others. Thus, several
algebras may be built up from graphs. We will focus on path algebras and
Leavitt path algebras.

Definition 4.1.10. Let K be a field and E be a graph. The path K-algebra
over F is defined as the free K-algebra K[E® U E'] with the relations:

(1) viv; = ;v for every v;,v; € E°.

(2) e; = e;r(e;) = s(e;)e; for every ¢; € E*.

This algebra is denoted by A(E).

These equations tell us how to multiply vertices by vertices and edges
by their source and range vertices. But by playing with these equations one
can deduce the product of edges by edges and of edges by arbitrary vertices.
Concretely one sees that a product of edges in A(F) is only nonzero if they
constitute a path, and a product of a vertex by an edge (resp. an edge by
a vertex) is nonzero only if the vertex is the source (resp. the range) of the
edge.

For example, we see that in A(M,) we have 0 = viey = €3 = v1vy = €101,
whereas in A(R,) every product of monomials is nonzero.

We can calculate A(FE) for the following graphs.
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Example 4.1.11. The finite line. If we map v; — e(i,i),e; — e(i,i + 1),
(where e(7, j) denotes the standard (7, j)-matrix unit in M, (K)), then we get

that
K K K - K
0 K K - K
A(M,) = 0 0 K - K
O 0 0 --- K

Example 4.1.12. The single loop. 1t is easy to see (by identifying v +— 1)
that A(Ry) = K|[z], the algebra of polynomials over the field K.

Example 4.1.13. The rose with n leaves. Analogously, we get that A(R,,) =

K[y1,...,yn], the algebra of noncommutative polynomials in n > 2 variables.

The definition of Leavitt path algebra relies on the concept of extended
graph and path algebra:

Definition 4.1.14. Given a graph F we define the extended graph of FE
as the new graph E = (E°, E' U (EY)*,+,s') where (E')* = {ef :e; € E'}

and the functions 7’ and s are defined as
g =7, g =s, r'(ef) = s(e;) and §'(€]) = r(e;).

This graph is simply obtained by doubling (and reversing) the edges by
introducing ghost edges (which are the starred new edges ef). So for the

example, the extended graph for the finite line is:

Example 4.1.15. The extended finite line is the graph ]\//[\n:

el [} €n—1
.'Ul .'U2 .'Ud .'Un—l .'Un
-~ _ — -~ _ — - -
* * *
€1 ) €n—1

Definition 4.1.16. Let K be a field and E be a row-finite graph. The Leavitt
path algebra of E with coefficients in K (also called the graph K-
algebra) is defined as the path algebra over the extended graph E, with

relations:
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(CK1) efe; = d;;r(e ) for every e; € E' and €} € (E')*.

(CK2) vi = 3¢, cpig(e;)=u} €i€; for every v; € E® which is not a sink.
This algebra is denoted by L (FE) (or more commonly simply by L(E)).

The conditions CK1 and CK2 are called the Cuntz-Krieger relations.
In particular condition CK2 is the Cuntz-Krieger relation at v;. If v; is a
sink, we do not have a CK2 relation at v;. Note that the condition of row-
finiteness is needed in order to define the equation CK2. From now on, we
will assume that our graphs are row-finite.

Before giving examples of these algebras, we investigate some basic pro-

perties of L(E).

Lemma 4.1.17. Every monomial in L(E) is of the following form.
(a) kyv; with k; € K and v; € E°, or

(b) ke, ...ei, €l ...e; wherek € K; 0, 7> 0, 0+7 >0, ¢, € E" and

e;tG(El)*fOTOSSSJ,OStST.

Proof. The proof follows the same arguments to that of [64, Corollary 1.15].
We include it here for completeness.

We proceed by induction on the length of the monomial kz; ...z, with
r; € E°UE'U (EY)*.

For n = 1 it is clear that it is of the desired form. Suppose now that we
can convert any monomial of length n > 1 to one a of a type a) or b), and
consider 3 = kyi ... YnYni1 = Q¥Yni1, ¥i € E°U E' U (E')*. By induction
hypothesis on a we have two cases:

Case 1: a = kv;. If now y,11 = v; then § = (k 6;;)v; is of type a). If
Ynt1 = ¢j then B = ku;s(ej)e; = (k Oy, ,s(e;))€; is of type b). Similarly 3 is of
type b) for y,1 = e;.

ei with o, 7 >0, 0 +7 > 0. We distinguish

. _ *
Case 2: v = ke;, ... €€} ... €

more subcases:

. — 3 * — * —
Case 2.1: ypy1 = wv;, 7 > 0. Then since ejv; = ej s(ej)v; =

e*

* *
Ju Tt

€} Os(e; )0;5(€4,) = Os(e; ) 0;€5. then B = (k dge; )0, )€, - - - €€

Jr 7Uj Jr
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Case 2.2: yp41 = v;, 7 = 0. Then 0 > 0 and in a similar way we get
B=FKe;...e,, foracertain k' € K.
Case 2.3: Yp11 = €5, T > 0. We use CK1 to compute €} e; = §;, ; (e ).

Now with the ideas above we see that [ is of one of the following forms:

*

E3
(k’ §jﬁj (55(6].7_1)’“6].)) €iy - - .eidejl Ce 6j7_1,

(k’ (5]‘7’3' 5r(eia),r(ej))ei1 e 61‘0
or (k 9. ;)r(e;),
fort>1,7=1AN0>0o0r7=1A0 =0 respectively.
Case 2.4: yp41 =€, 7=0. Then 0 > 0 and 3 = ke;, ...¢; €.

et ek

. — * _ *
Case 2.5: ypy1 =€}, 7> 0. In such a case § = ke;, ...¢€;, €} ...€] e},

Case 2.6: yp11 = e;, T=0. Then o > 0 and 8 = ke;, ... €, €;.
In every subcase we end up with a monomial of type a) or b). This com-

pletes the proof. n

Definition 4.1.18. Recall that a ring A has local units if for every finite
subset {z1,...,2,} C A there exists e = ¢* € A (a local unit for that set)

with x; € eAe for every i =1,... n.

Lemma 4.1.19. If E° is finite then L(E) is a unital K-algebra. If E° is
infinite, then L(E) is an algebra with local units (specifically, the set generated
by finite sums of distinct elements of E°).

Proof. First assume that E° is finite, we will show that > ;"  v; is the unit
element of the algebra.

First we compute (31, v;)v; = >, 6;;0; = v;. Now if we take e; € E?
we may use the equations (2) in the definition of path algebra together with

the previous computation to get

In a similar manner we see that (37", v;)ej = e;. Since L(F) is generated

by E°U E'U (E")*, then it is clear that (3. | v;)a = « for every a € L(E),
and analogously a(>"" | v;) = a for every o € L(E).
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Now suppose that E is infinite. Consider a finite subset {a;}!_; of L(FE)
and use (4.1.17) to write

Z kil 4 Z cipi

s=1

where k%, ¢! € K —{0}, and p{ are monomials of type (b). Then with the same

ideas as above it is not difficult to prove that for

t
V= U{vi,s(pf),r(p}) cs=1,...,n5l=1,...,m;},
i=1

then oo = ZUGV v is a finite sum of vertices such that aa; = a;a = a; for every

1. ]
Lemma 4.1.20. L(FE) is a Z-graded algebra, with grading induced by
deg(v;) = 0 for all v; € E°;deg(e;) = 1 and deg(e}) = —1 for all e; € E*.

That is, L(E) = ,,c;, L(E)n, where L(E)o = KE° 4+ Ay, L(E), = A, for
n # 0 and A, is the K-linear span of the set

{ei .. €€ ... o+T7>0, ¢, €E', ¢, €(E"), o —7=n}.

Proof. The fact that L(E) =) _, L(E), follows from (4.1.17). The grading
on L(E) follows directly from the fact that A(E) is Z-graded, and that the
relations CK1 and CK2 are homogeneous in this grading.

We can check A,A, C A,;, for completeness. Let us consider

* * * * : _ _
€iy -+ €1 €] o EF and €y, ...ep € ... 6 Witho—7=pand p—v=gq. In

order to compute the product we have several cases.

Case 1: 7 > p. Then we have

(6;1 . 6;7_)<€m1 o Cm,) = (5jﬁm1)e;-‘1 . e;-;lr(eml)em2 o Cm, =

* *
(5]},7%15r(em1),s(em2))ejl <€ Cmg By =

* *
(5jr,m1 5r(em1),s(em2)5j771,m26r(em2),s(6m3))ejl <€ Cmg Gy T =

* *
(6jT7m16jr—17m2 ct 5j-r—p+lamu67'(em1)ys(em2) te 57‘(67”“—1)95(67”“))6‘71 e ej.,—,u'
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Therefore there exists v € K with

* * * * _ i i * * * *
(€iy - €1 €5 v €] ) (Emy v Emy €y e €)) = V€ oo €€ €] ey

and since 0 — ((1—p)+v) = (6 —7)+ (1 —v) = p+q, then the last expression
is inside A, ,.

Case 2: 7 < pu. If we proceeded in a similar fashion we would get that

the product is of the form e;, ...¢e;, €m, ., ..., €5, ... €, and therefore again
(c+(u—7)—v=(c—-7)+(—-v)=p+tq

Case 3: 7 = u. The product now becomes e;, ...e;, ey ...e, andsoo—v =
o4 (—TH+p) —v=p+q. 0

Examples 4.1.21. Many well-known algebras are of the form L(FE) for some
graph E:

(i) Matriz algebras M, (K): Consider the “finite line” graph M,. Then
M, (K) & L(M,), via the map v; — e(i,1),e; — e(i,i+1), and €f — e(i+1,1).
(ii) Laurent polynomial algebras K[z, z~1]: Consider the single loop graph R;.
Then clearly K|z, 27| = L(R;).

(iii) Leavitt algebras L(1,n) for n > 2 investigated in [49]: Consider the “rose
with n leaves” graph R,. Then L(1,n) = L(R,) where A = L(1,n) is iso-
morphic to the free associative K-algebra with generators {z;,y; : 1 <i < n}

and relations

(1) miy; = &y for all 1 <i,j <n, and (2) > gia; = L.
=1

In other words, if

T1
X = : and Y = (y1,...,yn) then XY = Id, s, and Y X = 1.
Ty,
This algebra A is a universal example of algebra without the IBN property
(concretely A = A7).

Note that by virtue of (4.1.20) we can define the degree of an arbitrary

polynomial in L(F) as the maximum of the degrees of its monomials.
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Definitions 4.1.22. We say that a monomial in L(F) is a real path (resp.
a ghost path) if it contains no terms of the form €] (resp. e;); we say that
p € L(E) is a polynomial in only real edges (resp. in only ghost edges)

if it is a sum of real (resp. ghost) paths.

Notation 4.1.23. For a path ¢ = ¢; ...q,, we denote by ¢* the ghost path

Definition 4.1.24. If « € L(F) and d € Z", then we say that « is rep-
resentable as an element of degree d in real (resp. ghost) edges
in case a can be written as a sum of monomials from the spanning set
{pq* | p,q| p,q € E*} given by (4.1.17), in such a way that d is the max-

imum length of a path p (resp. ¢) which appears in such monomials.

We note that an element of L(E) may be representable as an element
of different degrees in real (resp. ghost) edges, depending on the particular
representation used for «. For instance, for R; as in (4.1.21 (ii)), zz~! is
representable as an element of degree 0 (and 1, of course) in real edges in

L(Ry), because zz~! = 1.

4.2 Closed paths

Certain paths in the graph F play a central role in the structure of the Leavitt
path algebra L(E).

