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Una ráfaga de aire frío
un molino de viento hace girar,
va rodando sobre su eje
describiendo una trayectoria más.
Espacio y tiempo jugando ajedrez,
somos la incógnita de una triste ecuación
que el sistema desea resolver,
aun sabiendo que no hay solución.
Somos coordenadas de una recta común,
que en el infinito se ha de cortar;
la raíz cuadrada que no existe aún
o un punto de corte sin solucionar.
Somos la suma de ángulos del destino,
una fórmula más por aprender,
la combinatoria de un problema complicado,
sumando la tangente y el coseno a la vez.
Matriz, vector o derivada
nada que se pueda calcular,
porque nuestras vidas son la incógnita
que aún falta por despejar.
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Introduction

In the 1930s and 1940s the works of Ø. Ore and K. Asano already mentioned

systems of quotients in rings, but it was not until the end of the 1950s that

the subject really developed with the contributions of many authors (R. E.

Johnson, Y. Utumi, A. W. Goldie and J. Lambek among others).

The classical notion of ring of quotients of a given ring R corresponds to a

ring Q containing R in such a way that the regular elements of R (which may

not be invertible in R) have an inverse in Q. In fact, one of the first things

that one comes up with when starts to study Algebra is an example of this

situation, namely, the field of fractions of an integral domain.

Of course, trying to find a ring of quotients of a given ring is no easy task.

This motivated Ø. Ore to give a condition for a ring of quotients to exist,

nowadays known as the left Ore condition: For every a ∈ Reg(R) and b ∈ R
there exist c ∈ Reg(R) and d ∈ R such that cb = da. The reader can see in

[44, §9] an example provided by Mal’cev of a ring R which does not have any

ring of quotients even though R has very nice properties like being a domain.

The next step was done by Utumi in 1956. He gave a more general notion

of left quotient ring, in [73], that would generalize the rest of the quotient

rings: An overring Q of a ring R is said to be a (general) left quotient ring

of R if given p, q ∈ Q, with p 6= 0, there exists a ∈ R satisfying ap 6= 0 and

aq ∈ R.

In his paper, Utumi proved that there exists a maximal left quotient ring

for every ring without total right zero divisors (for example for semiprime

or unital rings), called the Utumi left quotient ring of R and denoted by

Ql
max(R). Since the notion of (general) left quotient ring includes all the
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IV INTRODUCTION

others (fields of fractions, classical left quotient rings, etc), the maximal left

quotient ring Ql
max(R) is the biggest ring of quotients we can consider.

Our work is framed in the area of Algebra, and specifically in the theory

of associative systems, i.e., algebras, pairs and triples. Neither commutativity

nor the existence of a unit are required.

The main part of the thesis can be regarded as a development of the

theory of systems of quotients of these algebraic objects, so that one of the

aims is to construct systems of quotients in several settings where the lack

of them is evident, and thus (in addition to the clear interest that having

suitable notions of quotients in new settings has by itself) as a consequence,

to be able to obtain new breakthroughs in the knowledge of the structure of

certain systems via this theory of quotients.

The latter scheme has been extensively used in the past by a large number

of authors. For instance, the pioneering work of R. E. Johnson on nonsingular

rings [39] is a classic example of this situation, where a characterization of

these type of rings is given in terms of ring-theoretic properties of their maxi-

mal rings of quotients. Concretely, Johnson’s Theorem characterizes those

rings R for which Ql
max(R) is von Neumann regular [44, (13.36)].

Gabriel’s Theorem [44, (13.40)] goes a step further by showing that the

rings R for which Ql
max(R) is semisimple (a finite direct product of matrices

over division rings) are precisely the left nonsingular rings with finite left

uniform dimension.

Also, this notion of maximal left quotient ring has been proved to be very

useful in the study of Fountain-Gould orders in rings not necessarily unital

(see [30] and the related references therein).

In addition, another obvious use of the maximal ring of left quotients is

that it provides an appropriate framework where to settle different rings of

quotients such as the classical one, the Martindale symmetric ring of quotients

(introduced by Martindale for prime rings and by Amitsur for semiprime

rings -see [16]- and extended to general rings by McCrimmon in [55]), or the

maximal symmetric (discovered by Schelter -see [68]-).
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Hence, as new constructions we achieve a satisfactory maximal graded left

quotient algebra as well as notions of maximal left quotient associative pair (in

a more general situation than the previously considered by M. Gómez Lozano

and M. Siles Molina in [29]) and of maximal left quotient triple system.

Among the applications of the maximal left quotient systems, we show

some Morita-invariance results (by means of corners of rings) and a Johnson-

like theorem for a certain type of Z-algebras.

During the author’s stay in the University of Colorado, G. Abrams brought

to his attention the Leavitt path algebras of graphs. These algebras include

some of those which had been appearing in our previous dissertations. In

particular they include the Laurent polynomial algebra K[x, x−1], which is

(in our understanding) the simplest example where the notions of maximal

graded left quotient algebra and maximal left quotient algebra (without grad-

ing) differ.

Thus, the last chapter of this thesis is devoted to these algebras. Our

task consists in finding necessary and sufficient graph-theoretic conditions on

a graph such that the Leavitt path algebras associated to it have a certain

ring-theoretic property. Concretely, we manage to do so with the simplicity

and the purely infinite simplicity.

Once we have a better understanding of the structure of these algebras,

we are hopeful that these recently obtained results could help us to somehow

unravel the behaviour of their maximal graded left quotient algebras. That

would enable us to include some of our maximal graded left quotient algebras

results in more general ones.

We describe now in more detail the contents of the chapters and their

sections.

In chapter 1, we begin by recalling the notion of (general) left quotient ring

and its associated maximal left quotient ring Ql
max(R), introduced by Utumi

in [73], which is, as we have already mentioned, a widely present notion in

the mathematical literature (see [16], [44], [45] and [72], for example).

It is natural to ask if given an idempotent e in a ring R without total



VI INTRODUCTION

right zero divisors, the maximal left quotient ring of a corner (Ql
max(eRe))

and the corner of the maximal left quotient ring (eQl
max(R)e) are isomorphic.

We prove in the first section that this is true for every full idempotent e of

a ring R without total left zero divisors and without total right zero divisors

(this fails in general, as it is shown in (1.2.9)). In fact, we prove a more general

result:

Theorem 1.2.6. Let R be a ring and Q := Ql
max(R). Then, for every idem-

potent e ∈ Q such that eR+Re ⊆ R and lanR(Re) = ranR(eR) = 0 we have:

Ql
max(eRe)

∼= eQl
max(R)e.

No less natural is to wonder if a similar commutativity result between

matrices and maximal left quotient rings also holds as it does in the unital

case. That is indeed the case.

Proposition 1.3.6. For a ring R without total right zero divisors we have:

Ql
max(Mn(R)) ∼= Mn(Ql

max(R)).

The previous results can be applied to Morita-invariance theory. It is well-

known that if R and S are two unital Morita equivalent rings, then Ql
max(R)

and Ql
max(S) are Morita equivalent too. This contrasts heavily with the unital

case: It is shown in (1.3.8) that there exist rings which are Morita equivalent to

division rings but do not satisfy this property. However in section 2 we obtain,

among other things, that if R and S are two Morita equivalent idempotent

rings, then the ideals they generate inside their own maximal left quotient

rings are Morita equivalent:

Theorem 1.3.10. Let R and S be two Morita equivalent idempotent rings,

A =

(
R M
N S

)
the Morita ring of a surjective Morita context and denote

Q1 := Ql
max(R), Q2 := Ql

max(S). Then Q1RQ1 and Q2SQ2 are Morita equiva-

lent idempotent rings.

The reader may find a classification of properties regarding whether or

not they are (or under which circumstances) Morita-invariant in [10]. In this
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chapter we have followed the ideas and results shown in the work of M. Gómez

Lozano, M. Siles Molina and the author, [11].

Although the theory of maximal left quotient rings has been widely studied

in the non graded case, it has not been so deeply investigated in the context

of graded algebras. Several authors though, have considered torsion theories

for graded rings with unit (see for example the works of O. Goldman [27], C.

Nǎstǎsescu and F. van Oystaeyen [56]). Concretely, in 1978 van Oystaeyen

studied in [59] graded rings and modules of quotients from a categorical point

of view by considering unital rings.

Our aim is to study left quotient algebras for (not necessarily unital) al-

gebras without total right zero divisors. To do so, we follow here a different

approach to the categorical one just mentioned, mainly to avoid several tech-

nical difficulties which arise when considering categories of modules over an

arbitrary ring (perhaps not even idempotent).

So, in chapter 2, after some definitions and preliminary results in the

first section, we devote the second one to the notions of graded left quotient

algebra and weak graded left quotient algebra. While every (weak) graded

left quotient algebra is a (weak) left quotient algebra, the converse fails since

not every (weak) left quotient algebra of a graded algebra can be graded in

order to be a graded overalgebra.

Being a graded left quotient algebra can be characterized by using absorp-

tion by graded dense left ideals.

Proposition 2.2.18. Let A be a gr-subalgebra of a gr-algebra B = ⊕σ∈GBσ.

The following statements are equivalent.

(i) B is a gr-left quotient algebra of A.

(ii) For every nonzero q ∈ B there exists a gr-dense left ideal I of A such

that 0 6= Iq ⊆ A.

(iii) For every nonzero qσ ∈ Bσ there exists a gr-left ideal I of A with

ranA(I) = {a ∈ A : Ia = 0} = 0 such that 0 6= Iqσ ⊆ A.

We close the section by exploring the behaviour of gr-left quotient algebras
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when local algebras at elements are involved, and obtain the graded analogue

to a known result which relates left quotient algebras with local algebras at

elements.

The study of the gr-left singular ideal is done in the third section. This has

been shown to be a powerful tool when studying maximal rings of quotients

(see for example the works of A. Fernández López, E. Garćıa Rus, M. Gómez

Lozano and M. Siles Molina in [22], the third and fourth authors in [29] and

the third author in [28]).

In the fourth section we follow the idea of Y. Utumi in [73] (the same

as that of F. van Oystaeyen in [59]) in order to construct a maximal graded

left quotient algebra of a given G-graded algebra without homogeneous total

right zero divisors, and obtain it as a direct limit of graded homomorphisms

of left modules from graded dense left ideals into the algebra.

The graded maximal left quotient algebra is a subalgebra of the maxi-

mal left quotient algebra, and they do not coincide necessarily. For instance,

when we consider the algebra of polynomials K[x] then, since it is an inte-

gral domain, it is well-known that Ql
max(K[x]) = K(x), its field of fractions.

Nevertheless, it is known that a division ring cannot be Z-graded (with a non-

trivial grading), so that Ql
max(K[x]) could never be the maximal graded left

quotient algebra ofK[x]. In fact, one obtains that Ql
gr−max(K[x]) = K[x, x−1],

the algebra of Laurent polynomials.

For a graded algebra A, and a graded left quotient algebra B of A, the

maximal graded left quotient algebra of A can be also obtained as the direct

limit of graded homomorphisms (of left A-modules) from graded dense left

ideals of A into B.

In the last section we study when, for a superalgebra A, the 0-component

of its graded maximal left quotient algebra, (Ql
gr−max(A))0, coincides with

the maximal left quotient algebra of the 0-component of A, Ql
max(A0). This

result is false in general. If A0 = A1A1, a monomorphism from (Ql
gr−max(A))0

into Ql
max(A0) is guaranteed. If, moreover, A has no homogeneous total left

zero divisors, then they do coincide:
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Proposition 2.5.8. Let A be a left and right faithful superalgebra (equiva-

lently, right faithful and with lanA0(A1) = 0) such that A0 = A1A1. Then(
Ql

gr−max(A)
)
0
∼= Ql

max(A0)

under an isomorphism which fixes the elements of A0, viewing A0 inside

Ql
gr−max(A).

The majority of the results of this chapter belong to [13].

In the associative context, not only rings (or algebras) can be considered.

The study of systems of quotients in structures such as associative pairs or

associative triple systems (without letting aside the inherent interest it has)

could be crucial in order to shed some light on the structure theory of Jordan

systems (algebras, pairs or triples) and of Lie algebras, via the theory of quo-

tients. This approach is having a great development (see the works [53], [69],

[24], [5], [60] on the theory of quotients of Jordan systems and Lie algebras).

Associative pairs play a fundamental role in the new approach (see [21])

to Zelmanov’s classification of strongly prime Jordan pairs, and have been

already used by O. Loos in the classification of the nondegenerate Jordan

pairs of finite capacity [50].

In contrast with the classical binary operations (in groups, rings, algebras,

vector spaces, modules, etc), both associative pairs and triple systems are

(associative) ternary systems, that is: we can only multiply three elements at

a time. For example, if we pick a, c ∈Mm×n(K), then we cannot perform the

usual product of matrices ac (for m 6= n), although we have abc ∈Mm×n(K),

for b ∈ Mn×m(K). Thus, (Mm×n(K),Mn×m(K)) is an example of associative

pair while Mm×n(K) has not a clear binary product. In the same fashion

Mm×n(K) is a triple system with the triple product (a, b, c) 7→ abtc.

Graded algebras (superalgebras and 3-graded algebras) are related to asso-

ciative pairs and triple systems. Concretely, if A = A0⊕A1 is a superalgebra

then A1 can be seen as a triple system, while if B = B−1 ⊕ B0 ⊕ B1 is a

3-graded algebra, then (B−1,B1) has a structure of associative pair. And con-

versely, every associative pair A = (A+, A−) (or triple system T ) can be
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embedded in an algebra E with an idempotent e such that (A+, A−) ((T, T )

in the triple system case) can be identified with (eE(1− e), (1− e)Ee).
This algebra E has a supergrading E = E0 ⊕ E1, where

E0 = eEe⊕ (1− e)E(1− e), E1 = eE(1− e)⊕ (1− e)Ee,

and a 3-grading E = E−1 ⊕ E0 ⊕ E1, for

E−1 = (1− e)Ee, E0 = eEe⊕ (1− e)E(1− e) and E1 = eE(1− e).

So that it seems to be quite natural to relate the study of graded left quotient

algebras of a graded algebra (in chapter 2 a construction of the maximal

graded left quotient algebra of a not necessarily unital gr-algebra is already

accomplished) to that of left quotient systems of an associative triple system

or pair.

On the other hand, in some cases (for example, when E is simple) every

standard envelope gives rise to a surjective Morita context for not necessarily

unital rings, and conversely, every pair of bimodules of a Morita context has

a natural structure of associative pair. Hence, in particular, all this can be

considered as an approach to the study of maximal rings of quotients of

Morita contexts for not necessarily unital rings, and thus as an extension to

the theory developed in chapter 1.

In chapter 3 we give a pair and triple system version of the maximal left

quotient ring. A first attempt was made in [29], where the authors found

the maximal left quotient pair of a right faithful associative pair in the left

faithful or left nonsingular cases.

This chapter is divided into seven sections. After a preparatory section

where the study of right faithfulness -begun in chapter 2- is completed for

this setting, we introduce in section 1 the notion of subpair of a 3-graded

algebra. Proposition (3.2.3) provides a useful tool to compute the standard

envelope of any right faithful associative pair by yielding the following

Corollary 3.2.4. Let A be a right faithful associative pair, and (A, ϕ) be a

gr-envelope of A. Then the following are equivalent:
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(i) (A, ϕ) is tight on A,

(ii) A is right faithful,

(iii) (A, ϕ) is isomorphic to the standard envelope of A.

In section 2 we study the left supersingular ideal of a not necessarily unital

superalgebra A = A0 ⊕ A1 and relate it to the singular ideals of A0 (as an

algebra) and of A1 (as an associative triple system). We show that in the

particular case of our interest, these notions are closely linked.

Corollary 3.3.8. For a right faithful superalgebra A with A0 = A1A1 the

following conditions are equivalent:

(i) A is left supernonsingular (as a superalgebra).

(ii) A0 is left nonsingular (as an algebra).

(iii) A1 is left nonsingular (as a triple).

In the following section we introduce the notions of (weak) right faith-

ful superalgebra in an oversuperalgebra and relate left quotient algebras,

left quotient triple systems and left quotient superalgebras: Suppose that

A = A0 ⊕ A1, with A0 = A1A1, is a weak right faithful superalgebra in an

oversuperalgebra B. Then B is a gr-left quotient algebra of A if and only if

B1 is a left quotient triple system of A1 and B0 is a left quotient algebra of

A0.

Weak right faithfulness is just the condition needed to have a result al-

lowing to go back and forth between left quotient algebras and left quotient

systems to left quotient superalgebras. Examples of right faithful subsuper-

algebras in overalgebras are every left quotient algebra of a faithful, or left

nonsingular superalgebra.

As a consequence of the previous results, in section 5 we construct the

maximal left quotient pair of a right faithful associative pair. This maximal

left quotient pair is given in terms of the maximal left quotient algebra of its

envelope, which coincides with the graded maximal left quotient algebra of

this envelope, considered as a 3-graded algebra, or as a superalgebra.
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Theorem 3.5.10 and Definition 3.5.11. Let B be a left quotient pair of an

associative pair A such that A is right faithful in B, and denote by A, (EA, e)
and B, (EB, e) the standard envelopes and standard embeddings of A and B,

respectively. Then:

(i) Q := Ql
gr−max(A) = Ql

max(A) = Ql
max(B) = Ql

gr−max(B).

(ii) Q := (eQ(1− e), (1− e)Qe) is a left quotient pair of A.

(iii) Q is the maximal left quotient pair among all left quotient pairs in

which A is right faithful.

We show that this construction cannot be improved. In section 6 we pro-

ceed analogously in the triple system case.

This chapter is closed with some applications of the previous results to

the context of finite Z-graded simple associative algebras obtaining, among

other things, a Johnson-like theorem for these type of algebras.

A theorem by Zelmanov ([74], see Theorem 4.1) classifies the simple M -

graded Lie algebras over a field whose characteristic is either zero or else large

enough. Smirnov shows in [71, Theorem 5.4] that a Lie algebra satisfying the

conditions in Zelmanov’s Theorem has a nontrivial 5-grading. This result is

obtained as a consequence of the description of finite Z-gradings of simple

associative algebras.

In Smirnov’s paper [71], the author shows that if a graded associative

simple algebra A = ⊕n
k=−nAk is unital, any such grading arises from a Peirce

decomposition of the algebra with respect to a complete system of orthogonal

idempotents {e0, e1, . . . , en} in such a way that Ak =
∑n

i−j=k eiAej for k ∈
{−n, . . . , n}.

On the one hand, it is proved that for a graded algebra A = ⊕n
k=−nAk

a 3-grading can be given in some of the cases in Zelmanov’s Theorem. This

3-grading comes from a Peirce decomposition of A relative to an idempotent

e lying in an overalgebra E containing A as a dense left and right ideal.

On the other hand it is shown that, as a consequence of a more general

result, when A is simple (unital or not) every finite Z-grading is induced

by a complete system of orthogonal idempotents {e0, e1, . . . , en} lying in the
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maximal left quotient algebra Q of A. That is, Ak =
∑n

i−j=k eiAej and Q =

⊕n
k=−nQk, where Qk =

∑n
i−j=k eiQej (hence Q is just the graded maximal left

quotient algebra of A).

These results are used to obtain the following Johnson-like theorem.

Theorem 3.7.10. Let A = ⊕n
k=−nAk be a graded algebra such that A =

id(A−n) and A = A0AA0. Then the following conditions are equivalent:

(i) A is graded left nonsingular.

(ii) A is left nonsingular.

(iii) Ql
gr−max(A) exists and it is graded von Neumann regular.

(iv) Ql
max(A) exists and it is von Neumann regular.

If these conditions are satisfied, then Ql
max(A) = Ql

gr−max(A).

Finally, as another application, we prove the following result: Let L be a

Lie algebra satisfying the hypotheses of Zelmanov’s Theorem. Then L has a

nontrivial 3-grading if: (i) L has the form [A(−), A(−)]/Z, where A =
∑

λ∈ΛAλ

is a simple associative M -graded algebra and Z is the center of [A(−), A(−)],

(ii) L is the Tits-Kantor-Koecher construction of the Jordan algebra of a

symmetric bilinear form, or (iii) L is an algebra of the type G2, F4, or E8.

In the remaining cases, i.e., for [K(A, ∗), K(A, ∗)]/Z, where A =
∑

λ∈ΛAλ

is a simple associative M -graded algebra with involution ∗ : A→ A, A∗α = Aα

and Z is the center of [K(A, ∗), K(A, ∗)], it is not always possible to find 3-

gradings, and for L an algebra of one of the types E6, E7 or D4, 3-gradings

are not possible.

The original results of this chapter have been taken mostly from [12], while

the last section of applications is part of [70].

Finally, this thesis is completed with the study, in chapter 4, of Leavitt

path algebras. These algebras can be viewed as a family which includes some

of the previously considered algebras of Laurent polynomials K[x, x−1] and

matrix algebras Mn(K).

Leavitt path algebras have their origins in Leavitt’s seminal paper [48],

where he describes a class of K-algebras (nowadays denoted by L(m,n))
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which are universal with respect to an isomorphism property between finite

rank free modules (K denotes an arbitrary field).

In [49], Leavitt goes on to show that the algebras of the form L(1, n) are

simple. More than a decade later, Cuntz [19] constructed and investigated the

C*-algebras On (nowadays called the Cuntz algebras), showing, among other

things, that each On is (algebraically) simple.

When K is the field C of complex numbers, then On can be viewed as the

completion, in an appropriate norm, of L(1, n). Soon after the appearance of

[19], Cuntz and Krieger [20] described the significantly more general notion

of the C*-algebra of a (finite) matrix A, denoted OA.

Among this class of C*-algebras one can find, for any finite graph E, the

Cuntz-Krieger algebra C∗(E), defined originally in [40]. These C*-algebras,

as well as those arising from various infinite graphs, have been the subject of

much investigation (see e.g. [64], [65], and [15]).

Recently, the ‘algebraic analogs’ of the C*-algebras OA have been pre-

sented in [7]; these are denoted by CKA(K). By restricting attention to a

specific set of allowable matrices, the simplicity of the algebra CKA(K) for

some subset of these allowable matrices has been determined (although the

condition for simplicity is not explicitly given in terms of the matrix A).

When E is finite without sources and sinks, then L(E) can be realized as

an algebra of the form CKA(K) for some matrix A. Moreover, the classical

Leavitt algebras L(1, n) (as well as matrix rings Mn(K) and Laurent poly-

nomial algebras K[x, x−1], as noted before) appear as algebras of the form

L(E) for various graphs E. Furthermore, the class of algebras of the form

L(E) significantly broadens the collection of algebras studied by Leavitt in

his aforementioned seminal papers.

Analogously to the relationship that exists between L(1, n) and On, L(E)

has the property that when K = C, then C∗(E) can be viewed as the com-

pletion, in an appropriate norm, of L(E) [64, Proposition 1.20].

After some preparatory notions and results in the first sections, we study

in section 3 the property of being simple and thus in the main result of that
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section, (4.3.12), we finally achieve to give necessary and sufficient conditions

on the row-finite graph E which imply that L(E) is simple. Concretely we

prove the following:

Theorem 4.3.12. Let E be a row-finite graph. Then the Leavitt path algebra

L(E) is simple if and only if E satisfies the following conditions.

(i) The only hereditary and saturated subsets of E0 are ∅ and E0, and

(ii) Every cycle in E has an exit.

This parallels a similar theorem for C*-algebras of the form C∗(E) given in

[64, Theorem 4.9 and subsequent remarks]. However, the techniques utilized

here are significantly different than those used in the analytic setting.

These results extend those presented in [7], in that: They apply also to

some important algebras which are not explicitly considered in [7]; they apply

also to algebras which arise from infinite matrices; and they provide necessary

conditions on E for the simplicity of L(E).

Also, in section 4 we follow the same philosophy for the notion of being

purely infinite simple, and after some partial results we get the following

graph-theoretic characterization:

Theorem 4.4.15. Let E be a row-finite graph. Then L(E) is purely infinite

simple if and only if E has the following properties.

(i) The only hereditary and saturated subsets of E0 are ∅ and E0.

(ii) Every cycle in E has an exit.

(iii) Every vertex connects to a cycle.

Several authors (P. Ara and E. Ortega among them) are currently work-

ing on computing the maximal left quotient algebra for these Leavitt path

algebras (as well as for path algebras), whereas our aim will be to try to

work out the corresponding graded maximal structure in the near future. For

instance, in chapter 2 it is shown that Ql
gr−max(K[x]) = K[x, x−1] and as a

consequence

Ql
gr−max(K[x, x−1]) = K[x, x−1].
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Also, it is well-known that Ql
max(Mn(K)) = Mn(K) and analogously

Ql
gr−max(Mn(K)) = Mn(K).

In other words, both K[x, x−1] and Mn(K) are gr-max-closed. We observe

that, however, although Mn(K) is also max-closed, K[x, x−1] is not (in fact

Ql
max(K[x, x−1]) = K(x)). Thus, the fact that every L(E), for a finite graph

E, is max-closed vanishes, but the question that naturally arises now is: Are

all the finite Leavitt path algebras L(E) gr-max-closed?

We think that the results of this chapter (and hopefully some more we

could achieve) might assist us in a possible answer to it.

In this chapter we have followed closely (sometimes with more detailed

proofs and showing further examples) the presentations and original results

contained in the works [1] and [2] by G. Abrams and the author.
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Spanish abstract

En los años 30 y 40 los trabajos de Ø. Ore y K. Asano ya mencionaban

sistemas de cocientes en anillos, pero no fue hasta el final de los 50 cuando

la investigación se desarrolló con las contribuciones de muchos autores (R. E.

Johnson, Y. Utumi, A. W. Goldie y J. Lambek entre ellos).

La noción clásica de anillo de cocientes de un anillo dado R corresponde a

otro anilloQ conteniendo a R de tal forma que los elementos de R (que pueden

no ser inversibles en R) tengan un inverso en Q. De hecho, una de las primeras

cosas con las que uno se encuentra cuando comienza a estudiar Álgebra es

un ejemplo de dicha situación, concretamente, el cuerpo de fracciones de un

dominio de integridad.

Desde luego, intentar encontrar un anillo de cocientes de un anillo dado

no es en general tarea sencilla. Esto motivó a Ø. Ore a dar una condición para

la existencia de un anillo de cocientes, hoy en d́ıa conocida como condición

de Ore por la izquierda: Para cualesquiera a ∈ Reg(R) y b ∈ R existen c ∈
Reg(R) y d ∈ R tales que cb = da. El lector puede ver en [44, §9] un ejemplo

dado por Mal’cev de un anillo R que no tiene ningún anillo de cocientes a

pesar de que R tiene muy buenas propiedades como ser un dominio.

El siguiente paso fue dado por Utumi en 1956. Él dio una noción más

general de anillo de cocientes por la izquierda, en [73], que generalizaŕıa al

resto de anillos de cocientes: Un anillo Q conteniendo a un anillo R se dice

que es un anillo (general) de cocientes por la izquierda de R si dados p, q ∈ Q,

con p 6= 0, existe a ∈ R satisfaciendo ap 6= 0 y aq ∈ R.

En su art́ıculo, Utumi probó que existe un anillo maximal de cocientes

XVII
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por la izquierda para todo anillo que no tenga divisores totales de cero por la

derecha (por ejemplo para anillos semiprimos o unitarios), llamado el anillo

de cocientes de Utumi por la izquierda de R y denotado por Ql
max(R). Como

la noción de anillo (general) de cocientes por la izquierda incluye todas las

demás (cuerpos de fracciones, anillos clásicos de cocientes por la izquierda,

etc), el anillo maximal de cocientes por la izquierda Ql
max(R) es el anillo más

grande de cocientes que podemos considerar.

Nuestro trabajo se enmarca en el área de Álgebra, y espećıficamente en

la teoŕıa de sistemas asociativos, esto es, álgebras, pares y triples. No se

requieren ni la conmutatividad ni la existencia de un elemento identidad.

La mayor parte de esta tesis puede entenderse como un desarrollo de la

teoŕıa de sistemas de cocientes de estos tipos de objetos algebraicos, aśı que

uno de los objetivos es construir sistemas de cocientes en varios contextos

donde la ausencia de ellos era evidente, y aśı (además del claro interés que

contar con adecuadas nociones de estructuras de cocientes en nuevas situa-

ciones tiene por śı mismo) como consecuencia, ser capaces de obtener nuevos

avances en el conocimiento de ciertos sistemas mediante esta teoŕıa de co-

cientes.

El anterior esquema ha sido ampliamente estudiado en el pasado por un

gran número de autores. Por ejemplo, el trabajo pionero de R. E. Johnson en

anillos no singulares [39] es un clásico ejemplo de esta situación, donde una

caracterización de este tipo de anillos es dada en términos de propiedades

teóricas de sus anillos maximales de cocientes. Concretamente, el Teorema de

Johnson caracteriza aquellos anillos R para los que Ql
max(R) es regular von

Neumann [44, (13.36)].

El Teorema de Gabriel [44, (13.40)] va un paso más allá mostrando que

los anillos R tales que Ql
max(R) son semisimples (un producto directo finito

de anillos de matrices sobre anillos de división) son precisamente los anillos

no singulares por la izquierda con dimensión uniforme por la izquierda finita.

Asimismo, esta noción de anillo maximal de cocientes por la izquierda

ha demostrado ser muy útil en el estudio de órdenes Fountain-Gould en ani-
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llos no necesariamente unitarios (véase [30] y las referencias relacionadas ah́ı

contenidas).

Es más, otro uso obvio del anillo maximal de cocientes por la izquierda

es que éste proporciona un marco apropiado donde viven diferentes anillos

de cocientes como el clásico, el anillo de cocientes simétrico de Martindale

(introducido por Martindale para anillos primos y por Amitsur para anillos

semiprimos -ver [16]- y extendido a anillos generales por McCrimmon en [55]),

o el maximal simétrico (descubierto por Schelter -ver [68]-).

Aśı, como nuevas construcciones logramos una satisfactoria álgebra de

cocientes por la izquierda graduada maximal junto con nociones de par aso-

ciativo de cocientes por la izquierda maximal (en una situación más general

que la previamente considerada por M. Gómez Lozano y M. Siles Molina en

[29]) y de sistema triple de cocientes por la izquierda maximal.

Entre las aplicaciones de los sistemas de cocientes por la izquierda maxi-

males, mostramos algunos resultados sobre Morita-invariabilidad (mediante

anillos córner) y un teorema tipo Johnson para cierta clase de álgebras gra-

duadas por Z.

Durante la visita del autor a la Universidad de Colorado, G. Abrams

llamó su atención sobre las álgebras de caminos de Leavitt sobre grafos. Es-

tas álgebras incluyen algunas de las que hab́ıan estado apareciendo en nues-

tras disertaciones previas. En particular incluyen las álgebras de polinomios

de Laurent K[x, x−1], que son (en nuestra opinión) el ejemplo más simple

donde difieren las nociones de álgebra de cocientes por la izquierda graduada

maximal y álgebra de cocientes por la izquierda maximal (sin graduación).

Aśı, el último caṕıtulo de esta tesis está dedicado a estas álgebras. Nues-

tra tarea consiste en encontrar condiciones teóricas sobre un grafo, necesarias

y suficientes, de forma que las álgebras de caminos de Leavitt correspondi-

entes, consideradas como anillos, tengan un cierta propiedad. Concretamente,

conseguimos hacer esto para la simplicidad y el carácter puramente infinito.

Una vez que tenemos una mejor idea de la estructura de estas álgebras,

tenemos la esperanza de que estos resultados recientemente obtenidos puedan
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ayudarnos a desvelar de alguna manera el comportamiento de sus álgebras

maximales de cocientes por la izquierda graduadas. Esto nos permitiŕıa incluir

algunos de nuestros resultados sobre álgebras de cocientes por la izquierda

graduadas maximales en otros más generales.

Pasamos ahora a describir con mayor detalle los contenidos de los caṕıtulos

y sus secciones.

En el caṕıtulo 1 empezamos recordando la noción de anillo (general) de

cocientes por la izquierda (y su anillo maximal de cocientes por la izquierda

asociado Ql
max(R)), introducida por Utumi en [73], que es, como ya hemos

mencionado, una noción ampliamente presente en la literatura matemática

(véanse [16], [44], [45] y [72], por ejemplo).

Es natural preguntarse si dado un idempotente e en un anillo R sin di-

visores totales de cero por la derecha, el anillo maximal de cocientes por la

izquierda de un córner (Ql
max(eRe)) y el córner del anillo de cocientes por

la izquierda maximal (eQl
max(R)e) son isomorfos. Probamos en la primera

sección que esto es verdad para todo idempotente pleno e del anillo R si éste

no tiene divisores totales de cero por la izquierda ni por la derecha (esto no es

cierto siempre, como se muestra en (1.2.9)). De hecho, probamos un resultado

más general:

Teorema 1.2.6. Sea R un anillo y Q := Ql
max(R). Entonces, para todo

idempotente e ∈ Q tal que eR+Re ⊆ R y lanR(Re) = ranR(eR) = 0 tenemos:

Ql
max(eRe)

∼= eQl
max(R)e.

No menos natural es preguntarse si se tendrá, como en el caso unitario,

un resultado similar de conmutatividad entre matrices y anillos maximales

de cocientes por la izquierda. Ciertamente éste es el caso.

Proposición 1.3.6. Para un anillo R sin divisores totales de cero por la

derecha tenemos: Ql
max(Mn(R)) ∼= Mn(Ql

max(R)).

Los resultados previos pueden ser aplicados a la teoŕıa de Morita-

invariabilidad. Es bien conocido que si R y S son dos anillos unitarios Morita
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equivalentes, entonces Ql
max(R) y Ql

max(S) son también Morita equivalentes.

Esto contrasta fuertemente con el caso unitario: Se muestra en (1.3.8) que

existen anillos que son Morita equivalentes a anillos de división pero no sa-

tisfacen esta propiedad. Sin embargo, en la sección 2 obtenemos, entre otras

cosas, que si R y S son dos anillos idempotentes Morita equivalentes, entonces

los ideales que generan dentro de sus propios anillos maximales de cocientes

por la izquierda son Morita equivalentes.

Teorema 1.3.10. Sean R y S dos anillos idempotentes Morita equivalentes,

A =

(
R M
N S

)
el anillo de Morita del contexto sobreyectivo y denotemos

Q1 := Ql
max(R), Q2 := Ql

max(S). Entonces Q1RQ1 y Q2SQ2 son anillos

idempotentes Morita equivalentes.

El lector puede encontrar una clasificación de las propiedades (si son o

no, o bajo qué circunstancias) Morita-invariantes en [10]. En este caṕıtulo

hemos seguido las ideas y resultados que aparecen en el trabajo de M. Gómez

Lozano, M. Siles Molina y el autor, [11].

A pesar de que la teoŕıa de anillos de cocientes por la izquierda maximales

ha sido ampliamente estudiada en el caso no graduado, no ha sido tan pro-

fundamente investigada en el contexto de álgebras graduadas. Aún aśı, varios

autores han considerado teoŕıas de torsión para anillos graduados con unidad

(véanse por ejemplo los trabajos de O. Goldman [27], C. Nǎstǎsescu y F.

van Oystaeyen [56]). Concretamente, en 1978 van Oystaeyen estudió en [59]

anillos y módulos graduados de cocientes desde un punto de vista categórico

y considerando anillos unitarios.

Nuestro objetivo aqúı es estudiar álgebras de cocientes por la izquierda

graduadas para álgebras (no necesariamente unitarias) sin divisores totales

de cero por la derecha. Para hacerlo, seguimos una aproximación diferente

a la categórica recién mencionada, pricipalmente para evitar varias dificul-

tades técnicas que surgiŕıan al considerar categoŕıas de módulos sobre anillos

arbitrarios (quizá ni siquiera idempotentes).
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Aśı, en el caṕıtulo 2, después de varias definiciones y resultados prelimi-

nares de la primera sección, dedicamos la segunda sección a las nociones de

álgebra de cocientes por la izquierda graduada y álgebra de cocientes débil

por la izquierda graduada. Mientras toda álgebra de cocientes (débil) por

la izquierda graduada es un álgebra de cocientes (débil) por la izquierda, el

rećıproco falla ya que no toda álgebra de cocientes (débil) por la izquierda de

un álgebra graduada puede a su vez ser dotada de una graduación de forma

que tengamos un álgebra graduada mayor que contenga a la pequeña.

Ser un álgebra de cocientes por la izquierda graduada puede ser caracte-

rizado usando absorción por ideales densos por la izquierda graduados.

Proposición 2.2.18. Sea A una subálgebra graduada de un álgebra graduada

B = ⊕σ∈GBσ. Las siguientes afirmaciones son equivalentes.

(i) B es un álgebra graduada de cocientes por la izquierda de A.

(ii) Para todo elemento no nulo q ∈ B existe un ideal por la izquierda

gr-denso I de A tal que 0 6= Iq ⊆ A.

(iii) Para todo elemento no nulo qσ ∈ Bσ existe un ideal por la izquierda

graduado I de A con ranA(I) = {a ∈ A : Ia = 0} = 0 y tal que 0 6= Iqσ ⊆ A.

Cerramos esta sección explorando el comportamiento de las álgebras de

cocientes por la izquierda graduadas cuando se involucran álgebras locales

en elementos, y obtenemos el análogo graduado a un resultado conocido que

relaciona las álgebras de cocientes por la izquierda con las álgebras locales en

elementos.

El estudio del ideal singular por la izquierda graduado se hace en la ter-

cera sección. Éste ha demostrado ser una poderosa herramienta en el estudio

de anillos maximales de cocientes por la izquierda (véanse por ejemplo los

trabajos de A. Fernández López, E. Garćıa Rus, M. Gómez Lozano y M. Siles

Molina [22], el tercer y cuarto autor en [29] y el tercero en [28]).

En la cuarta sección se sigue la idea de Utumi en [73] (la misma que

la de van Oystaeyen en [59]) para poder construir un álgebra maximal de

cocientes por la izquierda graduada de una álgebra G-graduada dada que no
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tenga divisores totales de cero homogeneos por la derecha, y obtenerla como

ĺımite directo de homomorfismos graduados de módulos por la izquierda desde

ideales densos por la izquierda graduados del álgebra.

El álgebra de cocientes por la izquierda graduada maximal es una

subálgebra del álgebra de cocientes por la izquierda maximal (sin graduar),

pero no coinciden necesariamente. Por ejemplo, cuando consideramos el

álgebra de polinomios K[x] entonces, como es un dominio de integridad, es

bien conocido que Ql
max(K[x]) = K(x), su cuerpo de fracciones. Sin embargo,

es conocido que un anillo de división no puede ser Z-graduado (con una gra-

duación no trivial), de forma que Ql
max(K[x]) jamás podŕıa ser el álgebra de

cocientes por la izquierda graduada maximal de K[x]. De hecho, se obtiene

que Ql
gr−max(K[x]) = K[x, x−1], el álgebra de los polinomios de Laurent.

Para un álgebra graduada A, y un álgebra de cocientes por la izquierda

graduada B de A, el álgebra maximal de cocientes por la izquierda graduada

de A puede ser también obtenida como el ĺımite directo de homomorfismos

graduados (de A-módulos graduados) desde ideales densos por la izquierda

graduados de A en B.

En la última sección estudiamos cuándo, para una superálgebra A, la

componente 0 de su álgebra maximal de cocientes por la izquierda graduada,

(Ql
gr−max(A))0, coincide con el álgebra maximal de cocientes por la izquierda

de la componente 0 de A, Ql
max(A0). Este resultado es falso en general. Si

A0 = A1A1, un monomorfismo de (Ql
gr−max(A))0 aQl

max(A0) está garantizado.

Si, además, A no tiene divisores totales de cero por la izquierda, entonces śı

que coinciden.

Proposición 2.5.8. Sea A una superálgebra fiel a derecha e izquierda (equiva-

lentemente, fiel a derecha y con lanA0(A1) = 0) tal que A0 = A1A1. Entonces(
Ql

gr−max(A)
)
0
∼= Ql

max(A0)

bajo un isomorfismo que fija los elementos de A0, viendo A0 dentro de

Ql
gr−max(A).

La mayoŕıa de los resultados de este caṕıtulo pertenecen a [13].
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En el contexto asociativo, no sólo anillos (o álgebras) pueden ser consi-

derados. El estudio de sistemas de cocientes en estructuras tales como pares

asociativos o sistemas triples asociativos (sin dejar de lado el interés inhe-

rente que tiene) podŕıa ser crucial para arrojar algo de luz en la teoŕıa de

estructuras de sistemas de Jordan (álgebras, pares o triples) y de álgebras de

Lie, mediante la teoŕıa de cocientes. Esta aproximación está teniendo un gran

desarrollo (véanse los trabajos [53], [69], [24], [5], [60] en la teoŕıa de cocientes

de sistemas de Jordan y álgebras de Lie).

Los pares asociativos juegan un papel fundamental en la nueva aproxi-

mación (ver [21]) a la clasificación de Zelmanov de los pares de Jordan fuerte-

mente primos, y han sido ya usados por O. Loos en la clasificación de los

pares de Jordan no degenerados de capacidad finita [50].

En contraste con las operaciones binarias clásicas (en grupos, anillos,

álgebras, espacios vectoriales, módulos, etc), tanto los pares asociativos

como los sistemas triples son sistemas ternarios (asociativos), esto es: sólo

podemos multiplicar tres elementos de una vez. Por ejemplo, si tomamos

a, c ∈ Mm×n(K), entonces no podemos realizar el producto usual de matri-

ces ac (para m 6= n), mientras que abc ∈ Mm×n(K), para b ∈ Mn×m(K).

Aśı, (Mm×n(K),Mn×m(K)) es un ejemplo de par asociativo mientras que

Mm×n(K) no tiene un producto binario claro. De la misma manera,Mm×n(K)

es un sistema triple con el producto triple dado por (a, b, c) 7→ abtc.

Las álgebras graduadas (superálgebras y álgebras 3-graduadas) están rela-

cionadas con los pares asociativos y los sistemas triples. Concretamente,

si A = A0 ⊕ A1 es una superálgebra, entonces A1 puede ser vista como

un sistema triple, mientras que si B = B−1 ⊕ B0 ⊕ B1 es un álgebra 3-

graduada, entonces (B−1,B1) tiene una estructura natural de par asociativo.

Y rećıprocamente, todo par asociativo A = (A+, A−) (o sistema triple T )

puede ser monomórficamente incluido en un álgebra E con un idempotente e

tal que (A+, A−) ((T, T ) en el caso del sistema triple) puede ser identificado

con (eE(1− e), (1− e)Ee).
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Este álgebra E tiene una supergraduación E = E0 ⊕ E1, donde

E0 = eEe⊕ (1− e)E(1− e), E1 = eE(1− e)⊕ (1− e)Ee,

y una 3-graduación E = E−1 ⊕ E0 ⊕ E1, para

E−1 = (1− e)Ee, E0 = eEe⊕ (1− e)E(1− e) y E1 = eE(1− e).

Aśı que parece bastante natural tratar de relacionar el estudio de las álgebras

de cocientes por la izquierda graduadas de un álgebra graduada (en el

caṕıtulo 2 ya se consiguió una construcción del álgebra de cocientes por la

izquierda graduada maximal de un -no necesariamente unitaria- álgebra gra-

duada) con el de los sistemas de cocientes por la izquierda de un sistema

triple asociativo o par.

Por otra parte, en algunos casos (por ejemplo, cuando E es simple) toda

envolvente estándar da paso a un contexto de Morita sobreyectivo para anillos

no necesariamente unitarios, y rećıprocamente, todo par de bimódulos de un

contexto de Morita tiene una estructura natural de par asociativo. Aśı, en

particular, todo esto puede ser considerado como un acercamiento al estudio

de los anillos de cocientes maximales de contextos de Morita para anillos

no necesariamente unitarios, y por tanto, como una extensión de la teoŕıa

desarrollada en el caṕıtulo 1.

En el caṕıtulo 3 damos una versión para pares y sistemas triples del anillo

maximal de cocientes por la izquierda. Un primer intento fue realizado en [29],

donde los autores encontraron el par de cocientes por la izquierda maximal

de un par fiel por la derecha en los casos en que el par fuera o bien también

fiel por la izquierda o bien no singular por la izquierda.

Este caṕıtulo está dividido en siete secciones. Después de una sección

preparatoria donde el estudio de la fidelidad por la derecha -ya comenzado

en el caṕıtulo 2- es completado en este contexto, introducimos en la sección 1

la noción de subpar de un álgebra 3-graduada. La Proposición (3.2.3) pro-

porciona una herramienta poderosa para computar la envolvente estándar de

cualquier par asociativo fiel por la derecha con el siguiente
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Corolario 3.2.4. Sea A un par asociativo fiel por la derecha, y (A, ϕ) una

envolvente graduada de A. Entonces son equivalentes:

(i) (A, ϕ) es ajustada en A,

(ii) A es fiel por la derecha,

(iii) (A, ϕ) es isomorfa a la envolvente estándar de A.

En la sección 2 estudiamos el ideal supersingular de una superálgebra

no necesariamente unitaria A = A0 ⊕ A1 y lo relacionamos con los ideales

singulares de A0 (como álgebra) y de A1 (como sistema triple asociativo).

Mostramos que en el caso particular que nos interesa, estas nociones están

fuertemente ligadas.

Corolario 3.3.8. Para un álgebra fiel por la derecha A con A0 = A1A1 las

siguientes condiciones son equivalentes:

(i) A es no singular por la izquierda (como superálgebra).

(ii) A0 es no singular por la izquierda (como álgebra).

(iii) A1 es no singular por la izquierda (como triple).

En la siguiente sección introducimos las nociones de superálgebra

(débilmente) fiel por la derecha en otra superálgebra que la contenga y rela-

cionamos álgebras de cocientes por la izquierda, sistemas triples de cocientes

por la izquierda y superálgebras de cocientes por la izquierda: Supongamos

que A = A0 ⊕A1, con A0 = A1A1, es un superálgebra débilmente fiel por la

derecha en otra superálgebra B. Entonces B es un álgebra de cocientes por la

izquierda graduada de A si y sólo si B1 es un sistema triple de cocientes por

la izquierda de A1 y B0 es un álgebra de cocientes por la izquierda de A0.

La fidelidad débil por la derecha es precisamente la condición que se nece-

sita para tener un resultado de ida y vuelta entre álgebras de cocientes por

la izquierda, sistemas de cocientes por la izquierda y superálgebras de co-

cientes por la izquierda. Ejemplos de subsuperálgebras fieles por la derecha

en álgebras que las contengan son todas aquellas álgebras de cocientes por la

izquierda fieles o no singulares por la izquierda.
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Como consecuencia de los resultados previos, en la sección 5 construimos

el par de cocientes por la izquierda maximal de un par asociativo fiel por la

derecha. Este par maximal por la izquierda está dado en términos del álgebra

de cocientes por la izquierda maximal de su envolvente, que coincide con el

álgebra de cocientes por la izquierda graduada maximal de esta envolvente,

considerada como álgebra 3-graduada, o como superálgebra.

