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Sumario
Es esencial aumentar la autonomía de los robots móviles, dotarles de la capaci-

dad de realizar operaciones por sí mismos. Ello es deseable en campos como la
exploración planetaria o las operaciones de búsqueda y rescate. Los robots móviles
podrían realizar un mayor número de tareas en un mismo intervalo de tiempo sin
requerir intervención humana. Estos podrían, por ejemplo, desplazarse largas dis-
tancias y llegar a más lugares. Para ello se emplean algoritmos de planificación de
caminos. Estos generan un camino que guía al robot hacia la localización objetivo.
Sin embargo, los entornos en exteriores y desestructurados presentan un desafío a
su locomoción. Por este motivo el planificador de caminos debe tener en cuenta
este tipo de entornos a la vez que la capacidad motriz del robot. De esta manera,
el algoritmo puede encontrar el camino que conlleve el menor consumo de energía
posible. No obstante, no siempre el robot dispone de información precisa y com-
pleta acerca del entorno. En estos casos el planificador de caminos debe actualizar
de forma dinámica el camino siempre que sea necesario. El robot podría tener que
lidiar in situ con elementos del terreno que no fueron considerados previamente.

Esta tesis trata problemas que pueden surgir en la navegación autónoma sobre
terrenos irregulares. Como paso previo, presenta un resumen de los algoritmos de
planificación de caminos existentes hoy en día. Este resumen se centra en aquellos
algoritmos que son compatibles con robots móviles de tierra. Además, sirve para
construir una clasificación de los métodos existentes. Esta clasificación se basa en
las distintas maneras que tiene un planificador de caminos de modelar y procesar
el entorno y la movilidad del robot. Esta tesis pone el foco en aquellos métodos
capaces de producir el camino globalmente óptimo dado un mapa de coste. Estos
métodos son llamados algoritmos PDE Solving (Solucionadores de ecuaciones en
derivadas parciales). La piedra angular de esta tesis es la adaptación de este tipo de
algoritmos a la navegación autónoma sobre terrenos irregulares. Primero presenta
un planificador de caminos enfocado a robots reconfigurables. Este tipo de robots
es capaz de ejecutar varios modos de locomoción. Esta habilidad les permite adap-
tarse a un mayor número de terrenos, lo cual es tenido en cuenta por el planificador.
En segundo lugar, esta tesis presenta una arquitectura de planificación de caminos
basada en métodos PDE Solving que sirve no sólo para encontrar un camino óptimo
inicial sino también actualizarlo. Esta arquitectura trata con información del entorno
proveniente de dos fuentes. Una de ellas es un mapa global inicial que cubre un área
extensa con baja resolución. La otra fuente es el robot mismo, el cual detecta obstácu-
los que puedan aparecer en su camino. Tercero, otra contribución considera el uso
de un planificador de caminos en escenarios con superficies inclinadas. Este planifi-
cador considera el efecto de la gravedad en el robot y cómo su orientación afecta al
coste energético. Finalmente, esta tesis presenta los resultados de varios experimen-
tos de simulación y de campo, los cuales permiten comprobar la funcionalidad de
los planificadores descritos y sirven para validarlos.
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Abstract
Increasing autonomy on mobile robots is essential. The main reason is to pro-

vide them with the ability to perform operations on their own. This skill is desir-
able in fields such as planetary exploration or search and rescue operations. Mobile
robots could carry out more tasks in a time window by not relying on human inter-
vention. These systems could, for instance, drive longer distances and hence reach
more places. Autonomous navigation rests on the use of path planning algorithms.
These algorithms generate a path that guides the robot towards a target location.
Yet, off-road and unstructured environments can pose a challenge to its locomotion
capabilities. Thus, the path planner must address them at the same time as the robot
mobility skills. In this way, this algorithm finds the path that minimizes a metric
such as energy consumption. Not always precise information describing the envi-
ronments is complete. The path planner must hence dynamically update the gener-
ated path whenever necessary. The robot may deal with terrain elements that were
not addressed before in situ.

This thesis tackles problems that arise in autonomous navigation on irregular
terrains. As a first step, it presents an overview of the existing path planning algo-
rithms. This overview focuses on those algorithms that are compatible with ground
mobile robots. It serves to build a classification of the existing approaches. This clas-
sification rests on their functionality. In a few words, it tackles the different ways
in which path planner model and process the environment and the robot mobility.
This thesis puts the focus on some of them that are capable to produce the globally
optimal path given a cost map. These are called PDE (Partial Derivative Equation)
solving algorithms. How to adapt these algorithms to the autonomous navigation
of irregular terrains is the cornerstone of this thesis. It deals first with the use of
a path planner along with a reconfigurable robot. This kind of robot is capable to
perform many modes of locomotion. This skill allows them to adapt to a larger va-
riety of terrains, and the planner must acknowledge it. Second, this thesis presents
a path planning architecture based on PDE solvers that serve to not only find an
initial path but also update it. This architecture addresses environment information
coming from different sources. One of them is an initial global map that covers a
large area but with low resolution. The other source is the robot itself, which de-
tects obstacles placed on its way. Third, another contribution considers the use of
a path planner in scenarios with inclined surfaces. Such a planner acknowledges
the effect of gravity on the robot and how the orientation affects the cost. Finally,
this thesis presents the results of simulation and field experiments. They check the
functionality of the described planners and serve to validate them.
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"Any planet is Earth to those that live on it."

Isaac Asimov, Pebble in the sky, 1950
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Chapter 1

Introduction

"Exploration is in our nature. We
began as wanderers, and we are
wanderers still. We have lingered long
enough on the shores of the cosmic
ocean. We are ready at last to set sail
for the stars."

Carl Sagan
Cosmos, 1980

1.1 Extreme Path Planning for Exploration Mobile Robots

Since ancient times humanity has invested numerous efforts to expand the limits of
its knowledge. Humans have explored more and more locations around the globe,
trying to understand the ins and outs of the world that surround us. They have set-
tled in some of these new places, forming colonies. In the current situation, with a
globalized world and human populations being placed almost everywhere, the next
frontier is the deep space. We dream of colonizing other worlds like Mars. Nev-
ertheless, to make this aspiration become reality several technological, ethical and
legal issues must be solved first (Levchenko et al., 2019). Meanwhile, space agen-
cies have sent in the last years multiple kinds of spacecraft to explore extraterrestrial
environments. These scenarios are unstructured, irregular and the information des-
cribing them is limited. Unlike flat, even surfaces, the terrain in these places can be
difficult to traverse due to its composition and/or shape. The use of advanced tech-
nologies to tackle the existing inconvenient conditions is mandatory to preserve the
safety of robotic explorers and promote the efficiency of their operations. In other
words, these robots must navigate making use of extreme autonomous navigation
capabilities. These technologies can be benefited from similar applications on Earth,
and vice-versa. For instance, in disaster scenarios, the role of exploration agents is
important to raise awareness of the situation. This knowledge may prove helpful in
the search of possible victims, as it is considered when planning the course of action
of first responders (Seppänen et al., 2015).
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Exploration, reconnaissance, inspection. All these words refer to the act of ad-
venturing into partially or fully unknown environments and reducing uncertainty
about something. This action may return many benefits as result. The newly ac-
quired information could increase the potential to plan any further action. We ex-
ploit this fact from the moment we are born: as we grow we adventure, we learn
new information and, as a result, our possibilities to survive and interact with the
environment increase enormously. Moreover, the witnessing of phenomenons that
are not comprehended by us as infants motivates us to seek a better understanding
of them (Köster et al., 2020). One important remark here is that exploration entails
actively acting. This can be in the form of motion, i.e., displacing from one spatial
state to another. As a consequence of performing this motion, the individual has a
new viewpoint. From this viewpoint, such individual changes his/her perspective,
and may perceive things better. The novel incoming information improves our un-
derstanding and awareness of the situation. This helps in making more options to
become available to act next.

Humans are not longer alone to explore new places. In the last decades more
and more autonomous robotic systems are being put on the scene to perform this
kind of task. There are many reasons to opt for this. One of the most important ones
is to avoid risking human lives in certain dangerous scenarios. The atmosphere (or
the lack of it), the radiation, the fragility of the terrain, ... many are the factors that
justify the substitution of humans by robots to operate. The design and structure
of these systems differ according to the medium in which they are meant to move:
sea, air, space, ground. The latter is where the focus of this thesis is on. This thesis
presents the results from the work carried out to improve the autonomous naviga-
tion capabilities of ground mobile robots. In particular, it presents the work done on
those algorithms and techniques that determine the way the vehicle decides where
to drive and how. As a matter of better delimiting the scope of this thesis, the term
ground refers to those robots who can propel themselves by interacting with a sur-
face, e.g. using wheels. An important clarification is made here: it is assumed the
action of gravity makes these vehicles be in permanent contact with the surface. This
statement entails that this thesis does not consider any manoeuvre that implies the
separation of the vehicle from the ground. An example of this is the action of jump-
ing that hopping robots can make. In this way, this thesis has a special focus on
wheeled robots designed for exploration purposes. This is the case of rovers: robotic
vehicles used to explore the surface of other planets and satellites beyond Earth.
These systems must navigate through areas where human presence is still unfeasi-
ble. Besides, in a similar way to wheeled robots used for Search And Rescue (SAR)
purposes, autonomously addressing the particularities of an unstructured and com-
plex terrain is desired to come up with a proper course of action minimizing or even
dismissing human intervention.

In many navigation schemes, one of the most important parts is the generation of



1.1. Extreme Path Planning for Exploration Mobile Robots 3

a path. This path is meant to be followed by the vehicle and connects its starting po-
sition (the origin) with the desired destination (the goal). Also known as Guidance,
this thesis refers to this path generation as path planning. Furthermore, the scope
of application of this path planning includes off-road, unstructured scenarios. This
kind of location may pose a challenge for the navigation system of any mobile robot.
This system must be effective, taking the robot safely to another place, and efficient,
minimizing the invested resources (e.g. energy). However, the irregularities in the
terrain may in some cases penalize the robot motion. For this reason, the path plan-
ner must account for this given the locomotion capabilities of the robot. Moreover,
the extreme nature of these scenarios may also limit the perception capabilities of
not only the robot itself but also any external medium such as drones or satellites.
This is translated into the limited availability of the information describing the sce-
nario. The planner must hence account for this and dynamically update the plan
(or replan) whenever necessary according to the updates in this information. Next,
brief discussions about two fields of application with extreme conditions are pro-
vided. These are extraterrestrial planetary environments and disaster scenarios on
Earth. In the first case, rovers must navigate through partially known scenarios with
rough terrain. In the second case, robots may have to traverse off-road scenarios in
situations where minimizing time and/or energy is critical.

Planetary exploration

Hints about the origin of life and the universe may be hidden on the surface of other
celestial bodies beyond Earth. The study of their geological history and the materials
located there could help us to understand better some of the processes that occur on
Earth (T. Zhang et al., 2019). Furthermore, there exist valuable resources that may
be exploited by the industry and space agencies in future space missions. These
resources, such as water on the Moon, would hopefully help in the creation of hu-
man colonies in extraterrestrial places. Nevertheless, to go and inspect these places
requires the use of exploration agents. Nowadays there are plenty of difficulties to
safely transport humans during space travels. For this reason, their prolonged pres-
ence in extraterrestrial environments is still unfeasible. Therefore, the use of robotic
agents (rovers), cheaper to maintain and not living beings, arises as a good and more
realistic alternative in the meantime. They can accomplish the role of carrying and
operating scientific instruments in planetary and space scenarios (Gao et al., 2017).

Although the use of robots for extraterrestrial exploration purposes is justified,
there are still many underlying issues. One of them is related to the communica-
tions with the ground stations located on Earth. The delay in sending and receiving
messages with robotic systems on the Moon can approximately take from 3 to 10
seconds. This allows the use of direct teleoperation at a certain level (Y. Wang, 2021).
However, the communications using the Deep Space Network (DSN) between the
ground stations on Earth and the rovers on Mars can take much longer: up to 40 min-
utes approximately for a two-way message (Lester et al., 2017). This is a huge delay
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FIGURE 1.1: Real scale mock-ups of rovers sent by NASA to Mars.
From smaller to bigger size: Sojourner (left below), Opportunity (left

above) and Curiosity (right). Credit: NASA / JPL-Caltech.

that makes unfeasible the direct control of these robots: the ground operator must
wait for the next incoming message, analyze the arriving information and thereafter
send the next command or series of commands back to Mars (Bresina et al., 2005).
On top of that, communications between Mars and Earth are limited by the passing
of the Mars Relay Network orbiters. This means that these communications can only
happen a few times per sol (martian day, similar to a day on Earth). As a result, the
distance that rovers drive is restricted to a limited amount of meters.

With regards to the rovers that were sent in the last missions to Mars, the auton-
omy software installed on them has been progressively increased in the last decades.
This was made to compensate for the mentioned problems in the communications
between this planet and Earth. Figure 1.1 shows the real scale replicas of some of
these rovers. In 1997, the National Aeronautics and Space Administration (NASA)
sent to Mars the first rover capable of moving with certain autonomy: Sojourner
(Bajracharya et al., 2008). This relatively small robot was capable of autonomously
performing simple operations like going to a certain waypoint (Mishkin et al., 1998).
It achieved a total distance of around 100 meters, serving as a proof of concept for
sending more robotic mobile explorers to Mars. The immediate next mission was
the Mars Exploration Rover (MER), in which two twin rovers were sent to different
spots of the red planet. One of them was Spirit (Arvidson, Bell, et al., 2010) and the
other one was named Opportunity (Arvidson, Ashley, et al., 2011). For this occasion
NASA had augmented the autonomous capabilities of both robots, providing them
with a local path planner called GESTALT (Biesiadecki et al., 2006). During their mis-
sion, it was figured out that a local planner was not enough for achieving complete
autonomous navigation: the rover could get stuck in different situations involving
encounters with rocks. Because of this, a global path planner was also included in
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(a) The Rosalind Franklin rover. Credit: ESA. (b) The Sample Fetch Rover (SFR). Credit: ESA.

FIGURE 1.2: 3D reconstruction of the ESA rovers that are planned to
be sent in the upcoming years.

the autonomy software. In this way, a long-traverse could be initially planned while
the local planner would dynamically produce safe paths avoiding obstacles (Mai-
mone et al., 2007). This autonomy system was kept for the Mars Science Laboratory
(MSL) Curiosity rover in 2011 (Lele, 2014). Nevertheless, manual commanding from
the ground operators is still the most common strategy used to navigate on Mars.
Usually, for each martian day (or sol) a series of tasks is previously planned and
later sent to these vehicles.

Future missions include sending to the red planet the Rosalind Franklin rover
(see Figure 1.2a) as part of the ExoMars campaign, leaded by the European Space
Agency (ESA). It was initially planned for 2020 (Vago et al., 2017) but delayed to
2022 at the time this thesis is written. Its main purpose is to take and analyze sam-
ples from underground to find any signs of current or past life on the red planet. One
of the main particularities of this rover is the disposition of extra joints on top of each
of its legs. They allow the rover to deploy and retrieve each leg in a similar way as
if it was walking. Thus, this mode is referred to as Wheel-walking (Patel et al., 2010;
Woods et al., 2009). It makes the rover increase its traction on sandy soils as demon-
strated in previous experiments (Azkarate, Zwick, et al., 2015). In this way, the rover
could avoid getting stuck as happened to the Spirit rover in 2009 (Arvidson, Bell, et
al., 2010). Another future mission is the Mars Sample Return (MSR) mission (Muir-
head et al., 2019). It consists of taking several tubes with samples inside from the
Martian surface and return them to Earth. These tubes are expected to be previously

TABLE 1.1: ECSS levels of autonomy

Level Description

E1 Direct commanding from ground operators
E2 Execution of pre-planned operations
E3 Reactivity, the vehicle adapts to external events
E4 Goal-oriented, fully autonomous navigation
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left by the Perseverance NASA rover, which arrived at Mars in February 2021. Later
on, another rover that will be built by ESA, the Sample Fetch Rover (SFR) (see Figure
1.2b), will be tasked to retrieve them. For this kind of missions, efficiency is denoted
by the number of samples that can be successfully retrieved within a time window,
so higher capabilities in both mobility and autonomy are desirable. As a side note,
a better understanding of the levels of autonomy of a rover can be done thanks to
Table 1.1. It contains a division into four levels proposed by the European Cooper-
ation for Space Standardization. Reaching the last one, E4, will probably be crucial
for complying with the expectations imposed on the SFR, as well as any other future
rover with increasingly complex tasks. An example of the latter is the mobile robotic
systems that will intervene in the construction of infrastructure on the Moon surface
(Govindaraj et al., 2019).

To summarize, increasing the autonomy of rovers is justified by two reasons.
First, as mentioned, direct teleoperation of these systems is difficult or even not fea-
sible and any other kind of commanding strategy will delay any operation, compro-
mising the efficiency of the mission as a consequence. Second, the complexity of the
tasks that are foreseen to be performed by future rovers is increasing. SFR, for ins-
tance, shall fetch samples, pick them with a manipulator, store them and later place
them on another spacecraft, all of this within a limited time window restriction.

Search And Rescue (SAR) Robotics

According to previous research, many actions can influence how a disaster is man-
aged: mitigation, preparedness, response and recovery (Jorge et al., 2019). The third
one, response, corresponds to those tasks carried out just after the disaster happens.
Since the tragedy of the World Trade Center, which collapsed in 2001, there have
been tens of cases in which the use of robotic mobile platforms has proven beneficial
(Murphy, 2004). They have assisted in both natural (e.g. earthquakes) and man-
made (e.g. mines) disaster scenarios. In these cases, a robot or team of robots must
perform exploration operations to, for example, look for potential victims or inspect
the state of any damaged structure (Murphy et al., 2016). For instance, in 2013 a
tsunami hit the east coast of the main island of Japan and had as consequence seri-
ous damage to some of the buildings of a nuclear power plant in Fukushima, causing
a meltdown as result. Mobile robots, depicted in Figure 1.3a, were sent as part of the
emergency response to this disaster, being teleoperated to reach areas contaminated
with radiation and thereby hostile to humans (Nagatani et al., 2013). Another ex-
ample is the use of the robot shown in Figure 1.3b to inspect a pair of churches that
were damaged after an earthquake that occurred in Italy in 2016 (Kruijff-Korbayová
et al., 2016). The main reason to use robots in this case was the elevated risk of both
churches collapsing, which would put human operators inside any of the buildings
in a very dangerous situation. A distinct time-critical rescue operation consist of as-
sisting people that are trapped in mountains due to accidents or even external actors
such as an avalanche (Silvagni et al., 2017).
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(a) Quince robots, used during the response to the nuclear
accident in Fukushima. Credits: (Nagatani et al., 2013).

(b) Robot used after the 2016 earthquake
in central Italy. Credits: TRADR project.

(c) Legged robot ANYMAL. Credits:
(Hutter et al., 2017).

(d) RAMBLER assisting a dummy device that emulates a vic-
tim. Credits: FIRST-ROB project.

FIGURE 1.3: SAR robots used in real (a-b) and simulated (c-d) opera-
tions.

Although teleoperating these systems is demonstrated to be safe and reliable, it
requires the presence of an already limited number of human operators in the loop
(Birk et al., 2006). Moreover, wireless communication can be compromised in sce-
narios such as mines or nuclear plants (Murphy, 2012), motivating the increase of
the autonomous capabilities of rescue robots (Bogue, 2019). In this way, a single op-
erator could command a higher number of robots thanks to the low-level navigation
tasks being automated. Another difficulty in directly tele-operating rescue mobile
robots is properly addressing the motion of robots with a high number of DoF. Inter-
action with an irregular terrain is not trivial as preserving the stability of the system
or avoiding collisions are difficult tasks for the user and demand complex interfaces
such as exoskeletons (Klamt et al., 2018). Unstructured environments may present
extreme difficulties in the form of rocks, slopes or terrains with different terrame-
chanic properties. This arises the need of developing path planning solutions that
acknowledge these features and let exploration vehicles find safe and optimal tra-
jectories (Delmerico et al., 2019). For these applications, legged robots, as the one
portrayed in Figure 1.3c, are promising due to their adaptability to multiple kinds of
uneven terrain (Miki et al., 2022). Moreover, providing robots with autonomous first
response capabilities to quickly assist victims is also of interest (see Figure 1.3d)1.

1https://www.uma.es/robotics-and-mechatronics/info/107721/FIRST-ROB/?set_language=
en Accessed on 4th February 2022

https://www.uma.es/robotics-and-mechatronics/info/107721/FIRST-ROB/?set_language=en
https://www.uma.es/robotics-and-mechatronics/info/107721/FIRST-ROB/?set_language=en
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FIGURE 1.4: Diagram showing the contributions of this thesis. It de-
tails how these contributions relate to the agent and the environment

in the context of the path planning problem.

1.2 Contributions

This thesis presents and details the work carried out to create a series of contribu-
tions to the state of the art of path planning for autonomous ground mobile robots.
In particular, the presented work focuses on the use of robots working in the fields
of planetary exploration and SAR. As previously seen, it is of high importance that
these robots manage to navigate through unstructured outdoors environments in a
fully autonomous fashion, without being teleoperated at all. As a preliminary step,
an exhaustive review of the literature was made. This review is discussed in the
next chapter of this thesis. As a result, it was found in the literature some room for
improvement. It encompasses the use of different locomotion modes, the combina-
tion of maps with different formats and the consideration of the irregularity of the
terrain. Figure 1.4 shows a conceptual schematic containing the contributions of this
thesis, a total of five. These are exposed together with their implications with the
system that moves, the robotic agent, and its surrounding environment. The five
contributions are detailed next:

• Contribution 1: Optimal path planning considering multiple locomotion
modes. Unstructured environments like that of a disaster scenario or an ex-
traterrestrial one may pose a challenge for the locomotion capabilities of any
mobile ground robot. The composition of the terrain may not only increase the
energetic cost of the robot but also restrict its movement. In an extreme case,
the terrain may even entrap it, causing the failure of the mission. Furthermore,
the shape of the terrain may also make it more difficult to drive on top of it. For
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this reason, providing robots with a kinematic configuration capable to per-
form multiple locomotion modes can result in making them adapt better to the
terrain. This is translated into providing the robot with more room to navigate.
A path planner that acknowledges this feature is a must-have to ensure the ad-
vantage in question. Besides, the path planner itself should as well be capable
to find optimal paths given a criterion based on using multiple locomotion
modes. Having this in mind, the first contribution of this thesis is the use of an
optimal path planner together with a cost function based on this locomotion
reconfiguration capability. In this way, the dynamic modelling of the involved
locomotion modes feeds this cost function. In particular, this contribution has
as reference the Rosalind Franklin rover, which as mentioned before is capable
to perform two locomotion modes: Normal-driving and Wheel-walking.

• Contribution 2: Multi-scale path planning combining initial long-traverse
planning and dynamic local path replanning. The information that describes
the terrain can come from different sources and in different formats. For ins-
tance, in planetary exploration, the initial information about an environment
comes from satellite imagery. It gives a rough estimation of what the rover may
find on its way. However, there may be still some uncertainty as the sources
are not accurate enough. For this reason, the initial information may be dy-
namically complemented with the information the rover perceives while it is
driving. An example of this is the case in which the rover detects obstacles on
its way that were not considered in the initial planning. This translates into
the need of making use of a dynamic path planner that acknowledges these
updates in the environment data. Besides, it has to address new map infor-
mation coming with different values of resolution and size compared to the
initial information. This thesis presents a contribution where a novel dynamic
global-local path planning scheme is proposed. The main novelty in this ap-
proach is the use of Partial Derivative Equation (PDE) algorithms, which are
globally optimal by definition.

• Contribution 3: Creation of a direction-dependant cost function for plan-
ning the optimal traverse on slopes. The third contribution of this thesis puts
the focus on the traverse of scenarios including inclined terrains. The main
consideration for this contribution is the fact that the robot consumes more or
less energy on a slope depending on its orientation. This is because gravity
affects differently according to the direction of the robot. Therefore, it is neces-
sary to use a cost function based on a dynamics model that acknowledges this.
In this way, the cost function is categorized as direction-dependent or aniso-
tropic. In particular, this contribution combines the use of a PDE path planner,
anisotropic in this case unlike in the previous contribution, with the cost func-
tion in question based on robot-terrain interaction. Moreover, it is included in
this anisotropic approach the possibility to use a risk function that maximizes
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the lateral stability of the robot by minimizing the roll angle. In this way, there
is a trade-off between minimizing energy consumption and the risk of turning
over, and it is up to the user to opt for prioritizing one of them.

• Contribution 4: Field tests using experimental mobile platforms. The fourth
contribution presented in this thesis is the description of how the second and
third contributions were experimentally validated. To do this, a rover pro-
totype and a skid-steering mobile platform were used on outdoors irregular
terrains. For both cases, it was carried out several field tests involving the
emulation of complete path planning and navigation operations. This thesis
deepens into the setup of these experiments and includes discussions about
their execution.

• Contribution 5: General classification of most relevant existing path plan-
ning algorithms used along with ground mobile robots. The number of ap-
proaches to path planning existing in the literature is vast. This can be over-
whelming to anyone who needs to choose a path planning algorithm to inte-
grate it into a navigation system. For this reason, the fifth and last contribution
of this thesis is the analysis of most of the path planning algorithms found in
the literature to later produce a classification method that makes it easier to
understand the different approaches in terms of way of functioning and appli-
cability.

1.3 Context and Motivation

The main motivation for the work presented in this thesis is to progress in the field
of autonomous navigation for mobile robots. As mentioned before using Table 1.1,
there are many levels of autonomy. Path planning is key to achieving full autonomy.
Thus, this work focuses on improving this kind of algorithm and its use in certain
situations. This progress results in the completion of a PhD in Mechatronics. This
PhD is from the Industrial Engineering School (see Figure 1.5a) of the University of
Malaga (UMA), whose location is marked in Figure 1.5c. The author has performed
the work presented in this thesis within the Department of Systems Engineering
and Automation (ISA). In particular, the author has been a member of one of the
department laboratories: the UMA Space Robotics Laboratory (SRL)2.

The ISA research group (TEP-119) has long experience in the development of
robotic solutions in SAR applications. Every year it organizes a conference in secu-
rity, emergencies and catastrophes, where a public demonstration of the robotic sys-
tems is made3. During the PhD studies, the author participated in this conference
by providing the same kind of PDE path planner used in the first and second thesis

2https://www.uma.es/robotics-and-mechatronics/info/107542/robotica-espacial/ Ac-
cessed on 4th November 2021.

3https://www.jornadascatastrofes.com/ Accessed on 29th August 2021.

https://www.uma.es/robotics-and-mechatronics/info/107542/robotica-espacial/
https://www.jornadascatastrofes.com/
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(a) UMA Industrial Engineering School. Credit:
www.cti.uma.es, foto taken in 2009.

(b) ESA European Space Research and Technology
Center (ESTEC). Credit: esa.int.

(c) Sites of realization of this thesis (Image taken from Google Maps and modified).

FIGURE 1.5: Facilities where the work of this thesis was held.

contributions. Moreover, two national projects funded by the Spanish Government
supported the work of this thesis, providing financial resources, equipment and the
needed infrastructure. They are the following:

• Multi-Robot System for Cooperation with First Response Human and Ca-
nine Rescue Teams in Catastrophe Scenarios (FIRST-ROB). This project has
as reference number DPI2015-65186-R. It focuses on the use of multi-robot sys-
tems to gather information during the initial stages of a disaster scenario. This
project has supported the first, second and fourth contributions of this thesis.

• Towards Resilient UGV and UAV Manipulator Teams for Robotic Search
and Rescue Tasks (TRUST-ROB). With reference number RTI2018-093421-B-
I00, this project focuses on improving resilience on the mechatronic systems
that are part of multi-robot response teams. This project has supported the
third and fourth contributions of this thesis.

The SRL started functioning with the collaboration between UMA researchers
and the European Space Agency (ESA). As part of his PhD studies, the author has
carried out three research stays in the latter institution. These were done in the
European Space Research and Technology Center (ESTEC) (see Figure 1.5b), with
a total duration of one year. The collaboration agreement between this institution
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and the University of Malaga started at the beginning of the author’s PhD studies.
It keeps active the moment this thesis is written. Besides, the author of this thesis
collaborated on a European project funded by the European Commission through
the Horizon 2020 program. Both projects are detailed next:

• Autonomous Routing on Extreme Surfaces (ARES). This project started in
2016 with contract number 4000118072/16/NL/LvH/gp between ESA and
UMA. Its original purpose was the improvement of autonomy for reconfigu-
rable rovers, creating path planning solutions capable to work with multiple
modes of locomotion. In a second stage, this project was renovated in 2018
towards improving sample fetch missions. It is driven by the need of impro-
ving the navigation capabilities of rovers for future missions on the Moon and
Mars. In the context of this project, the work towards achieving the first two
contributions as well as the fourth one was made. The ESA Automation and
Robotics Section provided the author with the facilities and the robotic sys-
tems to perform some of the experiments described in this thesis. This project
supported the first, second and fourth contributions of this thesis.

• Autonomous Decision making for very long traverses (ADE). This project
started in March 2019 and lasted until May 20214. Funded by the European
Commission under the Horizon2020 programme, the main objective of this
project was to advance in the autonomy architecture of a rover prototype e-
quipped with a robotic manipulator. The University of Malaga participated as
one of the members of the consortium with the responsibility of developing the
methods to make the system autonomously fetch a sample. In this project, the
scope of such methods was to produce the motion of the arm needed to place
the end effector on some location. The project finished with a series of field
tests where the software provided by each of the partners was merged. This
project supported the fifth contribution of this thesis. Moreover, the algorithms
presented in this thesis served as the basis of the methods used in this project
to autonomously plan the paths for the rover prototype.

Publications

All the contributions that support this thesis were presented as a result of the men-
tioned projects through both conference and journal publications. The Figure 1.6
presents a diagram containing not only these publications but also other comple-
mentary ones in which the author of this thesis was involved. The publications
containing the contributions of this thesis are the following:

• Path Planning for Reconfigurable Rovers in Planetary Exploration. Authors:
Pérez-del-Pulgar, C. J., Sánchez, J. R., Sánchez, A. J., Azkarate, M., Visentin, G.
Published in IEEE International Conference on Advanced Intelligent Mechatronics

4https://www.h2020-ade.eu/ Accessed on 6th October 2021.

https://www.h2020-ade.eu/
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Coupled path and motion planning for a rover-
manipulator system

C.J. Pérez-del-Pulgar, J.R. Sánchez-Ibáñez, G.J. Paz-
Delgado, P. Romeo-Manrique, M. Azkarate
ASTRA, 2019

Enhancing Mobile Manipulation with 
Synchronized Arm-Locomotion Control

J.R. Sánchez-Ibáñez, R. Domínguez, F. Cordes, C.J. 
Pérez-del-Pulgar
i-SAIRAS, 2020

Related Publications

FIGURE 1.6: Diagram showing the publications that support this the-
sis, together with those that precede them and those that extend them.

(AIM), pp. 1453-1458, in 2017. This conference publication presents the first
contribution of this thesis. It details the use of a path planner that considers
multiple locomotion modes for a planetary wheeled mobile robot. A V-REP
simulation environment is used to validate the proposed path planning solu-
tion, and it is demonstrated how the energy consumption can be minimized
by considering these locomotion modes in areas containing different types of
terrain. It was supported by the ARES project.

• Dynamic Path Planning for Reconfigurable Rovers using a Multi-layered
Grid. Authors: Sánchez-Ibánez, J. R., Pérez-del-Pulgar, C. J., Azkarate, M.,
Gerdes, L., García-Cerezo, A. Published in Engineering Applications of Artificial
Intelligence (2019 Impact factor: 4.201, Q1), vol. 86, pp. 32-42, in 2019. Based
on the previous conference publication, this journal publication not only con-
siders the use of reconfigurable rovers but also the information that describes
the environment coming from different sources. This is possible thanks to the
use of a grid made up of two layers, along with a path planning strategy that
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combines an initial planning process on one layer with a dynamic update on
the other. Numerical results, as well as results from field tests, are provided to
validate this solution. In this way, this publication supports three of the con-
tributions of this thesis, all of them except the third and the fifth ones. Besides,
it is supported by the ARES and FIRST-ROB projects.

• Path Planning for Autonomous Mobile Robots: a Review. Authors: Sánchez-
Ibáñez, J.R., Pérez-del-Pulgar, C.J., García-Cerezo, A. (2021). Published in Sen-
sors (2020 Impact Factor: 3.576, Q1), vol. 21, pp. 7898, in 2021. This jour-
nal publication results from the analysis of path planning algorithms over the
years during the PhD period. As a result, a novel classification is proposed,
covering most of the existing path planning approaches that can be found in
the literature. It is supported by the ADE project and supports the fifth contri-
bution of this thesis.

• Optimal Path Planning using CAMIS: Continuous Anisotropic Model for
Inclined Surfaces. Authors: Sánchez-Ibáñez, J.R., Pérez-del-Pulgar, C.J., Serón,
J., García-Cerezo, A. Preprint under review for journal publication at the time
this thesis is written. As the energetic performance of mobile ground robots
differ according to their orientation on top of a slope, a path planner acknow-
ledging this is desirable. This preprint details CAMIS, the cost model used
to represent this anisotropic behaviour along with a compatible path planner.
Besides, the lateral inclination is also considered to reduce the probability of
turning over. In a similar way to the previous publication, this one provides
simulation and field test results. It supports contributions three and four and
is funded by the TRUST-ROB project.

Moreover, the first two publications that support this thesis were preceded each
of them by a publication in the Advanced Space Technologies in Robotics and Au-
tomation (ASTRA) symposium and the International Symposium on Artificial Intel-
ligence, Robotics and Automation in Space (iSAIRAS) respectively:

• Path Planning for Reconfigurable Rovers in Planetary Exploration. Authors:
Sánchez-Ibáñez, J. R., Perez-del-Pulgar, C. J., Azkarate, M. Published in Ad-
vanced Space Technologies in Robotics and Automation (ASTRA), in 2017. Sharing
the same title as one of the mentioned publications that supports this thesis,
this conference publication focuses more on the technical aspects of the simu-
lation environment used along with the robotics software.

• Multi-scale path planning for a planetary exploration vehicle with multi-
ple locomotion modes. Authors: Sánchez-Ibáñez, J. R., Pérez-del-Pulgar, C.
J., Azkarate, M. Published in International Symposium on Artificial Intelligence,
Robotics and Automation in Space (iSAIRAS), in 2018. This short conference pub-
lication already gives some hints about the use of a multi-layered grid for path
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planning, which is fully detailed in the second publication that supports this
thesis.

The contributions provided by this thesis and supported by the aforementioned
publications have also influenced other ones, also indicated in Figure 1.6. Here are
introduced some of them in which the PhD candidate is co-author:

• Choosing the Best Locomotion Mode in Reconfigurable Rovers. Authors:
Pérez-del-Pulgar, C. J., Romeo-Manrique, P., Paz-Delgado, G. J., Sánchez-Ibá-
ñez, J. R., Azkarate, M. Published in Electronics (2019 Impact Factor: 2.412, Q2),
vol. 8, pp. 818, in 2019. This conference publication extends the modelling
done for the first contribution and also provides a method to determine when
to switch from Wheel-walking to Normal-driving, according to the informa-
tion provided by the robot onboard sensors.

• Efficient Autonomous Navigation for Planetary Rovers with Limited Re-
sources. Authors: Gerdes, L., Azkarate, M., Sánchez-Ibáñez, J. R., Joudrier,
L., Perez-del-Pulgar, C. J. Published in Journal of Field Robotics (2020 Impact
Factor: 3.581, Q1), vol. 37, pp. 1153-1170, in 2020. This journal publication is a
field report of the experiments carried out near ESA facilities using an experi-
mental prototype rover. The path planner used is the same that is described in
the journal publication Dynamic Path Planning for Reconfigurable Rovers using a
Multi-layered Grid.

• Improving Autonomous Rover Guidance in Round-Trip Missions Using a
Dynamic Cost Map. Authors: Paz-Delgado, G. J., Azkarate, M., Sánchez-
Ibáñez, J. R., Pérez-del-Pulgar, C. J., Gerdes, L., García-Cerezo, A. J. Published
in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.
7014-7019), in 2020. In this conference article, it was presented an improve-
ment to the path planner developed in the previous journal publication Dy-
namic Path Planning for Reconfigurable Rovers using a Multi-layered Grid. It is
focused on round-trip missions such as the one the SFR will be expected to
perform in the future.

• Coupled path and motion planning for a rover-manipulator system. Au-
thors: Sánchez-Ibánez, J. R., Paz-Delgado, G. J., Romeo-Manrique, P., Pérez-
del-Pulgar, C. J., Azkarate, M. Published in Advanced Space Technologies in Ro-
botics and Automation (ASTRA), in 2019. The simulation results of the motion
planning of a mobile manipulator were presented in this conference paper.
The algorithm used to plan the path for the mobile base is the same used in
contributions 1 and 2 of this thesis.

• Enhancing Mobile Manipulation with Synchronized Arm-Locomotion Con-
trol. Authors: Sánchez-Ibáñez, J. R., Domínguez, R., Cordes, F., Pérez-del-
Pulgar, C. J. Published in International Symposium on Artificial Intelligence, Ro-
botics and Automation in Space (iSAIRAS), in 2020. This conference publication
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presents the preliminary results of some tests done with the SherpaTT rover,
owned by the German Research Center of Artificial Intelligence (DFKI). These
tests consisted of validating the path and motion planning method developed
under the ADE project.

1.4 Thesis Outline

The structure of this thesis rests on seven chapters. All of them are written to present
and define each of the contributions that make up this thesis. Each chapter after
the current one and except the last one is written following a certain format. Each
of them begins with a brief introduction about the concepts that are going to be
presented. Thereafter, it is provided with an elaboration of these concepts, exposing
each of them in detail. Then, each chapter ends up with room for a summary and
some conclusions. It shows the discussion about the involvement of the presented
concepts in the overall work and the thoughts of the author with regards to them.
The chapters in question that make up this thesis work are the following:

• Chapter 1: Introduction. It is the current chapter. It starts by presenting the
main questions that motivate the realization of this thesis. Thereafter, it pro-
vides a disclosure of the key objectives. Then, this chapter introduces the con-
textualization of the work carried out. It ends up here, detailing the structure
of this thesis.

• Chapter 2: State of the Art in Path Planning for Ground Mobile Robots.
This chapter introduces an extensive revision of path planning, which is at
the same time the fifth (and last) contribution of this thesis. It provides an
analysis of most of the existing path planning algorithms that can be found
in the literature. It proposes a classification method that aims to ease their
understanding. Later on, this chapter presents an analysis of the main criteria
used in path planning for autonomous navigation.

• Chapter 3: Isotropic Optimal Path Planning for Reconfigurable Rovers. It
elaborates the first thesis contribution about the use of many locomotion modes
in path planning. This chapter details the process to make a model that con-
siders various modes of locomotion. In the end, it explains the conditions and
constraints due to its use along with an isotropic PDE planner.

• Chapter 4: Dynamic Multilayered Path Planning. This chapter focuses on the
second contribution of this thesis. It defines the problem of using information
from many sources in autonomous navigation. Moreover, it questions how a
path can be dynamically updated. Then, it details a solution in the form of a
multi-layered path planning architecture. Later on, this chapter finalizes with
a discussion about the use of this novel solution.
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• Chapter 5: Anisotropic Cost Model for Traversing Inclined Terrains. The
third contribution of this thesis is fully explained in this chapter. Here it is
made a step further in the formulation of the path planning problematic. Now
the different energetic costs of the vehicle due to its orientation on any slope
must be accounted for. This entails the use of an anisotropic PDE path planner
along with a direction-dependent cost model that considers this new criterion.

• Chapter 6: Experiments. This chapter presents the fourth contribution of this
thesis. It discloses the different experiments carried out to validate all the pre-
vious contributions. Here is relevant the use of existing experimental plat-
forms, including rovers and mobile rescue robots. Thereafter this chapter pro-
vides the results from these experiments, followed by some discussion.

• Chapter 7: Conclusions and Future Work. The last chapter of this thesis
makes first a summary of the presented work in the previous chapters and
presents the discussion about the extracted conclusions out of them. Then,
it introduces a discussion about the presented contributions highlighting the
remaining gaps. Those improvements that can be made to the algorithms in-
troduced are also indicated. They may lead to novel future research work.





Chapter 2

State of the Art in Path Planning
for Ground Mobile Robots

"All roads lead to Rome."

Proverb

2.1 Introduction

As stated in the previous chapter, autonomous navigation is a valuable asset for mo-
bile robots. It helps to mitigate their dependency on human intervention. Yet, it also
entails many tasks or problems to solve, e.g. path planning. This task lies in finding
the best course of action to make a robot reach the desired state from its current one.
For example, both states could be respectively the goal and the initial positions. This
course of action comes in the form of a path, also named route in many other works.
The path serves to guide the robot to the desired state in question. However, there
may be numerous possible paths given the free space in which the robot can move.
Path planning algorithms generally try to get the best path or at least an admissible
approximation to it. Best is understood here in the same sense as optimal: the re-
sulting path comes from minimizing one or more objective optimization functions.
For instance, this path may be the one entailing the least amount of time. This is
critical in missions such as those of the Search And Rescue (SAR) (Alenezi et al.,
2018): victims from a disaster may ask for help in life or death situations. Another
optimization function to consider could be the energy of the robot. In the case of
planetary exploration, this is critical since rovers have limited energetic resources
available (Ishigami et al., 2011). At the same time, the path generated by the plan-
ner must follow any imposed restrictions. These may come from the limitations in
the adaptability of the robot to certain terrains. The locomotion of the robot and
the characteristics of the existing terrain limit the kind of manoeuvres that can be
performed. This consequently reduces the number of feasible paths that the path
planner can generate.