Definitions 4.2.1. A closed path based at v is a path yu = py ... u,, with
p; € E', n > 1 and such that s(u) = r(u) = v. Denote by CP(v) the set of
all such paths. A closed simple path based at v is a closed path based at
U, L = 41 ... [y, such that s(u;) # v for every j > 1. Denote by CSP(v) the
set of all such paths.

Remark 4.2.2. Note that a cycle is a closed simple path based at any of
its vertices, but not every closed simple path based at v is a cycle because a

closed simple path may visit some of its vertices (but not v) more than once.
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Moreover, every closed simple path is in particular a closed path, while the

converse is false. See the following graph:

e f
TN

oY ¥
Q N
h g
Then, if we focus on the vertex v we see that the only cycles based at v are

h and eg, whereas CSP(v) = {h,ef"g for every n > 0}. Moreover, heg or h?

are closed paths based at v but they are not simple.

When we deal with closed paths, the simple ones are in some sense the
“atoms” since we can decompose any closed path into a (uniquely determined)
product of simple paths. In addition to that, closed simple paths verify an
analogue to the CK1 relations for edges, which will be extremely useful in

our computations all throughout the chapter.
Lemma 4.2.3. Let pn,v € CSP(v). Then p*v =6,,v.

Proof. We first assume « and 3 are arbitrary paths and write o = ¢;, .. .¢;

Case 1: deg(a) = deg(8) but a # (3. Define b > 1 the subindex of the first
edge where the paths o and [ differ. That is, e;, = e;, for every a < b but
ei, 7 €j,- Then

and B =¢j ...¢;

a'f=e; ...eje5...e5 =¢€ ...epr(€j)es, ... =

io
. * * ) o o
= 57«(6].1)73(61.2)61-0 ce 6i26]2 €y ==

. * * . R

= 57‘(€j1),3(€j2) .. '6T(6jb,1)73(ejb)eia N eibe]b RN e]T =0.

Case 2: a = 3. Proceeding as above we get that

a'f = 5r(e¢1),8(ei2) T 5T(€ig—1):5(€ia)r(6io) - T’(Oz).

Case 3: Now let p,v € CSP(v) with deg(u) < deg(v). Write v = 1115
where deg(vy) = deg(u), deg(re) > 0. Now if 1 = vy then we have that
v=r(p) =r(r1) = s(r), contradicting that v € CSP(v), so pu # 14 and thus

case 1 applies to obtain p*v = p*vivy = 0.
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The case deg(u) > deg(v) is analogous to case 3 by changing the roles of
wand v. O

Lemma 4.2.4. For every p € CP(v) there exist unique cy,. .., ¢, € CSP(v)

such that p=cy...cp.

Proof. Write p = ¢;,...¢;,. Let T = {t € {1,...,n} : r(e;;) = v} and
list t1 < ... < &, = n all the elements of T. Then ¢; = €y + - - Ciy, and
Cj = €;

- iy, for 5 > 1 give the desired decomposition.

t]‘*l ° t

To prove the uniqueness, write p = ¢;...¢, = di...ds with ¢;,d; €
CSP(v). Multiply by ¢} on the left and use (4.2.3) to obtain 0 # vcy .. .c, =
cidy ... ds, and therefore by (4.2.3) again ¢; = dy. Now an induction process

finishes the proof. m

Definition 4.2.5. For p € CP(v) we define the return degree (at v) of
p to be the number m > 1 in the decomposition above. (So, in particular,
CSP(v) is the subset of CP(v) having return degree equal one.) We denote
it by RD(p) = RD,(p) = m. We extend this notion to vertices by setting

RD,(v) = 0, and to nonzero linear combinations of the form ) kyp,, with
ps € CP(v) U{v} and ks € K — {0} by: RD(>_ ksps) = max{RD(p;)}.

For example, if we go back to the graph in (4.2.2) we see that: RD(v) = 0,
RD(eg) = 1 or RD(h?) = RD(heg) = RD(hefg) = 2.
The exit of a path is a key concept if our study of L(E) too.

Definition 4.2.6. An edge e is an exit to the path u = py ...y, if there
exists ¢ such that s(e) = s(p;) and e # p;.

Sometimes the concept of an exit can be tricky since one imagines that
an exit should be an edge completely external to the path. This need not be

the case, for instance, in the graph

.”<—.wf\e f

g %
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if we consider the path y = ef, not only is g an exit but also e and f because:
e is an exit when, running along p, “we have walked” only by the edge e and,
instead of taking f, we “exit” at e. The case of f could be more drastic: just
before starting to run along the path, we “exit” at f instead of going through

€.

Lemma 4.2.7. For a graph E the following conditions are equivalent.
(1) Every cycle has an exit.

(11) Every closed path has an exit.

(111) Every closed simple path has an exit.

(iv) For every v; € E°, if CSP(v;) # 0, then there exists ¢ € CSP(v;) having

an exit.

Proof. (ii) = (iil) = (i) is trivial by definition, and (iii) = (iv) is obvious.
(i) = (ii). Consider p € CP(v;). First by (4.2.4) we can factor p =
M. ™ where ¢ € CSP(v;), and we examine ¢™. If it is cycle then
we can find an exit for it, and therefore for z1, by hypothesis. If not, ¢(™ visits
a vertex (different from v;) more than once. Write ¢™ = c&m) ™ with

each Cgm) € E' and let cﬁL”) be the last edge for which
s(cgm)) € {s(cl(m)) 1 <i<s,i# g}

Thus, there exists s; < s¢ such that s(cg?)) = s(ch)). We have several possi-

bilities:

Case 1: ¢ = ™ and sy < 5. Then 7(c$”) = r(c{™); that is, s(cgﬂl) =
s(cgnll), which contradicts the choice of .

Case 2: ¢l = ™ and sy = s. This means that r(cgln)) = r(cgm)) = v,

which is impossible because ¢™ € CSP(v;).
Case 3: ™ £ ™ In this case ™ is an exit for ¢™, and then for p.

In each case we reach a contradiction or we find an exit for u, as needed.
(iv) = (iii). Consider ¢! € CSP(v;). By hypothesis we find ¢? € CSP(v;)
having an exit. If ¢ = ¢ we are done. If not, we write ¢ = ¢;, ...e;,,

c® = ej, - - .¢j, and proceed by steps:
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Step 1: If e;, # e;,, since s(e;, ) = s(ej,) = v;, then e;, is an exit for (1),

Step 2: If e;, = e;, then r(e;,) = r(e;,); that is, s(e;,) = s(ej,).

Step 3: If e;, # e;,, then as in Step 1, ej, is an exit for W,

Step 4: If e;, = ej,, then continue as in Step 2.

With this process, we either find an exit or we run out of edges in one
path but not in the other (because (V) # ¢(?)). Thus:

Case 1: cM) = c@e,, ... ¢;_ fort < s. But this is impossible because s(e;,) =
r(c?)) = v; and ¢V € CSP(v;).

Case 2: ¢® = cWe; ...e; for ¢ <r, which is similarly impossible.

In any case, we reach a contradiction or we are able to find an exit for

¢ and this finishes the proof. O

4.3 Simple Leavitt path algebras

In this section we build some necessary algebraic machinery and obtain a first
result, (4.3.12), in which we give necessary and sufficient conditions on the
graph F so that L(E) has a concrete algebraic property. Specifically in this
section we do so with the simplicity property.

A great effort in the proof of that result is done in reducing the degrees
of the polynomial by multiplying by suitable elements on both sides. The

following proposition is a first step to that reduction process.

Proposition 4.3.1. Let E be a graph with the property that every cycle has
an exit. If a« € L(E) is a polynomial in only real edges with deg(a)) > 0, then
there ezist a,b € L(E) such that aab # 0 is a polynomial in only real edges
and deg(aab) < deg(a).

Proof. Write a@ = Zeie Bl €ile; + Zvle po ki, where a., are polynomials in
only real edges, and deg(c,) < deg(a) = m.

Case (A): k; = 0 for every I. Since a # 0, there exists ig such that e;,ac, #
0. Let b € L(E) have ab = «; such exists by (4.1.19). Then a = ej , b give

ej,ab = a, # 0 is a polynomial in only real edges and deg(a, ) < deg(a).
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Case (B): There exists k;, # 0. Then we can write
U0y, = ki iy + Z kpp, k, € K.
pECP(uy,)
Note that this is a polynomial in only real edges, and is nonzero because ki,
is nonzero.

Case (B.1): deg(v,,av,) < deg(a). Then we are done with a = v, and
b=v,.

Case (B.2): deg(v,av,) = deg(or) = m > 0. Then there exists py €
CP(vy,) such that k,,po # 0. Now by (4.2.4), we can write pg = ¢1...¢,, 0 > 1
and thus CSP(v;,) # 0. We apply now (4.2.7) to find ¢,, € CSP(v;,) which
has e;, as an exit, that is, if c;, = €;, ... e;, then there exists j € {1,...,s0}
such that s(e;;) = s(e;,) but e;, # e;,. Since s(e;;) = s(es,) we can therefore

build the path given by z = €;, ... e;;_, €. This situation may be represented

oVlo <‘7. e o<7o*>o
This path has ¢z = 0 because ¢{z = € ...€ €. .. €, €, = ... =
€, -6 = 0. (We use this observation later on.) Again (4.2.4) allows
us to write

VgV = klovlo + Z Csx (1) (T)
cs€CSP(vy,)

where v = RD(v,av,) > 0, and al!) are polynomials in only real edges
satisfying RD(aCS ) <.

We now present a process in which we decrease the return degree of the
polynomials by multiplying on both sides by appropriate elements in L(E).
In the sequel we often make use of (4.2.3) without mentioning it explicitly.

In particular, multiplying (f) on the left by ¢ gives
Coo (Vigry,) = Ko, + 0423) (1)

Case 1: agg = 0. Then A = ¢}, and B = ¢, are such that A(v;,av,,)B =
ki,v, # 0 is a polynomial in only real edges and RD(A(v,av,)B) =0 <y =
RD (v, vy, ).
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Case 2: aéi}) # 0 but RD(agg) = 0. Then oY) = k@), for some 0 #

CSO

k@ € K. Using the path z with an exit for ¢}, we have:
Z e, (vpomyy)z = 2" (ke + Ky )z = 250+ EP2) = EPr(2) £ 0.

So we have A = z*c; and B = z such that A(v,awv;,)B # 0 is a polynomial
in only real edges and RD(A(v,avy,)B) = 0 < v = RD(v,,avy,).
Case 3: RD(acSO) > (. We can write
ag()) = k@, + Z cs&g),
cs€CSP(vy)

where a( )

are polynomials in only real edges with return degree less than the
return degree of acs Now 0 < RD(aCQ ) <~ implies v > 2. Multiply (I) by
¢y, to get

(k) (vigawyy) = ki (cty)? + kP, + Oégg (8)

We are now in position to proceed in a manner analogous to that described

in Cases 1, 2, and 3 above.

Case 3.1: ozg()] = 0. Then (¢}, )*(vi,av;,)(Cs)? = kiyvy, + k@ ¢y, and hence

we have found A = (¢ )? and B = (¢4,)? such that A(v,av;,)B # 0 is a poly-

nomial in only real edges and RD(A(v,,av,)B) =1 < 2 < v = RD(v,,avy,).
Case 3.2: 04((332) £ 0 but RD(a(gg) = 0. Then acs = kB, for some 0 #

k® ¢ K, and then

Z*(C:O)2(vloavlo)z = 2" (ky, (020)2 + k:(Q)czo + k:(?’)vlo)z =
(04 E¥2) = k®r(2) £0

Thus, we get A = 2*(c} )? and B = z such that A(v,,av,,)B # 0 is a polyno-
mial in only real edges and RD(A(v,,av,,)B) =0 < v = RD(v,ay,).
Case 3.3: RD(acS ) > 0. We write
ag()) = k@, + Z 05042),
cs€CSP(vy)

where ag) are polynomials in only real edges with return degree less than

the return degree of acg) Now 0 < RD(aCQO) < RD(acgo) < v implies v > 3.
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And by multiplying (§) by ¢}, we get (¢, )3 (vi,av,) = kiy(ci,)® + k@ (cs, ) +
k@t + ag()).