Teorema 3.5.10 y Definición 3.5.11. Sea B un par de cocientes por la

izquierda de un par asociativo A tal que A es fiel por la derecha en B, y

denotemos por A, (EA, e) y B, (EB, e) las envolventes estándar y unitarias de

A y B, respectivamente. Entonces:

(i) Q := Ql
gr−max(A) = Ql

max(A) = Ql
max(B) = Ql

gr−max(B).

(ii) Q := (eQ(1− e), (1− e)Qe) es un par de cocientes por la izquierda de

A.

(iii) Q es el par de cocientes por la izquierda maximal de entre todos los

pares de cocientes por la izquierda donde A es fiel por la derecha.

Mostramos que esta construcción no puede ser mejorada. En la sección 6

procedemos análogamente para el caso de un sistema triple.

Este caṕıtulo se cierra con algunas aplicaciones de los resultados previos

en el contexto de álgebras asociativas con Z-graduación finita obteniendo,

entre otras cosas, un teorema tipo Johnson para estas álgebras.

Un teorema de Zelmanov (ver [74, Theorem 4.1]) clasifica las álgebras de

Lie simples M -graduadas sobre cuerpos cuya caracteŕıstica sea zero o suficien-

temente grande. Smirnov muestra en [71, Theorem 5.4] que un álgebra de Lie

satisfaciendo las condiciones del Teorema de Zelmanov tiene una 5-graduación

no trivial. Este resultado se obtiene como consecuencia de la descripción de

las álgebras asociativas simples con Z-graduaciones finitas.

En el art́ıculo de Smirnov [71], el autor prueba que si un álgebra graduada

asociativa A = ⊕n
k=−nAk es unitaria, cualquier graduación de esa forma surge

de una descomposción de Peirce del álgebra respecto a un sistema completo de

idempotentes ortogonales {e0, e1, . . . , en} de tal forma que Ak =
∑n

i−j=k eiAej
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para k ∈ {−n, . . . , n}.
Por una parte se prueba que para un álgebra graduada A = ⊕n

k=−nAk

una 3-graduación puede ser dada en algunos de los casos del Teorema de

Zelmanov. Esta 3-graduación viene de una descomposición de Peirce de A

relativa a un idempotente e que vive en un álgebra mayor E conteniendo a A

como ideal denso por la izquierda y por la derecha.

Por otra parte se muestra que, como consecuencia de un resultado más

general, cuando A es simple (unitaria o no) toda Z-gradución finita está

inducida por un sistema completo de idempotentes ortogonales {e0, e1, . . . , en}
que viven en el álgebra de cocientes por la izquierda maximal Q de A. Esto

es, Ak =
∑n

i−j=k eiAej y Q = ⊕n
k=−nQk, donde Qk =

∑n
i−j=k eiQej (aśı, Q

es simplemente el álgebra de cocientes por la izquierda graduada maximal de

A).

Estos resultados permiten obtener el siguiente teorema tipo Johnson.

Teorema 3.7.10. Sea A = ⊕n
k=−nAk un álgebra graduada tal que A =

id(A−n) y A = A0AA0. Entonces las siguientes condiciones son equivalentes:

(i) A es graduada no singular por la izquierda.

(ii) A es no singular por la izquierda.

(iii) Ql
gr−max(A) existe y es graduada regular von Neumann.

(iv) Ql
max(A) existe y es regular von Neumann.

Si estas condiciones se satisfacen, entonces Ql
max(A) = Ql

gr−max(A).

Finalmente, como otra aplicación, se prueba el siguiente resultado: Sea

L un álgebra de Lie satisfaciendo las hipótesis del Teorema de Zelmanov.

Entonces L tiene una 3-graduación no trivial si: (i) L tiene la forma

[A(−), A(−)]/Z, donde A =
∑

λ∈ΛAλ es un álgebra M -graduada simple asocia-

tiva y Z es el centro de [A(−), A(−)], (ii) L es la construcción de Tits-Kantor-

Koecher del álgebra de Jordan de una forma bilineal simétrica, o (iii) L es un

álgebra del tipo G2, F4, o E8.

En los casos restante, es decir, para [K(A, ∗), K(A, ∗)]/Z, donde A =∑
λ∈ΛAλ es un álgebra M -graduada simple asociativa con involución ∗ : A→
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A, A∗α = Aα y Z es el centro de [K(A, ∗), K(A, ∗)], no es siempre posible

encontrar 3-graduaciones, y para L un álgebra de uno de los tipos E6, E7 o

D4, no son posibles las 3-graduaciones.

Los resultados originales de este caṕıtulo han sido tomados mayormente

de [12], mientras que la última sección de aplicaciones es parte de [70].

La tesis se completa con el estudio, en el caṕıtulo 4, de las álgebras de

caminos de Leavitt. Estas álgebras pueden ser vistas como una familia que

incluye algunas de la previamente estudiadas, como las álgebras de polinomios

de Laurent K[x, x−1] y las álgebras de matrices Mn(K).

Las álgebras de caminos de Leavitt tienen sus oŕıgenes en el art́ıculo semi-

nal [48], donde se describe una clase de K-álgebras (hoy en d́ıa denotadas por

L(m,n)) que son universales respecto a una propiedad de isomorfismo entre

módulos libres de rango finito. (K denota un cuerpo arbitrario.)

En [49], Leavitt muestra que las álgebras de la forma L(1, n) son simples.

Más de una década más tarde, Cuntz [19] construyó e investigó las C*-álgebras

On (hoy en d́ıa llamadas álgebras de Cuntz), mostrando, entre otras cosas,

que cada On es (algebraicamente) simple.

Cuando K es el cuerpo C de números complejos, entonces On puede ser

visto como la complección, en una norma apropiada, de L(1, n). Justo después

de la aparición de [19], Cuntz y Krieger [20] describieron la noción significa-

tivamente más general de la C*-álgebra de una matriz (finita) A, denotada

por OA.

Entre esta clase de C*-álgebras uno puede encontrar, para cualquier grafo

finito E, el álgebra de Cuntz-Krieger C∗(E), definida originalmente en [40].

Estas C*-álgebras, aśı como aquéllas que aparecen de varios grafos infinitos,

han sido el objeto de mucha investigación (ver por ejemplo [64], [65], y [15]).

Recientemente, los análogos algebraicos de las C*-álgebras OA han sido

presentados en [7]; estos se denotan por CKA(K). Restringiendo la atención

a un conjunto espećıfico de matrices permitidas, la simplicidad del álgebra

CKA(K) para algún subconjunto de estas matrices permitidas ha sido deter-

minada (aunque la condición para la simplicidad no está dada expĺıcitamente
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en términos de la matriz A).

Cuando E es finito sin fuentes ni sumideros, entonces L(E) puede ser

construida como un álgebra de la forma CKA(K) para alguna matriz A. Las

álgebras clássicas de Leavitt L(1, n) (aśı como los anillos de matrices Mn(K)

y las álgebras de polinomios de Laurent K[x, x−1], como ya se comentó an-

teriormente) aparecen como álgebras de la forma L(E) para varios grafos

E. Es más, la clase de álgebras de la forma L(E) ampĺıa significativamente

la colección de álgebras estudiadas por Leavitt en sus art́ıculos previamente

citados.

Análoga a la relación que existe entre L(1, n) y On, L(E) tiene la

propiedad de que cuando K = C, entonces C∗(E) puede ser vista como la

complección, en una norma apropiada, de L(E) [64, Proposition 1.20].

Después de varias nociones preparatorias en las primeras secciones, estu-

diamos en la sección 3 la propiedad de ser simple y aśı, en el resultado principal

de esa sección, (4.3.12), conseguimos dar condiciones necesarias y suficientes

sobre el grafo E de filas finitas que implican que L(E) es simple. Concreta-

mente probamos lo siguiente:

Teorema 4.3.12. Sea E un grafo de filas finitas. Entonces el álgebra de

caminos de Leavitt L(E) es simple si y sólo si E satisface las siguientes condi-

ciones.

(i) Los únicos subconjuntos hereditarios y saturados de E0 son ∅ y E0, y

(ii) todo ciclo en E tiene una salida.

Este resultado es paralelo a un teorema para C*-álgebras de la forma

C∗(E) dado en [64, Theorem 4.9 y notas siguientes]. Sin embargo, las técnicas

utilizadas aqúı son significativamente diferentes a las usadas en el contexto

anaĺıtico.

Estos resultados extienden a los presentados en [7], ya que: Se aplican

también a algunas álgebras importantes que no son expĺıcitamente conside-

radas en [7]; se aplican también a álgebras que surgen de matrices infinitas;

y proporcionan condiciones necesarias y suficientes en E para obtener la sim-
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plicidad de L(E).

También, en la sección 5 se sigue la misma filosof́ıa para la noción de ser

puramente infinito simple y, después de varios resultados parciales, se llega a

la siguiente caracterización mediante propiedades del grafo:

Teorema 4.4.15. Sea E un grafo de filas finitas. Entonces L(E) es pura-

mente infinita simple si y sólo si E tiene las siguientes propiedades:

(i) Los únicos subconjuntos hereditarios y saturados de E0 son ∅ y E0,

(ii) todo ciclo en E tiene una salida, y

(iii) todo vértice conecta con un ciclo.

Varios autores (P. Ara y E. Ortega entre ellos) están en la actualidad

trabajando en calcular el álgebra de cocientes por la izquierda maximal de

este tipo de álgebras de caminos de Leavitt (aśı como en álgebras de caminos),

mientras que nuestra intención será tratar de hallar el correspondiente álgebra

de cocientes por la izquierda graduada maximal en un futuro próximo. Por

ejemplo, en el caṕıtulo 2 se muestra que Ql
gr−max(K[x]) = K[x, x−1] y como

consecuencia

Ql
gr−max(K[x, x−1]) = K[x, x−1].

Asimismo, es bien conocido que Ql
max(Mn(K)) = Mn(K) y análogamente

Ql
gr−max(Mn(K)) = Mn(K).

En otras palabras, tanto K[x, x−1] comoMn(K) son gr-max-cerrados. Ob-

servamos que, sin embargo, aunqueMn(K) es también max-cerrado,K[x, x−1]

no lo es (de hecho Ql
max(K[x, x−1]) = K(x)). Aśı, el hecho de que todo L(E),

para un grafo finito E, es max-cerrado se desvanece, pero la pregunta que

ahora nos surge naturalmente es: ¿Son todas las álgebras de caminos de Lea-

vitt finitas L(E) gr-max-cerradas?

Creemos que los resultados de este caṕıtulo (y esperamos que algunos más

que podamos probar) podŕıan ayudarnos en una posible respuesta a dicha

cuestión.
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En este caṕıtulo hemos seguido de cerca (a veces con demostraciones más

detalladas o con un mayor número de ejemplos) las exposiciones y resultados

originales contenidos en los trabajos [1] y [2] de G. Abrams y el autor.
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Álgebra en Andalućıa” (ACC-424-FQM-2001) de la Junta de Andalućıa y
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Chapter 1

Maximal left quotient rings and
corners

In this chapter we will be dealing with associative rings (not necessarily com-

mutative or unital). We will omit the proofs of some preliminary well-known

facts because we will extend these to the more general setting of graded al-

gebras in the next chapter.

1.1 Rings of quotients

The construction of the rational numbers Q as the field of fractions of the

integers Z is perhaps one of the first constructions one may encounter at the

beginning of a manual of basic algebra. (Another extensively used construc-

tion is the field of rational functions K(x) of the polynomial ring K[x], for

K any field.) In essence, the idea here is to suddenly make invertible (in a

bigger ring) any nonzero element of a given ring.

In general, for such construction to succeed, we could start with an inte-

gral domain D (a commutative unital ring with no zero divisors) and then

we would obtain its field of fractions K, which is uniquely determined and

satisfies a certain universal property.

Needless to say, such a wonderful construction is not always at hand. One

might, for instance, want to perform a similar one for rings with a poorer

structure. For example: If our ring R does contain zero divisors, then it is clear

1
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that neither of those zero divisors could ever be invertible in any overring Q.

Despite of that, we do not surrender and invert only the regular elements of

R (that is, the elements which are neither left zero divisors nor right zero

divisors). This is mainly the idea behind the notion of left order.

Definition 1.1.1. Let R ⊆ Q be rings. The ring R is said to be a left order

in Q, or Q is a classical left quotient ring of R if

(i) Every regular element of R is invertible in Q.

(ii) Every element q ∈ Q has the form q = a−1b for some a ∈ Reg(R) and

b ∈ R.

Of course, the field of fractions of an integral domain is always a classical

left (and right) quotient ring of that integral domain. The converse is not

true:

Example 1.1.2. Consider the rings

R =

(
Z Z
0 Z

)
⊆ Q =

(
Q Q
0 Q

)
.

Then R is a left order in Q even though Q is not a field (of fractions of R,

neither is R an integral domain). The same happens with R = Mn(Z) ⊆
Mn(Q).

So what if we do not even have a unit in Q? We would not be allowed

to speak of invertible elements then. However, Utumi still found a suitable

notion of ring of quotients for this setting.

Definition 1.1.3. Recall that an overring Q of a ring R is said to be a

(general) left quotient ring of R if given p, q ∈ Q with p 6= 0, there

exists a ∈ R satisfying ap 6= 0 and aq ∈ R. Right quotient rings are defined

analogously.

Again, any classical left quotient ring Q of a ring R is also a left quotient

ring of it for if we take p, q ∈ Q, with p 6= 0, we may find certain a ∈ Reg(R)
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and b ∈ R such that q = a−1b, and therefore we get aq = b ∈ R and ap 6= 0,

because otherwise ap = 0 would imply that (a is invertible in Q) p = 0.

As we have just stated, as soon as we do not have a unit element, we lose

all the chances for a ring Q to be a classical left quotient ring of another ring

R, although it may remain a left quotient ring of R. Easy examples of that

situation are R = Mn(4Z) ⊆ Q = Mn(2Z). For a more interesting case see

the following:

Example 1.1.4. Consider V a K-vector space of infinite dimension. Let Q

be the ring of all endomorphisms EndK(V ), and R be the subring of finite

rank endomorphisms

F(V ) = {f : V → V | dimK f(V ) <∞}.

In fact, R is the socle of Q. Now, although Q is unital, it is not a classical left

quotient ring of R. If we wrote 1 = a−1b for some a, b ∈ R, since R = Soc(Q)

is an ideal, we would get that 1 ∈ R, that is dimK(1(V )) < ∞, but this

contradicts the fact of V being infinite dimensional.

Despite of that, Q is a left quotient ring of R: Take p, q ∈ Q, with p 6= 0.

Take B = {ei}∞i=1 a basis for V . Since p 6= 0, there exists ej ∈ B such that

0 6= p(ej) =
∑n

k=1 aikeik for some aik ∈ K. Let H be the finite dimensional

subspace {ei1 , . . . , ein} and consider r = ΠH the projection over H. Then,

rp 6= 0 because rp(ej) = p(ej) 6= 0, and since dim r(V ) = dim r(H) = n <∞,

then r ∈ R�Q and therefore rq ∈ R.

It is not difficult to prove (this is done in the next chapter in more gen-

erality) that if Q is a left quotient ring of R then, given q1, . . . , qn ∈ Q, with

q1 6= 0, there exists an element r ∈ R such that rq1 6= 0 and rqi ∈ R for

every i ∈ {1, . . . , n}. From now on, we will use this “common denominator

property” without even an explicit mention to it.

The question now is: Does there exist a left quotient ring Q of R such

that whenever we consider any other left quotient ring T of R, we could find

a monomorphism from T to Q?
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Utumi answered in the affirmative as long as the ring R is not terribly bad

(in the sense that it is at least right faithful). First, let us recall the definition

of right faithfulness.

Definitions 1.1.5. A nonzero element x ∈ R is a total right zero divisor

if Rx = 0. A ring R is right faithful if it has no total right zero divisors.

That is, Rx = 0 implies x = 0. Similarly, a nonzero element x in R is said to

be a total left zero divisor if xR = 0, and a ring is left faithful if it has

no total left zero divisors.

Now suppose that Q exists and consider x ∈ R such that Rx = 0 and

x 6= 0. Since x ∈ R ⊆ Q and Q is a left quotient ring of R, then there exists

r ∈ R such that rx 6= 0, which is a contradiction. The converse can be found

in Utumi [73].

Clearly, when such a ring Q exists, since it is defined by a universal pro-

perty, it is unique up to isomorphism and it is denoted by Ql
max(R).

Definitions 1.1.6. This ring is called the Utumi left quotient ring of R,

or the maximal left quotient ring of R.

The Utumi left quotient ring of a ring without total right zero divisors

can be characterized as follows. First, some notation and a definition.

Definition 1.1.7. A left ideal L of a ring R is said to be dense if for every

x, y ∈ R, with x 6= 0, there exists a ∈ R such that ax 6= 0 and ay ∈ L. As

it is not difficult to see, this is equivalent to saying that R is a left quotient

ring of L. We denote by Idl(R) the family of dense left ideals of R.

Notation 1.1.8. Throughout this thesis, we will be dealing with homomor-

phisms of left R-modules f ∈ HomR(RL,RR) (mainly when constructing the

homomorphisms in (1.1.9) (3)). In order to make more readable some proofs

and arguments, we use for these homomorphisms the notation (x)f to denote

the action of f on an arbitrary element x ∈ L. This occurs mainly in sections

1.1, 1.2, 2.4, 2.5 and 3.7.

However, we use the traditional notation Φ(x) when we deal with other

kind of maps.
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The following proposition can be found in [45, Corollary in p. 99].

Proposition 1.1.9. Let R be a ring without total right zero divisors, and

let S be a ring containing R. Then S is isomorphic to Ql
max(R), under an

isomorphism which is the identity on R, if and only if S has the following

properties:

(1) For any s ∈ S there exists L ∈ Idl(R) such that Ls ⊆ R.

(2) For s ∈ S and L ∈ Idl(R), Ls = 0 implies s = 0.

(3) For any L ∈ Idl(R) and f ∈ HomR(RL, RR), there exists s ∈ S such that

(x)f = xs for all x ∈ L.

Remark 1.1.10. The conditions (1) and (2) in (1.1.9) are equivalent to say-

ing that S is a left quotient ring of R. This can be proved by using [45, Lemma

4.3.2]. So that condition (3) can be thought as the “maximality condition”.

Several examples of maximal left quotient rings are the following:

Example 1.1.11. Fields of fractions. If D is an integral domain and K is its

field of fractions, then Ql
max(D) = K.

We have already stated that K is a left quotient ring of D so it remains

to check the maximality condition: Take I ∈ Idl(D) (in particular I 6= 0) and

f ∈ HomD(DI,D D). Pick 0 6= i ∈ I and construct s := j
i
∈ K for j = (i)f .

Now it is easy to see that (x)f = xs for every x ∈ I: By multiplying on

the left hand side by x ∈ I in (i)f = j and using that f is D-lineal, we get

xj = x(i)f = (xi)f = i(x)f so that (x)f = x j
i

= xs.

This example includes the cases we started talking about: Ql
max(Z) = Q

and Ql
max(K[x]) = K(x).

Example 1.1.12. The socle of a ring of endomorphisms. Let V be a K-

vector space and Q = EndK(V ) be the ring of endomorphisms. The socle of

Q is precisely the set of finite rank endomorphisms, Soc(Q) = F(V ). In this

situation Ql
max(F(V )) = Q.

This example includes (when V is finite dimensional) matrix rings:

Ql
max(Mn(K)) = Mn(K).
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Example 1.1.13. Of course the maximal left and maximal right quotient

rings need not coincide. Consider the ring

R =

 K K K
0 K 0
0 0 K

 .

As it shown in [44, p. 372], Ql
max(R) ∼= M3(K) while Qr

max(R) ∼= M2(K) ×
M2(K), and they are not isomorphic.

There exist different algebraic constructions of the maximal left quotient

ring. Perhaps the two most used are:

Proposition 1.1.14 (Lambek’s construction). (See [46].) Let R be a

ring with identity. Denote by I = E(R) the injective hull of R and by H =

HomR(IR, IR) (the centralizer of IR). Let Q = HomH(HI,H I) (the second

centralizer of IR). Then there is a natural injection of R into Q and Q is the

maximal left quotient ring of R.

Proposition 1.1.15 (Utumi’s construction). (See [44, §13].) Let R be a

ring with identity. Then Ql
max(R) can be identified as the ring whose elements

are classes of R-homomorphisms f : I → R where I is a dense left ideal of

R. Two such R-homomorphisms f : I → R and g : J → R are regarded to be

in the same class if f = g in I ∩ J . The classes are added by taking the class

f+g : I∩J → R, and they are multiplied by taking the class fg : g−1(I) → R.

In the next chapter we develop a (graded and not necessarily unital) cons-

truction with partial homomorphisms and (graded) dense left ideals as in

Utumi’s construction. The other construction of Ql
max(R) (that of injective

hulls) is preferred when working from a more categorical perspective.

We want to point out the good behaviour of the maximal left quotient

ring by recalling some of its well-known properties (the reader can see [44]) in

the case of unital rings. Some of these remain true in the case of right faithful

rings, as we prove in the more general setting of graded algebras in the next

chapter.
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Proposition 1.1.16. Let R ⊆ T and Ri (for i in a set of indices Λ) be unital

rings. Then:

(i) Ql
max(R) is always a unital ring.

(ii) Ql
max(

∏
Ri) =

∏
Ql

max(Ri).

(iii) Ql
max(Mn(R)) = Mn(Ql

max(R)).

(iv) T is a left quotient ring of R if and only if Ql
max(R) = Ql

max(T ).

(v) Ql
max(Q

l
max(R)) = Ql

max(R).

We do not have to go to the maximal left quotient ring R in order to inherit

properties of R: Some of them are already inherited by any left quotient ring

of R.

Proposition 1.1.17. Let R be a right faithful ring and Q a left quotient ring

of R.

(i) If I is a nonzero ideal of Q then I ∩R is a nonzero ideal of R.

(ii) If R is simple (resp. prime, semiprime, commutative), then so is Q.

(iii) If R has an identity then so has Q, and they coincide.

Proof. (i) Take 0 6= x ∈ I and apply that Q is a left quotient ring of R to

find a ∈ R such that 0 6= ax ∈ R. Then 0 6= ax ∈ I ∩R.

(ii) The simple, prime and semiprime cases follow easily from (i). Let us

see the commutativity: Suppose that R is commutative and that we have

x, y ∈ Q with xy − yx 6= 0. There exists a ∈ R such that a(xy − yx) 6= 0 and

ax, ay ∈ R. Again, we find b ∈ R such that ba(xy − yx) 6= 0 and bx, by ∈ R.

Now we use the commutativity in R to reach a contradiction:

(ba)(xy) = b(ax)y = (ax)(by) = ((by)a)x = (ab)yx = (ba)(yx).

(iii) Let 1 be the identity in R. Suppose that there exists q ∈ Q such that

1q − q 6= 0. In this case we would find a ∈ R such that 0 6= a(1q − q) =

(a1)q − aq = aq − aq = 0, a contradiction. Analogously one sees that q1 = q

for every q ∈ Q.
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The maximal left quotient ring of a ring R is also a powerful tool in order

to understand the structure of the ring. In that sense we want to recall the

following classical results which can be found in [44].

Theorem 1.1.18 (Johnson’s). Let R be a unital ring. Then R is left non-

singular if and only if Ql
max(R) is von Neumann regular.

Theorem 1.1.19 (Gabriel’s). Let R be a unital ring. Then R is left nonsin-

gular and has finite left uniform dimension if and only if Ql
max(R) is semisim-

ple.

1.2 The maximal left quotient ring of a corner

By a corner we understand a subring of the form eRe for some idempotent

e = e2 ∈ R. The name comes from the classic example of corner in matrix

rings, that is, given R = M2(S), for any unital ring S, the idempotents e11

and e22 give rise, respectively, to the following corners matrices:

e11Re11 =

(
S 0
0 0

)
and e22Re22 =

(
0 0
0 S

)
.

These corner rings have very nice properties sometimes. For instance, one

can relate the ideals of a ring to that of its corner rings and vice versa, or one

can translate some properties from a ring to its corners. Also, corners possess

good behaviours in different contexts: For example, in the Jacobson radical

theory it is shown that

J(eRe) = eJ(R)e,

or for unital rings it is proved that

Ql
max(eRe) = eQl

max(R)e.

In this section we focus on the latter and we weaken the hypotheses under

which we can guarantee such a relation to hold. First, we need to relate the

dense left ideals of a corner with the dense left ideals of the ring, and by doing

so, we could construct an isomorphism from Ql
max(eRe) to eQl

max(R)e.
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The highest generality was pursued in the next results on dense left ideals

of corners.

Let R and S be rings with R ⊆ S. For every X ⊆ S the left annihilator

is defined as:

lanR(X) := {r ∈ R | rx = 0 for all x ∈ X},

and analogously the right annihilator is

ranR(X) := {r ∈ R | xr = 0 for all x ∈ X}.

Proposition 1.2.1. Let R and S be rings with R ⊆ S, and consider an

idempotent e ∈ S such that eR + Re ⊆ R and lanR(Re) = ranR(eR) = 0.

Then, for every eLe ∈ Idl(eRe), ReLe ⊕ lanR(e) ∈ Idl(R). In particular, if

e ∈ R,

eLe 7→ ReLe⊕ lanR(e)

defines an injective (inclusion-preserving) map from the dense left ideals of

eRe and those of R.

Proof. The sum of ReLe and lanR(e) is direct because lanR(e) = R(1 − e).

Let p and q be in R with p 6= 0. Since lanR(Re) = 0, pse 6= 0 for some s ∈ R.

Then ranR(eR) = 0 allows us to find u ∈ R such that eupse 6= 0.

Using twice eLe ∈ Idl(eRe) we obtain: 0 6= etet′eupse and et′euqe ∈ eLe,
for some ete, et′e ∈ eRe. Then etet′eu ∈ R satisfies etet′eup 6= 0 and

etet′euq = etet′euqe+ etet′euq(1− e) ∈ ReLe+ lanR(e).

Finally, suppose e ∈ R. If eLe, eL′e ∈ Idl(eRe) are such that ReLe ⊕
lanR(e) = ReL′e ⊕ lanR(e), then ReLe = ReL′e: Take x = xe ∈ ReLe and

then x = y+z for some y ∈ ReL′e and z ∈ lanR(e). Then x = xe = ye+ze =

y + 0, so that x ∈ ReL′e. Analogously ReL′e ⊆ ReLe.

Now, from the fact that eLe and eL′e are left ideals of eRe we can deduce

eLe = eeeLe ⊆ (eRe)eLe ⊂ eLe and also eL′e = eReL′e. This easily implies

that eLe = eL′e. This proves the injectivity.
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The map defined in the previous lemma is not always surjective, as we see

in the following example.

Example 1.2.2. Take R = M2(Z), I = M2(2Z) and e =

(
1 0
0 0

)
. Then

lanR(Re) = ranR(eR) = 0, I ∈ Idl(R) and since

lanR(e) =

(
0 Z
0 Z

)
,

we deduce I 6= ReLe⊕ lanR(e) for every eLe ∈ Idl(eRe).

Proposition 1.2.3. Let R and S be rings with R ⊆ S, and consider an

idempotent e ∈ S such that eR + Re ⊆ R and ranR(eR) = 0. Then for every

L ∈ Idl(R), eLe ∈ Idl(eRe). Moreover, if e ∈ R and lanR(Re) = 0, then

L 7→ eLe

defines a surjective (inclusion-preserving) map from the dense left ideals of R

and those of eRe.

Proof. Take exe, eye ∈ eRe, with exe 6= 0. Since L ∈ Idl(R) we can find t ∈ R
satisfying texe 6= 0 and tey ∈ L. Now ranR(eR) = 0 implies estexe 6= 0 for

some element s ∈ R. Then este ∈ eRe satisfies estexe 6= 0 and esteye ∈ eLe.
Finally, suppose e ∈ R and lanR(Re) = 0. If eLe ∈ Idl(eRe) then ReLe⊕

R(1 − e) ∈ Idl(R) (see (1.2.1)) and e[ReLe ⊕ R(1 − e)]e = eLe. This shows

the surjectivity.

The map L 7→ eLe is not always injective, as it is shown in the following

example.

Example 1.2.4. Take R = M2(Z), n,m ∈ Z with m 6= n and e =

(
1 0
0 0

)
.

Consider L,L′ ∈ Idl(R) defined by

L =

(
Z mZ
Z mZ

)
and L′ =

(
Z nZ
Z nZ

)
.

Then lanR(Re) = ranR(eR) = 0 and eLe = eL′e ∈ Idl(eRe), while L 6= L′.

Next lemma relates left quotient rings with corners of the rings.
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Lemma 1.2.5. Let R ⊆ Q ⊆ S be rings and consider an idempotent e ∈ S

such that eR + Re ⊆ R, eQ + Qe ⊆ Q and ranR(eR) = 0. If Q is a left

quotient ring of R, then eQe is a left quotient ring of eRe.

Proof. Given epe, eqe ∈ eQe, with epe 6= 0, use that Q is a left quotient ring

of R to find r ∈ R satisfying repe 6= 0 and rep, req ∈ R. Since ranR(eR) = 0,

etrepe 6= 0 for some t ∈ R. Moreover, etreqe ∈ eRe.

Now we prove the main result of this section, which was proved by M.

Gómez Lozano, M. Siles Molina and the author in [11, Theorem 1.8] in which

we find conditions under which the isomorphism Ql
max(eRe)

∼= eQl
max(R)e

holds.

Theorem 1.2.6. Let R be a ring and Q := Ql
max(R). Then, for every idem-

potent e ∈ Q such that eR + Re ⊆ R and lanR(Re) = ranR(eR) = 0 we have

Ql
max(eRe)

∼= eQl
max(R)e.

Proof. By (1.2.5), eQe is a left quotient ring of eRe and this implies the

conditions (1) and (2) of (1.1.9). Now, we prove the third one.

Take eLe ∈ Idl(eRe) and f ∈ HomeRe(eReeLe, eReeRe). Define

f : ReLe⊕ lanR(e) −→ R∑
rielie+ t 7→

∑
ri(elie)f

By (1.2.1), ReLe⊕ lanR(e) ∈ Idl(R).

The map f is well-defined: Suppose 0 =
∑
rielie + t ∈ ReLe ⊕ lanR(e).

Then 0 = t =
∑
rielie and

∑
ri(elie)f must be zero; otherwise, since

ranR(eR) = 0 there would be an element s ∈ R such that

0 6= es
∑

ri(elie)f =
∑

esrie (elie)f = (
∑

esrielie)f = (es
∑

rielie)f = 0,

which is a contradiction.

Moreover, f is a homomorphism of left R-modules: For rele+ t ∈ ReLe⊕
lanR(e) and s ∈ R, s(rele+ t)f = sr(ele)f = (srele+ st)f .

Apply (1.1.9) to find q ∈ Q such that

(rele+ t)f = (rele+ t)q for all rele+ t ∈ ReLe⊕ lanR(e).
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We prove q = eqe. For every rele+ t ∈ ReLe⊕ lanR(e) we have

(rele+ t)q = (rele+ t)f = r(ele)f = r(ele)fe = releqe = (rele+ t)eqe.

This implies (ReLe⊕ lanR(e))(q − eqe) = 0, and by (1.1.9) (2), q − eqe = 0.

Finally, take erele ∈ eReLe. Then (erele)f = (erele)f = ereleq =

ereleqe.

Hence (ele)f = eleqe for every ele ∈ eLe because eReLe is a dense left

ideal of eRe, and two eRe-homomorphisms which coincide on a dense left

ideal of eRe coincide on their common domain. This completes the proof.

Definition 1.2.7. We recall that an idempotent e of a ring R is called a full

idempotent if ReR = R.

As an easy corollary, we state a more common situation in which we have

Ql
max(eRe)

∼= eQl
max(R)e.

Corollary 1.2.8. Let R be a left and right faithful ring, and consider a full

idempotent e2 = e ∈ R. Then Ql
max(eRe)

∼= eQl
max(R)e.

Proof. We only need to check the condition on the annihilators in (1.2.6). For

that we use the fullness of the idempotent e ∈ R: Take x ∈ lanR(Re), that

is, xRe = 0. Then x(ReR) = xR = 0 also, and since R is left faithful we get

x = 0. Analogously one can see ranR(eR) = 0.

The hypothesis of fullness of the idempotent cannot be dropped in (1.2.8),

as it is shown in the following example.

Example 1.2.9 (P. Ara). There exists a non full idempotent e in a ring R

such that Ql
max(eRe) 6∼= eQl

max(R)e.

Proof. Consider the ring R of lower triangular matrices 3× 3 over a field K

which have the term (2, 1) equal to zero, that is:

R =

 K 0 0
0 K 0
K K K

 .
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Let e be the (not full) idempotent diag(1, 1, 0).

Then Ql
max(R) = M3(K) and eQl

max(R)e =

 K K 0
K K 0
0 0 0

 ∼= M2(K),

while Ql
max(eRe) = eRe =

 K 0 0
0 K 0
0 0 0

 ∼= K ×K.

In the next result we provide a method of computing the maximal left

quotient ring when we know the maximal left quotient rings of some particular

corners of the ring.

Corollary 1.2.10. Let R and S be rings with R ⊆ S and S a left quotient

ring of R, and suppose R left faithful. Then, for every full idempotent e ∈ R
such that RfR = R, for f := 1− e, we have:

(i) S = Ql
max(R) if and only if eSe = Ql

max(eRe) and fSf = Ql
max(fRf).

(ii) In particular, Ql
max(R) = Q1 + Q1RQ2 + Q2RQ1 + Q2, where Q1 :=

eQl
max(R)e ∼= Ql

max(eRe) and Q2 := fQl
max(R)f ∼= Ql

max(fRf).

Proof. We prove only (i) because (ii) follows immediately from it. The only

part follows from (1.2.8).

Conversely, write Q := Ql
max(R). Since S is a left quotient ring of R, we

may consider R ⊆ S ⊆ Q. Moreover,

eSf = eeeeSf ⊆ eSeRSf = eSeRfRSf ⊆ eSeRfSf ⊆ eSf

implies eSf = eSeRfSf , and in a same fashion,

fSe = fSeeee ⊆ fSReSe = fSRfReSe ⊆ fSfReSe ⊆ fSe

implies fSe = fSfReSe.

Analogously we prove eQf = eQeRfQf and fQe = fQfReQe. Hence

S = eSe⊕ eSf ⊕ fSe⊕ fSf = eQe⊕ eQf ⊕ fQe⊕ fQf = Q.

The hypothesis of e being in R cannot be eliminated. We show it in the

following example.
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Example 1.2.11. Let V be a left vector space over a field K of infinite

dimension, Q = EndK(V ) and R = Soc(Q). Consider two idempotents e, f ∈
Q such that e, f /∈ R and e+ f = 1. Then

T = eQe⊕ eQeRfQf ⊕ fQfReQe⊕ fQf

satisfies R ⊆ T ⊆ Q = Ql
max(R), eTe = eQe and fTf = fQf , while T 6=

Q because eQeRfQf  eQf (for example eQf contains endomorphisms of

infinite rank whereas eQeRfQf does not).

Notice that we cannot apply (1.2.10) to the ring T since e is not a full

idempotent of T .

We note here that some of the results of this section have been successfully

generalized by E. Ortega in [58, Propositions 2.12, 2.13 and Corollaries 2.14,

2.15] for the maximal symmetric ring of quotients Qσ(R). Concretely:

Proposition 1.2.12. Let R ⊆ S be rings such that S is a two-sided quotient

ring of R. Let e ∈ R be an idempotent.

(i) If R is nonsingular semiprime or e is full, then Qσ(eRe) ∼= eQσ(R)e.

(ii) If both e and f := 1 − e are full, then S = Qσ(R) if and only if eSe =

Qσ(eRe) and fSf = Qσ(fRf).

(iii) Qσ(Mn(R)) ∼= Mn(Qσ(R)).

1.3 Morita invariance and maximal left quo-

tient rings

In this final section we explore the connections between maximal left quo-

tient rings, Morita contexts and Morita invariance of some properties and

constructions. First, we need to recall the notions of Morita equivalence in

this setting of not necessarily unital rings.

Let R and S be two rings, RNS and SMR two bimodules and (−,−) :

N ×M → R, [−,−] : M ×N → S two maps. Then the following conditions

are equivalent:
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1.

(
R N
M S

)
is a ring with componentwise sum and product given by:

(
r1 n1

m1 s1

)(
r2 n2

m2 s2

)
=

(
r1r2 + (n1,m2) r1n2 + n1s2

m1r2 + s1m2 [m1, n2] + s1s2

)
2. [−,−] is S-bilinear and R-balanced, (−,−) is R-bilinear and S-balanced

and the following associativity conditions hold:

(n,m)n′ = n[m,n′] and [m,n]m′ = m(n,m′).

[−,−] being S-bilinear and R-balanced and (−,−) being R-bilinear and

S-balanced is equivalent to having bimodule maps ϕ : N ⊗S M → R

and ψ : M ⊗R N → S, given by

ϕ(n⊗m) = (n,m) and ψ(m⊗ n) = [m,n]

so that the associativity conditions above read

ϕ(n⊗m)n′ = nψ(m⊗ n′) and ψ(m⊗ n)m′ = mϕ(n⊗m′).

Definition 1.3.1. A Morita context is a sextuple (R,S,N,M,ϕ, ψ) satis-

fying the conditions given above. The associated ring is called the Morita

ring of the context. By abuse of notation we sometimes write (R,S,N,M)

instead of (R,S,N,M,ϕ, ψ) and suppose R, S, N , M contained in the Morita

ring associated to the context. The Morita context is called surjective if both

the maps ϕ and ψ are surjective.

In classical Morita theory it is shown that two rings with identity R and

S are Morita equivalent (i.e., R-mod and S-mod are equivalent categories)

if and only if there exists a surjective Morita context (R,S,N,M,ϕ, ψ). The

approach to Morita theory for rings without identity by means of Morita

contexts appears in a number of papers (see [25] and the references therein)

in which many consequences are obtained from the existence of a Morita

context for two rings R and S.

In particular it is shown in [41, Theorem] that, if R and S are arbitrary

rings having a surjective Morita context, then the categories R−Mod and
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S−Mod are equivalent. It is proved in [25, Proposition 2.3] that the converse

implication holds for idempotent rings (a ring R is said to be idempotent if

R2 = R).

For an idempotent ring R we denote by R−Mod the full subcategory of the

category of all left R-modules whose objects are the “unital” nondegenerate

modules. Here a left R-module M is said to be unital if M = RM , and M is

said to be nondegenerate if, for m ∈M , Rm = 0 implies m = 0. Note that,

if R has an identity, then R−Mod is the usual category of left R−modules.

Definition 1.3.2. Given two idempotent rings R and S, we say that they

are Morita equivalent if the respective full subcategories of unital nonde-

generate modules over R and S are equivalent.

The following result can be found in [25, Proposition 2.5 and Theorem

2.7].

Theorem 1.3.3. Let R and S be two idempotent rings. Then the categories

R−Mod and S−Mod are equivalent if and only if there exists a surjective

Morita context (R,S,M,N).

The first result referring Morita contexts is obtained as a consequence of

(1.2.10), and it is the following.

Proposition 1.3.4. Let T =

(
R M
N S

)
be a Morita context for two rings

R and S, with R unital, MN = R and NM = S, and denote by Q1 and Q2

the Utumi left quotient rings of R and S, respectively. Then

Ql
max(T ) =

(
Q1 Q1MQ2

Q2NQ1 Q2

)
.

Notice that the ring R in (1.3.4) must be unital, as we show in the following

example.

Example 1.3.5. Let V be a left vector space over a field K of infinite di-

mension, Q = EndK(V ) and R = Soc(Q). Consider two idempotents e, f ∈ Q
such that e, f /∈ R and e+ f = 1. Then the ring

T =

(
eRe eRf
fRe fRf

)
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gives rise to a Morita context for the non-unital rings eRe and fRf , and

S =

(
eQe eQeRfQf

fQfReQe fQf

)
does not coincide with Ql

max(T ) = Q because there are elements in eQf with

infinite left uniform dimension, while every element of eQeRfQf has finite

left uniform dimension.

The following result is well-known for unital rings (see, for example [72,

X.3.3]). Here, we prove it for non-necessarily unital rings.

Proposition 1.3.6. For a ring R without total right zero divisors we have:

Ql
max(Mn(R)) ∼= Mn(Ql

max(R)).

Proof. The proof is by induction on n. For n = 1 there is nothing to prove.

Suppose the result valid for n and denote Q := Ql
max(R). Consider the ring

Q =

(
Q M1×n(Q)

Mn×1(Q) Mn(Q)

)
and the idempotents

e =

(
0 0
0 1

)
∈ Q and f := 1− e.

Since Q is a left quotient ring of itself, e and f are full idempotents of Q,

fQf ∼= Ql
max(fQf) (fQf ∼= Q = Ql

max(Q)) and eQe ∼= Ql
max(eQe) (by the

induction hypothesis eQe ∼= Mn(Q) = Ql
max(Mn(Q))), we can apply (1.2.10)

to obtain that Q = Ql
max(Q). Denote

R :=

(
R M1×n(R)

Mn×1(R) Mn×n(R)

)
.

Since Q is a left quotient ring of R, we have Ql
max(R) ∼= Q.

The previous result can be applied to get an alternative proof for unital

rings of the fact that the maximal left quotient rings of Morita equivalent

rings are also Morita equivalent.

Proposition 1.3.7. Let R and S be two unital Morita equivalent rings. Then:
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(i) Ql
max(R) and Ql

max(S) are Morita equivalent ([72, X.3.2]).

(ii) If R = Ql
max(R), then S = Ql

max(S).

Proof. Since R and S are Morita unital equivalent rings, there exist n ∈ N
and a full idempotent e ∈ Mn(R) such that S ∼= eMn(R)e. Then Ql

max(S) ∼=
Ql

max(eMn(R)e) ∼= eQl
max(Mn(R))e (by (1.2.8)) ∼= eMn(Ql

max(R))e (by

(1.3.6)), and this implies (i).

If Ql
max(R) = R we have Ql

max(S) ∼= eMn(R)e ∼= S.

Again, there is an example showing that the “unital” condition cannot be

dropped in (1.3.7).

Example 1.3.8. Consider a simple and non unital ring R which coincides

with its socle, and take a minimal idempotent e ∈ R. Then(
eRe eR
Re R

)
provides a Morita context for the rings eRe and R.

On the one hand, by [45, Proposition 4.3.7], Ql
max(R) = End∆(V ), with

V a left vector space of infinite dimension over a division ring ∆ (which is

isomorphic to eRe), and also Ql
max(eRe) = eRe ∼= ∆.

But End∆(V ) and ∆ are not Morita equivalent rings because if two unital

rings are Morita equivalent and one of them is left artinian, then the other

one must be so.

Now we prove a technical lemma involving orthogonal decompositions of

idempotents.

Lemma 1.3.9. Let A be a ring without total right zero divisors which is

a subring of a unital ring B, and suppose that there exists a pair (e, f) of

orthogonal idempotents of B such that 1B = e+f and Ae+eA ⊆ A. Then there

exist two orthogonal idempotents u, v ∈ Q := Ql
max(A) such that u+ v = 1Q,

ea = ua, ae = au, fa = va and af = av for every a ∈ A.
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Proof. Consider the maps

ρe : A → A
a 7→ ae

ρf : A → A
a 7→ af

Clearly, ρe, ρf ∈ HomA(AA,AA) and so u := [A, ρe] and v := [A, ρf ] are

idempotents in Ql
max(A). Moreover u + v = 1Q (which implies that u and v

are orthogonal) and for every a ∈ A,

(1)

 [A, ρe][A, ρa] = [A, ρea] ∈ A

[A, ρa][A, ρe] = [A, ρae] ∈ A

implies ua = ea and au = ae (notice that A can be identified with the subring

{[A, ρa] | a ∈ A} of Q). And analogously fa = va and af = av.

Although we have seen that the maximal left quotient rings of Morita

equivalent idempotent rings R and S may not be Morita equivalent, we show,

in the last theorem of this chapter, that at least the ideals R and S generate

inside their maximal left quotient rings are. This was proved by M. Gómez

Lozano, M. Siles Molina and the author in [11, Theorem 2.8].

Theorem 1.3.10. Let R and S be two Morita equivalent idempotent rings,

A =

(
R M
N S

)
the Morita ring of a surjective Morita context and denote

Q1 := Ql
max(R), Q2 := Ql

max(S). Then Q1RQ1 and Q2SQ2 are Morita equiva-

lent idempotent rings.

Proof. Consider the unital ring B =

(
R1 M
N S1

)
, where R1 and S1 denote

the unitizations of R and S, respectively. This ring has two orthogonal idem-

potents

e =

(
1R1 0
0 0

)
and f =

(
0 0
0 1S1

)
such that e+ f = 1B and Ae+ eA ⊆ A.

By (1.3.9), there exist two orthogonal idempotents u, v ∈ Q := Ql
max(A)

such that u+ v = 1Q and R = uAu, S = vAv, M = uAv, N = vAu ⊆ Q.

Moreover, Q1 = Ql
max(R) = Ql

max(uAu)
∼= (by (1.2.6), which can be used

because Au + uA ⊆ A and lanA(Au) = ranA(uA) = 0) uQl
max(A)u. And

analogously Q2 = Ql
max(S) = Ql

max(vAv)
∼= vQl

max(A)v.
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This means that M , N , Q1 and Q2 can be considered inside Q as uQv,

vQu, uQu and vQv, respectively. We claim that

T =

(
Q1RQ1 Q1MQ2

Q2NQ1 Q2SQ2

)
is a surjective Morita context for the idempotent rings Q1RQ1 and Q2SQ2:

Q1RQ1Q1RQ1 ⊆ Q1RQ1 = Q1RRRRQ1 ⊆ Q1RQ1Q1RQ1

implies thatQ1RQ1 is an idempotent ring. Analogously we obtain thatQ2SQ2

is an idempotent ring.

Q1RQ1Q1MQ2 ⊆ Q1MQ2 = Q1RMQ2 = Q1RRRMQ2 ⊆ Q1RQ1Q1MQ2.

Hence Q1MQ2 = Q1RQ1Q1MQ2. Analogously Q2SQ2Q2NQ1 = Q2NQ1.

Finally,

Q1MQ2Q2NQ1 = Q1MQ2NQ1 = Q1MNMQ2NQ1 ⊆

Q1RQ1 = Q1MNMNMNQ1 ⊆ Q1MQ2Q2NQ1.

This implies Q1MQ2Q2NQ1 = Q1RQ1. And analogously Q2NQ1Q1MQ2 =

Q2SQ2.



Chapter 2

Maximal graded algebras of left
quotients

2.1 Introduction and definitions

In this chapter we deal with structures graded by a group. Thus, all the

objects considered (rings, algebras, modules, homomorphisms, etc) will be

assumed to be graded, unless otherwise specified. The non graded case can

be therefore regarded as an special case of this setting by considering trivial

graded structures.

Throughout this chapter all algebras are considered over a unital associa-

tive commutative ring Φ and not necessarily unital. Recall that given a group

G (not necessarily abelian) an algebra A is said to be G-graded if

A = ⊕σ∈GAσ,

where Aσ is a Φ-submodule of A and

AσAτ ⊆ Aστ for every σ, τ ∈ G.