The number of path planning approaches is immense and do not stop increas-
ing year after year. Choosing the most suitable one for any navigation application
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considering restrictions and optimality criteria is not trivial. As is explained later,
existing path planning reviews and surveys tend to miss important approaches.
This fact motivates the work carried out that is detailed in this chapter. It starts
by describing in Section 2.2 the methods used to address the environment and lo-
comotion information, which serve as inputs to any path planner. In particular, this
chapter focuses on the use of ground mobile robots. This means the planners here
introduced have worked with this kind of vehicle or at least they are compatible
with them. Nevertheless, most of the path planners that are introduced later can be
also applied with other kinds of mobile vehicles. This is the case of, for instance,
maritime surface robots (Y. Liu and Bucknall, 2016) and underwater/aerial robots
moving under plans using 2D modelled environments (Petres et al., 2005). Later on,
Section 2.3 includes a detailed description of existing path planning categories. They
are organized using a classification method based on their fundamentals, together
with references to works that make use of them. Besides, this section also analyzes
previous review and survey publications and highlights how they are not compre-
hensive enough to at least mention the most relevant path planning algorithms. The
following four sections deal, each of them, with one of the four path planning ca-
tegories: Reactive Computing (Section 2.4), Soft Computing (Section 2.5), C-Space
Search (Section 2.6) and Optimal Control (Section 2.7). Finally, Section 2.8 contains
a summary of the contents introduced by this chapter, together with a series of con-
clusions extracted from them.

2.2 Path Planning Workspace Modelling

A path planner needs to be fed with information describing the environment. This
information can inform, for instance, about the presence of obstacles or the features
of the surface that are relevant to the planning. Besides, the criteria used to calcu-
late the path has to do with the way the robot interacts with this environment. For
example, to just minimize path length perhaps the information of what areas can be
traversed or not is enough, while to minimize energy the terramechanics and the
way the robot steers shall be taken into account. This section introduces first diffe-
rent ways to format the map in a way usable by the planner. Later on, this section
presents different approaches to address robot-terrain interaction according to the
robot locomotion capabilities.

Environment Modeling

Surface mobile robots drive from one position to another within a certain region in
space. Therefore, it is needed to consider how will the locomotion model interact
with this surface and how the path planner will take care of it. For instance, some
algorithms require the construction of a graph that represents somehow the envi-
ronment in which the robot is moving. This is mostly the case of Graph Search algo-
rithms, part of the C-Space Search category. Besides, Evolutionary algorithms like
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(a) Square tessellation. (b) Triangle tessellation. (c) Hexagon tessellation.

(d) Irregular grid. (e) Voronoi roadmap. (f) State lattice graph.

FIGURE 2.1: Different types of environment cell decomposition (a-d)
and roadmap graphs (e-f).

the Ant Colony Optimizer (ACO) also can make use of a graph. This asset can repre-
sent how the terrain features that affect the robot navigation are spatially arranged
in the scenario. In particular, the graph in question is assumed here to be built upon
metric maps, acknowledging the existence of other kinds of maps out of the scope of
this thesis, like topological and semantic (Yi et al., 2012). According to Souissi et al.
(2013), there exists multiple ways to build a graph, as those shown in Figure 2.1. The
work of Nash and Koenig (2013) also put some light into this classification. It distin-
guishes between Cell Decomposition and Roadmaps. The first of them consists of
tessellating the surface into cells. These cells can be arranged using regular (P. Raja
et al., 2012; Nash and Koenig, 2013; Souissi et al., 2013; H.-y. Zhang et al., 2018) or
irregular grids (Nash and Koenig, 2013; Souissi et al., 2013). Figures 2.1a, 2.1b and
2.1c show how regular grids can be built using one out of three types of polygons:
squares, triangles and hexagons. Its main advantage is the simple indexation of each
node, which is translated into quick access to any of them and an optimized way to
store them in memory (Algfoor et al., 2015). Irregular grids, like the one depicted in
Figure 2.1d, allow adapting the grid better to terrain features with different values of
resolution, at the expense of possibly getting worse paths (Petres et al., 2005). Other
forms of Cell Decomposition are the Navigation meshes and Circle-based waypoint
graphs as explained by Nash and Koenig (2013). The other form of representing
the environment is, as mentioned, by using roadmaps. A roadmap is a graph built
upon nodes connected by edges. Each node represents a possible state of the ro-
bot, while each edge indicates how to reach that state from another. Examples of
roadmaps include Voronoi graphs (Barraquand et al., 1992) (see Figure 2.1e), Visibil-
ity graphs (Huang et al., 2004) and State-Lattice graphs (see Figure 2.1f). The latter
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consists of making the edges be based upon motion primitives, so the resulting path
is ensured to be feasible given the robot mobility constraints, especially when using
Graph Search algorithms (Likhachev and Ferguson, 2009; Bergman et al., 2020).

The cells or the nodes from these graphs can store information regarding the sur-
face at their location, in the form of static or dynamic elements (Patle et al., 2019). It
can be for instance elevation information. A Digital Elevation Map (DEM) is a grid
whose nodes have associated each of them a value of elevation. Elevation maps can
be also represented by polygons, but regular grid maps are preferred (Choi et al.,
2012). Shape-related features, such as the slope gradient or the surface roughness,
can be extracted using convolution matrices (Papadakis, 2013). The size of the kernel
and the DEM resolution will determine what kind of features are extracted. More-
over, this resolution defines the level of detail of the elements contained in the map.
As shown in Figure 2.1d, this resolution can be non-uniform or multiple. The size
of the grid can be chosen according to the scale at which the planning is performed:
local in case of covering the immediate surroundings of the robot (more or less the
reachable distance of the on-board sensors) and global if the area is bigger than that,
usually using information from external sources such as satellites or drones.

With regards to how the cost is defined over the planner workspace, there are
different ways. First of all, cost is here understood as the metric that the robot accu-
mulates by moving. The objective of the path planner is to minimize this accumu-
lation by producing the optimal path. The cost in question can be uniform, in the
sense that the regions that can be accessed by the robot have always the same value.
This approach can be used for doing collision avoidance path planning, where met-
rics such as the path length in a 2d plane are minimized. Non-uniform cost maps
can be used to assign different values of cost to different accessible areas. It can be
useful to, for example, define the energetic performance of the robot at each location.
Moreover, the cost can be also defined according to a direction vector. This means
that the robot will experience different values of cost depending on its heading. In
this case, the cost is categorized as anisotropic (Shum et al., 2015), while in the con-
trary case the cost is isotropic. Besides, the steering manoeuvre of the robot can also
have different values of cost according to its locomotion. Finally, it is worth remark-
ing that the knowledge about the environment can be fully known, partially known
or even fully unknown, requiring for the latest two a planning strategy capable to
replan when this knowledge is updated.

Robot-Surface Interaction Modeling

A ground mobile robot interacts with the surface beneath it to propel itself. To per-
form this, there exist many different locomotion actuators, such as wheels, tracks,
legs and even omnidirectional wheels. Figure 2.2 depicts six real examples of ground
mobile robots using different configurations of actuators. The Koguma rover (in
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(a) Koguma rover. (b) Cuádriga. (c) SherpaTT

(d) Asguard, a hybrid robot with
legged-wheels. Credits: (Joyeux et

al., 2011).

(e) Anymal, a quadruped ro-
bot. Credits: (Fankhauser et

al., 2018).

(f) Light Crawler, a rover with
steerable tracks. Credits: (Wak-

abayashi et al., 2009).

FIGURE 2.2: Examples of ground mobile robots with different kine-
matic configurations. (a) and (c) were reproduced in (Sánchez-Ibáñez
et al., 2021) with permission of the University of Tohoku and the Ger-
man Research Center for Artificial Intelligence (DFKI) respectively.

Figure 2.2a) has Differential drive locomotion. Cuádriga (in Figure 2.2b) is a four-
wheeled Skid-Steering robot owned by the University of Malaga. SherpaTT (in Fi-
gure 2.2c) has four steerable wheels that allow it to execute Full-Ackermann, Crab-
bing and Point-Turn maneuvers. The other three robots shown in this Figure have di-
fferent actuators such as legged-wheels, articulated legs and steerable tracks (Figures
2.2d, 2.2e and 2.2f respectively). All the introduced actuators, together with the joints
linking them to the robot body, determine the kinematic structure and the dynamic
behaviour of the robot. In other words, they determine the locomotion configura-
tion of the robot. H. Zhang et al. (2020) summarize some kinematic and dynamic
models of different well-known configurations of wheeled robots: Differential drive
(Papadopoulos et al., 2007) (see Koguma robot (Laine et al., 2018) in Figure 2.2a as
an example and the depiction of the model in Figure 2.3a), Ackermann (Marin et al.,
2013) (see Figures 2.3b and 2.3d), Skid-Steering (Mandow, Martinez, et al., 2007) (see
Figure 2.3c) and Omnidirectional (Wu et al., 2020). Some of them entail constraints
relevant to path planning, such as the minimum turning radius of robots with Front-
Ackermann (Takei et al., 2013) (see Figure 2.3b) or the high energy consumption of
Skid-Steering robots in turning manoeuvres (Effati et al., 2020). Moreover, another
model exists called Crabbing (see Figure 2.3e). It allows a robot to drive in a direc-
tion different to the one it is facing, due to having steering joints on top of all wheels
(Patel et al., 2010). Furthermore, some kinematic configurations allow the robot to
perform the Point-Turn manoeuvre, which makes them rotate without translating. It
is worth mentioning the existence of articulated robots capable to reconfigure them-
selves to obtain some kind of benefit and perform multiple types of locomotion (see
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(a) (b) (c)

(d) (e) (f)

FIGURE 2.3: Locomotion models used for wheeled ground mo-
bile robots along with path planners: Differential drive (a), Front-
Ackermann (b), Skid-Steering (c), Full-Ackermann (d), Crabbing (e)

and Point-Turn (f).

SherpaTT in Figure 2.2c as an example of this). For instance, articulated robots with
tracks can actively control their stability while driving on rough terrains (Rohmer,
T. Yoshida, et al., 2010; Brunner et al., 2015). Others use wheel-on-legs configuration
to execute a locomotion mode called Wheel-walking (Azkarate, Zwick, et al., 2015;
Malenkov et al., 2017). This mode is designed to overcome soft terrains where a ro-
bot could get stuck. In a similar way, Push-pull locomotion imitates the motion of
a caterpillar to also increase traction in this kind of terrains (Moreland et al., 2011;
Creager et al., 2012; Colin Creager et al., 2015). Path planning algorithms acknow-
ledging this reconfiguration capability is a must-have for this kind of robot, as they
can find paths that take advantage of their high adaptability (Rohmer, Reina, et al.,
2010).

The robot locomotion will adapt better or worse depending on the terrain fea-
tures that were briefly mentioned before. These features may be related to either
the morphology (shape) or the composition of the terrain. One of them is the te-
rrain inclination or slope gradient (Weih Jr et al., 2004). The slope gradient takes
influence on the roll and pitch orientation angles of the robot, which is important to
consider to preserve stability (Miró et al., 2010; Brunner et al., 2015; Norouzi et al.,
2017). Besides, it can also influence the energetic performance of the robot according
to its direction. This dependency on direction is due to the effect of gravity, making
the robot consume different amounts of energy according to whether it is climbing,
descending, going laterally or going diagonally through the slope (Rowe et al., 1990;
Choi et al., 2012; Ganganath, Cheng, and Chi, 2015; Ganganath, Cheng, Fernando, et
al., 2018; Gruning et al., 2020). Another relevant terrain feature is the roughness. It is
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the measure of how diverse the normal vectors are (Krüsi et al., 2017; Lindsay et al.,
2019) and may affect the vibration experienced by the robot. Other terrain shapes
can be negotiated by the robot according to its chassis. For instance, it can overcome
rocks using the body clearance, which is the space between the body lower surface
and the terrain surface (Raghavan et al., 2019; Otsu et al., 2020). The presence of
negative obstacles such as holes or ditches can be problematic as they are difficult to
capture by the robot sensors (Hines et al., 2021). With regards to the terrain compo-
sition, it takes influence on the dynamics underlying the robot-surface interaction.
This surface may be more rigid or deformable (Taghavifar et al., 2020). This affects
the way the robot adheres to the surface, even restricting its motion (Arvidson, Bell,
et al., 2010). The slippage is the metric that, in general terms, measures how the
real speed of the robot differs from the commanded one, usually by doing a ratio
between them (Ishigami et al., 2007; Sutoh et al., 2015). Some works consider both
slippage and the slope gradient of the terrain to make a more accurate estimation of
the robot while traversing rough terrains (Hiroaki Inotsume et al., 2016; H. Inotsume
et al., 2020). The magnitude of gravity can also affect the dynamics of the interaction
between the robot and the terrain (Papadakis, 2013; Niksirat et al., 2020). Finally,
path planners usually make use of cost functions that encompasses multiple terrain
features related to shape and composition. For instance, Ishigami et al. (2011) intro-
duces the dynamic mobility index, encompassing stability, slippage, elapsed time and
energy consumption. Moreover, there may exist other elements not directly related
to the terrain that may still affect the performance of the robot while navigating. One
of them is the solar radiation (Plonski et al., 2013; Sutoh et al., 2015), which can be
modeled as a dynamic function (Kaplan et al., 2016). Groves et al. (2021) map other
kinds of radiation that may harm the robot, like in scenarios of nuclear dismantle-
ment. Besides, the concept of risk can be of high importance to prevent the robot
from getting into a dangerous situation (Ono et al., 2015), like increasing the cost
with the proximity to obstacles (Valero-Gomez et al., 2013).

2.3 General Classification

Figure 2.4 depicts four categories of path planning: Reactive Computing, Soft Com-
puting, C-Space Search and Optimal Control. Each of them is split into two subcate-
gories that will be detailed in later sections. This classification rests on the principles
and fundamental mechanisms used to construct and return a path. In many past
reviews, two kinds of distinction were made: according to whether the environment
is dynamic or not, Online and Offline path planners respectively (P. Raja et al., 2012),
and the size of this environment, local and global. Usually Online is associated with
local and Offline to global. The main issue with this is that there are algorithms that
can be considered in both categories. An algorithm with no replanning capabilities
could be used online due to its high computational speed. The contrary also could
happen. For instance, a Reactive Computing algorithm called the Dynamic Window
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Path 
Planning

Reactive 
Computing

Local 
Optimization

Reactive 
Manoeuvre

Soft 
Computing

Artificial 
Intelligence

Evolutionary 
Computation

C-Space 
Search

Sampling 
Based

Graph Search

Optimal 
Control

PDE Solving

Global 
Optimization

FIGURE 2.4: Schematic showing the proposed classification of exist-
ing path planning approaches. There are four main categories, each
of them containing two subcategories. Two adjacent subcategories
from different categories have features in common. The schematic
also indicates how some subcategories are more inclined towards ei-

ther Global Planning or Local Planning.

Approach (DWA), is usually used for local planning (H.-y. Zhang et al., 2018), but
can also be found as a global planner (F. Zhang et al., 2019). Vagale et al. (2021) pre-
sented an interesting division between algorithms that require a preliminary map
representation (Classic) (Souissi et al., 2013) and those which not (Advanced). Clas-
sic includes Graph Search methods while Advanced addresses Soft Computing and
Sampling Based algorithms. Souissi et al. (2013) proposed several clear and reason-
able path planning classifications: according to the robot model (holonomic, non-
holonomic, kinodynamic), according to the map model requirement (needed or not
needed beforehand), according to the replanning capability (offline or online) and
according to whether the algorithm always calculates the same solution or not ac-
cording to preliminary configuration parameters (deterministic or probabilistic).

The main purpose of the classification proposed in this chapter and depicted in
Figure 2.4 is two-fold. First, this classification aims to encompass a larger variety of
algorithms than those that are tackled in past reviews. Many past reviews propose
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TABLE 2.1: Main surveys and reviews of global path planning algo-
rithms found in the literature.

Reactive Computing Soft Computing C-Space Search Optimal Control

Publication
Reactive

Manoeuvre
Local

Optimization
Evolutionary
Computation

Artificial
Intelligence

Sampling
Based

Graph
Search

PDE
Solving

Global
Optimization

P. Raja et al. (2012) Yes No Yes No No No No No

Nash and Koenig (2013) No No No No
Yes

(RRT and
PRM)

Yes
(Any-angle

and A*)
No No

Souissi et al. (2013)
Yes

(APF)
No

Only
mentions

No Yes Yes No No

Elbanhawi et al. (2014)
Only

mentions
No

Only
mentions

Only
mentions

Yes
Only

mentions
No No

González et al. (2015) No Yes No No Yes Yes No
Yes

(NLP)
Mac et al. (2016) Yes No Yes Yes Yes No No No

Noreen et al. (2016) No No
Only

mentions
No Yes

Only
mentions

No No

Injarapu et al. (2017) No No
Yes

(GA)
Yes No No No No

Ravankar et al. (2018) No Yes No No No No No
Yes

(NLP)

H.-y. Zhang et al. (2018) Yes No Yes
Yes

(ANN)
No Yes No No

Zafar et al. (2018)
Yes

(APF)
No Yes

Yes
(ANN)

Yes Yes No No

Costa et al. (2019) No No
Yes

(GA)
No

Yes
(RRT)

Yes
(A*)

No No

Patle et al. (2019)
Yes

(APF)
No Yes Yes

Only
mentions

(PRM)
No No No

Gómez et al. (2019) No No No No No No
Yes

(eikonal
solvers)

No

S. Campbell et al. (2020) Yes No Yes Yes No No No No

H. Zhang et al. (2020) Yes No Yes No Yes
Yes
(A*)

Yes
(FMM)

Yes
(DP)

H. Sun et al. (2021)

Only
mentions

(APF,
DWA)

No
Only

mentions
Yes

Only
mentions
(RRT and

PRM)

Only
mentions

No No

Vagale et al. (2021) Yes No Yes
Yes

(DRL)

Yes
(RRT and

PRM)
No No No

or claim to present a general overview on path planning, but as is seen in Table 2.1
the majority of them suffer from important omissions. In this table, Yes means there
is significant discussion about the algorithms in question. Only Mentions means the
publication acknowledges the existence of at least one or more algorithms in that
class are acknowledged. If there are one or two algorithms between parenthesis this
means only those are mentioned/referred to briefly. Second, the nomenclature to
refer to path planning categories is not clear in some cases. For instance, some other
reviews make the distinction between Classical and Heuristic approaches (Mac et al.,
2016; Zafar et al., 2018). Patle et al. (2019) refer to the latter as Reactive. However, the
term Classical can be quite an ambiguous term as the majority of planning algorithms
used are based on methods with one or more decades of life. This class is also used
to encompass many algorithms with completely different ways of functioning. The
term Heuristic not only has been used to refer to Evolutionary and Artificial Intelli-
gence algorithms (Mac et al., 2016), but it has been also used to refer to Graph Search
based planners (H.-y. Zhang et al., 2018). Besides, Figure 2.4 shows how in general
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terms each of these categories tend to be used mostly for either local or global plan-
ning. Moreover, each of the subcategories can also have something in common in
their functioning with subcategories from other categories, such as the use of nu-
merical methods, the existence of parameters to tune beforehand, the requirement
of modelling the map with a graph or the use of stochastic iterative processes.

2.4 Reactive Computing Based Path Planning Algorithms

Reactive Computing algorithms model the environment by distinguishing between
traversable and non-traversable (or obstacle) regions. These algorithms are com-
monly used for local path planning: they quickly tackle the dynamic incoming
information describing the surroundings of the robot and update in real-time the
path. For this reason, Reactive Computing algorithms are used along with robots
equipped with limited perception systems. They calculate the next action or short
path that makes the robot avoid close obstacles, while at the same time following a
global path. An important drawback of many Reactive Computing algorithms is the
creation of local minimum paths, which can make the robot get stuck. There exist
two subcategories of this kind of algorithm: the Reactive Manoeuvre methods and
the Local Optimization methods. The first deals with algorithms that produce the
next immediate action or manoeuvre given the presence of nearby obstacles. The
second encompasses algorithms that modify an existing path given the existence of
obstacles contacting it.

Reactive Manoeuvre

Algorithms considered as Reactive Manoeuvre define the reaction of the robot in a
situation where it navigates and finds obstacles on its way. They do not require a
preliminary model of the environment in a graph format (Souissi et al., 2013). The
position and shape of these obstacles are addressed by the Reactive Manoeuvre al-
gorithms in different deterministic ways, but to produce the reaction in question,
in the form of a steering or a velocity command, investing low computational re-
sources. The omission of global environment information makes this kind of algo-
rithm focus on local planning, doing replanning instantaneously. However, this fact
makes these algorithms in turn sub-optimal and non-complete, since the robot may
get stuck in local minimum points. To overcome this, some approaches combine
Reactive Manoeuvre methods with algorithms from other categories that consider
global information (Vadakkepat et al., 2000; R. Raja et al., 2015; Zhou et al., 2018).
Moreover, Reactive Manoeuvre can be used in dynamic environments that contain
moving obstacles (Ge et al., 2002).

Three kinds of formulation of the robot reaction can be distinguished:

• Repulsive and attractive field forces. The Artificial Potential Fields (APF) and
the Vector Field Histogram (VFH) methods tackle the presence of obstacles
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GOAL

(a) Potential fields acting on a robot.

Robot
Velocity

GOAL

(b) Collision cone considering a moving obstacle.

FIGURE 2.5: Graphical representations of concepts used in the Artifi-
cial Potential Fields (APF) (a) and Velocity Obstacle (b) algorithms.

using field models. Figure 2.5a depicts a graphical explanation of how the APF
method works. The goal is assigned with a force that attracts the robot, while
repelling forces are assigned to the locations of obstacles. In this way, the robot
gets further from obstacles while driving towards the goal (O. Khatib, 1985).
The VFH, proposed by Borenstein et al. (1991), creates a polar histogram to
evaluate the density of obstacles around the robot, selecting the steering angle
with the lowest density of obstacles.

• Circumvention of obstacles. The Bug algorithms, Bug1 and Bug2, make the
robot circumvent any obstacle found on its way until it reaches the goal (Lumel-
sky et al., 1986). The main difference between them is that Bug1 makes the
robot drive the full boundary of any obstacle (see Figure 2.6a ), while Bug2
can drive it only partially (S. Campbell et al., 2020). They despise optimality in
favour of easiness in the implementation and very minimal computation. They
can be used on robots equipped only with sensors that just detect obstacles in
their immediate vicinity. In this way, these robots either drive towards the
goal or drive along the boundaries of obstacles they find. Q.-L. Xu et al. (2017)
use the Bug algorithm considering turning radius constraints, producing paths
with smooth turns.

• Velocity space. This kind of algorithms are adequate for dynamic environ-
ments. The following approaches are focused on producing a velocity com-
mand for the robot. Velocity Obstacle methods calculate a safe trajectory con-
sidering the velocity vectors of both the robotic agent and any other moving
obstacle (Fiorini et al., 1998; Kuwata et al., 2013). Figure 2.5b depicts how this
calculation is based on evaluating a cone of collision with a vertex on the robot
and covering the obstacle. Moreover, other works introduced the use of the
Front-Ackermann locomotion model (see Figure 2.3b) to find local paths for
cars. Wilkie et al. (2009). Another Velocity Space method is the Dynamic Win-
dow Approach (DWA), an algorithm that searches in the velocity space of the
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GOAL

(a) Path after using Bug1 algorithm.

GOAL

(b) Path after experiencing stretching.

FIGURE 2.6: Graphical representations of concepts used in Bug algo-
rithm (a) and Elastic Bands (b) algorithm with Bubble bounds.

robot for a velocity command to follow. This velocity command must make
the robot take a collision-free circular trajectory, bounded by some admissible
speed values and a time window (Fox et al., 1997). This solution may not be
the global optimal one, but rather a local optimal one (H.-y. Zhang et al., 2018).
Other approaches use this algorithm for energy-minimization path planning
(Henkel et al., 2016; Xie et al., 2018). Although commonly used as a local plan-
ner, F. Zhang et al. (2019) have proposed its use at a global scale as a global
path planner.

Local Optimization

These algorithms usually start from a pre-existing path and modify it according to
the existing obstacles, perceived at a local scale in general. Therefore, they do not
need a preliminary map model. Here it is prioritized to keep computational use to
the minimum at the expense of losing optimality or even completeness. There are
different options to modify the path, ranging from the selection of velocity profiles
within a velocity space to the stretching and elongation of the path under the effect
of artificial forces.

The use of Elastic Bands in path planning was proposed by Quinlan et al. (1993).
This method deforms an existing collision-free path according to the obstacles. The
deformation consists of either a stretching (see Figure 2.6b) or an elongation. From a
set of points in this path a set of overlapping subregions, called Bubbles, is created.
These Bubbles cover collision-free areas and their size is bounded by the distance to
obstacles. This entails that smaller and more numerous Bubbles are present in the
portions of the path closer to obstacles. It can be used in dynamic environments,
although big changes may lead to the failure of the method (Quinlan et al., 1993).
Moreover, it has also been adapted to non-holonomic vehicles by complying with
curvature constraints (M. Khatib et al., 1997) and using Bezier curves (Pérez et al.,
2018). An extension to Elastic Bands include time constraints and is named Timed
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Elastic Bands (TEB). This extended version addresses the kinodynamic constraints
of the robot, which are relevant for local planning (Rösmann et al., 2012).

2.5 Soft Computing Based Path Planning Algorithms

This kind of algorithm does not intend to find the exact optimal solution, but rather
approximate it tolerating a certain range of imprecision. In general, they require the
tuning of certain parameters done by the user to work properly according to the
characteristics of the environment. They can deal even with dynamic environments
and are adequate for problems involving a large number of variables and high de-
grees of freedom (Mac et al., 2016). Yet, they in general demand a high number of
computational resources and their functioning is not deterministic. This review fol-
lows the classification proposed by Mirjalili and Dong (2020), which distinguishes
between Evolutionary, Fuzzy control and Machine Learning methods. The first one
uses techniques inspired by biology and nature: they start with a system formed by
individuals that change over time, i.e. evolve. Fuzzy control and Machine Learn-
ing methods are here together as part of a subcategory named Artificial Intelligence.
They use fuzzy rules and neural networks respectively to produce controllers. These
controllers are very useful for navigating through initially unknown scenarios and
in general produce paths according to the obstacles the robot detects on its way. To
sum up, Soft Computing algorithms allow tuning a series of repetitive elements,
either nature-based individuals, fuzzy rules or artificial neurons, to generate a path.

Evolutionary Computation

The Evolutionary algorithms are also known as Meta-heuristic or Nature-inspired
(Fausto et al., 2020). These algorithms generate a path that results from the evolution
of a population. This population is made up of intelligent individuals whose actions
are modelled after behaviours found in nature (Mirjalili and Dong, 2020). These ac-
tions may involve modifying themselves and/or interacting with other individuals.
In some cases, these operations imply a motion by the individuals in the free space
of the environment, i.e. in the space reachable by the robot. After performing a series
of these operations, the algorithms approximate the optimal solution. The resulting
path and the time invested to converge depend on the behaviour policy assigned
to the individuals, the nature of the scenario (which can be dynamic (P. Raja et al.,
2012)) and the values assigned by the user to certain configurable parameters. An
example of the latter is the number of individuals that populate the path planning
problem. Evolutionary algorithms include Genetic methods and Swarm Optimizers.

Genetic algorithms work with individuals modelled after chromosomes (Tang
et al., 1996). Here, chromosomes are sets of binary numbers that encode a solution,
like the grid cells forming a path as depicted in Figure 2.7a. The Genetic algorithm
starts with a random set of chromosomes that evolve by reproducing (creating and
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(a) Functioning of the genetic algorithms to per-
form path planning. The path in this figure has
the form of a chromosome with genes 21 - 08 - 03

- 06.
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(b) Functioning of the ACO algorithm. Simu-
lated ants deposit more pheromones in the short-
est path. Eventually the majority will follow this

path.

FIGURE 2.7: Examples of Evolutionary algorithms: Genetic (a) and
Swarm Optimizer ACO (b).

deleting them), crossing their information and mutating (introducing changes to in-
centive the exploration of the solution) (Ram et al., 1994). As a result of continuously
repeating these processes, the algorithm converges, more slowly as it gets close to
the optimal solution (H.-y. Zhang et al., 2018). Han et al. (1997) used Genetic al-
gorithms for finding the shortest path in environments with dynamic obstacles. It
has been used in global planning with large grids that model the environment (Ala-
jlan et al., 2013). However, they are non-complete as it is not ensured they find the
solution if it exists (H. Zhang et al., 2020).

Unlike the algorithms based in Genetic methods, Swarm Optimizers use agents
modelled after animals in most cases. These agents move and actuate in the free
space of the robot. After a series of iterations, the motion of these individuals to-
wards the goal creates a pattern that eventually converges to the resulting path. Ta-
ble 2.2 introduces some of the models used that can be found in the literature. The
Particle Swarm Optimizer (PSO) algorithm stands out because of its simplicity. It is
inspired by the behaviour of certain groups of animals like fish schools (Y. Zhang
et al., 2013). It creates a series of particles that relocate themselves over time until
the algorithm converges. These algorithms search for the best positions and com-
municate to each other, considering their previous experience (Lu et al., 2008). The
PSO will find a solution if the optimal exists, so it is considered a complete algorithm
(H. Zhang et al., 2020). The solution provided by PSO could be sub-optimal though
(H. Sun et al., 2021). Another well-known algorithm is the Ant Colony Optimizer
(ACO) which, as the name indicates, simulates the behaviour of ants. These insects
move while leaving a trail of pheromones in their search for food. This trail can be
tracked by the rest of the ants. Those places that contain more pheromones make
up the waypoints of the best-found path. Figure 2.7b depicts this concept in a situa-
tion with an obstacle between the start and goal positions. Here, the best path is the
shortest one. Following the same strategy, virtual ants can move on a grid leaving
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TABLE 2.2: Intelligent models used for some Swarm Optimizer algo-
rithms, together with some of the behaviours they perform inspired

by nature.

Individuals Behaviours References

Particles
Best position memory
Variable velocity

(Lu et al., 2008)
(Y. Zhang et al., 2013)
(Mac et al., 2017)
(Tharwat et al., 2019)

Dragonflies Hunting and migration (Muthukumaran et al., 2019)

Grasshoppers Attraction and repulsion
(Elmi et al., 2018)
(Elmi et al., 2020)

Wolves
Hierarchy system
Hunting for preys

(Tsai et al., 2016)
(Doğan et al., 2018)

Whales Spiral bubble-nets
(Mirjalili and Lewis, 2016)
(Dao et al., 2016)

Cuckoos
Lévy flights
Brood parasitism

(Prases Kumar Mohanty et al., 2013)

Bats Echolocation (Ghosh et al., 2017)
Bacteria Foraging (Hossain et al., 2015)

more or fewer pheromones according to their state concerning the goal (Cong et al.,
2009; Cao et al., 2016). However, they can fall into a local minimum and provide
a sub-optimal solution (Wen et al., 2006; You et al., 2016) or not find it even if one
exists (Luo et al., 2020). This algorithm has been also simulated with several DEM
to minimize time (L. Wang et al., 2019) and energy (Sangeetha et al., 2021). The lat-
ter also while avoiding dynamic obstacles, which is also addressed by the work of
Viswanathan Sangeetha et al. (2021). There are plenty of more nature-inspired ap-
proaches. To avoid extending too much, some of them are just indicated in Table 2.2.
Besides, there are also cases in which two models are combined (Saraswathi et al.,
2018).

Artificial Intelligence

Soft Computing algorithms use other sets of configurable operators like fuzzy rules
or neural networks to generate a path. The first is based on complying with sets of if-
then rules to dynamically let the robot know what to do. The second is based on the
use of interconnected artificial neurons that work with configurable weighted con-
nections. Both fuzzy rules and neural networks could be considered for performing
global and local planning (H.-y. Zhang et al., 2018). In general, the most extended
choice for them is to act as local planners (Patle et al., 2019; S. Campbell et al., 2020).
This is because both fuzzy rules and neural networks serve to steer the robot in
highly dynamic and unstructured environments (Zavlangas et al., 2003; Engedy et
al., 2010; Yan et al., 2016; S. Campbell et al., 2020). Besides, they can make the robot
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constantly replan in fully unknown scenarios (Mac et al., 2016; Engedy et al., 2010).
Nevertheless, those approaches based on fuzzy rules may make the robot get stuck
in U-shaped obstacles in a similar way as Reactive Manoeuvre algorithms (M. Wang
et al., 2005). Besides, neural networks take a relatively high computational time, the
provided solution is sub-optimal (Zafar et al., 2018; Y. Zhang et al., 2013) and they
are non-complete, as they may not converge to the solution (Mac et al., 2016). Other
works in the literature combine fuzzy logic and neural networks especially to build
up global-local navigation solutions (Zhu et al., 2009; Shi et al., 2009; Joshi et al.,
2011; Prases K Mohanty et al., 2014; H. Wang et al., 2018).

Furthermore, the use of Reinforcement Learning (RL) is also studied to control
the motion of a robot (Blum et al., 2020; Yu et al., 2021), even in dynamic situations
(Vagale et al., 2021). Yet, according to the extensive review made by H. Sun et al.
(2021), this kind of algorithm needs to be further studied in real outdoors environ-
ments (H. Sun et al., 2021). These algorithms still suffer from generalization (taking
what is learnt from one environment to navigate in a different one) (H. Sun et al.,
2021).

2.6 C-Space Search Based Path Planning Algorithms

Configuration space (or C-Space) Search algorithms consider the working space of
the path planner as the space of all states or configurations that are reachable by
the robot. For this reason, most of the works in this category refer to this working
space as the C-Space. The main idea behind these algorithms is to use a discrete set
of samples that are part of this C-Space. In other words, the C-Space is discretized.
This set of samples includes the initial and the goal states, or at least samples rela-
tively close to them. In this way, these algorithms execute a search operation visiting
samples from this set. At a certain point, the algorithm will find and return a certain
subset of samples connecting the initial and goal states: the resulting path. In other
words, the waypoints forming the paths correspond, each of them, to a sample from
the C-Space. This implies the generated path heavily depends on how these samples
are scattered, how they are connected and how are they visited. In fact, due to this
dependency, in some approaches post-processing is done to smooth the shape of the
resulting path.

The C-Space Search category is subdivided into two groups of algorithms accord-
ing to how do they discretize the C-Space. Graph Search algorithms do this using a
pre-existent graph (as one of those depicted in Figure 2.1). Each of the nodes from
this graph represents a C-Space sample and is connected to other nearby nodes, i.e.,
its neighbours. With regards to Sampling Based algorithms, they focus on the cre-
ation and/or modification of samples within the C-Space in an iterative way. They
can keep working even after finding a feasible path to find better ones. Therefore,
they must be stopped at some point, for example by using a time limit.
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FIGURE 2.8: Main difference between the paths (in red) produced by
Edge-restricted (a) and Any-angle algorithms (b): in the first case,
waypoints can be placed only on consecutive (neighbouring) nodes.

Graph Search

As mentioned, the C-Space can be discretized in the form of a graph. Graph Search
algorithms visit fully or partially this graph until they find a path connecting the
initial and goal states. Therefore, they need this graph to be defined beforehand
(Souissi et al., 2013; Nash and Koenig, 2013). The path they return is formed by
waypoints that are placed on top of grid nodes/samples. These paths consequently
depend on how the graph is structured. As seen in Section 2.2 there exist various
graph structures in the form of Cell Decomposition and Roadmaps. According to
whether these nodes, on which the waypoints are placed, must strictly be neigh-
bours or not, the Graph Search algorithms can be subdivided into two subcategories:
Edge-restricted and Any-angle.

• Edge-restricted. Algorithms made in this category return paths whose way-
points are placed on top of neighbouring samples. In other words, the con-
nections between consecutive waypoints of the path are coincident with graph
edges. Figure 2.8a depicts a schematic showing how in the first case the shape
of the path is determined by these edges. The most known and basic Edge-
restricted path planner is the Dijkstra algorithm (Dijkstra, 1959). It visits nodes
in an iterative from one of interest (the goal or the start) until it reaches another
if possible, as it is complete. During each visit, it propagates an estimation of
the minimum amount of cost from the starting node. Years later, Hart et al.
(1968) implemented a heuristic version, A*, to speed up computation. It is the
algorithm from which many variants, both Edge-restricted and Any-angle, are
created, as indicated in the scheme depicted in Figure 2.9. It is not compatible
with dynamic environments that contain moving elements (González et al.,
2015; H. Sun et al., 2021), which applies to those variants in general. Dynamic
A* (D*), was introduced by Stentz (1994) as an incremental version of A*. Be-
ing incremental means this algorithm recycles previous computation to replan.
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FIGURE 2.9: Overview of many different approaches to Graph Search
path planning. The arrows indicate how most of them rest on older

approaches yet introduce significant improvements.

Other incremental versions include Focussed D* (Stentz et al., 1995), Lifelong
Planning A* (LPA*) (Koenig and Likhachev, 2002b) and D*-Lite (Koenig and
Likhachev, 2002a; Koenig, Likhachev, and Furcy, 2004). Since A* and D* algo-
rithms, including their variants, make use of heuristic functions, the optimality
of the resulting paths is compromised, i.e. they are sub-optimal. Likhachev,
Ferguson, et al. (2008) proposed anytime versions of these algorithms, which
return the best path found given a limited time. Dolgov et al. (2010) proposed
a version of A*, Hybrid-A*, that prioritizes the feasibility of the resulting paths
in exchange for losing optimality and completeness. This algorithm rearranges
the nodes after a path is found, in a way this path becomes kinematically fea-
sible.

• Any-angle. These algorithms produce paths whose waypoints are placed in
nodes that do not necessarily have to be neighbours. In this way, the ori-
entations from waypoint to waypoint are not restricted to the grid morphol-
ogy. Figure 2.8b depicts an example of this. Instead of sticking to orientations
of 0, ±45, ±90, ±135 or 180 degrees, the orientation from the middle to the
goal waypoint is different. One of the first Any-angle algorithms was Field-
D* (Ferguson et al., 2005). It is a well-known algorithm mainly due to its use
on Mars NASA rovers since Spirit and Opportunity (Carsten et al., 2009). As
similar to D* and D*-lite, it is an incremental algorithm, so it recycles previ-
ous computation in subsequent executions to replan. Theta* was introduced
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by Nash, Daniel, et al. (2007) to find paths that avoided obstacles while reduc-
ing the sharp heading changes that could be produced by Field-D* (Daniel et
al., 2010). Since these algorithms make use of heuristics they cannot ensure
the produced path is the globally optimal one. For this reason there are many
existing variants that improve the results of the previous one: Lazy-Theta*
(Nash, Koenig, and Tovey, 2010), Accelerated A* (Šišlák et al., 2009), Block-
A* (Yap et al., 2011) and more. Other approaches minimize heading changes,
like S-Theta* (Muñoz and R-Moreno, 2012) and 3DANA (Muñoz, R-Moreno,
and Castaño, 2016; Muñoz, R-Moreno, and Castaño, 2017), or introduce the
replanning capability (Nash, Koenig, and Likhachev, 2009).

Sampling Based

Sampling Based based path planning algorithms create samples of the C-Space one
after another, following different policies (Karaman et al., 2011; Elbanhawi et al.,
2014). Therefore, they do not need a preliminary graph as it is constructed by them.
Later on, they retrieve the path from the created samples after meeting a certain
condition or set of conditions, like reaching a time limit. This kind of algorithm is
asymptotically optimal. It means they can create more and more samples, attempt-
ing to find a better solution as time is running. In general, these algorithms are
usually used for search in high-dimensional spaces. However, the number of sam-
ples may be relatively large to get close to the global optimal solution (Noreen et al.,
2016), demanding the use of many memory resources to store all the samples as a
consequence.

If only two points are considered (e.g. the starting position and the goal), the
algorithm is single-query, while if more points are selected for the same environ-
ment then the algorithm is categorized as multiple-query. With regards to the single-
query, one of the most famous is Rapidly Random Tree (RRT), which is also a spe-
cial case of the Rapidly Deterministic Tree (RDT) (LaValle, 2006). This algorithm
emulates a tree growing in the sense that from a starting point the samples are dy-
namically created as if they were branches. As this process is stochastic, this kind of
algorithm is considered non-deterministic (Souissi et al., 2013). Figure 2.10a depicts
an scheme summarizing this process. When one of the samples is closer to the goal
than a certain distance then the path can be retrieved by tracking backwards until
reaching the origin point. As mentioned, more iterations can be still executed to find
better paths. Further modifications of RRT can be found in the literature, such as a
bi-directional version (Kuffner et al., 2000). Most of them introduce improvements
in the sampling operation to speed up the convergence, such as the RRT# (Arslan
et al., 2013) and the Heuristic Rapidly Random Tree (RRT*). The latter has in turn
numerous variants (Noreen et al., 2016) that improve results even further, like the
Informed-RRT* (Gammell et al., 2014), the Batch Informed Trees (BIT*) (Gammell et
al., 2015) and the Advanced Batch Informed Trees (ABIT*) (Strub et al., 2020a; Strub
et al., 2020b).
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FIGURE 2.10: Example cases of single-query (a) and multiple-query
(b) Sampling Based algorithms. Samples are created in an iterative
way until the destination is reached. They can still create more to

improve the quality of the path.

With regards to the multiple-query Sampling Based algorithms, the most famous
among them is the Probabilistic Roadmap Method (PRM) (Kavraki et al., 1996). This
algorithm starts with a series of samples already scattered over the C-Space. From
here, new samples are created, creating a new tree from each of these initial samples.
Figure 2.10b depicts a graphical explanation of this process. Thereafter, PRM de-
pends on the use of a Graph Search method such as A* to retrieve the path from the
generated graph. Other approaches improved the performance of PRM by means of
heuristics (Karaman et al., 2011; Park et al., 2018). Furthermore, another Sampling
Based algorithm, named the Fast Marching Tree (FMT*), was created to reduce the
convergence rate of both RRT and PRM. It takes features from not only the two of
them but also an Optimal Control algorithm called FMM, which will be detailed
later. The main objective of FMT* is to find paths avoiding obstacles in problems
involving a high number of degrees of freedom. One example of this is the motion
planning of an articulated vehicle presented by Reid et al. (2019). Ichter et al. (2017)
proposed the use of Group Marching Tree (GMT*), a similar algorithm to FMT* but
focusing on speeding up computation with parallelization using GPUs. Finally, it
is worth mentioning there are path planning algorithms that combine the Sampling
Based approach with Model Predictive Control (MPC) techniques to account for kin-
odynamic constraints (Dunlap et al., 2010; L.-L. Wang et al., 2020; Gruning et al.,
2020).