We continue the process of analyzing each such equation by considering
three cases. If at any stage either of the first two cases arise, we are done.
But since at each stage the third case can occur only by producing elements
of subsequently smaller return degree, then after at most v stages we must
have one of the first two cases.

Thus, by repeating this process at most v times we are guaranteed to
find /T, B such that g(vloavlo)é # 0 is a polynomial in only real edges and

RD(A(v,av;,)B) = 0. But this then gives 0 = deg(A(v,avy,)B) < deg(w).

Soa = gvlo and b = UZOE are the desired elements. O

Corollary 4.3.2. Let E be a graph with the property that every cycle has an
exit. If o # 0 is a polynomial in only real edges then there exist a,b € L(E)
such that aab € E°.

Proof. Apply (4.3.1) as many times as needed (deg(a) at most) to find o',V
such that a’ab’ is a nonzero polynomial in only real edges with deg(a’ab’) = 0;
that is, d’abl = 22:1 kiv; # 0. So there exists j with k; # 0, and finally
a=k;'d and b = b'v; give that aab = v; € E°. O

Corollary 4.3.3. Let E be a graph with the property that every cycle has an
exit. If J is a ideal of L(E) and contains a nonzero polynomial in only real
edges, then E°N.J # 0.

Proof. Straightforward by (4.3.2). O

In order to extend all the previous results of this section to analogous

results about polynomials in only ghost edges, we define an involution in

L(E).

Lemma 4.3.4. L(E) can be equipped with an involution x +— T defined on

the monomials by:

(a) kyv; = kyv; with k; € K and v; € E°,




MENU SALIR

4. Leavitt path algebras 119

(b) keiy ... ei €5 ... €}

0, €;, € E' and ¢j, € (E')*,

el wherek € K; o, 7> 0, o+7 >

*
ic ** Cip

= kej, ...eje€

and extending linearly to L(E).

Proof. The proposed map is well defined by (4.1.17), and it is linear by defini-
tion. It is easily shown to satisfy 7y =y T and T = z for every z,y € L(F). It
is also straightforward to check that the map is compatible with the relations

defining L(FE). O

Remark 4.3.5. Note that the involution transforms a polynomial in only
real edges into a polynomial in only ghost edges and vice versa. If J is an

ideal of L(F) then so is J.

We can define sets and quantities for ghost paths analogous to those given
for real paths. Using the involution given in (4.3.4) we can then analogously

prove the following three results.

Proposition 4.3.6. Let E be a graph with the property that every cycle has
an exit. If « € L(F) is a polynomial in only ghost edges with deg(a@) > 0 then
there exist a,b € L(E) such that aab # 0 is a polynomial in only ghost edges
and deg(aab) < deg(a).

Corollary 4.3.7. Let E be a graph with the property that every cycle has an
exit. If « # 0 is a polynomial in only ghost edges then there exist a,b € L(E)
such that aab € E°.

Corollary 4.3.8. Let E be a graph with the property that every cycle has an
exit. If J is an ideal of L(E) and contains a nonzero polynomial in only ghost
edges, then E°NJ # ().

So far we have achieved a partial result: Under certain conditions (every
cycle in the graph has an exit), we can always find a vertex in every two-sided
ideal which contains either a polynomial in only real edges or a polynomial
in only ghost edges. The question now is: When can we deduce that from a
vertex in the ideal we could get all the vertices (and therefore a local unit) in

the ideal? The next definitions are aimed to answering that question.




MENU SALIR

120 4.3. Simple Leavitt path algebras

For a graph E we define a preorder < on the vertex set E° given by:
v < w if and only if v = w or there is a path p with s(u) = v and r(u) = w.

We also say that a vertex w € E° connects to v € E° if w < v.

Definitions 4.3.9. We say that a subset H C E° is hereditary if w € H
and w < v imply v € H. We say that H is saturated if whenever s™1(v) # ()
and {r(e) : s(e) = v} C H, then v € H. (In other words, H is saturated if,
for any vertex v in E, if all of the range vertices r(e) for those edges e having

s(e) = v are in H, then v must be in H as well.)

The following graph shows that these conditions are independent:

oY

Thus, {z,y} is both hereditary and saturated, while {v,z,y} is hereditary
but not saturated. Also, {v,w} is saturated but not hereditary, and {v, x} is

neither saturated nor hereditary.

Lemma 4.3.10. If J is an ideal of L(E), then J N EY is a hereditary and

saturated subset of E°.

Proof. We first show that J N E° is hereditary. Consider v,w € E° such
that v € J and v < w. By the definition of the preorder we can find a path
[ = fiy ...ty such that s(u;) = v and r(u,) = w. Apply that J is an ideal
to get that pjopu; = pipy = r(p) = s(ue) € J. Repeating this argument n
times, we get that r(u,) = w € J.

Now we see that J N EY is saturated: Consider a vertex v with s™(v) # ()
and {r(e) : s(e) = v} C J. The first condition implies that v is not a sink,
so CK2 applies and we obtain v = Z{ejeElzs(ej):v} eje;. It we take e; such
that s(e;) = v, then by hypothesis we have that r(e;) € J and therefore
e; = e;r(e;) € J. Now applying CK2 we conclude that v € J. O

Corollary 4.3.11. Let E be a graph with the following properties:

(i) The only hereditary and saturated subsets of E° are ) and E°.
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(11) Every cycle has an exit.
If J is a nonzero ideal of L(E) which contains a polynomial in only real

edges (or a polynomial in only ghost edges), then J = L(E).

Proof. Apply (4.3.3) or (4.3.8) to get that J N E° # (. Now by (4.3.10) and
(i) we have J N E°® = E°. Therefore J contains a set of local units by (4.1.19),
and hence J = L(FE). O

The main result of this section was proved by G. Abrams and the author

in [1, Theorem 3.11], and is the following

Theorem 4.3.12. Let E be a row-finite graph. Then the Leavitt path algebra
L(E) is simple if and only if E satisfies the following conditions:

(i) The only hereditary and saturated subsets of E° are ) and E°, and

(11) every cycle in E has an ezit.

Proof. First we assume that (i) and (ii) hold and we show that L(E) is simple.
Suppose that J is a nonzero ideal of L(E). Choose 0 # « € J representable
as an element having minimal degree in the real edges.

If this minimal degree is 0, then « is a polynomial in only ghost edges, so
that by (4.3.11) we have J = L(E).

So suppose this degree in real edges is at least 1. Then we can write

m

o= g €i, e, +

n=1

where m > 1, e;, a, # 0 for every n, and each e;, is representable as an
element of degree less than that of « is real edges, and 3 is a polynomial in
only ghost edges (possibly zero).

Suppose v is a sink in E. Then we may assume v = 0, as follows. Multi-
plying the displayed equation by v on the left gives

m

v =0 g €i, e, + V0.

n=1
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But since v is a sink we have ve;, = 0 for all 1 < n < m, so that vaa =vf3 € J.
But v3 # 0 would then yield a nonzero element of J in only ghost edges, so
that again by (4.3.11) we have J = L(E).

For an arbitrary edge e; € E', we have two cases:

Case 1: j € {i1,...,im}. Then eja = ac, + ;3 € J. If this element is
nonzero it would be representable as an element with smaller degree in the
real edges than that of «a, contrary to our choice. So it must be zero, and
hence a.; = —€;f3, so that e;a., = —e;e}f.

Case 2: j & {i1,...,im}. Then eja = e;3 € J. If €;3 # 0, then as before
we would have a nonzero element of J in only ghost edges, so that J = L(FE)
and we are done. So we may assume that €;3 = 0, so that in particular we
have 0 = —e;e} 5.

Now let S; = {s(e;,)}™,, and let Sy = {vp,, ..., vy, } where (320_, vp,)B =
(. (Such a set Sy exists by (4.1.19).) We note that w3 = 0 for every w €
E° — S5. Also, by definition there are no sinks in S;, and by a previous
observation we may assume that there are no sinks in S;. Let S = 57 U Ss.
Then in particular we have (3~ _qv)8 = 3.

We now argue that in this situation o must be zero, which will contradict

our original choice of o and thereby complete the proof. To this end,

a = Zeinaein +0= Z —e;e; B+ (by Case 1)
n=1 n=1

= Z —ei,e; B — Z eje; | B+
n=1 J¢{i1,..im},s(ej)ES

(by Case 2, the newly subtracted terms equal 0)

= —(Zv>ﬂ+ﬁ——6+ﬁ—0-

vES
(no sinks in S implies that CK2 applies at each v € 5)

Thus we have shown that if F satisfies the two indicated properties, then
L(FE) is simple.
For the converse, first suppose that there is a cycle p having no exit. We

prove that L(FE) cannot be simple.
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Let v be the base of that cycle. We show that for « = v +p, < a >
is a nontrivial ideal of L(F) because v €< a >. Write p = ¢;, ...¢;,. Since
this cycle does not have an exit, for every e;; there is no edge with source

s(e;;) other than e;; itself, so that the CK2 relation at this vertex yields

*

s(e;;) = ei;e;.. This easily implies pp* = v (we recall here that p*p = v always

holds), and that CSP(v) = {p}. The situation could be something like

Now suppose that v €< a >. So there exist nonzero monic monomials a,,, b, €
L(F) and ¢, € K with

v = zm: CrnGn0tby, (1)
n=1

Since vav = «, by multiplying by v if necessary we may assume that va,v =
a, and vb,v = b, for all 1 < n < m.

We claim that for each a, (resp. b,) there exists an integer u(a,) > 0
(resp. u(b,) > 0) such that a, = p“@) or a, = (p*)“@) (resp. b, = p**n) or
by = (p*)"0n).

Now a; is of the form ey, ...eg.e€} ... ej with ¢,d > 1. (Otherwise we are

in a simple case that is contained in what follows.) Since a; starts and ends

in v we can consider the elements:

g =min{z : (e} ) = v} and f = max{z : s(ex.) = v},

! * *
and we focus on ay = ey, ... ep.€] ... €] .
: : N — ofa . :
First, since v = r(ej)) = s(ej,) and ¢;, is the only edge coming from v,

then e;, = e;,. Now, s(e;, ,) = r(ej ) = s(ej) = r(ej,) = r(e) = s(esi),
and again the only edge coming from s(e;,) is e;, and therefore e;, | = e;,.
This process must stop before we run out of edges of p because by our choice

of g we have that v € {r(e}.) : # < g}. So in the end there exists 7 < o such

* * % *
that e] ...¢j =e€; ...¢€].
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With the same (reversed) ideas in the paragraph above we can find § < o

*

such that ey, ...er, = €;, ...¢e;. Thus, ay = e, ...e e .e;,, and we have

two cases:

Case 1: § # 7. We know that p is a cycle, so that r(e;;) # r(ei,) = s(e;, ),
SO €; 56;-; = 0, which is absurd because a; # 0.

Case 2: § = 7. In this case a} = pop§ for a certain subpath p, of p, and by
using again the argument of the CK2 relation in this case, we obtain popj = v.