We say that A is strongly graded if AσAτ = Aστ . Note that Ae is a subal-

gebra of A and that every Ah is a Ae-bimodule. In the sequel, we sometimes

use “graded” instead of “G-graded” when the group is understood. As usual,

by the prefix “gr-” we mean “graded-”. For example: “Gr-(left) noetherian”

means that the algebra A satisfies ACC on the graded left ideals.

21



22 2.1. Introduction and definitions

The grading is called finite if its support Supp(A) = {σ ∈ G : Aσ 6= 0} is

a finite set. When G = Z2 we speak about a superalgebra. In the particular

case of G = Z with finite support, the algebra A can be written as the finite

direct sum A = A−n ⊕ . . .⊕ An, and we say that A is (2n + 1)-graded. We

use as a standard reference for graded algebras and modules [56]. Most of the

original results presented in this section have been taken from [13].

Graded rings and algebras abound in the mathematical literature. Several

well-known examples may be the following:

1. The algebra of polynomials , R = K[x] is a Z-graded algebra with grad-

ing given by Rn = Kxn if n ≥ 0 and Rn = 0 otherwise.

2. The group algebra, R = A[G] = {
∑

g∈G agg finite} where A is an ar-

bitrary algebra. The sum of R is given by ag + bg = (a + b)g and the

product by ∑
g∈G

agg ·
∑
g∈G

bgg =
∑
g∈G

(
∑
xy=g

axby)g.

The grading is clearly Rg = Ag. This is the classical example of a G-

graded algebra.

3. The Laurent polynomial algebra, is the polynomial algebra R =

K[x, x−1] in the commutative variables x, x−1, with the relations xx−1 =

1 = x−1x. This algebra is also Z-graded with Rn = Kxn. In contrast

with the first example, this algebra is strongly graded. We would like

to point out that this algebra is a particular case of the example above:

precisely the group algebra K[Z].

4. Matrix algebras , R = Mn(S) are (2n− 1)-graded with

Rk =
∑

{i,j∈{1,...,n}| i−j=k}

Sei,j

for k < n and Rk = 0 otherwise.

5. Morita contexts , T :=

(
R N
M S

)
are Z2-graded algebras with T0 :=
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(
R 0
0 S

)
and T1 :=

(
0 N
M 0

)
. They are also Z3-graded with T =

R0 ⊕R1 ⊕R2, being R0 = T0, R1 =

(
0 N
0 0

)
and R2 =

(
0 0
M 0

)
.

6. Leavitt path algebras , which are thoroughly studied in chapter 4, are

also examples of Z-graded algebras.

7. Every algebra R can be endowed with the trivial grading for any

group G by doing Re = R and Rg = 0 for g 6= e.

In a graded algebra A = ⊕σ∈GAσ, each element of Aσ is called a homo-

geneous element. The set of all homogeneous elements of the algebra is

denoted by h(A). The neutral element of G is denoted by e. Recall that a

left ideal I of a G-graded algebra A is a graded left ideal of A provided

I =
∑

σ∈G(I ∩Aσ). That is, given x ∈ I, if we decompose x into its homoge-

neous components x =
∑

σ∈G xσ, then xσ ∈ I for all σ ∈ G.

In a similar way we define graded right ideal and (two-sided) graded ideal.

As an example, given A = K[x], the Z-graded K-algebra of polynomials, a

principal ideal I =< f >= {fg : g ∈ K[x]} is a graded ideal if and only if f

is a monomial.

2.2 Graded algebras of left quotients

Following the idea introduced by Utumi of giving a notion of maximal ring of

left quotients of a non unital associative ring R as the direct limit of homo-

morphisms of (left, say) dense ideals into R, we are interested in extending

such definition to the more general case of G-graded Φ-algebras. First, we

need some definitions.

Definition 2.2.1. If A is a G-graded algebra and M is an A-module, we say

that M is a G-graded A-module provided M = ⊕σ∈GMσ and AσMτ ⊆Mστ

for every σ, τ ∈ G. If N and M are G-graded A-modules and N is an A-

submodule of M , we say that N is a gr-submodule of M if Nσ ⊆ Mσ for

every σ ∈ G.
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Definition 2.2.2. Let A = ⊕σ∈GAσ be a graded algebra, and N = ⊕σ∈GNσ

be a gr-submodule of a graded A-module M = ⊕σ∈GMσ. We say that N is

a gr-dense submodule of M if given 0 6= xσ ∈ Mσ and yτ ∈ Mτ there

exists aµ ∈ Aµ satisfying aµxσ 6= 0 and aµyτ ∈ Nµτ . If N is a gr-submodule

of a module M , we write N ≤ M . Let us denote by Sgr−d(M) the set of all

gr-dense submodules of M .

The following lemma is a graded version of the generalized common de-

nominator property for rings of left quotients and will be used in the sequel

without any explicit mention to it.

Lemma 2.2.3. If N is a gr-dense submodule of a G-module M , then given

0 6= xσ ∈ Mσ and yi
τi
∈ Mτi

, with i ∈ {1, . . . , n}, there exists aα ∈ Aα such

that aαxσ 6= 0 and aαy
i
τi
∈ Nατi

.

Proof. Take 0 6= xσ ∈Mσ and yi
τi
∈Mτi

for i ∈ {1, . . . , n}. We use induction

on n. For n = 1 we simply apply the definition of gr-dense. Let us suppose

we have found aγ ∈ Aγ with aγxσ 6= 0 and aγy
i
τi
∈ Nτi

for i ∈ {1, . . . , n− 1}.
Apply the definition of gr-density to the elements aγxσ 6= 0 and aγy

n
τn
∈

Mγτn to find bδ ∈ Aδ such that bδaγxσ 6= 0 and bδ(aγy
n
τn

) ∈ Nδγτn .

Now cδγ := bδaγ ∈ Aδγ is the desired element because bδaγy
i
τi
∈ AδNγτi

⊆
(N is a G-graded A-module) Nδγτi

for i ∈ {1, . . . , n− 1}, as desired.

Lemma 2.2.4. Let M , N and P be G-graded A-modules such that M ≤
N ≤ P . Then M is a gr-dense submodule of P if and only if N is a gr-dense

submodule of P and M is a gr-dense submodule of N .

Proof. First, suppose that M is a gr-dense submodule of P . Let us check that

N is also a gr-dense submodule of P . To achieve that, take 0 6= pσ ∈ Pσ

and qτ ∈ Pτ . By hypothesis there exists aµ ∈ Aµ such that aµpσ 6= 0 and

aµqτ ∈ Mµτ ⊆ (M is a gr-submodule of N) Nµτ . Now consider 0 6= nσ ∈ Nσ

and mτ ∈ Nτ ; since N is a gr-submodule of P , then nσ ∈ Pσ and mτ ∈ Pτ

and then we find aµ ∈ Aµ verifying aµnσ 6= 0 and aµmτ ∈Mµτ .
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To see the converse, assume 0 6= pσ ∈ Pσ and qτ ∈ Pτ . Use that N is a

gr-dense submodule of P and (2.2.3) to find bµ ∈ Aµ such that 0 6= bµpσ,

bµpσ ∈ Nµσ and bµqτ ∈ Nµτ Apply that M is a gr-dense submodule of N

to get cγ ∈ Aγ with cγbµpσ 6= 0 and cγbµqτ ∈ Mγµτ so that the element

aγµ := cγbµ ∈ Aγτ verifies aγµpσ 6= 0 and aγµqτ ∈Mγ(µτ), as we needed.

Given a graded A-module M = ⊕σ∈GMσ and a gr-submodule N =

⊕σ∈GNσ of M , HOMA(N,M)σ denotes the abelian group of all gr-

morphisms of degree σ, that is, f ∈ HOMA(N,M)τ if and only if f : N →
M is a homomorphism of A-modules and (Nσ)f ⊆ Mστ for every σ ∈ G.

When σ = e (the identity element of the group G) we simply say graded

homomorphism. The abelian group ⊕σ∈GHOMA(N,M)σ will be denoted by

HOMA(N,M).

Analogously right and graded homomorphisms are defined. We recall that

we are writing the homomorphisms of left modules acting on the right hand

side. It is clear that, when M = N , the composition of a morphism of degree

σ with one of degree τ is of degree στ .

Lemma 2.2.5. Let M = ⊕σ∈GMσ be a graded A-module, with A = ⊕σ∈GAσ

a graded algebra. Then:

(i) For every N,P ∈ Sgr−d(M) we have N + P,N ∩ P ∈ Sgr−d(M).

(ii) For every N,P ∈ Sgr−d(M) and every f ∈ HOMA(N,M), f =
∑

σ fσ,

we have ∩σf
−1
σ (P ) ∈ Sgr−d(M). In particular, f ∈ HOMA(N,M)τ implies

f−1(P ) = ⊕σ∈Gf
−1(Pσ) ∈ Sgr−d(M).

(iii) If N,P ∈ Sgr−d(M) and f ∈ HOMA(N,M) are such that P ⊆ N and

f|P = 0, then f = 0.

Proof. (i) To see N + P ∈ Sgr−d(M) apply (2.2.4) to the chain of gr-

submodules N ≤ N + P ≤ M . Let us see N ∩ P ∈ Sgr−d(M). Take

0 6= xσ ∈Mσ and yτ ∈Mτ . Apply (2.2.3) to find bγ ∈ Aγ such that bγxσ 6= 0,

bγyτ ∈ Nγτ and bγxσ ∈ Nγσ.
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Now, there exists cδ ∈ Aδ such that cδbγxσ 6= 0 and cδbγyτ ∈ Pγδτ . But

aδγ := cδbγ is such that aδγxσ 6= 0 and aδγyτ ∈ Pδγτ ∩AδNγτ ⊆ Pδγτ ∩Nδγτ =

(P ∩N)(δγ)τ .

(ii) For every σ ∈ G, f−1
σ (P ) is a gr-submodule of M : If x ∈ f−1

σ (P ) and

x =
∑

τ∈G xτ ∈ ⊕τ∈GNτ then

(x)fσ = (
∑
τ∈G

xτ )fσ =
∑
τ∈G

(xτ )fσ ∈Mτσ ∩ P.

Now fσ being a morphism of degree σ implies that {(xτ )fσ} is indeed the

set of homogeneous components of (x)fσ so that (xτ )fσ ∈ Pτσ since P is a

gr-submodule of M . Therefore xτ ∈ f−1
σ (P ) for every τ ∈ G.

Now, consider 0 6= xτ ∈ Mτ and yα ∈ Mα and choose aβ ∈ Aβ such

that aβxτ 6= 0 and aβ(yαfσ) ∈ Pβασ for every σ in the support of f , that is,

aβyα ∈ ∩σf
−1
σ (Pβασ) = (∩σf

−1
σ (P ))βα.

(iii) Suppose xf 6= 0 for some x ∈ N . This implies xαfβ 6= 0 for some

α, β ∈ G. Take aτ ∈ Aτ such that 0 6= aτ (xαfβ) and aτxα ∈ Pτα. Then

0 6= aτ (xα)f = (aτxα)f ∈ (Pτα)f ⊆ (P )f = 0, a contradiction.

Given G-graded algebras A and B with A a subalgebra of B, we say that

A is a graded subalgebra (or gr-subalgebra for short) of B if Aσ ⊆ Bσ

for all σ ∈ G.

At this point we have already gathered all the ingredients to give the

definition of graded left quotient algebra of a graded algebra.

Definitions 2.2.6. Let A = ⊕σ∈GAσ be a gr-subalgebra of a gr-algebra

Q = ⊕σ∈GQσ. We say that Q is a gr-left quotient algebra of A if AA is a

gr-dense submodule of AQ. If given a nonzero element qσ ∈ Qσ there exists

xτ ∈ Aτ such that 0 6= xτqσ ∈ Aτσ, we say that Q is a weak gr-left quotient

algebra of A.

Remark 2.2.7. These definitions are consistent with the non-graded ones in

the sense that for a subalgebra A of an algebra Q, if we consider A and Q as

graded algebras with the trivial grading, then Q is a (weak) gr-left quotient

algebra of A if and only if Q is a (weak) left quotient algebra of A.
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A natural question imposes itself: When does an algebra have a gr-left

algebra of quotients? In the subsequent results we give an answer to this

question.

A homogeneous element xσ of a gr-algebra A = ⊕σ∈GAσ is called a ho-

mogeneous total right zero divisor if it is nonzero and a total right zero

divisor, that is, Axσ = 0.

Lemma 2.2.8. Let A = ⊕σ∈GAσ be a gr-algebra and x ∈ A. If Ix = 0 for

some gr-left ideal I of A, then Ixσ = 0 for every σ ∈ G.

Proof. Fix τ ∈ G. First we see Iτxσ = 0 for every σ ∈ G. Otherwise there

exists yτ ∈ Iτ such that yτxσ 6= 0 for some σ ∈ G. Now since yτ is nonzero

homogeneous element we can deduce that yτx is nonzero and yτx ∈ Iτx ⊆ (I

is graded) Ix = 0, a contradiction. Hence Ixσ = ⊕τIτxσ = 0.

Lemma 2.2.9. A G-graded algebra A has no homogeneous total right zero

divisors if and only if it has no total right zero divisors.

Proof. Suppose that A has no homogeneous total right zero divisors, and

let x be an element in A such that Ax = 0. By (2.2.8) Axσ = 0 for every

σ ∈ G. This implies xσ = 0 for every σ ∈ G. Thus, x = 0. The converse is

obvious.

Lemma 2.2.10. Let A be a G-graded algebra. The following conditions are

equivalent.

(i) A is a gr-algebra of left quotients of itself.

(ii) A has a gr-algebra of left quotients .

(iii) A has no homogeneous total right zero divisors.

(iv) A has no total right zero divisors.

Proof. (i) ⇒ (ii) is obvious.

(ii) ⇒ (i) is a consequence of (2.2.4).

(i) ⇒ (iii). Take xσ with Axσ = 0. If xσ 6= 0 by hypothesis there exists

aµ ∈ Aµ such that aµxσ 6= 0 which is a contradiction. So necessarily xσ = 0.
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(iii) ⇒ (i). Consider 0 6= xσ ∈ Aσ and yτ ∈ Aτ . Then Axσ 6= 0 and

by hypothesis we find a ∈ A such that axσ 6= 0. Write a =
∑

γ∈G aγ. But

xσ being homogeneous implies that there exists aµ with aµxσ 6= 0. Finally,

aµyτ ∈ AµAτ ⊆ Aµτ .

(iii) ⇔ (iv) is (2.2.9).

We proceed to study the relation between being a (weak) gr-left quotient

algebra and being a (weak) left quotient algebra. In the optimal case of gr-

subalgebras, these concepts turn out to be the same.

Lemma 2.2.11. Let A be a gr-subalgebra of a gr-algebra B = ⊕σ∈GBσ. Then

B is a gr-left quotient algebra of A if and only if it is a left quotient algebra

of A.

Proof. Assume first that B is a gr-left algebra of quotients of A. Take elements

p, q ∈ B, p 6= 0 and decompose them into its homogeneous components

p =
∑

σ pσ, q =
∑

τ qτ where of course both sums are indeed finite. There

exists pσ0 6= 0, and the set S = {τ ∈ G : qτ 6= 0} is finite so we can find

r ∈ Aµ ⊆ A such that rpσ0 6= 0 and rqτ ∈ Aµτ ⊆ A for all τ ∈ S and

then for all τ ∈ G because if τ 6∈ G then rqτ = r0 = 0 ∈ A. Now, since

r ∈ Aµ we know that rp =
∑

σ rpσ ∈
⊕

σ Aµσ is the decomposition into

homogeneous components of rp, so rpσ0 6= 0 implies rp 6= 0. On the other

hand, rq =
∑

τ rqτ ∈ A, as we needed.

To prove the converse, take p ∈ Bσ, q ∈ Bτ with p 6= 0. By hypothesis

there exists r ∈ A satisfying 0 6= rp and rq ∈ A. Write r =
∑

µ∈G rµ and

again p being homogeneous yields that
∑

µ rµp is in fact the decomposition

into homogeneous components of the element rp, the latter being nonzero.

Then we can choose rµ0 ∈ Aµ0 with rµ0p 6= 0 and moreover, rµ0q ∈ Aµ0τ

because rq =
∑

µ rµq ∈ AµBτ ⊆
⊕

µBµτ , so these are the homogeneous

components of the element rq seen inside B, but we know it belongs to A

too, so if we decompose it into its homogenous components inside A, say

rq =
∑

γ tγ (with tγ ∈ Aγ), we could see it inside B (thanks to A being a

gr-subalgebra of B), and since the homogeneous components are unique, we
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deduce tγ = rγτ−1q ∈ Aγ so we finally get in particular rµ0q ∈ Aµ0τ and the

proof is complete.

Lemma 2.2.12. Let A be a gr-subalgebra of a gr-algebra B = ⊕σ∈GBσ. Then

B is a weak gr-left quotient algebra of A if and only if it is a weak left quotient

algebra of A.

Proof. Suppose that B is a weak left quotient algebra of A. Then, given

0 6= qσ ∈ Bσ there exists a ∈ A such that 0 6= aqσ ∈ A. Then 0 6= aτqσ ∈ Aτσ

for some τ ∈ G.

Conversely, consider 0 6= q =
∑n

i=1 qσi
∈ B. By reordering the qσi

’s, we

may suppose qσ1 6= 0. Apply that B is a weak gr-left quotient algebra of

A to find x1 ∈ Aτ1 satisfying 0 6= x1qσ1 . We need to find x ∈ A such that

0 6= xq ∈ A. If x1qσi
= 0 for every i ∈ {2, . . . , n}, then x = x1 satisfies this

condition. Otherwise, we may suppose 0 6= x1qσ2 ∈ Bτ1σ2 . Pick x2 ∈ Aτ2 such

that 0 6= x2x1qσ2 . If x2x1qσi
= 0 for every i ∈ {3, . . . , n}, then x = x2x1

satisfies xq = x2x1qσ1 + x2x1qσ1 ∈ Aτ2Aτ1σ1 ⊕ Aτ2τ1σ2 ⊆ A, and xq 6= 0 since

xqσ2 6= 0, and we have finished. Otherwise we repeat this process and conclude

the proof in a finite number of steps.

Remark 2.2.13. Although every gr-left quotient algebra is a weak gr-left

quotient algebra the converse is not true: According to Utumi’s example (see

[73]) of a weak left quotient algebra which is not a left quotient algebra, we

could use (2.2.12) to quickly find an example of a weak gr-left quotient algebra

which is not a gr-left quotient algebra.

Remark 2.2.14. Though every (weak) gr-left quotient algebra is a (weak)

left quotient algebra, the converse fails in general. Consider, for example, the

Z-graded algebra K[x], for a field K. The algebra of fractions K(x) is a left

quotient algebra of K[x] but it is not a (weak) Z-graded left quotient algebra.

However we have shown that it is true when we speak about a (weak) left

quotient algebra of a gr-subalgebra. (See (2.2.11) and (2.2.12).)

Another example of this situation is the following: Take B = K[x] the

graded polynomial algebra with its usual Z-grading, and take A = K[x] with
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the trivial Z-grading, that is: Am = 0 if and only if m 6= 0 and A0 = A. If

we forget about the grading, it is obvious that B = A is a (left) algebra of

quotients of itself because A is unital. But taking q ∈ Bm, m 6= 0 and p 6= 0,

we cannot find any r ∈ A = A0 satisfying rp 6= 0 and rq ∈ A0+m = Am = 0,

because rq = 0 would imply r = 0, the latter being absurd.

As one might expect, the notion of gr-density is going to play a very im-

portant role in the construction process and theory of the maximal quotients

in graded algebras, associative pairs and triple systems.

Definition 2.2.15. Given a gr-left ideal I of an algebra A, we say that I is a

gr-dense left ideal of A if AI is a gr-dense submodule of AA. Let us denote

by I l
gr−d(A) the set of all gr-dense left ideals of A.

Recall that given a subalgebra A of an algebra B and an element q ∈ B,

the following set is a left ideal of A:

(A : q) = {x ∈ A | xq ∈ A}.

Lemma 2.2.16. If B = ⊕σ∈GBσ is a gr-left quotient algebra of a gr-

subalgebra A, then (A : qσ) is a gr-dense left ideal of A for every qσ ∈ Bσ.

Proof. By (2.2.11) and the theory for non-graded algebras, (A : qσ) is a

dense left ideal. Now, we are going to see that it is a gr-left ideal. Consider

x ∈ (A : qσ). Then xqσ =
∑

τ∈G xτqσ ∈ A implies xτqσ ∈ A (i.e., xτ ∈ (A : qσ))

for every τ ∈ G.

The following lemma shows that, as expected, for gr-left ideals the notions

of dense and gr-dense coincide.

Lemma 2.2.17. For a gr-left ideal I of a gr-algebra A = ⊕σ∈GAσ, the fol-

lowing statements are equivalent.

(i) I is a dense left ideal of A.

(ii) I is a gr-dense left ideal of A.

(iii) A is a left quotient algebra of I.
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(iv) A is a gr-left quotient algebra of I.

Proof. (i)⇔(iii) is well-known, and (ii)⇔(iv) can be proved analogously. The

equivalence (iii)⇔(iv) follows from (2.2.11).

A gr-left quotient algebra of a gr-algebra A can be characterized by using

absorption by gr-left ideals of A.

Proposition 2.2.18. Let A be a gr-subalgebra of a gr-algebra B = ⊕σ∈GBσ.

The following statements are equivalent.

(i) B is a gr-left quotient algebra of A.

(ii) For every nonzero q ∈ B there exists a gr-dense left ideal I of A such

that 0 6= Iq ⊆ A.

(iii) For every nonzero qσ ∈ Bσ there exists a gr-left ideal I of A with

ranA(I) = {a ∈ A : Ia = 0} = 0 such that 0 6= Iqσ ⊆ A.

Proof. (i)⇒(ii) Consider a nonzero element q =
∑

σ qσ ∈ B. Let Λ := {σ ∈
G such that qσ 6= 0}. By (2.2.5)(i) and (2.2.16), I := ∩σ∈Λ(A : qσ) is a

gr-dense left ideal of A satisfying 0 6= Iq ⊆ A.

(ii)⇒(iii) Follows from the equivalence (iii) ⇔ (ii) in (2.2.17).

(iii)⇒(i) Consider 0 6= pσ ∈ Bσ and qτ ∈ Bτ . By the hypothesis there

exists a gr-left ideal I of A with ranA(I) = 0 such that 0 6= Ipσ ⊆ A. In

particular, 0 6= yαpσ ∈ Aασ for some yα ∈ Iα. If yαqτ = 0 we have finished.

Otherwise there exists a gr-left ideal J of A satisfying ranA(J) = 0 and

0 6= Jyαqτ ⊆ A. Then 0 6= zβyαpσ for some zβ ∈ Jβ and zβyαqσ ∈ Aβασ.

For the sake of completeness, we are going to explore the inheritance of gr-

left quotient algebras to their local algebras at elements. These local algebras

at elements were first introduced by Meyberg [54] as an attempt to construct

another class of algebras which convey many properties of the original algebra.

Several examples of that use are the works [22] of A. Fernández López, E.

Garćıa Rus, M. Gómez Lozano and M. Siles Molina; [30] and [29] of the
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third and fourth authors. We shall follow the construction in the non-graded

context by making slight differences.

Let A be a graded algebra and consider a ∈ h(A), a ∈ Aσ say. We want

to define a new product A with the rule x ·a y = xay; but in order to achieve

that we must modify the graded structure in the following way: Let us write

Aa
τ := Aσ−1τ as sets. It is obvious that Aa :=

⊕
τ∈GA

a
τ is a Φ-module since it

is just the Φ-module A, but with some reordering in the indices. In fact, as

sets, we have A = Aa. We use this to assure (see [28]) that by preserving the

Φ-module structure and modifying the product to

x ·a y = xay,

then A becomes a Φ-algebra (this new product is called the a-homotope

product). It is in order to check that Aa is also a graded algebra that the

reordering in the homogeneous components is needed: If we take x ∈ Aa
α and

y ∈ Aa
β then x ·a y = xay ∈ Aσ−1αAσAσ−1β ⊂ Aσ−1ασσ−1β = Aσ−1αβ = Aa

αβ.

Thus, Aa is a graded algebra. Now, again using the nongraded case, we know

that

Ker(a) := {x ∈ A : axa = 0}

is a two-sided ideal of Aa. But moreover, since a is an homogeneous element,

it turns out that Ker(a) is a (two-sided) graded ideal of Aa.

Indeed, consider x =
∑

τ xτ ∈ Ker(a). Then 0 = axa =
∑

t axτa, but all

of those summands are in different components because otherwise we have

σα1σ = σα2σ for some α1 6= α2, which is absurd by simplifying σ in both

sides in the previous equality. So we have just seen that axτa are indeed the

homogeneous components of axa = 0 in Aa, and therefore axτa = 0 for all

τ ∈ G. That is: xτ ∈ Ker(a) for every τ ∈ G. We can perform the quotient

algebra

Agr
a := Aa/Ker(a)

and give it a graded structure by defining (Agr
a )α = Aa

α + Ker(a). It is quite

obvious that (Agr
a )α(Agr

a )β ⊂ (Agr
a )αβ and that Agr

a =
∑

τ (A
gr
a )τ .
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The fact that this sum is direct is due to Ker(a) being graded: Suppose

0 + Ker(a) =
∑

τ (xτ + Ker(a)), that is:
∑

τ xτ ∈ Ker(a), which implies xτ ∈
Ker(a) for all τ ∈ G, as needed. At the end of the day, we have constructed

a graded algebra

Agr
a =

⊕
τ∈G

(Agr
a )τ

which we call the graded local algebra at a. Sometimes we refer to that

graded algebra with just Aa, and the reason for doing so is that, if we forget

about gradings, it is precisely the algebra local at a of the non-graded case.

Meanwhile the nongraded local algebra at an element exists for every

a ∈ A, the graded one can only be performed in this way when taking a

homogeneous element a ∈ Aσ.

We can construct an algebra gr-isomorphic (for the definition of gr-

isomorphism (2.4.2) see the following sections) to that given above without

going outside the algebra A. For a ∈ Aσ, we can consider aAa which is clearly

a Φ-submodule of A. Now we can change the product into

axa · aya = axaya

It is well defined because if axa = ax′a and aya = ay′a then axa · aya =

(axa)ya = (ax′a)ya = ax′(aya) = ax′ay′a = ax′a · ay′a.
It is straightforward to check that with these operations aAa becomes an

algebra. We can give it a graded structure by (aAa)τ := a(Aσ−1τ )a. Indeed,

if axa ∈ (aAa)α and aya ∈ (aAa)β, then x ∈ Aσ−1α and y ∈ Aσ−1β. Thus,

xay ∈ Aσ−1αAσAσ−1β ⊆ Aσ−1ασσ−1β = Aσ−1αβ,

that is axa · aya = axaya ∈ (aAa)αβ. And it is clear that aAa =
⊕

τ (aAa)τ .

Moreover, the map:
ϕ : aAa → Agr

a

ara 7→ r + Ker(a)

is an algebra isomorphism, as can be easily checked: It is well defined because

if ara = ar′a then a(r − r′)a = 0, that is, r − r′ ∈ Ker(a). It is evident that

ϕ is a homomorphism of Φ-modules.
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Regarding the algebra structure we compute ϕ(axa · aya) = ϕ(axaya) =

xay+Ker(a) = (x+Ker(a)) ·a (y+Ker(a)) = ϕ(axa) ·ϕ(aya). It is obviously

surjective, and the injectivity is also easy, for if ϕ(axa) = 0 = x + Ker(a),

then x ∈ Ker(a), in other words: axa = 0, as needed.

Moreover, ϕ is a graded isomorphism since ϕ((aAa)τ ) = ϕ(aAσ−1τa) ⊆
Aσ−1τ + Ker(a) = Aa

τ + Ker(a) = (Agr
a )τ .

For the definition of gr-semiprimeness see the following section (2.3.2).

Proposition 2.2.19. Let A and B be graded algebras such that A is a gr-

subalgebra of B. Consider a ∈ Aσ. Then:

(i) Agr
a is a gr-subalgebra of Bgr

a .

If we suppose A to be gr-semiprime, then:

(ii) If B is a gr-left quotient algebra of A then Bgr
a is a gr-left quotient algebra

of Agr
a .

Proof. The inclusion map we use to prove (i) is the natural one:

i : Agr
a → Bgr

a

x+ KerA(a) 7→ x+ KerB(a)

This map is well defined because if x+ KerA(a) = y + KerA(a) then x− y ∈
KerA(a) ⊂ KerB(a). It is injective because if i(x+ KerA(a)) = i(y+ KerA(a))

then x + KerB(a) = y + KerB(a), this is: x − y ∈ KerB(a). Since KerA(a) =

KerB(a) ∩ A and x − y ∈ A, then x + KerA(a) = y + KerA(a). It is clear

that i is a homomorphism of graded algebras. With this in mind, we write

the cosets as x with no danger of ambiguity.

Let us prove (ii). To achieve that, let us consider 0 6= p ∈ (Bgr
a )α and

q ∈ (Bgr
a )β. This means that p ∈ Bσ−1α, q ∈ Bσ−1β and apa 6= 0. Since the

latter is an homogeneous element and B is a gr-left quotient algebra of A, we

can find xγ ∈ Aγ such that xγapa 6= 0, xγapa ∈ A and xγaq ∈ A. The first

two conditions, jointly with A being gr-semiprime, allow us to take y ∈ A

with xγapayxγapa 6= 0.

But since xγapa is an homogeneous element, we are able to find yδ ∈ Rδ

with xγapayδxγapa 6= 0, which implies in particular that ayδxγapa 6= 0, that
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is:

0 6= yδxγap = yδxγ ·a p.

On the other hand we have yδxγ ·a q = yδxγaq ∈ Agr
a . So we have found

r = yδxγ ∈ (Agr
a )σδγ with r ·a p 6= 0 and r ·a q ∈ Agr

a , as needed.

2.3 The graded left singular ideal of a graded

algebra

We begin by stating the graded characterizations of gr-(semi)primeness as we

have in the non-graded case.

Lemma 2.3.1. Let A be a graded algebra. The followings statements are

equivalent.

(i) A has no nonzero graded ideals of square zero.

(ii) A has no nonzero graded left ideals of square zero.

(iii) A has no nonzero graded right ideals of square zero.

(iv) aσAaσ = 0 implies aσ = 0, for all aσ ∈ h(A).

Proof. Obviously both (ii) and (iii) imply (i). Let us see (iv) ⇒ (ii): Consider

I /gr−l A with I2 = 0. If we take y =
∑
yσ ∈ I, then yσ ∈ I implies yσAyσ ⊆

I(AI) ⊆ I2 = 0, and our hypothesis gives yσ = 0, and consequently y = 0,

and therefore I = 0. In a similar fashion (iv) implies both (i) and (iii).

The proof will be over once we are able to establish the implication

“(i) ⇒ (iv)”: Suppose A has no nonzero graded ideals of square zero. Let

us consider I = {a ∈ A : AaA = 0}.
It is an straightforward calculation to see that I is an ideal. And it is also

graded because if we take y =
∑
yσ such that AyA = 0, then AyαA = 0 as

well. Otherwise we might find ri, si ∈ A such that
∑

i r
iyαs

i =
∑

i,β,γ r
i
βyαs

i
γ 6=

0, so we could fix σ0 ∈ G with b :=
∑

βαγ=σ0
ri
βyαs

i
γ 6= 0, but then

0 6=
∑

βαγ=σ0

ri
β(
∑

τ

yτ )s
i
γ ∈ AyA = 0,
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because the σ0-component of the latter is b 6= 0 (we are taking into account

that if we expand the previous sum for any other τ 6= α, the summands

corresponding to yτ lie in Aβτγ which have zero intersection with Aβαγ.) So

have reached a contradiction.

On the other had it is clear that I3 = 0 (and hence I4 = 0). Applying (i)

twice we see I = 0. Now if we consider aσAaσ = 0, we have that AaσA is a

graded ideal of square zero, and then again by (i) we have AaσA = 0, that is,

aσ ∈ I = 0, as we needed.

Definition 2.3.2. If a graded algebra A satisfies the equivalent conditions

above, we say that A is gr-semiprime.

In a similar fashion we can prove an analogue to (2.3.1) for the gr-

primeness, concretely:

Lemma 2.3.3. Let A be a G-graded algebra. The following statements are

equivalent.

(i) If I, J /gr A with IJ = 0, then I = 0 or J = 0.

(ii) If I, J /gr−l A with IJ = 0, then I = 0 or J = 0.

(iii) If I, J /gr−r A with IJ = 0, then I = 0 or J = 0.

(iv) aσAbτ = 0 implies aσ = 0 or bτ = 0, for all aσ, bτ ∈ h(A).

Definition 2.3.4. As above, if a graded algebra A satisfies these equivalent

conditions, we say that A is gr-prime.

It is obvious that for a graded algebra, (semi)primeness implies graded-

(semi)primeness . The converses are not true. For that matter, we exhibit

an example. However, we note here that the converses do hold for Z-graded

rings: use [56, Proposition II.1.4 (1)] (note that the ideal {0} is always graded

and that following their definition, a ring is graded if and only if so is the zero

ideal {0}) and (2.3.3) (iv) for the prime case, with obvious generalizations to

the semiprime case.
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Definition 2.3.5. For a commutative algebra F , the algebra of dual num-

bers over F is defined by

A = F (ε) = F · 1⊕ F · ε, with ε2 = 0.

Lemma 2.3.6. A = F (ε) is a commutative unital non-(semi)prime non-

simple algebra. If char(F ) = 2, then A may be equipped with a non-standard

Z2-grading given by

A0 = F · 1 , A1 = {a · 1 + a · ε : a ∈ F} .

If F is a field, then the only non-trivial ideal of A is

I = F · ε.

Moreover, A is gr-simple and consequently it is both gr-semiprime and gr-

prime.

Proof. If F is commutative, it is a straightforward computation to show that

A is indeed a commutative algebra. In order to prove that it is not semiprime

(and consequently not prime) we just take into account that the subspace

I given above is a nonzero ideal with square zero. It is easy to see that A0

and A1 are subspaces of A such that A = A0 ⊕ A1, A0A1 = A1A0 ⊆ A1 and

A0A0 ⊆ A0. We use char(F ) = 2 just to ensure A1A1 ⊆ A0, because in that

situation we get

(1 + ε)2 = 1 + 2ε+ ε2 = 1.

Thus, A is a Z2-graded algebra as well.

Suppose now that F is a field. If J ∈ I(A), J 6= A, then for every

0 6= a ∈ F and b ∈ F we have a · 1 + b · ε /∈ J . Otherwise

(a−1 · 1− ba−2 · ε)(a · 1 + b · ε) = 1 · 1 ∈ J

would lead to J = A. So J ⊆ I. Now F being a field easily forces either J = 0

or J = I, as we needed.

It is obvious that although I is an ideal, it is not graded: If we consider

the element ε, then its homogeneous components (ε0 = −1 and ε1 = 1 + ε)

no longer belong to I.
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The idea of singular ideal of an algebra appears in a number of papers and

it has been proved to be a useful tool when studying both maximal rings of

left quotients (as we mentioned) and Fountain-Gould left orders (see e.g. [30]

and [28]). We proceed to give a similar notion in a graded context and use it

to prove results in coming sections of this thesis (it will become a key tool in

the graded version of Johnson’s Theorem, for example). First, we need some

lemmas.

Definition 2.3.7. We say a nonzero graded left ideal I is a graded left

essential ideal of A if given any other nonzero graded left ideal J of A, we

have I ∩ J 6= 0. We denote this property by I /e
gr−l A.

Now we are able to adapt a series of results in [56] to the non unital

context.

Lemma 2.3.8. Let A be a graded algebra without total (homogeneous) right

zero divisors and consider I /gr−lA and K/lA (not necessarily graded). Then:

(i) I /e
gr−l A if and only if for every 0 6= xσ ∈ Aσ there exists aτ ∈ Aτ such

that 0 6= aτxσ ∈ Iτσ.

(ii) K /e
l A if and only if for every 0 6= x ∈ A there exists a ∈ A such that

0 6= ax ∈ K.

(iii) If A is a weak gr-left algebra of quotients of I or I /d
gr−lA, then I /e

gr−lA.

(iv) If A is a weak left algebra of quotients of K or K /d
l A, then K /e

l A.

(v) I /e
gr−l A if and only if I /e

l A.

Proof. Let first see (i): Suppose I /e
gr−lA and take 0 6= xσ ∈ Aσ. Now as A has

no homogeneous total right zero divisors, we have that Axσ (being a graded

left ideal) is nonzero. Our hypothesis applies now to give 0 6= I∩Axσ. Choose

a ∈ A with 0 6= axσ ∈ I. If we decompose the latter into its homogeneous

components axσ =
∑

τ aτxσ, then at least one is nonzero, and as I is graded

we find aτ ∈ Aτ with 0 6= aτxσ ∈ I.
To prove the converse take 0 6= J /gr−lA, then we could find 0 6= jσ ∈ Jσ ⊆

Aσ and then by an application of the hypothesis, there exists aτ ∈ Aτ such
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that 0 6= aτjσ ∈ I. But aτjσ ∈ AJ ⊆ J . That is, I ∩ J 6= 0. Forgetting about

the grading, one may prove in an similar way (ii). These two propositions

immediately imply (iii) and (iv).

To prove (v) we use the characterizations given in (i) and (ii). Suppose

that I /e
gr−l A and take 0 6= a =

∑
σ aσ ∈ A. Use induction on # Supp(a),

where Supp(a) := {σ ∈ G : aσ 6= 0}. In the basis case we have that a is

homogeneous, and we finish. Suppose on the contrary that # Supp(a) = n >

1. Thus, we find 0 6= aσn and we are in conditions to apply our hypothesis to

find u ∈ A such that 0 6= uaσn .

Repeating an argument used above, we may find in fact 0 6= uτ ∈ Aτ with

0 6= uτaσn ∈ I. If now uτ

∑
σ 6=σn

aσ = 0 then uτa = uτaσn ∈ I and we would

have finished. If that is not the case, we apply the induction hypothesis to find

z ∈ A (in fact zα ∈ Aα) with 0 6= b = zαuτ (a−aσn) ∈ I, which implies zαuτa ∈
I and it is nonzero because b is nothing but part of its decomposition into

homogeneous components. This proves I /e
l A. The converse is obvious.

Some properties relating gr-semiprimeness and algebras of left quotients

remain true in the graded context. First we give a lemma which contains basic

facts about the construction of graded algebras of left quotients and ideals

therein.

Lemma 2.3.9. Let A be a graded algebra and I /gr A. Then the quotient

algebra A := A/I may be endowed with a G-graded structure by

Aσ := Aσ + I

and thus the natural algebra epimorphism π : A→ A becomes a graded algebra

epimorphism. Moreover, for every J /gr A we may find J /gr A such that

π(J) = J = J .

Proof. The only thing which is not completely obvious in the first assertion

is that the sum
∑

τ Aτ is direct, and this is due to the fact of I being graded:

Indeed, if 0 =
∑

σ(xσ + I) = (
∑

σ xσ) + I then
∑

σ xσ ∈ I, and that implies

xσ ∈ I. That is, xσ + I = 0 for every σ ∈ G.
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If we are given now J /grA, it is well-known that J := π−1(J )/A, but it is

also graded since if we consider x =
∑

σ xσ ∈ J , then π(x) =
∑

σ π(xσ) ∈ J .

But π is a graded morphism of degree e ∈ G, and therefore π(xσ) ∈ Aσ, that

is {π(xσ) : σ ∈ G} is the decomposition into homogeneous components of

π(x). And since J is a graded ideal, then π(xσ) ∈ J , that is: xσ ∈ J . Now

since π is surjective, it is evident that J = J .

We will be using the following lemma even without an explicit reference

to it.

Lemma 2.3.10. Let A be a graded algebra L1, L2 /gr−l A, R1, R2 /gr−r A and

xσ ∈ Aσ. Then:

(i) L1 + L2, L1L2, L1 ∩ L2, L1xσ /gr−l A.

(ii) R1 +R2, R1R2, R1 ∩R2, xσR1 /gr−r A.

(iii) lan(R1) /gr A and ran(L1) /gr A.

Proof. It is well-known that all of them are left (respectively right, two-sided)

ideals. For example, to see that L1L2 is indeed graded, we would consider

x =
∑

i aibi with ai ∈ L1 and bi ∈ L2. Then ai =
∑

σ a
i
σ with ai

σ ∈ L1

since L1 is graded. Analogously bi =
∑

τ b
i
τ , b

i
τ ∈ L2. If we decompose x into

homogeneous components, in the end we obtain sum of some elements of the

form ai
σb

i
τ , all of them living inside L1L2.

The case of the sum and intersection are similar. Now if we have z =

yxσ ∈ L1xσ, decomposing y =
∑

τ yτ with yτ ∈ L1, since xσ is homogeneous,

we know that
∑

τ yτxσ is indeed the decomposition into homogeneous com-

ponents of z, all of them in L1xσ. To see that lan(R1) is graded we consider

x =
∑

τ xτ ∈ lan(R1), that is xR1 = 0. We see that xτ (R1)α = 0. Otherwise we

would find rα ∈ R1 with xτrα 6= 0, which would imply that 0 6= xrα ∈ xR1 = 0

a contradiction. Thus, xτR1 = xτ (
⊕

α(R1)α) =
⊕

α xτ (R1)α = 0. That is,

xτ ∈ lan(R1).

Lemma 2.3.11. Let A be a gr-semiprime algebra and I /gr A. Then:

(i) lan(I) = ran(I) = ann(I)(:= lan(I) ∩ ran(I)) /gr A.
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(ii) I ∩ ann(I) = 0.

(iii) The quotient algebra A := A/ ann(I) is gr-semiprime.

(iv) I /e
gr A if and only if ann(I) = 0.

(v) I ⊕ ann(I) /e
gr A.

(vi) I /e
gr A.

Proof. Let us see (i). By (2.3.10) we know all of them are two-sided graded

ideals. We prove lan(I) ⊂ ran(I). For that, we consider x =
∑

σ xσ ∈ lan(I)

and hence xσ ∈ lan(I). Again by (2.3.10) we have that Ixσ/gr−lA and (Ixσ)2 =

I(xσI)xσ = I(0)xσ = 0. But A being gr-semiprime and (2.3.1) imply Ixσ = 0,

that is, xσ ∈ ran(I). Therefore x =
∑

σ xσ ∈ ran(I), as needed. Analogously

one can prove ran(I) ⊆ lan(I), and hence both lan(I) and ran(I) drop down

to ann(I).

To see (ii) we use again (2.3.10) to see that I ∩ ann(I) /gr A. But (I ∩
ann(I))2 ⊆ I ann(I) = 0. Now the result follows from the gr-semiprimeness

of A.

We turn our attention to (iii). Let us consider J /gr A with J 2 = 0.

Apply (2.3.9) to find J /gr A with J = J . So we have J
2

= 0, or equivalently

J2 ⊆ ann(I). But by (2.3.10), JI is a graded ideal and moreover: (JI)2 =

J(IJ)I ⊆ J2I = 0 since J2 ⊆ ann(I). Now the gr-semiprimeness of A applies

to get JI = 0, that is: J ⊂ lan(I) = ann(I) by (i). Thus, we have reached

J = J = 0.

We prove now (iv). Suppose that ann(I) = 0 and consider 0 6= J /gr A,

that implies J 6⊆ ran(I) =(i) ann(I) = 0 then 0 6= IJ ⊂ I ∩ J . Thus, we have

just proved I /e
gr A. The converse is even more obvious with (ii).

Now (v) is quite easy because: By (ii) the sum is indeed direct and by

(2.3.10) we know that I⊕ann(I) is a graded ideal. Let M be the graded ideal

ann(I ⊕ ann(I)). Thus, MI = 0 = M ann(I) and then

M ⊆ lan(I) ∩ lan(ann(I)) = ann(I) ∩ ann(ann(I))

by (i). But the latter is zero by (ii). Now (iv) applies.
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Let us deal with (vi). First, by (iii) A is gr-semiprime and now by (iv)

we just need to prove that 0 = annA(I) =(i) lanA(I). Take then x ∈ A with

xI = 0, that is, xI ⊆ ann(I) ∩ I =(ii) 0. Therefore x ∈ lan(I) =(i) ann(I). In

other words, x = 0, as we needed.

We are trying to get a notion of singular ideal in the graded context. With

this in mind, we are ready to prove the following lemma.

Lemma 2.3.12. The following propositions hold:

(i) If x ∈ h(A) then lan(x) = {y ∈ A : yx = 0} is a graded left ideal of A.

(ii) If we denote Zgr−l(A)σ := {x ∈ Aσ : lan(x) /e
gr−l A}, then it is a Φ-

submodule of A and Zgr−l(A) :=
⊕

σ∈G Zgr−l(A)σ is a two-sided graded ideal

of A.

Proof. If we consider ρx :A A →A A given by ρx(y) = yx, it is obvious that

it is a Φ-module homomorphism and then lan(x) = Ker(ρx) which we know

is a Φ-submodule of A. If is also a left ideal because if a ∈ A and y ∈ lan(x)

then yx = 0. Thus, ayx = 0 as well, that is: ay ∈ lan(x).

Moreover, it is a graded left ideal because it is the kernel of a graded

homomorphism: Say x ∈ Aσ, then it is trivial that ρx ∈ HOMA(A,A)σ and

then if we take y =
∑
yτ ∈ Ker(ρx), we get 0 = ρx(y) =

∑
τ ρx(yτ ) ∈

⊕
τ Aστ ,

that is, ρx(yτ ) = 0. This proves (i).

Let us see (ii). Take x, y ∈ Zgr−l(A)σ, and α ∈ Φ. Thus, lan(x), lan(y)/e
gr−l

A. As x − y, αx ∈ h(A) we can apply (i) to get that lan(x − y), lan(αx) are

both graded left ideals. Now lan(x) ∩ lan(y) ⊆ lan(x − y) implies that the

former is essential as well. The same holds with lan(x) ⊆ lan(αx). All this

shows that Zgr−l(A) is a Φ-submodule of A.

Take now aτ ∈ Aτ . On one hand we have lan(xσ) ⊆ lan(xσaτ ) which

jointly with the fact that xσaτ ∈ h(A) and hence lan(xσaτ )/gr−lA, give xσaτ ∈
Zgr−l(A)στ . On the other hand we are left to show that lan(aτxσ) /e

gr−lA. We

already know that it is a graded left ideal, and to prove the essentiality we

consider J /e
gr−l A. We pick up a nonzero homogeneous element jρ ∈ Jρ and
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we have two different cases: If jρaτxσ = 0 then 0 6= jρ ∈ lan(aτxσ) ∩ Jρ. In

case jρaτxσ 6= 0, then aτ being a homogeneous element easily implies that

Jaτ 6= 0 is a graded left ideal, and lan(xσ) being essential as a graded left

ideal implies Jaτ ∩ lan(xσ) 6= 0. We may therefore take y ∈ J with 0 6= yaτ

and yaτ ∈ lan(xσ). So we have 0 6= y ∈ J ∩ lan(aτxσ) again. Now extending

by linearity we have AZgr−l(A), Zgr−l(A)A ⊆ Zgr−l(A). We have constructed

it to be also graded.