2.7 Optimal Control Based Path Planning Algorithms

The baseline of Optimal Control based algorithms is the creation of a control func-
tion that takes the robot from an initial state in the C-Space to the destination. As
the name suggests, here the path planning problem is addressed using an optimal
control approach (Tonon et al., 2017). The main difference with Soft Computing
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FIGURE 2.11: PDE Solving based algorithms can calculate a contin-
uous and smooth path in non-uniform cost maps. The cost assigned
to each cell can be a scalar value or isotropic (a) or in the form of a

vector, i.e. anisotropic (b).

methods is that there are no configurable parameters, the problem here must be fully
enclosed to be deterministic. Besides, the resulting paths are globally optimal given
the formulation of the problem. There are two different subcategories of Optimal
Control algorithms. The first of them, PDE Solving, solve a Partial Derivative Equa-
tion (PDE) on a grid, based on the Dynamic Programming Principle (DPP) (Bellman,
1966). The second subcategory, Global Optimization, encompasses algorithms that
in general optimize a pre-existing path given the kino-dynamic restrictions of the
robot to make it feasible.

PDE solving based

The optimal control approach is based here on the Dynamic Programming Principle
through the resolution of the static Hamilton-Jacobi-Bellman (HJB) equation (Festa
et al., 2017) using a grid. As it is static, dynamic environments are not addressed
here. Since it is a Partial Derivative Equation (PDE), this sub-category is named PDE
Solving. It can be seen as finding the numerical solution to the problem of calculating
the propagation of a wave over a grid. A value of the wave arrival time is assigned
to each of the grid nodes. The way the wave propagates will depend on how the
HJB equation is formulated, including the cost function. The main drawback of
this kind of algorithm is that it generally cannot deal with constraints in the form of
discontinuities. For this reason, their use to plan paths for non-holonomic vehicles is
limited, and, to the author knowledge, they are mostly used for planning at a global
scale in an analogous way to how Graph Search methods are used.

A particular case of the HJB equation is the eikonal equation. In a few words,
this equation uses cost that depends only with position and return a scalar value.
Fast methods serve to solve the eikonal on a non-uniform costmap with a computa-
tional complexity similar to that of Graph Search methods (Gómez et al., 2019). The
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main difference is that Fast methods produce a smooth, continuous and globally op-
timal path as a result. One of the most known is the Fast Marching Method (FMM),
introduced by James Albert Sethian (1999). This algorithm follows the same stra-
tegy as Dijkstra to visit the nodes of a grid. Unlike Dijkstra, FMM assigns the value
of the minimal amount of cost to reach each node by solving the eikonal equation.
Chiang et al. (2007) compare this algorithm with A* and demonstrates how, as the
path is not restricted by the grid, FMM gets shorter paths. There are many existing
research works using FMM for global path planning (Kimmel et al., 2001; Garrido,
Malfaz, et al., 2013; Garrido, Álvarez, et al., 2016; Y. Liu, W. Liu, et al., 2017). Some
of its variants, most of them reducing the computational power requirements of the
FMM, are introduced by the review of Gómez et al. (2019). Kinematic constraints
are not present in the eikonal formulation, but some alternative solutions were pro-
posed to deal with them. For example, Y. Liu and Bucknall (2016) presented a way
to modify the cost around the initial position to consider the initial orientation of
the vehicle. Petres et al. (2005) demonstrated how tuning repulsive potential fields
around the obstacles affected the curvature radius of the path. This is the case de-
picted in Figure 2.11a: the obtained path smoothly gets far from the obstacle with
a certain curvature thanks to the high values of cost assigned to the nodes close to
it (the darker the colour, the higher the cost). Valero-Gomez et al. (2013) proposed
the use of the FMM to create these potential fields prior to finding the optimal path.
There is also research that is oriented to propose incremental versions of FMM (with
replanning), such as E* (Philippsen, 2007; Philippsen et al., 2008; B. Xu et al., 2013),
but they either use heuristic methods that may compromise the optimality of the
solution or do not make a significant gain in computational processing.

To work with more general expressions of the HJB equation other kinds of meth-
ods must be used. The FMM produces sub-optimal results if used with direction-
dependent (anisotropic) cost (James A Sethian and Vladimirsky, 2003). This cost is
vectorial in the sense it returns a different value according to the direction of the ro-
bot. There are particular situations in which FMM produces accurate results under
a certain level of anisotropy, like having a cost function formulated in a way it varies
mostly in the directions parallel to the reference axes (Petres et al., 2005; J. Xu et al.,
2019). This is the case depicted in Figure 2.11b. James A Sethian and Vladimirsky
(2003) proposed the use of an algorithm called the Ordered Upwind Method (OUM)
to deal with the static HJB equation, whose convergence rate is demonstrated by
Shum et al. (2016). Its main drawback is the increase in computational cost it entails,
proportional to the anisotropy existing in the scenario. Shum et al. (2015) used HJB
for anisotropic path planning considering the stability of the robot on slopes. Fur-
thermore, the Fast Sweeping Method (FSM) is a Fast method that was also demon-
strated to work with general static HJB equations (Kao et al., 2005). It works by re-
peatedly visiting all nodes on a grid in certain directions, demanding a high number
of iterations. Takei et al. (2013) used FSM to formulate the HJB equation to comply
with turning radius constraints while avoiding obstacles. For the eikonal case, Bak



2.8. Summary and Conclusions 41

et al. (2010) introduced an improvement to FSM to speed up its computation when
the cost varies too much, and Detrixhe et al. (2013) introduced a parallel version.
Jeong et al. (2008) proposed an algorithm named the Fast Iterative Method (FIM) to
solve the eikonal equation also on parallel architectures.

Global Optimization

This subcategory contains path planning algorithms that optimize an existing pre-
liminary feasible path. Unlike Local Optimization methods, introduced in Section
2.4, Global Optimization methods make the resulting path globally optimal in ex-
change of investing more computational load. For this reason, they are mostly used
for global offline planning. The approach presented by Ratliff et al. (2009) for ins-
tance uses Sampling Based methods like RRT or PRM as a first step. The second
step consists of using gradient optimization techniques to approximate the optimal
solution from this feasible path. Van Den Berg et al. (2017) also started with a tra-
jectory computed using RRT, to later apply on it an optimization process based on
Differential Dynamic Programming (DP). Plonski et al. (2013) used DP to calculate
a path in a solar map that dynamically changes, considering the robot harvests so-
lar energy and also addressing replanning. According to (H. Zhang et al., 2020),
DP does not ensure completeness. Ajanović et al. (2018) combined DP with Model
Predictive Control (MPC) to calculate energy minimizing paths. Other techniques
include the bang-bang approach (Kalmár-Nagy et al., 2004), Mixed-Integer Linear
Programming (MILP) (Ma et al., 2006) and Linear Quadratic Regulator (LQR) meth-
ods (W. Sun et al., 2016). Finally, a remarkable approach was proposed by Kogan et
al. (2006), who used nonlinear optimization to plan time-optimal paths with a length
between 20 and 70 metres.

2.8 Summary and Conclusions

This chapter introduced an overview of the majority of existing path planning ap-
proaches for mobile surface robots. A general classification makes any path planning
algorithm fall into one out of four categories (as previously depicted in Figure 2.4):
Reactive Computing, Soft Computing, C-Space Search and Optimal Control based.
This classification is based on how each approach fundamentally works to generate
a path. According to this way of functioning an algorithm will be suitable or not
given how the path planning problem is formulated. Table 2.3 summarizes the main
features of each path planning category according to the classification. It analyzes
if the algorithms require a preliminary model of the environment, they are deter-
ministic (they always provide the same solution given the same initial conditions),
they can tackle with dynamic environments and replan, they are optimal, they are
complete (they always return a path if it is feasible), at which planning scale are they
commonly used and if they can work in dynamic environments (e.g. with moving
elements). For instance, the reach of the planner and the replanning capability, i.e.
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TABLE 2.3: Overview of characteristics of the presented path plan-
ning algorithms.

Category Sub-category
Preliminary

Map
Model

Deterministic Replanning Optimality Completeness
Planning

Scale
Dynamic

Environment

Reactive
Computing

Reactive
Manoeuvre

No Yes Yes Sub-optimal Not ensured Local Yes

Local
Optimization

Depend on
planner used
in first step

Yes Yes Sub-optimal Not ensured Local Yes

Soft
Computing

Evolutionary Only ACO No Yes Sub-optimal

Depends
(e.g. GA
no, PSO,

yes)

Global Yes

Artificial
Intelligence

Depends No Yes Sub-optimal Not ensured Both Yes

C-Space
Search

Graph
Search

Yes Yes
Only

incremental
versions

Restricted
(suboptimal

with
heuristics)

Yes Global No

Sampling
Based

No No Yes

Asymptotical
(Globally

optimal after
a time)

Probabilistic Both Yes

Optimal
Control

PDE Solving Yes Yes
Very
rare

Globally
optimal

Yes Global No

Global
Optimization

Depend on
planner used
in first step

Yes Yes
Globally
optimal

No Global Yes

capability to deal with updates in the environment information, will determine if it
is more suitable for local planning or global planning. Local planning usually re-
quires fast online computation and this reactivity behaviour to plan new paths in
the presence of environment data changes. Global planning can even be computed
offline and aims to generate paths for long traverses, having a static initial environ-
ment available.

Reactive Computing based algorithms seem suitable for local obstacle avoidance
path planning as they are easy and cheap to implement. Special attention must be
given to avoid falling into a local minimum. Soft Computing algorithms produce
a path using multiple configurable operators, which can be inspired by nature or
be based on fuzzy rules and/or neural networks. They are suitable for problems
involving a large number of variables or difficult to model, such as in highly dy-
namic environments. With scenarios containing moving elements, in long-range
(global path planning) the use of Evolutionary methods is adequate. Latest Artifi-
cial Intelligence methods including Deep Learning and Reinforcement Learning still
need to be further studied to get solid conclusions, as also remarked by H. Sun et
al. (2021). C-Space Search algorithms make use of samples to represent the diffe-
rent configurations of the robot. These samples can be provided beforehand in the
form of a graph or be dynamically created. Graph Search algorithms are suitable
for global path planning considering advanced graphs such as visibility graphs or
space-lattice graphs, at the expense of investing time into building them (something
that is admissible for offline planning). Nevertheless, it scales poorly with problems
of high dimensions, which justifies the use of Sampling Based algorithms instead.
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Sampling Based algorithms have also proved useful for this kind of manoeuvres
and problems with a high number of dimensions. Optimal Control algorithms are
outstanding for getting globally optimal results. PDE Solving based depend heavily
on the formulated PDE, while Global Optimization based algorithms have to start
with an already defined path.

PDE Solving based methods present good quality in the results they produce,
together with relatively fast execution in 2D maps (low dimensional format) and
the flexibility in the formulation of the PDE. Besides, features such as being deter-
ministic and complete are desirable to have a reliable and understandable system
onboard any rover. The FMM is chosen to perform global planning considering the
cost associated with the energetic performance of a reconfigurable wheeled robot.
This makes up the first thesis contribution. Although Graph Search algorithms are
deterministic and complete as well, the optimality of the results is restricted by the
morphology of the graph, while the FMM ensures the resulting path is globally op-
timal and is not constrained by such restriction. The missing replanning feature is
solved by the second contribution, which uses FM* in a multi-resolution grid to lo-
cally repair a preliminary path thanks to its faster computation. Finally, the OUM
is chosen to solve path planning on inclined terrains as it complies with the use of
anisotropic cost functions, unlike the FMM. The third contribution of this thesis rests
on this anisotropic path planning application.





Chapter 3

Isotropic Optimal Path Planning
for Reconfigurable Rovers

"A wise man adapts himself to
circumstances, so as the water shapes
itself to the vessel that contains it."

Proverb

3.1 Introduction

The locomotion subsystem is a key part of any ground mobile robot. It influences
the way the system drives in outdoors scenarios. Hence, it determines whether the
robot is suitable is or not to overcome different kinds of terrains. To arrive at a
certain place, the chances of finding a preliminary workable path increase with the
number of surfaces the robot can adapt to. Besides, a path planner could find more
energy (and/or time) efficient paths based on the knowledge of its locomotion. This
is because a refined locomotion would make a robot drive more types of terrains,
reducing the energy or time invested in it. In other words, the adaptability of the
robot affects the efficiency and effectiveness of the planned traverses. It takes hence
even more relevance in scenarios that present many kinds of terrain features. A
way to improve this adaptability is by providing the robot with the capability to
reconfigure its locomotion. Thanks to this feature, the robot can switch between
different locomotion modes. Each of them propels the vehicle according to how the
motors actuate. In exchange, a higher number of actuators is usually needed. This
may be inconvenient, as it increases the price of the robot. Besides, the higher the
number of motors the higher the risk one of them fails. Still, only relying on one
locomotion mode entails certain limitations. Certain terrains could be difficult or
even unfeasible to traverse. Having available various locomotion modes can solve
this issue. Each mode can compensate for the flaws of others. In this way, the robot
can use the most convenient mode on every occasion. Even so, the robot still requires
the use of a path planner that acknowledges this advantage.
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The planner in question is assumed to work based on information describing the
environment. This information must show in detail the distribution of the different
terrains so the planner can decide where the resulting path goes. Having this in-
formation a priori is possible thanks to the use of external perception systems. For
example, drones can be used to map the scenario from above. This makes them ac-
cess areas faster than ground agents, performing initial recognisance tasks. In this
way, these ground agents have available information in advance about the terrain
they must face. In the case of planetary (or other celestial bodies) exploration, the
use of satellites can carry out this kind of recognisance task.

This chapter elaborates on the first contribution of this thesis. This contribution
consists of the creation and use of a cost function based on the models of two lo-
comotion modes. The aim of this cost function is to be used by a path planner so
it can acknowledge the adaptability feature of reconfigurable robots. In particular,
these two locomotion modes are Normal-driving and Wheel-walking. They are two
of the locomotion modes the ExoMars rover Rosalind Franklin is capable to execute,
as indicated in Chapter 1. Here, Section 3.2 presents and details dynamic models
of both modes. Thereafter, the cost function in question will be used by the FMM,
an algorithm already introduced in Chapter 2. This algorithm falls into the Optimal
Control category, being a PDE solving based planner. Here in this chapter this algo-
rithm is fully explained, recalling its functioning in Section 3.3. Moreover, it is clari-
fied which are the unavoidable constraints that arise when modelling a cost function
compatible with this algorithm. As a result of using this approach, the path planner
will select the most appropriate locomotion mode given any terrain, minimizing the
energy required to reach a destination. Section 3.4 summarizes the contents of this
chapter and presents some conclusions extracted out of its contents.

3.2 Reconfigurable Locomotion Cost Model

A PDE solving algorithm generates optimal paths given a cost function defined over
a grid Ω̃. This means the cost is defined according to the location of every grid
node. The nature of this cost determines in which sense the paths are optimal. For
instance, optimization criteria can be based on energy minimization. In such a case,
the cost has to be built taking into account the energy consumption of the robot at
the location of the grid nodes. Assuming the grid is two-dimensional and regular,
the indexes i and j refer to the coordinates of a node x̃ij ∈ Ω̃ in each perpendicular
axis. The images presented in Figure 3.1 graphically portrait the functioning of the i
and j indexation in the two-dimensional XY-plane together with the resolution of the
grid Λ. There are two options: square (see Figure 3.1a) and hexagonal (see Figure
3.1b) grids. For both of them is defined neigh(x̃ij), which is the neighbourhood of
any node x̃ij. This neighbourhood, defined in Equation (3.1) for both cases, is the
set that comprises the surrounding nodes that are closest to x̃ij. For the case of the
square grid, this set is made up by four nodes, which is also referred to as the von
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FIGURE 3.1: Nodes indexation and neighbourhood in square (a) and
hexagonal (b) grids.

Neumann neighbourhood. In the hexagonal grid, every node has a neighbourhood
of six surrounding nodes.

neigh(x̃ij) =


{

x̃i+1,j, x̃i−1,j, x̃i,j+1, x̃i,j−1
}

, i f grid is square{
x̃i+1j, x̃ij+1, x̃i−1j+1, x̃i−1j, x̃ij−1, x̃i+1j−1

}
, i f grid is hexagonal

(3.1)
An estimation of the power consumption while driving a terrain must account

for the terramechanics involved in the traverse at the location of any node x̃ij. In
other words, the interaction between the robot and the terrain at x̃ij must be ad-
dressed by means of dynamic models. Following the work of Canudas-de-Wit et
al. (2003) and in a similar way to other previous approaches (K. Yoshida et al.,
2002), two functions serve to model this interaction: ρij and σij. On the one hand,
ρij : x̃ij ∈ Ω̃ → R+, defined in Equation (3.2), is the function that returns the esti-
mated value of specific resistance coefficient at any location x̃ij within Ω̃. This value
defines the force Fr(x̃ij) that is expected to oppose the motion of the robot. It mainly



48 Chapter 3. Isotropic Optimal Path Planning for Reconfigurable Rovers

appears due to the friction and the wheel-terrain adherence (Wong, 2008). The spe-
cific resistance coefficient can be simplified as the ratio between Fr and the normal
force applied by the robot to the ground FN (Benamar et al., 2013; Jesus Morales
et al., 2009; Gillespie, 1992). On the other hand, σij : x̃ij ∈ Ω̃ → R+ ∈ (0, 1) is an
estimation of the slip ratio. Equation (3.3) shows how this metric indicates the differ-
ence between the value of speed that is commanded to the robot actuators vc and the
expected resulting one vij that serves as reference. In the case of a robot equipped
with wheels, the first speed is the one resulting from the product between the wheel
radius dr and the wheel angular speed θ̇w. Both terramechanic functions, ρij and
σij, are chosen considering they could be estimated by onboard sensors. There exist
different methods to perform such estimations (Brooks et al., 2012).

ρij =
Fr(x̃ij)

FN
(3.2)

σij =
vc(x̃ij)− vij

vc(x̃ij)
=

dr θ̇w(x̃ij)− vij

dr θ̇w(x̃ij)
(3.3)

Besides, the inclination of the terrain is also taken into account by using αij. This
is the maximum gradient of a plane tangent to the surface (slope). In other words,
αij is the maximum angle of inclination of the terrain at x̃(αij) with respect to the
horizontal plane. Given the terrain surface defined with an elevation function Zij,
the gradient αij can be calculated using (3.4).

αij = arctan
(
||∇Zij||

)
(3.4)

Using these terramechanic functions, the power consumption function is formu-
lated in (3.5). It returns the value of energy consumption according to the locomotion
mode that consumes less according to some terrain conditions. Here, L is the set of
locomotion modes the robot can execute, and Pl(ρij, σij, αij) is the power consump-
tion of a locomotion mode l ∈ L.

P(L, ρij, σij, αij) = min
l∈L

{
Pl(ρij, σij, αij)

}
(3.5)

The electric charge function can be similarly obtained using (3.6).

I(L, ρij, σij, αij) = min
l∈L

{
Il(ρij, σij, αij)

}
(3.6)

Provided that the same voltage V is supplied to all the involved electric motors,
the equivalence in (3.7) occurs.

P(L, ρij, σij, αij) = V I(L, ρij, σij, αij) (3.7)

The particular case of a rover equipped with wheeled legs is tackled here. An
example of this kind of rover is the one that will be sent as part of the ESA Exomars
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FIGURE 3.2: 3D render image of a rover capable to execute Wheel-
walking, with indications of the main parts of its kinematic configu-

ration. Credit: (Pérez-del-Pulgar et al., 2017).

mission (Patel et al., 2010). This rover has a 6 x 6 x 6 drive configuration: 6 driving
joints, 6 walking joints and 6 steering joints. Figure 3.2 depicts how these joints can
be arranged in a reconfigurable rover. The driving joints make each of them roll
one of the robot wheels. The walking joints are located above each wheel and serve
to deploy and retrieve each wheeled leg with a motion that resembles a pendulum.
The steering joints, as its name suggest, steer the wheels towards a different direc-
tion rather than the front. This kinematic configuration allows the execution of two
modes: Wheel-walking and Normal-driving. Both of them are later explained in full
detail. Hence, L = {ww, nd} and P(L, ρij, σij, αij) returns the least amount of energy
consumption between both locomotion modes at the location of x̃ij. Pww(ρij, σij, αij)

and Pnd(ρij, σij, αij) correspond to the estimated energy consumption in case of using
the Wheel-walking mode and the normal-driving mode respectively. They are built
upon the terramechanic parameters ρij, σij and αij.

Dynamic Model of Wheel-walking

Chapter 2 already introduced the Wheel-walking as a mode of locomotion designed
to overcome loose soils (Azkarate, Zwick, et al., 2015; Malenkov et al., 2017). This
mode makes use of walking joints (see Figure 3.2). These are revolution joints that
are installed, each of them, on top of a bar. This bar connects the robot body to
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(a) The robot starts the stride of the Wheel-
walking mode. Its left side goes forward

while its right side goes backwards.

(b) Both sides switch the direction in which
they are moving. Left side goes backwards

while right side goes forward.

(c) Motion continues following the same di-
rection on both sides. At some point this di-

rection reverses for both sides.

(d) The Wheel-walking mode finishes with
all the legs standing perpendicular to the te-

rrain surface.

FIGURE 3.3: Step-by-step depictions of virtual rover performing the
Wheel-walking locomotion using the side-by-side gait.

a rolling wheel. Although there exist many possible gaits (Wiese, 2017), only one
of them is chosen: the side-by-side gait. Figure 3.3 shows a sequence of images
portraying its functioning. The side-by-side gait consists of deploying and retrieving
the wheeled legs in two groups, each of them corresponding to one of the sides of
the rover. In this way, while the wheeled legs of one side are being deployed (wheel-
forward motion), those from the other side are being retrieved (wheel-backward
motion). Then, after a deployment it comes the respective retrieval. For simplicity
reasons, any reference to the Wheel-walking mode from here on in this thesis refers
to this particular gait.

The Wheel-walking locomotion mode is modelled in a simplified way consider-
ing only two wheels, referred to with subscripts w1 and w2. They represent the two
sides of the robot, left and right. Figure 3.4 depicts an schematic of this simplified
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FIGURE 3.4: Schematic of the main forces, torques and position pa-
rameters involved in the execution of the Wheel-walking locomotion

mode.

version, moving on top of an inclined surface. Here, the model is created consid-
ering a local XYZ reference frame. The Z-axis of this local frame points upwards,
perpendicular to the XY-plane. The robot moves in the local XZ-plane (or the sagittal
plane). The first wheel, w1, performs the wheel-backward motion, while the second,
w2, makes a wheel-forward motion. Each of the wheels is connected to the respec-
tive robot body joint, indicated with subscripts b1 and b2, with a bar. Two motors are
located at the extremes of each bar: one connecting the body (actuating the walking
joint) and another connected to the wheel, making it roll.

The wheel-backward motion, performed by the first wheeled leg with a torque
τb1, serves to pull forward the body of the robot thanks to a lever effect. This makes
the corresponding bar rotate a clockwise angle of θb1. As can be checked in Figure
3.4, the angle θb1 is zero when the bar is perpendicular to the terrain surface. As a
result of the bar rotation, the drawbar pull force Fdpw1 is produced. Another force, the
opposing force Fr1, opposes to Fdpw1 as expressed in Equation (3.2). Fr1 depends on
the terrain terramechanics, and if high enough the wheel does not slide backwards
and the robot is pushed forward. Equation (3.8) expresses the dynamics underlying
this motion modelled with the d’Alembert principle (De Canete et al., 2011).

Jb θ̈b1 + Bm θ̇b1 +
mb

n
p̈bxdl cosθb1+αij +

mb

n
( p̈bz + g)dl sinθb1+αij = τb1 (3.8)
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The first two addends of Equation (3.8) represent the motor dynamics, using the
moment of inertia Jb and the rotational damper Bm. The rest of addends from the
first term correspond to the moment of inertia of the robot body, considering the
mass mb divided by the number of wheels n. The right side of the equation is the
torque τb1, which generates the motion on wheel w1 by increasing the angle θw1,
i.e. making it roll. The rolling joint of this wheel is assumed to be locked during
the operation. Thus, τw1 = 0 N ·m and θ̇w1 = 0 rad s−1. The resulting drawbar
pull force originated on the wheel w1 from the wheel-backwards movement, Fdpw1,
is expressed in Equation (3.9), as well as the drawbar pull force on the rover body
Fdpb1. Here, dl is the length of this bar as indicated in Figure 3.4. The speed of the
robot in the local X-axis, ṗbx, which is in fact its speed vij within Ω, is expressed in
Equation (3.10).

Fdpw1 =
cos(θb1)

dl
τb1 ≥ Fr1 = Fdpb1 (3.9)

ṗbx = θ̇b1dl(cosθb1 cosαij + sinθb1 sinαij) (3.10)

The other wheel, w2 performs a wheel-forward movement. It has a contrary
direction to the wheel-backwards, but is synchronized with it. This synchroniza-
tion makes the robot body maintain a linear velocity vij and be balanced as a conse-
quence. The bar is rotated in a counter-clockwise way, making the wheel w2 overtake
wheel w1. The torque τb2 generates this motion while the wheel also rotates thanks
to the torque τw2. The action of both torques produces as a result the drawbar pull
force Fdpw2 on the wheel w2, as expressed in Equation (3.11). In this equation the
first two addends correspond to the effect of the rotational moment of inertia of the
wheel, Jw, and the rotational damper Bm on wheel w2. It is assumed that all wheels
have the same shape, mass and inertia. The next addend is the linear inertia pro-
duced by the wheel mass mw. The third term is the torque produced by the rolling
resistance ρFNw2. The fourth term models the gravity and the rover body vertical
inertia. The motor of the wheel w2 generates the torque τw2, affected by the slip ratio
σ.

Jw θ̈w2 + Bm θ̇w2 + mwv̇ijdr + ρijFNw2dr +
mb

n
dl sinθb2+αij( p̈bz + g cosαij) =

τw2(1− σij) + τb2 cosθb2+αij

dr

dl
= Fdpw2dr (3.11)

The speed of the robot projected on the XY surface is expressed in Equation (3.12).
The equality shown in Equation (3.13) is a necessary condition to comply to ensure
the robot goes straightforward. the angular velocity of the wheel w2, θ̇w2, is calcu-
lated as shown in Equation (3.14).

ṗbx = vij = cosαij ṗw2x + dl θ̇b2 cosθb2+αij (3.12)
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θ̇b1 = −θ̇b2 (3.13)

θ̇w2 =
2ṗbx

dr cosαij

(3.14)

Finally, current consumption for a step using this locomotion mode can be appre-
ciated in (3.15). In this equation, τwk and τbk are the torque values from each wheel
joint and walking joint k respectively. Kw is the motor torque constant that relates the
current fed to the motor and the wheel joint torque. Kb works in the same way but
considering the walking joint torque. V is the voltage fed to the motors. It is assumed
V is fixed to the same constant value for all motors. Finally, it is worth mentioning
for a multiple wheels rover, wheels 1 to n/2 perform the wheel-backward movement
and wheels n/2 + 1 to n the wheel-forward.

Pww(ρij, σij, αij) =
V
∆t

(
Kb

n

∑
k=1

∫
∆t

∣∣τbk(ρij, σij, αij)
∣∣+ Kw

n

∑
k=n/2+1

∫
∆t

∣∣τwk(ρij, σij, αij)
∣∣)

(3.15)

Dynamic Model of Normal-driving

Normal-driving is the name used to refer to the locomotion mode usually employed
by wheeled mobile robots. It relies on the use of wheels that not only roll but also
are steerable. By having steering joints at the frontal and rear wheels (see the virtual
model of the robot depiced in Figure 3.2), the vehicle is capable to perform Full-
Ackermann manoeuvres as well as turning manoeuvres on the spot or Point Turns.
In the case of having steering joints in the middle wheels, the vehicle would be also
capable to execute a third mode the Crabbing locomotion. However, this is out of
the scope of this thesis. The walking joints are hence here not used in the Normal-
driving mode, with all of them locked at θb = 0.

The model, as shown in Figure 3.5 is reduced to just one wheel. Under this as-
sumption, the mass of the body mb is divided by n, the total number of wheels.
Figure 3.5 depicts the simplified model of this locomotion mode, where the robot
climbs a surface with an inclination angle (slope gradient) αij. The wheel motor
generates a torque τw that in turn produces an angular motion θw. Taking into con-
sideration the slip ratio (3.3), the drawbar pull force Fdpwk that is transmitted from
the wheel is calculated using Equation (3.16). The reference velocity vij in the 2D
grid (Global XY axes) is expressed in Equation (3.17). It is the projection on this 2D
grid of the linear velocity of the wheel ṗwx, which is also the same projection of the
body linear velocity ṗbx since the whole robot moves as a whole. ṗbx is therefore the
projection (represented by cosαij ) of the wheel angular speed θ̇w multiplied by the
wheel radius dr as well as the slip ratio σij.
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Fdpw = (1− σ)
τw

dr
(3.16)

ṗwx = ṗbx = vij = cosαij θ̇wdr(1− σij) (3.17)

According to D’Alembert principle (De Canete et al., 2011), the linearised Nor-
mal-driving dynamics for one wheel is represented as shown in Equation (3.18). The
first term is related to the inertia and mass of the robot, affecting its acceleration. The
second term corresponds to the effect of the motor rotational damper Bm. The third
term is the action of the force that counteracts the drawbar pull force on the wheel. It
is defined in Equation (3.19) as the sum of the rolling resistance and the component
of the gravity acceleration vector parallel to the surface. The torque τw is affected
by the slip ratio as well as the term cosαij , which appears due to projecting the robot
velocity onto the two-dimensional XY surface.(

Jw

dr
+

mbdr

n

)
v̇ij +

Bm

dr
vij + Frdr = τw(1− σij) cosαij (3.18)

Fr = ρFNw +
mb

n
g sinαij (3.19)
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FNw =
mb

n
g cosαij (3.20)

The required instantaneous power consumption is defined in Equation (3.21).
Unlike in the Wheel-walking case, the torque of the motor is here relatively cons-
tant, omitting any effect due to acceleration or braking. Therefore, the power con-
sumption of the Normal-driving locomotion mode, Pnd, is considered to be always
constant. Pnd results from summing the power of all n wheels, defined by the corres-
ponding values of torque τw, previously obtained with Equation (3.18). In (3.21) Kw

is the motor constant that translates the supplied current into torque. It is assumed
that there is no power consumption from keeping the walking joints to zero, which
could be possible using a mechanical brake.

Pnd(ρij, σij, αij) = VKw

n

∑
k=1

τw(ρij, σij, αij) (3.21)

3.3 Optimal Path Planning using the Fast Marching Method

As mentioned before, it is desired that a path planner acknowledges the different
locomotion modes of a robot. In this way, this path planner can produce not only
an optimal path but also determine which locomotion mode is better to use at each
moment. The optimal path must be the one that minimizes an objective function
such as time or energy. This function will depend on the existing terrain features and
the available locomotion modes in case of using the power consumption function
P(L, ρij, σij, αij) already introduced in (3.5). This section presents the case of using a
cost function that is based exclusively on scalar values. This means that the cost will
not depend on any kind of direction, such as the robot heading or the direction of
any slope (also called the aspect direction). In this case, the path planning problem
is categorized as isotropic.

The Optimal Control based algorithm named FMM can tackle isotropic path
planning and return globally optimal paths with ensured completeness, as men-
tioned in Chapter 2 (see Section 2.7). As a reminder, the latter means that it is guaran-
teed that the FMM will return the optimal path if such a feasible one exists. Besides,
the computational complexity of this method is similar to that of Graph Search algo-
rithms (A*, D*,...), being O(nnodeslog(nnodes) with nnodes as the total number of nodes
forming a grid. For these reasons, the FMM is chosen to be adapted in a way it ex-
ploits the adaptability of reconfigurable rovers. This algorithm numerically solves
a certain PDE: the eikonal equation. The eikonal equation models the rate of prop-
agation and direction of a wave that expands from a certain point within a closed
region Ω. Here, this region Ω is two-dimensional, i.e. Ω ⊂ R2, and covers the area
of interest that is relevant to the planner. The propagating wave can reach another
location and, as a result, the optimal path connecting both positions can be found.
The FMM produces a viscous solution of this wave propagation, which means such
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solution exists, is unique and is stable. This method uses a discrete grid Ω̃, which
covers Ω and comprises a series of nodes x̃ij. These nodes are regularly scattered
according to the 2D coordinates that are defined by the indexes i and j. Each node is
hence placed at a location x̃ij ∈ Ω̃ and is associated with information that is relevant
to the planner, such as the cost. This cost, C(x̃ij), affects the wave propagation. The
wave accumulates the least possible cost as it expands, making any resulting path
the optimal one. The FMM visits each node and calculates its value of accumulated
cost, or total cost, using the eikonal equation presented in (3.22). This accumula-
tion of cost is either the amount the wave takes from the origin, T(x̃o, x̃ij), or the
amount required to reach the goal, T(x̃ij, x̃g), depending on whether the wave starts
propagating from the origin or the goal. The FMM calculates the values of the co-
rresponding total cost at each node considering that the rate of propagation of the
wave, either 1/||∇T(x̃o, x̃ij)|| or 1/||∇T(x̃ij, x̃g)||, is equal to the cost C(x̃ij).

||∇T(x̃o, x̃ij)|| = ||∇T(x̃ij, x̃g)|| = C(x̃ij) ∀x̃ij ∈ Ω̃ (3.22)

The rate of propagation increases (producing lower values of total cost as a con-
sequence) if the cost decreases and vice-versa. Figure 3.6 depicts an example case
to understand this better. This case partitions Ω into three different kinds of terrain
as can be seen in Figure 3.6a. These terrain types are labeled as Loose Soil, Compact
Soil and Obstacles. Thus, the grid Ω̃ contains nodes x̃ij that fall into one of these
three categories. A value of cost is assigned to each node according to not only the
type of terrain but also if they are close to obstacles. These nodes that are closer to
obstacles are highlighted in Figure 3.6b. The reason for opting to this policy of cost
assignation depends on what is the chosen criteria for the path planning problem.
A more detailed insight into the criteria for modeling the cost of the path planner
is later provided. The key point to understand here is that the cost affects the rate
of propagation of the wave, and consequently the resulting path as well. This can
be clearly understood by checking Figures 3.6c and 3.6d: by increasing the cost of
the Loose soil terrain the resulting path is longer. This path circumvents the Loose soil
area as well as some of the obstacles, as the propagated wave is slowed by them.

The formulation of the total cost is based on the Dynamic Programming Principle
(DPP). The total cost between two points such as the origin x̃o and the goal x̃g will
be the minimum possible. An important condition is that C(x) returns positive non-
zero values, i.e. C : R2 ∈ Ω→ R+. Otherwise the FMM would produce undesirable
local minimum points and compromise the optimality of the resulting path, making
it sub-optimal. For any other point x ∈ Ω, the total cost from x̃o to that point,
T(x̃o, x), and from that point to x̃g, T(x, x̃g), is equal to the total cost between x̃o and
x̃g, only if this point x is placed at the optimal path connecting them, Γ(x̃o, x̃g, ·).

T(x̃o, x) + T(x, x̃g) = T(x̃o, x̃g) ∀x ∈ Γ(x̃o, x̃g, ·) ∈ Ω (3.23)

As mentioned, the FMM calculates the values of total cost according to where
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(a) Different values of cost are assigned to
each kind of terrain.

(b) A penalization cost is added to those
nodes that are close to obstacles.

(c) First path planning execution, with the
wave starting at x̃o.

(d) Second execution with a higher cost in
the loose soil.

FIGURE 3.6: An example case in which the FMM is used in a scenario
with different kinds of terrain (named ’Compact soil’, ’Loose soil’ and
’Obstacles’ to be representative of a real scenario). The rate at which
the wave propagates depends on the assigned values of cost to each
terrain. Changing the cost results in changing the wave propagation

and, as a consequence, the shape of the optimal path.

the propagating wave starts, either the origin x̃o or the goal x̃g. This is translated
into assigning to one of these nodes a total cost value of zero as the initial condition.
From this particular node the values of total cost for the rest of nodes are calculated.
Equation (3.24) shows the case in which the propagating wave starts from the origin
x̃o, hence assigning a value of zero to it (T(x̃o, x̃ij = x̃o) = 0). This is the approach
taken in the case presented in Figure 3.6. Equation (3.25) does the same but for the
case in which the wave starts from the goal x̃g, having in this way T(x̃ij = x̃g, x̃g) =

0.

T(x̃o, x̃ij) = min
Γ(x̃o ,x̃g,·)∈Ω

{∫ sij

0
C(Γ(x̃o, x̃g, s))ds

}
, T(x̃o, x̃ij = x̃o) = 0 (3.24)
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FIGURE 3.7: Different paths Γ(x̃o, x̃g, s) connecting x̃o and x̃g, all of
them located within the 2D closed region Ω. The path planner must
find the discretized version Γ̃ that approximates one of them: the op-

timal.

T(x̃ij, x̃g) = min
Γ(x̃o ,x̃g,·)∈Ω

{∫ sg

sij

C(Γ(x̃o, x̃g, s))ds
}

, T(x̃ij = x̃g, x̃g) = 0 (3.25)

In both equations (3.24) and (3.25) the cost C(x) is integrated along the positions
returned by the path function Γ(x̃o, x̃g, s) along the path length s. In the first of these
equations, sij indicates the path length from the origin to x̃ij. In the second one,
sg is the full length of the path. Figure 3.7 serves to explain how this path is one
among infinite possible paths that connect x̃o and x̃g. The objective of the planner
is to find the optimal one that minimizes the total cost in either (3.24) or (3.25), as
both cases are equivalent thanks to the definition of the DPP in (3.23). The optimal
path Γ(x̃o, x̃g, s) is a continuous function that returns a location x ∈ Ω according
to the path length s. Here, x is used instead of x̃ij to remark that the path can be
placed anywhere within the region Ω (the 2D region relevant for the planner) and
is not restricted to grid nodes x̃ij ∈ Ω. In other words, the path does not have to
pass through these grid nodes with the exception of x̃o and x̃g. In this way, s = 0
at x̃o (where the first waypoint is placed) and s = sg at x̃g (where the last waypoint
is placed). To be more precise, the planner must find Γ̃, defined in (3.26) as a series
of consecutive discrete waypoints that approximates the optimal path Γ(s), as also
depicted in Figure 3.7. Hence, x̃o = Γ(0) ∈ Γ̃ and x̃g = Γ(sg) ∈ Γ̃. Besides, the
waypoints that make up Γ̃ can still be located anywhere within Ω as also indicated
in (3.26).

Γ̃ =
{

Γ̃o ∈ Ω̃, Γ̃1 ∈ Ω, Γ̃2 ∈ Ω, ...Γ̃g ∈ Ω̃
}

(3.26)

The criterion (or criteria) that is chosen to determine in which sense the path
planner is optimal settles what the cost and the total cost physically represent. Table
3.1 indicates some possibilities. The first one is the minimization of the traverse du-
ration. In this case, the total cost corresponds to the time at which the propagating
wave arrives at the location of any node x̃ij. This time can be either the minimum
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TABLE 3.1: Optimization criteria for optimal isotropic path planning
according to how the cost function is defined. Here T is the total cost.

Total cost
definition

Cost
definition

Cost
function

Cost
units

T
units

Time Slowness C(x̃ij) =
1

vij
s m−1 s

Time +
Proximity to
obstacles

Slowness and
collision risk

C(x̃ij) =
1

vij
+ rij s m−1 s

Energy
Energy per

meter
C(x̃ij) =

P(L, ρij, σij, αij)

vij
W · s/m W · s

Energy +
Proximity to
obstacles

Energy per
meter and

collision risk
C(x̃ij) =

P(L, ρij, σij, αij)

vij
+ rij W · s/m W · s

Electric charge
Charge per

meter
C(x̃ij) =

I(L, ρij, σij, αij)

vij
A · s/m A · s

Electric charge
+ Proximity
to obstacles

Charge per
meter and

collision risk
C(x̃ij) =

I(L, ρij, σij, αij)

vij
+ rij A · s/m A · s

elapsed time that is estimated from the origin position or the estimated minimum
time that remains to reach the goal position. The cost C(x̃ij) is represented as the
slowness of the robot, i.e. the inverse of its speed vij. The explanation here is simple:
the faster the robot moves the sooner it will arrive at the goal location. Moreover,
the second option includes a penalization rij. This penalization is also called the
risk function. It serves to increase the cost based on the proximity of x̃ij to the clos-
est obstacle. A detailed explanation about how a risk function can be constructed
is included in Chapter 4, so it is not addressed here. An example of its use can be
seen in Figure 3.6b, where the areas surrounding the obstacles have higher cost. Fi-
gure 3.6c shows how the resulting path do not get too close to obstacles, but Figure
3.6d demonstrates how the path can still be close to them (see the portion close to
x̃g) if necessary. The use of the time minimization approach is commonly used in
autonomous navigation applications and there may be situations in which it is pri-
oritized to make the robot reach faster to any location (e.g. in the case of a disaster
scenario in which a mobile robot has to reach the location of a possible victim). An-
other criterion shown in Table 3.1 is the minimization of energy to drive from the
origin position to the target destination. Here, the total cost is represented by this
amount of energy. The cost C(x̃ij) is defined as the instantaneous power consump-
tion P(L, ρij, σij, αij) experienced by the robot at the location of each node, divided
by the value of its speed vij. Similarly to the time minimization case, a risk function
can be added to prevent the robot from getting too close to obstacles.