Hence, we get a1 = ex, ..., ,€]  ...€, = a2y, with z,y € CP(v).
(Obviously, the case ¢ > 1,d = 0 yields a; = x, the case ¢ = 0,d > 1 yields
a; = y* and ¢ = d = 0 yields a; = v.) Using (4.2.4) we have x = ¢V ... ¢
for some ¢ € CSP(v) = {p}, and the same happens with y. In this way we
have a; = p"(p*)" for some u,v > 0, and taking into account that pp* = v we
finally obtain that a; is of the form p* or (p*)* for some u > 0 as claimed.
An identical argument holds for the other coefficients a,, and b,,.

Now since both p and p* commute with p, p* and «, we use the conclusion
of the previous paragraph to write the sum (#) as v = aP(p,p*) for some
polynomial P having coefficients in K. Specifically, P(p,p*) can be written
as

P(p,p) =k_m®)" + ...+ kov + ...+ kup" € €D L(E)o.

j=—m

where m,n > 0.
First, we claim that k_; = 0 for every 7 > 0, as follows. If not, let mq be

the maximum ¢ having k_; # 0. Then
aP(p,p*) = k_pm, (p*)™ + terms of greater degree = v,

and since my > 0 we get that k_,,, = 0, which is absurd.
In a similar way we obtain k; = 0 for every ¢ > 0, and therefore P(p, p*) =
kov. But this would yield v = aP(p, p*) = akov = kocr, which is impossible.
Thus we have shown that if £ contains a cycle which has no exit, then

L(F) is not simple.

Now we consider the situation where E° contains a nontrivial hereditary

and saturated subset H, and conclude in this case as well that L(E) is not
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simple. To do so, we construct the new graph
F= (Fov Flera SF) = (EO - Har_l(EO - H)7T|E0—Ha S|EO—H)'

In other words, F' is the graph consisting of all vertices not in H, together
with all edges whose range is not in H. To ensure that F' is well-defined, we
must check that sp(F')Urp(F') C FO. That rp(F') C F? is evident. On the
other hand, if e € F'! then s(e) € FY, since otherwise we have s(e) € H; but
since r(e) > s(e) and H is hereditary, we get r(e) € H, which contradicts
ee .

We now produce a K-algebra homomorphism ¥ : L(E) — L(F). To do so,
we define ® on the generators of the free K-algebra B = K[E°UE'U(E')*] by
setting ®(v;) = xpo(vi)vi, Pe;) = xri(e;)e; and D(ef) = x(r)-(€7)e; (where
X x denotes the usual characteristic function of a set X '), and extending to B.

~

In order to factor ® through A(E) we need to check that
< {vivj—div; : vi,v; € E°}U{ei—eir(e;), ei—s(ei)ei : e; € El} > C Ker(®).

First consider v;,v; € E°.

Case 1: v; € H. Then by definition ®(v,v; — d;;v;) = 0®(v;) — 6;;0 = 0.

Case 2: v; ¢ H but v; € H. In this case ¢ # j and then ®(v,v; — d;;v;) =
2,0 — Ov; = 0.

Case 3: v;,v; ¢ H. In this case ®(v;v; — d;;v;) = v;v; — §;;v; = 0 in L(F).

Now consider e; € E*.

Case 1: ¢; € F'. Then r(e;) € H and therefore ®(e; — e;r(e;)) = €; —
eir(e;) = 0 in L(F). Now, since s(e;) < r(e;) € H and H is hereditary then
s(e;) ¢ H and then ®(e; — s(e;)e;) = e; — s(e;)e; = 0 in L(F).

Case 2: ¢; & F'. Then ®(e; — e;r(e;)) = 0 — 0®(r(e;)) = 0 and P(e; —
s(e;)e;) =0 — P(s(e;))0 = 0.

We proceed analogously for e} € (E')*.

Now to produce the desired ring homomorphism ¥ : L(E) — L(F) we

~

need only check that ® factors through the ideal of A(FE) generated by the
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relations
{efej—dir(ej) s ej € E' el € (BY)*IUQ v — Z ejes 1 v; € 5(E°)

{ejeEt:s(ej)=vi}
That ®(efe; — d;r(e;)) = 0 in L(F) is straightforward. So now consider
v; € s(E®); i.e., consider a vertex v; which is not a sink in F.
Case 1: Suppose v; € H. Then for every e; € E* with s(e;) = v; we have
that e; € F' (otherwise e; € F' implies r(e;) ¢ H and by hereditariness
s(ej) =v; € H). So,

oloi— Y eel|=0- )  0.0=0

{ej€E :s(ej)=vi} {ej€E :s(ej)=vi}
Case 2: Consider v; € H and v; ¢ s(F'). Since v; € s(E°) we have
s H(v;) # 0. But since H is saturated there must exist ¢; € E' such that
s(e;) = v;, but r(e;) € H. That means ¢; € F! with s(e;) = v;, which
contradicts the hypothesis that v; ¢ s(F!). Thus the saturated condition on
H implies that Case 2 configuration cannot occur.

Case 3: Take v; ¢ H but v; € s(F'). Then we have a CK2 relation in L(F)

at v;:
v; = g eje;.

{ej€F1:s(ej)=v;}
Consider e¢; € E' such that s(e;) = v;. If ¢; € F' then ®(ejef) = eje. If
ej & F' then ®(ejef) = 0. Thus, we get

* oy ok
D v — E eje; | = v E eje; =0

{e;€E :s(ej)=v;} {e;j€F1:s(ej)=v;}
by the previously displayed equation.

Thus we have shown that there exists a K-algebra homomorphism
V: L(E)— L(F).

Now consider Ker(¥) < L(FE). Since H # () there exists v € H,s0 0 # v €
Ker(W). Since H # E° there exists w € E°—H and in this case ¥(w) = w # 0
so W # 0. In other words, 0 # Ker(V) # L(F), so that L(F) is not simple.
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Thus we conclude that the negation of either condition (i) or condition (ii)

yields that L(FE) is not simple, which completes the proof of the theorem. [J

Remark 4.3.13. If we start with a finite and row-finite graph E =
(E°, E',r,s) with E® = {vy,...,v,},E' = {ei,...,en}, there exist algo-
rithms that decide, in a finite number of steps, whether or not the graph
satisfies conditions (i) and/or (ii), and therefore whether or not L(FE) is sim-

ple.

Example 4.3.14. We re-establish the simplicity (or non-simplicity) of the
algebras given in (4.1.21) above.

(i) Matriz algebras M., (K): Since there are clearly no cycles in M,,, in order
to get the simplicity, it remains to check condition (i) in (4.3.12).

To this end, let H # () be a set of vertices which is hereditary and sat-
urated. Pick v; € H. By hereditariness we have that v;y,...,v, € H. Now
if we use the condition of being saturated at v;_; we get that v;_; € H, and

inductively v;_1,...,v; € H and therefore H = M?.

(ii) Laurent polynomial algebras K|x,x~']: The cycle x in R; does not have
an exit, so by (4.3.12) L(R;) & K[z,27'] is not simple. (Indeed, similar to
the argument which arises in the proof of (4.3.12), it is easy to show that
1¢<1l+4+z>.)

(iii) Leavitt algebras L(1,n) for n > 2: The conditions in (4.3.12) are clearly
satisfied here because the only cycles in R,, are the edges, and all of them has
any other edge (note that n > 1 is needed here) as exits. Hence, L(1,n) is
simple, as was established by W. G. Leavitt in [49, Theorem 2.

One might wonder if we could find other “exotic” examples of (not) simple
algebras (i.e., simple Leavitt path algebras which are neither matrix algebras
nor Leavitt algebras, and Leavitt path algebras which are neither simple nor

Laurent polynomial algebras). Indeed, such examples do exist:
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Example 4.3.15. Let (), denote the graph having n vertices and n edges,

where the edges form a single cycle. So for example Cg is the graph

yd AN
\
Y N\
[ ) o
[N
\ |
[ ] [ ]
\ S
N,

(In particular, the graph described in (4.1.21) (ii) is the graph C;.) Then
L(C,,) is not simple for all n: although the only nontrivial hereditary subset is
CY the single cycle contains no exit. Therefore L(C,,) is neither a matrix nor
a Leavitt algebra (both are simple). Moreover, it is not a Laurent polynomial
algebra either because L(C,,) contains zero divisors for n > 1 (every vertex

or edge), while K[z, x™!] is an integral domain.

Example 4.3.16. Let E denote the following graph:

e f g
VR /\Q
[ J [ J [ J
O\/’ ~_ -
j 7 h

It clearly satisfies the hypotheses in (4.3.12) (note that the only nontrivial
hereditary subset is EY since we can get from any vertex to another by go-
ing forward, and that the only cycles are j,ei,ie, fh, hf and g, all of them
obviously having exits).

As long as there is a cycle in the graph, L(FE) is infinite dimensional and
therefore it cannot be a matrix ring (we will prove this in more detail in the
next section). Moreover, E. Pardo has shown, by computing the Grothedieck
group of the monoid associated to the graph, that L(E) is not isomorphic to
any L(1,n) for any n > 1.

The previous examples suggest that, in general, it is not easy to show if,

given a Leavitt path algebra L(F), it is isomorphic to another L(F') for a
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some simpler graph F'. This leads us to the following interesting question,

pointed out by G. Abrams.

Question 4.3.17 (Recovery Question). If L(F) = L(F), what can be

said about the relationship between FE and F7

We close this section showing a connection between the Leavitt path alge-
bras L(F) and an algebraic analogue to Cuntz-Krieger algebras, CK4(K), of
a finite matrix A. These algebras were presented by P. Ara, M. A. Gonzalez
Barroso, K. R. Goodearl and E. Pardo in [7, Example 2.5]), in the following

way:

Definition 4.3.18. Let A be a n x n matrix with a;; € {0, 1}, the algebraic
Cuntz-Krieger algebra associated to A is the K-algebra CIC4(K) with 2n

generators 1, ¥y, . . ., Ty, Y, and relations
(i) zyix; = x; and y;xzy; = y; for all 4
(ii) z;y; = 0 for all ¢ # j;
(iti) @iy = -, aizy;a; for all 4;
(iv) Z;.Lzl yjx; = 1.
In order to be able to relate L(E) and CK4(K) we need the concept of

edge matrix.

Definition 4.3.19. For a finite graph £ we can define the edge matrix Ag
associated to E to be the n X n matrix with entries a;; = 0,(c;),s(¢;), Where

n = |EY.

Example 4.3.20. The edge matrix for the graph M, given in (4.1.21) (i) is

010 - 0
001 - 0
000 1
000 0
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while the edge matrix for the cycle graph C,, given in (4.3.15) is

010 0
0 01 0
000 1
100 0

Proposition 4.3.21. If a finite graph E has neither sinks nor sources, then
L(E) = CK4,(K).

Proof. Define ® : CK4,(K) — L(F) on the generators by ®(z;) = e and
®(y;) = e;, and extend additively and multiplicatively. We must check that
® is consistent with the equations defining those algebras.

First, consider the equations (1) x;y;x; = z; and y;z;y; = y;. Then

O (v — 135) = ejee; —ef =r(e)e; —e; =s(ej)e; —e; =0

and analogously ®(y;z;y; — y;) = 0.
Now consider (2) z;y;, = 0 for every ¢ # j. When applied ® to that
equation we get efe;, which is zero in L(E) precisely when i # j.

Let us consider the third equation (3) z;y; = Y 7_, aiy;z;. Then

P (xiyi - Z @z‘jijj> = €€ — Z Op(es),s(e;)€5€5 =

j=1 j=1
r(e;) — Z eje; =0,
{ej€E :s(ej)=r(ei)}
just applying CK2 at r(e;) (which is not a sink by hypothesis).