Definition 2.3.13. The ideal Zgr−l(A) in the lemma above is called the

graded left singular ideal of A. In a similar way we could talk about the

graded right singular ideal of A (denoted by Zgr−r(A)). The graded singular

ideal of A is defined as Zgr(A) = Zgr−l(A) ∩ Zgr−r(A).

Remark 2.3.14. It is indeed a good generalization because if we consider A

with trivial grading, then Zgr−l(A) = Zl(A).

Proposition 2.3.15. The following assertions hold:

(i) Zgr−l(A) = {x ∈ A : Ix = 0 for some I /e
gr−l A}.

(ii) In particular, Zgr−l(A) ⊆ Zl(A), but they need not coincide.

Proof. Consider first x =
∑
xσ such that lan(xσ) ∈ Ie

gr−l(A). As the set

Supp(x) is finite, we can conclude that

I :=
⋂

σ∈Supp(x)

lan(xσ) ∈ Ie
gr−l(A).

A straightforward computation shows that Ix = 0. On the other hand, sup-

pose we have x ∈ A and I ∈ Ie
gr−l(A) with Ix = 0. Let us see that indeed

Ixσ = 0, for every σ ∈ G. If that is not the case, we have Ixσ 6= 0. Take y ∈ I
with yxσ 6= 0. But xσ being homogeneous and I being graded imply that there

exists yτ ∈ I with yτxσ 6= 0, and consequently 0 6= yτx ∈ Ix = 0, which is an

absurd. Thus, we have proved that I ⊆ lan(xσ), the former being essential,

and the latter being a graded left ideal imply that lan(xσ) ∈ Ie
gr−l(A), as we

needed.
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To see (ii), recall (see [32, p. 30]) that

Zl(A) = {x ∈ A : Ix = 0 for some I /e
l A} = {x ∈ A : lan(x) /e

l A}

and apply (i) and (2.3.8) (v). To show an example of these two ideals being

different, we could go back to the example of (2.3.6). First of all, since A is

unital, then 1 /∈ Zl(A). On the other hand we have

lan(ε) = F · ε ∈ Ie
l (A) implies 0 6= ε ∈ Zl(A).

Then it easily follows Zgr−l(A) = 0 6= I = Zl(A).

We continue with some properties which hold in the non-graded context

as well. First, we introduce two definitions.

Definitions 2.3.16. Let M be a graded module. We say that M is gr-left

singular if Zgr−l(M) = M , and we say that M is gr-left nonsingular if

Zgr−l(M) = 0. Given A a graded algebra, we say that A is gr-left singular

(resp. gr-left nonsingular) if so is AA

Remark 2.3.17. Note that the notions of gr-left singular and gr-left non-

singular for modules (and hence for algebras) are not opposite one another,

since there exist modules that are neither left singular nor left nonsingular.

[32]. By considering trivial gradings, one gets examples of graded algebras

(Z-algebras) which are neither gr-singular nor gr-nonsingular.

The graded left singular ideal has nice properties when we work either

in a context of graded algebras of left quotients or under the assumption

of gr-semiprimeness. In the proposition which follows we consider the first

situation.

Proposition 2.3.18. Let A and B be graded algebras such that B is a graded

left quotient algebra of A. Then:

(i) If 0 6= I /gr−l B, then 0 6= I ∩ A /gr−l A.

(ii) If A is gr-(semi)prime, then so is B.
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(iii) If X ⊆ A, then lanA(X) = A ∩ lanB(X).

(iv) If X, Y ⊆ A, then lanA(X) ⊆ lanA(Y ) if and only if lanB(X) ⊆ lanB(Y ).

(v) Zgr−l(A) = A ∩ Zgr−l(B).

(vi) A is gr-left nonsingular if and only if so is B.

Proof. To see (i) we make use of (2.2.17) to apply [28, Lemma 1.1.5] to obtain

0 6= I ∩ A, the latter being a graded left ideal of A, as it is easily seen.

To prove (ii) we suppose we are given nonzero ideals I, J /gr B such that

IJ = 0. We may apply (i) to obtain 0 6= I ∩A, J ∩A which are (left) graded

ideals of A with (I∩A)(J∩A) ⊆ IJ = 0, which contradicts A being gr-prime.

We might do the same for gr-semiprimeness.

(iii) and (iv) are straightforward.

Let us turn our attention to (v): Consider r =
∑
rσ such that lanA(rσ)/e

gr−l

A. We already know that lanB(rσ) /gr−l B. Let us see the essentiality: If

0 6= J /gr−l B, by (i) 0 6= J ∩ A /gr−l A, so 0 6= J ∩ A ∩ lanA(rσ) =(iii)

J ∩ A ∩ lanB(rσ) ∩ A ⊆ J ∩ lanB(rσ).

To see the other inclusion we take x =
∑
xσ such that x ∈ A and

lanB(xσ) /e
gr−l B. As A is a graded subalgebra of B, we deduce that xσ ∈ Aσ

as well. We would have finished if we could establish lanA(xσ)/e
gr−lA. We use

(2.3.8) (i): Take 0 6= bτ ∈ Aτ and find dγ ∈ Bγ such that 0 6= dγbτ ∈ lanB(xσ).

But B being a gr-left algebra of quotients of A allows us to pick eα ∈ Aα with

0 6= (eαdγ)bτ ∈ Aαγτ . Thus, dγbτxσ = 0 implies 0 6= (eαdγ)bτ ∈ lanA(xσ) as

needed.

Now (vi) is straightforward using (v). If we suppose 0 = Zgr−l(A) =

A ∩ Zgr−l(B), then by (i) we get Zgr−l(B) = 0. The converse es even more

obvious.

For commutative algebras, there is a strong connection between gr-

semiprimeness and the gr-left singular ideal. Concretely we can prove:

Proposition 2.3.19. Let A be a graded commutative algebra. Then A is

gr-semiprime if and only if A is gr-nonsingular.
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Proof. Let us suppose that A is gr-semiprime and let us take xσ ∈ Zgr−l(A)σ.

Then lan(xσ) /e
gr−l A. We consider then I(xσ) = Axσ + Φxσ which is nothing

but the (left and hence two-sided) graded ideal generated by xσ inside A.

Now if xσ 6= 0, then obviously I(xσ) 6= 0 and therefore lan(xσ) ∩ I(xσ) 6= 0

but its square equals zero because if we take y, z ∈ lan(xσ)∩ I(xσ) and write

y = rxσ + λxσ then as A is commutative yz = r(zxσ) + λ(zxσ), which is

zero since z ∈ lan(xσ). But this contradicts the fact of A being gr-semiprime

and thus we must refuse the hypothesis of xσ 6= 0. That is, xσ = 0 for every

σ ∈ G.

Suppose on the contrary that A is gr-nonsingular and consider aσ ∈ Aσ

with aσAaσ = 0. By (2.3.1) we must show that aσ = 0. In order to prove

that, it is enough to see that aσ ∈ Zgr−l(A)σ = 0. Take then 0 6= I /gr−lA and

an element 0 6= x ∈ I. We have two different cases. First, if xaσ = 0, then

0 6= x ∈ lan(aσ)∩ I. While if xaσ 6= 0, as we have aσxaσ ∈ aσAaσ = 0, and A

is commutative, then xa2
σ = 0, that is: 0 6= xaσ ∈ lan(aσ) ∩ I. And we have

seen that, in both cases we reach lan(aσ) ∩ I 6= 0.

In some typical graded algebras like the algebra of polynomials in one

indeterminate x, or the algebra of generalized polynomials in x and x−1 with

xx−1 = x−1x = 1, the computation of the gr-left singular ideal is very well

possible. Concretely, in the following example one can see that there is indeed

a connection between the gr-left singular ideal of a graded algebra and its

non-graded left singular ideal.

Proposition 2.3.20. Let A be any algebra (not necessarily unital). And con-

sider the graded algebras A[x] and A[x, x−1] with the usual Z-gradings. Then:

Zgr−l(A[x]) = Zl(A)[x] and Zgr−l(A[x, x−1]) = Zl(A)[x, x−1].

Proof. We prove that Zgr−l(A[x]) = Zl(A)[x] (in a similar fashion one can

prove the other equality). Looking at these two algebras, it is obvious that

both are graded subalgebras of A[x]. Thus, in order to prove that these

algebras do coincide, it is sufficient to show that they have the same n-

componentes, for every n ∈ N.
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First, we take a ∈ Zgr−l(A[x])n. Then a ∈ A[x]n with lan(a) /e
gr−l A[x].

That is, a = rxn with lan(rxn) /e
gr−l A[x].

We are going to prove that lan(r) /e
l A: Consider 0 6= I /l A. We can

form I[x] the polynomial algebra with coefficients in I, which is a nonzero

graded left ideal of A[x] and therefore lan(rxn)∩ I[x] 6= 0. Thus, there exists

0 6= i(x) = a0 + . . . + amx
m with ai ∈ I and am 6= 0, such that i(x)rxn = 0.

But the latter implies amr = 0 and therefore lan(r) ∩ I 6= 0, as needed. We

have seen that a = rxn ∈ Zl(A)[x]n.

To prove the converse, we take rxn ∈ Zl(A)[x]n and consider 0 6= J /gr−l

A[x]. As J is graded we can assure that there exists some 0 6= amx
m ∈ J , and

then the set of all m-components of elements of J , I := Πm(J), is nonzero.

It is also clear that it is a left ideal of A by the way the product of

polynomials is performed and the fact of J being a graded left ideal of A[x].

Now, I ∩ lan(r) 6= 0 and we may take 0 6= i ∈ I such that ir = 0. We find

j(x) = . . . + ixm + . . . ∈ J , and since J is graded, then 0 6= ixm ∈ J . But

(ixm)(rxn) = (ir)xm+n = 0, that is, 0 6= ixm ∈ J ∩ lan(rxn). We have just

proved that lan(rxn) /e
gr−l A[x] and thus rxn ∈ Zgr−l(A[x])n.

We come back to the gr-semiprimeness context and prove several pro-

perties. First we recall and generalize the notion of pseudo-uniformness for

elements that we had in non-graded ring theory.

Proposition 2.3.21. Let A be a graded algebra and 0 6= aσ ∈ Aσ. The

following conditions are equivalent:

(i) lan(aσ) = lan(aσxτ ) for every xτ ∈ Aτ such that aσxτ 6= 0.

(ii) ran(aσ) = ran(xτaσ) for every xτ ∈ Aτ such that xτaσ 6= 0.

Proof. We will prove that (i) implies (ii) and we would proceed in analogous

fashion with (ii) implying (i). Let us consider then xτ ∈ Aτ such that xτaσ 6=
0, and suppose y ∈ ran(xτaσ). We could have proved a right analogue of

(2.3.12) (i), and then yα ∈ ran(xτaσ). That is: xτaσyα = 0, or in other words,

xτ ∈ lan(aσyα), for every α ∈ G.
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Now suppose we can find α0 ∈ G with aσyα0 6= 0. In that case, by hypoth-

esis we get lan(aσyα0) = lan(aσ) and therefore xτ ∈ lan(aσ) which is absurd.

Then we have aσyα = 0 for every α ∈ G, that is aσy = 0, or y ∈ ran(aσ). And

we have proved one containment. The converse is trivial.

Definition 2.3.22. Any (homogeneous) element aσ in a graded algebra A

satisfying the equivalent conditions above is called a pseudo-uniform ele-

ment.

Here, we collect good properties of the gr-singular ideal within the gr-

semiprime setting.

Proposition 2.3.23. Let A be a gr-semiprime graded algebra and I /gr A.

Then:

(i) Zgr−l(I) = I ∩ Zgr−l(A) and Zgr−r(I) = I ∩ Zgr−r(A).

(ii) If I /e
gr A, then: I is left (respectively right) nonsingular if and only if so

is A.

(iii) Neither Zgr−l(A) nor Zgr−r(A) contain nonzero pseudo-uniform ele-

ments.

(iv) If A satisfies the ascendent chain condition (a.c.c.) for the annihilators of

the form lan(x) with x ∈ h(A) then A is both gr-left and gr-right nonsingular.

Proof. We see the left hand side part of (i) (the right one is similar since

the notion of gr-semiprimeness is left-right symmetric). We take then x =∑
σ xσ ∈ Zgr−l(I). This means that xσ ∈ Iσ and lanI(xσ)/e

gr−lI. It is clear that

lanA(xσ)/gr−lA and we want to see that it is indeed essential. For that purpose,

we consider 0 6= J /gr−lA and distinguish two cases. The first being 0 = I∩J .

If we are in this situation then on one hand we have xσJ ⊆ IJ ⊆ I ∩ J = 0

and on the other hand we have by (2.3.10) that Jxσ /gr−l A. Joining those

things with (Jxσ)2 = J(xσJ)xσ = 0, and the gr-semiprimeness of A we finally

deduce that Jxσ = 0, that is, J ⊆ lanA(xσ) and then J ∩ lanA(xσ) = J 6= 0.
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The second case is 0 6= I ∩ J . In here we would have a nonzero graded

ideal of I and therefore 0 6= I∩J∩ lanI(xσ) ⊆ J∩ lanA(xσ). In both situations

we reach 0 6= J ∩ lanA(xσ).

We prove now the reverse inclusion. We take x =
∑

σ xσ ∈ I ∩ Zgr−l(A).

What we have then is that xσ ∈ Iσ (since I is graded) and lanA(xσ) /e
gr−l A

(by the very definition of left singular ideal).

Now it is clear that lanI(xσ)/gr−l I, and we are left to show that the latter

is in fact essential. We pick up 0 6= M /gr−l I and consider IM ⊆ M which

is in fact a graded left ideal of A. If IM = 0 then (MA)M ⊆ IM = 0.

But since M 6= 0 and it is graded, we might find 0 6= yσ ∈ M , but then

yσAyσ ⊆ MAM = 0 and since A is gr-semiprime we would obtain yσ = 0

which is a contradiction. Therefore, this case cannot happen. Thus, we have

no other option than IM 6= 0 and consequently

0 6= IM ∩ lanA(xσ) ⊆M ∩ (I ∩ lanA(xσ)) = M ∩ lanI(xσ).

Then we have completed the proof of (i) and (ii) follows easily from it.

To prove (iii), suppose that we may find 0 6= xσ ∈ Zgr−l(A)σ which is

a pseudo-uniform element. Since A is gr-semiprime we find a ∈ A such that

xσaxσ 6= 0. And moreover, if we write a =
∑

τ aτ then it is clear that we could

find at least one aτ with xσaτxσ 6= 0. Now by (2.3.10) we have Axσaτ 6= 0 and

since lan(xσ)/e
gr−lA we end up with Axσaτ∩lan(xσ) 6= 0 and then there exists

z ∈ A such that zxσaτ 6= 0 and zxσaτxσ = 0 which implies, jointly with the

fact of xσ being a pseudo-uniform element, that z ∈ lan(xσaτxσ) = lan(xσ), a

contradiction. Now the left-right symmetry of (2.3.21) applies to prove that

Zgr−r(A) does not contain pseudo-uniform elements.

Let us prove (iv). Suppose 0 6= Zgr−l(A), then the family K = {lan(zσ) :

0 6= zσ ∈ Zgr−l(A)} is nonempty. Thus we may apply our hypothesis to find

a maximal element lan(xσ) ∈ K. Then given xσaτ 6= 0, as Zgr−l(A) is an

ideal, we have that lan(xσaτ ) ∈ K and it is obvious that lan(xσ) ⊆ lan(xσaτ ),

and hence by maximality we have the equality. This proves that xσ is a

nonzero pseudo-uniform element inside Zgr−l(A), a contradiction with (iii).

Analogously one proves that Zgr−r(A) = 0.
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We are heading now to give the first steps towards a graded version of

Johnson’s Theorem which will be completely accomplished in a special case

of Z-algebras in the last chapter. First, we need to recall the definition of

graded von Neumann regularity.

Definition 2.3.24. Any (homogeneous) element aσ in a graded algebra A is

said to be graded von Neumann regular if there exists bσ−1 ∈ A such that

aσbσ−1aσ = aσ. A graded algebra is said to be gr-von Neumann regular if

so is every homogeneous element in A.

Remark 2.3.25. Graded von Neumann regularity is nothing but von Neu-

mann regularity plus homogeneity. In other words, an homogeneous element

aσ ∈ Aσ is graded von Neumann regular if and only if it is von Neumann

regular, because if we have b ∈ A with aσbaσ = aσ, then by writing b =
∑

τ bτ

we see that although every element aσbτaσ is homogeneous, all of them are in

different homogeneous components. Otherwise we would find τ1, τ2 ∈ G with

τ1 6= τ2 and στ1σ = στ2σ. Simplifying in both sides now we would get τ1 = τ2,

a contradiction. Besides,
∑

τ aσbτaσ = aσ is already homogeneous, so there

must exist only one component (the one with στσ = σ), that is τ = σ−1.

Then, b = bσ−1 . The converse is trivial.

Proposition 2.3.26. Let A be a nonzero graded algebra. Then:

(i) If A is gr-left nonsingular then A is right faithful.

(ii) Neither Zgr−l(A) nor Zgr−r(A) contain nonzero gr-von Neumann regular

elements.

Proof. The part (i) is easy: If we have xσ ∈ Aσ, a total (homogeneous) right

zero divisor, then obviously lan(xσ) = A which is always essential if A 6= 0.

Now, by hypothesis, xσ ∈ Zgr−l(A)σ = 0.

Let us see (ii). Suppose we have 0 6= xσ ∈ Zgr−l(A)σ a gr-von Neumann

regular element, then we find yσ−1 ∈ Aσ−1 with xσyσ−1xσ = xσ. Then I :=

Axσyσ−1 + Φxσyσ−1 is nonzero. Moreover, it is a graded left ideal by (2.3.10).

So we have 0 6= I ∩ lan(xσ) and there exist a ∈ A and λ ∈ Φ such that
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0 6= axσyσ−1 + λxσyσ−1 and 0 = axσyσ−1xσ + λxσyσ−1xσ = axσ + λxσ, but

then (axσ + λxσ)yσ−1 = 0, which is a contradiction.

2.4 The maximal graded algebra of left quo-

tients

When constructing the maximal ring of left quotients of a ring R, Utumi (see

[73]) considered the family of dense left ideals of R. So, it seems to be natural

to consider gr-dense left ideals in order to obtain a maximal gr-left quotient

algebra.

Let A = ⊕σ∈GAσ be a gr-algebra without (homogeneous) total right zero

divisors. Consider

X := {(f, I) : I ∈ I l
gr−d(A), f ∈ HOMA(I, A)},

and define the following relation on X: (f, I) ≡ (g, J) if and only if f = g on

I ∩ J , equivalently (by (2.2.5) (iii)) if and only if there exists K ∈ I l
gr−d(A),

such that K ⊆ I ∩ J and f = g on K. It is easy to see that this relation is

reflexive and symmetric. For the transitivity we apply (2.2.5) (iii).

Consider X/ ≡ and write [f, I] to denote the class of an element (f, I) ∈
X. Then the quotient X/ ≡, with the following operations,

[f, I] + [g, J ] := [f + g, I ∩ J ],

k[f, I] := [kf, I] (for k ∈ Φ),

[f, I][g, J ] := [fg,∩σ∈Gf
−1
σ (J)],

which do not depend on the representatives of the equivalence classes (apply

(2.2.5)), becomes a G-graded Φ-algebra Q = ⊕σ∈GQσ, where

Qσ := {[fσ, I] : fσ ∈ HOMA(I, A)σ, I ∈ I l
gr−d(A)}.

Note that whenever we have a sum of the form
∑n

i=1[fσi
, Ii], we can always

assume that all the ideals appearing in that expression are the same by doing:
n∑

i=1

[fσi
, Ii] = [

n∑
i=1

fσi
,

n⋂
j=1

Ij] =
n∑

i=1

[fσi
,

n⋂
j=1

Ij].
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Now it is easy to see that Q =
∑

σ∈GQσ: For if [f, I] ∈ X/ ≡, then f =∑
σ∈G fσ, with fσ ∈ HOMA(I, A)σ. Hence [f, I] =

∑
σ∈G[fσ, I] and [fσ, I] ∈

Qσ. Let us check that the sum is direct. Suppose Qσ ∩
∑

τ 6=σ Qτ 6= 0 and take

0 6=
∑

τ 6=σ[fτ , I] ∈ Qσ. Then I 6= 0 and therefore Iα 6= 0 for some α ∈ G. Take

yα ∈ Iα and then yαfτ ∈ Aατ so that yα

∑
τ 6=σ fτ ∈ (

∑
τ 6=σ Aατ ) ∩ Aασ = 0, a

contradiction.

Denote the obtained algebra by Ql
gr−max(A).

We collect now some good properties of this algebra.

Theorem 2.4.1. Let A = ⊕σ∈GAσ be a gr-algebra without (homogeneous)

total right zero divisors. Then:

(i) The following is a gr-monomorphism of gr-algebras

ϕ : A −→ Ql
gr−max(A)

r 7→
∑

σ∈G[ρrσ , A]

where for every a ∈ A, and σ ∈ G, aρrσ = arσ.

Identify A with Im ϕ.

(ii) Ql
gr−max(A) is a gr-left quotient algebra of A. This implies that there

exists an algebra monomorphism from Ql
gr−max(A) into Ql

max(A) which is the

identity on A, where Ql
max(A) denotes the maximal left quotient algebra of A.

(iii) Ql
gr−max(A) is maximal among the gr-left quotient algebras of A in the

sense that if B is a G-graded algebra and a gr-left quotient algebra of A, then

the following is a gr-monomorphism of gr-algebras, which is the identity on

A:
ψ : B −→ Ql

gr−max(A)
b 7→

∑
σ∈G[ρbσ , (A : bσ)]

Proof. (i) The map ϕ is a homomorphism of gr-algebras: Consider x, y ∈
A. Then ϕ(xy) =

∑
σ[ρ(xy)σ

, A] =
∑

σ[ρ
Στ xτ y

τ−1σ
, A] and (ϕ(xy))σ =

[ρ
Στ xτ y

τ−1σ
, A]. On the other hand, ϕ(x)ϕ(y) = (

∑
σ∈G[ρxσ , A])(

∑
σ∈G[ρyσ , A])

implies (ϕ(x)ϕ(y))σ =
∑

τ∈G[ρxτ , A][ρyτ−1σ
, A] =

∑
τ∈G[ρxτρyτ−1σ

, A] =∑
τ∈G[ρxτ yτ−1σ

, A] = (ϕ(xy))σ.

The map is injective because
∑

σ[ρxσ , A] = 0 implies [ρxσ , A] = 0, hence

Axσ = 0 and, consequently, xσ = 0.
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The equations ϕ(x + y) = ϕ(x) + ϕ(y) and ϕ(kx) = kϕ(x) follow easily

from ρx+y = ρx + ρy and ρkx = kρx. Note also that by construction we have

ϕ(Aσ) ⊆ [Ql
gr−max(A)]σ so that ϕ is a gr-homomorphism of degree zero, as

we claimed.

(ii) Consider 0 6= [fσ, I] ∈ Qσ and [gτ , I] ∈ Qτ (notice that we may

take the same I for fσ and gτ by virtue of (2.2.5) (i)). Then we find y ∈
I such that 0 6= (y)fσ = (

∑
yα)fσ =

∑
α(yα)fσ ∈

⊕
αAασ. (Note that

(yα)fσ makes sense because I is a graded ideal, and so yα ∈ I.) Choose

yα ∈ Iα ⊆ Aα with 0 6= (yα)fσ ∈ Aασ. Apply that I is a gr-dense left ideal

of A and (2.2.17) to find uβ ∈ Iβ such that 0 6= uβ(yαfσ) ∈ Iβασ. Then

[ρyα , A][fσ, I] = [ρyαfσ, I] 6= 0 since (uβ)ρyαfσ = (uβyα)fσ = uβ(yαfσ) 6= 0.

Moreover, [ρyα , A][gτ , I] = [ρyαgτ , I] = [ρyαgτ , I] = [ρyαgτ , A] ∈ Aατ since

ρyαgτ ∈ HOMA(A,A)ατ .

By (2.2.11) Ql
gr−max(A) can be viewed as a gr-subalgebra of Ql

max(A).

(iii) Suppose that B is a gr-left quotient algebra of A and consider the map

ψ given in the statement. It is well defined by (2.2.16) and a gr-homomorphism

(it can be proved analogously to the proof of ϕ being a gr-homomorphism).

The rest is easy to prove.

The following is a Passman-like (see [61] for the case of the symmetric ring

of quotients) characterization of this gr-algebra Q, as we have for the maximal

(non-graded) left quotient algebra. First, we recall the notion of isomorphism

of graded algebras.

Definition 2.4.2. We say two G-graded Φ-algebras A and B are gr-

isomorphic whenever there exists a Φ-algebra isomorphism f : A → B

making (A)f a graded subalgebra of B, equivalently, (Aσ)f = Bσ for all

σ ∈ G.

Corollary 2.4.3. Let A be a gr-subalgebra of a gr-algebra B = ⊕σ∈GBσ, and

suppose that A has no (homogeneous) total right zero divisors. Then B is

gr-isomorphic to Q := Ql
gr−max(A) if and only if the following conditions are

satisfied:
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(i) Given bσ ∈ Bσ, there exists I ∈ I l
gr−d(A) such that Ibσ ⊆ A.

(ii) For bσ ∈ Bσ and I ∈ I l
gr−d(A), Ibσ = 0 implies bσ = 0.

(iii) For I ∈ I l
gr−d(A) and f ∈ HOMA(I, A), there exists b ∈ B such that

f = ρb.

Remark 2.4.4. The conditions (i) and (ii) in (2.4.3) are equivalent to:

(ii)′ B is a gr-left quotient algebra of A.

Indeed, if B is a gr-left quotient algebra of A, by (2.2.18) (ii) the condition

(i) is satisfied. (ii) follows immediately since every gr-dense left ideal of A has

zero right annihilator in B (I ∈ I l
gr−d(A) implies, by (2.2.17), A is a left

quotient algebra of I. Hence, by (2.2.4), B is a left quotient algebra of I and

this implies ranB(I) = 0.).

Conversely, take 0 6= bσ ∈ Bσ. By (i), there exists I ∈ I l
gr−d(A) such that

Ibσ ⊆ A and by (ii), 0 6= Ibσ. This implies (by applying (2.2.18)) (ii)′.

Proof of (2.4.3). We use (2.4.4). First, notice that Q satisfies (iii) obviously

and (ii)′ by (2.4.1)(ii).

Conversely, suppose that conditions (ii)′ and (iii) are satisfied. Then the

gr-monomorphism given in (2.4.1) (iii) is surjective by (iii).

The proposition above allows us to give the following

Definition 2.4.5. The algebra Ql
gr−max(A) is called the maximal graded

left quotient algebra of A.

Before we give more properties of Ql
gr−max(A), we must check that it is a

good generalization of the non graded case:

Lemma 2.4.6. If A is trivially G-graded, then the rings Ql
gr−max(A) and

Ql
max(A) are isomorphic.

Proof. For simplicity, let us denote Ql
gr−max(A) just by Q. The first observa-

tion to be made is that in this case we have I is a graded left ideal if and only

if I is a left ideal. This easily implies that Qe = Ql
max(A). The second one is
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that for σ 6= e and f ∈ HOMA(I, A)σ then (I)f = (Ie)f ⊆ Aeσ = Aσ = 0,

that is f = 0. So Qσ = 0 whenever σ 6= e. It is a straightforward that the

ring isomorphism above holds.

Thus, just by grading trivially, one can find examples where these two

rings do coincide.

The following example shows that the maximal gr-left quotient algebra

and the maximal left quotient algebra of a gr-algebra without (homogeneous)

total right zero divisors do not always coincide.

Example 2.4.7. Consider K[x], the K-algebra of polynomials with the usual

grading. First, we recall several well-known facts (see for instance [44]): If K

is a division ring, then Ql
max(K) = K. If Q is a left quotient algebra of A

then Ql
max(Q) = Ql

max(A). And if we consider D an integral domain and

K its field of fractions, then K is always a left (and right) quotient ring

of D. These things imply Ql
max(K[x]) = K(x), the latter being the field of

fractions of K[x]. Now, recall that Ql
gr−max(K[x]) ⊆ Ql

max(K[x]), but those

rings cannot be equal because if A is a G-graded division ring and G is

totally ordered then, the grading must be trivial [56], which is not the case

since K[x]n ⊆ Ql
gr−max(K[x])n for every n ∈ Z.

In fact, we can prove the following

Lemma 2.4.8. There exists a graded isomorphism of K-algebras between

Ql
gr−max(K[x]) and K[x, x−1].

Proof. We are dealing with commutative algebras, so here left and right boil

down to two-sided. First, we find all (left) graded ideals of K[x]. From basic

commutative algebra we know K[x] is a commutative principal ideal domain,

so all ideals are of the form I = (p(x)) = {p(x)q(x) : q(x) ∈ K[x]}. All

of them are indeed dense as can be easily seen. And if we write p(x) =

a0 + a1x + . . . + anx
n, I being graded implies a0, a1x, . . . , anx

n ∈ I, and a

degree argument shows that a0 = . . . = an−1 = 0, and finally, I = (xn). It is

evident that this ideal is in fact graded. Thus, the family of graded ideals of

K[x] reduces to {(xn) : n ∈ N}.
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If f : (xn) → K[x] is a homomorphism of K[x]-modules, then I being

principal, leaves no other option than (a(x)xn)f = a(x)p(x) for a suitable

p(x) ∈ K[x] (which is a K and K[x]-module homomorphism indeed). If we

assume f to be of degree m ∈ Z then p(x) ∈ K[x]n+m, so if n +m > 0 then

p(x) = αxn+m (and we denote it by saying f = ραxm). If n + m ≤ 0 then

p(x) = 0 and then f = 0.

This gives us the idea to prove that for all m ∈ Z we have K-module

isomorphisms between Kxm and Qm (shorthand for Ql
gr−max(K[x])m). If m ≥

0 then we may consider

ϕ : (Kxm,+) → (Qm,+)
αxm 7→ [ραxm , K[x]]

which is obviously well-defined, and a K-module monomorphism. The surjec-

tivity follows from the argument above because if [f, I] ∈ Qm then I = (xn)

and f = ραxm (n +m ≥ 0), so [f, I] = [ραxm , K[x]] = ρ(αxm). And this case

is done.

If we are given m < 0 then we make some slight changes in order for this

construction to work. Concretely, we define:

ϕ : (Kxm,+) → (Qm,+)
αxm 7→ [ραxm , (x−m)]

where ραxm is the notation explained before. Again the only critical point

is surjectivity: Take [f, I] ∈ Qm, so again I = (xk) and now we have two

different cases: First, if k+m < 0, we find z ∈ N with (k+ z)+m ≥ 0. Thus,

(xk+z) ⊆ (xk) which allows us to write [f, (xk)] = [f, (xk+z)] = [f, (xn)] with

n = k+ z and n+m ≥ 0. The other option is k+m ≥ 0, here we take n = k.

So in any case we may assume I = (xn) with n +m ≥ 0 and we are able to

write [f, (xn)] = [ραxm , (xn)] = [ραxm , (x−m)] = ρ(αxm).

Thus, we have

Q =
⊕
n∈Z

Qm
∼=
⊕
n∈Z

Kxm = K[x, x−1],

were ∼= denotes an isomorphism of K-modules. The fact that it is also a ring

homomorphism follows from the equation ραxmρβxs = ραβxm+s .
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Remark 2.4.9. Recall that a unital gr-algebra A is strongly graded if and

only if 1 ∈ AσAσ−1 for all σ ∈ G (see [56]). In this case Ql
gr−max(A) is strongly

graded too. The example above also provides us an example of an algebra

which is not strongly graded but its maximal graded left quotient algebra is.

By considering trivial gradings, one can construct also examples of maximal

graded left quotient algebras which are not strongly graded themselves.

Some properties of left quotient algebras can be translated to graded ones:

Lemma 2.4.10. Let A be a gr-subalgebra of a gr-algebra B = ⊕σ∈GBσ. If B is

a gr-left quotient algebra of A then Ql
gr−max(B) = Ql

gr−max(A). In particular,

Ql
gr−max(Q

l
gr−max(A)) = Ql

gr−max(A).

Proof. Note that from the hypothesis, we can deduce that neither A nor

B have homogeneous total right zero divisors, so there exist their maximal

graded left quotients algebras. By (2.4.1) (ii), Ql
gr−max(B) is a gr-left quotient

algebra of B and consequently of A (apply (2.2.4)). By (2.4.1) (iii) we may

consider A ⊆ B ⊆ Ql
gr−max(B) ⊆ Ql

gr−max(A). Since Ql
gr−max(B) is maximal

among all gr-left quotient algebra of B and Ql
gr−max(A) is a gr-left quotient

algebra of B, Ql
gr−max(B) = Ql

gr−max(A). The particular case follows if we

consider B = Ql
gr−max(A).

We present now an alternative construction of Ql
gr−max(A) to that given

before as it will provide the method of proving some results in the following

sections.

Let A be a gr-subalgebra of a G-graded algebra B = ⊕σ∈GBσ and suppose

that B is a gr-left quotient algebra of A. Consider the set

X = {(f, I), with I ∈ I l
gr−d(A), and f =

∑
fσ ∈ HOMA(I, B)}

and define on X the following relation: (f, I) ≡ (g, J) if and only if f and g

coincide on I ∩ J . Then ≡ is an equivalence relation and, arguing as in the

construction of the maximal graded left quotient algebra, and using (2.2.5),

the quotient set X/ ≡ can be endowed, in a similar way, with the structure
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of a G-graded Φ-algebra. This is just the direct limit

lim−→
I∈Il

gr−d(A)

HOMA(I, B).

Theorem 2.4.11. For any gr-left quotient algebra B of a G-graded algebra

A,

lim−→
I∈Il

gr−d(A)

HOMA(I, B) ∼= Ql
gr−max(A),

isomorphic as graded algebras. In fact,

Υ : lim−→
I∈Il

gr−d(A)

HOMA(I, B) −→ Ql
gr−max(Q

l
gr−max(A))

{f, I} 7→ [ρf , QI]

where Q := Ql
gr−max(A) and

ρf : QI −→ Q∑n
i=1 q

iyi 7→
∑n

i=1 q
i(yif)

is a graded isomorphism with inverse

Υ′ : Ql
gr−max(Q

l
gr−max(A)) −→ lim−→

I∈Il
gr−d(A)

HOMA(I, B)

[h, P ] 7→ {h̃, (∩σh
−1
σ (P ∩ A)) ∩ A}

where
h̃ : (∩σh

−1
σ (P ∩ A)) ∩ A −→ P ∩ A

x 7→ xh

Proof. By (2.4.1), we can consider A and B inside Q. It is clear that QI is a

graded left ideal of Q. For the density observe I ⊆ QI ⊆ Q and that Q is a

gr-left quotient algebra of I.

We prove that ρf is well-defined:
∑m

i=1 q
iyi =

∑n
j=1 p

jtj ∈ QI implies

u =
∑m

i=1 q
i(yif) −

∑n
j=1 p

j(tjf) = 0. Otherwise, for some σ ∈ G, uσ 6=
0. Apply that Q is a gr-left quotient algebra of A to find τ ∈ G, aτ ∈
Aτ satisfying 0 6= aτuσ and aτq

i
µ, aτp

j
µ ∈ Aτµ for any µ ∈ G. Then 0 6=

aτu =
∑m

i=1(aτq
i)(yif)−

∑n
j=1(aτp

j)(tjf) = (f is a homomorphism of left A-

modules) (
∑m

i=1(aτq
i)yi −

∑n
j=1(aτp

j)tj)f = aτ (
∑m

i=1 q
iyi −

∑n
j=1 p

jtj)f = 0,

which is a contradiction.
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Since ρf is a gr-homomorphism of left Q-modules, the map Υ is well

defined. It is not difficult to see that it is a gr-homomorphism of gr-algebras.

Moreover, it is injective: If for some

{f, I} ∈ lim−→
J∈Il

gr−d(A)

HOMA(J,B),

we have [ρf , QI] = 0, then ρf = 0 on some gr-dense left ideal J of Q contained

in QI. Hence ρf = 0 by (2.2.5) (iii) and, consequently, f = 0 on J ∩ I, which

is a gr-dense left ideal of I, and so f = 0 by condition (iii) in (2.2.5).

We go on to check Υ′Υ = 1: Consider [h, P ] ∈ Ql
gr−max(Q

l
gr−max(A)), with

P ∈ I l
gr−d(Q) and h ∈ HOMQ(P,Q). We claim that

(∩σh
−1
σ (P ∩ A)) ∩ A ∈ I l

gr−d(A).

Indeed, it is a graded left ideal of A, which is a left quotient algebra of it:

Given a, b ∈ A, with a 6= 0, apply twice that B is a left quotient algebra

of P ∩ A to find, first, u ∈ P ∩ A satisfying ua 6= 0 and ub ∈ P ∩ A and,

second, v ∈ P ∩ A such that vua 6= 0 and v(ubhσ) ∈ P ∩ A for every σ ∈ G.

Then w = vu satisfies wa 6= 0 and wb ∈ (∩σh
−1
σ (P ∩ A)) ∩ A (because

(wb)hσ = v(ubhσ) ∈ P ∩ A).

Now, (2.2.17) applies to prove that Υ′ is well-defined. Finally,

([h, P ])Υ′Υ = ({h̃, (∩σh
−1
σ (P ∩ A)) ∩ A})Υ = [h,Q((∩σh

−1
σ (P ∩ A)) ∩ A)],

where h :
∑n

i=1 q
ixi 7→

∑n
i=1 q

i(xih) = (
∑n

i=1 q
ixi)h implies

[h,Q((∩σh
−1
σ (P ∩ A)) ∩ A)] = [h, P ],

and so Υ′Υ = 1.

To finish the proof, notice Ql
gr−max(Q

l
gr−max(A)) ∼= Ql

gr−max(A) (by

(2.4.10)).

2.5 The case of a superalgebra

Let A = ⊕σ∈GAσ be a gr-algebra without (homogeneous) total right zero

divisors. We know that Ae has an algebra structure. If this algebra happens
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to be right faithful, then by chapter 1, there would exist Ql
max(Ae). On the

other hand we can also consider (Ql
gr−max(A))e with its algebra structure.

The question that arises is whether or not (or under which circumstances)

those are isomorphic. Although a general answer is not known, we may assure

that in the case of a superalgebra (and with some extra hypotheses) both are

isomorphic. This has been the idea which motivated this section.

In the next three lemmas we study the relations between A and A0 with

respect to right faithfulness, gr-left quotient algebras and gr-dense ideals.

These will be a valuable tool in the sequel.

Lemma 2.5.1. Let A = A0 ⊕ A1 be a right faithful superalgebra such that

A0 = A1A1. Then A0 is right faithful too.

Proof. If a0 ∈ A0 satisfies A0a0 = 0, then a0 = 0. Otherwise, by the hypothe-

sis, 0 6= x1a0 ∈ Aa0. By the hypothesis again, 0 6= Ax1a0 = A0x1a0+A1x1a0 =

A1A1x1a0 + A1x1a0 ⊆ A1A0a0 + A0a0 = 0, a contradiction.

Lemma 2.5.2. Let A ⊆ B be superalgebras and suppose A0 = A1A1. If B is

a gr-left quotient algebra of A, then B0 is a left quotient algebra of A0.

Proof. Consider p0, q0 ∈ B0, with p0 6= 0. By the hypothesis there exists

ai ∈ Ai such that aip0 6= 0 and aip0, aiq0 ∈ Ai. If i = 0 we have finished.

Suppose i = 1. Since A has no homogeneous total right zero divisors, 0 6=
Aa1p0 = A0a1p0 + A1a1p0 = A1A1a1p0 + A1a1p0 and it is possible to find

b1 ∈ A1 satisfying 0 6= b1a1p0. Then c0 = b1a1 ∈ A0 satisfies 0 6= c0p0 and

c0q0 ∈ A0.

Lemma 2.5.3. Let A be a superalgebra without (homogeneous) total right

zero divisors, and suppose A0 = A1A1. If I = I0 ⊕ I1 is a gr-dense left ideal

of A, then:

(i) A is a left quotient algebra of Ĩ := I1 ⊕ I1I1.

(ii) I1I1 and, consequently, I0 are dense left ideals of A0.
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Proof. (i) (1) Consider p0, q0 ∈ A0 with p0 6= 0. Apply that A is a gr-left

quotient algebra of I (2.2.17) to find yi ∈ Ii satisfying 0 6= yip0 and yiq0 ∈ Ii.

For i = 1 : Apply again that A is a gr-left quotient algebra of I to find:

z1 ∈ I1 such that 0 6= z1y1p0, in which case z1y1q0 ∈ I1I1 ⊆ Ĩ and we have

finished, or z0 ∈ I0 such that 0 6= z0y1p0; by the hypothesis (A has no total

right zero divisors and A0 = A1A1) 0 6= b1z0y1p0 for some b1 ∈ A1 and so

b1z0y1q0 ∈ I1I1 ⊆ Ĩ.

For i = 0: By the hypothesis 0 6= a1y0p0 for some a1 ∈ A1 and we proceed

as in the case i = 1.

(2) Take 0 6= p0 ∈ A0, q1 ∈ A1. Apply that A is a gr-left quotient algebra

of I to find yi ∈ Ii satisfying 0 6= yip0 and yiq1 ∈ Ii+1.

For i = 0: Apply again that A is a gr-left quotient algebra of I to choose:

z1 ∈ I1 such that 0 6= z1y0p0, in which case z1y0q1 ∈ I1I1 ⊆ Ĩ and we have

finished, or z0 ∈ I0 such that 0 6= z0y0p0. By the hypothesis, 0 6= a1z0y0p0 for

some a1 ∈ A1. Notice that a1z0y0q1 ∈ I1I1 ⊆ Ĩ, which completes the proof.

For i = 1 apply the hypothesis to assure 0 6= a1y1p0 for some a1 ∈ A1 and

use the previous case.

(3) Consider 0 6= p1 ∈ A1 and q0 ∈ A0. By the hypothesis 0 6= a1p1 for

some a1 ∈ A1 and we proceed as in (2) for a1p1 and a1q0.

(4) If p1, q1 ∈ A1, with p1 6= 0, apply the hypothesis and take a1 ∈ A1

such that 0 6= a1p1. Then a1p1 and a1q1 are in the case (1).

(ii) By (i), A is a gr-left quotient algebra of Ĩ. By (2.5.2) A0 is a left

quotient algebra of I1I1, i.e., I1I1 ∈ I l
d(A0). Finally, I1I1 ⊆ I0 ⊆ A0 implies

that I0 is a dense left ideal of A0.

The following theorem provides a first approach to our goal of showing

the existence of a isomorphism between (Ql
gr−max(A))0 and Ql

max(A0).

Theorem 2.5.4. Let A be a right faithful superalgebra such that A0 = A1A1.

Then the following is a monomorphism of algebras which fixes A0, considered

as a subalgebra of Ql
gr−max(A):
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λ :
(
Ql

gr−max(A)
)
0
−→ Ql

max(A0)

[f0, I0 ⊕ I1] 7→ [f0, I0]

Proof. The map λ is well-defined (apply (2.5.3) (ii)), and it is clear that A0

remains invariant under λ. To prove the injectivity, suppose we have [f0, I0⊕
I1] ∈

(
Ql

gr−max(A)
)
0
such that [f0, I0] = 0. Then f0|I0 = 0. If y1f0 6= 0 for some

y1 ∈ I1, apply that A is right faithful and A0 = A1A1 to find a1 ∈ A1 such that

a1(y1f0) 6= 0. Since A0 is a left quotient algebra of I0 (2.5.3) (ii), there exists

y0 ∈ I0 satisfying 0 6= y0a1(y1f0) and y0a1y1 ∈ I0. Then 0 6= y0a1(y1f0) =

(f0 is a left A-homomorphism) (y0a1y1)f0 ∈ I0f0 = 0, a contradiction. Hence,

f0|I1 = 0 and so [f0, I0 ⊕ I1] = 0.

The following example presents an algebra where it is shown that condition

A0 = A1A1 in (2.5.4) is indeed necessary.

Example 2.5.5. Consider K a field and A =

(
K K
0 0

)
= A0 ⊕A1, where

A0 =

(
K 0
0 0

)
and A1 =

(
0 K
0 0

)
.

Notice that A1A1 = 0 6= A0. It is easy to show that M2(K) is a left quotient

algebra of A: For take a = (aij), b = (bij) ∈ M2(K) with 0 6= (aij). Then

there exists akl 6= 0. Consider the element c = e1k ∈ A and thus, ca =

e1k

∑
i,j aijeij = ak1ek1 + ak2ek2 6= 0 and cb ∈ A clearly. Then it is also a

gr-left quotient algebra because A is also a gr-subalgebra of M2(K). Then,

Q := M2(K) ⊆ Ql
gr−max(A) ⊆ Ql

max(A) ⊆ Ql
max(M2(K)) = M2(K).

Hence, Ql
max(A0) = A0, Q0 =

(
K 0
0 K

)
and there are no monomorphisms

of K-algebras from Q0 into Ql
max(A0) leaving A0 invariant.

Next lemma gives a method to construct a gr-left ideal of a graded algebra

starting with a left dense ideal of the algebra Ae.

Lemma 2.5.6. Let A be a G-graded algebra. Let Ie be a dense left ideal of

Ae and define, for every σ ∈ G, σ 6= e,
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Iσ := {xσ ∈ Aσ | Aσ−1xσ ⊆ Ie}.

Then:

(i) ⊕σ∈GIσ is a gr-left ideal of A.

(ii) If for every σ, τ ∈ G, σ 6= τ , Aσaτ = 0 implies aτ = 0, and aτAσ = 0

implies aτ = 0, then I := ⊕σ∈GIσ is a graded dense left ideal of A.

Proof. It is clear that I is closed under finite sums. Now, let x =
∑

σ xσ be

in A and y =
∑

σ yσ ∈ I. For σ 6= e, (xy)σ = xσye +
∑

τ 6=e xστ−1yτ ∈ Iσ since

Aσ−1(xy)σ ⊆ Aσ−1xσye +Aσ−1

∑
τ 6=e xστ−1yτ ⊆ Aeye +

∑
τ 6=eAτ−1yτ ⊆ Ie, and

the e-component (xy)e, which coincides with xeye +
∑

τ 6=e xτ−1yτ , lies in Ie.

This shows (i).

(ii) Consider 0 6= xσ ∈ Aσ and yτ ∈ Aτ . By the hypothesis there exist

aσ−1τ ∈ Aσ−1τ , bτ−1 ∈ Aτ−1 such that bτ−1xσaσ−1τ 6= 0. Apply that Ie is a

graded dense left ideal of Ae to find ze ∈ Ae satisfying zebτ−1xσaσ−1τ 6= 0 and

zebτ−1yτ ∈ Ie. Then zebτ−1 ∈ Aτ−1 satisfies zebτ−1xσ 6= 0 and zebτ−1yτ ∈ I.