The functioning of the FMM to visit the grid nodes x̃ij and calculate its values of
total cost is explained next. Algorithm 1 presents a pseudo-code of how FMM works
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for the case where the wave propagates from the goal, i.e. T(x̃ij, x̃g) as defined in
(3.25). For the case in which the wave propagates from the origin the process would
be the same, but calculating T(x̃o, x̃ij), as defined in (3.24), instead of T(x̃ij, x̃g). First
of all, it is key to understand that each node has a state that indicates whether it
has been visited by the FMM or not and if its value of total cost is definitive. The
function Sij, defined in (3.27), indicates this state for any node x̃ij. In this way, the
FMM modifies both the total cost and the state of each node when visiting it.

Sij ∈ {Far, Considered, Accepted} (3.27)

The explanation about each state Sij is provided next:

• Far. Nodes with this state have not been accessed yet by the calculation loop.
This is the state in which all nodes, except the starting one (either the origin
or the goal), are initialized. As the real value of total cost associated to each
Far node is yet to be calculated, the initial value is irrelevant. Nevertheless, for
this particular case, this value is set to ∞ symbolizing a very high value of total
cost.

• Considered. A tentative value of total cost has been computed by the calcula-
tion loop at least once for nodes with this state.

• Accepted. During each iteration of the loop, the Considered node with the
lowest value of total cost is retrieved. The value of this node is no longer ten-
tative. Thereafter, the state of this node is updated to Accepted. The state and
values of total cost of neighbouring Far and Considered nodes are updated.
Furthermore, the state of the starting node (either So for the origin position or
Sg for the goal) is initialized to Accepted, with a zero value of total cost.

Algorithm 1: Fast Marching Method

1 T(x̃ij, x̃g), Sij ← ∞, Far ∀x̃ij ∈ Ω̃
2 T(x̃g, x̃g), Sg ← 0, Accepted
3 FWlist← {}
4 FWlist← FWlist + x̃ij ∀x̃ij ∈ neigh(x̃g) | Cij 6= ∞
5 T(x̃ij, x̃g), Sij ← min

{
T(x̃ij, x̃g), Eq.(3.30)

}
, Considered ∀x̃ij ∈ neigh(x̃g) |

Cij 6= ∞
6 repeat
7 x̃next ← x̃ij | minx̃ij∈FWlist T(x̃ij, x̃g)

8 FWlist← FWlist− x̃next
9 Snext ← Accepted

10 FWlist← FWlist + x̃ij ∀x̃ij ∈ neigh(Nnext) | Sij = Far
11 Sij ← Considered, ∀Nij ∈ neigh(x̃next) | Sij = Far
12 T(x̃ij, x̃g)← min

{
T(x̃ij, x̃g), Eq.(3.30)

}
, ∀x̃ij ∈ neigh(x̃next) | Sij =

Considered
13 until (So = Accepted) ∨ (FWlist = {});
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(a) The position of the goal
node x̃g (in orange) and the
initial position x̃o (in red) are
set. The rest of nodes are la-
beled as Far (here colored in

light blue).

(b) The neighbours of the goal
are visited. Their associated
values of total cost are com-
puted and they are labeled as
Considered (here colored in

light green).

(c) The Considered node with
the lowest value of total cost is
selected and labeled as Accep-
ted. Its Far neighbours are vis-
ited and labeled as Conside-

red.

(d) The computation stops
when the red node is labeled
as Accepted or there are no

more Far nodes.

(e) The calculated values of to-
tal cost make up a potential
field that grows from the star-

ting node.

(f) The path is retrieved by
applying the gradient descent
method on the potential field,

starting from the red node.

FIGURE 3.8: Graphical step-by-step exposure of the functioning of
FMM for path planning.

Figure 3.8 depicts a series of conceptual images that explain the policy the FMM
follows to visit the nodes. This is the same policy the Dijkstra algorithm uses, but
with the difference of how the value of total cost is updated. First of all, the FMM
starts by labeling all nodes as Far and assigning to all of them a value of ∞, as men-
tioned before. Thereafter, the FMM sets the initial condition, assigning a total cost of
zero, to either the goal or the origin node. This election is up to the user as the result-
ing path will be the same as previously explained. The state of this starting node is
set to Accepted. Its neighbours, as seen in Figure 3.8b, are labeled as Considered. A
preliminary value of total cost is computed and assigned to them according to their
values of cost C(x̃ij). The Front Wave list, or FWlist, stores these Considered nodes.
The node in FWlist with the lowest value of total cost, x̃next, is extracted and labeled
as Accepted (Sij = Accepted). All the neighbours of x̃next are labeled as Considered,
as seen in Figure 3.8c. The values of total cost of these newly Considered nodes are
calculated and they are later inserted into the FWlist. This process is repeated until
either the origin node x̃o (if the wave starts from the goal) or the goal node x̃g (if the
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wave starts from the origin) is Accepted or the FWlist is empty. The latter can happen
in case the wave does not reach the corresponding node. This could be caused by
the existence of obstacles that isolate either the origin or the goal nodes and therefore
prevent from finding any feasible path. Otherwise the wave is ensured to reach the
node in question at some point, as this algorithm, as previously stated, is complete.

The calculation of the value of total cost to assign to each node is explained next.
The eikonal equation presented in (3.22) is discretized with first order finite differ-
ences as in the original work of James A Sethian (1999). This results in the quadratic
expression shown in (3.28) for the case of using a square grid, being Λ its resolution
as indicated before in Figure 3.1a. The value of total cost of a node x̃ij depends on the
value of cost function assigned to it, C(x̃ij), as well as the values of total cost of two
of its neighbours. These two last values of total cost, T(x̃x, x̃g) and T(x̃y, x̃g) come
from Equation (3.29), being the minimum total cost of the horizontal neighbours and
the minimum total cost of the vertical neighbours respectively. The explicit form of
Equation (3.28) is presented in (3.30). It considers the upwind condition from (3.31),
whose compliance prevents the solution from presenting minimum local points. Be-
sides, there are values of T(x̃x, x̃g) and/or T(x̃y, x̃g) that may lead to not having a
solution complying with this condition. This is usually caused in situations where
high differences in cost C(x̃ij) exist in the grid. To overcome this, there is another
more direct method to compute the value of T(x̃ij, x̃g), in which it just considers the
minimum value between T(x̃x, x̃g) and T(x̃y, x̃g)and adds ΛC(x̃ij) to it.

(
T(x̃ij, x̃g)− T(x̃x, x̃g)

)2
+
(
T(x̃ij, x̃g)− T(x̃y, x̃g)

)2
= Λ2C(x̃ij)

2 (3.28)

[
T(x̃x, x̃g)

T(x̃y, x̃g)

]
=

[
min

{
T(x̃i−1j, x̃g), T(x̃i+1j, x̃g)

}
min

{
T(x̃ij−1, x̃g), T(x̃ij+1, x̃g)

} ] (3.29)

T(x̃ij, x̃g) =


T(x̃x, x̃g) + T(x̃y, x̃g) +

√
2(ΛC(x̃ij))2 − (T(x̃x, x̃g)− T(x̃y, x̃g))2

2
,

|T(x̃x, x̃g)− T(x̃y, x̃g)| ≤ ΛC(x̃ij)

min
{

T(x̃x, x̃g), T(x̃y, x̃g)
}
+ ΛC(x̃ij) , otherwise

(3.30)

(T(x̃ij, x̃g) > T(x̃x, x̃g)) ∨ (T(x̃ij, x̃g) > T(x̃y, x̃g)) (3.31)

The explicit form of the eikonal equation in the case in which the grid Ω̃ is hexag-
onal can be found in (3.32). Here, the total cost of the two neighbouring nodes are
T(x̃i′ j′ , x̃g) and T(x̃i′′ j′′ , x̃g), where x̃i′ j′ and x̃i′′ j′′ are also hexagonal neighbours them-
selves.
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T(x̃ij, x̃g) =



min
{

T(x̃i′ j′ , x̃g), T(x̃i′′ j′′
}
+
|T(x̃i′ j′ , x̃g)− T(x̃i′′ j′′ |

2
+

+

√
3(Λ(x̃ij))2 − 3(T(x̃i′ j′ , x̃g)− T(x̃i′′ j′′)2

2
,

|T(x̃i′ j′ , x̃g)− T(x̃i′′ j′′ | ≤ ΛC(x̃ij)

min
{

T(x̃i′ j′ , x̃g), T(x̃i′′ j′′
}
+ ΛC(x̃ij) , otherwise

(3.32)

After the values of total cost have been computed, the next step is to extract the
path Γ̃ out of them. As mentioned before, this path is a discrete set of waypoints:
poses arranged one after another connecting the initial position x̃o = Γ̃o and the
goal position x̃g = Γ̃g. The waypoints between Γ̃o and Γ̃g can be calculated using
a gradient descent method. This is possible because the characteristic direction (i.e.
the direction of the optimal path passing at that location) in the eikonal equation is
coincident with the negative gradient of the total cost. The number of waypoints
depends on the value used for the step size dstep. For obtaining proper results, this
value should be smaller than the length of a node side, i.e. dstep < Λ. Besides, the
smaller this step parameter the smoother the path will result. However, a trade-off
arises between the smoothness and the number of waypoints. Usually, a value of
0.5 m is reasonable and produces relatively good results. Starting from either the
origin or the goal position (being the other position the one from which the wave
started), the rest of waypoints are consecutively computed and added to the path.
Equation (3.33) shows how new waypoints are created from previous ones according
to the approach taken to calculate the total cost. Here, the gradient is normalized to
keep the distance between waypoints equal to dstep. The path follows the direction
indicated by this gradient vector, which in fact corresponds to the one where the
value of total cost drops faster. Each waypoint is placed with the previous one as a
reference, in the direction denoted by the gradient vector and with the step dstep. At
a certain moment, one of the waypoints falls relatively close to the goal node, from
which the FMM originally started and whose value of total cost is zero.

Γ̃k−1 = Γ̃k − dstep
∇T(x̃o, Γ̃k)

||∇T(x̃o, Γ̃k)||
, Γ̃k+1 = Γ̃k − dstep

∇T(Γ̃k, x̃g)

||∇T(Γ̃k, x̃g)||
(3.33)

Finally, the locomotion mode the robot should use when arriving at each way-
point depends on the locomotion that is chosen at the closest node x̃ij. In other
words, the locomotion l that is chosen to define P(L, ρij, σij, αij) at such node ac-
cording to Equation (3.5). For example, Figure 3.9 provides information about the
best locomotion according to the example case presented in Figure 3.6, where two
options for the locomotion set are used: L = {nd} and L = {ww, nd}. The nd cor-
responds to the Normal-driving locomotion mode, while ww is the Wheel-walking.
As a side note, the virtual model shown in Figure 3.9 is based on a real terrain:
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FIGURE 3.9: Virtual scenario with the terrain of the example case.

the Planetary Utilisation Testbed (PUTB), located at ESA-ESTEC1. The cost map was
created including obstacles from this environment. Figure 3.9 shows how the loco-
motion modes are planned to be used along each path according to L. As this is just
a conceptual example, no further details into the numbers are provided here, but the
details about a numerical experiment involving the use of the FMM along with the
cost function of a reconfigurable rover can be found in Chapter 6.

3.4 Summary and Conclusions

This chapter exposes the ins and outs of the first contribution of this thesis. This
contribution consists of the creation of a cost function for energy-minimizing path
planning. In particular, this cost function acknowledges the use of multiple modes
of locomotion by the same robot. Two locomotion modes are modelled to build
up an example case of this cost function: Wheel-walking and Normal-driving. The
first exploits the use of joints placed on top of wheeled legs. The second is purely
based on the use of rolling and steerable wheels. Each of them compensates for the
drawbacks of the other to improve the adaptability of the robot to multiple kinds of
terrain. An Optimal Control PDE Solving path planner, FMM, is chosen to make use
of the formulated cost function. This planner produces optimal, smooth and con-
tinuous paths on terrains with different compositions. Recalling the functioning of
FMM comes in handy for explaining the path planning architecture making up the
second thesis contribution, detailed in Chapter 4. It is important to mention one of
the main omissions in the cost function provided here is the effect on turning ma-
noeuvres for each of the presented locomotion modes. For instance, turning while
doing Wheel-walking is still to be studied, and for the moment it is compensated

1https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Planetary_
Robotics_Laboratory

https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Planetary_Robotics_Laboratory
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Planetary_Robotics_Laboratory
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by the use of Point Turn manoeuvres to change the heading. Besides, the effect of
switching between locomotion modes could also entail some energy costs. This cost
function is more practical for planning long traverses, a scale in which these turning
effects are not that relevant. Nevertheless, it is of interest to take them into account
for planning at a smaller scale, like the next few meters from the rover position.
However, this also entails substituting FMM by another PDE Solving path planning
algorithm that is compatible with turning-dependant cost. FSM seems a suitable
algorithm for this given the results provided by Takei et al. (2013). Moreover, it is
assumed in this chapter scenarios without slopes. It would be interesting to extend
this work by also considering the effect of slopes, tackled in Chapter 5, but with
reconfigurable robots.





Chapter 4

Dynamic Multilayered Path
Planning

"Intelligence is the ability of a system
to adjust appropriately to a changing
world, and the more capable of
adjusting - the more versatile its
adjusting power - the more intelligent
it is."

Christopher Evans
The Mighty Micro, 1979

4.1 Introduction

The ability to drive long distances autonomously is advantageous for an explorer
robot to speed up its mission. It can, thanks to the onboard guidance system, move
without the intervention of human operators for a long time. For instance, in pla-
netary exploration scenarios, communications with the ground stations have limita-
tions. These limitations were already mentioned in Chapter 1. Yet, the plan follo-
wed by the robot may miss important information. This is because there is always
an inherent level of uncertainty in a scenario that was not previously explored by a
mobile robot in situ. External perception systems may provide a priori information
describing this scenario. However, these systems have limitations to provide the
preliminary map: the shape and the properties of the terrain can only be estimated
up to a certain point. The limited resolution of the satellite images entails missing te-
rrain accidents such as rocks, grooves or rifts. As a result, the long-traverse path the
robot is following does not tackle these elements and may even pass through them.
This situation jeopardizes the integrity of the robot and forces it to stop. Thereafter,
two options arise: either the robot waits for new commands/plans from the ground
station, which entails wasting valuable mission time, or it autonomously decides
the next course of action to overcome the newfound terrain elements. The latter is
desirable towards keeping the objective of driving long distances without human
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intervention. This entails the need of updating the path according to the newly ac-
quired information. In other words, a solution to come out of this situation is the use
of a replanning process that dynamically updates the path. This replanning is made
according to what the rover perceives, i.e. according to the new information coming
from the rover onboard sensors.

The data obtained from the onboard sensors is generally more accurate than that
coming from external sources, such as satellites. In this way, the shape of the te-
rrain accidents can be better perceived and the system can consider them dangerous
or not according to the robot mechanical structure. For example, most Mars rovers
are equipped with stereo cameras that allow them to detect terrain features with
a resolution of centimetres, while a rocker-bogie system allows them to negotiate
rocks that fall under a certain height threshold. However, some caution is still de-
sirable as these rocks may still damage the wheels (e.g. because of being pointy or
having sharp edges). Besides, passing on top of them with the wheels may entail
more energy to spend. The main drawback of using onboard sensors for mapping
in contrast with external sources is the fact that their range is limited. Stereo cam-
eras in the front can reach only from one to just a few meters ahead of the vehicle.
This means the update of the original path is limited by this distance. A common
strategy shared by most applications in autonomous navigation is to categorize the
maps obtained by external sources as global, while those obtained from the robot
itself are local. For instance, this global-local approach has been used in past appli-
cations such as the exploration of the Martian surface (Carsten et al., 2007). After
checking how one of the rovers, only equipped with a local planner, got stuck in
a situation where it was partially surrounded by rocks, NASA engineers decided
to remotely install a global planner (Maimone et al., 2007). In this way, the rover
acquired the capability to autonomously deliberate longer paths using global infor-
mation and the Field-D* algorithm. Field-D* is an Any-angle algorithm mentioned
in the state of the art analysis of this thesis (see Chapter 2). It performed successfully
on the rovers and demonstrated the effectiveness of the global-local approach. As
a Graph Search planner, it constraints the shape of the path to the nodes of a grid.
Besides, it was demonstrated how other Any-angle methods performed better in ob-
stacle avoidance cases (Nash and Koenig, 2013), as these methods do not ensure the
resulting path is optimal by using heuristic searches and functions. As a local plan-
ner the Mars rovers use GESTALT. This method evaluates a discrete set of immediate
short trajectories, as depicted in Figure 4.1, and selects the most suitable one. This
evaluation is based on the terrain condition, determining as a result the safest path
to navigate.

The main motivation behind the thesis contribution presented in this chapter
is the use of Optimal Control PDE solving path planners, whose advantages were
mentioned in previous chapters, to exploit this global-local strategy. In other words,
the contribution in question provides this kind of algorithms with the capability
to dynamically update the resulting paths while the rover is driving. This feature
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FIGURE 4.1: Representation of the functioning of GESTALT: a set of
predefined paths is evaluated and thereafter one of them is selected

according to safety conditions. Credits: Bajracharya et al. (2008).

was missing in PDE solving path planners, making it one of their main drawbacks.
The main reason for choosing this kind of algorithm is that, as seen in Chapter 2,
they stand out mainly due to their capability to obtain optimal paths that are not
restricted to the grid structure. They invest similar or equal computational complex-
ity as Graph Search algorithms, which are not capable to avoid the grid restrictions
when returning a path. Hence, PDE solving path planners are suitable to be used
in combination with cost functions aimed at minimizing the energy spent in any
traverse, as explained in Chapter 3. In this way, saving up energy may result in
achieving longer and more numerous traverses, which in turn increases the number
of places to explore. Moreover, the combination of algorithms of this kind working
at two scales, global and local, is a novelty introduced here. This is possible thanks to
the use of a multi-resolution grid that combines information coming from both exter-
nal sources and the robot perception systems, integrating path planning at different
scales in a novel way. With regards to the planning algorithms, it is assumed the
global plan is produced by an isotropic planner such as the Fast Marching Method
(FMM). At a local scale, the chosen algorithm to execute the replanning operation is
the heuristic version of this method, called FM*.

The next sections are arranged as follows. First, this chapter introduces the ar-
chitecture of the aforementioned path planning solution in Section 4.2. Second, this
chapter details the multi-resolution grid used to combine the data from initial global
maps and the maps provided by the rover onboard sensors in Section 4.3. Section
4.4 introduces the novel PDE solving based approach that serves to update the path
locally: the Local Path Repairing (LPR). Finally, Section 4.5 provides a summary of
the chapter and some of the conclusions extracted from the presented content.
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Multi-layered Grid

Global Layer Local Layer

Path Planning

Global Path 
Planning

Local Path 
Repairing

Satellite Images

ROVER

Dynamics

Path Following

Perception

Path

Cost Function Obstacle Detection

FIGURE 4.2: Schematic showing the flow of information in DyMu,
the proposed dynamic path planning solution. This architecture rests
on the multi-layered grid to represent information at different scales.
The path planner makes use of this grid as well as a cost function to
generate and update the optimal path. This path serves to guide the

rover in its autonomous drive.

4.2 Multi-scale Planning Architecture

The global-local path planning solution presented in this chapter is named Dynamic
Multilayered path planner (DyMu). This solution can plan and dynamically update
a smooth and optimal path using information about the environment coming from
different sources. Figure 4.2 depicts the architecture behind it, with the information
that flows between the different parts. There are three main conceptual blocks in this
schematic going from top to bottom: the multi-layered grid, the path planning and
the one representing the rover itself. This architecture addresses information format-
ted in two different ways, one coming from out of the robot (satellite imagery in this
case) and another from the robot perception system. These two ways are in different
sizes of covered areas and with different values of resolution. They correspond to
the global and local scales of planning and are explained next.
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First of all, global maps must cover large outdoors and off-road areas from which
the planner produces an initial long path. For example, these maps can be built from
the imagery provided by satellites. For the particular case of Mars exploration, these
images can cover huge areas in terms of square kilometres, while using a resolu-
tion that can achieve one meter per pixel or even 20 centimetres in some cases, as
mentioned in Chapter 3. The satellite imagery allows modelling the terrain with a
certain degree of detail before sending the rover to navigate. Besides, the type and
characteristics of the soil may be estimated by using terrain classifiers (Brooks et al.,
2012; Rothrock et al., 2016). This information can give an idea of how the locomotion
system of the robot will perform on it, in combination of a cost model that serves as
a path planner cost function. For instance, Chapter 3 introduced a model in (3.5)
to estimate the energy consumption according to the terrain characteristics. In this
way, the overall course of action for a long time can be planned on Earth without
needing the rover to be physically there.

The second block shown in Figure 4.2 represents the multi-layered grid, which
is explained in detail in the next section. It is a regular multi-resolution grid that
tackles the global information and later interconnects it with information coming
from the internal means, i.e. the local maps provided by the robot itself. This special
grid is capable of storing and combining the input map information with different
sizes and values of resolution using two overlapping square grid layers. The first
of the two layers forming the multi-layered grid is called the global layer, while the
second is referred to as the local layer. On the one hand, the global layer handles
information coming from external sources, such as the mentioned satellite imagery
or even imagery from drones in the case of autonomous navigation applications
on Earth. As mentioned, this information comes in the form of large but not very
detailed maps. On the other hand, the local layer addresses information that comes
from the robot perception system. Usually, this information, obtained through the
robot sensors, has limited reach and covers just a few meters around the robotic
system or even just ahead of it. In other words, the map that feeds the local layer
only covers very small areas, in comparison with the whole area considered for the
whole mission. This can be compensated by having high resolution, which helps to
capture with detail the shape of the terrain located nearby and look for any possible
obstacle, i.e. any terrain shape that could harm the robot in case they contact. To
summarize, it is assumed the robot takes as input a large map with low resolution
for planning the initial path, and it provides information to the global layer. This
information is processed using a cost function that represents the robot dynamic
model, in order to be later used by the global path planner. Smaller maps with
high resolution, that serve to update the local layer, can be used to represent those
elements found that are placed in the way of the rover, triggering the update of the
path. The global layer and the local layer, as will be seen later, are connected, so the
different information stored in the multi-layered grid is integrated.

The path planning component generates and updates the path that guides the
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robot to the desired destination. The performance of this component rests on the
information saved in the multi-layered grid. In an analogous way to this special
grid, the path planning component comprises two different processes: the Global
Path Planning (GPP) and the Local Path Repairing (LPR). The GPP is in charge of
generating an initial path at the beginning of the mission. It relies on the information
provided by the global layer to create a rough preliminary long-traverse path. This
path connects an origin position x̃o, which may be coincident with the robot position,
with the desired position to reach, i.e. the goal position x̃g. Both the origin and the
goal positions, as well as the resulting path, have to be located within the global
layer, in a similar fashion as how the region of interest Ω and its discretized version
Ω̃ are defined in Chapter 3. In this way, all the nodes making up the global layer
have a value of cost C(x̃ij) that is assigned to them, modelled after a path planning
optimization criterion (see Table 3.1 from Chapter 3 as well). Moreover, an isotropic
PDE solving algorithm, the FMM, is chosen to act as the global path planner. Its
functioning was introduced back in Chapter 3.

The LPR compensates for the lack of detail in the initial planning by repairing the
path based on the information coming from the local layer. Its main advantage is that
it not only repairs the path based on the information describing nearby obstacles but
it also takes into consideration the computation done during the GPP. The algorithm
used here is the heuristic version of the FMM, the FM*. This method propagates a
wave that is guided by a custom heuristic function. This function can be based
on the values of total cost computed on the global layer or on reaching any of the
waypoints from the original path. The first case is called the Sweeping approach, as
the LPR searches a certain local node from the local layer that complies with certain
requirements. The second case is called the Conservative approach, as it focuses
on repairing only certain sections of the original path, trying to preserve existing
waypoints as much as possible. More details into the functioning of the LPR and
these two approaches are provided later.

The last part of the schematic shown in Figure 4.2 is the robot itself. It must have
the necessary software to follow the provided path. To do this, algorithms like the
Conservative Pursuit, or C-Pursuit (Gerdes et al., 2020), can be used. As also de-
picted in the schematic of Figure 4.2, there is a cost function based on the dynamics
of the robot locomotion. It serves as input to the GPP through the global layer, rep-
resenting the power consumption of the robot according to terrain parameters (and
hence setting the planning criterion to energy minimization). This function shall cor-
respond to the one presented in the previous chapter, aimed at both reconfigurable
and non-reconfigurable rovers. Moreover, it is assumed the rover has installed the
required hardware and software to detect and map the obstacles that may appear on
its way. The resulting information from them serves as input to the local layer and,
if necessary, triggers the LPR.
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4.3 Multi-layered Grid

An important trade-off between the extension of the area Ω that is covered and the
value of the resolution Λ arises when creating a grid that fully or partially models
an environment. The result of this trade-off determines the number of nodes con-
tained in such a grid. This number will influence the computational effort taken
by the path planner, as it will need to visit more or fewer nodes to generate a
path. As a reminder, for the case of the FMM, as well as many Graph-search al-
gorithms based on the Dijkstra policy to visit nodes, the computational complexity
is O(nnodeslog(nnodes), being nnodes the total number of nodes in the grid Ω̃.

On the one hand, the euclidean distance between the destination and the robot
depends on the area that the map (i.e. the region Ω) covers. Pushing the map bound-
aries far away means that the destination can be placed further from the robot. This
is translated into increasing the distance the robot can traverse with a single plan.
Besides, covering more areas can result in finding a better path to reach this destina-
tion. However, bigger areas demand in turn more nodes to process, i.e. the compu-
tational load increases. On the other hand, the resolution influences the maximum
level of detail with which the map elements will be represented. In a similar way to
making the covered area bigger, the resolution affects the computational load of the
planner. The increase in the resolution, i.e. using smaller spacing between nodes, en-
tails a higher number of nodes to process. Nevertheless, reducing the area covered
results in losing possible destinations. Lowering the resolution has a loss of defini-
tion as consequence and, inherently, a loss in path quality. The latter can be clearly
understood as the loss of level of detail entails missing elements such as rocks of a
certain size. Having all this into account, a problem arises in the form of making a
trade-off between the number and arrangement of the nodes (spacing) and the qual-
ity of the path. In other words, how to make longer paths while taking into account
the presence of relevant small elements and reducing the computational load of the
planner.

Chapter 2 already introduced different approaches to map the environment using
a grid (see Figure 2.1 located in such chapter). Regular grids include hexagonal and
square (see Figure 3.1 in Chapter 3). The regular tessellation using square cells goes
in consonance with the pixels of those images taken from orbital satellites. The cen-
tre of each cell is a node and each node is connected to others using the von Neu-
mann neighbourhood, as already presented in Equation (3.1) from Chapter 3. In
other words, each node is connected to two vertical and two horizontal neighbours
using the constant spacing Λ, for the case of the global layer, or λ, for the case of
the local layer. This is more clear in Figure 4.3, where the two overlapping layers
are represented. The local layer is constructed upon the subdivision of nodes from
the global layer. A number of (Λ/λ)2 local nodes results from each subdivision,
given that Λ/λ returns an integer number. For the case presented in Figure 4.3, this
number is sixteen. As mentioned, the neighbourhood for the global layer is already
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FIGURE 4.3: Illustrative image of the multi-layered grid. Each global
node indicates the type of terrain that is contained in its area and
occupies the same area as a finite number of local nodes, each of them

providing an indication of its state relative to nearby obstacles.

expressed in (3.1). The expression for the neighbourhood in the local layer is pre-
sented in Equation (4.2). As can be denoted, the latter neighbourhood is different
and more complex than that of the global layer. This is because the neighbours of
a local node x̃ij

ab that is located at the edge or the corner of a global node x̃ij are the
local nodes resulting from another global node. Indexes a and b indicate the exact
position of the local node inside the parent global node. They are bounded by the
values shown in (4.1). Figure 4.3 portrays the neighbourhood of a local node x̃ij

00.
The indexes a = 0 and b = 0 mean that this local node is placed at the bottom left
corner of a global node x̃ij. Two of its neighbours, x̃ij

30 and x̃ij−1
03 , are originated from

different global nodes, x̃i−1j and x̃ij−1 respectively. As in this particular case each
global node can comprise sixteen nodes, then Λ

λ − 1 = 3. Having this in mind, the
nodes x̃ij

30 and x̃ij−1
03 are located at the top left corner and the bottom right corner of

their respective parent global nodes.

a ∈ [0,
Λ
λ
− 1], b ∈ [0,

Λ
λ
− 1] (4.1)
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neigh(x̃ij
ab) =



{
x̃i−1,j

Λ/λ−1,b, x̃i,j
1,b, x̃i,j

ab−1, x̃i,j
ab+1

}
, a = 0∧ b ∈

(
1, Λ

λ − 2
){

x̃i,j
Λ/λ−2,b, x̃i+1,j

0,b , x̃i,j
ab−1, x̃i,j

ab+1

}
, a = Λ

λ − 1∧ b ∈
(
1, Λ

λ − 2
){

x̃i,j
a−1,b, x̃i,j

a+1,b, x̃i,j−1
a,Λ/λ−1, x̃i,j

a,1

}
, a ∈

(
1, Λ

λ − 2
)
∧ b = 0{

x̃i,j
a−1,b, x̃i,j

a+1,b, x̃i,j
a,Λ/λ−2, x̃i,j+1

a,0

}
, a ∈

(
1, Λ

λ − 2
)
∧ b = Λ

λ − 1{
x̃i−1,j

Λ/λ−1,b, x̃i,j
1,b, x̃i,j−1

a,Λ/λ−1, x̃i,j
a,1

}
, a = 0∧ b = 0{

x̃i−1,j
Λ/λ−1,b, x̃i,j

1,b, x̃i,j
a,Λ/λ−2, x̃i,j+1

a,0

}
, a = 0∧ b = Λ

λ − 1{
x̃i,j

Λ/λ−2,b, x̃i+1,j
0,b , x̃i,j−1

a,Λ/λ−1, x̃i,j
a,1

}
, a = Λ

λ − 1∧ b = 0{
x̃i,j

Λ/λ−2,b, x̃i+1,j
0,b , x̃i,j

a,Λ/λ−2, x̃i,j+1
a,0

}
, a = Λ

λ − 1∧ b = Λ
λ − 1{

x̃i,j
a−1,b, x̃i,j

a+1,b, x̃i,j
a,b−1, x̃i,j

a,b+1

}
, otherwise

(4.2)

As stated before, the global nodes x̃ij that make up the global layer store informa-
tion about the cost function C(x̃ij). This cost function is used by the GPP to produce
the initial optimal path at a global scale. On the other hand, the local nodes that form
the local layer store information about their proximity to the nearest obstacles. This
information comes in the form of a risk function rij

ab that normalizes this distance
and returns values between 0 and 1, i.e. r : x̃ij

ab ∈ local layer → R ∈ [0, 1]. In this
way, this function gives a hint about the proximity to the closest obstacle to prevent
the robot from colliding with it. If it takes a value of zero the local node in question
is placed within the safe area. This means the distance from this local node to the
nearest obstacle is higher than a certain distance threshold. On the contrary, a value
of one means that the local node is placed a the border of an obstacle. Therefore, the
robot should not be located at such a local node to avoid any harm to its integrity.
Values of risk between both limits point out that the local node is located within
the so-called risky area. This area surrounds the obstacles and is calculated using a
process named Risk Expansion that will be explained later.

To summarize, the multi-layered grid comprises two layers: the global layer and
the local layer. On the one hand, the global layer is defined in (4.3) as the set of
all global nodes that form the grid Ω̃. A value of cost C(x̃ij) is associated to each
of them. On the other hand, the local layer encompasses all local nodes that result
from subdividing global nodes, as it is defined in (4.4). A value of risk function rij

ab

is assigned to each local node according to its proximity to obstacles.

Global Layer =
{

x̃ij ∀(i, j)|x̃ij ∈ Ω̃
}

(4.3)

Local Layer =
{

x̃ij
ab ∀(a, b, i, j)|x̃ij is subdivided

}
(4.4)
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(a) A rover follows a path and finds an obstacle
on its way.

(b) The FM* is executed and the path is repaired.

(c) A path is initially computed within a simula-
tion environment.

(d) The path is repaired when the robot detects
an obstacle on its way.

FIGURE 4.4: The GPP generates a global path (a)(c). Then, whenever
an obstacle is detected in the way of the rover, it computes an alter-
nate path, either completely new (b) or just partially, reconnecting

with the original one at some point (d).

4.4 Local Path Repairing

The main premise of the Local Path Repairing (LPR) process is to repair the path
generated by the Global Path Planning (GPP) process using the local layer. An ex-
ample of this functioning is shown in Figure 4.4. Here, a robot finds an obstacle on
its way while following a path. It is worth mentioning that the robot may still detect
obstacles that are placed far from the path. Although these obstacles do not trigger
the path update, they must still be considered in the local layer. After detecting the
obstacle that blocks the path, the LPR is triggered and the update process searches
for a feasible solution. This process relies on using the FM*. This is a heuristic
version of FMM, which means the wave that is propagated expands in a direction
determined by a heuristic function. This is done to penalize the wave when propa-
gating backwards for two reasons. First, to save computation time by reducing the
number of visited nodes. Second, to prioritize solutions that prevent the robot from
returning to already visited positions. Two approaches are further discussed in de-
tail later. One of them is the Sweeping approach (see Figure 4.4b), in which the local
waypoints reach a location from which new global waypoints are created using the



4.4. Local Path Repairing 77

Γreference

Γtriggerer

Γstart

drisk

Dilation

~

~

~

(a)

Γreference

Γtriggerer

Γstart

Safe area~

~

~

(b)

(c)

t

t

(d)

FIGURE 4.5: The LPR process is composed by several operations.
First, when obstacles are in the way of the rover the process is trig-
gered (a). Local nodes are created (b) and the values of rij

ab are calcu-
lated (c). Finally, the FM* uses these values to get a new path (d).

global layer. The other approach is the Conservative (see Figure 4.4d). In this case,
the local waypoints connects the robot position with one of the global waypoints
from the previous path.

Figure 4.5 depicts the steps followed by the LPR to perform the path update in
the two approaches. Here is presented another example case, this time in more de-
tail, where the robot encounters some obstacles on its way (Figure 4.5a). As the path
goes through one of these obstacles, the repairing is triggered. First of all, the LPR
not only maps the obstacles onto the local layer but also dilates them according to the
shape of the robot. Usually, this dilation is equivalent to the radius of the circumfer-
ence that circumscribes the robot 2d projection. Besides, it can even be more dilated
considering errors in the tracking of the path. Figure 4.5b shows how one of the
global waypoints from the original path, Γ̃triggerer, is located in the risky area, under
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a distance drisk from the closest obstacle. This is the condition that triggers the LPR.
Moreover, another global waypoint, Γ̃re f erence, will be taken into account in a later
step. This global waypoint can be the first one that is located in the safe area after
Γ̃triggerer. Γ̃re f erence can be also another global waypoint placed even further, but still
in the safe area. Thereafter, the LPR creates in the local layer a potential field of cost
around each of the obstacles. The key behind this is to make the local cost increase
with the proximity to obstacles, representing the risk of colliding with them. For
this reason, it is defined a function called the risk function rij

ab, which return values
that are assigned to each local node x̃ij

ab. The risk can take a value from zero to one,
where zero is completely safe and one is next to the obstacle. The values ranging
from zero to one are set to those nodes under a certain distance drisk to the closest
obstacle, as can be checked in the example shown in Figure 4.5c. Finally, the LPR
employs the FM* to compute local waypoints as part of the final path. This means
the new local waypoints are placed between global waypoints. The previous global
waypoints are not accounted for since they are assumed to be already tracked by the
robot. The global waypoints placed after the local section will depend on the chosen
approach as mentioned before. In the Sweeping approach these global waypoints
will be all-new, while in the Conservative approach they will be part of the previous
path (in particular, those global waypoints from Γ̃re f erence until the last one). Figure
4.5d showcases both repairing approaches. Next, it is explained in detail how the
distance drisk, the values of the risk function and the local cost values are defined,
together with the heuristic function used in both approaches.

The value of drisk must be chosen so it complies with the condition set in (4.5). The
reason behind this condition is to avoid that any point in the segment that connects
consecutive global waypoints falls in the obstacle area. As a consequence, there
exists an admissible error in which the segment connecting two consecutive global
waypoints can fall in the risky area (see Figure 4.6). This area of committed error is
reduced by increasing drisk, but increasing this value will trigger a higher number of
calls to the LPR process and increase the size of the risky area as a consequence.

drisk ≥ dstepΛ (4.5)

The values given by the risk function are assigned to the local nodes following an
operation named Risk Expansion. This way of creating repulsive potential fields of
cost resembles the approaches that are introduced in previous works (Petres et al.,
2005; Valero-Gomez et al., 2013). The main difference in the approach taken here
with respect to those works is its use in the local layer to later repair a path. The
Risk Expansion is based on the FMM, but it has some differences with respect to
its application on path planning. Instead of calculating the value of total cost, the
function to calculate here is the risk rij

ab for all nodes x̃ij
ab in the local layer. To do this,

the eikonal equation shown in (4.6) is used by the Risk Expansion. The cost comes
in the form of −1/drisk because the risk decreases as the wave gets further from the
obstacles, until reaching the distance of drisk. In other words, the risk decreases as the
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FIGURE 4.6: Admissible error due to path discretization after the
GPP. In this extreme case the path does not trigger the LPR, although

the segment connecting two waypoints traverses the risky area.

wave propagates. The discretized explicit version of this equation is shown in (4.7),
which complies with the Upwind condition (4.8). Here, rij,x

ab and rij,y
ab are the horizontal

and vertical neighbours with higher value of risk. Values between zero and one
are assigned to each of the nodes, decreasing the value as the wave advances. The
wave stops at those Accepted nodes that already have a value of risk higher than
that of the wave. As a result, the risk function is calculated as in the example that is
depicted in Figure 4.5c. All those nodes at a distance drisk to the closest obstacle are
assigned a value of risk higher than zero.

||∇rij
ab|| = −

1
drisk

(4.6)

rij
ab =


1
2

(
rij,x

ab + rij,y
ab −

√
2(λ/drisk)2 − (rij,x

ab − rij,y
ab )2

)
|rij,x

ab − rij,y
ab | ≤ λ/drisk

max
{

rij,x
ab , rij,y

ab

}
− λ/drisk , otherwise

(4.7)

(rij
ab < rij,x

ab ) ∨ (rij
ab < rij,y

ab ) (4.8)

The Algorithm 2 contains the pseudo-code of the Risk Expansion. As a first step,
a value of risk rij

ab = 1 is set on those local nodes that are not an obstacle but are
placed next to obstacle local nodes. In other words, these nodes have at least one
neighbour that is located in the obstacle area. Their respective state Sij

ab is set to
Considered and they are stored in the Front Wave list FWlist. This list is similar to
the one introduced in Chapter 3, storing all Considered nodes while the FMM is
functioning. With respect to the rest of nodes, those located in obstacle area have a
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Algorithm 2: Risk Expansion using the Fast Marching Method

1 rij
ab, Sij

ab ← 1, Accepted ∀x̃ij
ab ∈ Obstacle Area

2 rij
ab, Sij

ab ← 0, Far ∀x̃ij
ab /∈ Obstacle Area

3 FWlist← {}
4 FWlist← FWlist + x̃ij

ab, ∀x̃ij
ab ∈ Local Layer

| (∃ x̃ ∈ neigh(x̃ij
ab) | r(x̃) = 0) ∧ (rij

ab = 1)
5 Sij

ab ← Considered, ∀x̃ij
ab ∈ FWlist

6 repeat
7 x̃next ← x̃ij

ab | maxx̃ij
ab∈FWlist rij

ab

8 FWlist← FWlist− x̃next
9 Snext = Accepted

10 for x̃ij
ab ∈ neigh(x̃next) | Sij

ab 6= Accepted do
11 r′ ← Eq.(4.7)
12 if r’ > rij

ab then
13 rij

ab ← r′

14 if Sij
ab = Far then

15 Sij
ab ← Considered

16 FWlist← FWlist + x̃ij
ab

17 until FWlist = {};

state Sij
ab set to Accepted and an initial risk value rij

ab of one, while the remaining ones
have a state Sij

ab set to Far and an initial risk value rij
ab of zero. As can be denoted, these

states are also similar to those introduced in Chapter 3 to explain the Fast Marching
Method (FMM). The main difference is that the state of local nodes is referred to as
Sij

ab, for any local node x̃ij
ab, instead of Sij. Thereafter, the same process as in GPP is

done: a wave propagates according to the calculation of an eikonal equation. For
each iteration, the node with the least value of risk from FWlist is extracted. The
process finishes when the list FWlist becomes empty, as the wave either visits all
nodes or reaches the distance drisk from the obstacles.

Once the values of risk are properly set, the next step is to execute FM* to calcu-
late the wave propagation from one of the waypoints of the original path. One of
them is referred to as Γ̃triggerer (see Figure 4.5b). It is the first waypoint (with respect
to the order the robot follows the waypoints) that is placed either in the risky area
or in the obstacle area. Having this waypoint as reference, another one placed be-
tween it and the closest to the robot position serves as the origin of the propagating
wave, including the latter one. Ideally, the starting waypoint, or Γ̃start, would be lo-
cated at a distance from Γ̃triggerer higher than drisk. In this way, the repaired section
of the path will connect to Γ̃start and the waypoints located prior to it will remain
the same. The other point at which this local section with connect to will depend
on the approach chosen to do the repairing. For both of them, another waypoint of
interest is taken into account. This waypoint is Γ̃reference. This is the first waypoint
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that is located in the safe area after the path passes through the risky or the obstacle
areas. According to the chosen approach, either its value of total cost (interpolated
from the nearest global nodes from the global layer) or its location is used. The func-
tioning of each approach and how do they make use of Γ̃reference is later explained.
The heuristic FMM, or FM*, starts from Γ̃start computing values of the local total cost
function t(x̃ij

start, x̃ij
ab). This function indicates what is the traversed distance from the

starting position x̃ij
start, which is the local node that is closest to Γ̃start, to any local

node x̃ij
ab. The main idea is to find the shortest local section of path given the risk

and the heuristic function, which depends on the chosen approach.
Algorithm 3 presents the pseudo-code of the FM* process using the local layer.