Finally, consider the equation (4) >°7, y;z; = 1. Then ®(} 7, y;z;) =
> -1 €j€; = D, cpo Vi (because the graph contains no sinks), but applying
(4.1.19), the last expression is the unity of L(E) as we needed.

Let us define now ¥ : L(E) — CK4,(K) by doing ¥(e}) = z;, ¥(e;) = v
and ¥(v;) = xpyr where k is an arbitrary index such that v; = r(e;). Note
that such an index exists because the graph contains no sources. Note also

that if we had k,l such that v; = r(ey) = r(e) then ay, = a for every
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p and therefore z,yr = 2y, in CC4(K) by using (3). This shows that ¥ is
well-defined in the generators of L(E). Let us check the relations.

First, ¥(v;vj; — 6;5Vj) = TaYaZsyp — 0ijT3Yys, Where r(e,) = v; and r(eg) =
vj. Note that, since A is an edge matrix, it verifies the property aqrag, =

Or(ea),r(es) sk for every k. Now using (1), (2) and (3) we get:

V(v — 6i5v;) = (Z aakykxk) (Z aﬁzym) — 0jja8Yp =

k=1 =1
n

Z Aok aEYRTE — 0ijTaY5 = (51”(6(1),7“(65) — 0i5)z8Yys =
k=1

(Ov0; — 0ij)Tys = (0ij — 6i)zpys = 0.
Let us check now the relations e;r(e;) = e; and s(e;)e; = e;. The first one

gives V(e;r(e;) — €;) = yiwiy; — y; = 0, while the second gives

W(s(ei)es —ei) = U(r(er)ei — i) = Tpypyi — yi = <Z akjyjfcj> Yi — Yi =

j=1
ARiYiTili — Yi = Op(ep)slen¥i — Yi = 1y — yi = 0.

The relations €je; for i # j are easily mapped to z;y; which are zero for

i # j. Now U(ele; — r(e;)) = zy; — zyy; = 0. Finally,

Vv — Z eje; | =W r(eg) — Z el | =

{ej€E s(ej)=vi)} {ejeE :s(ej)=r(ex))}
TrYk — Z 6r(ek),s(ej)ijj = TpYr — Z ar;y;x; =0
j=1 j=1
in CCA(K).
Now W& = l¢k, (k) is evident, while the only nontrivial thing to check in
QU = 11 is PU(v;) = PU(s(er)) = P(zryr) = erer = s(ex) = vs. O

In [7, Theorem 4.1] the authors provide sufficient conditions on A which
yield the simplicity of CK4(K), in case A is a finite matrix which has no row
or column of zeros, and in case A is not a permutation matrix. (There is also
an additional condition on an associated function a which must be satisfied

in order to yield the simplicity of CC4(K).)
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But these conditions on A eliminate both the simple algebras M, (K)
and the non-simple algebras L(C,,) from consideration in [7, Theorem 4.1],
since the edge matrix for the graph M,, (4.3.20) contains both a zero column
and a zero row, while the edge matrix for the cycle graph C, (4.3.20) is a
permutation matrix. Thus (4.3.12) applies to a much wider class of algebras

than does [7, Theorem 4.1].

4.4 Purely infinite simple Leavitt path alge-
bras

In the previous section we gave necessary and sufficient conditions on E so
that L(E) is simple. In the current section we provide necessary and sufficient
conditions on E so that L(E) is purely infinite simple, (4.4.15). This is a
natural step to take because, as we prove in this section, the condition of
being purely infinite simple can be characterized by some product properties

(aab style) which we have been obtaining before.

Definitions 4.4.1. An idempotent e in a ring R is called infinite if eR
is isomorphic as a right R-module to a proper direct summand of itself. R
is called purely infinite in case every right ideal of R contains an infinite

idempotent.

Much recent attention has been paid to the structure of purely infinite
simple rings, from both an algebraic (see e.g. [6], [7], [8]) as well as an analytic
(see e.g. [15], [40], [63]) point of view.

The concept of pure infinity involves having an infinite chain of summands,
and therefore the concept of dimension of the algebras. Thus, some study on
the dimension of the Leavitt path algebras is needed. We do that in the
following results. The first two lemmas follow along the same lines as that

given in [40, Corollary 2.2 and 2.3].

Definition 4.4.2. For a vertex v of E, the range index of v, denoted n(v),

is the cardinality of the set R(v) := {a € E* : r(a) = v}.
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Although this quantity may perfectly be infinite, it is always nonzero
because v € R(v) for every v € E°. Thus, in the graph:

f

v w
e <——eo [}
e ——
g

T

we have n(v) = 2, n(w) = 1 and n(x) = 3 since R(v) = {v,e}, R(w) = {w}
and R(x) ={z, f,g}.

Lemma 4.4.3. Let E be a finite graph and v € E° a sink. Then I, =
Y A{kaf* 1 a,p € E*r(a) = v =1(B), k € K} is an ideal of L(E), and
I, = My (K).

* * _
jlu.-ejm —

vo* € L(E). If v6*afB* # 0 we have two possibilities: Either a = dp or

Proof. Consider a3* € I, and a nonzero monomial e; ...e; e

0 = aq for some paths p,q € E*.
In the latter case deg(q) > 1 cannot happen, since v is a sink.

Therefore we are in the first case (possibly with deg(p) = 0), and then

v af* = (yp)B* € I,

because 7(yp) = r(p) = v. This shows that I, is a left ideal. Similarly we can
show that I, is a right ideal as well.

Let n = n(v) (which is clearly finite because the graph is both finite and
row-finite), and rename {a € E* : r(a) = v} as {p1,...,pn} so that

I, := Z{kpip;-:i,jzl,...,n;keK}.

Take j # t. If (pip})(p:p;) # O, then as above, p; = p;q with deg(q) > 0 (since
j # t), which contradicts that v is a sink.
Thus, (pip})(pip;) = 0 for j # t. It is clear that

(pip;)(pipy) = pivpl = pipy -

We have shown that {p;p; : 4,7 = 1,...,n} is a set of matrix units for I, and

the result now follows. O
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Lemma 4.4.4. Let E be a finite and acyclic graph. Let {vq,...,v;} be the
sinks. Then

L(E) = @Mn(vi)(K)

Proof. We will show that L(F) = @'_, I,,, where I, are the sets defined in
(4.4.3).

Consider 0 # af* with «, 5 € E*. If r(a) = v; for some i, then af* € I,,.
If r(«) # v; for every i, then r(«) is not a sink, and (CK2) applies to yield:

af* =« Z ee* | B = Z ae(Pe)”.
ecEl ecEl
s(e)=r(a) s(e)=r(a)

Now since the graph is finite and there are no cycles, for every summand
in the expression above, either the summand is already in some I,,, or we
can repeat the process (expanding as many times as necessary) until reaching
sinks. In this way a* can be written as a sum of terms of the form avy(37)*
with r(a7y) = v; for some i. Thus L(E) = Y"1_, L.

Consider now i # j, a8* € I,, and v0* € I,,. Since v; and v; are sinks,
we know as in (4.4.3) that there are no paths of the form 4" or 74, and
hence (a3*)(v6*) = 0. This shows that I,,I,, = 0, which together with the
facts that L(F) is unital and L(FE) = >_'_, I,,, implies that the sum is direct.
Finally, (4.4.3) gives the result. O

Definition 4.4.5. Let R be a ring with local units. We call R locally ma-
tricial in case R = lim (Rq, ¢ap), where each R, is isomorphic to a finite
direct sum of finite dimensional matrix rings over K, and the transition maps

bap are (not necessarily unital) matrix embeddings.

Note that when R is locally matricial, then every finite subset of R is

contained in a finite dimensional (hence artinian) subalgebra of R.

Proposition 4.4.6. Let E be a graph. Then E is acyclic if and only if L(E)

18 locally matricial.
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Proof. Assume first that E is acyclic. If E is finite, then (4.4.4) gives the
result. So now suppose E is infinite, and rename the vertices of E° as a
sequence {v; }2;.

We now define a sequence { F;}22, of subgraphs of E. Let F, = (F?, F},r,s)

where
EO = {Ulv st 7Ui} U T(571<{U17 s 7Ui}) ) F;l = 871({1)17 s Jvi})u

and r, s are induced from E. In particular, F; C F;,; for all 4.

For any ¢ > 0, L(F}) is a subalgebra of L(E) as follows. First note that
we can construct ¢ : L(F;) — L(E) a K-algebra homomorphism because the
Cuntz-Krieger relations in L(F;) are consistent with those in L(F), in the
following way: Consider v a sink in F; (which need not be a sink in £), then
we do not have CK2 at v in L(F;).

If v is not a sink in F}, then there exists e € F! := s7*({vy,...,v;}) such
that s(e) = v. But s(e) € {vy,...,v;} and therefore v = v; for some j, and
then F!' := s7!({vy,...,v;}) ensures that all the edges coming to v are in Fj,
so CK2 at v is the same in L(F;) as in L(E). The other relations offer no
difficulty.

Now, with a similar construction and argument to that used in the proof
of (4.3.12) we find ¢ : L(E) — L(F;) a K-algebra homomorphism such that
Y¢ = Id|p,, so that ¢ is a monomorphism, which we view as the inclusion
map.

Since F is acyclic, so is F;. Moreover, F; is finite since, by the row-finiteness
of E, in each step we add only finitely many vertices. Let {v{,..., v} } be the
set of sinks in F;. By (4.4.4),

t;

j=1

Now we will construct transition morphisms p; : L(F;) — L(F;y1). By

reordering if necessary we may assume that there exists o > 0 such that

i ,0tl i i+l i i+1 i+1 ;
V] =0, U = Uy but o & {ugh, L opl ) for every § >
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Since we have added more vertices and edges from F; to Fj,q, it is clear

that, for j < o we have np,(v}) < nFM(v;H) and therefore we can embed

@) i M, (y(K) > M ) (K)

i\Yj nr (U

via the map z — diag(z,0).

For v} with j > «a, we have that v} is not a sink in F;i, so there exists

wy € FYy with wy # vf < wy. If wy is not a sink in Fjyy, then we find
Wy € Fﬁrl with we # w; < wsy. Continuing in this way, we obtain vertices
with

v§§w1§w2§...§wn.

But F;,; is finite and acyclic, so we cannot repeat vertices and we have

finitely many of them. Therefore this process must stop at some sink vit!

S Y
)

P < vt in Fj,,. After a rearrangement of vertices, we find

s > « with v

ap=a < a; <...<a, =t; such that we have the following inequalities in
Fiyq:
Vb 1y, Uh <ML for every 0 < n < o
The sets

{peFyip=pgp € Fir() =v;r(q) = v,

for | =, 1+1,...,q, are all disjoint because v; are sinks in Fj;. Moreover,
all these sets are clearly contained in {p € F},; : r(p) = vt} }, and therefore

we have
1 : ,
nE (Uzv—i—n) > nFi(Ufyn,1+1) +.ooF nFi(U(Z)zn>'
Thus we can construct the following monomorphism

\Il’ln . n Man(Ulz) (K) — M i+1 )(K)

l=ap—1+1 NF;11 (va+n
(Tay 141+ Tay) —  diag(Ta, ,41,---sTay,0)

Finally,
-(&)o(é)
j=1 n=1

is the desired transition monomorphism.
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Each vertex in E° is in F; for some i; furthermore, the edge e has e € F,

where s(e) = v;. Then it is clear that L(E) = lim L(F;).

oo

For the converse, let p € E* be a cycle in E. Then {p™}5°_, is a linearly

independent infinite set, so that p is not contained in any finite dimensional

subalgebra of L(F). Thus L(FE) is not locally matricial. O

Examples of these two types of transition homomorphisms can be seen in

the following graph F

M’U
o4

)

U1 U3
—

where we show the subgraphs F; constructed in the previous result to-

gether with the algebras their Leavitt path algebras are isomorphic to

F1 F2 F3
o2 o2 - oV4 o2 - oV4
f { { \
\ \ \ /
oll - o3 oVl - o3 oVl - o3

Corollary 4.4.7. Let E be a finite acyclic graph. Then L(E) is finite dimen-

stonal.