Lemma 2.5.7. Let A be a superalgebra without (homogeneous) total right

zero divisors, and suppose A0 = A1A1. Then, lanA0(A1) := {a0 ∈ A0 | a0A1 =

0} = 0 if and only if A has no (homogeneous) total left zero divisors.

Proof. Suppose first lanA0(A1) = 0. If a0 ∈ A0 satisfies 0 = a0A = a0(A1+A0),

then a0A1 = 0 and hence a0 = 0. If a1 ∈ A1 − {0}, apply that A has no

homogeneous total right zero divisors and A0 = A1A1 to find b1 ∈ A1 such

that b1a1 6= 0. Apply the previous case to assure b1a1A 6= 0, that is, a1 is

not a total left zero divisor, and we have proved that A has no total left zero

divisors.

Conversely, if A has no total left zero divisors, then for every nonzero

a0 ∈ A0, 0 6= a0A = a0(A0 ⊕ A1) = a0(A1A1 ⊕ A1) = a0A1A1 ⊕ a0A1; hence,

a0 /∈ lanA0(A1) and lanA0(A1) = 0.

We are now in position to prove the main result of this section.
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Theorem 2.5.8. Let A be a left and right faithful superalgebra (equivalently,

without total right zero divisors and with lanA0(A1) = 0) such that A0 = A1A1.

Then (
Ql

gr−max(A)
)
0
∼= Ql

max(A0)

under an isomorphism which fixes the elements of A0, viewing A0 inside

Ql
gr−max(A).

Proof. Let I0 ∈ I l
d(A0) and consider I := I0 ⊕ I1, the left ideal of A obtained

from I0 as in (2.5.6). We may apply (2.5.6)(ii) to obtain I0 ⊕ I1 ∈ I l
gr−d(A).

Now, denote Ql
gr−max(A) by Q and consider the map

Ψ : Ql
max(A0) −→

 lim−→
I∈Il

gr−d(A)

HOMA(I,Q)


0

[f, I0] 7→ {ρf , I0 ⊕ I1}
where { , } denotes the class of an element in lim−→

I∈Il
gr−d(A)

HOMA(I,Q) and

ρf : I0 ⊕ I1 −→ Q
y0 + y1 7→ [ρy0f + ρy1f , A]

ρy0f : A0 ⊕ A1 −→ A0 ⊕ A1

a0 + a1 7→ (a0 + a1)(y0f)

ρy1f : A0 ⊕ A1 −→ A0 ⊕ A1∑n
i=1 u

i
1v

i
1 + a1 7→

∑n
i=1 u

i
1(v

i
1y1)f + (a1y1)f

We claim that Ψ is an algebra isomorphism.

(1) Since f is a homomorphism from A0 to itself, then y0f is an element of

A0. The right multiplication by an element in the σ-homogeneous component

is obviously a homomorphism of degree σ as well. Thus, it is clear that ρy0f

is an element of HOMA(A,A)0.

(2) ρy1f ∈ HOMA(A,A)1: We are going to see that it is well defined; the rest

is an easy verification.

Suppose
∑m

i=1 u
i
1v

i
1 + a1 =

∑n
j=1 z

j
1t

j
1 + b1 ∈ A0 ⊕ A1, with

ui
1, v

i
1, a1, z

j
1, t

j
1, b1 ∈ A1. Then

m∑
i=1

ui
1(v

i
1y1)f + (a1y1)f −

(
n∑

j=1

zj
1(t

j
1y1)f + (b1y1)f

)
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must be zero. Otherwise, since a1 = b1, 0 6= w :=
∑m

i=1 u
i
1(v

i
1y1)f −∑n

j=1 z
j
1(t

j
1y1)f ∈ A1. By the hypothesis (A has no total right zero di-

visors and A0 = A1A1), x1w 6= 0 for some x1 ∈ A1. Hence 0 6=∑m
i=1(x1u

i
1)(v

i
1y1)f −

∑n
j=1(x1z

j
1)(t

j
1y1)f = (f is a homomorphism of left A0-

modules)
(
x1

(∑m
i=1 u

i
1v

i
1 −

∑n
j=1 z

j
1t

j
1

)
y1

)
f = 0, which is a contradiction.

By (1) and (2), ρf is well defined and this implies that Ψ is well-defined

too. It is easy to see that it is a gr-algebra homomorphism.

To see the injectivity, suppose [f, I0] ∈ Ql
max(A0) such that {ρf , I0⊕I1} =

0. Then [f, I0] = 0. Otherwise, y0f 6= 0 for some y0 ∈ I0. Apply that A0 has

no total right zero divisors (2.5.1) to find z0 ∈ A0 such that 0 6= z0(y0f) =

z0(y0ρf ), but this is not possible since ρf = 0.

Name

T0 =

 lim−→
I∈Il

gr−d(A)

HOMA(I,Q)


0

.

and consider the map

Ψ′ : T0 −→ Ql
max(A0)

{g0, I0 ⊕ I1} 7→ [g0, g
−1
0 (I0)]

where g0 ∈ HOMA(I0 ⊕ I1, Q)0 for I0 ⊕ I1 ∈ I l
gr−d(A), and xg0 = xg0 for

every x ∈ g−1
0 (I0).

Notice that I = I0 ⊕ I1 is a gr-dense submodule of AQ. By (2.2.5) (iii),

g−1
0 (I) = g−1

0 (I0) ⊕ g−1
0 (I1) is a gr-dense left ideal of A, and by (2.5.3) (ii),

g−1
0 (I0) is a dense left ideal of A0. This shows that Ψ′ is well-defined.

We claim that Ψ′Ψ = 1T0 . Indeed, take {g0, I0 ⊕ I1} ∈ T0. Then

({g0, I0 ⊕ I1}) Ψ′Ψ =
(
[g0, g

−1
0 (I0)]

)
Ψ = {ρg0

, g−1
0 (I0)⊕K1},

where K1 = {a1 ∈ A1 | A1a1 ⊆ g−1
0 (I0)}.

We are going to prove {g0, I0 ⊕ I1} = {ρg0
, g−1

0 (I0) ⊕ K1}: If u0 + u1 ∈
J := (I0 ⊕ I1) ∩ (g−1

0 (I0)⊕K1), then (u0 + u1)ρg0
= [ρu0g0

+ ρu1g0
, A].

For every a0 + a1 ∈ A0 ⊕ A1, write a0 =
∑n

i=1 b
i
1c

i
1, with bi1, c

i
1 ∈ A1.

Then (a0 + a1)((u0 + u1)ρg0
) = (a0 + a1)(ρu0g0

+ ρu1g0
) = (a0 + a1)u0g0 +∑n

i=1 b
i
1(c

i
1u1)g0 + (a1u1)g0 = ((a0 + a1)u0 + (a0 + a1)u1)g0 = ((a0 + a1)(u0 +

u1))g0 = (a0 + a1)((u0 + u1)g0).
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Hence (u0 + u1)ρg0
= ρu0g0

+ ρu1g0
= (u0 + u1)g0, which implies ρg0

= g0

on J , and so Ψ′Ψ = 1T0 , which implies the surjectivity of Ψ.

To complete the proof, apply (2.4.11).



Chapter 3

Associative systems of left
quotients

3.1 Introduction

In this chapter and unless otherwise specified we will deal with associative

systems (algebras, pairs, and triple systems) over an arbitrary (unital com-

mutative associative) ring of scalars Φ.

Recall that an associative pair over Φ is a pair of Φ-modules (A+, A−)

together with a pair of trilinear maps

< , , >σ:Aσ × A−σ × Aσ −→ Aσ, σ = ±,

satisfying

<< x, y, z >σ, u, v >σ=< x,< y, z, u >−σ, v >σ=< x, y,< z, u, v >σ>σ,

for any x, z, v ∈ Aσ, y, u ∈ A−σ, σ = ±.

Similarly, an associative triple system A over Φ is a Φ-module equipped

with a trilinear map

< , , >:A× A× A −→ A,

satisfying

<< x, y, z >, u, v >=< x,< y, z, u >, v >=< x, y,< z, u, v >>,

for any x, y, z, u, v ∈ A.

67
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We can also consider the opposite associative pair Aop = (A+, A−)

obtained by reversing the products of A (< x, y, z >σ
op=< z, y, x >σ).

As for pairs, one can consider the opposite triple system Aop of A.

Due to associativity, there is no risk of ambiguity when deleting the brack-

ets “ <> ”, thus, the products above will be usually denoted by juxtaposition,

just like in the associative algebra case.

An associative algebra A gives rise to the associative triple system AT

by simply restricting to odd length products. By doubling any associative

triple system A one obtains the double associative pair V (A) = (A,A)

with obvious products. From an associative pair A = (A+, A−) one can get

a the polarized associative triple system T (A) = A+ ⊕ A− by defining

(x+ ⊕ x−)(y+ ⊕ y−)(z+ ⊕ z−) = x+y−z+ ⊕ x−y+z−.

Given an associative pair A = (A+, A−), and elements x, z ∈ Aσ, y ∈ A−σ,

σ = ±, recall that left, middle and right multiplications are defined by:

λ(x, y)z = µ(x, z)y = ρ(y, z)x = xyz. (1)

From the associativity and (1), for any x, u ∈ Aσ, y, v ∈ A−σ,

λ(x, y)λ(u, v) = λ(xyu, v) = λ(x, yuv), (2)

and similarly

ρ(u, v)ρ(x, y) = ρ(x, yuv) = ρ(xyu, v). (3)

As a consequence of (2) and (3), it is clear that the linear span of all operators

T : Aσ → Aσ of the form T = λ(x, y), for (x, y) ∈ Aσ × A−σ, or T = IdAσ is

a unital associative algebra; it will be denoted by Λ(Aσ, A−σ). Clearly Aσ is

a left Λ(Aσ, A−σ)-module. Similarly, we define Π(A−σ, Aσ) as the linear span

of all the right multiplications and the identity on Aσ, so that Aσ becomes a

left Π(A−σ, Aσ)-module.

The well-known notions of left and right ideals of an associative algebra

have the following analogues for pairs and triple systems: Given an associative

pair A, we define the left ideals L ⊂ Aσ of A as the Λ(Aσ, A−σ)-submodules
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of Aσ, and the right ideals R ⊂ Aσ as the Π(A−σ, Aσ)-submodules. A two-

sided ideal B ⊂ Aσ is both a left and a right ideal. An ideal I = (I+, I−)

of A is a pair of two-sided ideals of A such that AσI−σAσ ⊆ Iσ, σ = ±.

For an associative triple system A, the left and right ideals of A are simply

those of the pair V (A), while an ideal I of A is a left and right ideal also

satisfying AIA ⊆ I, i.e., a Φ-submodule I of A such that V (I) is an ideal of

V (A).

Notice that, if I is a left or right ideal of an associative algebra A, then

it is a left or right ideal, respectively, of the associative triple system AT .

Similarly, an ideal of A is always an ideal of AT .

We will say that a graded algebra is 3-graded if G = Z and A = A−1 ⊕
A0 ⊕ A1.

A nonzero element a ∈ Aσ of an associative pair is called a total right

zero divisor if AσA−σa = 0. A pair not having nonzero total right zero

divisors will be called right faithful.

Definitions 3.1.1. A total right zero divisor in an associative triple sys-

tem S is a nonzero element s ∈ S such that SSs = 0, equivalently, s is a total

right zero divisor in the associative pair V (S). An associative triple system

without total right zero divisors will be called right faithful.

Given a superalgebra A = A0 ⊕ A1, the odd part has a structure of asso-

ciative triple system, while the even part is an algebra. Now, we show the

relation of faithfulness among the three structures.

Lemma 3.1.2. Let A = A0 ⊕ A1 be a superalgebra. If A0 and A1 are right

faithful, then A is right faithful too. The converse is true if A0 = A1A1.

Proof. Suppose A0 = A1A1 and that A has no total right zero divisors. By

(2.5.1), A0 has no total right zero divisors. If a1 ∈ A1 satisfies A1A1a1 = 0,

then AAa1 = (A1A1+A1)(A1A1+A1)a1 ⊆ (A1A1A1A1+A1A1A1+A1A1)a1 =

0. Apply twice that A is right faithful to have a1 = 0.

The converse is straightforward.
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Remark 3.1.3. The condition A0 = A1A1 in (3.1.2) cannot be removed. If a

superalgebra A = A0⊕A1 is right faithful, then A0 is a right faithful algebra

(2.5.1) , but A1 is not necessarily a right faithful associative triple system:

Let F be an arbitrary field and consider the F -algebra A = F [x]/ < x3 >,

where < x3 > denotes the ideal generated by x3 inside F [x]. For an element

u ∈ F [x], let u stand for the class of u in A. Then the superalgebra A =

A0⊕A1, with A0 the subalgebra of A generated by {1, x2} and A1 the vector

subspace of A generated by {x}, is a right faithful algebra but A1 is not a

right faithful associative triple system because A1A1x = 0 while x 6= 0. Notice

that A1A1 6= A0 because 1 /∈ (F{x})2.

Remark 3.1.4. Although we always work with systems of left quotients, the

results in this chapter have their right-side analogues, with obvious changes in

the definitions, just reversing products in the proofs or applying the left-side

results to the opposite systems.

3.2 Algebra envelopes of associative pairs

In this section we give a method to determine the standard envelope of an

associative pair without total right zero divisors by means of any graded

algebra containing the pair in a suitable way and generated by it.

Associative pairs are really “abstract off-diagonal Peirce spaces” of asso-

ciative algebras: Let E be a unital associative algebra. Consider the Peirce

decomposition E = E11 ⊕ E12 ⊕ E21 ⊕ E22 of E with respect to an idempotent

e ∈ E , i.e.,

E11 = eEe, E12 = eE(1− e), E21 = (1− e)Ee and E22 = (1− e)E(1− e).

From the Peirce multiplication rules, (E12, E21) is a subpair of V (E). Con-

versely, every associative pair A = (A+, A−) can be obtained in this way

(see [51, 2.3]): Let C be the Φ-submodule of B = EndΦ(A+) × EndΦ(A−)op

spanned by e1 = (IdA+ , IdA−) and all (λ(x, y), ρ(x, y)), and similarly, let D be

the submodule of Bop spanned by e2 = (IdA+ , IdA−) and all (ρ(y, x), λ(y, x))
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where (x, y) ∈ A+ × A−. By associativity, these Φ-linear spans are really

subalgebras. Clearly, A+ is an (C,D)-bimodule if we set

cx = c+(x), xd = d+(x)

for x ∈ A+ and c = (c+, c−) ∈ C, d = (d+, d−) ∈ D. Similarly, A− is a

(D, C)-bimodule. Now we define bilinear maps on A± ×A∓ with values in C,

respectively, D, by

xy = (λ(x, y), ρ(x, y)), yx = (ρ(y, x), λ(y, x)).

Then it is easy to check that (C, A+, A−,D) is a Morita context which gives

rise to a unital associative algebra E (cf. [51, 2.3]). If we set e = e1, then the

pair A = (A+, A−) is isomorphic to the associative pair (E12, E21). Moreover

E11 (respectively, E22) is spanned by e and all products x12y21 (resp., 1 − e

and all products y21x12) for x12 ∈ E12, y21 ∈ E21, and has the property that

x11E12 = E21x11 = 0 =⇒ x11 = 0, x22E21 = E12x22 = 0 =⇒ x22 = 0. (1)

Let A be the subalgebra of E generated by E12 ∪ E21, i.e.,

A = E12 ⊕ E12E21 ⊕ E21E12 ⊕ E21.

It is immediate thatA is an ideal of E . We will callA the standard envelope

of the associative pair A, and will write τ = (τ+, τ−) for the natural inclusion

τσ : Aσ −→ A of A into A. When it is necessary to emphasize the existence

of the idempotent e we will write (A, e) instead of merely A. The pair (E , e)
is called the standard embedding of A.

Definition 3.2.1. Let A be an associative pair, A = A−1 ⊕ A0 ⊕ A1 be a

3-graded associative algebra, and ϕ = (ϕ+, ϕ−), where ϕσ : Aσ −→ A is an

injective Φ-linear map, σ = ±. We will say that A is a subpair of (A, ϕ) if

(i) ϕ+(A+) ⊆ A1, ϕ
−(A−) ⊆ A−1, and

(ii) ϕ : A −→ V (A) is a pair homomorphism (hence monomorphism).
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When A is a subpair of (A, ϕ) then

ϕ+(A+) + ϕ+(A+)ϕ−(A−) + ϕ−(A−)ϕ+(A+) + ϕ−(A−)

is a subalgebra of A. If it coincides with A (i.e. ϕ+(A+) ∪ ϕ−(A−) generates

A as an algebra), the pair (A, ϕ) is called a graded envelope of A (gr-

envelope for short).

In this case, and equivalently,

(iii) A1 = ϕ+(A+), A−1 = ϕ−(A−), A0 = ϕ+(A+)ϕ−(A−) + ϕ−(A−)ϕ+(A+).

Remark 3.2.2. Notice that for an associative pair A the standard envelope

(A, τ) of A, which can be seen as a 3-graded algebra by considering A1 =

E12,A0 = E12E21 ⊕ E21E12 and A−1 = E21, is a gr-envelope of A in the sense

above.

If an associative pair A is a subpair of a (A, ϕ), with A a 3-graded algebra,

in the sense of (3.2.1), then A is a subpair of (A, ϕ) in the sense already

considered by J. A. Anquela, T. Cortés, M. Gómez Lozano and M. Siles

Molina in [4, 1.3] because ϕ+(A+) ∩ ϕ−(A−) ⊆ A1 ∩ A−1 = 0.

An envelope (A, ϕ) of A will be called tight if every nonzero ideal of A
hits A (that is, I ∩ (ϕ+(A+) ∪ ϕ−(A−)) 6= 0 for every nonzero ideal I of A).

We will say that (A, ϕ) and (Ã, ϕ̃) are isomorphic envelopes of A if there

exists an algebra isomorphism ψ : A −→ Ã such that ψ ◦ ϕσ = ϕ̃σ, σ = ±.

The proof of the following result follows partially [4, 1.5]. Notice that it

is more general in the sense that we have replaced left and right faithfulness

with right faithfulness by considering gr-envelopes instead of envelopes.

Proposition 3.2.3. Let A = A−1 ⊕A0 ⊕A1 be a 3-graded algebra which is

a gr-envelope of a right faithful associative pair A. Then:

(i) Every one-sided gr-ideal of A not hitting ϕ(A) is contained in A0.

Define, as in [4, 1.5], the ideal I given by

{x ∈ ϕ+(A+)ϕ−(A−) + ϕ−(A−)ϕ+(A+) | xϕσ(Aσ) = 0 = ϕσ(Aσ)x, σ = ±}

= {x ∈ ϕ+(A+)ϕ−(A−) | xϕ+(A+) = 0 = ϕ−(A−)x}+

+{x ∈ ϕ−(A−)ϕ+(A+) | xϕ−(A−) = 0 = ϕ+(A+)x}.
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(ii) I ⊆ A0, it is the biggest gr-ideal of A not hitting ϕ(A) and it satisfies

IAi = AiI = 0 for i = 0,±1.

(iii) Define φσ : Aσ −→ A/I
xσ 7→ ϕσ(xσ)

where a denotes the class of the ele-

ment a of A inside A/I, σ = ±. Then (A/I, φ) is a gr-envelope of A gr-

isomorphic to the standard envelope of A.

Proof. (i) Let J = J−1 ⊕ J0 ⊕ J1 be a one-sided gr-ideal of A not hitting

ϕ(A). Since J±1 ⊆ J ∩A±1 ⊆ J ∩ ϕ(A) = 0, J ⊆ A0.

(ii) From (3.2.1), it is clear that I is an ideal of A and that both definitions

of I agree. Moreover, by (i) and the definition, I ⊆ A0 and Aix = xAi = 0,

for any x ∈ I and every i = 0,±1.

Now, let J be a gr-ideal of A not hitting ϕ(A). By (i), J ⊆ A0. Take

0 6= y0 ∈ J and write

y0 =
m∑

i=1

ϕ+(u+
i )ϕ−(u−i ) +

n∑
j=1

ϕ−(v−j )ϕ+(v+
j ),

with uσ
i , v

σ
j ∈ Aσ, σ = ±. Suppose (

∑m
i=1 λ(u+

i , u
−
i ),
∑m

i=1 ρ(u
+
i , u

−
i )) 6= 0.

Then, by the proof of [29, 2.6], there exists a− ∈ A− such that 0 6=∑m
i=1 a

−u+
i u

−
i . Since ϕ is an injective Φ-linear map, and by (3.2.1) (ii),

0 6=
∑m

i=1 ϕ
−(a−)ϕ+(u+

i )ϕ−(u−i ) = ϕ−(a−)y0 ∈ I ∩ ϕ−(A−) = 0, a con-

tradiction. Hence (
m∑

i=1

λ(u+
i , u

−
i ),

m∑
i=1

ρ(u+
i , u

−
i )

)
= 0.

Similarly, (
n∑

j=1

λ(v−j , v
+
j ),

n∑
j=1

ρ(v−j , v
+
j )

)
= 0.

This means that for every (x+, x−) ∈ A,
∑m

i=1 u
+
i u

−
i x

+ = 0,
∑m

i=1 x
−u+

i u
−
i =

0,
∑n

j=1 x
+v−j v

+
j = 0 and

∑n
j=1 v

−
j v

+
j x

− = 0.

Apply ϕ and (3.2.1) (ii) to these identities to obtain:

0 =
m∑

i=1

ϕ+(u+
i )ϕ−(u−i )ϕ+(x+) =

(
m∑

i=1

ϕ+(u+
i )ϕ−(u−i )

)
ϕ+(x+) = y0ϕ

+(x+),
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0 =
m∑

i=1

ϕ−(x−)ϕ+(u+
i )ϕ−(u−i ) = ϕ−(x−)

m∑
i=1

ϕ+(u+
i )ϕ−(u−i ) = ϕ−(x−)y0,

0 =
n∑

j=1

ϕ+(x+)ϕ−(v−j )ϕ+(v+
j ) = ϕ+(x+)

n∑
j=1

ϕ−(v−j )ϕ+(v+
j ) = ϕ+(x+)y0,

0 =
n∑

j=1

ϕ−(v−j )ϕ+(v+
j )ϕ−(x−) =

(
n∑

j=1

ϕ−(v−j )ϕ+(v+
j )

)
ϕ−(x−) = y0ϕ

−(x−).

This shows y0 ∈ I.

(iii) To see the injectivity of the Φ-linear map φσ, for σ = ±, consider

xσ ∈ Aσ such that ϕσ(xσ) = 0. This means ϕσ(xσ) ∈ ϕσ(Aσ) ∩ I = 0.

It is straightforward that (A/I, φ) satisfies (3.2.1) (i)–(iii). This means

that it is a gr-envelope of A.

Let (Ã, τ) be the standard envelope of A. We can define a linear map

ψ : A −→ Ã given by

ψ

(
ϕ+(x+)⊕

(∑
i

ϕ+(y+
i )ϕ−(y−i ) +

∑
j

ϕ−(z−j )ϕ+(z+
j )

)
⊕ ϕ−(u−)

)
=

τ+(x+)⊕
∑

i

τ+(y+
i )τ−(y−i )⊕

∑
j

τ−(z−j )τ+(z+
j )⊕ τ−(u−),

for any x+, y+
i , z

+
j ∈ A+, y−i , z

−
j , u

− ∈ A−. Indeed, if

a = ϕ+(x+)⊕

(∑
i

ϕ+(y+
i )ϕ−(y−i ) +

∑
j

ϕ−(z−j )ϕ+(z+
j )

)
⊕ ϕ−(u−) = 0,

then 0 = ϕ+(x+) = ϕ−(u−) and by the injectivity of ϕ, x+ = 0 and u− = 0.

Hence τ+(x+) = 0 and τ−(u−) = 0.

Moreover,
∑

i ϕ
+(y+

i )ϕ−(y−i ) +
∑

j ϕ
−(z−j )ϕ+(z+

j ) = 0 implies, if we mul-

tiply by ϕ−(a−) ∈ ϕ−(A−),

0 = ϕ−(a−)
∑

i

ϕ+(y+
i )ϕ−(y−i ) =

=
∑

i

ϕ−(a−)ϕ+(y+
i )ϕ−(y−i ) = ϕ−

(∑
i

a−y+
i y

−
i

)
.
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By the injectivity of ϕ, 0 =
∑

i a
−y+

i y
−
i and thus

0 = τ−

(∑
i

a−y+
i y

−
i

)
=
∑

i

τ−(a−)τ+(y+
i )τ−(y−i ) = τ−(a−)

∑
i

τ+(y+
i )τ−(y−i );

similarly, for any ϕ+(a+) ∈ ϕ+(A+), (
∑

i τ
+(y+

i )τ−(y−i ))τ+(a+) = 0, which

implies
∑

i τ
+(y+

i )τ−(y−i ) = 0 by the equations in (1); in a similar way,∑
j τ

−(z−j )τ+(z+
j ) = 0, and we get that ψ is well defined.

It is clear that ψ is a surjective algebra homomorphism of graded algebras

satisfying ψ ◦ ϕσ = τσ, σ = ±. By the very definition of ψ, an element a as

above lies in Kerψ if and only if a =
∑

i ϕ
+(y+

i )ϕ−(y−i ) +
∑

j ϕ
−(z−j )ϕ+(z+

j )

with
∑

i τ
+(y+

i )τ−(y−i )⊕
∑

j τ
−(z−j )τ+(z+

j ) = 0, which is shown to be equiva-

lent to aϕσ(Aσ) = ϕσ(Aσ)a = 0, σ = ±, again using (1).

Thus Kerψ = I, and we can define ψ̃ : A/I −→ Ã by ψ̃(a) = ψ(a), which

turns out to be an algebra isomorphism satisfying ψ̃ ◦ φσ = τσ, σ = ±.

We obtain now a corollary which will be very used repeatedly for easily

computing the envelopes of associative pairs, needed in the following sections.

Corollary 3.2.4. Let A be a right faithful associative pair, and (A, ϕ) be a

gr-envelope of A. Then the following are equivalent:

(i) (A, ϕ) is tight on A,

(ii) A is right faithful,

(iii) (A, ϕ) is isomorphic to the standard envelope of A.

Proof. Apply (3.2.3) together with the obvious fact that the set of total right

zero divisors of an algebra is an ideal.

Notation 3.2.5. To simplify notation, from now on, when dealing with a

subpair A of (A, ϕ) we will assume that Aσ ⊆ A, the maps ϕσ will be simply

the inclusion maps, and will write A instead of (A, ϕ). This will also be

applied to the particular case of (A, ϕ) being an envelope of A.
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3.3 The left supersingular ideal of a superal-

gebra

The notion of singularity appears naturally in many questions in the theory

of modules and rings. In [31], the singular functor of a Grothendieck category

is introduced. In particular, for an M in the category R-gr of graded modules

over a unital ring R, the graded singular submodule of M is the largest graded

submodule contained in Z(M) (the singular submodule of M).

Here we study the left supersingular ideal of a (not necessarily unital)

superalgebra A = A0 ⊕ A1 and relate it to the singular ideals of A0 (as an

algebra) and of A1 (as an associative triple system).

We recall that by Igr−l(A) and Ie
gr−l(A) we denote respectively the sets of

left superideals of A and essential left superideals of A respectively, while

I(A), Il(A) and Ie
l (A) stand for the sets of two-sided ideals, left ideals

and essential left ideals of A. Throughout this section we will assume that

σ, τ, α, ρ ∈ {0, 1}, and we will make use of the results on gr-singular ideals

obtained in the previous chapter.

We adapt the following graded definitions for the case of superalgebras.

Definitions 3.3.1. If A is a superalgebra, the ideal Zgr−l(A) defined in (3.3.1)

is called the left supersingular ideal of A. In a similar way we could talk

about the right supersingular ideal of A (denoted by Zgr−r(A)). The su-

persingular ideal of A is defined as Zgr(A) = Zgr−l(A) ∩ Zgr−r(A).

Definitions 3.3.2. Let A be a superalgebra. We say that A is left super-

singular if Zgr−l(A) = A, and we say that A is left supernonsingular if

Zgr−l(A) = 0.

When we take G = Z/Z2 in the definition of gr-left quotient algebra we

will speak about a left quotient superalgebra and a weak left quotient

superalgebra.

Under the hypotheses of supernonsingularity we have a relation between

the notion of weak left quotient superalgebra and that of gr-left essential

ideal.
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Lemma 3.3.3. Let A be a nonzero left supernonsingular superalgebra and let

I be a left superideal of A. Then:

(i) A is right faithful.

(ii) I ∈ Ie
gr−l(A) if and only if A is a weak left quotient superalgebra of I.

Proof. (i) If xσ ∈ Aσ is a total (homogeneous) right zero divisor, then

lan(xσ) = A implies xσ ∈ Zgr−l(A)σ = 0.

(ii) Suppose I ∈ Ie
gr−l(A). If 0 6= xσ ∈ Aσ then Ixσ 6= 0 (otherwise

I ⊆ lan(xσ) would imply xσ ∈ Zgr−l(A) = 0, a contradiction). Take yτ ∈ I

such that yτxσ 6= 0. By (i), Ayτxσ is a nonzero left superideal of A and by

the essentiality of I, 0 6= aαyτxσ ∈ Iα+τ+σ for some aα ∈ Aα (notice that

aαyτ ∈ I). For the converse, apply (i), (2.2.17) and (2.3.8) (iii).

Remark 3.3.4. The previous lemma still holds if we consider algebras, left

ideals and the notions of left singular, right faithful and weak left quotient

algebras instead of the analogous graded ones.

Remark 3.3.5. Note that if A is right faithful, then left nonsingularity im-

plies left supernonsingularity while the converse is not true: See the example

in (2.3.6) and (2.3.15). Moreover, such an A is an example of an algebra which

is neither nonsingular nor singular.

We are interested in relating the different types of singular ideals we can

consider in the different structures we are dealing with, namely, superalgebras,

associative pairs and associative triple systems.

LetA be an associative pair and letX ⊆ Aσ, σ = ±. The left annihilator

of X in A is defined to be the set:

lan(X) = lanA(X) := {b ∈ A−σ : bXA−σ = 0, AσbX = 0}.

It can be shown [29, 1.2] that if A is a right faithful associative pair then

lanA(X) = {b ∈ A−σ : AσbX = 0}.
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For an associative triple system T and a subset X ⊂ T , the left annihi-

lator of X in T is defined as:

lanT (X) := lanV (T )(X),

the latter being equal to lanV (T )(X
σ), σ = ±.

For a right faithful associative pair A, if we define

Zl(A)σ = {z ∈ Aσ : lanA(z) ∈ Ie
l (A)}, σ = ±,

then it turns out that

Zl(A) := (Zl(A)+, Zl(A)−)

is an ideal of A [29, 1.6], called the left singular ideal of the associative pair

A.

Definition 3.3.6. For an associative triple system T we can define the left

(triple) singular ideal as

Zl(T ) := Zl(V (T ))σ, σ = ±.

If A = A0 ⊕ A1 is a superalgebra, then the supernonsingularity of A is

in fact related with that of A0 and A1. In this regard, we have the following

results.

Proposition 3.3.7. Let A be a right faithful superalgebra such that A0 =

A1A1. Then:

(i) If I ∈ Igr−l(A) then I0 = 0 if and only if I1 = 0.

(ii) Zgr−l(A)σ = Zl(Aσ), σ = 0, 1.

Proof. (i) If I0 = 0 and we take 0 6= y1 ∈ I1, then by (3.1.2), 0 6= A1A1y1 ⊆
A1I0 = 0, a contradiction. Conversely, if I1 = 0 and we consider 0 6= y0 ∈ I0,
then (3.1.2) implies 0 6= A0y0 = A1A1y0 ⊆ A1I1 = 0 a contradiction again.

(ii) Consider first σ = 1 and 0 6= a1 ∈ Zl(A1). Take 0 6= L = L0 ⊕ L1 ∈
Igr−l(A). By (i) L1 6= 0 6= L0. Since L1 is a left ideal of A1, our hypothesis gives
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us some 0 6= l1 ∈ L1 ∩ lanA1(a1), that is, A1l1a1 = 0. On the other hand, by

(3.1.2) A1 is right faithful, so we find b1 ∈ A1 such that 0 6= b1l1 ∈ L∩lanA(a1).

To see the other containment, consider 0 6= a1 ∈ A1 such that lanA(a1) ∈
Ie

gr−l(A). If we take 0 6= J ∈ Il(A1), applying that A is right faithful we can

find 0 6= y1 ∈ J with 0 6= Ay1 ∈ Igr−l(A). So Ay1 ∩ lanA(a1) 6= 0 and by (i)

there exists b1 ∈ A1 satisfying 0 6= b1y1 ∈ lanA(a1). Since A0 = A1A1 is right

faithful by (3.1.2), we find d1 ∈ A1 such that 0 6= d1b1y1 ∈ J ∩ lanA1(a1).

For the σ = 0 case we start by taking 0 6= a0 ∈ A0 such that lanA0(a0) ∈
Ie

l (A0). If we consider 0 6= K = K0⊕K1 ∈ Igr−l(A), by (i) K0 6= 0, and since

it is a left ideal of A0 we can find 0 6= k0 ∈ K0 such that k0 ∈ lanA0(a0) ⊆
lanA(a0).

To prove the other containment we consider 0 6= a0 ∈ A0 with lanA(a0) ∈
Ie

gr−l(A). Take 0 6= J0 ∈ Il(A0), and again 0 6= Ay0 ∈ Il(A) for some y0 ∈ J0.

Since Ay0 ∩ lanA(a0) 6= 0, applying (i) we can find b0 ∈ A0 such that 0 6=
b0y0 ∈ J0 ∩ lanA0(a0).

Finally, we give the relation of the different types of nonsingularity under

the assumption A0 = A1A1 for the superalgebra.

Corollary 3.3.8. For a right faithful superalgebra A with A0 = A1A1 the

following conditions are equivalent:

(i) A is left supernonsingular (as a superalgebra).

(ii) A0 is left nonsingular (as an algebra).

(iii) A1 is left nonsingular (as a triple).

Remark 3.3.9. A0 left nonsingular does not imply A left nonsingular (the

superalgebra A considered in (2.3.6) and (2.3.15) satisfies A0 = A1A1, A0 is

left nonsingular and A itself is not).

3.4 Systems of left quotients

Let A = A0 ⊕ A1 be a subsuperalgebra of a superalgebra B = B0 ⊕ B1.

In this section we will study when B being a gr-left quotient algebra of A



80 3.4. Systems of left quotients

is equivalent to B0 and B1 being a left quotient algebra and a left quotient

triple system of A0 and A1, respectively. See [29] for results on left quotient

pairs.

There, a notion of left quotient pair is introduced. Let A = (A+, A−)

be a subpair of an associative pair Q = (Q+, Q−). We say that Q is a left

quotient pair of A if given p, q ∈ Qσ with p 6= 0 (and σ = + or σ = −)

there exist a ∈ Aσ, b ∈ A−σ such that

abp 6= 0 and abq ∈ Aσ.

Every right faithful associative pair is a left quotient pair of itself.

The notion of left quotient pair extends that of Utumi of left quotient ring

since given a subalgebra A of an algebra Q, Q is a left quotient algebra of A

if and only if V (Q) is a left quotient pair of V (A).

Definition 3.4.1. Let S be a subsystem of an associative triple system T .

We say that T is a left quotient triple system of S if given p, q ∈ T , with

p 6= 0, there exist a, b ∈ S such that abp 6= 0 and abq ∈ S, equivalently, if

V (T ) is a left quotient pair of V (S).

Definitions 3.4.2. Let A be a subsuperalgebra of a superalgebra B. For

every qi ∈ Bi, with i = 0, 1, define

(A : qi) = {a ∈ A : aqi ∈ A}.

We will say that A is weak right faithful in B if

for every q0 ∈ B0, ranB1(A : q0) = 0.

We will say that A is right faithful in B if

for every qi ∈ Bi, ranBi−1
(A : qi) = 0 for each i ∈ {0, 1}.

This definition has been motivated by the following fact: When B = A,

the previous condition means A right faithful, so that every right faithful

superalgebra A is right faithful in itself.
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Proposition 3.4.3. Let A be a subsuperalgebra of a superalgebra B and sup-

pose A0 = A1A1.

(i) If B is a left quotient superalgebra of A, then B0 is a left quotient algebra

of A0 and B1 is a left quotient triple system of A1.

(ii) If B0 is a left quotient algebraof A0, B1 is a left quotient triple system of

A1 and A is weak right faithful in B, then B is a left quotient superalgebra of

A and, consequently, a left quotient algebra of A.

Proof. (i) The fact of B0 being a left quotient algebra of A0 was proved in

(2.5.2).

To see that B1 is a left quotient triple system of A1, consider p1, q1 ∈ B1,

with p1 6= 0. Since B is a left quotient superalgebra of A = A0 + A1 and

A0 = A1A1, 0 6= t1p1 for some t1 ∈ A1. Apply that B0 is a left quotient

algebra of A0 to find a0 ∈ A0 such that a0t1p1 6= 0 and a0t1p1, a0t1q1 ∈ A0. By

(3.1.2), A0 has no total right zero divisors, hence 0 6= A0a0t1p1 = A1A1a0t1p1.

Choose b1 ∈ A1 satisfying 0 6= b1a0t1p1. Then u1 = b1a0 ∈ A1 and t1 verify:

u1t1p1 6= 0 and u1t1q1 ∈ A1. This shows our claim.

(ii) Consider p0, q0 ∈ B0, with p0 6= 0. Since B0 is a left quotient algebra

of A0, there exists a0 ∈ A0 such that a0p0 6= 0 and a0q0 ∈ A0.

Now, consider 0 6= p1 ∈ B1, q0 ∈ B0. Apply 0 6= (A : q0)p1 to find aj ∈ Aj

satisfying 0 6= ajp1 and ajq0 ∈ Aj.

For the third case, take 0 6= p0 ∈ B0, q1 ∈ B1. Since B0 is a left quotient

algebra of A0, 0 6= A0p0 = A1A1p0, so that 0 6= t1p0 for some t1 ∈ A1. Apply

the previous case to find aj ∈ Aj satisfying 0 6= ajt1p0 and ajt1q1 ∈ Aj. Then

u = ajt1 is an homogeneous element of A such that 0 6= up0 and uq1 ∈ A0∪A1.

Finally, given p1, q1 ∈ B1, with p1 6= 0, apply that B1 is a left quotient

triple system of A1 to find a1, b1 ∈ A1 such that a1b1p1 6= 0 and a1b1q1 ∈ A1.

Then u0 = a1b1 ∈ A0 satisfies 0 6= u0p1 and u0q1 ∈ A1.

Remark 3.4.4. By (3.1.3), (3.4.3) (i) may fail if A0 6= A1A1.

Other examples of right faithful subsuperalgebras in overalgebras (differ-

ent from the case A = B for a right faithful algebra A) can be found in the
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following result.

Lemma 3.4.5. Let B be an oversuperalgebra of a superalgebra A satisfying

A0 = A1A1 and suppose that B0 is a left quotient algebra of A0 and that B1

is a left quotient triple system of A1.

(i) If A is left faithful then A is right faithful in B.

(ii) If A is left supernonsingular (in particular, if it is left nonsingular) then

B is a left quotient algebra of A and A is right faithful in B. Moreover,

(i)′The left faithfulness of A in (i) can be replaced by the left faithfulness of

Ai for i = 0 or i = 1.

(ii)′The left supernonsingularity of A in (ii) can be replaced by the left non-

singularity of Ai for i = 0 or i = 1.

Proof. (i) We will prove the case i = 0. The other one is similar. Suppose

0 6= b1 ∈ ranB1(A : q0) for some q0 ∈ B0. Apply that B1 is a left quotient

triple system of A1 to find u1, v1 ∈ A1 such that 0 6= u1v1b1 ∈ A1. Since A is

left faithful and A0 = A1A1, there exists w1 ∈ A1 such that u1v1b1w1 6= 0. B0

being a left quotient algebra of A0 implies a0u1v1b1w1 6= 0 and a0u1v1q0 ∈ A0

for some a0 ∈ A0. Now, a0u1v1 ∈ (A : q0) and b1 ∈ ranB1(A : q0) imply

a0u1v1b1 = 0, a contradiction.

(ii) We prove first that B is a left quotient algebra of A.

Given p0, q0 ∈ B0, with p0 6= 0, apply that B0 is a left quotient algebra

of A0 to find a0 ∈ A0 such that a0p0 6= 0 and a0q0 ∈ A0. If p1, q1 ∈ B1,

with p1 6= 0, by using that B1 is a left quotient triple system of A1 we find

u1, v1 ∈ A1 satisfying 0 6= u1v1p1 and u1v1q1 ∈ A1. Now, consider 0 6= p0 ∈ B0

and q1 ∈ B1; apply that B0 is a left quotient algebra of A0 to find a0 ∈ A0 such

that 0 6= a0p0 ∈ A0. Since A is right faithful (by (3.3.3)) and A0 = A1A1,

b1a0p0 6= 0 for some b1 ∈ A1. Notice that V (B1) is a left quotient pair of

V (A1) and that V (A1) is left nonsingular (by (3.3.3) (i) and (3.3.8)); by [29,

2.4] (A1 : b1a0q1)b1a0p0 6= 0, hence there exists c1 ∈ A1 satisfying c1b1a0p0 6= 0

and c1b1a0q1 ∈ A1. The element u0 = c1b1a0 ∈ A0 satisfies: u0p0 6= 0 and

u0q1 ∈ A1.
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Finally, given 0 6= p1 ∈ B1 and q0 ∈ B0, apply that B1 is a left quotient

triple system of A1 to find a1 ∈ A1 such that a1p1 6= 0. By the previous case

there exists u0 ∈ A0 satisfying 0 6= u0a1p1 and u0a1q0 ∈ A1.

The equality ranB1−i
(A : qi) = 0 for every qi ∈ Bi and every i = 0, 1

follows from the fact of B being a left quotient superalgebra of A.

(i)′ Under the conditions of the main statement, A is left faithful if and

only if A0 and A1 are left faithful (by (3.1.2)). Suppose A0 left faithful, and

consider a1 ∈ A1 such that a1A1A1 = 0. If a1 6= 0, A1a1 6= 0 by the right faith-

fulness of A1.Apply that A0 is left faithful to have 0 6= A1a1A0 = A1a1A1A1,

which is a contradiction.

Now, suppose A1 left faithful, and consider a0 ∈ A0 satisfying a0A0 = 0.

Then a0A1A1A1 = a0A0A1 = 0. Since A1 has no total right zero divisors,

a0A1 = 0. If a0 6= 0, apply the right faithfulness of A0 to have 0 6= A0a0 =

A1A1a0. Apply again the left faithfulness of A1 to obtain 0 6= A1a0A1A1, a

contradiction.

(ii)′ follows from (3.1.2) and (3.3.8).

Remark 3.4.6. The converses of (i) and (ii) in (3.4.5) are not true: Con-

sider A = B and take into account that right faithfulness implies neither left

faithfulness nor left supernonsingularity.

Corollary 3.4.7. Let A be a right faithful subsuperalgebra of a superalgebra

B and suppose A0 = A1A1. If A is left faithful (equivalently gr-left faithful)

or gr-left nonsingular, then B is a left quotient superalgebra of A if and only

if B0 is a left quotient algebra of A0 and B1 is a left quotient triple system of

A1.

Proof. Apply (3.4.3) (i) and (3.4.5).
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3.5 The maximal left quotient system of an

associative pair

Let A be an associative pair and denote by (E , e) and A its standard embed-

ding and standard envelope, respectively. Then A and E can be considered

as superalgebras by defining

A0 := A12A21 ⊕A21A12, A1 := A12 ⊕A21

and

E0 := eEe⊕ (1− e)E(1− e), E1 := A1

Moreover, A0 = A1A1, although the same is not true, in general, for E0.

When E0 = E1E1, then E = A and A is said to be a unital associative

pair. As it is not difficult to see, the pair A is unital if and only if e is a

full idempotent in E , if and only if A = E = E0 ⊕ E1 is a strongly graded

superalgebra.

Notice that the standard envelope of an associative pair A is not neces-

sarily a strongly graded superalgebra. For a commutative ring R, take

A =

(
< x2 > < x >
< x > < x2 >

)
,

where < f(x) > denotes the ideal generated by {f(x)} in the polynomial ring

R[x].

Then the standard envelope of the associative pair A = V (< x >) is

isomorphic to A (consider A as a subpair of (A, ϕ), where ϕ = (ϕ+, ϕ−) is

given by:

ϕ+ : A+ −→ A

a+ 7→
(

0 a+

0 0

) ϕ− : A− −→ A

a− 7→
(

0 0
a− 0

)
and apply (3.2.4)). Moreover,

A0A1 =

(
< x2 > 0

0 < x2 >

)(
0 < x >

< x > 0

)
=

(
0 < x3 >

< x3 > 0

)
6= A1.

Lemma 3.5.1. Let B be a left quotient pair of an associative pair A, and

denote by A and B their standard envelopes. Then:
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(i) Ajibii 6= 0 for every 0 6= bii ∈ Bii, i, j ∈ {1, 2}.

(ii) Bii is a left quotient algebra of Aii for i ∈ {1, 2}.

Proof. Notice that by [29, 2.5 (i)], A ⊆ B.

(i) The case i 6= j is [29, 2.6]. Now, suppose i = j. By the previous

case, akibii 6= 0 for some aki ∈ Aki, with k 6= i and k, i ∈ {1, 2}. Apply

that B is a left quotient pair of A to find (xik, xki) ∈ (Aik,Aki) such that

0 6= xkixikakibii ∈ AkiAiibii. This shows Aiibii 6= 0.

(ii) Consider bii, cii ∈ Bii, with bii 6= 0. By (i) there exists aji ∈ Aji,

with j 6= i and j ∈ {1, 2}, such that ajibii 6= 0. Apply that B is a left

quotient pair of A and take (xij, xji) ∈ (Aij,Aji) satisfying xjixijajibii 6= 0

and xjixijajicii ∈ Aji.

Since A is right faithful, yijxjixijajibii 6= 0 for some yij ∈ Aij. Then

uii = yijxjixijaji ∈ Aii satisfies uiibii 6= 0 and uiicii ∈ Aii.

In order to construct the maximal left quotient systems for pairs, we will

have to deal with idempotents and “abstract off-diagonal Peirce spaces” which

are pairs of the form (eA(1 − e), (1 − e)Ae). Thus, the relation between left

quotient algebras and corners studied in chapter 1 turns out to be very useful

here.

Corollary 3.5.2. Let A be a right faithful associative pair and denote by A
and (E , e) its standard envelope and standard embedding, respectively. Then

eEe is a left quotient algebra of eAe.

Proof. We first show ranA(eA) = 0. Suppose 0 6= x ∈ ranA(eA). If x11 6= 0

then, by (3.5.1) (i), 0 6= A11x11 = A12A21x11 ⊆ eAxe = 0, a contradiction.