It is similar to the functioning of the FMM, but with two major differences. First,
the condition to stop the loop evaluates whether the last Accepted local node, x̃ij

next,
complies with (4.12) or (4.15) according to the repairing approach chosen (either
Sweeping or Conservative). These two equation defining the conditions of both ap-
proaches are later explained. Second, the condition to decide which Considered
local node is selected from FWlist to change its state to Accepted is different. Here
it is not selected the local node with the lowest value of local total cost t(x̃ij

start, x̃ij
ab).

Instead, the local node that is selected is the one with the lowest value of heuris-
tic function hij

ab. The expression to define this heuristic function will depend on the
chosen approach and is also later explained.

Algorithm 3: Local FM* Propagation

1 t(x̃ij
start, x̃ij

ab), Sij
ab ← ∞, Far ∀x̃ij

ab ∈ Local Layer
2 x̃ij

start ← x̃ij
ab closest to Γ̃start

3 t(x̃ij
start, x̃ij

start), Sstart ← 0, Accepted
4 FWlist← {}
5 FWlist← FWlist + x̃ij

ab ∀x̃ij
ab ∈ neigh(x̃ij

start) | Sij
ab = Far

6 t(x̃ij
start, x̃ij

ab), Sij
ab ← min

{
t(x̃ij

start, x̃ij
ab), Eq.(4.10)

}
, Considered ∀x̃ij

ab ∈

neigh(x̃ij
start) | Sij

ab = Far
7 repeat
8 x̃ij

next ← x̃ij
ab | minx̃ij

ab∈FWlist hij
ab

9 FWlist← FWlist− x̃ij
next

10 Sij
next ← Accepted

11 FWlist← FWlist + x̃ij
ab ∀x̃ij

ab ∈ neigh(x̃ij
next) | Sij

ab = Far
12 Sij

ab ← Considered, ∀x̃ij
ab ∈ neigh(x̃ij

next) | Sij
ab = Far

13 t(x̃ij
start, x̃ij

ab)← min
{

t(x̃ij
start, x̃ij

ab), Eq.(4.10)
}

, ∀x̃ij
ab ∈ neigh(x̃ij

next) | Sij
ab =

Considered
14 until x̃ij

next satisfies either (4.12) or (4.15);

The local cost function c(x̃ij
ab) assigned to each node x̃ij

ab of the local layer is hence
determined by Equation (4.9). It depends on the value of risk rij

ab calculated before
in the Risk Expansion process. The eikonal equation that determines the value of
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local total cost t(x̃ij
start, x̃ij

ab) according to the local cost c(x̃ij
ab) is shown in (4.10). In a

similar way to the Risk Expansion and the GPP, the discretized explicit form of this
equation takes the expression shown in (4.11).

c(x̃ij
ab) = 1 + rij

ab (4.9)

||∇t(x̃ij
start, x̃ij

ab)|| = c(x̃ij
ab) (4.10)

t(x̃ij
start, x̃ij

ab) =



t(x̃ij
start, x̃ij,x

ab ) + t(x̃ij
start, x̃ij,y

ab )

2
+

+

√
2(λc(x̃ij

ab))
2 − (t(x̃ij

start, x̃ij,x
ab )− t(x̃ij

start, x̃ij,y
ab ))2

2
,

|t(x̃ij
start, x̃ij,x

ab )− t(x̃ij
start, x̃ij,y

ab )| ≤ λc(x̃ij
ab)

min
{

t(x̃ij
start, x̃ij,x

ab ), t(x̃ij
start, x̃ij,y

ab )
}
+ λc(x̃ij

ab) , otherwise
(4.11)

Sweeping approach

The first of the two approaches not only focuses on producing a path that surrounds
the obstacle and allows the robot to avoid it. It also considers the values of global
total cost that were previously computed in the global layer with the GPP process.
With this in mind, the main premise of the Sweeping approach is to take advantage
of the global computation to decide when it is better to stop the propagation. In
other words, the heuristic here is not oriented to make the local path reach a certain
position, but any position that complies with (4.12). Here, the position in question
corresponds to that of the local node x̃ij

next. Its associated value of global total cost
is T(x̃ij

next, x̃g), and results from calculating the interpolation with the values of total
cost T(x̃ij, x̃g) of the closest global nodes. It is key that this total cost is computed
from a propagating wave that expanded from the goal x̃g. The lower bound that
x̃ij

next has to reach is T(Γ̃re f erence, x̃g). This is the total cost at the location of the global
waypoint Γ̃re f erence. This value also results from interpolating with the values of total
cost of the nearby global nodes. Since the waypoint Γ̃re f erence was located on the other
side of the obstacle, it serves as a reference to look for any other position ahead of
the obstacle, with a similar or even lower value of total cost interpolated from the
global nodes of the global layer.

T(x̃ij
next, x̃g) ≤ T(Γ̃re f erence, x̃g) (4.12)

Moreover, it is also checked that the next global waypoints that result from x̃next

do not fall into the obstacle area when making the gradient descent method in the
global layer. Due to how the gradient descent method works, these new waypoints
will follow values of total cost in decreasing order as indicated in Equation (3.33)
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from Chapter 3. Therefore, this approach focuses on finding a local node from which
a new path on the global layer is calculated towards the goal as well as on the local
layer towards Γ̃start.

The heuristic function hij
ab used by the Sweeping approach prioritizes the search

towards local nodes whose values of total cost are closer to T(Γ̃re f erence, x̃g) or even
are lower than it. This is translated into using Equation (4.13) as such heuristic func-
tion. Here, the variable χ is the length in the portion of path going from Γ̃start to
Γ̃re f erence, and is defined in (4.14) as the sum of the distances between the waypoints
that are placed between those two. In order to avoid negative values, the heuris-
tic function returns a minimum value of t(x̃ij

start, x̃ij
ab) if the found local nodes have

already a value of local total cost lower than that of Γ̃re f erence. This could happen
as there may be local nodes that, although satisfying the condition shown in (4.12),
the global waypoints that would be calculated from their respective location would
re-enter into risky or even obstacle areas. This fact consequently encourages the
algorithm to keep searching.

hij
ab = t(x̃ij

start, x̃ij
ab) + max

 0,
t(x̃ij

start, x̃ij
ab)− T(xij

re f erence, x̃g)

T(x̃ij
start, x̃g)− T(x̃ij

re f erence, x̃g)
χ

 (4.13)

χ =
k−1←Γ̃k=Γ̃re f erence

∑
k←Γ̃k=Γ̃start

||Γ̃k+1 − Γ̃k|| (4.14)

Conservative approach

The objective of the Conservative approach is to find the local path that connects the
position of the robot with one of the global waypoints of the original path, placed
on the other side of the detected obstacle. The main difference of this approach with
respect to the previous one is that the local propagation of the FM* stops at a certain
local node instead of at any local node that complies with condition (4.12). The local
node at which this propagation stops is x̃ij

re f erence, which corresponds to the one that
is placed the closest to the position of Γ̃re f erence. This means the propagation loop
stops when it reaches the local node x̃ij

re f erence as expressed in (4.15), after setting its
state as Accepted.

x̃ij
next = x̃ij

re f erence (4.15)

Figure 4.5d shows how the local path generated using the Conservative approach
does not create a smooth transition towards the global waypoints. This is mainly be-
cause the local propagation does not expand towards lower values of global total
cost, i.e. towards the direction of the gradient descent. This causes that the created
local waypoints are not necessarily parallel to this gradient descent direction. There-
fore, opting for this approach prioritizes finding a local section of path that reaches
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the original one, entailing longer local paths than those created with the Sweeping
approach. The Conservative approach can be desired in cases where the robot must
stick to the original plan, when the initial path was not produced by the GPP pro-
cess (and hence not having available values of global total cost) or when using the
global layer locally is either not possible or not a preferable option. The latter can
be justified if the size of the global layer is too big, or if it is desired not to spend
computation on interpolating the global total cost associated to the local nodes, i.e.
T(x̃ij

ij, x̃g). Another case would be the one in which the global path serves to cover an
area, obtained thanks to a coverage path planning method. In this case, the Conser-
vative approach would serve to make the rover account for obstacles while covering
an extensive area. Moreover, this approach of LPR would serve simply as a local
planner, just by considering a local destination instead of the location of a global
waypoint to rejoin another path.

The heuristic function used by the Conservative approach is simply a distance
heuristic. In other words, this heuristic function prioritizes the propagation towards
local nodes that are closer to x̃ij

reference. This function is expressed in equation (4.16).

hij
ab = t(x̃ij

start, x̃ij
ab) + ||x̃

ij
ab − x̃re f erence|| (4.16)

4.5 Summary and Conclusions

This chapter presents and details the second contribution of this thesis, a path plan-
ning solution named DyMu. It is based on the use of PDE planners, in particular
the FMM and its heuristic version FM*. The presented solution provides this kind of
method with the capability to dynamically update the path in scenarios with some
grade of uncertainty. This is a feature that was missing in this kind of algorithms,
but their use is justified by the fact that the path they generate is smooth, continuous
and globally optimal.

DyMu works with a multi-resolution grid called the multi-layered grid. This
grid contains two layers of different size and resolution. Each grid layer correspond
to a different scale of planning, either global or local. The global layer serves to
generate a plan for a long traverse between the position of a robot and a desired
destination. This initial plan, in the form of a path, depends on the information about
the terrain and the locomotion modes available in the robot. Thereafter, this path is
updated each time the robot detects an obstacle on its way. This update process is
computed on the local layer and is referred to as the Local Path Repairing (LPR). This
chapter presents two approaches to LPR: the Sweeping and the Conservative. The
Sweeping approach resembles a bi-directional version of the FMM, where two waves
are propagated from the robot location and the destination respectively, but with two
differences. First, one of the waves is already calculated. It is the solution calculated
by the Global Path Planning (GPP). Second, the other wave is calculated using a
different layer, the local layer. The second wave starts from the robot position (or a
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position close to it), reaching a local node that complies with certain requirements.
The resulting path is formed by sections calculated in both the local and the global
layer using the gradient descent method. The other approach, the Conservative,
only relies on the computation done in the local layer to produce a path connecting
the robot position (or close to it) and another location, such as one of the global
waypoints from a pre-planned path.

The solution presented in this chapter has still a margin to improve in both the
GPP and the LPR processes. In the case of the GPP, an anisotropic algorithm such
as the one presented in the next chapter (Chapter 5), the Ordered Upwind Method
(OUM), could be integrated. In this way, the planner could account for the slopes ex-
isting in the scenario and produce an optimal path that takes gravity into account. In
its current state, the LPR only repairs the path to avoid obstacles. However, it seems
interesting to extend this process to account for restrictions in turning manoeuvres
as well as to optimize the local traverse given the local information about the terrain,
similarly as it is done in the GPP process.





Chapter 5

Anisotropic Cost Model for
Traversing Inclined Terrains

"Gravity is a habit that is hard to shake
off."

Terry Pratchett
Small Gods, 1992

5.1 Introduction

The locomotion of a mobile robot determines its capability to adapt to different ter-
rains, i.e. its adaptability. Rough terrain may pose a challenge to the locomotion
subsystem due to the presence of irregularities on the surface. For instance, these ir-
regularities can exist in the form of inclined surfaces or slopes. The inclination affects
the robot as it is pulled by gravity in the direction of the slope. This situation makes
the robot experience an anisotropic phenomenon: the power consumption varies
with the heading direction of the robot. This means that the robot invests different
amounts of energy into driving depending on whether it is ascending, descending
or following a direction in-between. This can also be understood by analyzing the
situation in terms of potential energy: when the robot ascends, it must reach a state
with higher potential energy and therefore the consumption increases. On the con-
trary, when the robot descends it liberates part of this potential energy, resulting in
reducing the energetic cost of the drive. Furthermore, the inclination of the terrain
can also make it dangerous to traverse. This is because the pose of the robot body
may be affected by this inclination, compromising the stability of the whole robot as
a consequence. In an extreme case, the robot could overturn and, in the absence of
any recovery system capable to handle this situation, put an end to the mission.

In the case of planetary exploration, rovers drive not only on horizontal but also
on inclined terrains. For instance, the Spirit rover was commanded over weeks to
climb the Husband summit on Mars and later descend it (Arvidson, Bell, et al., 2010).
On the other hand, Search And Rescue (SAR) operations may be carried out on in-
clined terrains, like the side of a mountain.
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The majority of existing path planning approaches consider the cost function as
isotropic for simplification purposes. For example, the FMM can be used along with
a cost function that only depends on the gradient of any slope (Miró et al., 2010).
The main drawback of the isotropic approach is that the resulting path does not
acknowledge the differences in the cost due to the robot heading. For this reason,
the generated path can be either too conservative (missing better paths) or too per-
missive (assuming undesirable risks or energetic costs). An Optimal Control PDE
Solving algorithm, the Ordered Upwind Method (OUM), was previously used to
address the risk of tipping over in the lateral and the longitudinal axes of the robot
in the work presented by Shum et al. (2015). They also introduced in this work the
bi-OUM, a bi-directional version of OUM. This version keeps the compatibility with
anisotropic cost functions while it speeds up the computation of OUM.

Gravity not only affects the safety of the robot but also terramechanic processes
such as the slippage. Previous work addressed the slippage when finding the opti-
mal ascent of slopes, using the Sampling Based algorithm RRT* (H. Inotsume et al.,
2020). This slip changes according to whether the robot drives straightly (in the di-
rection of maximum ascent) or diagonally (Hiroaki Inotsume et al., 2016). A simpli-
fication to this approach consists of only considering elevation changes as proposed
by Gruning et al. (2020), together with the Sampling Based SBMPO algorithm. Other
approaches consider the effect of gravity on the friction along with Graph Search al-
gorithms, including Dijkstra (Z. Sun et al., 2005) and some heuristic variants (Rowe
et al., 1990; Choi et al., 2012; Ganganath, Cheng, and Chi, 2015; Ganganath, Cheng,
Fernando, et al., 2018). These approaches using Graph Search algorithms do not
ensure that the global optimal is found, since the optimality is bounded by the grid
topology as explained in Chapter 2. Nevertheless, these approaches can address dis-
continuities in the cost function. Examples of these discontinuities include the de-
finition of forbidden directions (e.g. when ascending a too pronounced slope) and
the consideration of using zig-zag manoeuvres (Ganganath, Cheng, and Chi, 2015).
Local Optimization algorithms based on the use of nonlinear programming consider
dynamic constraints while using a Graph-Search as a global planner (Howard et al.,
2007).

Other approaches combine slip, friction and risk. Sakayori et al. (2017) pro-
posed a planner that generates bezier curves from a neural network to climb in-
clined surfaces after tuning some terramechanic parameters. However, a planner
combining these parameters in a continuous anisotropic fashion was not present in
the reviewed literature. For this reason, the contribution presented in this chapter
is based on the use of a cost function usable by an Optimal Control path planning
algorithm, a PDE Solving one, that addresses slip, friction and risk, and produces
the optimal path. In particular, this cost function is used along with the OUM, be-
ing anisotropic, continuous and smooth. In other words, this cost function depends
on the direction and is fully continuous and differentiable. The name of this cost
function is the Continuous Anisotropic Model for Inclined Surfaces (CAMIS), and
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it tackles the effect of gravity, friction, slip and the risk of overturning. The aniso-
tropic planner, using CAMIS, can produce a path that is optimal in the sense that it
minimizes energy consumption and/or preserves the robot stability.

This chapter is structured as follows. Section 5.2 presents the fundamentals about
the PDE Solving path planning and how it is formulated as an optimization problem
using the anisotropic cost function. Later on, Section 5.3 introduces the details about
how the OUM works, in particular its bi-directional version. Section 5.4 presents the
mathematical background behind the modelling of the proposed anisotropic cost
function, as well as how it is adapted to the use of terramechanic parameters by
using the locomotion models introduced in Chapter 3. Finally, Section 5.5 presents
a summary of this chapter and shows the conclusions extracted from it, along with
suggestions for possible future work.

5.2 Problem Formulation

This section details how to produce the optimal path by formulating the path plan-
ning problem using an anisotropic PDE. This is done in the scope of a robot that
must autonomously navigate through rough irregular terrain. In a similar way to
how Chapter 3 introduces the isotropic approach, here the region of interest for the
path planning problem is named Ω ⊂ R2. This is the portion of the environment
enclosed by the user, who selects what area is relevant for the path planning prob-
lem. This area is discretized into the grid Ω̃. This grid is considered here a regular
one, and it can be either square or hexagonal (see Figure 3.1 in Chapter 3). The target
of the path planner is to find the optimal path Γ(x̃o, x̃g, ·) connecting the goal node
x̃g and the origin node x̃o. The optimality of this path comes from the minimiza-
tion of the total cost function. This function, as in Chapter 3, is either the minimal
amount of cost from the origin position or the remaining amount to reach the goal.
Each definition is expressed through Equation (5.1) and Equation (5.2) respectively.
The planner has to calculate one of these expressions of total cost when visiting each
node, according to which initial condition is used. As a reminder, the total cost from
the origin node x̃o takes a value of zero in it, T(x̃o, x̃ij = x̃o) = 0, while the remaining
total cost has the initial condition set in the goal node x̃g, having T(x̃ij = x̃g, x̃g) = 0.

T(x̃o, x̃ij) = min
Γ(x̃o ,x̃g,·)∈Ω

{∫ sij

0
Q(Γ(x̃o, x̃g, s),~u(Γ(x̃o, x̃g, s)))ds

}
, T(x̃o, x̃ij = x̃o) = 0

(5.1)

T(x̃ij, x̃g) = min
Γ(x̃o ,x̃g,·)∈Ω

{∫ sg

sij

Q(Γ(x̃o, x̃g, s),~u(Γ(x̃o, x̃g, s)))ds
}

, T(x̃ij = x̃g, x̃g) = 0

(5.2)
The main difference between the anisotropic expressions (5.1) and (5.2) with re-

spect to the isotropic ones presented in (3.24) and (3.25) is the definition of the cost
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FIGURE 5.1: Different paths Γ = Γ(x̃o, x̃g, ·) connecting x̃o and x̃g can
be defined upon different tangent directions ~u(Γ). The role of the

anisotropic path planner is to find the optimal path among them.

function. While in the isotropic case the cost function C(x) only depends on position
(in this case returned by the path function x = Γ(x̃o, x̃g, s)), in the anisotropic case
the cost function Q(x,~u(x)) also depends on a direction ~u(x). This function, defined
according to a position x ∈ Ω, is the direction tangent to the optimal path that passes
through x = Γ(x̃o, x̃g, s). This is expressed in (5.3), where sg is the total length of the
path between x̃o and x̃g. Function ~u(x) is also called the characteristic direction of
that location x. In this way, given how the anisotropic cost function is defined, all
the optimal paths passing through the location in question will have this same char-
acteristic direction on it. Therefore, the anisotropic cost function not only takes into
account where the path is located to consider if it is optimal among all infinite pos-
sibilities, but also its direction. Figure 5.1 graphically depicts this situation in which
the origin and goal nodes can be connected by many different paths and only one of
them, given its shape Γ(x̃o, x̃g, ·) and direction ~u(Γ(x̃o, x̃g, ·)) is the optimal one. The
planner must hence not only calculate the value of total cost for each node x̃ij but
also the characteristic direction ~u(x̃ij).

~u(Γ(x̃o, x̃g, s)) =
dΓ(x̃o, x̃g, s)

ds
∀s ∈ (0, sg) (5.3)

To solve the expressions presented in (5.1) and (5.2), they are reformulated as the
Hamilton-Jacobi-Bellman (HJB) equation, following the reasoning of previous works
(James A Sethian and Vladimirsky, 2003; Shum et al., 2015; Shum et al., 2016). This
equation, shown in (5.4) for both equivalent approaches of the total cost, establishes
the correspondence between the anisotropic cost Q(x̃ij, ~ψ) and the spatial gradient
of the total cost. Here, the anisotropic cost function is defined not only according to
the location of any grid x̃ij but also to the heading function ~ψ. The latter function is
the direction of the robot in the XY-plane, i.e. its heading. The direction ~ψ that com-
plies with (5.4) in a grid node x̃ij corresponds hence to the characteristic direction
~u(x̃ij) passing through it. Finally, it is worth mentioning that the eikonal equation
presented in Chapter 3 is a particular case of the HJB in which the characteristic
direction is equal to the negative gradient of the total cost.



5.3. Optimal Path Planning using the Ordered Upwind Method 91

~u(x̃ij) = ~ψ | min
~ψ
{∇T(x̃o, x̃ij) · ~ψ + Q(x̃ij, ~ψ)} = 0, ∀x̃ij ∈ Ω̃

= ~ψ | min
~ψ
{∇T(x̃ij, x̃g) · ~ψ + Q(x̃ij, ~ψ)} = 0, ∀x̃ij ∈ Ω̃

(5.4)

5.3 Optimal Path Planning using the Ordered Upwind Me-
thod

In an analogous way to the FMM in the resolution of the eikonal equation, the
Ordered Upwind Method (OUM) is the PDE Solving algorithm chosen to tackle
(5.4) and find the optimal path. According to the work of James A Sethian and
Vladimirsky (2003), this algorithm has a computational complexity that depends on
the anisotropy Υ of the cost function: O(Υnnodeslog(nnodes)), where nnodes is the num-
ber of grid nodes. This anisotropy comes as the ratio of the highest and the lowest
values of cost. However, for the case presented in this chapter the anisotropy varies
from node to node, i.e. the anisotropy here is Υ(x̃ij). Therefore, the computational
complexity is expected to be variable as well, bounded by the maximum existing
anisotropy in the grid Ω̃. According to equation (5.5), this anisotropy Υ(x̃ij) of a
node x̃ij comes as the ratio between the highest possible cost at its location and the
lowest according to the heading direction ~ψ.

Υ(x̃ij) =

max
~ψ
{Q(x̃ij, ~ψ)}

min
~ψ
{Q(x̃ij, ~ψ)}

(5.5)

The computational complexity of the OUM justifies the use of a bi-directional
version that speeds up the calculation of the total cost. This bi-directional feature ex-
ploits the fact that the total cost complies with the Dynamic Programming Principle
(DPP) as was shown in Equation (3.23) presented back in Chapter 3. As a reminder,
this equation is presented again here in (5.6), but using x̃ij instead of x to indicate
this principle is exploited with the bi-OUM (as the bi-directional OUM but short-
ened) using the grid Ω̃.

T(x̃o, x̃ij) + T(x̃ij, x̃g) = T(x̃o, x̃g) ∀x̃ij ∈ Γ(x̃o, x̃g, ·) ∈ Ω̃ (5.6)

Bi-OUM calculates both T(x̃o, x̃ij) and T(x̃ij, x̃g) using two propagating waves
in two parallel loops. Figure 5.2 shows this functioning with a hexagonal grid (al-
though a square grid would be valid too). Each parallel loop is coloured with a
different colour, either purple (the wave starting from the goal node x̃g, setting a
total cost of zero on it) or orange (the wave starting from the origin node x̃o, , setting
a total cost of zero on it). As can be checked in this figure, is not necessary that the
two waves propagate until reaching the starting position of the other wave. When
both waves reach an intermediate linking node x̃l the bi-OUM process stops. This is
because, as highlighted in Equation 5.6, this node complies with the DPP and there
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FIGURE 5.2: Schematic of the functioning of biOUM. Two expanding
waves start from the goal and the origin nodes (x̃g and x̃o) respec-
tively. The loop controlling each wave is colored in purple and or-
ange. The red arrows indicate the characteristic direction ~u(x̃ij) that

passes through each node.

is only a single path passing through it: the optimal path. This path is calculated by
following the characteristic direction that is also calculated in both waves, one from
x̃l to x̃o and another from x̃l to x̃g. In this way, bi-OUM achieves the same optimal
solution as the OUM but investing less time thant the latter, as the bi-directional
version visits less nodes (Shum et al., 2015).

The process followed by bi-OUM to visit the grid nodes is explained with the
help of the conceptual scheme presented in Figure 5.2 together with the pseudo-
code contained in Algorithm 4. First of all, the origin node x̃o and the goal node x̃g

are selected out of Ω̃. From each of these nodes a parallel process is initiated, con-
currently visiting neighbouring nodes and updating their states. In the bi-directional
version of OUM each node has two states: So

ij and Sg
ij. Each of these states points out

the status of the node x̃ij according to the execution of the respective loop associated
with the respective set. There are four options that each of the states can take:

• Far. Nodes with this state have not been accessed yet by the corresponding
loop. This is the state in which all nodes, except the starting ones (the origin
and the goal), are initialized at the beginning of the process for both So

ij and Sg
ij.

As the real value of total cost associated to each Far nodeis yet to be calculated,
the initial value is irrelevant. Nevertheless, for this particular case, this value is
set to ∞ symbolizing a very high total cost. Besides, the characteristic direction
for Far nodes is initialized to a Null value or NaN (Not a Number).

• Considered. A tentative value of total cost has been computed by the corres-
ponding loop at least once for nodes with this state. This tentative value is
calculated by means of the updateNeighbours function. This function is called
to take the neighbouring Far nodes from an AcceptedFront node and compute
their respective values of total cost and characteristic direction. Thereafter, the
state of these nodes is updated and set as Considered.
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• AcceptedFront. During each iteration of each loop, the function getNextNode
is executed to retrieve the Considered node with the lowest value of total cost.
The value of this node is no longer tentative. Thereafter, the state of this node
is updated to AcceptedFront if it has Far or Considered nodes as neighbours,
otherwise it is updated to AcceptedInner. In case of being an AcceptedFront
node, the updateNeighbours function is called to update the state and values
of total cost and characteristic direction of neighbouring Far nodes. Further-
more, the starting nodes are initialized to the AcceptedFront state, with initial
values of total cost and characteristic direction of zero and NaN respectively. It
is assumed that the heading directions at the origin and the destination are not
considered, and hence the value of NaN is assigned to their respective charac-
teristic directions.

• AcceptedInner. Nodes with this state do not only have associated definitive
values of total cost and characteristic direction, but also all of their neighbours.
In other words, the neighbours of AcceptedInner nodes are either Accepted-
Front or also AcceptedInner nodes. This is a condition that is checked for all
AcceptedFront during each iteration to update their state to AcceptedInner in
the affirmative case.

Algorithm 4: The bi-directional Ordered Upwind Method.

1 Input: x̃0, x̃g, Ω̃
2 Output: Γ̃
3 T(x̃ij, x̃g),~u(x̃ij), Sg

ij ← ∞, NaN, Far ∀x̃ij ∈ Ω̃
4 T(x̃g, x̃g),~u(x̃g), Sg

g ← 0, NaN, AcceptedFront
5 T(x̃o, x̃ij),~u(x̃ij), So

ij ← ∞, NaN, Far ∀x̃ij ∈ Ω̃
6 T(x̃o, x̃o),~u(x̃o), So

o ← 0, NaN, AcceptedFront
7 x̃tg ← x̃g
8 x̃to ← x̃o

9 while ¬checkFinCondition(So
tg, Sg

tg)∧ ¬checkFinCondition(So
to, Sg

to) do
10 . Update both loops
11 updateNeighbours(x̃tg)
12 updateNeighbours(x̃t0)
13 . Get next nodes
14 x̃tg ← getNextNode(T(·, x̃g))
15 x̃t0 ← getNextNode(T(x̃o, ·))
16 return getPath(Sg, S0)

During a visit to each newly AcceptedFront node, it is evaluated by the corres-
ponding loop using the updateNeighbours function. This function evaluates the
values of total cost and the characteristic direction of nodes with a state So

ij or Sg
ij

equal to Considered (with respect to the calculation loop that executes the function).
These nodes must be close enough to x̃ij, located at a distance lower than ξ(x̃ij) from
it. This distance is defined in Equation (5.7) and comes in function of the anisotropy
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FIGURE 5.3: Update process of a Considered node x̃ij. Its values of to-
tal cost and characteristic direction are computed taking into account
AcceptedFront nodes within the distance ξ(x̃ij) expressed in Equa-

tion (5.7).

that is present at such node and the grid resolution Λ. Figure 5.3 shows how this dis-
tance works. Here, Near-AcceptedFront nodes are those AcceptedFront nodes that
comply with the mentioned distance condition between them and the Considered
node.

ξ(x̃ij) = ΛΥ(x̃ij) (5.7)

The update of the total cost and the characteristic direction of a Considered node,
when the updateNeighbours function is called, can be done using a semi-lagrangian
discretization of the HJB presented in Equation (5.4). This method was already used
by James A Sethian and Vladimirsky (2003) when they introduced the OUM for the
first time. Equations (5.8) and (5.9) present the resulting expressions to calculate the
value of total cost, based on the AcceptedFront nodes x̃i′ j′ and x̃i′′ j′′ and according
to the starting node of the propagating wave. The main difference between them is
that the total cost from the goal node has to consider that the anisotropic cost func-
tion multiplies the input value of characteristic direction by −1. This is because the
propagating wave advances in the contrary direction to the heading of the robot.
Equation (5.10) expresses how the characteristic direction is calculated. The iterative
process calculates either (5.8) or (5.9) together with (5.10), using a parameter called
ε that takes values between zero and one and is updated in each iteration. A draw-
back of this method is that it can take more time than solving a explicit quadratic
expression such as the discretized eikonal equations presented in Chapter 3.

T(x̃o, x̃ij) = min
ε∈[0,1]

{Q(x̃ij,~u(x̃ij))|εx̃i′ j′ + (1− ε)x̃i′′ j′′ − x̃ij|+ εTi′ j′ + (1− ε)Ti′′ j′′}

(5.8)

T(x̃ij, x̃g) = min
ε∈[0,1]

{Q(x̃ij,−~u(x̃ij))|εx̃i′ j′ + (1− ε)x̃i′′ j′′ − x̃ij|+ εTi′ j′ + (1− ε)Ti′′ j′′}

(5.9)
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~u(x̃ij) =
εx̃i′ j′ + (1− ε)x̃i′′ j′′ − x̃ij

|| εx̃i′ j′ + (1− ε)x̃i′′ j′′ − x̃ij ||
(5.10)

As mentioned, for the isotropic case, where Υ(x̃ij) = 1, the total cost can be di-
rectly calculated using an explicit expression. It could be either Equation (3.30) or
Equation (3.32) for a square grid or a hexagonal grid respectively. These expressions
are referred to as the eulerian discretization of the eikonal equation, and they are
used by the FMM as explained in Chapter 3. Nevertheless, as the path can be ex-
tracted using the gradient descent method the characteristic direction does not need
to be calculated in FMM. For the case of the OUM, isotropic nodes can be present to-
gether with anisotropic ones. For this reason, in case of using the eulerian discretiza-
tion, there must be also an expression to directly calculate ~u(x̃ij) in the absence of the
ε parameter used in (5.11). This expression is shown in (5.11) for the loop that cal-
culates the total cost from the origin and for the loop that calculates the total cost
remaining to the goal.

~u(x̃ij) =



 x̃ij − x̃i′ j′

x̃ij − x̃i′′ j′′

−1  Tij − Ti′ j′

Tij − Ti′′ j′′


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 x̃ij − x̃i′ j′

x̃ij − x̃i′′ j′′

−1  Tij − Ti′ j′

Tij − Ti′′ j′′


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
, using Tij = T(x̃o, x̃ij) ∧ Υ(x̃ij) = 1

 x̃ij − x̃i′ j′

x̃ij − x̃i′′ j′′

−1  Ti′ j′ − Tij

Ti′′ j′′ − Tij


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 x̃ij − x̃i′ j′

x̃ij − x̃i′′ j′′

−1  Ti′ j′ − Tij

Ti′′ j′′ − Tij


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
, using Tij = T(x̃ij, x̃g) ∧ Υ(x̃ij) = 1

(5.11)
Finally, the checkFinCondition function checks during each iteration if the last

node returned by getNextNode is either AcceptedInner or AcceptedFront for both
loops. In the affirmative case, this node becomes x̃l and the iteration process stops
for both loops. Indicated in Figure 5.2 as a blue dot, this node is used to extract two
sub-paths with the getPath function. Each of these portions starts from the location
of x̃l and reaches either the origin or the goal nodes, x̃0 or x̃g. The waypoints making
up both sub-paths are calculated one after another from Γ̃l = x̃l following the two
ways indicated in (5.12). The step distance is dstep, and the characteristic direction
for each waypoint is interpolated from the values calculated on the nodes. The final
path Γ̃ is obtained by joining them (see Figure 5.2).

Γ̃k−1 = Γ̃k − dstep~u(Γ̃k) , Γ̃k+1 = Γ̃k + dstep~u(Γ̃k) (5.12)
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FIGURE 5.4: Graphical representation of the slope model used to
build up the anisotropic cost function. This model encompasses mul-
tiple variables such as the slope gradient αij, the aspect direction ~γij,
the normal vector ~νij, the heading direction ~ψ and the relative angle

β(~ψ,~γij). All of them are marked in this conceptual depiction.

5.4 Anisotropic Cost Function for Planning on Inclined Sur-
faces

This section presents the steps to make an anisotropic cost function Q(x̃ij, ~ψ) based
on slope parameters and compatible with the OUM. Figure 5.4 shows the slope
model used to represent the interaction between the robot and a inclined terrain.
In the absence of any kinematic configuration capable to reconfigure itself (Brunner
et al., 2015), the pose of the robot body will change according to the shape of the
terrain surface. This change will be determined by the contact points between the
robot and the surface. Nevertheless, to avoid making the formulation more com-
plex a simplification is made: the robot-terrain interaction is modelled after a single
contact point. This simplification assumes the robot body is always parallel to an
imaginary inclined plane. The normal vector of this plane, named ~νij in Figure 5.4,
will be hence coincident with the Z-axis of the robot local reference frame. This
imaginary plane is inclined a certain magnitude from the horizontal XY-plane (the
plane perpendicular to the gravity vector). The value of this magnitude corresponds
to the slope gradient αij, and is equivalent to the angle between the normal vector
~νij and the global Z-axis as showcased in Figure 5.4a. To clarify, this global Z-axis
corresponds to the normal vector of the 2D projection. The direction the slope faces,
i.e. the direction in which the steepest descent occurs, is the slope ascent or ~γij. It can
be obtained from projecting the normal vector of the slope,~νij, onto the 2D XY-plane
and normalizing it.
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FIGURE 5.5: Elliptical inverse of the anisotropic cost function
Q(x̃ij, ~ψ). The descent direction is the one coincident with the slope
aspect ~γij. The robot has a heading direction ~ψ that determines which

value of this anisotropic cost is returned.

To make the anisotropic cost function Q(x̃ij, ~ψ) compatible with the (bi-)OUM, it
is necessary to understand its requirements. The solution that bi-OUM produces is
viscous, as the FMM does when solving a path planning problem formulated with
the eikonal equation. As a reminder, this means that the solution exists, is unique
and is stable. This is thanks to the fact that the computed solution omits any discon-
tinuity present in the real solution of the total cost (Shum et al., 2016). However, the
computed solution is guaranteed to be unique if, and only if, it is ensured that the
inverse of the cost function, 1/Q(x̃ij, ~ψ), is fully differentiable and convex (James A
Sethian and Vladimirsky, 2003; Shum et al., 2016). A closed conic curve complies
with this condition, while at the same time it can be formulated using a mathemat-
ical expression. For this reason, 1/Q(x̃ij, ~ψ) is made equivalent to the polar form of
a displaced ellipse, as depicted in Figure 5.5. The radius of this polar form varies
with the angle β(~ψ,~γij) between the robot heading ~ψ and the slope aspect ~γij. This
is expressed in Equation (5.13), where β(~ψ,~γij) is also defined as the angle of the
counter-clockwise rotation from ~γij to ~ψ, as Equation (5.14) indicates. When ~ψ co-
incides with ~γij then β(~ψ,~γij) returns a value of zero. This is the direction in which
the elevation decreases the most. For this reason, the direction of the slope aspect
~γij) is also referred to as the Descent direction. When ~ψ points towards the inverse
direction, i.e. β = ±π, this direction is known as the Ascent direction. Finally, the
Lateral directions are those in which the value of β(~ψ,~γij) is either π/2 or −π/2.

0 = [cosβ sinβ]
T

[
p1(x̃ij) p2(x̃ij)/2

p2(x̃ij)/2 p3(x̃ij)

] [
cosβ

sinβ

]
1/Q(x̃ij, ~ψ)2 +

+
[

p4(x̃ij) p5(x̃ij)
] [ cosβ

sinβ

]
1/Q(x̃ij, ~ψ) + p6(x̃ij) (5.13)
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β(~ψ,~γij) = atan2
(
[0, 0, 1] · (~γij ∧ ~ψ),~γij · ~ψ

)
(5.14)

Equation (5.13) uses six functions that are defined over the grid node x̃ij: p1(x̃ij),
p2(x̃ij), p3(x̃ij), p4(x̃ij), p5(x̃ij) and p6(x̃ij). In this way, these functions serve to build
up the shape and the location of the displaced ellipse according to the information
about the terrain that is placed at x̃ij. In other words, terramechanic functions such
as those presented in Chapter 3 determine the length of the ellipse axes together with
its displacement, as they in turn affect the power consumption function introduced
in (3.5). Nevertheless, these six functions are not intuitive at all, and for this reason
the next step consists of substituting them. Here enters a novel way to model the
anisotropic cost: the Continuous Anisotropic Model for Inclined Surfaces (CAMIS).
It comprises three isotropic cost functions named the ascent cost Ca(x̃ij), the lateral
cost Cl(x̃ij) and the descent cost Cd(x̃ij). Each of them correspond to what Q(x̃ij, ~ψ)
returns when the value of ~ψ is fixed at a certain direction relative to the slope aspect
~γij. In this way, Ca(x̃ij) is defined in (5.15) as the cost function in the Ascent direc-
tion (see Figure 5.5), Cl(x̃ij) in (5.16) as the cost function in any of the two Lateral
directions and Cd(x̃ij) in (5.17) as the cost function in the Descent direction.

Ca(x̃ij) = Q(x̃ij, ~ψ | β(~ψ,~γij) = ±π) (5.15)

Cl(x̃ij) = Q(x̃ij, ~ψ | β(~ψ,~γij) = ±
π

2
) (5.16)

Cd(x̃ij) = Q(x̃ij, ~ψ | β(~ψ,~γij) = 0) (5.17)

Going from the previous six ellipse functions to the new three CAMIS functions
is done by using the substitutions presented in Equation (5.18). Another simplifica-
tion is taken here to avoid complexity and is the main reason the number of functions
is lower after the substitution. This simplification consists of setting p2(αij) = 0,
which makes the axes of the ellipse parallel to the Descent - Ascent and Lateral di-
rections respectively. Moreover, this ellipse is symmetrical in the axis parallel to the
slope aspect ~γij. The cost returned by the anisotropic function is the same for both
β(~ψ,~γij) and −β(~ψ,~γij). In other words, the cost at both Lateral directions is the
same, having hence Q(x̃ij, ~ψ | β(~ψ,~γij) =

π
2 ) = Q(x̃ij, ~ψ | β(~ψ,~γij) = −π

2 ). With this
in mind, the cosβ and sinβ can be transformed into the expressions shown in (5.19).
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p1(x̃ij)

p6(x̃ij)

p2(x̃ij)

p6(x̃ij)

p3(x̃ij)

p6(x̃ij)

p4(x̃ij)

p6(x̃ij)

p5(x̃ij)

p6(x̃ij)



=


−Q(x̃ij, ~ψ | β(~ψ,~γij) = ±π) Q(x̃ij, ~ψ | β(~ψ,~γij) = 0)

0
−Q(x̃ij, ~ψ | β(~ψ,~γij) = −π

2 ) Q(x̃ij, ~ψ | β(~ψ,~γij) = +π
2 )

Q(x̃ij, ~ψ | β(~ψ,~γij) = ±π)−Q(x̃ij, ~ψ | β(~ψ,~γij) = 0)
Q(x̃ij, ~ψ | β(~ψ,~γij) = −π

2 )−Q(x̃ij, ~ψ | β(~ψ,~γij) = +π
2 )



=



−Ca
ijC

d
ij

0

Cl
ij

2

Ca
ij − Cd

ij

0



(5.18)

| cosβ | = ~ψ · ~γij , | sinβ | = ||~ψ× ~γij|| (5.19)

The anisotropic cost function Q(x̃ij, ~ψ) is fully defined in (5.20). This expres-
sion results from getting the explicit form of the ellipse general form in (5.13) and
applying the substitutions defined in (5.18) and (5.19). The CAMIS functions Ca(x̃ij),
Cl(x̃ij) and Cd(x̃ij) are defined in Equations (5.21), (5.22) and (5.23) respectively, con-
sidering the path planning criterion of electric charge minimization. In this way,
the CAMIS functions are based on the use of the current consumption function
I(L, ρij, σij, αij) defined in Equation (3.7) presented in Chapter 3. As a side note,
the instantaneous power function P(L, ρij, σij, αij) from (3.5) could be used instead
by simply multiplying the current consumption by the voltage V that is supplied to
the motors.

Q(x̃ij, ~ψ) =

√√√√(Ca
ij + Cd

ij

2

)2 (
~ψ · ~γij

)2
+
(

Cl
ij ||~ψ× ~γij||

)2
−

Ca
ij − Cd

ij

2
~ψ · ~γij (5.20)

Ca(x̃ij) = Q(x̃ij, ~ψ | β(~ψ,~γij) = ±π) =
I(L, ρij, σij, αij)

vij
(5.21)

Cl(x̃ij) = Q(x̃ij, ~ψ | β(~ψ,~γij) = ±
π

2
) =

I(L, ρij, σij, 0)
vij

wΦ
ij (5.22)
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FIGURE 5.6: Use of Bezier curve function Rb(x̃ij) to comply with the
non-zero positive cost specification in a smooth way. ρij = 0.3, α∆ =

15° and αzero
ij = arctanρij .