The description of the simple Leavitt path algebras given in the previous
section plays a key role here. Moreover, we can obtain the following Proposi-
tion, which is a useful reconfiguration of one of the consequences of the proof

of (4.3.12).

Proposition 4.4.8. Let E be a graph with the property that every cycle has
an ezit. Then for every nonzero o € L(E) there exist a,b € L(E) such that
aab € E°.

Proof. Let a be representable by an element having degree d in real edges. If

d =0, then by (4.3.7) we are done. So suppose d > 0. Then we can write

m

a= Zeinaein + 0

n=1
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where m > 1, e; e, # 0 for every n, each e;, is representable as an element
of degree less than that of « in real edges, and /3 is a polynomial in only ghost
edges (possibly zero). We present a process by which we find @, b such that
aab # 0 and is representable as an element having degree less than d in real
edges.

For an arbitrary edge e; € E', we have two cases:

Case 1: j € {i1,...,im}. Then eja = a.; + €;. If this element is nonzero
then by choosing @ = ¢} and b a local unit for o we would be done. For
later use, we note that if eJa is zero, then a., = —€j3, and therefore e;a., =
—eje;f.

Case 2: j & {i1,...,im}. Then eja = ;3. If e;3 # 0, then with b as
before we would have 6;043 is a nonzero polynomial which is representable as
an element having degree 0 < d in real edges, and again we would be done.
For later use, we note that if €j3 = 0, then in particular we have 0 = —e;e}[3.

So we may assume that we are in the latter possibilities of both Case
1 and 2; i.e., we may assume that e*a = 0 for all e € E'. We show that
this situation cannot happen. First, suppose v is a sink in . Then we may
assume v3 = 0, as follows. Multiplying the displayed equation by v on the
left gives va = v anzl €i, e, + V3. Since v is a sink we have ve;, = 0 for all
1 <n < m, so that va = v3. But if v # 0 then @ = v and b as above would
yield a nonzero element in only ghost edges and we would be done as in Case
2.

Now let S; = {s(e;,)}™,, and let Sy = {vp,, ..., vy, } where (320_, vp,)B =
3. We note that w3 = 0 for every w € E° — S,. Also, by definition there are
no sinks in 57, and by a previous observation we may assume that there are
no sinks in Sy. Let S = S; U Sy. Then in particular we have (3, .qv)3 = f3.

In this situation a must be zero arguing exactly as in (4.3.12), which is
the desired contradiction.

Thus we are always able to find 6,3 such that @ab is nonzero, and is
representable in degree less than d in real edges. By repeating this process

enough times (d at most), we can find ay . ..aAl,l;\l ) l;; such that we can
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represent aj, . . .aAlabAl .. l;g # 0 by an element of degree zero in real edges.

Thus (4.3.7) applies, and finishes the proof. O

The following subsets of E° can be defined:
Vo = {veE":CSP(v) =0}
Vi = {veE’:|CSP(v)| =1}
Vo = E'— (VUV}
For any subset X C E° we define the following subsets. H(X) is the

set of all vertices that can be obtained by one application of the hereditary

condition at any of the vertices of X; that is,
H(X) :=r(s1(X)).

Similarly, S(X) is the set of all vertices obtained by applying the saturated

condition among elements of X, that is,

S(X):={ve E":0+#{r(e):s(e) =v} C X}.

We now define Gy := X, and for n > 0 we define inductively
Gni1:= H(G,)US(G,) UG,.

It is not difficult to show that the smallest hereditary and saturated subset
of E° containing X is the set G(X) := 50 Gn-

For example, if we consider X = {vg} in the graph:

02 <—— V1 oYs

S

oU3 — > U0 <~ U4
then, G;(X) = {vo, ..., v}, for every i < 3 and G(X) = G;;3(X) for every

1> 0.

Definition 4.4.9. This set G(X) is the hereditary and saturated subset
generated by the set X (also called the hereditary saturation of X).
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Lemma 4.4.10. Let E be a graph. If L(E) is simple, then V; = ().

Proof. Suppose that v € Vi, so that CSP(v) = {p}. In this case p is clearly a
cycle. By (4.3.12) we can find an edge e which is an exit for p. Let A be the
set of all vertices in the cycle. Since p is the only cycle based at v, and e is
an exit for p, we conclude that r(e) ¢ A.

Consider then the set X = {r(e)}, and construct G(X) the hereditary
saturation of X described above. Then G(X) is nonempty and therefore by
(4.3.12), we get G(X) = E°. So we can find

n=min{m: ANG,, # 0}.

Take w € ANG,,. We are going to show that w > r(e). First, since r(e) ¢ A,
then n > 0 and therefore w € H(G,-1) U S(Gp-1) U G,—1. Here, w € G,
cannot happen by the minimality of n. If w € S(G,_1) then 0§ # {r(e) :
s(e) = w} C G,,_;. Since w is in the cycle p, there exists f € E' such that
r(f) € A and s(f) = w. In that case r(f) € AU G, _; again contradicts the
minimality of n. So the only possibility is w € H(G,_1), which means that
there exists ¢;, € E' such that r(e;,) = w and s(e;,) € Gp_1.

We now repeat the process with the vertex w' = s(e;). If w' € G,
then we would have w € G,,_1, again contradicting the minimality of n. If
w' € S(G,_2) then, as above, {r(e) : s(e) = w'} C G,_2, so in particular
would give w = r(e;;) € G,_2, which is absurd. So therefore w' € H(G,_2)
and we can find e;, € E' such that r(e;,) = w’ and s(e;,) € G, _s.

After n steps we will have found a path ¢ =e;, ...e; with r(¢) = w and

s(q) = r(e). The situation could be represented by:

pa—

o e o' ()
Thus, in particular we have w > s(e), and therefore there exists a cycle
based at w containing the edge e. Since e is not in p we get | CSP(w)| > 2.
Since w is a vertex contained in the cycle p, we then get | CSP(v)| > 2,

contrary to the definition of the set V. O
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Lemma 4.4.11. Suppose A is a union of finite dimensional subalgebras. Then

A is not purely infinite. In fact, A contains no infinite idempotents.

Proof. Tt suffices to show the second statement. So just suppose ¢ = ¢? € A
is infinite. Then eA contains a proper direct summand isomorphic to eA,
which in turn, by definition and a standard argument, is equivalent to the
existence of elements g, h, z,y € A such that ¢ = g,h*> = h,gh = hg = 0,e =
g+ h,h#0,x € eAg,y € gAe with xy = e and yxr = g. But by hypothesis
the five elements e, g, h, z,y are contained in a finite dimensional subalgebra
B of A, which would yield that B contains an infinite idempotent, and thus

contains a non-artinian right ideal, which is impossible. O

Lemma 4.4.12. Let E be a graph. Suppose that w € E° has the property that,
for every v € E°, w < v implies v € V. Then the corner algebra wL(E)w is

not purely infinite.

Proof. Consider the graph H = (HY, H',r, s) defined by H° := {v : w < v},
H' := s7*(H"), and r, s induced by E. The only nontrivial part of showing
that H is a well defined graph is verifying that r(s~*(H")) C H°. Take z € H°
and e € E' such that s(e) = z. But we have w < z and thus w < r(e) as
well, that is, r(e) € HC.

Using that H is acyclic, along with the same argument as given in (4.4.6),
we have that L(H) is a subalgebra of L(E). Thus (4.4.6) applies, which yields
that L(H) is locally matricial, and hence a union of finite dimensional subal-
gebras. Therefore contains no infinite idempotents by (4.4.11).

As wL(H)w is a subalgebra of L(H), it too contains no infinite idempo-
tents, and thus is not purely infinite.

We claim that wL(H)w = wL(E)w. To see this, given o = Y p;qf € L(E),
then waw = > p;q;, with s(p;;) = w = s(g;;) and therefore p;;, ¢;; € L(H).
Thus wL(E)w is not purely infinite as desired. O

Definitions 4.4.13. A right A-module T is called directly infinite in case
T contains a proper direct summand 7" such that 7" = T'. (In particular, the

idempotent e is infinite precisely when eA is directly infinite.)
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We thank P. Ara for indicating the following result, which provides the

direction of proof for the main theorem of this section.

Proposition 4.4.14. Let A be a ring with local units. The following are

equivalent:
(i) A is purely infinite simple.

(11) A is simple, and for each nonzero finitely generated projective right A-
module P, every nonzero submodule C' of P contains a direct summand T of
P for which T is directly infinite. (In particular, the property ‘purely infinite

simple’ is a Morita invariant of the ring.)
(111) wAw is purely infinite simple for every nonzero idempotent w € A.

(iv) A is simple, and there exists a nonzero idempotent w in A for which wAw

18 purely infinite simple.

(v) A is not a division ring, and A has the property that for every pair of

nonzero elements «a, 3 in A there exist elements a,b in A such that aab = (.

Proof. (i) < (ii). Suppose A is purely infinite simple. Let P be any nonzero
finitely generated projective right A-module. Then P is a generator for Mod—
A, as follows. Since A generates Mod — A and P is finitely generated we have
an integer n such that P & P’ = A™ as right A-modules. Again using that
P is finitely generated, and using that A has local units, we have that P is

isomorphic to a direct summand of a right A-module of the form
f1A® ... D fiA,

where each f; is idempotent. But this gives Homu(P, fiA & ... ® fiA) #
0, which in turn gives 0 # Homa(P, A") = (Homu(P,A))!, so that
Homy (P, A) # 0. But

Y{a € Al|a=g(p) for some p € P and some g € Homy (P, A)}

is then a nonzero two-sided ideal of A, which necessarily equals A as A is

simple.
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Now let e = € € A. Then e = >0, gi(p;) for some p; € P and ¢; €
Hom4 (P, A), which gives that

Ae0Bg; : PP — A —eA

is a surjection. Since P generates eA for each idempotent e of A, we conclude
that P generates Mod — A.

This observation allows us to argue exactly as in the proof of [8, Lemma
1.4 and Proposition 1.5] that if e = ¢ € A, then there exists a right A-module
@ for which eA =2 P & Q. Since A is purely infinite, there exists an infinite
idempotent e € A.

The indicated isomorphism yields that any submodule C of P is isomor-
phic to a submodule C” of eA, so that by the hypothesis that A is purely
infinite we have that C’ contains a submodule 7" which is directly infinite,
and for which 7" is a direct summand of eA. But by a standard argument,
any direct summand of eA is equal to fA for some idempotent f € A, so that
T' = f A for some infinite idempotent f of A.

Let T be the preimage of 7" in P & () under the isomorphism. Then T is
directly infinite, and since fA is a direct summand of eA we have that T is
a direct summand of P & ) which is contained in P, and hence T' is a direct
summand of P.

By [14, Proposition 3.3], the lattice of two-sided ideals of Morita equivalent
rings are isomorphic, so that any ring Morita equivalent to a simple ring is
simple. Therefore, since the indicated property is clearly preserved by equiv-
alence functors, we have that ‘purely infinite simple’ is a Morita invariant.