If x12 6= 0 then (since A has no total right zero divisors) 0 6= A12A21x12 ⊆
eAx(1 − e) = 0, a contradiction. Analogously we obtain x22 = x21 = 0 and

hence x = 0. Now, the result follows from [29, 1.5] and (1.2.5).

Lemma 3.5.3. Let A be a right faithful associative pair, and denote by A and

(E , e) its standard envelope and standard embedding, respectively. Then, for

every left quotient algebra Q of A such that Qe+eQ+Q(1−e)+(1−e)Q ⊆ Q
we have that Q := (eQ(1− e), (1− e)Qe) is a left quotient pair of A.
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Proof. Notice that the products uQv, for u, v ∈ {1, e, 1 − e} make sense by

considering 1, u, v,Q inside Ql
max(Q) = (by [73, 1.14]) Ql

max(A) = (by [29,

1.5 (ii)] and [73, 1.14]) Ql
max(E).

Consider p12, q12 ∈ eQ(1 − e), with p12 6= 0. Since Q is a left quotient

algebra of A there exists a ∈ A such that ap12 6= 0 and ap12, aq12 ∈ A.

Suppose first a11p12 6= 0. Then a11p12, a11q12 ∈ eA(1 − e). Apply that A

is a left quotient pair of A to find x12, x21 ∈ A satisfying x12x21a11p12 6= 0,

x12x21a11q12 ∈ A12. Notice that x21a11 ∈ A21.

Now, suppose a21p12 6= 0. Since A has no total right zero divisors,

0 6= Aa21p12 ⊆ A12a21p12 + A22a21p12 = A12a21p12 + A21A12a21p12; hence

b12a21p12 6= 0 for some b12 ∈ A12. The element c11 = b12a21 ∈ A satisfies

c11p12 6= 0, c11p12, c11q12 ∈ A, and the previous case applies.

Remark 3.5.4. The situation studied by M. Gómez Lozano and M. Siles

Molina in [29, 2.5 (ii)] is a particular case of the previous result.

Lemma 3.5.5. Let B be a left quotient pair of an associative pair A. Denote

by (B, e) and (A, e) their standard envelopes and by QB and QA their maximal

left quotient algebras. Then uQBu is a left quotient algebra of uAu, for u ∈
{e, 1− e}. In particular, uQAu is a left quotient algebra of uAu.

Proof. We will prove the result for u = e. Notice that by [29, 2.5 (i)] the

idempotent e is the same for A and B; moreover, we may consider

A ⊆ B ⊆ QB.

We show ranBe(eB) = 0. Indeed, consider 0 6= be ∈ Be; by [29, 1.5]

Bbe 6= 0, so eBbe 6= 0 or (1 − e)Bbe 6= 0; in the first case, be /∈ ranBe(eB); in

the second one, choose c ∈ B satisfying 0 6= (1 − e)cbe ∈ B and apply that

B is a left quotient pair of A to find (x, y) ∈ A such that 0 6= yx(1− e)cbe ∈
A21Bbe = A21eBbe; then be /∈ ranBe(eB).

Now we see ranB(1−e)(eB) = 0. Consider b ∈ B such that b(1− e) 6= 0. By

[29, 1.5], Bb(1− e) 6= 0. If eBb(1− e) 6= 0 we have b(1− e) /∈ ranB(1−e)(eB). If
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(1− e)Bb(1− e) 6= 0, by (3.5.1) (i) 0 6= eA(1− e)Bb(1− e) and so b(1− e) /∈
ranB(1−e)(eB).

Since ranB(eB) = ranBe(eB)⊕ ranB(1−e)(eB) = 0, we may apply (1.2.5) to

the algebras B and QB and to the idempotent e to obtain that eQBe is a left

quotient algebra of eBe. If we apply (3.5.1) (ii) and the transitivity of the

relation “being a left quotient algebra of”, we finish the proof.

Definition 3.5.6. Let A be a subpair of an associative pair B ⊆ B, where B
is the standard envelope of B. We will say that A is right faithful in B if:

ranB12(A21 :
m∑

i=1

pi
12p

i
21) = 0 and ranB21(A12 :

n∑
j=1

qj
21q

j
12) = 0

for every finite family (pi
12, p

i
21), (q

j
12, q

j
21) ∈ B, with (i, j) ∈ {1, . . . ,m} ×

{1, . . . , n}.

Definition 3.5.7. An associative triple system A is said to be right faithful

in an associative triple oversystem B when V (A) is a right faithful associative

pair in V (B).

Lemma 3.5.8. Let A be a subpair of an associative pair B ⊆ B, where B is

the standard envelope of B, and denote by A the graded algebra generated by

A inside B.

(i) A is right faithful in B if and only if A is weak right faithful in B.

Suppose that B is a left quotient pair of A.

(ii) A is the standard envelope of A.

(iii) If A is left faithful or left nonsingular then A is right faithful in B. In

particular A is right faithful in B.

Proof. Consider (q11, q22) ∈ (B11,B22), and put q0 := q11 + q22. Then

ranB1(A : q0) = ranB12(A21 : q11)⊕ ranB21(A12 : q22). (2)

Indeed, the containment “⊆” is not difficult to prove. For the converse,

consider b12 ∈ ranB12(A21 : q11). Since we want to prove (A : q0)b12 = 0, take
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a ∈ (A : q0). Then a21,A21a11 belong to (A21 : q11) and so a21b12 = 0 =

A21a11b12. Since B is a left quotient pair of A, a11b12 = 0, which proves our

claim. Analogously we obtain ranB21(A12 : q22) ⊆ ranB1(A : q0).

Now, (i) follows immediately from (2).

(ii) By (3.2.4) it is enough to prove that A is right faithful, equivalently

(by (2.2.9)) A is right superfaithful. If Aa1 = 0 for some a1 ∈ A1 := A+⊕A−,

then A1a1 = 0. Since A is right faithful (equivalently A1 is right faithful),

a1 = 0. Suppose now Aa0 = 0 for some a0 ∈ A0 = A1A1. Since B is right

faithful, by [29, 1.5] B is right faithful. Hence, a0 is not a total right zero

divisor in B.

Apply B = B0⊕B1 = B1B1⊕B1 to find x1 ∈ B1 satisfying x1a0 6= 0. Since

B is a left quotient pair of A (equivalently B1 is a left quotient triple system

of A1) there exist b1, c1 ∈ A1 such that b1c1x1a0 6= 0 and b1c1x1 ∈ A1. But

b1c1x1a0A1a0 ⊆ Aa0 = 0, a contradiction.

(iii) If A is right faithful, and left faithful or left nonsingular, by [29, 1.5

and 2.14], A is right faithful, and left faithful or left nonsingular.

On the other hand, B is a left quotient algebra of A (apply [29, 2.5]).

Notice that A0 = A1A1. Moreover, B1 is a left quotient triple system of A1

(since B is a left quotient pair of A), and B0 is a left quotient algebra of A0

(apply (3.5.1)), which imply, by virtue of (3.4.5), A right faithful in B. Now

the result follows from (i).

Remark 3.5.9. The converse of (3.5.8) (iii) is not true, that is, there are

examples of associative pairs A ⊆ B, with B a left quotient pair of A, and A

right faithful in B, and such that A is neither left faithful nor left nonsingular:

Take A = B. Then being A right faithful in A says merely A is right faithful,

but right faithfulness implies neither left faithfulness nor left nonsingularity:

For the first example, consider a field F and take

A = B =

((
F F
0 0

)
,

(
F F
0 0

))
,

which is a right but not a left faithful associative pair.
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For the second one take, for example, A = (A,A), for A a right faithful

algebra with Ql
max(A) not being von Neumann regular.

Next theorem is the main result of this section. It will allow us to success-

fully define maximal left quotient systems for pairs and triples.

Theorem 3.5.10. Let B be a left quotient pair of an associative pair A such

that A is right faithful in B, and denote by A, (EA, e) and B, (EB, e) the

standard envelopes and standard embeddings of A and B, respectively. Then:

(i) Q := Ql
gr−max(A) = Ql

max(A) = Ql
max(B) = Ql

gr−max(B).

(ii) Q := (eQ(1− e), (1− e)Qe) is a left quotient pair of A.

Proof. (i) By (3.5.1) (ii), B0 is a left quotient algebra of A0; since B1 is a left

quotient triple system of A1 (because B is a left quotient pair of A) and A
is right faithful in B (by (3.5.8) (i)), we obtain from (3.4.3) (ii) that B is a

left quotient superalgebra of A and, consequently, a left quotient algebra of

A. Hence, by [73, 1.14], (2.4.10) and (2.2.11), Q := Ql
max(A) = Ql

max(B) and

Ql
gr−max(A) = Ql

gr−max(B). To finish the proof, apply (2.2.17), (2.4.3), (2.4.4)

and the fact that Q is graded and contains A as a gr-subalgebra (notice that

the grading is given by the idempotent e).

(ii) is (3.5.3).

Definition 3.5.11. Given a right faithful associative pair A with standard

envelope and embedding A and (E , e), respectively, write Q := Ql
max(A). By

(3.5.3), Q := (eQ(1 − e), (1 − e)Qe) is a left quotient pair of A. Moreover,

if B is a left quotient pair of A such that A is right faithful in B, then by

(3.5.10) (i), Q = Ql
gr−max(B) and hence there exists a monomorphism (of

associative pairs) from B into Q which is the identity when restricted to A.

The associative pair Q is called the maximal left quotient pair of A and

will be denoted by Ql
max(A). It is maximal among all left quotient pairs of A

in which A is right faithful in the sense previously explained.

Remark 3.5.12. The previous definition strictly generalizes that of [29, 2.11].

Moreover, it cannot be improved.
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Proof. Indeed, when A is an associative pair without total right and total left

zero divisors, or it is left nonsingular, the definition coincides with the given

in [29, 2.11] because by (3.5.8) (ii), under these conditions, A is right faithful

in every left quotient pair of A. It strictly generalizes [29, 2.11] by virtue of

(3.5.9).

For the second sentence, suppose that B is a left quotient pair of A such

that there exists a monomorphism (of associative pairs) from B into Q :=

(eQl
max(A)(1− e), (1− e)Ql

max(A)e) which is the identity when restricted to

A.

Identify B with its image inside Q and denote by Q the standard envelope

of Q. Then A ⊆ B ⊆ Q ⊆ Q ⊆ Ql
max(A) (notice that Q and Ql

max(A) may

not coincide -see [29, 2.12] for an example-). Then, Q being a gr-left quotient

algebra of A implies (by (2.2.16) and (2.2.17)) that for every q0 ∈ Q0, A is a

left quotient superalgebra of (A : q0) and so Q is a left quotient superalgebra

of (A : q0).

Hence ranQ1(A : q0) = 0. By (3.5.8) (i), A is right faithful in Q. Now,

denote by B the graded algebra generated by B inside Q. Then B is the

standard envelope of B: Since Q is a left quotient pair of A and A ⊆ B ⊆ Q,

Q is a left quotient pair of B.

This implies, by (3.5.8) (ii), our statement. Finally, for every finite family

{(pi
12, p

i
21)} ⊆ (B12,B21), ranB12(A21 :

∑
i p

i
12p

i
21) = ranQ12(A21 :

∑
i p

i
12p

i
21) ∩

B12 = 0. This fact and the analogue obtained by exchanging the roles of 1

and 2, complete the proof.

3.6 The maximal left quotient system of a

triple system

We give here the definition of maximal left quotient triple. We just have to

translate the situation for pairs in the previous sections to the triple system

setting. Thus, the hard work is almost done already.

Let A be an associative triple system and denote by A the standard
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envelope of V (A) := (A,A). Consider the natural inclusion (τ+, τ−), with

τσ : V (A)σ → A, for σ = ±.

Then the linear map τ : A−1 ⊕A0 ⊕A1 → A−1 ⊕A0 ⊕A1 satisfying

τ(τ+(u) +
∑
τ+(ai)τ

−(bi) +
∑
τ−(ci)τ

+(di) + τ−(v)) :=

τ−(u) +
∑
τ−(ai)τ

+(bi) +
∑
τ+(ci)τ

−(di) + τ+(v)

for every u, v, ai, bi ∈ A, is an involutory gr-homomorphism of gr-algebras,

i.e., τ 2 = 1A, τ(al) ∈ A−l, for l = −1, 0, 1, and τ(ab) = τ(a)τ(b).

Theorem 3.6.1. Let A be a right faithful associative triple system and let A
and τ be as above. Denote Q−1 ⊕Q0 ⊕Q1 = Q := Ql

gr−max(A) = Ql
max(A).

Then:

(i) τ can be extended to an involutory gr-homomorphism of gr-algebras

τ̃ : Q−1 ⊕Q0 ⊕Q1 → Q−1 ⊕Q0 ⊕Q1

which coincides with τ when restricted to A.

(ii) Q := Q1 with the triple product given by: x · y · z := xyτ̃z (being the

juxtaposition the product in Q and yτ̃ the image of y via τ̃) is an associative

triple system and a left quotient triple system of A.

(iii) Q is maximal among all left quotient triple systems of A in which A is

right faithful in the sense that if T is a left quotient triple system of A, then

there exists a monomorphism from T into Q (of associative triple systems)

which is the identity when restricted to A.

Proof. (i) It is easy to see that A is a gr-left quotient algebra of a gr-ideal I
if and only if A is a gr-left quotient algebra of Iτ and that for any

f ∈ HOMA(Iτ ,A)l,

the map f τ : Iτ → A given by f τ (yτ ) := f(y)τ lies in HOMA(Iτ ,A)−l, for

l = −1, 0, 1. Moreover, τ̃ : Q → Q defined by [f, I]τ̃ = [f τ , Iτ ] satisfies the

desired conditions.
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(ii) It is immediate to see that Q is a left quotient triple system with the

triple product given. Now, let p, q be in Q, with p 6= 0. Apply (3.5.10) (ii) to

find (a, b) ∈ V (A) such that 0 6= abp = a · bτ · p and a · bτ · q = abq ∈ A. This

proves that A is a left quotient triple system of A.

(iii) If B is a left quotient triple system of A in which A is right faithful

then, by (3.4.1), V (B) is a left quotient pair of V (A). Clearly, the right

faithfulness of A inside B can be read as the right faithfulness of V (A)

inside V (B). By (3.5.11) Q = Ql
gr−max(E(V (B))) = Ql

max(E(V (B))) =

Ql
gr−max(E(V (A))) = Ql

max(E(V (A))), where E(V (−)) denotes the envelope

of V (−), and (Q−1,Q1) is a left quotient pair of V (A). By (i) and (ii), B can

be seen as a subtriple of Q.

Definition 3.6.2. For every associative triple system A the left quotient

triple system Q defined in (3.6.1) is called the maximal left quotient triple

system of A.

3.7 Applications to finite graded algebras.

Johnson’s Theorem

We specialize in this section the study of graded algebras to the case of finite

Z-graded algebras.

A grading of a Z-graded algebra A is a set of Φ-submodules {Ak}k∈Z such

that A = ⊕k∈ZAk is Z-graded. The grading is called nontrivial if A 6= A0.

Following Smirnov [71], a set of submodules P = {Aij : 0 ≤ i, j ≤ n} of

an algebra A is said to be a Peirce system if A =
∑n

i,j=0Aij, AijAkl ⊆ Ail

if j = k and AijAkl = 0 if j 6= k.

With any Peirce system P = {Aij : 0 ≤ i, j ≤ n} of an algebra A, a

pregrading can be associated: A =
∑n

k=−nAk, where Ak =
∑

i−j=k Aij. We

will say that this pregrading is induced by P . A system of submodules

{Hi : i = 0, . . . , n} of an algebra A is said to be complete if HAH = A, for

H =
∑n

i=0Hi, and orthogonal if HiHj = 0 for i 6= j.
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Given a graded algebra A = ⊕n
k=−nAk, define:

Hi := AiA−nAn−i, for 0 ≤ i ≤ n, and

Hij := HiAHj, for i, j ∈ {0, . . . , n}.

For a subset X of an algebra A, we will use id(X) to denote the ideal of A

generated by X.

Lemma 3.7.1. Let A = A−1 ⊕ A0 ⊕ A1 be a graded algebra such that A =

id(A−1) and A = A0AA0. Then:

(i) R0 = R1R1, where R0 = A0 and R1 = A−1 ⊕ A1.

(ii) If A is right faithful, then it is isomorphic to the standard envelope of the

associative pair (A−1, A1).

Proof. (i) By [71, Lemmas 4.1 and 4.5], we have that H = {Hp : p = 0, 1} is

an orthogonal and complete system of submodules which induces the grading

in A, so: 
A−1 = H0AH1

A0 = H0AH0 ⊕H1AH1

A1 = H1AH0

 (3).

Hence,

A = id(A−1) = A−1 + A−1A+ AA−1 + AA−1A =

(apply (3) and the orthogonality of the Hi’s)

= H0AH1 +H0AH1(H1AH1 +H1AH0) + (H0AH0 +H1AH0)H0AH1

+(H0AH0 +H1AH0)H0AH1(H1AH1 +H1AH0) = H0AH1 +H0AH1H1AH1

+H0AH1H1AH0 +H0AH0H0AH1 +H1AH0H0AH1 +H0AH0H0AH1H1AH1

+H0AH0H0AH1H1AH0 +H1AH0H0AH1H1AH1 +H1AH0H0AH1H1AH0 ⊆

H0AH1 +H0AH1 +H0AH1H1AH0 +H0AH1 +H1AH0H0AH1 +

H0AH1 +H0AH1H1AH0 +H1AH0H0AH1 +H1AH0.

Therefore A0 = H0AH1H1AH0 + H1AH0H0AH1 = (by (1)) A−1A1 +

A1A−1 = (A−1 ⊕ A1)
2.



94 3.7. Applications to finite graded algebras. Johnson’s Theorem

(ii) By (i) we may apply (3.1.2) to have that R1 is a right faithful associa-

tive triple system, equivalently, the associative pair (A−1, A1) is right faithful.

Since R0 = R1R1, A = A−1 ⊕A0 ⊕A1 is a graded envelope of (A−1, A1), and

applying (3.2.4) (note that A is right faithful) the result follows.

A family {Sk} of submodules of an algebra A is said to be independent

if
∑

k Sk is a direct sum.

Proposition 3.7.2. Let A = ⊕n
k=−nAk be a graded right faithful algebra with

nontrivial grading such that A = id(A−n) and A = A0AA0. Then:

(i) A = ⊕n
i,j=0Hij and {Hij : i, j ∈ {0, . . . , n}} is a Peirce system.

(ii) A has a nontrivial 3-grading A = R−1⊕R0⊕R1 satisfying: A = id(R−1)

and A = R0AR0, where:

R−1 = H0A(H1 + . . .+Hn)

R0 = H0AH0 + (H1 + . . .+Hn)A(H1 + . . .+Hn)

R1 = (H1 + . . .+Hn)AH0.

(iii) A is the standard envelope of the associative pair (R−1, R1).

Proof. (i) By [71, Lemmas 4.1 and 4.5], H := {Hp : p = 0, . . . , n} is a

complete orthogonal system of submodules and the grading on A is induced

by H, i.e., Ak =
∑

p−q=k HpAHq. Apply [71, Theorem 5.2 (i)] to obtain that

A has a nontrivial 3-pregrading induced by the complete orthogonal system

{H0,H1}, with H0 = H0 and H1 = H1 + . . .+Hn, that is, A = R−1 +R0 +R1,

where:

R−1 =
∑

p−q=−1

HpAHq = H0A(H1 + . . .+Hn)

R0 =
∑

p−q=0

HpAHq = H0AH0 + (H1 + . . .+Hn)A(H1 + . . .+Hn)

R1 =
∑

p−q=1

HpAHq = (H1 + . . .+Hn)AH0.

To see the independence of the Hij’s, it is enough to prove that the sum of

the Hij appearing in each Ak is direct.
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Suppose that for some k ∈ {−n, . . . , n} there is a nonzero aij ∈ Hij ∩
(
∑

p−q=k,(p,q) 6=(i,j)HpAHq). Since A is right faithful there exists l ∈ {0, . . . , n}
such that 0 6= Alaij =

∑
p−q=l HpAHqaij = (the Hpq’s are orthogonal)

Hl+iAHiaij.

But aij ∈
∑

p−q=k,(p,q) 6=(i,j)HpAHq =
∑

p6=iHpAHp−k implies

Hl+iAHiaij ⊆ Hl+iAHi

∑
p6=i

HpAHp−k = 0,

(because HiHp = 0 for every p 6= i), which is a contradiction.

(ii) The pregrading A = R−1 +R0 +R1 is, in fact, a grading, as it follows

from (i). It is nontrivial because 0 6= A−n = H0AHn ⊆ R−1. Moreover,

A = id(A−n) and A−n ⊆ R−1 imply A = id(R−1), and A0 =
∑

p−q=0HpAHq =∑
pHpAHp ⊆ R0 implies A = A0AA0 ⊆ A0AA0, so A0AA0 = A.

(iii) Now, by (ii) we may apply (3.7.1) (ii) to conclude that A is in fact

the standard envelope of the associative pair (R−1, R1).

Let S be a unital algebra. A family {e1, . . . , en} of orthogonal idempotents

in S is said to be complete if
∑n

i=1 ei = 1. Suppose A = ⊕n
k=−nAk to be a

graded subalgebra of S.

Definitions 3.7.3. We will say that the Z-grading of A is induced by

the complete system {e1, . . . , en} of orthogonal idempotents of S if

Hij = eiAej.

In particular, for n = 1 the grading is induced by a complete orthogonal

system of idempotents {e, 1− e} ifA−1 = (1− e)Ae
A0 = eAe⊕ (1− e)A(1− e)
A1 = eA(1− e).

In this case we will say, simply, that the 3-grading is induced by the idem-

potent e.

Corollary 3.7.4. Every graded simple Z-graded algebra A has a nontrivial

3-grading induced by an idempotent e ∈ Ql
max(A).
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Proof. Let A = ⊕n
k=−nAk be graded simple, with A−n 6= 0. By the proof of [71,

Theorem 4.6], A = A0AA0. Obviously, A = id(A−n). Since A is right faithful

(the set I of all homogenous total right zero divisors of A is an ideal, and with

similar ideas to those of (2.2.9) it is easy to see that it is graded. Being A

graded simple implies: (i) I = A, in which case A has zero product, but this

is not possible because A is graded simple, or (ii) I = 0, what means A right

faithful), by (3.7.2) (ii), A has a nontrivial 3-grading A = R−1⊕R0⊕R1.

Remark 3.7.5. The idempotent e in (3.7.4) lies in a unital 3-graded algebra E
containing A as an ideal and as a dense left submodule ([29, Lemma 1.5]). The

pair (E , e) is just the standard embedding of the associative pair (R−1, R1).

Proposition 3.7.6. Let A = A−1 ⊕ A0 ⊕ A1 be a nonzero right faithful

graded algebra such that (A−1 ⊕ A1)
2 = A0. Then Ql

max(A) = Ql
gr−max(A)

and there exists an idempotent e ∈ Q := Ql
gr−max(A) = Q−1⊕Q0⊕Q1 which

induces the grading on A and on Q. Moreover, A is the standard envelope

of the associative pair (A−1, A1) and the idempotent e lies in the standard

embedding of (A−1, A1).

Proof. Consider A as a superalgebra, i.e., A = R0 ⊕ R1, with R0 = A0 and

R1 = A−1 ⊕ A1. Notice that R0 = R2
1 and reasoning as in (3.7.1) (ii) we

obtain that A is isomorphic to the standard envelope of the associative pair

(A−1, A1).

Denote by (E , e) the standard embedding of the pair. By [29, Lemma 1.5],

A is a dense left ideal of E ; this implies Ql
max(A) = Ql

max(E). Denote this

algebra by Q and consider A and E as subalgebras of Q. Then

A−1 = (1− e)Ae,A0 = eAe⊕ (1− e)A(1− e) and A1 = eA(1− e).

Moreover, if we define

Q−1 := (1− e)Qe,Q0 := eQe⊕ (1− e)Q(1− e) and Q1 := eQ(1− e),

then A = A−1⊕A0⊕A1 becomes a graded subalgebra of Q = Q−1⊕Q0⊕Q1.

By the maximality of the maximal graded left quotient algebra (see (2.4.1)),

Q = Ql
gr−max(A−1 ⊕ A0 ⊕ A1).
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Theorem 3.7.7. Let A = ⊕n
k=−nAk be a right faithful algebra such that

A = id(A−n) and A = A0AA0. Then:

(i) Ql
max(A) = Ql

gr−max(A). Denote it by Q.

(ii) There exists a complete system of orthogonal idempotents {e0, . . . , en}
in Q such that the grading of A is induced by this set. Moreover, Ak =

⊕i−j=keiAej and for Qij = eiQej, A = ⊕n
i,j=0eiAej is a graded subalgebra

of Q = ⊕n
i,j=0Qij. This implies that A = ⊕n

k=−nAk is a graded subalgebra of

Q = ⊕n
k=−nQk, where Qk := ⊕i−j=kQij.

Proof. First of all we construct a complete system of orthogonal idempotents.

Notice that by (3.7.2) (i), {Hij} is an independent family and A = ⊕n
i,j=0Hij.

For each pair (i, j), with i, j ∈ {0, . . . , n}, denote by πij : A → Hij the

projection on Hij. Define, for k = 0, . . . , n:

fk :=
n∑

i=0

πik : R→
n∑

i=0

Hik.

(1) We claim that fk ∈ HOMA(A,A)0.

Each fk is a graded R-homomorphism of graded left modules: Consider

a =
∑

ij aij, b =
∑

r,s brs ∈ A. Then:

(aijb) fk =

(
aij

∑
r,s

brs

)
fk = ({Hij} is a Peirce system )

(∑
s

aijbjs

)
fk

= aijbjk = ({Hij} is a Peirce system )aij

∑
r

brk = aij

(∑
r,s

brs

)
fk

= aij (b) fk.

Since fk is a group homomorphism, this shows (ab)fk = a(b)fk.

Now, take xl ∈ Al =
∑

i−j=l HiAHj, and write xl =
∑

i−j=l xij. Denote

by Λ the set of j’s appearing in the previous sum.

(xl) fk =
∑
i−j=l

(xij) fk =

{
0 if k /∈ Λ

xl+k k ∈ Al if k ∈ Λ

implies (Al) fk ⊆ Al.
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Define ek := [A, fk] ∈ Q := Ql
gr−max(A) = ⊕n

k=−nQk.

(2) {e0, . . . , en} is a complete system of orthogonal idempotents in Q.

Indeed, take a =
∑

i,j aij ∈ A.

The ek’s are idempotents: For any k ∈ {0, . . . , n},

(a)f 2
k =

((∑
i,j

aij

)
fk

)
fk =

(∑
i

aik

)
fk =

∑
i

aik = (a)fk.

The ek’s are orthogonal: For k 6= l,

(a) (fkfl) =

((∑
i,j

aij

)
fk

)
fl =

(∑
i

aik

)
fl = 0.

The set {e0, . . . , en} is a complete system:

(a)

(
n∑

k=0

fk

)
=

(∑
i,j

aij

)(
n∑

k=0

fk

)
=

n∑
k=0

(∑
i,j

(aij)fk

)
=

n∑
k=0

∑
i

aik = a.

(3) The grading A = ⊕ijHij is induced by the system of orthogonal idem-

potents.

Observe that A is considered as a graded subalgebra of Ql
gr−max(A) by

identifying any element x ∈ A with the element [A, ρx], where ρx maps a ∈ A
to ax ∈ A. We are going to see Aij = eiAej by taking into account the

described identification. Indeed, consider a =
∑

k,l akl ∈ A. For any b =∑
r,s brs ∈ A,

(b) (fiρafj) =

(∑
r,s

brsfi

)
ρafj =

(∑
r

bri

)
ρafj =

=

((∑
r

bri

)(∑
k,l

akl

))
fj =

= (HijHkl = 0 for j 6= l)

(∑
r,l

briail

)
fj =

= (briail ∈ Hrl) =
∑

r

briaij = (b)ρaij

implies fiρafj = ρaij
and therefore our claim.
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(4) Ql
max(A) = Ql

gr−max(A) and the rest of the statements in the theorem

are true.

Write T := Ql
max(A) and define Tij := eiTej, for i, j ∈ {0, . . . , n}, and

Tk :=
∑

i−j=k Tij, for k ∈ {−n, . . . , 0, . . . , n}. Then T = ⊕n
k=−nTk is a finite

Z-grading such that A = ⊕n
k=−nAk is a graded subalgebra of T . This implies

Q = T because of the uniqueness of the maximal graded left quotient algebra

of a graded algebra (see (2.4.3)).

The following result completes [71, Theorem 4.6] in the sense that

Smirnov’s result shows that any grading of a simple Z-graded algebra A is in-

duced by a complete orthogonal system of submodules, and we prove that the

grading is, in fact, induced by a complete system of orthogonal idempotents

lying in the maximal (graded) left quotient algebra of A.

Corollary 3.7.8. Let A = ⊕n
k=−nAk be a graded simple algebra and A−n 6= 0.

Then there exists a complete system of orthogonal idempotents {e0, . . . , en}
in Q := Ql

max(A) = Ql
gr−max(A) which induces the grading on A and on Q.

The set H := {Hi : i = 0, . . . , n}, which is a maximal complete orthogonal

system of submodules of A, is unique with this property.

Proof. Clearly, A simple implies right faithful and A = id(A−n); moreover, in

[71, proof of Theorem 4.6] it is said that A = A0AA0, hence we may apply

(3.7.7). The uniqueness of H was obtained there too.

Now we will use the results of the previous sections and the results of

chapter 2 in order to obtain a Johnson-like theorem for Z-graded algebras

(with a finite grading).

Proposition 3.7.9. Let A = A−1 ⊕ A0 ⊕ A1 be a graded algebra such that

(A−1 ⊕ A1)
2 = A0. The following conditions are equivalent:

(i) A is graded left nonsingular.

(ii) A is left nonsingular.

(iii) Ql
gr−max(A) exists and it is graded von Neumann regular.
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(iv) Ql
max(A) exists and it is von Neumann regular.

If these conditions are satisfied, then Ql
max(A) = Ql

gr−max(A).

Proof. The last statement is (3.7.6).

(ii)⇔(iv) is Johnson’s Theorem [44, 13.36].

(i)⇒(ii). If A is graded left nonsingular, then (2.3.26) (i) implies A right

faithful. By (3.3.8), A1⊕A−1 is left nonsingular as an associative triple system,

equivalently, (A−1, A1) is a left nonsingular associative pair. Since A is the

standard envelope of (A−1, A1) (3.7.6), [29, Proposition 1.9] applies to obtain

that A is left nonsingular.

(iii)⇒(i) is clear since Zgr−l(A) does not contain homogeneous von Neu-

mann regular elements by (2.3.26) (ii).

(iv)⇒(iii) because Ql
max(A) = Ql

gr−max(A) (3.7.6).

As a consequence we obtain a Johnson-like Theorem for Z-graded algebras.

Theorem 3.7.10. Let A = ⊕n
k=−nAk be a graded algebra such that A =

id(A−n) and A = A0AA0. Then the following conditions are equivalent:

(i) A is graded left nonsingular.

(ii) A is left nonsingular.

(iii) Ql
gr−max(A) exists and it is graded von Neumann regular.

(iv) Ql
max(A) exists and it is von Neumann regular.

If these conditions are satisfied, then Ql
max(A) = Ql

gr−max(A).

Proof. The last statement is (3.7.7) (i).

(ii)⇔(iv) is Johnson’s Theorem [44, 13.36].

(i)⇒(ii), (iii), (iv). The graded left nonsingularity of A implies, by (2.3.26)

(i), that it is right faithful. By (3.7.2) there is a grading A = R−1 ⊕R0 ⊕R1

(see the description there) satisfying A = id(R−1) and A = R0AR0. Moreover,

by (3.7.1), (R−1⊕R1)
2 = R0. By (3.7.9) Q := Ql

max(A) is von Neumann reg-

ular (and (iv) has been proved); this implies (iii) and, by applying Johnson’s

Theorem [44, 13.36], (ii).
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(iii)⇒(i) is clear since Zgr−l(A) does not contains homogeneous von Neu-

mann regular elements (2.3.26) (ii).

(iv)⇒(i) follows because Ql
max(A) = Ql

gr−max(A).

We close this chapter with another application of the previous results to

finding gradings for simple M-graded Lie algebras.

Let Λ be a torsion-free abelian group and consider a Λ-graded Lie algebra

L =
∑

λ∈Λ Lλ. such that the set M = {λ ∈ Λ : Lλ 6= 0} is finite. Then L is

called M-graded, and the number

d(M) = min{|φ(M)| : φ ∈ Hom(Λ,Z), φ 6= 0}

is called the width of M .

For (A, ∗) an associative algebra with involution, K(A, ∗) stands for {a ∈
A : a∗ = −a}. In the cases I and II in the following theorem, the quotients

are taken over the center, Z, of the corresponding algebra.

Theorem 3.7.11 (Zelmanov [74]). Suppose L =
∑

λ∈Λ Lλ is a simple

M-graded Lie algebra over a field of characteristic at least 2d(M)+1 (or of

characteristic 0) and L 6= L0. Then L is isomorphic to one of the following

algebras:

(I) [A(−), A(−)]/Z, where A =
∑

λ∈ΛAλ is a simple associative M-graded

algebra.

(II) [K(A, ∗), K(A, ∗)]/Z, where A =
∑

λ∈ΛAλ is a simple associative M-

graded algebra with involution ∗ : A→ A, and A∗α = Aα.

(III) The Tits-Kantor-Koecher construction of the Jordan algebra of a sym-

metric bilinear form.

(IV) An algebra of one of the types G2, F4, E6, E7, E8 or D4.

In the cases I and II the isomorphism preserves the M-grading.

Suppose L is a simple Z-graded Lie algebra under the assumptions of

(3.7.11). If L is in the case I then, by (3.7.4), A has a nontrivial 3-grading,

which is inherited by L. If L is in the case II, we cannot assure the existence
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of a nontrivial 3-grading for the associative algebra A, preserved by the invo-

lution (see [71, Example in pg. 182]). Every Lie algebra in the case III has a

nontrivial 3-grading, as it is well-known. Finally, for the algebras E6, E7 and

D4, 3-gradings can be given (coming from their maximal roots), while G2, F4

and E8 do not have (see [57, 3.5], where it is explained the way of finding

Z-gradings).

For L an M -graded simple Lie algebra under the assumptions of (3.7.11),

reasoning as in [71, Theorem 5.4], we can assume Λ = Z, and the previous

argument shows the validity of the following result.

Theorem 3.7.12. Let L be a simple (nontrivial) M-graded Lie algebra over

a field of characteristic at least 2d(M) + 1 (or of characteristic 0). If L is

in the cases I, III, or it is E6, E7 or D4, then it has a nontrivial 3-grading.

The algebras of type G2, F4 and E8 do not have 3-gradings. In the case II, it

cannot be assured.



Chapter 4

Leavitt path algebras

4.1 Preliminaries

We begin by defining the mathematical objects under investigation in this

chapter: graphs and several algebraic structures related to them. Thus, after

some basic notions on graph theory and notational conventions, we remind

the reader of the construction of the standard path algebra of a graph. Then

we give the definition, examples and basic properties of Leavitt path algebras.

Definitions 4.1.1. A (directed) graph E = (E0, E1, r, s) consists of two

countable sets E0, E1 and maps r, s : E1 → E0. The elements of E0 are called

vertices and the elements of E1 edges. For each edge e, s(e) is the source

of e and r(e) is the range of e. If s(e) = v and r(e) = w, then we also say

that v emits e and that w receives e, or that e points to w.

Graphs with uncountably many vertices (or edges) could also be consi-

dered though they would not be suitable for defining the algebraic objects we

deal with here.

The following are graphs we will be using in the sequel:

Example 4.1.2. The finite line, is the graph Mn defined by M0
n =

{v1, . . . , vn}, M1
n = {e1, . . . , en−1}, s(ei) = vi and r(ei) = vi+1 for i =

1, . . . , n− 1. That is:

•v1
e1 // •v2

e2 // •v3 •vn−1
en−1 // •vn

103
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Example 4.1.3. The infinite line on the right, is the graph M∞ defined by

M0
∞ = {vi}∞i=1, M

1
∞ = {ei}∞i=1, s(ei) = vi and r(ei) = vi+1 for every i ≥ 1.

That is:

•v1
e1 // •v2

e2 // •v3 •vn−1
en−1 // •vn

Example 4.1.4. The single loop, R1, is defined by R0
1 = {v}, R1

1 = {x}:

•v xhh

Example 4.1.5. The rose with n leaves, Rn, for n ≥ 2 is the graph given by

R0
n = {v}, R1

n = {y1, . . . , yn}, whose diagram is:

•v y1hh

y2

ss

y3

��

yn

RR...

Definitions 4.1.6. A vertex which does not receive any edge is called a

source. A vertex which emits no edges is called a sink.

Thus, for instance, the vertex v1 in the finite line Mn is the only source,

and vn in the same graph is the only sink. The graph M∞ contains a source

(v1) but no sinks.

Definitions 4.1.7. A graph E is finite if E0 is a finite set. If s−1(v) is a

finite set for every v ∈ E0, then the graph is called row-finite.

All the previously considered graphs are row-finite. All of them except

M∞ are also finite. These are independent notions since of course there exist

graphs which are finite but not row-finite, for example:

•v

...

44//
** ##

...

•w

Definitions 4.1.8. A path µ in a graph E is a sequence of edges µ = µ1 . . . µn

such that r(µi) = s(µi+1) for i = 1, . . . , n− 1. In such a case, s(µ) := s(µ1) is

the source of µ, r(µ) := r(µn) is the range of µ and n is the length of the

path.
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For example, µ = e1e2e3 is a path (with range v4 and source v1) in Mn

while ν = e1e3e4 is not. Every sequence of edges in Rn is a path as it has only

one vertex.

Definitions 4.1.9. If s(µ) = r(µ) and s(µi) 6= s(µj) for every i 6= j, then µ

is a called a cycle. E is acyclic if E contains no cycles.

Although every edge in Rn is a cycle, no path of length greater than one

is a cycle in Rn as any such path would visit v more than once.

The set of paths of length n > 0 is denoted by En. The set of all paths

(and vertices) is E∗ := ∪n≥0E
n.

Our interest in graphs is that they provide nice (visual) representations

of some well-known algebras and allow us to construct others. Thus, several

algebras may be built up from graphs. We will focus on path algebras and

Leavitt path algebras.

Definition 4.1.10. Let K be a field and E be a graph. The path K-algebra

over E is defined as the free K-algebra K[E0 ∪ E1] with the relations:

(1) vivj = δijvi for every vi, vj ∈ E0.

(2) ei = eir(ei) = s(ei)ei for every ei ∈ E1.

This algebra is denoted by A(E).

These equations tell us how to multiply vertices by vertices and edges

by their source and range vertices. But by playing with these equations one

can deduce the product of edges by edges and of edges by arbitrary vertices.

Concretely one sees that a product of edges in A(E) is only nonzero if they

constitute a path, and a product of a vertex by an edge (resp. an edge by

a vertex) is nonzero only if the vertex is the source (resp. the range) of the

edge.

For example, we see that in A(Mn) we have 0 = v1e2 = e22 = v1v2 = e1v1,

whereas in A(Rn) every product of monomials is nonzero.

We can calculate A(E) for the following graphs.
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Example 4.1.11. The finite line. If we map vi 7→ e(i, i), ei 7→ e(i, i + 1),

(where e(i, j) denotes the standard (i, j)-matrix unit in Mn(K)), then we get

that

A(Mn) ∼=


K K K · · · K
0 K K · · · K
0 0 K · · · K
...

. . .
...

0 0 0 · · · K

 .

Example 4.1.12. The single loop. It is easy to see (by identifying v 7→ 1)

that A(R1) ∼= K[x], the algebra of polynomials over the field K.

Example 4.1.13. The rose with n leaves. Analogously, we get that A(Rn) ∼=
K[y1, . . . , yn], the algebra of noncommutative polynomials in n ≥ 2 variables.

The definition of Leavitt path algebra relies on the concept of extended

graph and path algebra:

Definition 4.1.14. Given a graph E we define the extended graph of E

as the new graph Ê = (E0, E1 ∪ (E1)∗, r′, s′) where (E1)∗ = {e∗i : ei ∈ E1}
and the functions r′ and s′ are defined as

r′|E1 = r, s′|E1 = s, r′(e∗i ) = s(ei) and s′(e∗i ) = r(ei).

This graph is simply obtained by doubling (and reversing) the edges by

introducing ghost edges (which are the starred new edges e∗i ). So for the

example, the extended graph for the finite line is:

Example 4.1.15. The extended finite line is the graph M̂n:

•v1

e1 ** •v2

e2 **

e∗1

jj h_V •v3

e∗2

jj h_V •vn−1

en−1
++ •vn

e∗n−1

ll g_

Definition 4.1.16. LetK be a field and E be a row-finite graph. The Leavitt

path algebra of E with coefficients in K (also called the graph K-

algebra) is defined as the path algebra over the extended graph Ê, with

relations:
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(CK1) e∗i ej = δijr(ej) for every ej ∈ E1 and e∗i ∈ (E1)∗.

(CK2) vi =
∑

{ej∈E1:s(ej)=vi} eje
∗
j for every vi ∈ E0 which is not a sink.

This algebra is denoted by LK(E) (or more commonly simply by L(E)).

The conditions CK1 and CK2 are called the Cuntz-Krieger relations.

In particular condition CK2 is the Cuntz-Krieger relation at vi. If vi is a

sink, we do not have a CK2 relation at vi. Note that the condition of row-

finiteness is needed in order to define the equation CK2. From now on, we

will assume that our graphs are row-finite.

Before giving examples of these algebras, we investigate some basic pro-

perties of L(E).

Lemma 4.1.17. Every monomial in L(E) is of the following form.

(a) kivi with ki ∈ K and vi ∈ E0, or

(b) kei1 . . . eiσe
∗
j1
. . . e∗jτ

where k ∈ K; σ, τ ≥ 0, σ + τ > 0, eis ∈ E1 and

e∗jt
∈ (E1)∗ for 0 ≤ s ≤ σ, 0 ≤ t ≤ τ .

Proof. The proof follows the same arguments to that of [64, Corollary 1.15].

We include it here for completeness.

We proceed by induction on the length of the monomial kx1 . . . xn with

xi ∈ E0 ∪ E1 ∪ (E1)∗.

For n = 1 it is clear that it is of the desired form. Suppose now that we

can convert any monomial of length n ≥ 1 to one a of a type a) or b), and

consider β = ky1 . . . ynyn+1 = αyn+1, yi ∈ E0 ∪ E1 ∪ (E1)∗. By induction

hypothesis on α we have two cases:

Case 1: α = kvi. If now yn+1 = vj then β = (k δij)vj is of type a). If

yn+1 = ej then β = kvis(ej)ej = (k δvi,s(ej))ej is of type b). Similarly β is of

type b) for yn+1 = e∗j .

Case 2: α = kei1 . . . eiσe
∗
j1
. . . e∗jτ

with σ, τ ≥ 0, σ+ τ > 0. We distinguish

more subcases:

Case 2.1: yn+1 = vj, τ > 0. Then since e∗jτ
vj = e∗jτ

s(ejτ )vj =

e∗jτ
δs(ejτ ),vj

s(ejτ ) = δs(ejτ ),vj
e∗jτ

then β = (k δs(ejτ ),vj
)ei1 . . . eiσe

∗
j1
. . . e∗jτ

.
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Case 2.2: yn+1 = vj, τ = 0. Then σ > 0 and in a similar way we get

β = k′ei1 . . . eiσ , for a certain k′ ∈ K.

Case 2.3: yn+1 = ej, τ > 0. We use CK1 to compute e∗jτ
ej = δjτ ,j r(ej).

Now with the ideas above we see that β is of one of the following forms:

(k δjτ ,j δs(ejτ−1
),r(ej)) ei1 . . . eiσe

∗
j1
. . . e∗jτ−1

,

(k δjτ ,j δr(eiσ ),r(ej))ei1 . . . eiσ

or (k δjτ ,j)r(ej),

for τ > 1, τ = 1 ∧ σ > 0 or τ = 1 ∧ σ = 0 respectively.

Case 2.4: yn+1 = ej, τ = 0. Then σ > 0 and β = kei1 . . . eiσej.

Case 2.5: yn+1 = e∗j , τ > 0. In such a case β = kei1 . . . eiσe
∗
j1
. . . e∗jτ

e∗j .

Case 2.6: yn+1 = e∗j , τ = 0. Then σ > 0 and β = kei1 . . . eiσe
∗
j .

In every subcase we end up with a monomial of type a) or b). This com-

pletes the proof.

Definition 4.1.18. Recall that a ring A has local units if for every finite

subset {x1, . . . , xn} ⊆ A there exists e = e2 ∈ A (a local unit for that set)

with xi ∈ eAe for every i = 1, . . . , n.

Lemma 4.1.19. If E0 is finite then L(E) is a unital K-algebra. If E0 is

infinite, then L(E) is an algebra with local units (specifically, the set generated

by finite sums of distinct elements of E0).

Proof. First assume that E0 is finite, we will show that
∑n

i=1 vi is the unit

element of the algebra.

First we compute (
∑n

i=1 vi)vj =
∑n

i=1 δijvj = vj. Now if we take ej ∈ E1

we may use the equations (2) in the definition of path algebra together with

the previous computation to get(
n∑

i=1

vi

)
ej =

(
n∑

i=1

vi

)
s(ej)ej = s(ej)ej = ej.

In a similar manner we see that (
∑n

i=1 vi)e
∗
j = e∗j . Since L(E) is generated

by E0 ∪E1 ∪ (E1)∗, then it is clear that (
∑n

i=1 vi)α = α for every α ∈ L(E),

and analogously α(
∑n

i=1 vi) = α for every α ∈ L(E).
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Now suppose that E0 is infinite. Consider a finite subset {ai}t
i=1 of L(E)

and use (4.1.17) to write

ai =

ni∑
s=1

ki
sv

i
s +

mi∑
l=1

cilp
i
l

where ki
s, c

i
l ∈ K−{0}, and pi

l are monomials of type (b). Then with the same

ideas as above it is not difficult to prove that for

V =
t⋃

i=1

{vi
s, s(p

i
l), r(p

i
l) : s = 1, . . . , ni; l = 1, . . . ,mi},

then α =
∑

v∈V v is a finite sum of vertices such that αai = aiα = ai for every

i.

Lemma 4.1.20. L(E) is a Z-graded algebra, with grading induced by

deg(vi) = 0 for all vi ∈ E0; deg(ei) = 1 and deg(e∗i ) = −1 for all ei ∈ E1.

That is, L(E) =
⊕

n∈Z L(E)n, where L(E)0 = KE0 + A0, L(E)n = An for

n 6= 0 and An is the K-linear span of the set

{ei1 . . . eiσe
∗
j1
. . . e∗jτ

: σ + τ > 0, eis ∈ E1, eit ∈ (E1)∗, σ − τ = n}.