Cd(x̃ij) = Q(x̃ij, ~ψ | β(~ψ,~γij) = 0) =


Rb(x̃ij), αij ∈ (αzero

ij − α∆, αzero
ij + α∆)∣∣∣∣∣ I(L, ρij, σij,−αij)

vij

∣∣∣∣∣ , otherwise

(5.23)
As can be denoted in the Lateral and Descent CAMIS functions, (5.22) and (5.23)

respectively, there are some extra functions introduced. In the Lateral cost Cl(x̃ij)

there is a penalization function named wΦ
ij . This function serves to minimize the

value of the experienced roll angle when ascending or descending through slopes.
In other words, it determines whether it is admissible for the robot to drive diago-
nally through the slope or not. The main justification to use this function is to avoid
situations in which the robot may overturn because of losing stability in the lateral
direction. Besides, it can make the robot avoid suffering from drift in such direction
when traversing a slope.

A special treatment is given to the Descent CAMIS cost Cd(x̃ij) in (5.23). The
effect of gravity pulls the robot and reduces its energy consumption when it des-
cends. Here, it is assumed the vehicle cannot recharge itself, so the energetic cost
should always be present in the form of a positive value. Besides, it may be also
desirable to prevent the robot from braking when descending through slopes, so the
loss of energy in the form of heat is avoided (Rowe et al., 1990). When the robot des-
cends, having a value of−αij as input that acknowledges this robot pose, the current
function I(L, ρij, σij, αij) and the instantaneous power function P(L, ρij, σij, αij) could
return zero or even negative values. This is incompatible with the OUM and bi-
OUM requirements. Therefore, this situation is dealt with by using the Bezier func-
tion Rb(x̃ij) that is present in (5.23). This function acknowledges the angle of slope
gradient in which the robot would start gaining energy, αzero

ij . From this slope gradi-
ent, the robot starts braking to keep its velocity, avoiding any acceleration. Rb(x̃ij)
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preserves continuity and smoothness while making the Descent CAMIS cost Cd(x̃ij)

return always positive values that increase with the slope gradient αij. This is show-
cased in Figure 5.6 for the case of the Normal-driving locomotion. Having in mind
that Equations (3.18), (3.19) and (3.20) model the torque of the motors that actuate
the wheels, and with the assumption of not having friction in the motor (Bm = 0)
and the velocity of the robot is constant (v̈ij = 0), then the angle αzero

ij would be equal
to arctanρij . The absolute value is used to define Cd(x̃ij) in (5.23) so this function
increases the cost with values of slope gradient higher than αzero

ij + α∆. The use of
an absolute value was used by Rowe et al. (1990) to penalize paths that required the
robot to brake and not accelerate. Here, α∆ is a custom configurable angle margin.
Rb(x̃ij) marks three points using this margin: at αzero

ij − α∆, at αzero
ij and at αzero

ij + α∆.
A Bezier curve is the basis of Rb(x̃ij) to not only preserve continuity but also smooth-
ness while penalizing braking.

5.5 Summary and Conclusions

This chapter introduced the ins and outs of an anisotropic cost function for finding
energy-optimal paths in scenarios with inclined surfaces. The path planning prob-
lem using this cost function is modelled after a PDE named the Hamilton-Jacobi-
Bellman (HJB) equation. The resolution of this equation allows obtaining the opti-
mal path between two points. To do this, the PDE Solving planner OUM, as well as
its upgraded version bi-OUM, is considered. The use of this algorithm produces a
viscous solution to the HJB equation, in the sense that it is a unique discretized ap-
proximation to the real solution without discontinuities. Nevertheless, to guarantee
the uniqueness of the solution the anisotropic cost function is built in a way it com-
plies with the convexity restriction demanded by the OUM. This compliance con-
sists of modelling the inverse of this cost function as a closed conic function. Three
CAMIS functions can be used to define the anisotropic cost function in four specific
directions: Descent, Ascent and two Laterals. Moreover, these CAMIS functions are
modelled after the locomotion models created in Chapter 3, so they can address ter-
ramechanic parameters. Beyond energy minimization, the Lateral CAMIS functions
allow preserving the lateral stability of the robot by minimizing the angle of Roll
along the trajectory. Besides, the Descent CAMIS function prevents the robot from
braking on slopes when descending.

The novelty in the contents presented in this chapter rests on the way the novel
cost function links the locomotion performance of a vehicle on slopes with a PDE
Solving planner. The locomotion model introduced in Chapter 3 is here addressed
again with the perspective of taking the direction of the robot into account. The
presented cost function serves as a starting point that can be refined in the future
as more terramechanic effects are considered (e.g. sinkage or lateral slippage). An
important advantage is that the anisotropic cost function of any vehicle could be
modelled using experimental data. For example, a vehicle could drive in a series of
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tests where it moves in the Descent, Ascent and Lateral directions of many inclined
surfaces. In this way, the CAMIS functions could be created and the compatibility
with OUM be preserved, avoiding any concavities in the inverse of the cost function.
In fact, this is done through some simulation and field experiments whose results are
presented later in Chapter 6.



Chapter 6

Experiments

"Extraordinary claims require
extraordinary evidence."

Carl Sagan
1980

6.1 Introduction

The results from several tests support the contributions presented in previous chap-
ters. These tests include simulation and field experiments. Table 6.1 presents all
of them and relates them to the respective thesis contribution. Moreover, this table
indicates the target platform for each experiment. This target can be either a simula-
tion environment or a mobile testbed robot. The ins and outs of each experiment are
introduced together with a discussion about the results.

The first of the experiments is a simulation comparative using isotropic cost func-
tions presented in Table 3.1 included in Chapter 3. In particular, the chosen cost func-
tions are those that minimize energy consumption. One of them is used in a scenario
without obstacles, so it does not need to use the risk function rij to make paths get
further from them. On the contrary, the second of them does take this risk function
into account. Both functions are built upon the characteristics of a real prototype
reconfigurable rover that is later presented. Two cases are compared twice, using
a different scenario each time. These scenarios contain areas with different values
of terramechanic parameters. The first of the two cases corresponds to a rover that
only uses one locomotion mode. The second case corresponds to the same rover but
using two locomotion modes instead. The second simulation comparative serves
to analyze the performance of the Local Path Repairing (LPR) using the Sweeping
approach. This process is executed in several cases where the rover must repair
using the local layer one of the paths computed on the global layer in the previous
comparative. Each repairing in this test emulates an encounter with a different ar-
rangement of previously non-considered obstacles. The third experiment is carried
out using another prototype rover named Heavy Duty Planetary Rover (HDPR).
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TABLE 6.1: Summary of experiments presented in this thesis.

Thesis Contribution Test Objective Platform

Contribution 1: Optimal path
planning considering multiple
locomotion modes.

Reconfigurable Locomotion
Cost Function

Simulation

Contribution 2: Multi-scale path
planning combining initial
long-traverse planning and
dynamic local path replanning.

Local Path Repairing (Sweeping
approach)
Local Path Repairing (Conservative
approach)

Simulation

Real (HDPR)

Contribution 3: Creation of a
direction-dependant cost
function for planning the
optimal traverse on slopes.

CAMIS - Energy Minimization
CAMIS - Lateral Stability
CAMIS - Detection of strengths and
flaws

Simulation
Simulation
Real (Cuadriga)

This rover served to execute and validate the LPR employing the Conservative ap-
proach in a field test. The last three experiments, being two of them in simulation
and the last one using a real platform, serve to validate the use of CAMIS functions
to build an anisotropic cost function. The two simulation tests evaluate CAMIS on
a certain criterion out of two: either the exclusive minimization of energy along the
traverse or prioritizing the minimization of the experienced roll angle to preserve
lateral stability. Finally, the last experiment consists of using a real mobile testbed
named Cuádriga to evaluate landing CAMIS into reality, using for this a real terrain
containing a slope.

This chapter is organized as follows. Section 6.2 details the first simulation test
that validates the first contribution of this thesis. Thereafter, Section 6.3 presents the
results and discussion of the next two tests: a simulation and a field experiment.
Both of them validate the second contribution of this thesis by checking the two
approaches of the LPR process. Later on, Section 6.4 presents the details about two
simulation tests and one field test carried out to validate CAMIS. Finally, at the end
of this chapter, Section 6.5 presents the conclusions extracted after analyzing the
results.

6.2 Global Path Planning with Reconfigurable Rovers

As mentioned in the previous section, Chapter 3 presented an isotropic cost function
that acknowledges robots capable to execute multiple locomotion modes, i.e., recon-
figurable. This cost function is based on the dynamic models of many locomotion
modes, selecting the best one given the terrain conditions. To do this, it uses the
power consumption function P(L, ρij, σij, αij) defined in Equation (3.5). In this way,
the chosen criterion for the path planner is the minimization of energy. Equation
(6.1) shows the expression of the cost function in question from Table (3.1).
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FIGURE 6.1: ExoMars Testing Rover (ExoTeR), a prototype that mim-
ics the locomotion subsystem of ExoMars Rosalind Franklin rover.

C(x̃ij) =
P(L, ρij, σij, αij)

vij
, L = {nd, ww} (6.1)

The cost function in (6.1) serves to estimate the power consumption of a rover ca-
pable to perform Wheel-walking (see Equation (3.15)) together with Normal-driving
(see Equation (3.21)). In other words, the set L is formed by locomotion modes nd
and ww as expressed in (6.1). The power consumption function P(L, ρij, σij, αij) is de-
signed to comply with the requirements of an isotropic PDE planner such as FMM,
capable to solve the eikonal equation in (3.22). Here, two simulation scenarios are
presented to validate the use of this power consumption function. The modelling
of the power consumption function and the path planner were carried out with the
MATLAB-Simulink software. The main purpose of the simulation is to define, for
each scenario, two distributions of different kinds of terrain and thereafter execute
FMM to analyze how are the paths that are produced as a result. The execution of
FMM is done twice, one considering just one locomotion mode (Normal-driving)
and another considering two (Normal-driving and Wheel-walking).

Here, real numbers taken from the technical specifications of an experimental
rover platform were considered to produce the instantaneous power consumption
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TABLE 6.2: Simulation values of isotropic tests

Parameter Value Unit Parameter Value Unit

Bm 11 · 10−5 Nms/rad g 3.711 m/s2

Jm 4.36 · 10−7 kg m2 dr 0.07 m
Jw 12 · 10−4 kg m2 Kw = Kb 10.9/19 mNm/A
dl 0.125 m n 6 −
mb 15 kg mw 0.484 kg

FIGURE 6.2: Estimation of the energy per meter cost consumed by
the ExoTeR rover for each locomotion mode according to the values
of slip ratio σij and the specific resistance ρij. This model does not
address the effect of the slip ratio on the wheel-walking locomotion.

Here it is considered the velocity vij as 0.02 m s−1.

function P(L, ρij, σij, αij) introduced in (3.5). As a reminder, this function is con-
structed upon the set L of available locomotion modes, the specific resistance ρij, the
slip ratio σij and the slope gradient αij. The platform in question is the Exomars Test-
ing Rover (ExoTeR) (Azkarate, Gerdes, et al., 2022). It is a reconfigurable rover capa-
ble to execute the two locomotion modes introduced in Chapter 3: the normal driv-
ing and the wheel walking. As mentioned earlier, the set L is defined as {nd, ww}.
The corresponding numbers for this rover are shown in Table 6.2. The same kind of
motors are used on top of the rover legs and on the wheels, and hence they share
the same motor parameter values (in particular, the motor constants Kw = Kb). The
values of the masses and moments of inertia are also included in the table. The grav-
ity constant was set to 3.711 m/s2 as it is the value that corresponds to the Martian
surface. It is assumed the robot drives with a constant speed vij of 0.02 m/s, which
is similar to the speed or real rovers.

Figure 6.2 shows the shape of the Pww(ρij, σij, αij) and Pnd(ρij, σij, αij) models, esti-
mated by simulation means using the MATLAB - Simulink software. There are some
considerations taken. First, the effect of the slope gradient αij is here omitted, and



6.2. Global Path Planning with Reconfigurable Rovers 107

TABLE 6.3: Terrain parameters used in the first two simulation tests,
where Pij = P(L, ρij, σij, αij).

Terrain model ρij σij αij Pij[W] vij[m s−1] rij C(x̃ij)[W · s/m] l

Rough 0.07 0.05 0.0 1.76 0.02 0.0 88.0 nd
Soft 0.45 0.5 0.0 4.72 0.02 0.0 236.0 ww
Near Obstacle − − 0.0 − 0.02 2148.0 2148.0 nd
Obstacle − − − ∞ 0.0 ∞ ∞ ∅

therefore it is set to zero. Both models were built according to the values of ρij and σij

comprehended between 0 and 1. The Side-by-side gait of Wheel-walking (see Figure
3.3 in Chapter 3) was implemented with maximum and minimum limits for both θb1

and θb2 angles as 15 and -15 degrees. These are the same values that were used in
previous experiments done in the past with ExoTeR (Azkarate, Zwick, et al., 2015).
A second consideration that was made while creating the Wheel-walking mode is
that this locomotion mode was only affected by ρij, being independent of σij. It was
assumed that the wheel that remains static while the rover makes a stride does not
slide. The same assumption went for the other wheel, as it is dragged by the motion
of the robot body. More elaboration on this has been done, considering also slip that
may happen, but the model here presented does not consider that. It is worth men-
tioning that the main focus of this thesis is the path planning application rather than
deepening into the modelling of the terramechanics.

As can be checked in Figure 6.2 and in Table 6.3, Pww(ρij, σij, αij) returns an energy
consumption per meter of 236 W · s/m. This remains more or less constant for all
values of ρij and σij. On the contrary, the function of Normal-driving has the shape
of an inclined surface. It intersects with the function that models Wheel-walking. In
this way, for values of ρij less than 0.15-0.2 (depending on the value of σij), Normal-
driving seems the cheapest locomotion, while for the rest of the values the better
option is the Wheel-walking mode. The cost of Normal-driving increases with the
slip ratio σij, which makes sense in soft terrains such as sand. For very low values of
ρij, the cost of Wheel-walking escalates immensely. This is because if no resistance
exists this mode cannot keep the wheel locked in the surface and slides, like on top
of an icy surface. Moreover, in case the motors reach the maximum power they can
handle in both locomotion modes, the corresponding node should be considered as
an obstacle. In this situation, especially when the cost of Normal-driving increases,
the rover could get stuck or perform much worse. As a reminder, these models are
preliminary and rest on estimations of these parameters rather than being refined
and more detailed functions. The basis (and focus) of the first contribution in this
thesis is to link this kind of model with isotropic path planning.

Figure 6.3 shows the scenario with the location of the origin x̃o and goal x̃g posi-
tions, as well as the resulting paths ΓA and ΓB. With regards to the types of terrain
used in this scenario, they are coloured in Figure 6.3c: the lighter of them is labelled
Soft Terrain while the darker one is Rough Terrain. The simulation tests that were
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(a) L = {nd} (b) L = {nd, ww}

(c) Resulting optimal paths using one locomotion mode (Path ΓA) and both of them (Path ΓB). Here
T = T(x̃o, x̃ij)

FIGURE 6.3: Calculated values of total cost T(x̃o, x̃ij) and obtained
paths when using only Normal-driving or L = {nd} (a) and both

Normal-driving and Wheel-walking or L = {nd, ww} (b).

performed in this first scenario emphasize the fact that the use of an alternate lo-
comotion mode can make a rover save up energy and drive lower distances. The
custom distribution of the areas covered by each type of terrain (with one of them
resembling a hook) is made to highlight an extreme case supporting this statement.
The terramechanic parameters assigned to each terrain are shown in Table 6.3.

There are two distinct cases as mentioned before: one in which a robot with only
Normal-driving is considered and another that also is capable to execute Wheel-
walking. Path ΓA is the one resulting from the first case, while path ΓB does the
same but with respect to the second case. The total cost T(x̃o, x̃ij) is represented as a
potential function in Figures 6.3a and 6.3b. The first of them shows the total cost for
the first case with path ΓA, while the second does this with path ΓB. As can be seen
in both cases, the only minimum point is global and is located at the point where
the wave originates, x̃o in this case. Therefore, here the total cost here indicates the
amount of energy required to arrive at each node from the initial position. The plan-
ner estimated that Path ΓA takes up to 3.1 W h of energy and entails a distance of
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124.7 m, while Path ΓB requires 1.86 W h and 58.6 m. In other words, given the cons-
tant speed command vij with a value of 0.02 m s−1, path ΓA takes 6235 s (equivalent
to 1 h 43 min 55 s) and path ΓB takes 2930 s (equivalent to 48 min 50 s). By using the
second locomotion mode the rover could save in this scenario, given the initial and
goal positions, 40.17 % of energy and 53.0 % of time. This is the same conclusion
extracted from a similar example given at the end of Chapter 3, where there are as
well two kinds of terrain and a reconfigurable rover. In that chapter, Figures 3.6 and
3.9 detail such example but without making an insight into the numerical results.

The next scenario is similar but is based on a different distribution of terrain
areas, uses more origin points and contains obstacles. A 3d representation of this
terrain can be seen in Figure 6.4a. Being close to the facilities of ESA-ESTEC1, this te-
rrain resembles a Martian landscape, including craters. Through drone imagery and
photogrammetry techniques, an elevation map is constructed. The simulation tests
using this terrain were implemented using MATLAB and the code can be found in
an online repository 23. The planning done here serves as the Global Path Planning
(GPP) for the DyMu algorithm, producing long traverses as a result. One of them is
later used to test the Local Path Repairing (LPR). For this reason, the total cost in this
case was calculated with respect to the goal, i.e. T(x̃ij, x̃g). The resolution Λ of the
Digital Elevation Map (DEM) shown in Figure 6.4b is 1 meter. To determine which
nodes are obstacles, the slope gradient αij is calculated using (3.4) and the elevation
Zij shown in Figure 6.4b. All those nodes with a value of slope gradient higher than
a threshold of 15° are considered obstacles.

Similarly to the previous simulation test, here two custom different terrain areas
were defined: Rough and Soft. They share the same properties as the terrains used
in the previous simulation and detailed in Table 6.3. Figure 6.5a shows how these
terrains are distributed. Around those nodes labelled as obstacles, there is a third
type of terrain. It has a higher cost than the other two types as it uses the risk func-
tion rij, which serves to make paths go further from obstacles. This risk function is
integrated into the cost function as expressed in (6.2). The value it returns is indi-
cated in Table 6.3. The risk function rij serves to compensate for the discontinuity
between the traversable and the non-traversable costs. This is useful to avoid do-
ing the gradient descent method near obstacle nodes, where the calculated values of
total cost degenerate because of the discontinuity.

C(x̃ij) =
P(L, ρij, σij, αij)

vij
+ rij , L = {nd, ww} (6.2)

As images like those provided by THEMIS are not as precise as the ones from
HiRISE (around 100 meters per pixel instead of 1) the custom distribution is not too
much detailed. Similarly to the simulation carried out using the previous scenario,

1DMS Coordinates: 52°12’55.0"N 4°25’39.1"E
2https://github.com/spaceuma/ARES-DyMu_matlab
3https://github.com/ESA-PRL/planning-path_planning

https://github.com/spaceuma/ARES-DyMu_matlab
https://github.com/ESA-PRL/planning-path_planning
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(a) 3d model using an orthonormal image as texture.

(b) Digital Elevation Map.

FIGURE 6.4: Overview of virtual models describing the shape of the
experimental terrain located near ESA facilities.

two cases were considered: one with only Normal-driving (L = {nd}) and another
with both Normal-driving and Wheel-walking (L = {nd, ww}). The total cost gained
by having Wheel-walking against not having it is represented in Figure 6.5b as a
percentage with respect to having only one locomotion mode. In other words, this
figure depicts the reduction in the total cost calculated for the reconfigurable rover in
comparison with the total cost for the common rover that only uses Normal-driving.
It was expected to obtain this gain as the parameters chosen for the Soft terrain make
the power consumption function of Wheel-walking, Pww(ρij, σij, αij), return a lower
value than that of the Normal-driving Pnd(ρij, σij, αij) . Besides, this reduction in the
total cost also affects certain places of the Rough terrain. This is because of how the
Soft terrain is placed between the initial and goal positions. The location of these
positions and the resulting paths can be found in Figures 6.5c and 6.5d. Figure 6.5c
shows the paths generated from the planner that only considers Normal-driving. As
can be seen, most of the resulting paths must circumvent the Soft terrain as it is very
costly for the robot. This means the robot would need to drive longer distances than
in the other case with Wheel-walking. For the case of the reconfigurable robot, some
of the paths, those starting from the top side, traverse the Soft terrain. This is because
Wheel-walking reduces the associated cost to this kind of terrain. As a result, these
paths take less total cost and save up energy compared to the paths generated for a
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(a) (b)

(c) (d)

FIGURE 6.5: The distribution of the different terrains is shown in (a).
The FMM is executed twice: one considering just the Normal-driving
mode (c), L = {nd}, and other also taking the Wheel-walking mode
into account (d), L = {nd, ww}. In this way, the total cost to arrive at

the destination is reduced for some areas (b).

robot only capable to execute Normal-driving. This experiment demonstrates how
the proper modelling of the cost function to address multiple locomotion modes
allows finding better paths in scenarios with multiple kinds of terrain.

6.3 Local Path Repairing Tests

This section presents the details about the tests carried out to check the functioning
of the Local Path Repairing (LPR), introduced in Chapter 4. In particular, the results
from a simulation and field experiments are introduced. The simulation test was
carried out to analyze the Sweeping approach by executing the LPR in one of the
paths calculated in the previous simulation test. The field test consisted of a rover
autonomously navigating through a flat surface containing rocks and craters. This



112 Chapter 6. Experiments

FIGURE 6.6: Resulting Paths from the LPR simulation test using di-
fferent values of λ.

robot followed a series of pre-planned paths, dynamically updating them using the
Conservative approach of the LPR.

Sweeping Approach Simulation Test

The simulation test started with one of the paths computed in the previous section.
It is the path that can be found in Figure 6.5d in the bottom right. Some virtual ob-
stacles were placed with different sizes and arrangements along the way. Figure 6.6
depicts them along the path. They have a circular shape with values of radius from
0.25 m to 0.5 m. For computing the risk around the obstacles, the distance drisk was
set to 0.5 m. This distance complies with Equation (4.5), given that to extract the path
with the gradient descent method a step distance dstep of 0.4 m was used. Besides,
three different values of resolution λ were chosen to study its influence on the shape
of the resulting paths. These values are 0.05 m, 0.1 m and 0.2 m. Having into account
the value of resolution Λ of the global layer is 1 m, the values of local resolution λ

make each global node x̃ij subdivide into 400, 100 and 25 local nodes respectively.
Figure 6.6 shows the resulting paths after executing LPR and according to the chosen
value of λ. Those paths produced using a value of λ of 0.05 m are slightly smoother
than the others, finding even a shorter path in the fourth repairing as small gaps
between obstacles are addressed. A main drawback of using a finer resolution is
the increase in the computation processing that it entails. A numerical analysis is
provided in Figure 6.7 to support this statement. Figure 6.7a indicates for each case
the number of local nodes that are processed to perform each repairing operation.
As can be checked, the finer the resolution the higher this number of processed lo-
cal nodes. Besides, it is included in this figure an average of the processed local
nodes during the executions of the Risk Expansion process. Figure 6.7b presents a
plot indicating how many times per case the eikonal equation has been solved. As
in the previous plot, this number increases with the resolution of the Local Layer.
This number of times considers both the eikonal for the Risk Expansion defined in
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(a) Number of processed local nodes.

(b) Number of times eikonal is used.

(c) Execution time in seconds.

FIGURE 6.7: Results from the LPR simulation test. The shape of the
repaired paths after executing the LPR process 4 times is shown (a),
as well as information relative to the computational power used, in
the form of the number of processed nodes (b), the number of times
the eikonal equation is used in total and the elapsed time to do the

computation.

Equation (4.7) and the eikonal for the repairing itself in Equation (4.11). Figure 6.7c
indicates the execution time taken by the planner to calculate the solution for each
case and given the value of λ. The computer that was used to perform this test had
an Intel Core i7-7500 as CPU and 12 Gb of RAM memory. The version of MATLAB
used was R2017b. Table 6.4 indicates the same results for the GPP to compare the
two scales of planning. As can be denoted, the time to compute the GPP is an or-
der of magnitude higher than the LPR in general terms. For this reason, the GPP
is meant to be executed just once, at the beginning of the traverse, and even in an
offline way. The LPR can be executed more times and in real-time.
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(a) (b)

FIGURE 6.8: The Heavy Duty Planetary Rover (HDPR), shown in (a),
performing its traverse through the experimental field populated by

obstacles shown in (b).

Conservative Approach Field Test

The other approach of LPR, the Conservative approach, was tested using a rover
prototype, the Heavy Duty Planetary Rover (HDPR). Figure 6.8 shows images por-
traying this rover. It is a mobile robot with six active wheels, being four of them
steerable (the two at the front and the two at the rear). This rover is capable to per-
form Full-Ackermann manoeuvres, including the rotation at a fixed position (Point
Turn). Besides, its kinematic configuration is based on a rocker-bogie structure with
passive joints. A more detailed and insightful description about the characteristics
of this robot can be found in the work of Hewitt et al. (2018).

The field test in question was performed on the real terrain from which the 3d
model shown in Figure 6.4a is constructed. Figure 6.9a portrays an orthonormal
image of the setup. This test emulated an operation to command the rover to follow
a path previously defined, e.g. a path from the GPP using the DyMu architecture.
The rover found on its way obstacles that had to be autonomously avoided. Figu-
res 6.8b and 6.9a depict some of them. These obstacles were placed randomly over
the terrain and it was assumed that when the initial path was created such obstacles
were not taken into account. In fact, Figure 6.9b shows how the global layer from
the previous tests was used, with a resolution of 1 meter. Instead of opting for an
energy-minimization approach, in this particular case, the global path planning ope-
ration was executed based on distance minimization. This criterion is equivalent to
time minimization as the rover drove at a constant speed vij of 0.1 m s−1. Besides,
the reduction of the proximity to obstacles was also included as an extra criterion.
According to Table 3.1 in Chapter 3, the corresponding cost function is the one pre-
sented in (6.3).

C(x̃ij) =
1

vij
+ rij (6.3)
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(a) Orthonormal image of the experimental terrain
where the field test is executed.

(b) Original path and updates computed
during the field test.

FIGURE 6.9: Paths computed during the field test.

In this case, rij was defined as a penalization to prevent the rover from getting
close to inclined terrains. As a result, this function took the form expressed in Equa-
tion (6.4). Here, the penalization grows linearly by intervals of 5 degrees of slope
gradient αij (the maximum inclination of the terrain). Values of αij greater than 15
degrees are greatly penalized with a risk value of 120, which is a high value com-
pared to the cost C(x̃ij) at zero degrees of slope gradient. This cost on a flat surface,
according to (6.3), is 1/vij. Given the speed of the rover is 0.1 m s−1, the cost on a flat
surface takes the value of 10 s m−1.

rij =



αij, αij ∈ [0, 5]degrees

5 + 2(αij − 5), αij ∈ [5, 10]degrees

15 + 3(αij − 10), αij ∈ [10, 15]degrees

120, αij > 15degrees

(6.4)

The GPP produced the optimal path given the cost function in (6.3). This optimal
path is depicted using the green colour in Figure 6.9b. The rover HDPR followed the
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TABLE 6.4: Results from the execution of the GPP to produce the path
that is later repaired in Figure 6.9b.

Parameter Value

Visited Global Nodes 10522
Calculations of eikonal Equation 19929

Execution Time 0.2 s

TABLE 6.5: Results from the execution of the GPP to produce the path
that is later repaired.

Traverse
Initial

Path Distance [m]
Updated

Path Distance [m]

Figure 6.9 62.6 79.2 (+26.52 %)
Figure 6.10a 86.0 97.7 (+13.6 %)
Figure 6.10b 45.5 58.9 (+29.45 %)
Figure 6.10c 28.9 38.8 (+34.26 %)
Figure 6.10d 58.4 70.1 (+20.03 %)
Figure 6.10e 171.0 191.0 (+10.47 %)

path using a path tracking component based on an algorithm called Conservative-
Pursuit or C-Pursuit (Gerdes et al., 2020). This algorithm defines boundaries around
the path and prevents the rover from trespassing them, limiting in this way the ad-
missible tracking error. Moreover, the rover was equipped with an on-board per-
ception system based on a frontal camera. This system was capable to evaluate the
elevation of the terrain in the immediate few meters ahead of the rover (see Figure
6.8a). This system can detect any abrupt change in elevation and consider it as an ob-
stacle (Gerdes et al., 2020). Any obstacle detected in this manner was later mapped
onto the local layer whenever the LPR was triggered. This process generated local
waypoints each time it was called, re-connecting the position of the rover at that
moment with the original path. In Figure 6.9b the local sections made up by these
local waypoints are coloured in pink. The value of resolution λ chosen for these LPR
operations is 0.1 m. During this test there were 13 repairing operations executed in
real time. A recording of this experiment with HDPR driving and avoiding obstacles
is available online4.

In addition to that traverse, a few more were carried out, shown in Figure 6.10.
The scenario was the same but with different origin and goal positions and obstacle
arrangement. The computation times taken by the planner to perform each path
update are presented in Figure 6.11. The specifications of the onboard computer
where the DyMu planner was installed are the following: an Intel i7-6600U with
16 Gb RAM and Ubuntu 18.04 as the operating system. As can be denoted in that
Figure, the repairing operations were performed in the order of milliseconds, taking
the slower one less than 200 milliseconds. With this fact in mind, and considering the

4https://youtu.be/X4mihNTEVGw

https://youtu.be/X4mihNTEVGw
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(a)

(b)

(c)

(d) (e)

FIGURE 6.10: More traverses performed by HDPR during field tests.
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(a) Short traverse 1.
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(b) Short traverse 2.
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(c) Medium traverse.
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(d) Long traverse.
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(e) Mean and standard deviation of all traverses.

FIGURE 6.11: Showcase of the computation times that were taken by
the HDPR onboard computer to execute the Local Path Repairing. Fi-
gures (a), (b), (c), and (d) depict the values for all path updates along
the respective path. In (e), the computed mean and standard devia-
tion of each traverse is shown, together with the mean and standard

deviation of the computation times for all traverses.
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low speed of the rover, it can be concluded that the Local Path Repairing (LPR) can
be executed online, given the mentioned computer specifications. Table 6.5 details
the initial and updated distances of the planned path. This information gives an
idea of how the path length increases with the arrangement of obstacles presented
in Figure 6.10. For example, in the traverse shown in Figure 6.10c the density of
obstacles is higher, and hence the local waypoints take more distance to reconnect
with the original path. From these results the main conclusion extracted is that the
Conservative approach has the advantage of not requiring the global layer at all.
However, the repairing operations prioritize returning to the original path instead
of calculating new global waypoints as in the Sweeping approach, entailing more
distance to be driven by the rover.

6.4 Anisotropic Path Planning for Traversing Slopes

The purpose of the experiments that are introduced next is to check the use of the
anisotropic cost function Q(x̃ij, ~ψ), introduced in Chapter 5. The CAMIS cost func-
tions Ca(x̃ij), Cl(x̃ij) and Cd(x̃ij), previously introduced in (5.21), (5.22) and (5.23),
are used to model this anisotropic cost together with the dynamic model of locomo-
tion introduced in Chapter 2. In particular, here only the Normal-driving locomo-
tion is addressed to exclusively focus on analyzing the usage of the anisotropic cost
function on scenarios with slopes, rather than focusing on the reconfiguration capa-
bility. The results of two numerical simulations and one field experiment are here
presented. All the code used to produce the paths of all the tests was written using
the Python language and is available online5.

The bi-OUM algorithm was executed in the first simulation to produce a series
of paths in a scenario containing a crater. The purpose of this experiment is twofold.
First, it is of interest to analyze how the terramechanic functions introduced back in
Chapter 3 influence the performance of the anisotropic cost function to find energy-
minimizing paths. As a reminder, these functions are the specific resistance ρij and
the slip ratio σij. Moreover, the slope gradient αij and the aspect direction ~γij will
affect the existing anisotropy. The second objective of this simulation experiment is
to figure out how significant is the use of an anisotropic function in contrast with
an isotropic function, usable by the FMM and with much lower computational com-
plexity.

The second simulation test and the field experiment focus on the use of the roll
weight function wΦ

ij to penalize this orientation angle and minimize the lateral incli-
nation of the robot. This weight function is part of the CAMIS lateral cost Cl(x̃ij).
By increasing what wΦ

ij returns the roll minimization takes more significance. The
simulation aims to plan a series of paths given different expressions of this weight
function. Afterwards, the field experiment was carried out with the four-wheeled

5https://github.com/spaceuma/CAMIS_python

https://github.com/spaceuma/CAMIS_python
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(a) Selection of region from the DEM of a crater. The elevation used is half of the original.

(b) Elevation Map. (c) Slope Gradient Map.

FIGURE 6.12: Preparation of the map used for the simulation tests
with the anisotropic planner. It is based on the shape of a real crater

on the Martian surface. The resolution of the DEM is 1 m.

robot named Cuádriga. This is the robot whose technical specifications were consi-
dered to construct the cost functions in the simulations. Cuádriga, together with the
equipment used in the field test, is introduced and described in this section. This
robot tracked four of the resulting paths from the second simulation experiment
as a first attempt to land the use of the CAMIS functions into reality. In this way,
this field test served to clarify what were the main issues found and what is left for
future improvement. This section presents at the end the comparison between the
expected behaviour according to the plans produced using the CAMIS functions and
the recorded data describing what the robot experienced during the tests.

Energy Optimization Simulation Tests

The first simulation test with the anisotropic cost function was carried out using the
Digital Elevation Map (DEM) of a crater. This DEM is based on the shape of a real
crater located close to where the Spirit rover landed in Mars. The data was obtained
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from the High Resolution Imaging Science Experiment (HiRISE)6 repository and was
adapted to make it present slopes up to 20 degrees. The main reason to do this
is that the original presents too pronounced slopes that would be non-traversable,
and the key point in this simulation test is to have a large variety of traversable
inclined surfaces. Figure 6.12a shows the 80×80 m portion of elevation data that was
extracted from the original DEM. Figure 6.12b presents the elevation data describing
the shape of this crater together with some contour lines to ease the visualization.
The slope gradient that is calculated from this elevation, using Equation 3.4 for this,
is shown in Figure 6.12c for all the points in the map.

First of all, it is analyzed how the specific resistance ρij and the slip ratio σij influ-
ence the energy consumption estimation provided by the CAMIS cost function. It is
worth mentioning that, in a similar way to isotropic cost functions used by FMM, the
constant parameters that multiply the whole function, acting as gains, do not affect
the location of the waypoints of the resulting path. These parameters only modify
proportionally the values of total cost assigned to the nodes. Moreover, here the roll
weight function wΦ

ij is not taken into account, setting it to return a constant value of
1. This is done to decouple it from the rest of the parameters. The effects of wΦ

ij will
be addressed in later tests. Since the value returned by the specific resistance ρij can
be a real number higher than 0 and lower than 1, the simulation test is performed
using a discrete set of constant values of ρij: 0.15, 0.3, 0.45, 0.6, 0.75 and 0.9. In other
words, the planner several times, using one out of the six different values of ρij each
time for all nodes x̃ij ∈ Ω̃.

Ca(x̃ij) =
I(L, ρij, σij, αij)

vij
(6.5)

Cl(x̃ij) =
I(L, ρij, σij, 0)

vij
(6.6)

Cd(x̃ij) =


Rb(x̃ij), αij ∈ (αzero

ij − α∆, αzero
ij + α∆)∣∣∣∣∣ I(L, ρij, σij,−αij)

vij

∣∣∣∣∣ , otherwise
(6.7)

With regards to the slip ratio σij, it is defined after two models constructed from
experimental data and introduced by Sutoh et al. (2015). These models were con-
structed from two locomotion subsystems: one using wheels and another using
tracks. These two mechanisms were tested on an inclined sandbox, making them
work with lunar regolith simulant (Wakabayashi et al., 2009). Figure 6.13 depicts the
two functions of slip ratio σij that depend on the slope gradient αij. Moreover, they
are expressed in Equation (6.8). With the increase of this slope gradient, both slip
ratio functions return higher values for both models, but at different rates. The slip
ratio of the Wheel model increases faster than that of the Track model.

6http://www.uahirise.org/dtm/dtm.php?ID=ESP_023957_1755 Accessed on 6th December 2021

http://www.uahirise.org/dtm/dtm.php?ID=ESP_023957_1755
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FIGURE 6.13: Slip ratio function of the two models (Wheel and Track)
found in the literature (Sutoh et al., 2015), used in the numerical sim-

ulation tests.

σij =

0.07e0.1αij i f Wheel Model

0.04e0.07αij i f Track Model
(6.8)

In this way, there are six constant values to define the specific resistance ρij and
two functions that depend on αij to define the slip ratio σij. Moreover, it is here
created an isotropic cost function that is used by a bi-directional version of the FMM.
In fact, bi-FMM is equivalent to bi-OUM but with the anisotropy Υ(x̃ij) fixed to one,
i.e. isotropic. This isotropic cost function takes the highest value of cost from the
anisotropic cost function for each value of slope gradient αij. In other words, the
expression for the isotropic cost function C(x̃ij) is equivalent to the CAMIS ascent
cost Ca(x̃ij) as shown in (6.9).

C(x̃ij) ≡ Ca(x̃ij) (6.9)

For a better understanding of how the anisotropic and isotropic cost functions
are defined in this simulation test, Figure 6.14 is provided. It contains four subfigu-
res, each of them corresponding to a certain configuration of a cost function. Each
subfigure is made up of three images. The left image is a 3d view of the cost function,
where the below plane is formed by the axes parallel to the ascent-descent and the
lateral directions. As a reminder, the descent direction is coincident with the slope
aspect direction ~γij. The vertical axis corresponds to the slope gradient αij. In this
way, the cost from 0 (coloured in blue) to 20 (coloured in red) degrees of αij is defined
for all directions relative to the slope aspect. The second image, placed in the middle,
depicts the inverse of the cost. It shows the shape of the ellipses that result from each
value of slope gradient αij, using the same scale of colours as in the left image. The
right image is a plot showing either the CAMIS functions or the isotropic cost func-
tion, together with the anisotropy according to the slope gradient αij. Figure 6.14a
and Figure 6.14b correspond to the case where ρij = 0.15 and the slip ratio model is
the Wheel one. The difference between them is that the first one uses the anisotropic
cost function while the second uses an isotropic one. As can be checked, the cost
of the isotropic is equal for all directions of the robot, while in the anisotropic case
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(a) ρij = 0.15, Wheel model, anisotropic
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(b) ρij = 0.15, Wheel model, isotropic
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(c) ρij = 0.3, Wheel model, anisotropic
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(d) ρij = 0.3, Track model, anisotropic

FIGURE 6.14: Values of cost returned by each anisotropic cost func-
tion.
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there are differences according to this direction. For values of αij close to 20 degrees,
the inverse of the anisotropic cost takes the shape of an elongated ellipse, while the
isotropic cost remains as a circle. In the isotropic case, this circle becomes smaller as
the slope gradient increases, while in the anisotropic case this inverse shrinks in the
ascent-descent directions, where the relative angle β(~ψ,~γij) between the heading ~ψ

and the aspect ~γij directions is either 0 or 180 degrees. Figures 6.14c and 6.14d show
the anisotropic cost function with ρij and each of them using a different slip model.
The first uses the Wheel model, while the second uses the Track model. As can be
checked, the cost in the first one is higher in the ascent and descent functions (see
right images) due to the higher values of slip ratio (see Figure 6.13), while the lateral
cost remains the same. This also creates a different anisotropy for values of slope
gradient close to 20. The difference in anisotropy is more significant by comparing
Figures 6.14a and 6.14c, where an increase in ρij entails higher anisotropy.

With the defined anisotropic and isotropic cost functions based on different con-
figurations of terramechanic functions, a series of paths were planned. Figure 6.15a
depicts these paths connecting two locations of interest: the origin x̃o = xo and the
goal x̃g = xg. As can be seen, those paths created with low values of ρij, between 0.15
and 0.3, go through different places than the rest. The isotropic cost functions with
low ρij get further from the slopes and surround the crater, taking more distance to
reach the goal. The paths with low ρij and generated using an anisotropic planner,
bi-OUM, traverse laterally the slopes, keeping the same elevation. This is because
although the ascent and descent costs are high, the lateral cost is still lower (see Fi-
gure 6.14a) and the anisotropic planner acknowledges this difference in the cost. To
do a deeper insight into how the total cost function is calculated, Figures 6.15b and
6.15b depict the solution calculated by two configurations: one anisotropic and one
isotropic. The paths with anisotropic cost are calculated using bi-OUM, while bi-
FMM is used with those using an isotropic function. As a side note, the grid Ω̃ used
in all cases is a hexagonal regular one, with a resolution Λ of 0.5 m. In Figure 6.15b
the bi-OUM makes the wave propagation from the origin enter the crater. This is
because it acknowledges the descent cost that is cheaper than the lateral and ascent
costs as also seen in Figure 6.14c. On the contrary, the bi-FMM uses the isotropic cost
from (6.9) that prevents the wave from propagating towards the crater slopes, as it
does not address the differences in cost according to direction. For this reason, in the
anisotropic case (with ρij = 0.3 and using the Wheel model) the path traverses the
crater, while the isotropic planner finds another path that circumvents the crater by
sticking to horizontal surfaces as much as possible.

Tables 6.6 and 6.7 disclose the values of certain metrics for each configuration
used. The first row refers to the number of times the total cost of a node has been
updated, either using the explicit equation of the eikonal, expressed in (3.32), for
the isotropic case with bi-FMM or the semi-lagrangian approach from (5.8) and (5.9)
for the anisotropic case with bi-OUM. This metric gives an idea about the computa-
tional load of the planner when calculating the solution using both algorithms. As
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(a) 3d view of the scene with the resulting paths.
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(b) ρij = 0.3, Wheel model, anisotropic.
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(c) ρij = 0.3, Wheel, isotropic Model.

FIGURE 6.15: Results from the first test using anisotropic and isotro-
pic cost functions. The resulting paths connecting two locations, x̃o to
x̃g, are depicted (a). The origin is located at (10 10) m while the goal is
at (55 50) m. Note that the 3d view is rotated to provide a better per-
spective of the obtained paths. The total cost calculated by bi-OUM

(a) and bi-FMM (b).
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TABLE 6.6: Results of the first anisotropic test with the Wheel model.
Each algorithm is executed using its bi-directional version. The first
row is the number of times a total cost is updated for a node. The
second row is the total cost estimated by the planner. The third row
is the corresponding total cost after integrating the anisotropic cost
function along the resulting path, even for those paths obtained using
bi-FMM. The fourth row is the error commited in the estimation with

respect to the result from the integration.