For the converse, let I be a nonzero right ideal of A. We show that [
contains an infinite idempotent. Let 0 # = € I, so that A < I. But z = ex
for some e = €2 € A, so A < eA. So by hypothesis, zA contains a nonzero
direct summand T of eA, where T is directly infinite. But as noted above we
have that T'= fA for f = f? € A, where f is infinite. Thus f € T <zA <[
and we are done.

(ii) = (iii). Since we have established the equivalence of (i) and (ii), we

may assume A is purely infinite simple. Then the simplicity of A gives that
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AwA = A for any nonzero idempotent w € A, which yields by [14, Proposi-
tion 3.5] that A and wAw are Morita equivalent, so that (iii) follows imme-
diately from (ii).

(iii) = (iv). It is tedious but straightforward to show that if A is any
ring with local units, and wAw is a simple (unital) ring for every nonzero
idempotent w of A, then A is simple.

(iv) = (i). Since A is simple we get AwA = A, so that A and wAw are
Morita equivalent by the previously cited [14, Proposition 3.5].

Thus we have established the equivalence of statements (i) through (iv).

(i) = (v). Suppose A is purely infinite simple. Then A is not left artinian,
so that A cannot be a division ring. Now choose nonzero o, 3 € A. Then there
exists a nonzero idempotent w € A such that o, § € wAw. But wAw is purely
infinite simple by (i) < (iii), so by [8, Theorem 1.6] there exist a/, b’ € wAw
such that a’ab’ = w. But then for a = a’,b = /3 we have aab = (.

Conversely, suppose A is not a division ring, and that A satisfies the
indicated property. Since A is not a division ring and A is a ring with local
units, there exists a nonzero idempotent w of A for which wAw is not a
division ring. Let o € wAw. Then by hypothesis there exist a’,b in A with
a'ab = w. But since o € wAw, by defining ¢« = wa'w and b = wb'w we have
aah = w.

Thus another application of [8, Theorem 1.6 (noting that w is the identity
of wAw) gives the desired conclusion.

(v) = (iv). The indicated multiplicative property yields that any nonzero
ideal of A contains a set of local units for A, so that A is simple.

Since A is not a division ring and A has local units there exists a nonzero
idempotent w of A such that wAw is not a division ring.

Let a, f € wAw; in particular, waw = « and wfw = (3. By hypothesis
there exists a, b € A such that aab = . But then (waw)a(wbw) = whw = 3,
which yields that wAw is purely infinite simple by [8, Theorem 1.6]. [

We now have all the necessary ingredients in hand to prove the following

theorem, due to G. Abrams and the author (see [2, Theorem 11}).
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Theorem 4.4.15. Let E be a graph. Then L(E) is purely infinite simple if
and only if E has the following properties.

(i) The only hereditary and saturated subsets of E° are ) and E°.
(i1) Every cycle in E has an exit.

(111) Every vertex connects to a cycle.

Proof. First, assume (i), (i) and (iii) hold. By (4.3.12) we have that L(E) is
simple. By (4.4.14) it suffices to show that L(F) is not a division ring, and
that for every pair of elements «, § in L(F) there exist elements a,b in L(E)
such that aab = 3. Conditions (ii) and (iii) easily imply that |E'| > 1, so
that L(F) has zero divisors, and thus is not a division ring.

We now apply (4.4.8) to find @, b € L(E) such that aab = w € E°. By
condition (iii), w connects to a vertex v ¢ Vp. Either w = v or there exists a
path p such that r(p) = v and s(p) = w.

By choosing ¢’ = I/ = v in the former case, and @' = p*, b = p in the
latter, we have produced elements o', b’ € L(FE) such that a'wb’ = v.

An application of (4.4.10) yields that v € V4, so there exist p, g € CSP(v)
with p # ¢. For any m > 0 let ¢, denote the closed path p™~!q. Using (4.2.3),
it is not difficult to show that ¢}, ¢, = 0,0 for every m,n > 0.

Now consider any vertex v; € E°. Since L(E) is simple, there exist {a;, b; €
L(E) | 1 <i <t} such that v; = Yi_, awb;. But by defining a; = ', a,ct
and b, = 22:1 cjbj, we get

t t t
avby = E a;c; | v E cib; | = E a;c;veb; = .
i=1 i=1

j=1
Now let s be a left local unit for 3 (i.e., s = ), and write s = > v, for
some finite subset of vertices S. By letting a = Evles a;c; and b= ZleS ciby,

we get

avb = E aicjveb; = E v = 8.

v ES v ES

Finally, letting a = aa’a and b = bY'b3, we have that aab = 3 as desired.
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For the converse, suppose that L(FE) is purely infinite simple. By (4.3.12)
we have (i) and (ii). If (iii) does not hold, then there exists a vertex w € E°
such that w < v implies v € V. Applying (4.4.12) we get that wL(E)w is
not purely infinite. But then (4.4.14) implies that L(E) is not purely infinite,
contrary to hypothesis. O

Examples 4.4.16. We can apply this theorem to some graphs:

(i) Matriz algebras M, (K) = L(M,,), being M, the “finite line” graph M,
defined in (4.1.2). Of course L(M,,) is simple, but it is not purely infinite since

no vertex in M? connects to a cycle.

(ii) Leavitt algebras L(1,n) for n > 2. We saw that L(1,n) = L(R,) for R,
the “rose with n leaves” graph defined in (4.1.5). Since n > 2 we see that
all the hypotheses of (4.4.15) are satisfied, so that L(1,n) is purely infinite

simple.

(iii) There are other graphs I’ which satisfy the hypotheses in (4.4.15) (and
therefore L(F) is purely infinite simple) which are not of the type R, for

example

f2
PN

fi{ oWt °
Con
f3

Nevertheless, even though F' is not “isomorphic as a graph” to any R,,

E. Pardo has pointed out that the algebras L(F) and L(R3) turn out to

w2

be isomorphic via ¢ : L(Ry) — L(F') defined on the generators by ¢(v) =
witws, p(y1) = fi+ f2, 0(y2) = f3(fi+ f2), and ¢ : L(F) — L(Rz) given by
Y(wi) = yiyi, Pwa) = yays, ¥(f1) = yivr, ¥(f2) = yiyeys and ¥ (f3) = yau7.

(iv) To exhibit an example of a graph E which again verifies the hypotheses
in (4.4.15) but is not isomorphic to any previous considered Leavitt path

algebras, E. Pardo has brought to our attention the following one:

NN

) {;{j (o3
N

which has Ko(L(F)) & Zs X Zs, while Ko(L(1,n)) = Z,_;.
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We complete this section by providing a realization of the purely infinite
simple algebra M,,(L(1,n)) as a Leavitt path algebra L(FE) for a specific
graph F.

Proposition 4.4.17. Let n > 2 and m > 1. We define the graph E]* by

setting E° := {vy,...;un}, BV :={f1,. ., fo, €1,y em1}, 7(fi) = s(fi) =
U for 1 <i<mn, r(e;) =vi11, and s(e;) =v; for 1 <i <m —1. That is,

f3

,/?\fQ
v 1 v €2 v v em—1. \b 2
oVl ——> @V2 — > @U3 i @Um—1 — = @Um T} fy

fn

Then L(E™) = M,,(L(1,n)).

Proof. We define ® : K[E° U E* U (E')*] — M,,(L(1,n)) on the generators

O(v;) = eforl<i<m
q)(@z) = €ii+1 and CID(ef) = €i+1i for 1 S 1 S m— 1
q)(fz) = Yi€mm and (I)(fz*) = TiCmm for 1 S 1 S n
and extend linearly and multiplicatively to obtain a K-homomorphism. We
now verify that ® factors through the ideal of relations in L(E™).
First, ®(v,v; — 0;;v;) = eye;; — dije;; = 0. If we consider the relations
e; — e;r(e;) then we have
D(e; —eir(e;)) = (e — €vit1) = €iit1 — €iiy1€iy1ip1 = 0,
and analogously ®(e; — s(e;)e;) = 0.
For the relations f; — fir(f;) we get
(I)(fz - fzr(fz)) = (I)(.fz - fzvm) = YiCmm — YiCmmCEmm = 07
and similarly ®(f; — s(f;)fi) = 0.

With similar computations it is easy to also see that

D(ej —ejr(er)) = ®lef — s(ef)ey) = ®(f7 — fir(f7) = ®(fi —s(f)f7) = 0.
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We now check the Cuntz-Krieger relations. First, ®(efe; — 0;;7(ej)) =

D(eje;j—0ivj41) = €iy1i€j541 — i€+ 1541 = 04j€iv1j41—0ij€j41541 = 0. Second,
S(f7f5 — 0uyr(fy)) = (f7 fj — 0ijvm) = Ti€mmYj€mm — Oij€mm = 0,
because of the relation (1) in L(1,n). Finally,
O(fie; = Ope,r(e)) = R(fie; = 0vjia) = D(f€;) = Tiemmejjrn = 0,

and similarly ®(ej f; — de, 7,7(f;)) = 0.

With CK2 we have two cases. First, for i < m, ®(v; — eef) =
eii — €iy1€iv1; = 0. And for v, we have ®(v, — >0 fiff) = emm —
> o YimmTi€mm = 0, because of the relation (2) in L(1,n).

This shows that we can factor ® to obtain a K-homomorphism of algebras
O L(E) — M, (L(1,n)).

We see that @ is onto. Consider any matrix unit e;; and z; € L(1,n). If we

take the path p = e;...e,_1ffe;_,...e; € L(E}") then we get

(I)(p) = 6,‘,‘4_1 e en_ln(xkem)e,m_l N ej—l—lj = xkeij.

Similarly ®(e;...e,1frel ;... e;f) = yre;j. In this way we get that all the
generators of M., (L(1,n)) are in Im(®).

Finally, using the same ideas as those presented in (4.3.14) (i), we see that
E™ satisfies the conditions of (4.3.12), which yields the simplicity of L(E!").

This implies that ® is necessarily injective, and therefore an isomorphism. [J
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Notation

N positive integers
7 integers
Q rational numbers
C complex numbers
K|x] algebra of polynomials
K(x) field of fractions of polynomials
Reg(R) set of regular elements
M, (R) matrix ring
= isomorphism
< substructure, submodule
U union
N intersection
C C subset
- proper subset
Endg (V) endomorphisms of a vector space
F(V) finite rank endomorphisms
dim dimension
Soc(Q) socle of a ring
B basis of a vector space
Iy projection
4 < < two-sided, left and right ideals
dgr gr—i gr—r graded two-sided, left and right ideals
€ G < two-sided, left and right essential ideals
Gr gr—t Gy graded two-sided, left and right essential ideals
< qgr_ (graded) dense left ideal

l
Ta(R) T, 4R)

TI(R) Z7(R) family of left (essential) ideals
ar—1(R)

family of (graded) dense left ideals

family of graded left essential ideals
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156 NOTATION

Qinax (R

~—

maximal left quotient ring

ran(X) lan(X) right and left annihilators
ann(X) annihilator
Hom(A, B) set of homomorphisms
E(R) injective hull
J(R) Jacobson radical

product of rings

—
=

@ direct sum
Qs(R) maximal symmetric ring of quotients
® tensor product
(R,S,M,N, ¢,o) Morita context
R-mod category of modules
R-Mod category of nondegenerate unital modules
A division ring
Supp(A) support of a graded algebra
#R cardinal of a set
AlG] group ring
Ly, ring of n-integers
Klz,z™ ! algebra of Laurent polynomials
Ay g-homogeneous component
h(A) set of homogeneous elements
Sgr—a(M) set of gr-dense submodules