Proof. The fact that L(E) =
∑

n∈Z L(E)n follows from (4.1.17). The grading

on L(E) follows directly from the fact that A(Ê) is Z-graded, and that the

relations CK1 and CK2 are homogeneous in this grading.

We can check ApAq ⊆ Ap+q for completeness. Let us consider

ei1 . . . eiσe
∗
j1
. . . e∗jτ

and em1 . . . emµe
∗
n1
. . . e∗nν

with σ − τ = p and µ− ν = q. In

order to compute the product we have several cases.

Case 1: τ > µ. Then we have

(e∗j1 . . . e
∗
jτ

)(em1 . . . emµ) = (δjτ ,m1)e
∗
j1
. . . e∗jτ−1

r(em1)em2 . . . emµ =

(δjτ ,m1δr(em1 ),s(em2 ))e
∗
j1
. . . e∗jτ−1

em2 . . . emµ =

(δjτ ,m1δr(em1 ),s(em2 )δjτ−1,m2δr(em2 ),s(em3 ))e
∗
j1
. . . e∗jτ−2

em3 . . . emµ = . . . =

(δjτ ,m1δjτ−1,m2 . . . δjτ−µ+1,mµδr(em1 ),s(em2 ) . . . δr(emµ−1 ),s(emµ ))e
∗
j1
. . . e∗jτ−µ

.
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Therefore there exists γ ∈ K with

(ei1 . . . eiσe
∗
j1
. . . e∗jτ

)(em1 . . . emµe
∗
n1
. . . e∗nν

) = γei1 . . . eiσe
∗
j1
. . . e∗jτ−µ

e∗n1
. . . e∗nν

,

and since σ−((τ−µ)+ν) = (σ−τ)+(µ−ν) = p+q, then the last expression

is inside Ap+q.

Case 2: τ < µ. If we proceeded in a similar fashion we would get that

the product is of the form ei1 . . . eiσemτ+1 . . . emµe
∗
n1
. . . e∗nν

and therefore again

(σ + (µ− τ))− ν = (σ − τ) + (µ− ν) = p+ q.

Case 3: τ = µ. The product now becomes ei1 . . . eiσe
∗
n1
. . . e∗nν

and so σ−ν =

σ + (−τ + µ)− ν = p+ q.

Examples 4.1.21. Many well-known algebras are of the form L(E) for some

graph E:

(i) Matrix algebras Mn(K): Consider the “finite line” graph Mn. Then

Mn(K) ∼= L(Mn), via the map vi 7→ e(i, i), ei 7→ e(i, i+1), and e∗i 7→ e(i+1, i).

(ii) Laurent polynomial algebras K[x, x−1]: Consider the single loop graph R1.

Then clearly K[x, x−1] ∼= L(R1).

(iii) Leavitt algebras L(1, n) for n ≥ 2 investigated in [49]: Consider the “rose

with n leaves” graph Rn. Then L(1, n) ∼= L(Rn) where A = L(1, n) is iso-

morphic to the free associative K-algebra with generators {xi, yi : 1 ≤ i ≤ n}
and relations

(1) xiyj = δij for all 1 ≤ i, j ≤ n, and (2)
n∑

i=1

yixi = 1.

In other words, if

X =

 x1
...
xn

 and Y = (y1, . . . , yn) then XY = Idn×n and Y X = 1K .

This algebra A is a universal example of algebra without the IBN property

(concretely AA
∼= An

A).

Note that by virtue of (4.1.20) we can define the degree of an arbitrary

polynomial in L(E) as the maximum of the degrees of its monomials.
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Definitions 4.1.22. We say that a monomial in L(E) is a real path (resp.

a ghost path) if it contains no terms of the form e∗i (resp. ei); we say that

p ∈ L(E) is a polynomial in only real edges (resp. in only ghost edges)

if it is a sum of real (resp. ghost) paths.

Notation 4.1.23. For a path q = q1 . . . qn, we denote by q∗ the ghost path

q∗n . . . q
∗
1.

Definition 4.1.24. If α ∈ L(E) and d ∈ Z+, then we say that α is rep-

resentable as an element of degree d in real (resp. ghost) edges

in case α can be written as a sum of monomials from the spanning set

{pq∗ | p, q| p, q ∈ E∗} given by (4.1.17), in such a way that d is the max-

imum length of a path p (resp. q) which appears in such monomials.

We note that an element of L(E) may be representable as an element

of different degrees in real (resp. ghost) edges, depending on the particular

representation used for α. For instance, for R1 as in (4.1.21 (ii)), xx−1 is

representable as an element of degree 0 (and 1, of course) in real edges in

L(R1), because xx−1 = 1.

4.2 Closed paths

Certain paths in the graph E play a central role in the structure of the Leavitt

path algebra L(E).

Definitions 4.2.1. A closed path based at v is a path µ = µ1 . . . µn, with

µj ∈ E1, n ≥ 1 and such that s(µ) = r(µ) = v. Denote by CP(v) the set of

all such paths. A closed simple path based at v is a closed path based at

v, µ = µ1 . . . µn, such that s(µj) 6= v for every j > 1. Denote by CSP(v) the

set of all such paths.

Remark 4.2.2. Note that a cycle is a closed simple path based at any of

its vertices, but not every closed simple path based at v is a cycle because a

closed simple path may visit some of its vertices (but not v) more than once.
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Moreover, every closed simple path is in particular a closed path, while the

converse is false. See the following graph:

•v

e
##

h

33 •w

g

cc

f

tt

Then, if we focus on the vertex v we see that the only cycles based at v are

h and eg, whereas CSP(v) = {h, efng for every n ≥ 0}. Moreover, heg or h2

are closed paths based at v but they are not simple.

When we deal with closed paths, the simple ones are in some sense the

“atoms” since we can decompose any closed path into a (uniquely determined)

product of simple paths. In addition to that, closed simple paths verify an

analogue to the CK1 relations for edges, which will be extremely useful in

our computations all throughout the chapter.

Lemma 4.2.3. Let µ, ν ∈ CSP(v). Then µ∗ν = δµ,νv.

Proof. We first assume α and β are arbitrary paths and write α = ei1 . . . eiσ

and β = ej1 . . . ejτ .

Case 1: deg(α) = deg(β) but α 6= β. Define b ≥ 1 the subindex of the first

edge where the paths α and β differ. That is, eia = eja for every a < b but

eib 6= ejb
. Then

α∗β = e∗iσ . . . e
∗
i1
ej1 . . . ejτ = e∗iσ . . . e

∗
i2
r(ej1)ej2 . . . ejτ =

= δr(ej1
),s(ej2

)e
∗
iσ . . . e

∗
i2
ej2 . . . ejτ = . . . =

= δr(ej1
),s(ej2

) . . . δr(ejb−1
),s(ejb

)e
∗
iσ . . . e

∗
ib
ejb
. . . ejτ = 0.

Case 2: α = β. Proceeding as above we get that

α∗β = δr(ei1
),s(ei2

) . . . δr(eiσ−1
),s(eiσ )r(eiσ) = r(α).

Case 3: Now let µ, ν ∈ CSP(v) with deg(µ) < deg(ν). Write ν = ν1ν2

where deg(ν1) = deg(µ), deg(ν2) > 0. Now if µ = ν1 then we have that

v = r(µ) = r(ν1) = s(ν2), contradicting that ν ∈ CSP(v), so µ 6= ν1 and thus

case 1 applies to obtain µ∗ν = µ∗ν1ν2 = 0.
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The case deg(µ) > deg(ν) is analogous to case 3 by changing the roles of

µ and ν.

Lemma 4.2.4. For every p ∈ CP(v) there exist unique c1, . . . , cm ∈ CSP(v)

such that p = c1 . . . cm.

Proof. Write p = ei1 . . . ein . Let T = {t ∈ {1, . . . , n} : r(eit) = v} and

list t1 < . . . < tm = n all the elements of T . Then c1 = ei1 . . . eit1
and

cj = eitj−1
. . . eitj

for j > 1 give the desired decomposition.

To prove the uniqueness, write p = c1 . . . cr = d1 . . . ds with ci, dj ∈
CSP(v). Multiply by c∗1 on the left and use (4.2.3) to obtain 0 6= vc2 . . . cr =

c∗1d1 . . . ds, and therefore by (4.2.3) again c1 = d1. Now an induction process

finishes the proof.

Definition 4.2.5. For p ∈ CP(v) we define the return degree (at v) of

p to be the number m ≥ 1 in the decomposition above. (So, in particular,

CSP(v) is the subset of CP(v) having return degree equal one.) We denote

it by RD(p) = RDv(p) = m. We extend this notion to vertices by setting

RDv(v) = 0, and to nonzero linear combinations of the form
∑
ksps, with

ps ∈ CP(v) ∪ {v} and ks ∈ K − {0} by: RD(
∑
ksps) = max{RD(ps)}.

For example, if we go back to the graph in (4.2.2) we see that: RD(v) = 0,

RD(eg) = 1 or RD(h2) = RD(heg) = RD(hef 4g) = 2.

The exit of a path is a key concept if our study of L(E) too.

Definition 4.2.6. An edge e is an exit to the path µ = µ1 . . . µn if there

exists i such that s(e) = s(µi) and e 6= µi.

Sometimes the concept of an exit can be tricky since one imagines that

an exit should be an edge completely external to the path. This need not be

the case, for instance, in the graph

•v •w
g

oo
ON edbc fHIOO eii
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if we consider the path µ = ef , not only is g an exit but also e and f because:

e is an exit when, running along µ, “we have walked” only by the edge e and,

instead of taking f , we “exit” at e. The case of f could be more drastic: just

before starting to run along the path, we “exit” at f instead of going through

e.

Lemma 4.2.7. For a graph E the following conditions are equivalent.

(i) Every cycle has an exit.

(ii) Every closed path has an exit.

(iii) Every closed simple path has an exit.

(iv) For every vi ∈ E0, if CSP(vi) 6= ∅, then there exists c ∈ CSP(vi) having

an exit.

Proof. (ii) ⇒ (iii) ⇒ (i) is trivial by definition, and (iii) ⇒ (iv) is obvious.

(i) ⇒ (ii). Consider µ ∈ CP(vi). First by (4.2.4) we can factor µ =

c(1) . . . c(m), where c(j) ∈ CSP(vi), and we examine c(m). If it is cycle then

we can find an exit for it, and therefore for µ, by hypothesis. If not, c(m) visits

a vertex (different from vi) more than once. Write c(m) = c
(m)
1 . . . c

(m)
s with

each c
(m)
i ∈ E1 and let c

(m)
s0 be the last edge for which

s(c
(m)
j ) ∈ {s(c(m)

i ) : 1 ≤ i ≤ s, i 6= j}.

Thus, there exists s1 < s0 such that s(c
(m)
s0 ) = s(c

(m)
s1 ). We have several possi-

bilities:

Case 1: c
(m)
s0 = c

(m)
s1 and s0 < s. Then r(c

(m)
s0 ) = r(c

(m)
s1 ); that is, s(c

(m)
s0+1) =

s(c
(m)
s1+1), which contradicts the choice of c

(m)
s0 .

Case 2: c
(m)
s0 = c

(m)
s1 and s0 = s. This means that r(c

(m)
s1 ) = r(c

(m)
1 ) = vi,

which is impossible because c(m) ∈ CSP(vi).

Case 3: c
(m)
s0 6= c

(m)
s1 . In this case c

(m)
s1 is an exit for c(m), and then for µ.

In each case we reach a contradiction or we find an exit for µ, as needed.

(iv) ⇒ (iii). Consider c(1) ∈ CSP(vi). By hypothesis we find c(2) ∈ CSP(vi)

having an exit. If c(1) = c(2) we are done. If not, we write c(1) = ei1 . . . eis ,

c(2) = ej1 . . . ejr and proceed by steps:
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Step 1: If ei1 6= ej1 , since s(ei1) = s(ej1) = vi, then ej1 is an exit for c(1).

Step 2: If ei1 = ej1 then r(ei1) = r(ej1); that is, s(ei2) = s(ej2).

Step 3: If ei2 6= ej2 , then as in Step 1, ej2 is an exit for c(1).

Step 4: If ei2 = ej2 , then continue as in Step 2.

With this process, we either find an exit or we run out of edges in one

path but not in the other (because c(1) 6= c(2)). Thus:

Case 1: c(1) = c(2)eit . . . eis for t ≤ s. But this is impossible because s(eit) =

r(c(2)) = vi and c(1) ∈ CSP(vi).

Case 2: c(2) = c(1)ejq . . . ejr for q ≤ r, which is similarly impossible.

In any case, we reach a contradiction or we are able to find an exit for

c(1), and this finishes the proof.

4.3 Simple Leavitt path algebras

In this section we build some necessary algebraic machinery and obtain a first

result, (4.3.12), in which we give necessary and sufficient conditions on the

graph E so that L(E) has a concrete algebraic property. Specifically in this

section we do so with the simplicity property.

A great effort in the proof of that result is done in reducing the degrees

of the polynomial by multiplying by suitable elements on both sides. The

following proposition is a first step to that reduction process.

Proposition 4.3.1. Let E be a graph with the property that every cycle has

an exit. If α ∈ L(E) is a polynomial in only real edges with deg(α) > 0, then

there exist a, b ∈ L(E) such that aαb 6= 0 is a polynomial in only real edges

and deg(aαb) < deg(α).

Proof. Write α =
∑

ei∈E1 eiαei
+
∑

vl∈E0 klvl, where αei
are polynomials in

only real edges, and deg(αei
) < deg(α) = m.

Case (A): kl = 0 for every l. Since α 6= 0, there exists i0 such that ei0αei0
6=

0. Let b ∈ L(E) have αb = α; such exists by (4.1.19). Then a = e∗i0 , b give

e∗i0αb = αei0
6= 0 is a polynomial in only real edges and deg(αei0

) < deg(α).
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Case (B): There exists kl0 6= 0. Then we can write

vl0αvl0 = kl0vl0 +
∑

p∈CP(vl0
)

kpp, kp ∈ K.

Note that this is a polynomial in only real edges, and is nonzero because kl0

is nonzero.

Case (B.1): deg(vl0αvl0) < deg(α). Then we are done with a = vl0 and

b = vl0 .

Case (B.2): deg(vl0αvl0) = deg(α) = m > 0. Then there exists p0 ∈
CP(vl0) such that kp0p0 6= 0. Now by (4.2.4), we can write p0 = c1 . . . cσ, σ ≥ 1

and thus CSP(vl0) 6= ∅. We apply now (4.2.7) to find cs0 ∈ CSP(vl0) which

has ei0 as an exit, that is, if cs0 = ei1 . . . eis0
then there exists j ∈ {1, . . . , s0}

such that s(eij) = s(ei0) but eij 6= ei0 . Since s(eij) = s(ei0) we can therefore

build the path given by z = ei1 . . . eij−1
ei0 . This situation may be represented

•vl0

ei1 --

•
eis0oo • •

eijoo
ei0

// •

• • eij−1

MM

This path has c∗s0
z = 0 because c∗s0

z = e∗is0 . . . e
∗
i1
ei1 . . . eij−1

ei0 = . . . =

e∗is0 . . . e
∗
ij
ei0 = 0. (We use this observation later on.) Again (4.2.4) allows

us to write

vl0αvl0 = kl0vl0 +
∑

cs∈CSP(vl0
)

csα
(1)
cs

(†)

where γ = RD(vl0αvl0) > 0, and α
(1)
cs are polynomials in only real edges

satisfying RD(α
(1)
cs ) < γ.

We now present a process in which we decrease the return degree of the

polynomials by multiplying on both sides by appropriate elements in L(E).

In the sequel we often make use of (4.2.3) without mentioning it explicitly.

In particular, multiplying (†) on the left by c∗s0
gives

c∗s0
(vl0αvl0) = kl0c

∗
s0

+ α(1)
cs0

(‡)

Case 1: α
(1)
cs0

= 0. Then A = c∗s0
and B = cs0 are such that A(vl0αvl0)B =

kl0vl0 6= 0 is a polynomial in only real edges and RD(A(vl0αvl0)B) = 0 < γ =

RD(vl0αvl0).
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Case 2: α
(1)
cs0

6= 0 but RD(α
(1)
cs0

) = 0. Then α
(1)
cs0

= k(2)vl0 for some 0 6=
k(2) ∈ K. Using the path z with an exit for c∗s0

we have:

z∗c∗s0
(vl0αvl0)z = z∗(kl0c

∗
s0

+ k(2)vl0)z = z∗(0 + k(2)z) = k(2)r(z) 6= 0.

So we have A = z∗c∗s0
and B = z such that A(vl0αvl0)B 6= 0 is a polynomial

in only real edges and RD(A(vl0αvl0)B) = 0 < γ = RD(vl0αvl0).

Case 3: RD(α
(1)
cs0

) > 0. We can write

α(1)
cs0

= k(2)vl0 +
∑

cs∈CSP(vl0
)

csα
(2)
cs
,

where α
(2)
cs are polynomials in only real edges with return degree less than the

return degree of α
(1)
cs0

. Now 0 < RD(α
(1)
cs0

) < γ implies γ ≥ 2. Multiply (‡) by

c∗s0
to get

(c∗s0
)2(vl0αvl0) = kl0(c

∗
s0

)2 + k(2)c∗s0
+ α(2)

cs0
(§)

We are now in position to proceed in a manner analogous to that described

in Cases 1, 2, and 3 above.

Case 3.1: α
(2)
cs0

= 0. Then (c∗s0
)2(vl0αvl0)(cs0)

2 = kl0vl0 + k(2)cs0 and hence

we have found A = (c∗s0
)2 and B = (cs0)

2 such that A(vl0αvl0)B 6= 0 is a poly-

nomial in only real edges and RD(A(vl0αvl0)B) = 1 < 2 ≤ γ = RD(vl0αvl0).

Case 3.2: α
(2)
cs0

6= 0 but RD(α
(2)
cs0

) = 0. Then α
(2)
cs0

= k(3)vl0 for some 0 6=
k(3) ∈ K, and then

z∗(c∗s0
)2(vl0αvl0)z = z∗(kl0(c

∗
s0

)2 + k(2)c∗s0
+ k(3)vl0)z =

z∗(0 + k(3)z) = k(3)r(z) 6= 0

Thus, we get A = z∗(c∗s0
)2 and B = z such that A(vl0αvl0)B 6= 0 is a polyno-

mial in only real edges and RD(A(vl0αvl0)B) = 0 < γ = RD(vl0αvl0).

Case 3.3: RD(α
(2)
cs0

) > 0. We write

α(2)
cs0

= k(3)vl0 +
∑

cs∈CSP(vl0
)

csα
(3)
cs
,

where α
(3)
cs are polynomials in only real edges with return degree less than

the return degree of α
(2)
cs0

. Now 0 < RD(α
(2)
cs0

) < RD(α
(1)
cs0

) < γ implies γ ≥ 3.
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And by multiplying (§) by c∗s0
we get (c∗s0

)3(vl0αvl0) = kl0(c
∗
s0

)3 + k(2)(c∗s0
)2 +

k(3)c∗s0
+ α

(3)
cs0

.

We continue the process of analyzing each such equation by considering

three cases. If at any stage either of the first two cases arise, we are done.

But since at each stage the third case can occur only by producing elements

of subsequently smaller return degree, then after at most γ stages we must

have one of the first two cases.

Thus, by repeating this process at most γ times we are guaranteed to

find Ã, B̃ such that Ã(vl0αvl0)B̃ 6= 0 is a polynomial in only real edges and

RD(Ã(vl0αvl0)B̃) = 0. But this then gives 0 = deg(Ã(vl0αvl0)B̃) < deg(α).

So a = Ãvl0 and b = vl0B̃ are the desired elements.

Corollary 4.3.2. Let E be a graph with the property that every cycle has an

exit. If α 6= 0 is a polynomial in only real edges then there exist a, b ∈ L(E)

such that aαb ∈ E0.

Proof. Apply (4.3.1) as many times as needed (deg(α) at most) to find a′, b′

such that a′αb′ is a nonzero polynomial in only real edges with deg(a′αb′) = 0;

that is, a′αb′ =
∑t

i=1 kivi 6= 0. So there exists j with kj 6= 0, and finally

a = k−1
j a′ and b = b′vj give that aαb = vj ∈ E0.

Corollary 4.3.3. Let E be a graph with the property that every cycle has an

exit. If J is a ideal of L(E) and contains a nonzero polynomial in only real

edges, then E0 ∩ J 6= ∅.

Proof. Straightforward by (4.3.2).

In order to extend all the previous results of this section to analogous

results about polynomials in only ghost edges, we define an involution in

L(E).

Lemma 4.3.4. L(E) can be equipped with an involution x 7→ x defined on

the monomials by:

(a) kivi = kivi with ki ∈ K and vi ∈ E0,
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(b) kei1 . . . eiσe
∗
j1
. . . e∗jτ

= kejτ . . . ej1e
∗
iσ . . . e

∗
i1

where k ∈ K; σ, τ ≥ 0, σ+τ >

0, eis ∈ E1 and ejt ∈ (E1)∗,

and extending linearly to L(E).

Proof. The proposed map is well defined by (4.1.17), and it is linear by defini-

tion. It is easily shown to satisfy xy = y x and x = x for every x, y ∈ L(E). It

is also straightforward to check that the map is compatible with the relations

defining L(E).

Remark 4.3.5. Note that the involution transforms a polynomial in only

real edges into a polynomial in only ghost edges and vice versa. If J is an

ideal of L(E) then so is J .

We can define sets and quantities for ghost paths analogous to those given

for real paths. Using the involution given in (4.3.4) we can then analogously

prove the following three results.

Proposition 4.3.6. Let E be a graph with the property that every cycle has

an exit. If α ∈ L(E) is a polynomial in only ghost edges with deg(α) > 0 then

there exist a, b ∈ L(E) such that aαb 6= 0 is a polynomial in only ghost edges

and deg(aαb) < deg(α).

Corollary 4.3.7. Let E be a graph with the property that every cycle has an

exit. If α 6= 0 is a polynomial in only ghost edges then there exist a, b ∈ L(E)

such that aαb ∈ E0.

Corollary 4.3.8. Let E be a graph with the property that every cycle has an

exit. If J is an ideal of L(E) and contains a nonzero polynomial in only ghost

edges, then E0 ∩ J 6= ∅.

So far we have achieved a partial result: Under certain conditions (every

cycle in the graph has an exit), we can always find a vertex in every two-sided

ideal which contains either a polynomial in only real edges or a polynomial

in only ghost edges. The question now is: When can we deduce that from a

vertex in the ideal we could get all the vertices (and therefore a local unit) in

the ideal? The next definitions are aimed to answering that question.
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For a graph E we define a preorder ≤ on the vertex set E0 given by:

v ≤ w if and only if v = w or there is a path µ with s(µ) = v and r(µ) = w.

We also say that a vertex w ∈ E0 connects to v ∈ E0 if w ≤ v.

Definitions 4.3.9. We say that a subset H ⊆ E0 is hereditary if w ∈ H

and w ≤ v imply v ∈ H. We say that H is saturated if whenever s−1(v) 6= ∅
and {r(e) : s(e) = v} ⊆ H, then v ∈ H. (In other words, H is saturated if,

for any vertex v in E, if all of the range vertices r(e) for those edges e having

s(e) = v are in H, then v must be in H as well.)

The following graph shows that these conditions are independent:

•v •woo // •x // •y

Thus, {x, y} is both hereditary and saturated, while {v, x, y} is hereditary

but not saturated. Also, {v, w} is saturated but not hereditary, and {v, x} is

neither saturated nor hereditary.

Lemma 4.3.10. If J is an ideal of L(E), then J ∩ E0 is a hereditary and

saturated subset of E0.

Proof. We first show that J ∩ E0 is hereditary. Consider v, w ∈ E0 such

that v ∈ J and v ≤ w. By the definition of the preorder we can find a path

µ = µ1 . . . µn such that s(µ1) = v and r(µn) = w. Apply that J is an ideal

to get that µ∗1vµ1 = µ∗1µ1 = r(µ1) = s(µ2) ∈ J . Repeating this argument n

times, we get that r(µn) = w ∈ J .

Now we see that J ∩E0 is saturated: Consider a vertex v with s−1(v) 6= ∅
and {r(e) : s(e) = v} ⊆ J . The first condition implies that v is not a sink,

so CK2 applies and we obtain v =
∑

{ej∈E1:s(ej)=v} eje
∗
j . If we take ej such

that s(ej) = v, then by hypothesis we have that r(ej) ∈ J and therefore

ej = ejr(ej) ∈ J . Now applying CK2 we conclude that v ∈ J .

Corollary 4.3.11. Let E be a graph with the following properties:

(i) The only hereditary and saturated subsets of E0 are ∅ and E0.



4. Leavitt path algebras 121

(ii) Every cycle has an exit.

If J is a nonzero ideal of L(E) which contains a polynomial in only real

edges (or a polynomial in only ghost edges), then J = L(E).

Proof. Apply (4.3.3) or (4.3.8) to get that J ∩ E0 6= ∅. Now by (4.3.10) and

(i) we have J ∩E0 = E0. Therefore J contains a set of local units by (4.1.19),

and hence J = L(E).

The main result of this section was proved by G. Abrams and the author

in [1, Theorem 3.11], and is the following

Theorem 4.3.12. Let E be a row-finite graph. Then the Leavitt path algebra

L(E) is simple if and only if E satisfies the following conditions:

(i) The only hereditary and saturated subsets of E0 are ∅ and E0, and

(ii) every cycle in E has an exit.

Proof. First we assume that (i) and (ii) hold and we show that L(E) is simple.

Suppose that J is a nonzero ideal of L(E). Choose 0 6= α ∈ J representable

as an element having minimal degree in the real edges.

If this minimal degree is 0, then α is a polynomial in only ghost edges, so

that by (4.3.11) we have J = L(E).

So suppose this degree in real edges is at least 1. Then we can write

α =
m∑

n=1

einαein
+ β

where m ≥ 1, einαein
6= 0 for every n, and each ein is representable as an

element of degree less than that of α is real edges, and β is a polynomial in

only ghost edges (possibly zero).

Suppose v is a sink in E. Then we may assume vβ = 0, as follows. Multi-

plying the displayed equation by v on the left gives

vα = v
m∑

n=1

einαein
+ vβ.
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But since v is a sink we have vein = 0 for all 1 ≤ n ≤ m, so that vα = vβ ∈ J .

But vβ 6= 0 would then yield a nonzero element of J in only ghost edges, so

that again by (4.3.11) we have J = L(E).

For an arbitrary edge ej ∈ E1, we have two cases:

Case 1: j ∈ {i1, . . . , im}. Then e∗jα = αej
+ e∗jβ ∈ J . If this element is

nonzero it would be representable as an element with smaller degree in the

real edges than that of α, contrary to our choice. So it must be zero, and

hence αej
= −e∗jβ, so that ejαej

= −eje
∗
jβ.

Case 2: j 6∈ {i1, . . . , im}. Then e∗jα = e∗jβ ∈ J . If e∗jβ 6= 0, then as before

we would have a nonzero element of J in only ghost edges, so that J = L(E)

and we are done. So we may assume that e∗jβ = 0, so that in particular we

have 0 = −eje
∗
jβ.

Now let S1 = {s(ein)}m
n=1, and let S2 = {vk1 , ..., vkt} where (

∑t
i=1 vki

)β =

β. (Such a set S2 exists by (4.1.19).) We note that wβ = 0 for every w ∈
E0 − S2. Also, by definition there are no sinks in S1, and by a previous

observation we may assume that there are no sinks in S2. Let S = S1 ∪ S2.

Then in particular we have (
∑

v∈S v)β = β.

We now argue that in this situation α must be zero, which will contradict

our original choice of α and thereby complete the proof. To this end,

α =
m∑

n=1

einαein
+ β =

m∑
n=1

−eine
∗
inβ + β (by Case 1)

=
m∑

n=1

−eine
∗
inβ −

 ∑
j /∈{i1,...,im},s(ej)∈S

eje
∗
j

 β + β

(by Case 2, the newly subtracted terms equal 0)

= −

(∑
v∈S

v

)
β + β = −β + β = 0.

(no sinks in S implies that CK2 applies at each v ∈ S)

Thus we have shown that if E satisfies the two indicated properties, then

L(E) is simple.

For the converse, first suppose that there is a cycle p having no exit. We

prove that L(E) cannot be simple.
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Let v be the base of that cycle. We show that for α = v + p, < α >

is a nontrivial ideal of L(E) because v 6∈< α >. Write p = ei1 . . . eiσ . Since

this cycle does not have an exit, for every eij there is no edge with source

s(eij) other than eij itself, so that the CK2 relation at this vertex yields

s(eij) = eije
∗
ij
. This easily implies pp∗ = v (we recall here that p∗p = v always

holds), and that CSP(v) = {p}. The situation could be something like

•v

ei1

��

•
eiσvv •

����
��

��
��

• // •
ei2

77 • •oo

Now suppose that v ∈< α >. So there exist nonzero monic monomials an, bn ∈
L(E) and cn ∈ K with

v =
m∑

n=1

cnanαbn (])

Since vαv = α, by multiplying by v if necessary we may assume that vanv =

an and vbnv = bn for all 1 ≤ n ≤ m.

We claim that for each an (resp. bn) there exists an integer u(an) ≥ 0

(resp. u(bn) ≥ 0) such that an = pu(an) or an = (p∗)u(an) (resp. bn = pu(bn) or

bn = (p∗)u(bn)).

Now a1 is of the form ek1 . . . ekce
∗
j1
. . . e∗jd

with c, d ≥ 1. (Otherwise we are

in a simple case that is contained in what follows.) Since a1 starts and ends

in v we can consider the elements:

g = min{z : r(e∗jz
) = v} and f = max{z : s(ekz) = v},

and we focus on a′1 = ekf
. . . ekce

∗
j1
. . . e∗jg

.

First, since v = r(e∗jg
) = s(ejg) and ei1 is the only edge coming from v,

then ejg = ei1 . Now, s(ejg−1) = r(e∗jg−1
) = s(e∗jg

) = r(ejg) = r(ei1) = s(ei2),

and again the only edge coming from s(ei2) is ei2 and therefore ejg−1 = ei2 .

This process must stop before we run out of edges of p because by our choice

of g we have that v 6∈ {r(e∗jz
) : z < g}. So in the end there exists γ < σ such

that e∗j1 . . . e
∗
jg

= e∗iγ . . . e
∗
i1
.
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With the same (reversed) ideas in the paragraph above we can find δ < σ

such that ekf
. . . ekc = ei1 . . . eiδ . Thus, a′1 = ei1 . . . eiδe

∗
iγ . . . e

∗
i1
, and we have

two cases:

Case 1: δ 6= γ. We know that p is a cycle, so that r(eiδ) 6= r(eiγ ) = s(e∗iγ ),

so eiδe
∗
iγ = 0, which is absurd because a1 6= 0.

Case 2: δ = γ. In this case a′1 = p0p
∗
0 for a certain subpath p0 of p, and by

using again the argument of the CK2 relation in this case, we obtain p0p
∗
0 = v.

Hence, we get a1 = ek1 . . . ekf−1
e∗jg+1

. . . e∗jd
= xy∗, with x, y ∈ CP(v).

(Obviously, the case c ≥ 1, d = 0 yields a1 = x, the case c = 0, d ≥ 1 yields

a1 = y∗ and c = d = 0 yields a1 = v.) Using (4.2.4) we have x = c(1) . . . c(ν)

for some c(µ) ∈ CSP(v) = {p}, and the same happens with y. In this way we

have a1 = pu(p∗)v for some u, v ≥ 0, and taking into account that pp∗ = v we

finally obtain that a1 is of the form pu or (p∗)u for some u ≥ 0 as claimed.

An identical argument holds for the other coefficients an and bn.

Now since both p and p∗ commute with p, p∗ and α, we use the conclusion

of the previous paragraph to write the sum (]) as v = αP (p, p∗) for some

polynomial P having coefficients in K. Specifically, P (p, p∗) can be written

as

P (p, p∗) = k−m(p∗)m + . . .+ k0v + . . .+ knp
n ∈

n⊕
j=−m

L(E)σj,

where m,n ≥ 0.

First, we claim that k−i = 0 for every i > 0, as follows. If not, let m0 be

the maximum i having k−i 6= 0. Then

αP (p, p∗) = k−m0(p
∗)m0 + terms of greater degree = v,

and since m0 > 0 we get that k−m0 = 0, which is absurd.

In a similar way we obtain ki = 0 for every i > 0, and therefore P (p, p∗) =

k0v. But this would yield v = αP (p, p∗) = αk0v = k0α, which is impossible.

Thus we have shown that if E contains a cycle which has no exit, then

L(E) is not simple.

Now we consider the situation where E0 contains a nontrivial hereditary

and saturated subset H, and conclude in this case as well that L(E) is not



4. Leavitt path algebras 125

simple. To do so, we construct the new graph

F = (F 0, F 1, rF , sF ) = (E0 −H, r−1(E0 −H), r|E0−H , s|E0−H).

In other words, F is the graph consisting of all vertices not in H, together

with all edges whose range is not in H. To ensure that F is well-defined, we

must check that sF (F 1)∪ rF (F 1) ⊆ F 0. That rF (F 1) ⊆ F 0 is evident. On the

other hand, if e ∈ F 1 then s(e) ∈ F 0, since otherwise we have s(e) ∈ H; but

since r(e) ≥ s(e) and H is hereditary, we get r(e) ∈ H, which contradicts

e ∈ F 1.

We now produce a K-algebra homomorphism Ψ : L(E) → L(F ). To do so,

we define Φ on the generators of the free K-algebra B = K[E0∪E1∪(E1)∗] by

setting Φ(vi) = χF 0(vi)vi, Φ(ei) = χF 1(ei)ei and Φ(e∗i ) = χ(F 1)∗(e
∗
i )e

∗
i (where

χX denotes the usual characteristic function of a set X), and extending to B.

In order to factor Φ through A(Ê) we need to check that

< {vivj−δijvi : vi, vj ∈ E0}∪{ei−eir(ei), ei−s(ei)ei : ei ∈ Ê1} > ⊆ Ker(Φ).

First consider vi, vj ∈ E0.

Case 1: vi ∈ H. Then by definition Φ(vivj − δijvi) = 0Φ(vj)− δij0 = 0.

Case 2: vi 6∈ H but vj ∈ H. In this case i 6= j and then Φ(vivj − δijvi) =

vi0− 0vi = 0.

Case 3: vi, vj 6∈ H. In this case Φ(vivj − δijvi) = vivj − δijvi = 0 in L(F ).

Now consider ei ∈ E1.

Case 1: ei ∈ F 1. Then r(ei) 6∈ H and therefore Φ(ei − eir(ei)) = ei −
eir(ei) = 0 in L(F ). Now, since s(ei) ≤ r(ei) 6∈ H and H is hereditary then

s(ei) 6∈ H and then Φ(ei − s(ei)ei) = ei − s(ei)ei = 0 in L(F ).

Case 2: ei 6∈ F 1. Then Φ(ei − eir(ei)) = 0 − 0Φ(r(ei)) = 0 and Φ(ei −
s(ei)ei) = 0− Φ(s(ei))0 = 0.

We proceed analogously for e∗i ∈ (E1)∗.

Now to produce the desired ring homomorphism Ψ : L(E) → L(F ) we

need only check that Φ factors through the ideal of A(Ê) generated by the
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relations

{e∗i ej−δijr(ej) : ej ∈ E1, e∗i ∈ (E1)∗}∪

vi −
∑

{ej∈E1:s(ej)=vi}

eje
∗
j : vi ∈ s(E0)

 .

That Φ(e∗i ej − δijr(ej)) = 0 in L(F ) is straightforward. So now consider

vi ∈ s(E0); i.e., consider a vertex vi which is not a sink in E.

Case 1: Suppose vi ∈ H. Then for every ej ∈ E1 with s(ej) = vi we have

that ei 6∈ F 1 (otherwise ei ∈ F 1 implies r(ei) 6∈ H and by hereditariness

s(ej) = vi 6∈ H). So,

Φ

vi −
∑

{ej∈E1:s(ej)=vi}

eje
∗
j

 = 0−
∑

{ej∈E1:s(ej)=vi}

0 · 0 = 0.

Case 2: Consider vi 6∈ H and vi 6∈ s(F 1). Since vi ∈ s(E0) we have

s−1(vi) 6= ∅. But since H is saturated there must exist ei ∈ E1 such that

s(ei) = vi, but r(ei) 6∈ H. That means ei ∈ F 1 with s(ei) = vi, which

contradicts the hypothesis that vi 6∈ s(F 1). Thus the saturated condition on

H implies that Case 2 configuration cannot occur.

Case 3: Take vi 6∈ H but vi ∈ s(F 1). Then we have a CK2 relation in L(F )

at vi:

vi =
∑

{ej∈F 1:s(ej)=vi}

eje
∗
j .

Consider ej ∈ E1 such that s(ej) = vi. If ej ∈ F 1 then Φ(eje
∗
j) = eje

∗
j . If

ej 6∈ F 1 then Φ(eje
∗
j) = 0. Thus, we get

Φ

vi −
∑

{ej∈E1:s(ej)=vi}

eje
∗
j

 = vi −
∑

{ej∈F 1:s(ej)=vi}

eje
∗
j = 0

by the previously displayed equation.

Thus we have shown that there exists a K-algebra homomorphism

Ψ : L(E) → L(F ).

Now consider Ker(Ψ) E L(E). Since H 6= ∅ there exists v ∈ H, so 0 6= v ∈
Ker(Ψ). Since H 6= E0 there exists w ∈ E0−H and in this case Ψ(w) = w 6= 0

so Ψ 6= 0. In other words, 0 6= Ker(Ψ) 6= L(E), so that L(E) is not simple.



4. Leavitt path algebras 127

Thus we conclude that the negation of either condition (i) or condition (ii)

yields that L(E) is not simple, which completes the proof of the theorem.

Remark 4.3.13. If we start with a finite and row-finite graph E =

(E0, E1, r, s) with E0 = {v1, . . . , vn}, E1 = {e1, . . . , em}, there exist algo-

rithms that decide, in a finite number of steps, whether or not the graph

satisfies conditions (i) and/or (ii), and therefore whether or not L(E) is sim-

ple.

Example 4.3.14. We re-establish the simplicity (or non-simplicity) of the

algebras given in (4.1.21) above.

(i) Matrix algebras Mn(K): Since there are clearly no cycles in Mn, in order

to get the simplicity, it remains to check condition (i) in (4.3.12).

To this end, let H 6= ∅ be a set of vertices which is hereditary and sat-

urated. Pick vi ∈ H. By hereditariness we have that vi+1, . . . , vn ∈ H. Now

if we use the condition of being saturated at vi−1 we get that vi−1 ∈ H, and

inductively vi−1, . . . , v1 ∈ H and therefore H = M0
n.

(ii) Laurent polynomial algebras K[x, x−1]: The cycle x in R1 does not have

an exit, so by (4.3.12) L(R1) ∼= K[x, x−1] is not simple. (Indeed, similar to

the argument which arises in the proof of (4.3.12), it is easy to show that

1 /∈< 1 + x >.)

(iii) Leavitt algebras L(1, n) for n ≥ 2: The conditions in (4.3.12) are clearly

satisfied here because the only cycles in Rn are the edges, and all of them has

any other edge (note that n > 1 is needed here) as exits. Hence, L(1, n) is

simple, as was established by W. G. Leavitt in [49, Theorem 2].

One might wonder if we could find other “exotic” examples of (not) simple

algebras (i.e., simple Leavitt path algebras which are neither matrix algebras

nor Leavitt algebras, and Leavitt path algebras which are neither simple nor

Laurent polynomial algebras). Indeed, such examples do exist:
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Example 4.3.15. Let Cn denote the graph having n vertices and n edges,

where the edges form a single cycle. So for example C8 is the graph

•

��

•tt

•

��

•

ee

•

%%

•

TT

• 44 •

EE

(In particular, the graph described in (4.1.21) (ii) is the graph C1.) Then

L(Cn) is not simple for all n: although the only nontrivial hereditary subset is

C0
n, the single cycle contains no exit. Therefore L(Cn) is neither a matrix nor

a Leavitt algebra (both are simple). Moreover, it is not a Laurent polynomial

algebra either because L(Cn) contains zero divisors for n > 1 (every vertex

or edge), while K[x, x−1] is an integral domain.

Example 4.3.16. Let E denote the following graph:

•
e
  

j

11 •
i

``

f

  
•

h

``

g

qq

It clearly satisfies the hypotheses in (4.3.12) (note that the only nontrivial

hereditary subset is E0 since we can get from any vertex to another by go-

ing forward, and that the only cycles are j, ei, ie, fh, hf and g, all of them

obviously having exits).

As long as there is a cycle in the graph, L(E) is infinite dimensional and

therefore it cannot be a matrix ring (we will prove this in more detail in the

next section). Moreover, E. Pardo has shown, by computing the Grothedieck

group of the monoid associated to the graph, that L(E) is not isomorphic to

any L(1, n) for any n ≥ 1.

The previous examples suggest that, in general, it is not easy to show if,

given a Leavitt path algebra L(E), it is isomorphic to another L(F ) for a
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some simpler graph F . This leads us to the following interesting question,

pointed out by G. Abrams.

Question 4.3.17 (Recovery Question). If L(E) ∼= L(F ), what can be

said about the relationship between E and F?

We close this section showing a connection between the Leavitt path alge-

bras L(E) and an algebraic analogue to Cuntz-Krieger algebras, CKA(K), of

a finite matrix A. These algebras were presented by P. Ara, M. A. González

Barroso, K. R. Goodearl and E. Pardo in [7, Example 2.5]), in the following

way:

Definition 4.3.18. Let A be a n×n matrix with aij ∈ {0, 1}, the algebraic

Cuntz-Krieger algebra associated to A is the K-algebra CKA(K) with 2n

generators x1, y1, . . . , xn, yn and relations

(i) xiyixi = xi and yixiyi = yi for all i;

(ii) xiyj = 0 for all i 6= j;

(iii) xiyi =
∑n

j=1 aijyjxj for all i;

(iv)
∑n

j=1 yjxj = 1.

In order to be able to relate L(E) and CKA(K) we need the concept of

edge matrix.

Definition 4.3.19. For a finite graph E we can define the edge matrix AE

associated to E to be the n × n matrix with entries aij = δr(ei),s(ej), where

n = |E1|.

Example 4.3.20. The edge matrix for the graph Mn given in (4.1.21) (i) is
0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

 ,
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while the edge matrix for the cycle graph Cn given in (4.3.15) is
0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

 .

Proposition 4.3.21. If a finite graph E has neither sinks nor sources, then

L(E) ∼= CKAE
(K).

Proof. Define Φ : CKAE
(K) → L(E) on the generators by Φ(xi) = e∗i and

Φ(yi) = ei, and extend additively and multiplicatively. We must check that

Φ is consistent with the equations defining those algebras.

First, consider the equations (1) xiyixi = xi and yixiyi = yi. Then

Φ(xiyixi − xi) = e∗i eie
∗
i − e∗i = r(ei)e

∗
i − e∗i = s(e∗i )e

∗
i − e∗i = 0

and analogously Φ(yixiyi − yi) = 0.

Now consider (2) xiyj = 0 for every i 6= j. When applied Φ to that

equation we get e∗i ej, which is zero in L(E) precisely when i 6= j.

Let us consider the third equation (3) xiyi =
∑n

j=1 aijyjxj. Then

Φ

(
xiyi −

n∑
j=1

aijyjxj

)
= e∗i ei −

n∑
j=1

δr(ei),s(ej)eje
∗
j =

r(ei)−
∑

{ej∈E1:s(ej)=r(ei)}

eje
∗
j = 0,

just applying CK2 at r(ei) (which is not a sink by hypothesis).

Finally, consider the equation (4)
∑n

j=1 yjxj = 1. Then Φ(
∑n

j=1 yjxj) =∑n
j=1 eje

∗
j =

∑
vi∈E0 vi (because the graph contains no sinks), but applying

(4.1.19), the last expression is the unity of L(E) as we needed.

Let us define now Ψ : L(E) → CKAE
(K) by doing Ψ(e∗i ) = xi, Ψ(ei) = yi

and Ψ(vi) = xkyk where k is an arbitrary index such that vi = r(ek). Note

that such an index exists because the graph contains no sources. Note also

that if we had k, l such that vi = r(ek) = r(el) then akp = alp for every
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p and therefore xkyk = xlyl in CKA(K) by using (3). This shows that Ψ is

well-defined in the generators of L(E). Let us check the relations.

First, Ψ(vivj − δijvj) = xαyαxβyβ − δijxβyβ, where r(eα) = vi and r(eβ) =

vj. Note that, since A is an edge matrix, it verifies the property aαkaβk =

δr(eα),r(eβ)aβk for every k. Now using (1), (2) and (3) we get:

Ψ(vivj − δijvj) =

(
n∑

k=1

aαkykxk

)(
n∑

l=1

aβlylxl

)
− δijxβyβ =

n∑
k=1

aαkaβkykxk − δijxβyβ = (δr(eα),r(eβ) − δij)xβyβ =

(δvi,vj
− δij)xβyβ = (δij − δij)xβyβ = 0.

Let us check now the relations eir(ei) = ei and s(ei)ei = ei. The first one

gives Ψ(eir(ei)− ei) = yixiyi − yi = 0, while the second gives

Ψ(s(ei)ei − ei) = Ψ(r(ek)ei − ei) = xkykyi − yi =

(
n∑

j=1

akjyjxj

)
yi − yi =

akiyixiyi − yi = δr(ek),s(ei)yi − yi = 1yi − yi = 0.

The relations e∗jei for i 6= j are easily mapped to xiyj which are zero for

i 6= j. Now Ψ(e∗i ei − r(ei)) = xiyi − xiyi = 0. Finally,

Ψ

vi −
∑

{ej∈E1:s(ej)=vi)}

eje
∗
j

 = Ψ

r(ek)−
∑

{ej∈E1:s(ej)=r(ek))}

eje
∗
j

 =

xkyk −
n∑

j=1

δr(ek),s(ej)yjxj = xkyk −
n∑

j=1

akjyjxj = 0

in CKA(K).

Now ΨΦ = 1CKA(K) is evident, while the only nontrivial thing to check in

ΦΨ = 1L(E) is ΦΨ(vi) = ΦΨ(s(ek)) = Φ(xkyk) = e∗kek = s(ek) = vi.

In [7, Theorem 4.1] the authors provide sufficient conditions on A which

yield the simplicity of CKA(K), in case A is a finite matrix which has no row

or column of zeros, and in case A is not a permutation matrix. (There is also

an additional condition on an associated function α which must be satisfied

in order to yield the simplicity of CKA(K).)
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But these conditions on A eliminate both the simple algebras Mn(K)

and the non-simple algebras L(Cn) from consideration in [7, Theorem 4.1],

since the edge matrix for the graph Mn (4.3.20) contains both a zero column

and a zero row, while the edge matrix for the cycle graph Cn (4.3.20) is a

permutation matrix. Thus (4.3.12) applies to a much wider class of algebras

than does [7, Theorem 4.1].