ρij = 0.15 ρij = 0.3 ρij = 0.45 ρij = 0.6 ρij = 0.75 ρij = 0.9
OUM FMM OUM FMM OUM FMM OUM FMM OUM FMM OUM FMM

Number of
total cost
updates

2070887 101127 1750304 117766 924924 118931 625111 116964 517636 115774 471823 115053

Estimated
total cost
[A s m−1]

104.90 157.01 200.60 282.78 297.96 392.35 400.99 496.55 499.34 597.62 599.35 704.95

Evaluated
total cost
[A s m−1]

108.55 122.91 199.60 241.09 298.07 303.09 398.28 404.07 498.65 503.58 598.22 604.25

Evaluation
error [%]

-3.48 21.71 0.50 14.74 -0.03 22.74 0.67 18.62 0.13 15.73 0.18 14.28

TABLE 6.7: Results of the first anisotropic test with the Track model.
Each algorithm is executed using its bi-directional version. The first
row is the number of times a total cost is updated for a node. The
second row is the total cost estimated by the planner. The third row
is the corresponding total cost after integrating the anisotropic cost
function along the resulting path, even for those paths obtained using
bi-FMM. The fourth row is the error commited in the estimation with

respect to the result from the integration.

ρij = 0.15 ρij = 0.3 ρij = 0.45 ρij = 0.6 ρij = 0.75 ρij = 0.9
OUM FMM OUM FMM OUM FMM OUM FMM OUM FMM OUM FMM

Number of
total cost
updates

1987053 107034 1644090 117920 881299 115064 600728 114301 488151 116146 435266 115957

Estimated
total cost
[A s m−1]

100.21 150.33 183.35 259.91 272.94 354.56 365.26 448.82 457.44 543.09 551.74 637.27

Evaluated
total cost
[A s m−1]

102.04 117.94 182.73 186.08 273.27 277.62 365.33 369.91 457.12 462.12 550.79 554.95

Evaluation
error [%]

-1.82 21.54 0.33 28.40 -0.11 21.69 -0.01 17.58 0.06 14.90 0.17 12.91



6.4. Anisotropic Path Planning for Traversing Slopes 127

can be denoted, the values in the anisotropic case with bi-OUM are much higher
than those calculated using bi-FMM. This corresponds more or less with the compu-
tational complexities of each algorithm, where the OUM is proportional to the FMM
but several times higher in the function of the anisotropy. Figure 6.16a indicates how
many times the bi-OUM updates the values of total cost with respect to the number
of times taken by the bi-FMM. As can be checked in this Figure, for low values of
specific resistance ρij the number of updates is around 20 times higher than in the
isotropic case. This is because, as discussed before regarding the plots in Figure 6.14,
the anisotropy increases as the specific resistance is lower, especially when it gets
close to zero. As can be also noticed in both tables, this very high anisotropy also
produces more error in the total cost that is initially estimated by the planner and
the result from integrating the anisotropic cost function along the path. With ρij, for
the Wheel model case, this error is −3.48%, while for the Track model this error is
−1.82%. The errors in the FMM cases are much higher because the initial estima-
tion did not account for the differences in the cost according to the robot direction,
as the cost function used was isotropic. Although the computational load is much
higher for the case of bi-OUM, it produces paths that save up more total cost (i.e.
more energy) than those paths produced by bi-FMM. However, the significance of
this reduction in the total cost varies with the specific resistance. For lower values
of this terramechanic function, the reduction is higher, as demonstrated in Figure
6.16b. This reduction is calculated according to the values provided in the tables
using Equation (6.10). For ρij this reduction is close to −13% for the Wheel model
and −15% for the Track model. For values of specific resistance ρij between 0.15
and 0.45, there is some significant difference between the models. The reduction in
the Track model decreases rapidly until being around −2.5%. On the contrary, the
Wheel Model at ρij = 0.3 experiences a reduction of around −20.0%.

Reduction[%] =
OUM evaluated Total cost− FMM evaluated Total cost

FMM evaluated Total cost
× 100

(6.10)
After thoroughly analysing these results, it is concluded that the use of the aniso-

tropic cost function in scenarios with terrains presenting a specific resistance higher
than 0.45 is not recommended. This is because the reduction in the total cost with
respect to the isotropic case is not worth the increase in the computational load of
the planner. For values of specific resistance lower than 0.45, the slip ratio will de-
termine whether the reduction is significant or not. The Wheel model increases the
ascent and descent cost functions at a rate higher than the Track model, and this is
why in Figure the reduction of around −20.0% for ρij = 0.3. If the specific resistance
is around 0.15 the reduction is still significant. However, special care must be taken
to the high computational load as well as the increase in the errors in the estimation
of the total cost made by the planner, which can be reduced by refining the grid.
Nevertheless, refining the grid also entails even more computational load as more
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FIGURE 6.16: Comparison between the use of bi-OUM and bi-FMM
to plan paths on inclined surfaces. The number of times the total cost
is updated serves to check the computational load of both approaches
(a). The omission of the information in the descent and lateral direc-
tions of the isotropic cost function used by bi-FMM is relevant or not

according to the terramechanic parameters (b).

nodes have to be visited. Therefore, it is up to the user to decide if it is worth it
or not. For example, for the case in which this planning is carried out offline, this
may not be a problem, but it may be intractable for online planning in the onboard
computer of a robotic vehicle.

Experimental Setup

The simulation and field tests that are presented later in this section are based on
a real experimental setup. A DEM is taken out of a terrain presenting slopes using
photogrammetry software and geo-referenced aerial imagery. This terrain, part of
a dedicated 90000m2 outdoor experimental area located at the University of Malaga
campus, is shown in Figure 6.17. This is an off-road unstructured scenario that is
meant to be used for emulating Search and Rescue operations and testing novel
robotic solutions. The Chair of Safety, Emergencies and Disasters at the University
of Malaga organizes yearly exercises in which a large-scale disaster response is sim-
ulated (Mandow, Serón, et al., 2020). The terrain in question is selected because it
has a slope that proves useful to test anisotropic path planning. Figure 6.17d shows
a virtual reconstruction of this terrain, a 3d model built with the Pix4Dmapper soft-
ware (version 4.6.4) (Barbasiewicz et al., 2018). This software is known for creating
3d models of terrain from georeferenced imagery. The area covered by the aerial
imagery has an extension of 0.012 square kilometres, with a resolution of 0.56 cm
per pixel on average. With an RTK GNSS Emlid Reach M+ module the model was
rectified to reduce the error location. This module was connected to the Andalu-
sian Positioning Network (RAP) (Páez et al., 2017) and provided an RTK accuracy
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(a) Panoramic view of the slope considered for the tests.

(b) View of half of the slope. (c) View from the other side.

(d) Screenshot showing the 3d model built using the Pix4Dmapper software, together with red arrows
indicating the location of the four points of interest used in the tests.

FIGURE 6.17: Showcase of pictures showing the terrain using diffe-
rent perspectives (a)(b)(c) and a screenshot of Pix4Dmapper showing

its virtual reconstruction (d).
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(a) Frontal view of Cuádriga robot. (b) Rear view of Cuádriga robot.

FIGURE 6.18: The skid-steering four-wheeled Cuádriga robot.

TABLE 6.8: Specifications of the Cuádriga robot

Parameter Value

Mass 83 kg
Height 0.81 m
Battery 36 V

Capacity 24 Ah
Controller Roboteq model AX1500

Current Sensor ACS754 board + Arduino AtMEGA board
Localization Sensor RTK GNSS Emlid Reach M+

of 10 cm and even less. The rectification allowed the removal of 2.8 m of the wrong
displacement in the UTM-Y axis. Next, with the Pix4Dmapper software, the point
cloud was processed and a regular square grid was obtained, having a resolution of
0.1 m. This square grid was later reformatted as a hexagonal grid with a resolution
Λ = 1m.

The CAMIS functions Ca(x̃ij), Cl(x̃ij) and Cd(x̃ij) are built for a robot in particu-
lar. This robot is Cuádriga, a four-wheeled platform that drives using skid-steering
locomotion. This means each pair of wheels receives a single-speed command. Fi-
gure 6.18 shows the pictures of this robot, one of its frontal side (Figure 6.18a) and
another of its rear side (Figure 6.18b). Cuádriga was built at the University of Malaga
as an experimental mobile testbed to perform inspection and recognisance tasks in
disaster response tests. It is also used to validate algorithms and methods for map-
ping and autonomous navigation (Martinez et al., 2013). Table 6.8 presents some of
the specifications of this robot. More data about this robot can be found in the work
of Jesús Morales et al. (2010).

As a preliminary step, some runs with the robot were made on slopes close to
the terrain used for the experiments. One of these slopes can be seen in Figures
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(a) Cuádriga climbing a slope.

(b) Cuádriga descending the same slope.
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(c) Samples of energy per distance obtained from preliminary drives of Cuádriga.
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(d) Samples of slip ratio σij obtained from preliminary drives of Cuádriga.

FIGURE 6.19: Extraction of ρij and σij based on preliminary drives
of Cuádriga. The plots (b) and (c) are accompanied by histograms
that indicate the density of samples along the slip ratio (vertical) and
pitch (horizontal) axes. The pitch Θ is negative when the robot is

ascending.
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6.19a and 6.19b, with Cuádriga driving on top of it. By interpolating the position
of the robot on the DEM its orientation was calculated. Figure 6.19c illustrates the
recorded current consumption with the pitch angle at the moment each sample was
taken. The reference frame of the robot has the X-axis pointing to the front, while the
Z-axis points upwards. Using this convention, the negative values of pitch mean the
robot is ascending. From the recorded current data, it is clear the current consump-
tion increases when the robot ascends and decreases when it descends. Besides,
from this data it is estimated a value of 0.45 for the specific resistance ρij. Other rele-
vant parameters are the speed (0.5 m/s), the fraction mbdr/Kw (2.43 A·s2/m) and the
gravity acceleration g (9.8 m/s2). Figure 6.19d depicts the slip ratio recorded data.
It is negligible and hence, σij is set to 0. The main justification for this is that the
soil in this terrain is compact, which makes the wheels adhere better to the surface.
Since the slip effects are not significant and the value of ρij is far from zero, it could
be deduced at first that CAMIS in this case would not be necessary for energy mini-
mization purposes, as it was demonstrated in the previous simulation that the gain
is not worth the increase in the computational load, especially when the slip ratio is
as low as zero. However, another criterion may still justify the use of an anisotropic
cost function for navigating in irregular terrains: the minimization of roll angle to
preserve lateral stability.

Roll Minimization

Prior to the field tests, some simulations were carried out to demonstrate how the
roll is minimized. The roll weight function wΦ

ij affects the cost function and serves to
penalize the angle of roll Φ in the overall planned course when there are slopes. In
this simulation test, it is checked how by varying wΦ

ij the resulting path is modified,
either to go parallel to the direction of the slopes or traverse them diagonally. As
stated before, this is key to preventing the robot from turning over. The map used
for this simulation is based on a portion of the DEM depicted in Figure 6.17. Four red
arrows are placed in Figure 6.17d to mark the location of the points that will serve
for both origin and goal positions of the test. Two of them are placed on the lower
area while the other two are placed on the higher area. Figure 6.21 also indicates,
together with the resulting paths that will be later explained, these four locations,
referred to as xa, xb, xc and xd. The information about how the slope gradient αij

and the aspect direction ~γij are defined on each position of the terrain is illustrated
in Figures 6.20a and 6.20b respectively.

The paths depicted in Figure 6.21 and connecting the four locations of interest
were generated based on different configurations of the roll weight function: wΦ

ij =

1, wΦ
ij = 1 + 3 tanαij and wΦ

ij = 1 + 6 tanαij . These expressions are formulated in
that way to be linear with the gradient αij, as depicted in Figure 6.22. All the paths
were planned following two sequences that made them pass through all points of
interest. Both sequences are indicated in Figure 6.21, informing about from which
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(a) Values of slope gradient αij.
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(b) Values of aspect angle.

FIGURE 6.20: Slope data describing the shape of the experimental
terrain after smoothing the DEM with an average filter.

X 
[m

]

0

5

10

15

20

25

Y [m]

0

5

10

15

20

25

Z [m
] 54

55
56

57
Xa

Xb

Xc

Xd

Xa⇒Xb⇒Xc⇒Xd⇒Xa

w = 1

w = 1 + 3tan

w = 1 + 6tan

Xa⇒Xd⇒Xc⇒Xb⇒Xa

w = 1

w = 1 + 3tan

w = 1 + 6tan

54 55 56 57
Elevation [m]

FIGURE 6.21: Paths traversing the slope with certain configurations
of weight values. Here wφ = wΦ

ij and the positions of interest are grid
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FIGURE 6.22: Roll penalization functions used to minimize the roll
angle.

FIGURE 6.23: Orientation angles produced by each round-trip travel
from the three models.

point to which point the path goes. Each path connecting two points of interest
necessarily makes the robot either ascend or descend the slope in the middle.

The value returned from the roll weight function is equal to one whenever the
slope gradient αij is zero. When αij increases, two of the proposed roll weight func-
tion increase as well, but at different rates (see Figure 6.22). As mentioned, the op-
tions tested in this simulation are formulated so they are approximately linear ac-
cording to αij. However, there is still room for many other kinds of expression to de-
fine the roll weight function (polynomial, using other trigonometric operations, ...).
These other options make the weight function increase at different rates, but they are
not considered here and are left for future work. An important fact to have in mind
is that this rate affects how the paths are more or less parallel to the slope aspect di-
rection. Figure 6.23 plots the expected orientation angles of the robot for each of the
sequences of paths and all options of wΦ

ij . As can be seen, the roll angle is reduced
along the traverse, although the elapsed time increases with the weight function.
Therefore, a trade-off arises between minimizing roll and not driving longer dis-
tances, spending more time. Figure 6.24 plots the distance accumulated by all paths
where the roll is higher than a threshold denoted by the X-axis. Here, the planner
using wΦ

ij = 1 + 6 tanαij only accumulates distance with roll under 4 degrees, mean-
ing the robot would keep its value of roll under that value in all paths.
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FIGURE 6.24: Traversed distance with an absolute value of roll Φ
higher than the threshold indicated in the horizontal axis.

Field Tests

The next and final test was performed with the Cuádriga robot on the real terrain
depicted in Figure 6.17. The main purpose of this test is to detect what the use of
CAMIS with an anisotropic path planner is missing when being landed onto reality.
Cuádriga was commanded to follow some of the calculated paths from the previous
simulation. The paths in question are those that were generated using the roll weight
function wφ

ij = 1+ 6 tanαij . These paths connect xa with xd and xb with xc. Such paths
go in two ways, meaning that Cuádriga went from xa to xd and thereafter from xd to
xa. The same for the paths between xb and xc. The complex dynamics of the Skid-
steering locomotion, together with the path tracking controller, are sources of error
that will be revealed in the experiments, as they were not addressed when planning
the paths. This is significant considering the paths take lengths of approximately
15 to 25 meters. The focus is put on the current consumption of the robot and the
orientation angles it experiences while following the paths.

Figure 6.25 illustrates the planned paths, the position samples of Cuádriga mea-
sured while it was driving and the four points of interest xa, xb, xc and xd. This figure
depicts a 3d photo-realistic reconstruction of the area where the experiments were
carried out. The trajectories Cuádriga did are close to the planned paths, thanks to
the use of a tracking algorithm called Pure-Pursuit (S. F. Campbell, 2007). This al-
gorithm was implemented on the Cuádriga onboard computed using the LabView
software. Its look-ahead distance was set for all experiment runs to 2 meters and
the speed commanded to the robot to 0.5m/s. The orientation of the robot was esti-
mated based on the readings of the RTK GNSS Emlid Reach M+ module equipped by
the robot and their interpolation on the DEM depicted in Figure 6.17d. The execution
of these experiments was recorded and can be accessed online7. Cuádriga followed
each of the paths twice and, in each execution, it started from a position slightly
far from the origin position. This was made to avoid recording the high current con-
sumption that occurs when the robot starts its movement. Besides, in each execution

7https://youtu.be/vJx_v2GRlSc

https://youtu.be/vJx_v2GRlSc
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FIGURE 6.25: Paths resulting from the second test with anisotropic
cost and the placement of the position samples of Cuádriga, mea-

sured with a RTK GNSS antenna.
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(a) Comparative of the orientation angles be-
tween the estimate of the planned paths and the
experimental results from two executions with
Cuádriga. The raw experimental data has some
transparency, while the solid line is the smoothed

average of both executions.
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(b) Comparative analysis of the cost/speed be-
tween the estimate of the planned paths and the
experimental results from two executions with
Cuádriga. The raw experimental data has some
transparency, while the solid line is the smoothed

average of both executions.

FIGURE 6.26: Comparative analysis of the orientation angles and the
cost between planning estimations and Cuádriga experience.
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Cuádriga stopped at a distance coincident with the Pure-pursuit look-ahead to the
goal position.

Figure 6.26a presents a comparison of the orientation angles that were foreseen
according to the planned paths and those experienced by Cuádriga in the experi-
ments. The recorded data from the two executions per path (with some transparency
in the figure) was averaged and smoothed using a moving mean filter. The two com-
pared orientation angles are the pitch Θ and the roll Φ. It is recalled here that given
the local reference frame of the robot the negative values of pitch indicate the robot is
ascending, while it descends on the contrary case. Besides, if the roll is negative this
means the robot is inclined towards the left side, while it is inclined towards the right
side in case the roll is positive. The elapsed time in the X-axis is adjusted so the zero
starts when the robot reaches the initial position. As mentioned, the robot stops a
certain distance from the goal position and this can be noticed in Figure 6.26a. From
the presented results in this comparative, it seems the pitch angle experienced by
Cuádriga is close to the foreseen angle. However, the experienced roll angle slightly
varies from the expected one, with more pronounced deviations in the paths be-
tween xb and xc. This is more clear in Tables 6.9 and 6.10. The former presents the
mean absolute error (MAE) and the latter the root mean squared error (RMAE) of
the recorded data. This error analysis highlights that the roll has a higher error than
the pitch. The main reason this happens is that the planned paths create too pro-
nounced curves when entering the slope. This is because of how the cost abruptly
changes from isotropic to heavily anisotropic. The Pure-Pursuit cannot, with the va-
lues of look-ahead and speed set, make the robot perform those pronounced curves
and therefore some tracking errors arise. This is easier to check in Figure 6.25 in the
path where the robot starts from xa and goes to xd. Since the robot, when it attacks
and leaves the slope, makes a smooth turn the angle of roll experiences an increase.

Figure 6.26 depicts the current consumption per meter, obtained after dividing
the current consumption by the robot speed, experienced by Cuádriga and com-
pared to the plan prediction. The high consumption at the beginning of the xd to
xa traverse is due to the robot starting in that particular case from the origin posi-
tion with initial zero speed, instead of a few meters before reaching it. As can be
checked, the descent prevision is more accurate than the ascent, an affirmation that
is supported by the error analysis presented in Tables 6.9 and 6.10. The existing in-
accuracy may be caused by the differences in the terrain conditions when creating
the cost function and when performing these tests. For example, the presence of
vegetation and the pressure of the wheel may have been different. Moreover, when
the robot enters and exits the slope the consumption is higher. This is more clear in
the xc to xb traverse. This is probably due to the turning cost of the vehicle, which
uses Skid-steering, and was not considered in the anisotropic cost function.

From the last experiments, it can be concluded that landing CAMIS to reality
is promising to produce plans for long traverses where keeping the robot parallel
to the slope directions is a priority. At a local scale, CAMIS should be refined to
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TABLE 6.9: Mean Absolute Error (MAE) of experimental data results
with respect to planned data

xa ⇒ xd xd ⇒ xa xb ⇒ xc xc ⇒ xb Total

Roll [deg] 1.35 0.72 1.05 1.62 1.21

Pitch [deg] 2.10 1.21 0.99 1.27 1.41
Energy per
meter [As/m]

7.87 4.26 4.34 7.13 6.02

TABLE 6.10: Root Mean Squared Error (RMSE) of experimental data
results with respect to planned data

xa ⇒ xd xd ⇒ xa xb ⇒ xc xc ⇒ xb Total

Roll [deg] 1.83 0.90 1.59 2.29 1.76

Pitch [deg] 2.96 1.88 1.34 2.36 2.25
Energy per
meter [As/m]

10.81 7.27 5.41 10.58 8.99

address the constraints in dynamics imposed by the locomotion subsystem as well
as the errors that may be produced by the path tracker.

6.5 Summary and Conclusions

This chapter presents the results from the experiments carried out to validate the
thesis contributions disclosed in previous chapters. In particular, three of the contri-
butions were validated, each of them corresponding to a different improvement in
the use of PDE solving algorithms for path planning.

The first contribution, the use of a cost function based on the dynamic modelling
of two locomotion modes, was validated by running simulations on two scenarios.
The first scenario presents a customized terrain distribution. It serves to highlight
the advantage of using a reconfigurable rover along with a planner that leverages
its different locomotion modes. The results from this simulation test confirm this
statement. The FMM was executed to find energy-minimizing paths. The conside-
ration of an alternate mode of locomotion exploited the higher adaptability of the
reconfigurable rover and let the path planner find a path that demanded less energy.
Besides, the obtained results serve to validate the formulation of an isotropic cost
function that employs dynamic models of two locomotion modes. The second sce-
nario introduces more complexity by combining different terrains with obstacles and
producing a series of paths from different positions. It served as a reaffirmation of
the conclusions from the previous test but this time considering obstacles in the cost
map. It was analyzed, for every grid node, what was the reduction in the total cost
from having available only one locomotion mode to having two.

Later on, another simulation test and a field test serve to validate the second con-
tribution of this thesis. One of the paths computed in the previous simulation test



6.5. Summary and Conclusions 139

was selected as the path to be repaired. Then, the functioning of the LPR using the
Sweeping approach is analyzed by simulation means considering different arrange-
ments of obstacles that are scattered on the path in question. The results show an
existing trade-off between the local layer resolution and the computational load of
the planner. The other approach, the Conservative, is studied with a rover prototype
on a real terrain containing obstacles to avoid. The results of the field experiment
clearly show how the rover always searches for a way to continue following the
original path minimizing the deviation due to the sudden detection and avoidance
of obstacles.

The simulation and field tests performed using the CAMIS functions for aniso-
tropic path planning have proven to be useful to clarify in which situations their use
is more advantageous than simply relying on isotropic cost functions when travers-
ing terrain that includes slopes. The first simulation focuses on using CAMIS for
finding the paths that require the least energy in a scenario modelled after a Mar-
tian crater. The main conclusion extracted from the results of this simulation is that
a high slip ratio produces not only higher cost in the ascent and descent CAMIS
functions but also high anisotropy. For scenarios containing slopes with less than
20 degrees of maximum gradient, terrains presenting a specific resistance of less
than 0.45 may justify the use of the CAMIS functions at the expense of increasing
the computational load. The second simulation serves to validate the use of the roll
weight function to minimize the roll. This function increases the cost in the lateral
directions given increasing values of slope gradient αij. In exchange of an increase
in the total cost (energy in this case), the roll weight function was demonstrated to
prioritize the preservation of the roll angle during the traverse of slopes by making
the paths go parallel to the slope aspect direction. Finally, some of the paths from
this last simulation were taken as a reference for the autonomous navigation of Cuá-
driga, a four-wheeled robot. Cuádriga traversed the same slope that was modelled
and used in the last simulation, tracking four of the resulting paths. The results that
were obtained from this field test reveal some difficulties encountered when landing
CAMIS on reality. They include the error produced by the path tracking component
and addressing omitted terrain features such as the roughness. Nevertheless, the
overall roll and energy consumption were relatively close to the expectations of the
planner, after making a comparison between the recorded data and the plan.





Chapter 7

Conclusions and Future Work

"And once the storm is over, you won’t
remember how you made it through,
how you managed to survive. You
won’t even be sure, whether the storm
is really over. But one thing is certain.
When you come out of the storm, you
won’t be the same person who walked
in. That’s what this storm’s all about."

Haruki Murakami
Kafka on the shore, 2002

7.1 Introduction

This text forms the seventh and last chapter of the thesis. This chapter provides the
reader with a series of conclusions extracted from the presented contents. Moreover,
it discloses at the end ideas that may be of interest to extend and/or improve the
thesis contributions in the future.

This thesis served to expose the work carried out to advance in the state of the
art of path planning in the context of ground exploration robots. The main motiva-
tion of this work appears many times throughout the text. This work targets robots
such as planetary rovers and robots for Search And Rescue (SAR) applications. The
autonomy of the rovers is growing as the number of missions to visit extraterrestrial
places increases. The autonomy of the SAR robots is of interest for future first re-
sponse operations in the wild. Chapter 1 explained the main justification to increase
autonomy. It is to remove the dependency on human intervention. In this way, a
robot can perform a larger number of tasks within a time window, such as exploring
a place. Part of the autonomy in navigation is path planning. The locomotion capa-
bilities and the awareness of the scenario play important roles in it. Besides, making
a planner account for the irregularities in the terrain is a valuable asset. This thesis
introduces improvements in path planning to better acknowledge all these features.
These improvements make up the first three contributions. As a reminder, Chapter
1 introduced a total of five contributions. The first three of them are the core of this
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thesis, advancing the state of the art in path planning. Chapters 3, 4 and 5 detailed
them. Chapter 6 presented the fourth contribution. It displayed details about the
making of experiments with real prototype mobile robots. These details described
the creation of setups to land algorithms from simulation to reality. The results pre-
sented confirmed the premises of the second and third contributions. Chapter 2
presented the fifth contribution. It is a classification of the existing path planning
algorithms. An exhaustive and comprehensive survey of them led to making this
classification.

This chapter comprises two parts. First, Section 7.2, recaps the contributions
presented throughout the previous chapters. Second, Section 7.3 discloses ideas for
future improvements.

7.2 Thesis Conclusions

The contributions of this thesis constitute a major step in improving the autonomy
of mobile robots. Most of the existing PDE planners were only tested within sim-
ulation environments. Landing them into reality is a necessary step to identify the
main problems a path planned should be aware of. As inquired in the first chap-
ters, efficiency can be critical. It is crucial in extreme applications such as planetary
exploration and Search And Rescue (SAR).

This thesis presented advances in several key research lines. Three of them are as
follows. First, making a planner aware of the adaptability of reconfigurable robots.
Second, managing the scenario uncertainty with information from many sources.
Third, modelling the effect of gravity on the traverse of slopes. This section provides
next a summary of the main conclusions extracted for each of the different contribu-
tions.

Contribution 1: Optimal path planning considering multiple locomotion modes.

Chapter 3 explains the first contribution of this thesis. Besides, Chapter 6 details sim-
ulation experiments that support it. This contribution rests on the use of dynamic
models of different locomotion modes. These models are combined into a single cost
function. This function tackles the mobility skills of mobile robots able to reconfigure
their locomotion. As a result, this cost function allows them to adapt better to the te-
rrain conditions. In particular, Chapter 3 introduces two modes: Wheel-walking and
Normal-driving. Each of them is, according to the proposed model, more suitable
for different values of terramechanic parameters. The models were built based on
wheeled-leg rovers. From the results of the simulations it is deduced that Normal-
driving is suitable in energetic terms for terrains with low specific resistance ρij and
low slip ratio σij. On the contrary, for terrains with higher ρij it is more efficient the
use of Wheel-walking locomotion. The exact values to switch between modes are
determined by the dynamic configuration of the robot. The path planner generates
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an energy-efficient path based on these modes. Moreover, it determines which loco-
motion mode is better to reach every waypoint. The simulation results prove how
the acknowledgement of both modes allows for finding even shorter paths. This
is thanks to recognizing the increase in adaptability. The cost function was built
according to the specifications of a real reconfigurable rover. Preliminary dynamic
models created via simulation tools served as input to this cost function. Finally, the
path planning simulations rested on custom maps and left the way to get the terrain
parameters out of the scope.

Contribution 2: Multi-scale path planning combining initial long-traverse plan-
ning and dynamic local path replanning.

Chapter 4 explains in detail the second contribution of this thesis. It consists of a
multi-scale path planning solution based on the FMM. As mentioned in the anal-
ysis of the state of the art in path planning, this kind of algorithm is not usually
employed for local planning. Besides, the capability to replan was still in the early
stages. There were some scarce approaches aiming at updating the path at the same
scale of planning (e.g. global). The second contribution of this thesis proposes using
a grid that combines a global and a local layer, the Multi-layered grid. With this
grid, the planner can make a very long traverse and also repair it at certain sections
with limited environment information. This is thanks to this special grid having the
capability to handle maps of different sizes and resolutions. The Dynamic Multilay-
ered path planner (DyMu) arises as a path planning architecture capable to tackle
both global and local planning using this grid. It rests on a heuristic version of the
FMM to perform the local update of the path. This method is generally not compat-
ible with kinematic restrictions. Yet, DyMu takes advantage of the fact that many
rovers are capable to turn while keeping their position. This simplifies the mobility
conditions that must be addressed at a local scale since the motion does not need
to be bounded to any turning radius. DyMu was validated through plenty of tests.
Chapter 6 presented the details of these tests. A rover, HDPR, managed to drive
hundreds of meters in a fully autonomous fashion. The Conservative approach of
the Local Path Repairing (LPR) was used in these tests. The other approach, Sweep-
ing, was validated through numerical simulation. It remains to be tested using a
robotic platform. Moreover, a later conference publication presented an improved
version of DyMu. It was written together with the ESA Robotics and Automation
Section (Paz-Delgado et al., 2020). This publication details more experiments carried
out with the HDPR robot in a round-trip mission. Finally, DyMu has the potential
to be integrated with other PDE Solving planners. This is because of the synergy
between both layers, through the use of heuristics in the local layer based on global
information.
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Contribution 3: Creation of a direction-dependant cost function for planning the
optimal traverse on slopes.

Chapter 5 introduces CAMIS. It is an anisotropic cost function for PDE path plan-
ners on scenarios with inclined surfaces. CAMIS makes the planner find the path
that better adjusts to some criteria. For example, minimizing energy consumption or
preserving lateral stability. The latter is equal to minimizing the experienced roll an-
gle. To do this, the anisotropic cost function takes into account the aspect direction of
the slope and its gradient. The CAMIS cost function is modelled after the inverse of a
displaced ellipse. This complies with the requirements of anisotropic PDE planners
such as OUM. The results from two simulations and one field experiment served to
validate the use of CAMIS. In these experiments, a robot must find the optimal path
to traverse scenarios containing slopes. The first simulation served to study how the
terrain properties affect the anisotropic cost function. Besides, it serves to figure out
if it is worth using an anisotropic planner rather than an isotropic one. The results
state that, for scenarios with inclined surfaces, anisotropic planners perform much
better when the specific resistance is low and the slip ratio is high. The reduction
in total cost (energy consumption) is significant, in exchange for increasing the com-
putational time. Under other conditions, the isotropic is still worthier, for example
using FMM, as its computational complexity is much lower. The second simulation
served to analyze the use of a custom weighted function to minimize the roll angle.
This function increases the cost in the directions perpendicular to that of any slope,
i.e. Lateral directions. The results prove how this function makes the path go more
parallel to the direction of the slopes. As a result, the obtained path reduces the
angle of roll the robot experiences while tracking it. The field experiment put the
light on the difficulties to land the current version of CAMIS on local planning. The
results show how the tracking errors the robot experiences increase the angle of roll.
Besides, the cost function does not address the cost of turning. Still, the robot kept
parallel to the slope direction. The estimations of the planner about the orientation
and the energy consumption were overall close to the real values.

Contribution 4: Field tests using experimental mobile platforms.

Chapter 6 presents two field experiments, one to check DyMu and another to check
CAMIS. The first of them consisted of using a mobile testbed platform in the form
of a rover prototype. It has six wheels, four of them steerable, and a rocker-bogie
kinematic configuration. It is the HDPR, and was equipped with a frontal Bumblebee
stereo camera. The navigation software, based on the RoCK robotic middleware,
addresses the information coming from the camera. It also commands the motors.
A GNSS antenna was installed onboard and a fixed station provided the localiza-
tion. It provided an RTK precision of a few centimetres or even less. The scenario, a
rocky terrain resembling a martian landscape, contains craters bigger than the rover.
Besides, rock mock-ups were scattered all over the place. A previous publication
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(Gerdes et al., 2020) provides further information about this setup. With regards
to the second field experiment, a four-wheeled mobile platform was used. It was
equipped with an RTK GNSS Emlid Reach M+ module connected to the Andalusian
Positioning Network (RAP). In this way, the precision in the localization was also in
the order of centimetres. An electric current sensor, the ACS754 board, was installed
together with an Arduino AtMEGA board. They served to measure the current sup-
plied to the motors and as the basis to build the CAMIS anisotropic cost function.
The region of interest had a slope in the middle. This terrain was modelled thanks
to the geo-referenced images and photogrammetry techniques. The setup of the two
field experiments served to have a better understanding of the proposed path plan-
ning solutions. It allowed to take DyMu and CAMIS to real applications.

Contribution 5: General classification of most relevant existing path planning al-
gorithms used along with ground mobile robots.

The last contribution of this thesis complements the previous ones. It results from
the time invested in the literature search. This contribution consists of the use of a
method to classify path planners. It organizes the path planning algorithms found
by the author of this thesis. This classification divides these algorithms into four
classes: Reactive Computing, Soft Computing, C-Space Search and Optimal Con-
trol. Algorithms falling into the Reactive Computing class are mostly used in path
planning for local obstacle avoidance. Soft Computing algorithms are configurable
by the user through fuzzy rules, neural networks or the parameters that define Evo-
lutionary techniques. Later on, C-Space Search algorithms extract a path out of a
grid. This grid can be dynamically created or static. Finally, Optimal Control al-
gorithms generate the optimal path from a well-known environment. The proposed
classification, presented in Chapter 2, serves as a starting point for anyone interested
in choosing a path planner for an autonomous navigation application.

7.3 Future Work

This thesis presented a series of advances in the state of the art of path planning.
Nevertheless, this is a field that still has room to improve. This section comprises
those key ideas that are out of the scope of this thesis but serve as a continuation of
the presented contributions. They are explained in full detail next:

• Improvements on the cost function for reconfigurable rovers and their land-
ing to reality. An important open line of research is the analysis on the accu-
racy of the proposed dynamic locomotion models and the real rover prototype.
Wheel-walking and Normal-driving were modelled via simulation tools based
on the characteristics of a real robotic platform named ExoTeR. Nevertheless,
it still remains to perform an experiment on different kinds of terrain with this
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platform to check if the proposed terramechanic models are suitable in real-
ity. Besides, it would be interesting to further study the characterization of
the terrain using the specific resistance ρij, the slip ratio σij and maybe even
including other functions such as the drift angle or the sinkage. Moreover, it
would be possible to not make a rigid separation between both locomotion
modes, but rather consider them as two extremes of hybrid locomotion. In
fact, during a stride of the Wheel-walking both wheels could roll at different
rates instead of keeping one of them stationary. By controlling the difference
in the rotational speeds of the wheels some kind of turning manoeuvre could
be obtained as result. The extension of the model to different angles of roll
and pitch would be of interest to have a more accurate representation in the
anisotropic path planning. Besides, acceleration and deceleration would be of
interest to consider, including the moments of inertia of the vehicle. A more
detailed analysis of different values of speed would be of interest as well. The
consideration of the cost of turning would be also desirable, especially in cases
where the robot drives using skid-steering locomotion.

• Improvements in the DyMu global-local path planning strategy. It would
be of great interest in the future to make a rover estimate terrain parameters
locally, using exteroceptive sensors for instance. Besides, the local information
could be compared with the global to improve the initial estimations, perhaps
using machine learning algorithms. As future work, the Local Path Repairing
(LPR) could be improved to not just find the shortest path (or at least an ap-
proximation given the heuristics) but also have the possibility to find the one
that entails minimal energy consumption. Besides, there are other algorithms
used to solve the path planning at a local scale, e.g. the Reactive Comput-
ing algorithms. It would be interesting to investigate how to integrate these
algorithms into the DyMu multi-layered grid. Another improvement would
be the consideration of mobile obstacles, in order to handle dynamic environ-
ments with people moving. An example of this, in irregular terrain, would be
a disaster scenario with first responders on the field. Finally, the Global Path
Planning (GPP) could be carried out by an anisotropic planner such as OUM.
In this way, the local planner would need to use heuristics that not only con-
sider the total cost but also the characteristic directions of the global solution.

• Improvements in the use of CAMIS. As seen during the simulation experi-
ments, high anisotropy starts to introduce errors in the solution. A solution
to this is to refine the grid, but increasing the number of nodes would expo-
nentially increase the computational load of the planner. For this reason, the
use of adaptive grids that depend on anisotropy would be an interesting so-
lution to explore. Since this anisotropy arises due to the terrain features, this
grid would then adapt to the shape and composition of the terrain. Other al-
gorithms such as the FSM have been demonstrated to work with anisotropic
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functions as well (Qian et al., 2007). Comparing their performance with OUM
and bi-OUM would be interesting. A future upgrade to CAMIS would be the
consideration of the risk of overturning in the longitudinal axis, similarly as
in the lateral axis as done with the weight roll function and as was addressed
by Shum et al. (2015). Instead of using the same slip model for the ascent and
the descent, a more refined model could be used instead, addressing the par-
ticular differences between ascending and descending (L. Ding et al., 2013).
Moreover, experiments involving anisotropic planning and obstacles would
be of interest. PDE solving planners produce degenerated solutions when the
cost map presents discontinuities. This is solved in the eikonal case by setting
repulsive potential fields around obstacles. A similar approach would be of in-
terest for the general case using the HJB equation. In an analogous way, (Y. Liu
and Bucknall, 2016) proposed the edition of the cost map to tackle the initial
and final orientations of the path while using FMM. This could be adapted to
anisotropic planners like OUM.
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Resumen de la Tesis Doctoral

Planificación Extrema de Caminos para Robots Móviles de Ex-
ploración

Desde antaño los humanos hemos invertido numerosos esfuerzos en expandir los
límites de nuestro conocimiento. Hemos llegado a cada vez más lugares a lo largo
y ancho de este mundo, intentando entender los detalles acerca de todo lo que nos
rodea. Además, nos hemos establecido en algunos de esos lugares formando colo-
nias. En la actualidad, con un mundo cada vez más globalizado y la humanidad pre-
sente en gran parte de la superficie de nuestro planeta, la siguiente frontera la con-
stituye el espacio profundo. Soñamos con colonizar otros mundos como Marte. Sin
embargo, esto requiere solventar en las próximas décadas multitud de problemas de
índole tecnológico, ético y legal (Levchenko et al., 2019). Por el momento, las agen-
cias espaciales han ido enviando en las últimas décadas múltiples tipos de sistemas
robóticos para explorar estos entornos extraterrestres. Estas tecnologías pueden ben-
eficiarse de las que son actualmente empleadas en la Tierra y viceversa. Por ejem-
plo, para llevar a cabo la primera respuesta ante una situación de catástrofe el uso
de agentes autónomos de exploración adquiere importancia al permitir adquirir un
mejor conocimiento sobre la situación. Esto puede servir de ayuda de cara a la
búsqueda de posibles víctimas y para mejorar la planificación de las acciones de
los operarios de primera intervención (Seppänen et al., 2015).

Exploración, reconocimiento, inspección. Todos estos términos hacen referencia
al acto de aventurarse en entornos parcial o totalmente desconocidos con la intención
de reducir la incertidumbre que reina en ellos. Este tipo de acciones puede reportar
grandes beneficios puesto que la nueva información adquirida permite aumentar la
capacidad de planificar futuras acciones. Esto está presente en nosotros desde el
momento en el que nacemos: a medida que crecemos nos aventuramos, adquirimos
nueva información, aprendemos y, como resultado, nuestras posibilidades para so-
brevivir y seguir interactuando con el entorno se ven aumentadas. Además, el hecho
de percibir fenómenos que no comprendemos a corta edad nos motiva a buscar un
mejor entendimiento acerca de estos (Köster et al., 2020). Es importante recalcar un
hecho: la exploración lleva implícita la realización de una acción física, una acción
motora. Esta acción puede consistir en moverse, desplazarse de un punto en el espa-
cio a otro. Posiblemente este desplazamiento resulta en una mejora en la percepción
del entorno al realizarla desde otra perspectiva. Esta información mejora nuestro



170 Resumen de la Tesis Doctoral

entendimiento y nuestra comprensión acerca de la situación, y, por lo tanto, se abren
más posibilidades a la hora de realizar futuras acciones.

El acto de explorar para nuestro beneficio ya no es exclusivo de los humanos. En
las últimas décadas un mayor número de sistemas autónomos han sido puestos en
escena. Hay multitud de razones por las que optar por estos sistemas. Una de las
más importantes es el evitar poner en riesgo vidas humanas en ciertas situaciones.
El diseño de estos vehículos robóticos es diferente de acuerdo con el medio en el
que se desplazan: mar, aire, espacio, tierra... El último de estos es donde el foco
de esta tesis está puesto: robots móviles de tierra. Esta tesis presenta los resultados
del trabajo llevado a cabo para mejorar las capacidades autónomas de este tipo de
vehículos. En otras palabras, presenta aquellos algoritmos y técnicas que determi-
nan el modo en el que el vehículo decide por dónde desplazarse y cómo. En aras
de delimitar mejor el alcance de esta tesis, se define como vehículo de tierra todo
aquel que emplea una superficie para desplazarse sobre la misma. Aquí se asume
que la acción de la gravedad permite a estos vehículos permanecer un contacto con-
stante con la superficie. Esta tesis por lo tanto no considera cualquier maniobra que
implique hacer que el robot se separe de la superficie, como es el caso de aquellos
robots capaces de realizar maniobras de saltos. Así pues, esta tesis pone el foco en
robots con ruedas diseñados para ser exploradores. Este es el caso de los rovers:
vehículos robóticos que son usados para explorar superficies extraterrestres como la
de otros planetas y satélites. Estos sistemas deben navegar a través de zonas donde
la presencia de humanos es todavía inviable. Además, de forma similar a los ve-
hículos con ruedas empleados en misiones de búsqueda y rescate, el poder tratar las
particularidades de un terreno complejo y desestructurado es de interés para poder
preparar un curso de acción adecuado, minimizando o incluso prescindiendo de la
intervención humana.