HOMA(M,N), gr-homomorphisms of degree o
Ker(f) kernel

AT graded local algebra at an element
R ring modulo an ideal
F(e algebra of dual numbers

characteristic of a field
left singular, right singular and singular ideals

graded left and right singular ideals

Zgr(R graded singular ideal
gr,mm A maximal graded left quotient algebra
lim direct limit
s
(AT A7) associative pair
A°P opposite associative pair
V(A) double associative pair

T(A) polarized associative triple system
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NOTATION 157
A standard envelope
& standard embedding
P Peirce system
id(Ap) < X > ideal generated by a set
d(M width

—~
=
*

— — — ~—

E=(E" E'rs
s(e) r(e

SICTER

5@']’
A(E)
€ij e(ia ])

algebra with involution
directed graph

source and range of an edge
finite line graph

infinite line graph

rose with n leaves graph

set, of paths of length n

set of all paths

Kronecker delta

path algebra

matrix unit

empty set

maximum of a set
minimum of a set

degree of a polynomial
extended graph

Leavitt path algebra
Leavitt algebra

closed (simple) paths based at v
return degree

cycle of length n graph
algebraic Cuntz-Krieger algebra
Cuntz algebra
Cuntz-Krieger algebra
paths ending at v

range index

hereditary saturation

and

identity matrix of size n
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Index

2n+1 grading, 22
3-graded algebra, 69

acyclic graph, 105, 134-137, 141
algebra
of dual numbers, 37
of polynomials, 22, 23, 46, 55, 106
right faithful in, 87
algebraic Cuntz-Krieger algebra, 129
associative
pair, 67-72, 75, 77, 78, 80, 84-90,
93-96, 100
right faithful in, XII, 87-90
triple system, IX-XI, 67-70, 76—
78, 91, 92, 94, 100

bimodule, X, 14, 15, 21, 71

centralizer, 6
classical left quotient ring, IV, 2, 3
closed
path, 111, 112, 114, 145
simple path, 111, 112, 114
common denominator property, 3, 24
complete
family of orthogonal idempotents,
95
systems of submodules, 92
connection of vertices, XV, 120, 145,
146
corner of a ring, V, VI, 1, 8-10, 13,
141
Cuntz-Krieger
relation at a vertex, 107, 123
relations, 107, 135, 148
cycle, XV, 105, 111, 112, 114, 115,
118, 119, 121-124, 127, 128,
130, 132, 134, 137, 140, 145,
146

159

degree
of a graded morphism, 25, 26, 40,
55, 56, 64
of a polynomial, 110, 115
dense left ideal, 4, 6, 8-10, 12, 30, 51,
60-62, 65, 96
directed graph, V, XIV-XVI, 103-
107, 110-115, 118-121, 125,
127-130, 132-134, 137, 139-
141, 145-147
directly infinite module, 141-143
double associative pair, 68

edge, 103-106, 112-115, 120, 122, 123,
127, 128, 136-138, 140
emitted by a vertex, 103, 123, 135
matrix, 129-132
pointing to a vertex, 103, 125
element of degree d, 111
element representable as an element
of degree d in
ghost edges, 111
real edges, 111, 121, 122, 137-139
exit, XV, 113-119, 121-124, 127, 128,

137, 140, 145
extended
finite line, 106
graph, 106
field
of fractions, III, IV, VIII, 1, 2, 5,
55
of rational functions, 1
finite

grading, XII, 22, 99

graph, XIV, XVI, 104, 129, 130,
133

line, 103, 104, 106, 110, 146



MENU SALIR

160

INDEX

Fountain-Gould left order, 38

full
idempotent, VI, 12-14, 17, 18, 84
subcategory, 16

general left quotient ring, see left quo-
tient ring
ghost
edge, 106
path, 111, 119
gr-max-closed, XVI
graded
algebra, VII-XIII, 1, 6, 21-27, 29,
30, 32-40, 44, 46-48, 50-53,
57, 58, 62, 70, 72, 75, 87, 90,
92, 93, 95, 96, 99-101, 109
common denominator property,
24
dense
left ideal, VII, VIII, 30, 31, 51,
53, 54, 59, 60, 63, 65
submodule, 24
envelope, X, 72-75, 94
homomorphism, see graded mor-

phism
isomorphism, 33, 34, 53, 55, 58,
73
left
dense ideal, see graded dense
left ideal

essential ideal, 38, 76
ideal, VII, 21, 23, 27, 30, 31, 35,
38, 42, 43, 45, 47, 49, 50, 54,
58, 59, 62, 63
noetherian, 21
nonsingular algebra, XIII, 44,
45, 50, 83, 99, 100
nonsingular module, 44
quotient algebra, VII, VIII, X,
X1, 26, 28-31, 34, 44, 51-55,
57, 58, 60-62, 76, 79, 90, 91
singular algebra, 44
singular ideal, VIII, 43—46
singular module, 44
local algebra at an element, 33
module, 23, 44, 76

morphism, VIII, 25, 40, 42, 53,
59, 64, 91
prime algebra, 36, 37, 45
right
ideal, 23, 35
singular ideal, 43
semiprime algebra, 36
singular ideal, 43, 48, 76
subalgebra, VII, 26, 28—-31, 34, 45,
46, 53, 57, 62, 89, 96-99
submodule, 23-26, 76
von Neumann regular, XIII, 50,
99, 100
grading, 22
of a algebra, 92
induced by an idempotent, 95
graph, see directed graph
algebra, see Leavitt path algebra
group algebra, 22

hereditary
saturation, 139
subset, XV, 120, 121, 124, 125,
127, 128, 139, 145
homogeneous
component, 23, 26, 28, 32, 3740,
50, 64
element, 23, 27, 32-34, 42, 43, 50,
81
total right zero divisor, VIII, 27,
38, 57, 60, 63
homotope product, 32

ideal of an associative pair, 69
idempotent ring, 16, 20
independent family of submodules,
94, 97
induced pregrading, 92, 94
infinite
idempotent, 132, 141, 143
line on the right, 104
injective hull, 6
integers, 1
integral domain, ITI, VIII, 1, 2, 5, 55
isomorphism of envelopes, 72
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161

Laurent polynomial algebra, V, VIII,
XIII, XIV, 22, 110, 127
Leavitt
algebra, XIV, 110, 127, 146
path algebra, V, XIII, XV, XVI,
23, 103, 105, 106, 111, 121,
127,129, 132, 137, 147
left
annihilator, 9
of a triple system, 78
of an associative pair, 77
faithful
algebra, 82, 83, 87, 88
associative pair, X, 88
ring, 4, 12, 13
ideal of an associative pair, 68, 69
multiplication, 68
nonsingular
algebra, X1, XIII, 77, 79, 87, 88,
99, 100
associative pair, X, 90, 100
module, 44
ring, IV, 8
superalgebra, XI, 79, 82
triple, XI, 79, 82, 100
order, 2
quotient
algebra, VII, VIII, XI, 26, 28,
29, 55, 57, 59, 62, 80, 85
pair, XII, 80, 84, 89
ring, III, V, 2-5, 7, 10, 11, 13,
17, 80
superalgebra, XI, 76, 90
triple system, XI, 80-83, 91, 92
singular
ideal of a triple system, 78
ideal of an associative pair, 78

supernonsingular superalge-
bra, see left nonsingular
superalgebra

supersingular

ideal, XI, 76

superalgebra, 76
length of a path, 104, 105, 111
local algebra at an element, VIII, 31

locally matricial, 134, 137, 141

M-graded Lie algebra, 101
matrix
algebra, XIII, 22, 127
ring, XIV, 5, 8, 128, 134
max-closed, XVI
maximal
graded left quotient algebra, V,
VIII, X, 54, 57, 96
left
quotient algebra, V, VIII, XI,
XIII, 52, 53, 55, 86
quotient pair, V, XI, XII, 89
quotient ring, ITI-VII, X, 4-8,
13, 14, 19
quotient triple, V, 92
middle multiplication, 68
Morita
context, 14-18, 22, 71
equivalent
categories, 15
idempotent rings, 16, 19, 144
rings, VI, 15, 17, 18, 143
ring, VI, 15, 19

neutral element of the group, 23

nondegenerate module, 16

nontrivial grading, VIII, XII, XIII, 92,
94-96, 101, 102

opposite associative pair, 68
orthogonal
idempotents, XII, 18, 19, 95, 97—
99
system of submodules, 92-94, 99

path, 104, 105, 111-117, 120, 124, 133,
134, 140, 145, 148
algebra, XV, 103, 105, 106, 108
Peirce system, 92, 94, 97
polarized associative triple system, 68
polynomial in only
ghost edges, 111, 118, 119, 121,
122
real edges, 111, 115-119, 121, 122
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INDEX

pregrading induced by system of
idempotents, 94, 95, 97-99,

109
prime algebra, 36

pseudo uniform element, 48, 49
purely infinite ring, V, XV, 132, 141-

147

range
of a path, 104

of an edge, 103, 105, 120, 125
rational numbers, 1
real path, 111, 119
regular element, III, 2
return degree at a vertex, 113, 116—

118
right

annihilator, 9, 54

faithful

algebra, 50, 60, 70, 77, 93, 94,
96, 97, 99, 100

associative pair, X, XI, 69, 72,
75, 77, 78, 80, 85, 88, 89

ring, 4, 6, 7, 12

superalgebra, IX, XI, 60, 61, 64,

69, 77-83

triple system, 69, 70, 79, 91, 94
ideal of an associative pair, 69
multiplication, 68
quotient ring, 2
supersingular ideal, 76
ring with local units, 108, 121, 134,

142, 144

rose with n leaves, 104, 106, 110, 146
row-finite graph, see directed graph,

104

saturated subset, XV, 120, 121, 124,
126, 127, 139, 145

second centralizer, 6

semiprime algebra, 36

set of matrix units, 133

single loop, 104, 106, 110

sink vertex, XIV, 104, 107, 120-122,
126, 130, 133-136, 138

source

of an edge, 103
of a path, 104, 105
of an edge, 105, 123
vertex, XIV, 104, 130
standard
embedding, XII, 71, 84, 85, 89, 96
envelope, X, XI, 70-75, 84-87,
89-91, 93-96, 100
strongly graded algebra, 21, 22, 57, 84
subpair, X, 70-72, 75, 80, 84, 87
superalgebra, 22
right faithful in, 80, 82
weak right faithful in, 80, 81
supersingular ideal, 76
support, 22
surjective Morita context, VI, X, 15,
16, 19, 20

tight envelope, XI, 72, 75
total
left zero divisor, VI, VIII, 4, 63,
90
right
zero divisor of a ring, III, VI,
VII, 4, 5, 17, 18, 27, 51-53,
55, 59-61, 63-65, 69, 75, 81,
85, 86, 88, 96
zero divisor of a triple system,
69, 83
zero divisor of an associative
pair, 69, 70
triple system right faithful in, 87, 92
trivial grading, 21, 23, 26, 30, 43, 44,
54, 55, 57
two-sided
graded ideal, 23, 32, 40-42, 46, 55
ideal of an associative pair, 69

unital
associative pair, 84
module, 16
unitization, 19
Utumi left quotient ring, 4, see left
quotient ring

vertex, 103-105, 112, 114, 119, 120,
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126, 128, 132, 137, 140, 145,
146
receiving an edge, 103, 104
von Neumann regular ring, IV, XIII,
8, 50, 89, 100

weak
graded left quotient algebra, VII,
26, 29
left
quotient algebra, VII, 26, 28,
29, 77
quotient superalgebra, 76, 77
right faithful
algebra, XI
superalgebra, XI
width, 101

Zo-graded algebra, see superalgebra
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