4.4 Purely infinite simple Leavitt path alge-

bras

In the previous section we gave necessary and sufficient conditions on E so

that L(E) is simple. In the current section we provide necessary and sufficient

conditions on E so that L(E) is purely infinite simple, (4.4.15). This is a

natural step to take because, as we prove in this section, the condition of

being purely infinite simple can be characterized by some product properties

(aαb style) which we have been obtaining before.

Definitions 4.4.1. An idempotent e in a ring R is called infinite if eR

is isomorphic as a right R-module to a proper direct summand of itself. R

is called purely infinite in case every right ideal of R contains an infinite

idempotent.

Much recent attention has been paid to the structure of purely infinite

simple rings, from both an algebraic (see e.g. [6], [7], [8]) as well as an analytic

(see e.g. [15], [40], [63]) point of view.

The concept of pure infinity involves having an infinite chain of summands,

and therefore the concept of dimension of the algebras. Thus, some study on

the dimension of the Leavitt path algebras is needed. We do that in the

following results. The first two lemmas follow along the same lines as that

given in [40, Corollary 2.2 and 2.3].

Definition 4.4.2. For a vertex v of E, the range index of v, denoted n(v),

is the cardinality of the set R(v) := {α ∈ E∗ : r(α) = v}.



4. Leavitt path algebras 133

Although this quantity may perfectly be infinite, it is always nonzero

because v ∈ R(v) for every v ∈ E0. Thus, in the graph:

•v •w

f
**

g
44e

oo •x

we have n(v) = 2, n(w) = 1 and n(x) = 3 since R(v) = {v, e}, R(w) = {w}
and R(x) = {x, f, g}.

Lemma 4.4.3. Let E be a finite graph and v ∈ E0 a sink. Then Iv :=∑
{kαβ∗ : α, β ∈ E∗, r(α) = v = r(β), k ∈ K} is an ideal of L(E), and

Iv ∼= Mn(v)(K).

Proof. Consider αβ∗ ∈ Iv and a nonzero monomial ei1 . . . eine
∗
j1
. . . e∗jm

=

γδ∗ ∈ L(E). If γδ∗αβ∗ 6= 0 we have two possibilities: Either α = δp or

δ = αq for some paths p, q ∈ E∗.

In the latter case deg(q) ≥ 1 cannot happen, since v is a sink.

Therefore we are in the first case (possibly with deg(p) = 0), and then

γδ∗αβ∗ = (γp)β∗ ∈ Iv

because r(γp) = r(p) = v. This shows that Iv is a left ideal. Similarly we can

show that Iv is a right ideal as well.

Let n = n(v) (which is clearly finite because the graph is both finite and

row-finite), and rename {α ∈ E∗ : r(α) = v} as {p1, . . . , pn} so that

Iv :=
∑

{kpip
∗
j : i, j = 1, . . . , n; k ∈ K}.

Take j 6= t. If (pip
∗
j)(ptp

∗
l ) 6= 0, then as above, pt = pjq with deg(q) > 0 (since

j 6= t), which contradicts that v is a sink.

Thus, (pip
∗
j)(ptp

∗
l ) = 0 for j 6= t. It is clear that

(pip
∗
j)(pjp

∗
l ) = pivp

∗
l = pip

∗
l .

We have shown that {pip
∗
j : i, j = 1, . . . , n} is a set of matrix units for Iv, and

the result now follows.
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Lemma 4.4.4. Let E be a finite and acyclic graph. Let {v1, . . . , vt} be the

sinks. Then

L(E) ∼=
t⊕

i=1

Mn(vi)(K).

Proof. We will show that L(E) ∼=
⊕t

i=1 Ivi
, where Ivi

are the sets defined in

(4.4.3).

Consider 0 6= αβ∗ with α, β ∈ E∗. If r(α) = vi for some i, then αβ∗ ∈ Ivi
.

If r(α) 6= vi for every i, then r(α) is not a sink, and (CK2) applies to yield:

αβ∗ = α

 ∑
e∈E1

s(e)=r(α)

ee∗

 β∗ =
∑
e∈E1

s(e)=r(α)

αe(βe)∗.

Now since the graph is finite and there are no cycles, for every summand

in the expression above, either the summand is already in some Ivi
, or we

can repeat the process (expanding as many times as necessary) until reaching

sinks. In this way αβ∗ can be written as a sum of terms of the form αγ(βγ)∗

with r(αγ) = vi for some i. Thus L(E) =
∑t

i=1 Ivi
.

Consider now i 6= j, αβ∗ ∈ Ivi
and γδ∗ ∈ Ivj

. Since vi and vj are sinks,

we know as in (4.4.3) that there are no paths of the form βγ′ or γβ′, and

hence (αβ∗)(γδ∗) = 0. This shows that Ivi
Ivj

= 0, which together with the

facts that L(E) is unital and L(E) =
∑t

i=1 Ivi
, implies that the sum is direct.

Finally, (4.4.3) gives the result.

Definition 4.4.5. Let R be a ring with local units. We call R locally ma-

tricial in case R = lim−→(Rα, φαβ), where each Rα is isomorphic to a finite

direct sum of finite dimensional matrix rings over K, and the transition maps

φαβ are (not necessarily unital) matrix embeddings.

Note that when R is locally matricial, then every finite subset of R is

contained in a finite dimensional (hence artinian) subalgebra of R.

Proposition 4.4.6. Let E be a graph. Then E is acyclic if and only if L(E)

is locally matricial.
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Proof. Assume first that E is acyclic. If E is finite, then (4.4.4) gives the

result. So now suppose E is infinite, and rename the vertices of E0 as a

sequence {vi}∞i=1.

We now define a sequence {Fi}∞i=1 of subgraphs of E. Let Fi = (F 0
i , F

1
i , r, s)

where

F 0
i := {v1, . . . , vi} ∪ r(s−1({v1, . . . , vi}) , F 1

i := s−1({v1, . . . , vi}),

and r, s are induced from E. In particular, Fi ⊆ Fi+1 for all i.

For any i > 0, L(Fi) is a subalgebra of L(E) as follows. First note that

we can construct φ : L(Fi) → L(E) a K-algebra homomorphism because the

Cuntz-Krieger relations in L(Fi) are consistent with those in L(E), in the

following way: Consider v a sink in Fi (which need not be a sink in E), then

we do not have CK2 at v in L(Fi).

If v is not a sink in Fi, then there exists e ∈ F 1
i := s−1({v1, . . . , vi}) such

that s(e) = v. But s(e) ∈ {v1, . . . , vi} and therefore v = vj for some j, and

then F 1
i := s−1({v1, . . . , vi}) ensures that all the edges coming to v are in Fi,

so CK2 at v is the same in L(Fi) as in L(E). The other relations offer no

difficulty.

Now, with a similar construction and argument to that used in the proof

of (4.3.12) we find ψ : L(E) → L(Fi) a K-algebra homomorphism such that

ψφ = Id|L(Fi), so that φ is a monomorphism, which we view as the inclusion

map.

Since E is acyclic, so is Fi. Moreover, Fi is finite since, by the row-finiteness

of E, in each step we add only finitely many vertices. Let {vi
1, . . . , v

i
ti
} be the

set of sinks in Fi. By (4.4.4),

L(Fi) ∼=
ti⊕

j=1

Mn(vi
j)
(K).

Now we will construct transition morphisms ρi : L(Fi) → L(Fi+1). By

reordering if necessary we may assume that there exists α ≥ 0 such that

vi
1 = vi+1

1 , . . . , vi
α = vi+1

α but vi
j 6∈ {vi+1

α+1, . . . , v
i+1
ti+1
} for every j > α.
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Since we have added more vertices and edges from Fi to Fi+1, it is clear

that, for j ≤ α we have nFi
(vi

j) ≤ nFi+1
(vi+1

j ) and therefore we can embed

Φj
i : MnFi

(vi
j)
(K) →MnFi+1

(vi+1
j )(K)

via the map x 7→ diag(x, 0).

For vi
j with j > α, we have that vi

j is not a sink in Fi+1, so there exists

w1 ∈ F 0
i+1 with w1 6= vi

j ≤ w1. If w1 is not a sink in Fi+1, then we find

w2 ∈ F 0
i+1 with w2 6= w1 ≤ w2. Continuing in this way, we obtain vertices

with

vi
j ≤ w1 ≤ w2 ≤ . . . ≤ wn.

But Fi+1 is finite and acyclic, so we cannot repeat vertices and we have

finitely many of them. Therefore this process must stop at some sink vi+1
s ,

s > α with vi
j ≤ vi+1

s in Fi+1. After a rearrangement of vertices, we find

α0 = α < α1 < . . . < ασ = ti such that we have the following inequalities in

Fi+1:

vi
αn−1+1, . . . , v

i
αn
≤ vi+1

α+n, for every 0 < n ≤ σ.

The sets

{p ∈ F ∗
i+1 : p = p′q; p′ ∈ F ∗

i , r(p
′) = vi

l ; r(q) = vi+1
α+n}

for l = αn−1 + 1, . . . , αn are all disjoint because vi
l are sinks in Fi. Moreover,

all these sets are clearly contained in {p ∈ F ∗
i+1 : r(p) = vi+1

α+n}, and therefore

we have

nFi+1
(vi+1

α+n) ≥ nFi
(vi

αn−1+1) + . . .+ nFi
(vi

αn
).

Thus we can construct the following monomorphism

Ψn
i :

⊕αn

l=αn−1+1MnFi
(vi

l )
(K) −→ MnFi+1

(vi+1
α+n)(K)

(xαn−1+1, . . . , xαn) 7→ diag(xαn−1+1, . . . , xαn , 0)

Finally,

ρi =

(
α⊕

j=1

Φj
i

)⊕(
σ⊕

n=1

Ψn
i

)
is the desired transition monomorphism.
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Each vertex in E0 is in Fi for some i; furthermore, the edge e has e ∈ F 1
j ,

where s(e) = vj. Then it is clear that L(E) ∼= lim−→L(Fi).

For the converse, let p ∈ E∗ be a cycle in E. Then {pm}∞m=1 is a linearly

independent infinite set, so that p is not contained in any finite dimensional

subalgebra of L(E). Thus L(E) is not locally matricial.

Examples of these two types of transition homomorphisms can be seen in

the following graph E

•v2
**
•v4

•v1

GG

44 •v3

WW

where we show the subgraphs Fi constructed in the previous result to-

gether with the algebras their Leavitt path algebras are isomorphic to

F1 F2 F3

•v2

•v1

GG

44 •v3

•v2
**
•v4

•v1

GG

44 •v3

•v2
**
•v4

•v1

GG

44 •v3

WW

L(Fi) ∼= M2(K)×M2(K) M3(K)×M2(K) M6(K)

Corollary 4.4.7. Let E be a finite acyclic graph. Then L(E) is finite dimen-

sional.

The description of the simple Leavitt path algebras given in the previous

section plays a key role here. Moreover, we can obtain the following Proposi-

tion, which is a useful reconfiguration of one of the consequences of the proof

of (4.3.12).

Proposition 4.4.8. Let E be a graph with the property that every cycle has

an exit. Then for every nonzero α ∈ L(E) there exist a, b ∈ L(E) such that

aαb ∈ E0.

Proof. Let α be representable by an element having degree d in real edges. If

d = 0, then by (4.3.7) we are done. So suppose d > 0. Then we can write

α =
m∑

n=1

einαein
+ β
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where m ≥ 1, einαein
6= 0 for every n, each ein is representable as an element

of degree less than that of α in real edges, and β is a polynomial in only ghost

edges (possibly zero). We present a process by which we find â, b̂ such that

âαb̂ 6= 0 and is representable as an element having degree less than d in real

edges.

For an arbitrary edge ej ∈ E1, we have two cases:

Case 1: j ∈ {i1, . . . , im}. Then e∗jα = αej
+ e∗jβ. If this element is nonzero

then by choosing â = e∗j and b̂ a local unit for α we would be done. For

later use, we note that if e∗jα is zero, then αej
= −e∗jβ, and therefore ejαej

=

−eje
∗
jβ.

Case 2: j 6∈ {i1, . . . , im}. Then e∗jα = e∗jβ. If e∗jβ 6= 0, then with b̂ as

before we would have e∗jαb̂ is a nonzero polynomial which is representable as

an element having degree 0 < d in real edges, and again we would be done.

For later use, we note that if e∗jβ = 0, then in particular we have 0 = −eje
∗
jβ.

So we may assume that we are in the latter possibilities of both Case

1 and 2; i.e., we may assume that e∗α = 0 for all e ∈ E1. We show that

this situation cannot happen. First, suppose v is a sink in E. Then we may

assume vβ = 0, as follows. Multiplying the displayed equation by v on the

left gives vα = v
∑m

n=1 einαein
+ vβ. Since v is a sink we have vein = 0 for all

1 ≤ n ≤ m, so that vα = vβ. But if vβ 6= 0 then â = v and b̂ as above would

yield a nonzero element in only ghost edges and we would be done as in Case

2.

Now let S1 = {s(ein)}m
n=1, and let S2 = {vk1 , ..., vkt} where (

∑t
i=1 vki

)β =

β. We note that wβ = 0 for every w ∈ E0 − S2. Also, by definition there are

no sinks in S1, and by a previous observation we may assume that there are

no sinks in S2. Let S = S1 ∪ S2. Then in particular we have (
∑

v∈S v)β = β.

In this situation α must be zero arguing exactly as in (4.3.12), which is

the desired contradiction.

Thus we are always able to find â, b̂ such that âαb̂ is nonzero, and is

representable in degree less than d in real edges. By repeating this process

enough times (d at most), we can find âk . . . â1, b̂1 . . . b̂k such that we can
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represent âk . . . â1αb̂1 . . . b̂k 6= 0 by an element of degree zero in real edges.

Thus (4.3.7) applies, and finishes the proof.

The following subsets of E0 can be defined:

V0 = {v ∈ E0 : CSP(v) = ∅}

V1 = {v ∈ E0 : |CSP(v)| = 1}

V2 = E0 − (V0 ∪ V1)

For any subset X ⊆ E0 we define the following subsets. H(X) is the

set of all vertices that can be obtained by one application of the hereditary

condition at any of the vertices of X; that is,

H(X) := r(s−1(X)).

Similarly, S(X) is the set of all vertices obtained by applying the saturated

condition among elements of X, that is,

S(X) := {v ∈ E0 : ∅ 6= {r(e) : s(e) = v} ⊆ X}.

We now define G0 := X, and for n ≥ 0 we define inductively

Gn+1 := H(Gn) ∪ S(Gn) ∪Gn.

It is not difficult to show that the smallest hereditary and saturated subset

of E0 containing X is the set G(X) :=
⋃

n≥0Gn.

For example, if we consider X = {v0} in the graph:

•v2 •v1oo •v5

•v3

OO ==zzzzzzzz
// •v0

OO

•v4oo

OO

then, Gi(X) = {v0, . . . , vi}, for every i ≤ 3 and G(X) = Gi+3(X) for every

i ≥ 0.

Definition 4.4.9. This set G(X) is the hereditary and saturated subset

generated by the set X (also called the hereditary saturation of X).
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Lemma 4.4.10. Let E be a graph. If L(E) is simple, then V1 = ∅.

Proof. Suppose that v ∈ V1, so that CSP(v) = {p}. In this case p is clearly a

cycle. By (4.3.12) we can find an edge e which is an exit for p. Let A be the

set of all vertices in the cycle. Since p is the only cycle based at v, and e is

an exit for p, we conclude that r(e) 6∈ A.

Consider then the set X = {r(e)}, and construct G(X) the hereditary

saturation of X described above. Then G(X) is nonempty and therefore by

(4.3.12), we get G(X) = E0. So we can find

n = min{m : A ∩Gm 6= ∅}.

Take w ∈ A∩Gn. We are going to show that w ≥ r(e). First, since r(e) 6∈ A,

then n > 0 and therefore w ∈ H(Gn−1) ∪ S(Gn−1) ∪ Gn−1. Here, w ∈ Gn−1

cannot happen by the minimality of n. If w ∈ S(Gn−1) then ∅ 6= {r(e) :

s(e) = w} ⊆ Gn−1. Since w is in the cycle p, there exists f ∈ E1 such that

r(f) ∈ A and s(f) = w. In that case r(f) ∈ A ∪ Gn−1 again contradicts the

minimality of n. So the only possibility is w ∈ H(Gn−1), which means that

there exists ei1 ∈ E1 such that r(ei1) = w and s(ei1) ∈ Gn−1.

We now repeat the process with the vertex w′ = s(ei1). If w′ ∈ Gn−2

then we would have w ∈ Gn−1, again contradicting the minimality of n. If

w′ ∈ S(Gn−2) then, as above, {r(e) : s(e) = w′} ⊆ Gn−2, so in particular

would give w = r(ei1) ∈ Gn−2, which is absurd. So therefore w′ ∈ H(Gn−2)

and we can find ei2 ∈ E1 such that r(ei2) = w′ and s(ei2) ∈ Gn−2.

After n steps we will have found a path q = ein . . . ei1 with r(q) = w and

s(q) = r(e). The situation could be represented by:

•

��

•wvv •ei1
tt •uu

•v 66 • e 22

UU

•r(e)
ein

FF

Thus, in particular we have w ≥ s(e), and therefore there exists a cycle

based at w containing the edge e. Since e is not in p we get |CSP(w)| ≥ 2.

Since w is a vertex contained in the cycle p, we then get |CSP(v)| ≥ 2,

contrary to the definition of the set V1.



4. Leavitt path algebras 141

Lemma 4.4.11. Suppose A is a union of finite dimensional subalgebras. Then

A is not purely infinite. In fact, A contains no infinite idempotents.

Proof. It suffices to show the second statement. So just suppose e = e2 ∈ A

is infinite. Then eA contains a proper direct summand isomorphic to eA,

which in turn, by definition and a standard argument, is equivalent to the

existence of elements g, h, x, y ∈ A such that g2 = g, h2 = h, gh = hg = 0, e =

g + h, h 6= 0, x ∈ eAg, y ∈ gAe with xy = e and yx = g. But by hypothesis

the five elements e, g, h, x, y are contained in a finite dimensional subalgebra

B of A, which would yield that B contains an infinite idempotent, and thus

contains a non-artinian right ideal, which is impossible.

Lemma 4.4.12. Let E be a graph. Suppose that w ∈ E0 has the property that,

for every v ∈ E0, w ≤ v implies v ∈ V0. Then the corner algebra wL(E)w is

not purely infinite.

Proof. Consider the graph H = (H0, H1, r, s) defined by H0 := {v : w ≤ v},
H1 := s−1(H0), and r, s induced by E. The only nontrivial part of showing

that H is a well defined graph is verifying that r(s−1(H0)) ⊆ H0. Take z ∈ H0

and e ∈ E1 such that s(e) = z. But we have w ≤ z and thus w ≤ r(e) as

well, that is, r(e) ∈ H0.

Using that H is acyclic, along with the same argument as given in (4.4.6),

we have that L(H) is a subalgebra of L(E). Thus (4.4.6) applies, which yields

that L(H) is locally matricial, and hence a union of finite dimensional subal-

gebras. Therefore contains no infinite idempotents by (4.4.11).

As wL(H)w is a subalgebra of L(H), it too contains no infinite idempo-

tents, and thus is not purely infinite.

We claim that wL(H)w = wL(E)w. To see this, given α =
∑
piq

∗
i ∈ L(E),

then wαw =
∑
pijq

∗
ij

with s(pij) = w = s(qij) and therefore pij , qij ∈ L(H).

Thus wL(E)w is not purely infinite as desired.

Definitions 4.4.13. A right A-module T is called directly infinite in case

T contains a proper direct summand T ′ such that T ′ ∼= T . (In particular, the

idempotent e is infinite precisely when eA is directly infinite.)
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We thank P. Ara for indicating the following result, which provides the

direction of proof for the main theorem of this section.

Proposition 4.4.14. Let A be a ring with local units. The following are

equivalent:

(i) A is purely infinite simple.

(ii) A is simple, and for each nonzero finitely generated projective right A-

module P , every nonzero submodule C of P contains a direct summand T of

P for which T is directly infinite. (In particular, the property ‘purely infinite

simple’ is a Morita invariant of the ring.)

(iii) wAw is purely infinite simple for every nonzero idempotent w ∈ A.

(iv) A is simple, and there exists a nonzero idempotent w in A for which wAw

is purely infinite simple.

(v) A is not a division ring, and A has the property that for every pair of

nonzero elements α, β in A there exist elements a, b in A such that aαb = β.

Proof. (i) ⇔ (ii). Suppose A is purely infinite simple. Let P be any nonzero

finitely generated projective right A-module. Then P is a generator for Mod−
A, as follows. Since A generates Mod−A and P is finitely generated we have

an integer n such that P ⊕ P ′ ∼= An as right A-modules. Again using that

P is finitely generated, and using that A has local units, we have that P is

isomorphic to a direct summand of a right A-module of the form

f1A⊕ ...⊕ ftA,

where each fi is idempotent. But this gives HomA(P, f1A ⊕ . . . ⊕ ftA) 6=
0, which in turn gives 0 6= HomA(P,At) ∼= (HomA(P,A))t, so that

HomA(P,A) 6= 0. But

Σ{a ∈ A | a = g(p) for some p ∈ P and some g ∈ HomA(P,A)}

is then a nonzero two-sided ideal of A, which necessarily equals A as A is

simple.
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Now let e = e2 ∈ A. Then e =
∑r

i=1 gi(pi) for some pi ∈ P and gi ∈
HomA(P,A), which gives that

λe ◦ ⊕gi : P r → A→ eA

is a surjection. Since P generates eA for each idempotent e of A, we conclude

that P generates Mod− A.

This observation allows us to argue exactly as in the proof of [8, Lemma

1.4 and Proposition 1.5] that if e = e2 ∈ A, then there exists a right A-module

Q for which eA ∼= P ⊕ Q. Since A is purely infinite, there exists an infinite

idempotent e ∈ A.

The indicated isomorphism yields that any submodule C of P is isomor-

phic to a submodule C ′ of eA, so that by the hypothesis that A is purely

infinite we have that C ′ contains a submodule T ′ which is directly infinite,

and for which T ′ is a direct summand of eA. But by a standard argument,

any direct summand of eA is equal to fA for some idempotent f ∈ A, so that

T ′ = fA for some infinite idempotent f of A.

Let T be the preimage of T ′ in P ⊕Q under the isomorphism. Then T is

directly infinite, and since fA is a direct summand of eA we have that T is

a direct summand of P ⊕Q which is contained in P , and hence T is a direct

summand of P .

By [14, Proposition 3.3], the lattice of two-sided ideals of Morita equivalent

rings are isomorphic, so that any ring Morita equivalent to a simple ring is

simple. Therefore, since the indicated property is clearly preserved by equiv-

alence functors, we have that ‘purely infinite simple’ is a Morita invariant.

For the converse, let I be a nonzero right ideal of A. We show that I

contains an infinite idempotent. Let 0 6= x ∈ I, so that xA ≤ I. But x = ex

for some e = e2 ∈ A, so xA ≤ eA. So by hypothesis, xA contains a nonzero

direct summand T of eA, where T is directly infinite. But as noted above we

have that T = fA for f = f 2 ∈ A, where f is infinite. Thus f ∈ T ≤ xA ≤ I

and we are done.

(ii) ⇒ (iii). Since we have established the equivalence of (i) and (ii), we

may assume A is purely infinite simple. Then the simplicity of A gives that
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AwA = A for any nonzero idempotent w ∈ A, which yields by [14, Proposi-

tion 3.5] that A and wAw are Morita equivalent, so that (iii) follows imme-

diately from (ii).

(iii) ⇒ (iv). It is tedious but straightforward to show that if A is any

ring with local units, and wAw is a simple (unital) ring for every nonzero

idempotent w of A, then A is simple.

(iv) ⇒ (i). Since A is simple we get AwA = A, so that A and wAw are

Morita equivalent by the previously cited [14, Proposition 3.5].

Thus we have established the equivalence of statements (i) through (iv).

(i) ⇒ (v). Suppose A is purely infinite simple. Then A is not left artinian,

so that A cannot be a division ring. Now choose nonzero α, β ∈ A. Then there

exists a nonzero idempotent w ∈ A such that α, β ∈ wAw. But wAw is purely

infinite simple by (i) ⇔ (iii), so by [8, Theorem 1.6] there exist a′, b′ ∈ wAw
such that a′αb′ = w. But then for a = a′, b = b′β we have aαb = β.

Conversely, suppose A is not a division ring, and that A satisfies the

indicated property. Since A is not a division ring and A is a ring with local

units, there exists a nonzero idempotent w of A for which wAw is not a

division ring. Let α ∈ wAw. Then by hypothesis there exist a′, b′ in A with

a′αb′ = w. But since α ∈ wAw, by defining a = wa′w and b = wb′w we have

aαb = w.

Thus another application of [8, Theorem 1.6] (noting that w is the identity

of wAw) gives the desired conclusion.

(v) ⇒ (iv). The indicated multiplicative property yields that any nonzero

ideal of A contains a set of local units for A, so that A is simple.

Since A is not a division ring and A has local units there exists a nonzero

idempotent w of A such that wAw is not a division ring.

Let α, β ∈ wAw; in particular, wαw = α and wβw = β. By hypothesis

there exists a, b ∈ A such that aαb = β. But then (waw)α(wbw) = wβw = β,

which yields that wAw is purely infinite simple by [8, Theorem 1.6].

We now have all the necessary ingredients in hand to prove the following

theorem, due to G. Abrams and the author (see [2, Theorem 11]).
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Theorem 4.4.15. Let E be a graph. Then L(E) is purely infinite simple if

and only if E has the following properties.

(i) The only hereditary and saturated subsets of E0 are ∅ and E0.

(ii) Every cycle in E has an exit.

(iii) Every vertex connects to a cycle.

Proof. First, assume (i), (ii) and (iii) hold. By (4.3.12) we have that L(E) is

simple. By (4.4.14) it suffices to show that L(E) is not a division ring, and

that for every pair of elements α, β in L(E) there exist elements a, b in L(E)

such that aαb = β. Conditions (ii) and (iii) easily imply that |E1| > 1, so

that L(E) has zero divisors, and thus is not a division ring.

We now apply (4.4.8) to find a, b ∈ L(E) such that aαb = w ∈ E0. By

condition (iii), w connects to a vertex v 6∈ V0. Either w = v or there exists a

path p such that r(p) = v and s(p) = w.

By choosing a′ = b′ = v in the former case, and a′ = p∗, b′ = p in the

latter, we have produced elements a′, b′ ∈ L(E) such that a′wb′ = v.

An application of (4.4.10) yields that v ∈ V2, so there exist p, q ∈ CSP(v)

with p 6= q. For any m > 0 let cm denote the closed path pm−1q. Using (4.2.3),

it is not difficult to show that c∗mcn = δmnv for every m,n > 0.

Now consider any vertex vl ∈ E0. Since L(E) is simple, there exist {ai, bi ∈
L(E) | 1 ≤ i ≤ t} such that vl =

∑t
i=1 aivbi. But by defining al =

∑t
i=1 aic

∗
i

and bl =
∑t

j=1 cjbj, we get

alvbl =

(
t∑

i=1

aic
∗
i

)
v

(
t∑

j=1

cjbj

)
=

t∑
i=1

aic
∗
i vcibi = vl.

Now let s be a left local unit for β (i.e., sβ = β), and write s =
∑

vl∈S vl for

some finite subset of vertices S. By letting ã =
∑

vl∈S alc
∗
l and b̃ =

∑
vl∈S clbl,

we get

ãvb̃ =
∑
vl∈S

alc
∗
l vclbl =

∑
vl∈S

vl = s.

Finally, letting a = ãa′a and b = bb′b̃β, we have that aαb = β as desired.
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For the converse, suppose that L(E) is purely infinite simple. By (4.3.12)

we have (i) and (ii). If (iii) does not hold, then there exists a vertex w ∈ E0

such that w ≤ v implies v ∈ V0. Applying (4.4.12) we get that wL(E)w is

not purely infinite. But then (4.4.14) implies that L(E) is not purely infinite,

contrary to hypothesis.

Examples 4.4.16. We can apply this theorem to some graphs:

(i) Matrix algebras Mn(K) ∼= L(Mn), being Mn the “finite line” graph Mn

defined in (4.1.2). Of course L(Mn) is simple, but it is not purely infinite since

no vertex in M0
n connects to a cycle.

(ii) Leavitt algebras L(1, n) for n ≥ 2. We saw that L(1, n) ∼= L(Rn) for Rn

the “rose with n leaves” graph defined in (4.1.5). Since n ≥ 2 we see that

all the hypotheses of (4.4.15) are satisfied, so that L(1, n) is purely infinite

simple.

(iii) There are other graphs F which satisfy the hypotheses in (4.4.15) (and

therefore L(F ) is purely infinite simple) which are not of the type Rn, for

example

•w1f1 44

f2

$$
•w2

f3

dd

Nevertheless, even though F is not “isomorphic as a graph” to any Rn,

E. Pardo has pointed out that the algebras L(F ) and L(R2) turn out to

be isomorphic via ϕ : L(R2) → L(F ) defined on the generators by ϕ(v) =

w1 +w2, ϕ(y1) = f1 +f2, ϕ(y2) = f3(f1 +f2), and ψ : L(F ) → L(R2) given by

ψ(w1) = y1y
∗
1, ψ(w2) = y2y

∗
2, ψ(f1) = y2

1y
∗
1, ψ(f2) = y1y2y

∗
2 and ψ(f3) = y2y

∗
1.

(iv) To exhibit an example of a graph E which again verifies the hypotheses

in (4.4.15) but is not isomorphic to any previous considered Leavitt path

algebras, E. Pardo has brought to our attention the following one:

• ** 44 •



��
•

YY ee

which has K0(L(E)) ∼= Z2 × Z2, while K0(L(1, n)) ∼= Zn−1.
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We complete this section by providing a realization of the purely infinite

simple algebra Mm(L(1, n)) as a Leavitt path algebra L(E) for a specific

graph E.

Proposition 4.4.17. Let n ≥ 2 and m ≥ 1. We define the graph Em
n by

setting E0 := {v1, . . . , vm}, E1 := {f1, . . . , fn, e1, . . . , em−1}, r(fi) = s(fi) =

vm for 1 ≤ i ≤ n, r(ei) = vi+1, and s(ei) = vi for 1 ≤ i ≤ m− 1. That is,

•v1
e1 // •v2

e2 // •v3 •vm−1
em−1 // •vm f1jj

f2

ww

f3

��

fn

RR

Then L(Em
n ) ∼= Mm(L(1, n)).

Proof. We define Φ : K[E0 ∪ E1 ∪ (E1)∗] → Mm(L(1, n)) on the generators

by

Φ(vi) = eii for 1 ≤ i ≤ m

Φ(ei) = eii+1 and Φ(e∗i ) = ei+1i for 1 ≤ i ≤ m− 1

Φ(fi) = yiemm and Φ(f ∗i ) = xiemm for 1 ≤ i ≤ n

and extend linearly and multiplicatively to obtain a K-homomorphism. We

now verify that Φ factors through the ideal of relations in L(Em
n ).

First, Φ(vivj − δijvi) = eiiejj − δijeii = 0. If we consider the relations

ei − eir(ei) then we have

Φ(ei − eir(ei)) = Φ(ei − eivi+1) = eii+1 − eii+1ei+1i+1 = 0,

and analogously Φ(ei − s(ei)ei) = 0.

For the relations fi − fir(fi) we get

Φ(fi − fir(fi)) = Φ(fi − fivm) = yiemm − yiemmemm = 0,

and similarly Φ(fi − s(fi)fi) = 0.

With similar computations it is easy to also see that

Φ(e∗i − e∗i r(e
∗
i )) = Φ(e∗i − s(e∗i )e

∗
i ) = Φ(f ∗i − f ∗i r(f

∗
i )) = Φ(f ∗i − s(f ∗i )f ∗i ) = 0.
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We now check the Cuntz-Krieger relations. First, Φ(e∗i ej − δijr(ej)) =

Φ(e∗i ej−δijvj+1) = ei+1iejj+1−δijej+1j+1 = δijei+1j+1−δijej+1j+1 = 0. Second,

Φ(f ∗i fj − δijr(fj)) = Φ(f ∗i fj − δijvm) = xiemmyjemm − δijemm = 0,

because of the relation (1) in L(1, n). Finally,

Φ(f ∗i ej − δfi,ej
r(ej)) = Φ(f ∗i ej − 0vj+1) = Φ(f ∗i ej) = xiemmejj+1 = 0,

and similarly Φ(e∗i fj − δei,fj
r(fj)) = 0.

With CK2 we have two cases. First, for i < m, Φ(vi − eie
∗
i ) =

eii − eii+1ei+1i = 0. And for vm we have Φ(vm −
∑n

i=1 fif
∗
i ) = emm −∑n

i=1 yiemmxiemm = 0, because of the relation (2) in L(1, n).

This shows that we can factor Φ to obtain a K-homomorphism of algebras

Φ : L(Em
n ) →Mm(L(1, n)).

We see that Φ is onto. Consider any matrix unit eij and xk ∈ L(1, n). If we

take the path p = ei . . . en−1f
∗
ke

∗
n−1 . . . e

∗
j ∈ L(Em

n ) then we get

Φ(p) = eii+1 . . . en−1n(xkenn)enn−1 . . . ej+1j = xkeij.

Similarly Φ(ei . . . en−1fke
∗
n−1 . . . e

∗
j) = ykeij. In this way we get that all the

generators of Mm(L(1, n)) are in Im(Φ).

Finally, using the same ideas as those presented in (4.3.14) (i), we see that

Em
n satisfies the conditions of (4.3.12), which yields the simplicity of L(Em

n ).

This implies that Φ is necessarily injective, and therefore an isomorphism.
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Notation

N positive integers
Z integers
Q rational numbers
C complex numbers

K[x] algebra of polynomials
K(x) field of fractions of polynomials

Reg(R) set of regular elements
Mn(R) matrix ring

∼= isomorphism
≤ substructure, submodule
∪ union
∩ intersection

⊆ ⊂ subset
( proper subset

EndK(V ) endomorphisms of a vector space
F(V ) finite rank endomorphisms

dim dimension
Soc(Q) socle of a ring

B basis of a vector space
ΠH projection

/ /l /r two-sided, left and right ideals
/gr /gr−l /gr−r graded two-sided, left and right ideals

/e /e
l /e

r two-sided, left and right essential ideals
/e

gr /e
gr−l /e

gr−r graded two-sided, left and right essential ideals

/d
l /d

gr−l (graded) dense left ideal

Idl(R) I l
gr−d(R) family of (graded) dense left ideals

Il(R) Ie
l (R) family of left (essential) ideals

Ie
gr−l(R) family of graded left essential ideals
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Ql
max(R) maximal left quotient ring

ran(X) lan(X) right and left annihilators
ann(X) annihilator

Hom(A,B) set of homomorphisms
E(R) injective hull
J(R) Jacobson radical∏

Ri product of rings

⊕ direct sum
Qσ(R) maximal symmetric ring of quotients

⊗ tensor product
(R,S,M,N, φ, ϕ) Morita context

R-mod category of modules
R-Mod category of nondegenerate unital modules

4 division ring
Supp(A) support of a graded algebra

#R cardinal of a set
A[G] group ring
Zn ring of n-integers

K[x, x−1] algebra of Laurent polynomials
Ag g-homogeneous component

h(A) set of homogeneous elements
Sgr−d(M) set of gr-dense submodules

HOMA(M,N)σ gr-homomorphisms of degree σ

Ker(f) kernel
Agr

a graded local algebra at an element
R ring modulo an ideal

F (ε) algebra of dual numbers
char(F ) characteristic of a field

Zl(R) Zr(R) Z(R) left singular, right singular and singular ideals
Zgr−l(R) Zgr−r(R) graded left and right singular ideals

Zgr(R) graded singular ideal
Ql

gr−max(A) maximal graded left quotient algebra
lim−→ direct limit

(A+, A−) associative pair
Aop opposite associative pair

V (A) double associative pair
T (A) polarized associative triple system



NOTATION 157

A standard envelope
E standard embedding
P Peirce system

id(A0) < X > ideal generated by a set
d(M) width
(A, ∗) algebra with involution

E = (E0, E1, r, s) directed graph
s(e) r(e) source and range of an edge

Mn finite line graph
M∞ infinite line graph
Rn rose with n leaves graph
En set of paths of length n

E∗ set of all paths
δij Kronecker delta

A(E) path algebra
eij e(i, j) matrix unit

∅ empty set
max maximum of a set
min minimum of a set

deg(p) degree of a polynomial
Ê extended graph

L(E) LK(E) Leavitt path algebra
L(1, n) Leavitt algebra

CP(v) CSP(v) closed (simple) paths based at v

RD(v) return degree
Cn cycle of length n graph

CKA(K) algebraic Cuntz-Krieger algebra
On Cuntz algebra

C∗(E) Cuntz-Krieger algebra
R(v) paths ending at v

n(v) range index
G(X) hereditary saturation

∧ and
Idn×n identity matrix of size n





Index

2n+1 grading, 22
3-graded algebra, 69

acyclic graph, 105, 134–137, 141
algebra

of dual numbers, 37
of polynomials, 22, 23, 46, 55, 106
right faithful in, 87

algebraic Cuntz-Krieger algebra, 129
associative

pair, 67–72, 75, 77, 78, 80, 84–90,
93–96, 100

right faithful in, XII, 87–90
triple system, IX–XI, 67–70, 76–

78, 91, 92, 94, 100

bimodule, X, 14, 15, 21, 71

centralizer, 6
classical left quotient ring, IV, 2, 3
closed

path, 111, 112, 114, 145
simple path, 111, 112, 114

common denominator property, 3, 24
complete

family of orthogonal idempotents,
95

systems of submodules, 92
connection of vertices, XV, 120, 145,

146
corner of a ring, V, VI, 1, 8–10, 13,

141
Cuntz-Krieger

relation at a vertex, 107, 123
relations, 107, 135, 148

cycle, XV, 105, 111, 112, 114, 115,
118, 119, 121–124, 127, 128,
130, 132, 134, 137, 140, 145,
146

degree
of a graded morphism, 25, 26, 40,

55, 56, 64
of a polynomial, 110, 115

dense left ideal, 4, 6, 8–10, 12, 30, 51,
60–62, 65, 96

directed graph, V, XIV–XVI, 103–
107, 110–115, 118–121, 125,
127–130, 132–134, 137, 139–
141, 145–147

directly infinite module, 141–143
double associative pair, 68

edge, 103–106, 112–115, 120, 122, 123,
127, 128, 136–138, 140

emitted by a vertex, 103, 123, 135
matrix, 129–132
pointing to a vertex, 103, 125

element of degree d, 111
element representable as an element

of degree d in
ghost edges, 111
real edges, 111, 121, 122, 137–139

exit, XV, 113–119, 121–124, 127, 128,
137, 140, 145

extended
finite line, 106
graph, 106

field
of fractions, III, IV, VIII, 1, 2, 5,

55
of rational functions, 1

finite
grading, XII, 22, 99
graph, XIV, XVI, 104, 129, 130,

133
line, 103, 104, 106, 110, 146

159
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Fountain-Gould left order, 38
full

idempotent, VI, 12–14, 17, 18, 84
subcategory, 16

general left quotient ring, see left quo-
tient ring

ghost
edge, 106
path, 111, 119

gr-max-closed, XVI
graded

algebra, VII–XIII, 1, 6, 21–27, 29,
30, 32–40, 44, 46–48, 50–53,
57, 58, 62, 70, 72, 75, 87, 90,
92, 93, 95, 96, 99–101, 109

common denominator property,
24

dense
left ideal, VII, VIII, 30, 31, 51,

53, 54, 59, 60, 63, 65
submodule, 24

envelope, X, 72–75, 94
homomorphism, see graded mor-

phism
isomorphism, 33, 34, 53, 55, 58,

73
left

dense ideal, see graded dense
left ideal

essential ideal, 38, 76
ideal, VII, 21, 23, 27, 30, 31, 35,

38, 42, 43, 45, 47, 49, 50, 54,
58, 59, 62, 63

noetherian, 21
nonsingular algebra, XIII, 44,

45, 50, 83, 99, 100
nonsingular module, 44
quotient algebra, VII, VIII, X,

XI, 26, 28–31, 34, 44, 51–55,
57, 58, 60–62, 76, 79, 90, 91

singular algebra, 44
singular ideal, VIII, 43–46
singular module, 44

local algebra at an element, 33
module, 23, 44, 76

morphism, VIII, 25, 40, 42, 53,
59, 64, 91

prime algebra, 36, 37, 45
right

ideal, 23, 35
singular ideal, 43

semiprime algebra, 36
singular ideal, 43, 48, 76
subalgebra, VII, 26, 28–31, 34, 45,

46, 53, 57, 62, 89, 96–99
submodule, 23–26, 76
von Neumann regular, XIII, 50,

99, 100
grading, 22

of a algebra, 92
induced by an idempotent, 95

graph, see directed graph
algebra, see Leavitt path algebra

group algebra, 22

hereditary
saturation, 139
subset, XV, 120, 121, 124, 125,

127, 128, 139, 145
homogeneous

component, 23, 26, 28, 32, 37–40,
50, 64

element, 23, 27, 32–34, 42, 43, 50,
81

total right zero divisor, VIII, 27,
38, 57, 60, 63

homotope product, 32

ideal of an associative pair, 69
idempotent ring, 16, 20
independent family of submodules,

94, 97
induced pregrading, 92, 94
infinite

idempotent, 132, 141, 143
line on the right, 104

injective hull, 6
integers, 1
integral domain, III, VIII, 1, 2, 5, 55
isomorphism of envelopes, 72
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Laurent polynomial algebra, V, VIII,
XIII, XIV, 22, 110, 127

Leavitt
algebra, XIV, 110, 127, 146
path algebra, V, XIII, XV, XVI,

23, 103, 105, 106, 111, 121,
127, 129, 132, 137, 147

left
annihilator, 9

of a triple system, 78
of an associative pair, 77

faithful
algebra, 82, 83, 87, 88
associative pair, X, 88
ring, 4, 12, 13

ideal of an associative pair, 68, 69
multiplication, 68
nonsingular

algebra, XI, XIII, 77, 79, 87, 88,
99, 100

associative pair, X, 90, 100
module, 44
ring, IV, 8
superalgebra, XI, 79, 82
triple, XI, 79, 82, 100

order, 2
quotient

algebra, VII, VIII, XI, 26, 28,
29, 55, 57, 59, 62, 80, 85

pair, XII, 80, 84, 89
ring, III, V, 2–5, 7, 10, 11, 13,

17, 80
superalgebra, XI, 76, 90
triple system, XI, 80–83, 91, 92

singular
ideal of a triple system, 78
ideal of an associative pair, 78

supernonsingular superalge-
bra, see left nonsingular
superalgebra

supersingular
ideal, XI, 76
superalgebra, 76

length of a path, 104, 105, 111
local algebra at an element, VIII, 31

locally matricial, 134, 137, 141

M-graded Lie algebra, 101
matrix

algebra, XIII, 22, 127
ring, XIV, 5, 8, 128, 134

max-closed, XVI
maximal

graded left quotient algebra, V,
VIII, X, 54, 57, 96

left
quotient algebra, V, VIII, XI,

XIII, 52, 53, 55, 86
quotient pair, V, XI, XII, 89
quotient ring, III–VII, X, 4–8,

13, 14, 19
quotient triple, V, 92

middle multiplication, 68
Morita

context, 14–18, 22, 71
equivalent

categories, 15
idempotent rings, 16, 19, 144
rings, VI, 15, 17, 18, 143

ring, VI, 15, 19

neutral element of the group, 23
nondegenerate module, 16
nontrivial grading, VIII, XII, XIII, 92,

94–96, 101, 102

opposite associative pair, 68
orthogonal

idempotents, XII, 18, 19, 95, 97–
99

system of submodules, 92–94, 99

path, 104, 105, 111–117, 120, 124, 133,
134, 140, 145, 148

algebra, XV, 103, 105, 106, 108
Peirce system, 92, 94, 97
polarized associative triple system, 68
polynomial in only

ghost edges, 111, 118, 119, 121,
122

real edges, 111, 115–119, 121, 122
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pregrading induced by system of
idempotents, 94, 95, 97–99,
109

prime algebra, 36
pseudo uniform element, 48, 49
purely infinite ring, V, XV, 132, 141–

147

range
of a path, 104
of an edge, 103, 105, 120, 125

rational numbers, 1
real path, 111, 119
regular element, III, 2
return degree at a vertex, 113, 116–

118
right

annihilator, 9, 54
faithful

algebra, 50, 60, 70, 77, 93, 94,
96, 97, 99, 100

associative pair, X, XI, 69, 72,
75, 77, 78, 80, 85, 88, 89

ring, 4, 6, 7, 12
superalgebra, IX, XI, 60, 61, 64,

69, 77–83
triple system, 69, 70, 79, 91, 94

ideal of an associative pair, 69
multiplication, 68
quotient ring, 2
supersingular ideal, 76

ring with local units, 108, 121, 134,
142, 144

rose with n leaves, 104, 106, 110, 146
row-finite graph, see directed graph,

104

saturated subset, XV, 120, 121, 124,
126, 127, 139, 145

second centralizer, 6
semiprime algebra, 36
set of matrix units, 133
single loop, 104, 106, 110
sink vertex, XIV, 104, 107, 120–122,

126, 130, 133–136, 138
source

of an edge, 103
of a path, 104, 105
of an edge, 105, 123
vertex, XIV, 104, 130

standard
embedding, XII, 71, 84, 85, 89, 96
envelope, X, XI, 70–75, 84–87,

89–91, 93–96, 100
strongly graded algebra, 21, 22, 57, 84
subpair, X, 70–72, 75, 80, 84, 87
superalgebra, 22

right faithful in, 80, 82
weak right faithful in, 80, 81

supersingular ideal, 76
support, 22
surjective Morita context, VI, X, 15,

16, 19, 20

tight envelope, XI, 72, 75
total

left zero divisor, VI, VIII, 4, 63,
90

right
zero divisor of a ring, III, VI,

VII, 4, 5, 17, 18, 27, 51–53,
55, 59–61, 63–65, 69, 75, 81,
85, 86, 88, 96

zero divisor of a triple system,
69, 83

zero divisor of an associative
pair, 69, 70

triple system right faithful in, 87, 92
trivial grading, 21, 23, 26, 30, 43, 44,

54, 55, 57
two-sided

graded ideal, 23, 32, 40–42, 46, 55
ideal of an associative pair, 69

unital
associative pair, 84
module, 16

unitization, 19
Utumi left quotient ring, 4, see left

quotient ring

vertex, 103–105, 112, 114, 119, 120,
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126, 128, 132, 137, 140, 145,
146

receiving an edge, 103, 104
von Neumann regular ring, IV, XIII,

8, 50, 89, 100

weak
graded left quotient algebra, VII,

26, 29
left

quotient algebra, VII, 26, 28,
29, 77

quotient superalgebra, 76, 77
right faithful

algebra, XI
superalgebra, XI

width, 101

Z2-graded algebra, see superalgebra
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