En muchas arquitecturas de navegación una de las partes más importantes es la
encargada de la generación de caminos. Cada uno de estos caminos sirven de guía
para el desplazamiento del vehículo tras un proceso de deliberación. Pueden conec-
tar la propia posición del vehículo (la posición de origen) con un destino de interés
(la posición de meta). También conocido como guía, el proceso por el cual se genera
el camino se denomina planificación de caminos. Esta última denominación es la
que se emplea aquí en esta tesis. Además, esta planificación de caminos está orien-
tada aquí a ser usada con escenarios desestructurados, escenarios presentando un
terreno irregular. Este tipo de lugares constituyen un reto para el sistema de nave-
gación de cualquier robot móvil. Este sistema debe ser efectivo, permitiendo llevar
al robot de un lugar a otro de forma segura, y eficiente, minimizando los recursos
invertidos en ello (por ejemplo, la energía). Sin embargo, las irregularidades del te-
rreno pueden en algunos casos afectar negativamente al movimiento del robot. Por
este motivo el planificador de caminos debe tener en cuenta las capacidades loco-
motrices del robot. Además, la naturaleza extrema de estos escenarios puede limitar
las capacidades de percepción de no solo el robot sino también de cualquier medio
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externo como puede ser un dron o un satélite. Esto se traduce en una disponibilidad
limitada de la información que describe el escenario. El planificador debe entonces
tener este hecho en cuenta y actualizar el camino de manera dinámica (replanificar)
cuando sea necesario de acuerdo con las actualizaciones en dicha información. A
continuación, se introducen dos breves comentarios sobre campos de aplicación de
la navegación autónoma con condiciones extremas. Estas son la exploración de en-
tornos planetarios extraterrestres y la exploración de lugares que han sufrido una
catástrofe en la Tierra. En el primer caso, un rover debe navegar a través de en-
tornos que presentan un terreno complicado y disponiendo de limitada información
sobre los mismos. En el segundo caso, un robot móvil debe desplazarse a través de
escenarios todoterreno donde el tiempo y/o el consumo de energía son críticos para
llevar a cabo su misión.

Exploración planetaria

La superficie de otros cuerpos celestes podría albergar pistas acerca del origen de
la vida y del universo. Además, estudiando su historia geológica y los materiales
que se encuentran en ella podríamos entender algunos de los procesos que ocurren
en la Tierra (T. Zhang et al., 2019). Además, existen recursos valiosos que podrían
ser aprovechados por la industria y las agencias espaciales en futura misiones es-
paciales. Estos recursos (p.ej. agua en la Luna) podrían servir de ayuda a la hora
de establecer colonias humanas en lugares extraterrestres. Sin embargo, ir a estos lu-
gares a inspeccionarlos requiere el uso de exploradores. Hoy en día existen multitud
de dificultades para transportar y mantener a salvo humanos en un viaje espacial.
Por este motivo, su presencia prolongada en entornos extraterrestres es todavía in-
viable. Así pues, el uso de agentes robóticos o rovers, más baratos de mantener y
sin ser criaturas vivas, permitiría realizar la tarea de llevar y operar instrumentos
científicos en escenarios planetarios y en el espacio (Gao et al., 2017).

Aunque el uso de robots para la exploración planetaria extraterrestre está justi-
ficado, todavía existen multitud de cuestiones. Una de ellas tiene que ver con las
comunicaciones entre las estaciones en la Tierra y estos robots. El retardo en el envío
y recibimiento de mensajes cuando estos sistemas están en la Luna puede llegar a ser
de entre 3 y 10 segundos, lo cual permite el uso de teleoperación hasta cierto nivel
(Y. Wang, 2021). Sin embargo, las comunicaciones entre las estaciones en la Tierra y
los rovers marcianos empleando la red Deep Space Network (DSN) pueden requerir
de hasta aproximadamente 40 minutos para llevar un mensaje a la ida y a la vuelta
(Lester et al., 2017). Este es un enorme retardo que imposibilita el control directo
de estos sistemas: el operador debe esperar hasta que llegue el siguiente mensaje,
analizar la información contenida en él y, posteriormente, enviar el siguiente men-
saje de vuelta a Marte (Bresina et al., 2005). Además, las comunicaciones entre la
Tierra y Marte están limitadas por la órbita del Mars Relay Network, permitiéndolas
tan solo unas pocas veces por cada sol marciano (el cual equivale aproximadamente
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un día terráqueo). Debido a ello, los rovers tan solo pueden navegar distancias cor-
tas por cada sol.

Para compensar los problemas expuestos en las comunicaciones, se ha ido mejo-
rando de forma progresiva la autonomía de los rovers que han sido enviados a
Marte. En 1997, la National Aeronautics and Space Administration (NASA) envió
a Marte el primer rover capaz de navegar con cierta autonomía con el nombre de
Sojourner (Bajracharya et al., 2008). Este relativamente pequeño robot era capaz de
llevar a cabo autónomamente operaciones simples tales como moverse hasta cierto
punto (Mishkin et al., 1998). Llegó a alcanzar una distancia total de unos 100 me-
tros, sirviendo como una prueba de concepto satisfactoria para enviar más robots
de exploración a Marte. La siguiente misión, la Mars Exploration Rover (MER),
consistió en el envío de dos rovers gemelos al planeta rojo: Spirit (Arvidson, Bell,
et al., 2010) y Opportunity (Arvidson, Ashley, et al., 2011). Para esta ocasión, la
NASA incrementó las capacidades de autonomía de ambos robots, dotándoles de
un planificador local de caminos llamado GESTALT (Biesiadecki et al., 2006). Du-
rante la realización de esta misión, los ingenieros e investigadores de la NASA se
dieron cuenta de que el uso de un planificador local no era suficiente para alcanzar
una navegación autónoma completa. El rover podía quedarse atascado en diversas
situaciones en las que se encontraba parcialmente rodeado de rocas. Por este motivo
se instaló también un planificador global de caminos. De esta manera, se podía ini-
cialmente planificar una larga travesía mientras que el planificador local generaba
dinámicamente caminos que evitaran los obstáculos (Maimone et al., 2007). Este sis-
tema de autonomía se mantuvo para el rover de la misión Mars Science Laboratory
(MSL), el rover Curiosity, allá por 2011 (Lele, 2014). Sin embargo, el envío manual
de comandos por parte de los operarios de tierra es todavía la estrategia más común
a la hora de navegar en Marte. Normalmente, para cada día marciano (o sol) una
serie de tareas eran planificadas con anterioridad y posteriormente enviadas a estos
vehículos.

Una de las futuras misiones es la del envío del rover Rosalind Franklin al plan-
eta rojo. Este envío forma parte de la campaña ExoMars liderada por la Agencia
Espacial Europea (ESA). Inicialmente planificada para 2020 (Vago et al., 2017), ha
sido recientemente retrasada para el 2022 al momento en el que esta tesis está siendo
escrita. El principal propósito de esta misión es la de extraer y analizar muestras
del subsuelo marciano para buscar cualquier pista de vida actual o pasada en el
planeta rojo. Una de las principales particularidades de este rover es la disposición
de articulaciones actuadas en la parte superior de cada una de sus patas. Estas le
permiten desplegar y replegar cada una de sus patas de una manera similar a la ac-
ción de andar. Por este motivo el modo de locomoción en cuestión es denominado
Wheel-walking (Patel et al., 2010; Woods et al., 2009). Este modo hace que el rover
aumente la tracción de sus ruedas en terrenos arenosos, tal y como fue demostrado
en experimentos previos (Azkarate, Zwick, et al., 2015). De esta forma, el rover po-
dría evitar quedarse atrapado en una situación similar a la que experimentó el rover
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Spirit en 2009 (Arvidson, Bell, et al., 2010). Otra futura misión es la Mars Sample
Return (MSR) (Muirhead et al., 2019). Esta consiste en la recogida de muestras de
material marciano guardadas previamente en tubos y enviarlas de vuelta a la Tierra.
Estos tubos son depositados en la superficie marciana con anterioridad por el rover
Perseverance de la NASA, el cual llegó al planeta rojo en febrero de 2021. A contin-
uación, otro rover construido por la ESA, el Sample Fetch Rover (SFR), tendrá que
llevar a cabo la tarea de ir a recogerlos. Para esta misión la eficiencia vendrá dada por
el número de muestras que puedan ser tomadas dentro de un intervalo de tiempo
determinado. Así pues, se necesitarán grandes capacidades en cuanto a movilidad
y autonomía. De acuerdo con el sistema de clasificación de la autonomía propuesta
por la European Cooperation for Space Standardization, un nivel E4 (navegación
autónoma completa) sería el idóneo para que el rover SFR cumpla con las expectati-
vas impuestas, así como para cualquier otro futuro rover con que deba llevar a cabo
tareas cada vez más complejas. Un ejemplo de esto último lo constituye el uso de
sistemas robóticos móviles que permitan construir infraestructura sobre la superficie
lunar (Govindaraj et al., 2019).

En resumen, mejorar la autonomía de los rovers está justificado por dos razones.
En primer lugar, la teleoperación directa de estos sistemas es compleja o incluso
irrealizable. Cualquier otro tipo de estrategia para comandar estos sistemas sufrirá
de retardos en el envío de mensajes. Esto compromete la eficiencia de la misión
como consecuencia. En segundo lugar, la complejidad de las tareas que se prevé
que los rovers realicen en el futuro está aumentando. De hecho, el futuro rover SFR
constituye un ejemplo de ello: deberá buscar determinadas muestras, aproximarse a
ellas, recogerlas con ayuda de un manipulador y finalmente llevarlas y depositarlas
en un módulo marciano. Todo ello llevado a cabo dentro de un limitado margen de
tiempo.

Robótica de búsqueda y rescate

De acuerdo con investigaciones previas, existen varias acciones que influyen en
cómo actuar ante una situación de catástrofe: mitigación, preparación, respuesta y
recuperación (Jorge et al., 2019). La tercera de ellas, la respuesta, corresponde a toda
aquella tarea llevada a cabo justo después de que el desastre ocurra. Desde la trage-
dia acontecida con los edificios del World Trade Center, que colapsaron debido a un
atentado terrorista en 2001, ha habido decenas de casos en los que el uso de platafor-
mas móviles robóticas ha resultado beneficioso (Murphy, 2004). Estas han servido
de ayuda en situaciones de desastre de índole tanto natural (por ejemplo, un terre-
moto) como artificial (por ejemplo, una mina que se derrumba total o parcialmente).
En estos casos, un robot o equipo de robots debe realizar operaciones de exploración
para, entre otros, buscar víctimas potenciales o inspeccionar el estado de cualquier
estructura dañada (Murphy et al., 2016). Por ejemplo, en 2013 un tsunami golpeó la
costa este de la isla principal de Japón. Esto tuvo como consecuencia serios daños en
algunos de los edificios de una planta de energía nuclear en Fukushima, provocando
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como resultado una fusión. Varios robots móviles fueron enviados como parte de la
respuesta de emergencia para atender este desastre, siendo tele-operados de manera
que pudieran alcanzar áreas contaminadas por la radiación, dañinas para cualquier
ser humano (Nagatani et al., 2013). Otro ejemplo lo constituye el uso de un robot
para inspeccionar un par de iglesias que fueron dañadas después del gran terremoto
que ocurrió en Italia en 2016 (Kruijff-Korbayová et al., 2016). La principal razón por
la que estos robots fueron empleados era el elevado riesgo de que ambas iglesias se
derrumbaran, lo cual sería perjudicial para cualquier operador humano situado en
su interior. Otra operación de rescate consiste en poner a salvo a personas que se han
quedado atrapadas en montañas debido a accidentes o incluso elementos externos
tales como avalanchas (Silvagni et al., 2017).

Aunque está demostrado que la teleoperación de estos sistemas es segura y fi-
able, esta requiere la intervención de un número de operarios que ya es limitado
de por sí (Birk et al., 2006). Además, las comunicaciones inalámbricas pueden ser
comprometidas en escenarios tales como una mina o una planta nuclear (Murphy,
2012), lo cual motiva a mejorar las capacidades de autonomía de los robots de rescate
(Bogue, 2019). De esta manera, un operario podría enviar comandos a un mayor
número de robots gracias a la automatización de las tareas de navegación de bajo
nivel. Otra dificultad que presenta la teleoperación de robots móviles de rescate es
la de poder controlar el movimiento cuando estos presentan un gran número de gra-
dos de libertad. La interacción de estos sistemas con un terreno irregular no es algo
trivial, puesto que preservar su estabilidad o evitar que colisionen son tareas difíciles
para el usuario y requieren el uso de interfaces complejas tales como exoesqueletos
(Klamt et al., 2018). Un entorno desestructurado puede presentar grandes dificul-
tades en forma de rocas, cuestas o terrenos con distintas propiedades terramecáni-
cas. Todo esto hace surgir la necesidad de desarrollar planificadores de caminos
que tengan en cuenta estos hechos y que permitan que los vehículos de exploración
encuentren caminos seguros y óptimos (Delmerico et al., 2019). Para ello el uso de
robots dotados de patas es prometedor, gracias a su adaptabilidad a múltiples tipos
de terreno irregular (Miki et al., 2022). Por último, es de interés dotar a los robots de
rescate de capacidades que les permitan socorrer rápidamente a cualquier víctima
de un desastre.

Contribuciones

Esta tesis presenta y detalla el trabajo realizado para crear una serie de contribu-
ciones al estado del arte de la planificación de trayectorias para robots móviles de
tierra. En particular, esta tesis se centra en robots móviles que puedan ser empleados
en los campos de la exploración planetaria y la búsqueda y rescate. Tal y como se
ha explicado anteriormente, es de suma importancia que estos robots puedan nave-
gar a través de entornos desestructurados en exteriores de una forma totalmente
autónoma, sin requerir de ningún tipo de teleoperación. Como paso preliminar, se
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ha realizado una exhaustiva revisión de la literatura en la que se han encontrado
ciertas cuestiones a mejorar. Estas cuestiones abarcan el uso de distintos modos de
locomoción, la combinación de mapas con diferentes formatos y la consideración de
la irregularidad del terreno. Las contribuciones de esta tesis, conformando un total
de cinco, tratan estas cuestiones y son las que se exponen a continuación:

• Contribución 1: Planificación óptima de trayectorias considerando múltiples
modos de locomoción. Los entornos desestructurados tales como el de un es-
cenario catastrófico o uno extraterrestre pueden suponer un desafío para las
capacidades locomotoras de cualquier robot móvil de tierra. La composición
del terreno puede no sólo hacer aumentar el consumo energético del robot sino
también restringir su movimiento. En un caso extremo, el terreno podría in-
cluso dejarlo inmovilizado, provocando el fallo en la misión. Además, la forma
misma del terreno podría también hacer que fuera más difícil atravesarlo. Por
este motivo, dotar a los robots de una configuración cinemática capaz de eje-
cutar múltiples modos de locomoción puede significar que estos se adapten
mejor al terreno. De esta manera, los robots pueden ver aumentadas sus posi-
bilidades de navegación. Tener en consideración esta capacidad es necesario
en un planificador de trayectorias para aprovechar las ventajas que supone.
Además, el planificador en sí mismo debería ser capaz ya de entrada de en-
contrar el camino óptimo. Teniendo esto en mente, la primera contribución
de esta tesis es la del uso de un planificador de caminos óptimo junto a una
función de coste basada en la capacidad de reconfigurar la locomoción. En
particular, esta contribución tiene como referencia el ya mencionado rover Ros-
alind Franklin, capaz de ejecutar dos modos de locomoción: Normal-driving y
Wheel-walking.

• Contribución 2: Planificación de caminos a múltiple escala combinando la
planificación inicial de una larga travesía con la replanificación dinámica a
escala local. La información que describe el terreno puede provenir de difer-
entes fuentes y en formatos distintos. Por ejemplo, en exploración planetaria
la información inicial sobre un entorno proveniente de imágenes por satélite.
Estas pueden dar una estimación preliminar de lo que el rover pueda encon-
trarse en su camino. Sin embargo, existe todavía una cierta incertidumbre sub-
yacente debida a que las fuentes no son del todo precisas. Por este motivo,
la información inicial puede ser dinámicamente complementada con la infor-
mación proporcionada por el rover mientras este navega. Un ejemplo de ello
es cuando el rover detecta obstáculos en su camino que no fueron considera-
dos durante la planificación inicial. Ello se traduce en la necesidad de hacer
uso de un planificador de caminos dinámico que tenga en cuenta estas ac-
tualizaciones en los datos sobre el entorno. Además, este planificador debe
ser capaz de tratar mapas del entorno con un tamaño y resolución diferentes
con relación al mapa inicial. Esta tesis presenta una contribución en forma
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de planificador de caminos dinámico que funciona a escala global y local. La
mayor novedad en este planteamiento es el empleo de algoritmos basados en
la resolución de ecuaciones en derivadas parciales, los cuales son globalmente
óptimos por definición.

• Contribución 3: Creación de una función de coste que depende de la direc-
ción para la planificación óptima de caminos en terrenos con cuestas. La ter-
cera contribución de esta tesis se centra en la navegación de escenarios que pre-
sentan superficies inclinadas. La principal consideración para esta contribu-
ción es el hecho de que el consumo energético del robot al atravesar una cuesta
depende de su orientación. Esto es debido a que la gravedad afecta de manera
diferente según la dirección que lleve el robot. Por lo tanto, es necesario el em-
pleo de una función de coste basado en un modelo dinámico que tenga esto en
cuenta. En concreto, esta contribución hace uso de un planificador de caminos
basado en la resolución de ecuaciones en derivadas parciales con la dicha fun-
ción de coste basada en la interacción robot-terreno. El planificador empleado
aquí es distinto a los empleados en las anteriores contribuciones: depende no
solo de la posición sino también de la dirección del vehículo, por lo que es ca-
tegorizado como anisotrópico. Además, se incluye en esta aplicación el uso de
una función de riesgo que sirva para preservar la estabilidad lateral del robot
tratando de minimizar en la medida de lo posible el ángulo de alabeo.

• Contribución 4: Experimentos de campo empleando plataformas móviles ex-
perimentales. La cuarta contribución presentada en esta tesis es la validación
de las soluciones introducidas en la segunda y tercera contribución empleando
robots reales. Para ello un prototipo de rover y una plataforma móvil basada
en el modo de locomoción Skid-steering son empleadas en terrenos irregulares
de exteriores. Para ambos casos, se han llevado a cabo experimentos de campo
que emulaban operaciones de navegación completas involucrando la planifi-
cación de caminos. Esta tesis profundiza en cómo estos experimentos fueron
llevados a cabo e incluye reflexiones acerca de su ejecución.

• Contribución 5: Clasificación general de los algoritmos de planificación de
trayectorias más relevantes y empleados con robots móviles sobre tierra.
El número de opciones para planificar caminos que existe en la literatura es
enorme. Ello puede abrumar a cualquier persona que trate de elegir un algo-
ritmo de planificación de trayectorias para integrarlo en cualquier sistema de
navegación. Por este motivo, la quinta y última contribución de esta tesis es el
análisis de la mayor parte de algoritmos de planificación de trayectorias encon-
trados en la literatura. Como resultado de este análisis, se ha propuesto el uso
de un método de clasificación que permita, de forma general, entender más
fácilmente las diferentes propuestas que existen en términos de funcionalidad
y aplicabilidad.
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Contexto y motivación

La principal motivación para la realización del trabajo presentado en esta tesis es
la de hacer avanzar el campo de la navegación autónoma para los robots móviles.
Existen múltiples niveles de autonomía y la planificación de caminos es clave para
alcanzar la autonomía plena. Por ello, este trabajo se centra en mejorar este tipo de
algoritmo y su uso en ciertas situaciones. Este avance permite al autor alcanzar el tí-
tulo de Doctor en Mecatrónica por parte de la Escuela de Ingenierías Industriales de
la Universidad de Málaga. El autor de esta tesis ha realizado el pertinente trabajo en
el Departamento de Ingeniería de Sistemas y Automática, siendo a su vez miembro
del Laboratorio de Robótica Espacial de la Universidad de Málaga.

El Departamento de Ingeniería de Sistemas y Automática posee una larga trayec-
toria en el desarrollo de soluciones robóticas dentro del campo de la búsqueda y
rescate. Cada año organiza las Jornadas de Seguridad, Emergencias y Catástrofes,
donde se realiza cada año una demostración pública de los sistemas robóticos de
rescate. Durante sus estudios de doctorado, el autor ha participado en estas jornadas
proporcionando el mismo tipo de planificadores de caminos usados en la primera
y segunda contribución de esta misma tesis. Además, esta tesis es apoyada por
dos proyectos financiados por el gobierno español, proveyendo recursos financieros,
equipamiento y la infraestructura necesaria. Estos proyectos son los siguientes:

• Multi-Robot System for Cooperation with First Response Human and Ca-
nine Rescue Teams in Catastrophe Scenarios (FIRST-ROB). Este proyecto
tiene como número de referencia DPI2015-65186-R. Se centra en el uso de sis-
temas multi-robot para recopilar información en las primeras fases de la re-
spuesta a un escenario de desastre. Este proyecto ha contribuido a la primera,
a la segunda y a la cuarta contribución de esta tesis.

• Towards Resilient UGV and UAV Manipulator Teams for Robotic Search
and Rescue Tasks (TRUST-ROB). Este proyecto tiene como número de refer-
encia RTI2018-093421-B-I00. Se centra en mejorar la resiliencia de los sistemas
mecatrónicos que forman parte de los equipos de respuesta multi-robot. Este
proyecto ha contribuido a la tercera y cuarta contribución de esta tesis.

El Laboratorio de Robótica Espacial de la Universidad de Málaga comenzó a
funcionar a partir del acuerdo de colaboración entre esta institución y la Agencia
Espacial Europea (ESA). Como parte de sus estudios de doctorado, el autor ha lle-
vado a cabo tres estancias de investigación. Estas fueron realizadas en el Centro
Europeo de Investigación y Tecnología Espacial (ESTEC), con una duración total de
un año. El acuerdo de colaboración entre este centro y la Universidad de Málaga
empezó al mismo tiempo en el que comenzaron los estudios de doctorado del autor
de esta tesis. Este acuerdo sigue en activo en el momento en el que esta tesis es es-
crita. Además, el autor colaboró en un proyecto europeo financiado por la Comisión
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Europea a través del programa Horizon 2020. Ambos proyectos son detallados a
continuación:

• Autonomous Routing on Extreme Surfaces (ARES). Este proyecto empezó
en 2016 con el número de contrato 4000118072/16/NL/LvH/gp. Su propósito
original era la mejora de la autonomía de rovers reconfigurables, creando plan-
ificadores de caminos capaces de trabajar con múltiples modos de locomoción.
En una segunda fase, el proyecto fue renovado en 2018 con el objetivo de mejo-
rar misiones de búsqueda y recogida de muestras. Esto fue motivado por la
necesidad de mejorar las capacidades de navegación autónoma de robots de
exploración para futuras misiones a la Luna y Marte. En el contexto de este
proyecto se realizaron las primeras dos contribuciones, así como la cuarta con-
tribución de esta tesis. La Sección de Robótica y Automatización de la ESA
proporcionaron al autor las herramientas, instalaciones y sistemas robóticos
para llevar a cabo algunos de los experimentos descritos en esta tesis. Este
proyecto ayudó a llevar a cabo la primera, segunda y cuarta contribución de
esta tesis.

• Autonomous Decision making for very long traverses (ADE). Este proyecto
comenzó en marzo de 2019 y duró hasta mayo de 2021. Financiado por la
Comisión Europea bajo el programa Horizon 2020, el principal objetivo de
este proyecto era el de mejorar la autonomía implementada en un prototipo
de rover equipado con un manipulador robótico. La Universidad de Málaga
participó como uno de los miembros del consorcio, con la responsabilidad de
desarrollar los métodos para hacer que el sistema se aproximara a la local-
ización de una muestra. En este proyecto, el objetivo de estos métodos era el
de producir el movimiento del brazo necesario para posicionar el efector final
sobre dicha localización. El proyecto finalizó con una serie de experimentos
de campo donde el software creado por cada miembro del consorcio fue in-
tegrado. Este proyecto contribuyó a la realización de la quinta contribución
de esta tesis. Además, los algoritmos presentados en esta tesis sirvieron como
la base para implementar los métodos usados en este proyecto para planificar
autónomamente las trayectorias para el prototipo de rover.

Publicaciones

Como parte de la diseminación de los resultados de los mencionados proyectos de
investigación se realizaron varias publicaciones. Estas fueron publicadas tanto en
conferencias como en revistas. Algunas de ellas avalan las contribuciones que pre-
senta esta tesis y son las siguientes:

• Path Planning for Reconfigurable Rovers in Planetary Exploration. Autores:
Pérez-del-Pulgar, C. J., Sánchez, J. R., Sánchez, A. J., Azkarate, M., Visentin, G.
Publicado en IEEE International Conference on Advanced Intelligent Mechatron-
ics (AIM), pág. 1453-1458, en 2017. Esta publicación de conferencia respalda
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la primera contribución de esta tesis. Detalla el uso de un planificador de
caminos que considera múltiples modos de locomoción para un robot móvil
planetario con ruedas. Se empleó un entorno de simulación basado en el soft-
ware V-REP para validar la solución desarrollada. También se demostró cómo,
mediante la consideración de estos modos de locomoción en áreas que con-
tienen distintos tipos de terreno, el consumo total de energía puede ser mini-
mizado de manera óptima. Esta publicación es parcialmente financiada por el
proyecto ARES.

• Dynamic Path Planning for Reconfigurable Rovers using a Multi-layered
Grid. Autores: Sánchez-Ibánez, J. R., Pérez-del-Pulgar, C. J., Azkarate, M.,
Gerdes, L., García-Cerezo, A. Publicado en Engineering Applications of Artifi-
cial Intelligence (2019 Factor de impacto: 4.201, Q1), vol. 86, pág. 32-42, en 2019.
Partiendo de la base de la anterior publicación de conferencia, esta publicación
de revista no solo considera el uso de rovers reconfigurables, sino también el
uso de información sobre el entorno proveniente de varias fuentes. Ello es
posible gracias al uso de una malla construida con dos capas, junto a una es-
trategia de planificación de caminos que combina la planificación inicial en una
capa con la actualización dinámica del camino en la otra. Esta solución es va-
lidada a través de simulaciones numéricas, así como experimentos de campo.
De esta manera, esta publicación aporta a tres de las contribuciones de esta
tesis, todas ellas menos la tercera y la quinta. Esta publicación es parcialmente
financiada por los proyectos ARES y FIRST-ROB.

• Path Planning for Autonomous Mobile Robots: a Review. Autores: Sánchez-
Ibáñez, J.R., Pérez-del-Pulgar, C.J., García-Cerezo, A. (2021). Publicado en Sen-
sors (2020 Factor de impacto: 3.576, Q1), vol. 21, pág. 7898, en 2021. Esta
publicación de revista se crea tras el análisis de algoritmos de planificación de
trayectorias a lo largo de los últimos años durante el periodo del doctorado
del autor. Como resultado, esta publicación presenta un novedoso sistema de
clasificación que cubre la mayor parte de planificadores que se pueden encon-
trar en la literatura. Esta publicación fue financiada por el proyecto ADE y
respalda la quinta contribución de esta tesis.

• Optimal Path Planning using CAMIS: Continuous Anisotropic Model for
Inclined Surfaces. Autores: Sánchez-Ibáñez, J.R., Pérez-del-Pulgar, C.J., Serón,
J., García-Cerezo, A. Manuscrito en revisión para publicación en revista en el
momento en el que esta tesis es escrita. Debido a que el consumo energético
de los robots móviles de tierra es diferente según la orientación que tengan
encima de una cuesta, es deseable disponer de un planificador de caminos
que tenga en cuenta este hecho. Esta publicación de revista presenta los de-
talles sobre CAMIS, un modelo de coste que representa este comportamiento
anisotrópico junto a un planificador de caminos compatible. Además, la in-
clinación lateral es también tenida en cuenta para reducir la posibilidad de
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volcado. De manera similar a la anterior publicación, esta presenta resultados
de tanto simulaciones como experimentos de campo. Esta publicación apoya a
las contribuciones tercera y cuarta y es financiada por el proyecto TRUST-ROB.

Por otro lado, las primeras dos publicaciones que avalan esta tesis fueron pre-
cedidas cada una de ellas por una publicación en las conferencias Advanced Space
Technologies in Robotics and Automation (ASTRA) e International Symposium on
Artificial Intelligence, Robotics and Automation in Space (iSAIRAS) respectivamente:

• Path Planning for Reconfigurable Rovers in Planetary Exploration. Autores:
Sánchez-Ibáñez, J. R., Perez-del-Pulgar, C. J., Azkarate, M. Publicado en Ad-
vanced Space Technologies in Robotics and Automation (ASTRA), en 2017. Com-
partiendo título con la publicación de conferencia que apoya esta tesis, esta
publicación se centra más en los aspectos técnicos acerca del entorno de simu-
lación empleado junto al software robótico.

• Multi-scale path planning for a planetary exploration vehicle with multi-
ple locomotion modes. Autores: Sánchez-Ibáñez, J. R., Pérez-del-Pulgar, C.
J., Azkarate, M. Publicado en International Symposium on Artificial Intelligence,
Robotics and Automation in Space (iSAIRAS), en 2018. Esta corta publicación da
algunas pinceladas acerca del uso de un grid multi-capa para la planificación
de caminos, lo cual está totalmente detallado en la segunda publicación que
avala esta tesis.

Las contribuciones presentadas en esta tesis y avaladas por las publicaciones
mencionadas también han influido en otras. Aquí se recopilan algunas de estas pub-
licaciones en las que el doctorando autor de esta tesis ha participado como co-autor:

• Choosing the Best Locomotion Mode in Reconfigurable Rovers. Autores:
Pérez-del-Pulgar, C. J., Romeo-Manrique, P., Paz-Delgado, G. J., Sánchez-Ibá-
ñez, J. R., Azkarate, M. Publicado en Electronics (2019 Factor de impacto: 2.412,
Q2), vol. 8, pág. 818, in 2019. Esta publicación de conferencia avanza en el
modelo realizado para la primera contribución y también presenta un método
para decidir cuándo pasar del modo Wheel-walking a Normal-driving, de
acuerdo con la información proporcionada por los sensores equipados en un
rover reconfigurable.

• Efficient Autonomous Navigation for Planetary Rovers with Limited Re-
sources. Authors: Gerdes, L., Azkarate, M., Sánchez-Ibáñez, J. R., Joudrier,
L., Perez-del-Pulgar, C. J. Publicado en Journal of Field Robotics (2020 Factor
de Impacto: 3.581, Q1), vol. 37, pág. 1153-1170, en 2020. Esta publicación
de revista es un reporte de campo de los experimentos llevados a cabo cerca
de las instalaciones de ESA-ESTEC, empleando un prototipo experimental de
rover. El planificador de caminos empleado es el mismo que se describe en la
publicación de revista Dynamic Path Planning for Reconfigurable Rovers using a
Multi-layered Grid.
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• Improving Autonomous Rover Guidance in Round-Trip Missions Using a
Dynamic Cost Map. Autores: Paz-Delgado, G. J., Azkarate, M., Sánchez-
Ibáñez, J. R., Pérez-del-Pulgar, C. J., Gerdes, L., García-Cerezo, A. J. Publicado
en IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.
7014-7019), en 2020. En esta publicación de conferencia se presentó una mejora
al planificador de caminos introducido en la publicación de revista anterior
Dynamic Path Planning for Reconfigurable Rovers using a Multi-layered Grid. Se
centra en misiones de ida y vuelta como la que se espera que el rover SFR lleve
a cabo en el futuro.

• Coupled path and motion planning for a rover-manipulator system. Au-
tores: Sánchez-Ibánez, J. R., Paz-Delgado, G. J., Romeo-Manrique, P., Pérez-
del-Pulgar, C. J., Azkarate, M. Publicado en Advanced Space Technologies in Robo-
tics and Automation (ASTRA), en 2019. Esta publicación de conferencia presenta
los resultados obtenidos en la simulación de la planificación de movimientos
de un manipulador móvil. El algoritmo empleado para planificar el camino de
la base móvil es el mismo empleado en las contribuciones primera y segunda
de esta tesis.

• Enhancing Mobile Manipulation with Synchronized Arm-Locomotion Con-
trol. Autores: Sánchez-Ibáñez, J. R., Domínguez, R., Cordes, F., Pérez-del-
Pulgar, C. J. Publicado en International Symposium on Artificial Intelligence, Ro-
botics and Automation in Space (iSAIRAS), en 2020. Esta publicación de conferen-
cia presenta los resultados preliminares de unos experimentos realizados con
el rover SherpaTT del Centro Alemán de Investigación en Inteligencia Artificial
(DFKI). Estos experimentos consistieron en validar el método de planificación
de caminos y movimientos desarrollado como parte del proyecto ADE.

Estructura de la tesis

La estructura de esta tesis se basa en siete capítulos. Todos ellos han sido escritos
para presentar y desarrollar cada una de las contribuciones mencionadas que con-
forman esta tesis. Cada capítulo sigue una cierta estructura, empezando con una
breve introducción sobre el concepto o conceptos que van a ser presentados. Des-
pués, el capítulo proporciona un desarrollo de estos conceptos, exponiéndolos en
detalle. Más tarde cada capítulo termina con un pequeño resumen y algunas con-
clusiones extraídas acerca de lo expuesto. Estas conclusiones incluyen el cómo los
conceptos presentados encajan con el trabajo de la tesis y la opinión del autor con
respecto a estos. Los capítulos que dan forma a la tesis son los siguientes:

• Capítulo 1: Introducción. Plantea las principales cuestiones que motivan la
realización de esta tesis. Después, proporciona una detallada exposición de
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los objetivos clave a alcanzar. A continuación, este capítulo introduce el con-
texto bajo el cual se enmarca el trabajo llevado a cabo. Finalmente detalla la
estructura de la tesis.

• Capítulo 2: Estado del arte en planificación de caminos para robots móviles
de tierra. Este capítulo introduce una revisión exhaustiva de la planificación
de trayectorias, lo cual constituye la quinta y última contribución que avala
esta tesis. Proporciona un análisis de gran parte de los algoritmos de planifi-
cación de caminos que existen en la literatura. También propone un método
de clasificación que pretende facilitar el entendimiento de estos algoritmos.
A continuación, este capítulo presenta un análisis de los principales criterios
empleados en la planificación de caminos para navegación autónoma.

• Capítulo 3: Planificación de caminos óptima e isotrópica para rovers recon-
figurables. Desarrolla la primera contribución de la tesis acerca del uso de
varios modos de locomoción en la planificación de caminos. Este capítulo
detalla el proceso por el que se crea un modelo que considera varios modos
de locomoción. Al final explica las implicaciones que conlleva hacer uso de
este modelo en un planificador de caminos isotrópico basado en ecuaciones en
derivadas parciales.

• Capítulo 4: Planificación de caminos dinámica y multicapa. Este capítulo se
centra en la segunda contribución de esta tesis. Expone el problema de em-
plear información proveniente de distintas fuentes en navegación autónoma.
Además, destaca el problema de cómo hacer que un camino sea actualizado
dinámicamente. Después detalla la solución propuesta, consistente en una ar-
quitectura de planificación de caminos multicapa. A continuación, este capí-
tulo finaliza con una reflexión acerca del uso de la novedosa solución presen-
tada.

• Capítulo 5: Modelo de coste anisotrópico para la navegación sobre terrenos
inclinados. La tercera contribución de esta tesis se detalla en este capítulo.
Aquí se da un paso más en la formulación del problema de la planificación de
caminos. Este consiste en tener en cuenta la diferencia en el coste energético
de acuerdo con su orientación en una cuesta. Esto conlleva el empleo de un
planificador de caminos anisotrópico junto a un modelo de coste dependiente
de la dirección que tenga en cuenta este nuevo criterio.

• Capítulo 6: Experimentos. Este capítulo presenta la cuarta y última contribu-
ción de esta tesis. Detalla cada uno de los experimentos llevados a cabo para
validar las contribuciones anteriores. Algunos de ellos han sido llevados a
cabo con plataformas experimentales reales, incluyendo prototipos de rovers
y robots móviles de rescate. Después este capítulo presenta los resultados
obtenidos en estos experimentos junto a un análisis y reflexión acerca de los
mismos.
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• Capítulo 7: Conclusiones y trabajo futuro. El último capítulo de esta tesis
presenta en primer lugar un resumen y conclusiones sobre el trabajo presen-
tado en los anteriores capítulos. Después introduce una exposición sobre las
contribuciones presentadas poniendo el foco sobre aquellas cuestiones todavía
por resolver. También se indican aquellas mejoras que podrían realizarse en
los algoritmos expuestos. El capítulo detalla cómo estas podrían resultar en
posibles futuras líneas de investigación.
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Las contribuciones presentadas en esta tesis constituyen un gran paso en la mejora
de la autonomía de los robots móviles. La mayoría de los planificadores basados en
la resolución de ecuaciones en derivadas parciales han sido aplicados únicamente
en simulación. Llevarlos a una aplicación real es un paso necesario para identificar
cuáles son los principales problemas que debería tener en cuenta un planificador.
Como se ha incidido en los primeros capítulos, el ser eficiente puede ser algo crítico.
Ello es crucial en aplicaciones extremas tales como la exploración planetaria y la
búsqueda y rescate.

Esta tesis avanza en varias líneas de investigación claves. Tres de ellas son las
siguientes. Primera, construir un planificador que tenga en cuenta la adaptabilidad
de los robots reconfigurables. Segundo, manejar la incertidumbre del escenario a
través de información proveniente de diversas fuentes. Tercero, modelar el efecto de
la gravedad en travesías sobre cuestas. A continuación, se muestran las conclusiones
extraídas para cada una de las contribuciones presentadas.

Contribución 1: Planificación óptima de trayectorias considerando múltiples
modos de locomoción.

El Capítulo 3 explica la primera contribución de esta tesis. Además, el Capí-
tulo 6 presenta los detalles de los experimentos en simulación que la sostienen. Esta
contribución se apoya en el uso de modelos dinámicos de diferentes modos de loco-
moción. Estos modelos son combinados en una única función de coste. Esta función
tiene en cuenta la movilidad de los robots capaces de reconfigurar su locomoción.
Como resultado, esta función de coste les permite adaptarse mejor a las condiciones
del terreno. En particular, el Capítulo 3 introduce dos modos: Wheel-walking y
Normal-driving. Cada uno de ellos es, de acuerdo con el modelo propuesto, más
adecuado para diferentes valores de parámetros terramecánicos. Estos modelos
fueron construidos en base a rovers con patas y ruedas. Los resultados de las simula-
ciones muestran que Normal-driving es más adecuado en términos energéticos para
terrenos con poca resistencia específica y derrape. Por el contrario, para terrenos
con mayor resistencia específica es más eficiente emplear el modo Wheel-walking.
Los valores exactos para cambiar entre modos son elegidos según la configuración
dinámica del robot. El planificador crea caminos que son eficientes energéticamente
según estos modos. Además, el planificador determina qué modo de locomoción
es el más adecuado para alcanzar cada posición del camino. Los resultados de las
simulaciones demuestran cómo el tener en cuenta ambos modos permite encontrar
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caminos más cortos. Ello es gracias al reconocimiento de la mejora en la adaptabi-
lidad. La función de coste ha sido creada en base a las especificaciones de un rover
reconfigurable real. Los modelos dinámicos preliminares creados mediante simula-
ción han servido como base para la función de coste. Finalmente, las simulaciones
de la planificación de caminos se realizaron en mapas artificiales y dejan el método
para obtener los parámetros del terreno fuera del alcance de esta tesis.

Contribución 2: Planificación de caminos a múltiple escala combinando la
planificación inicial de una larga travesía con la replanificación dinámica a escala
local.

El Capítulo 4 explica con detalle la segunda contribución de esta tesis. Esta se
basa en una planificación de caminos a múltiple escala basada en el método Fast
Marching. Como se menciona en el análisis del estado del arte en planificación de
caminos, este tipo de algoritmo no se emplea normalmente en planificación local.
Además, la capacidad para replanificar estaba todavía en sus primeras etapas. Había
algunas propuestas para actualizar el camino a la misma escala que con la que se ha
planificado (por ejemplo, la global). La segunda contribución de esta tesis propone
el uso de una malla que combina capas local y global, la malla multicapa. Con esta
malla, el planificador puede generar una travesía muy larga y también repararla
en ciertas secciones disponiendo de información limitada del entorno. Esto es gra-
cias a la capacidad de trabajar con mapas de diferentes tamaños y resoluciones que
posee esta malla especial. El planificador de caminos dinámico multicapa (DyMu)
destaca como arquitectura de planificación capaz de planificar a escalas global y
local empleando esta malla. Se basa en una versión heurística del método Fast Mar-
ching para realizar la actualización local del camino. Este método generalmente
no es compatible con restricciones cinemáticas. Sin embargo, DyMu aprovecha la
capacidad que tienen muchos rovers de rotar en un mismo sitio. Ello simplifica
las condiciones de movilidad que tienen que ser tenidas en cuenta a escala local,
puesto que el movimiento no está restringido a ningún radio de curvatura. DyMu
fue validado a través de varios experimentos. El Capítulo 6 presenta con todo de-
talle estos experimentos. Un rover, HDPR, pudo moverse unos cientos de metros
de manera totalmente autónoma. El método Conservativo del proceso Local Path
Repairing (LPR) fue empleado en estos experimentos. El otro método, Sweeping,
fue validado a través de simulación numérica y todavía queda validarlo con una
plataforma robótica también. Además, una posterior publicación de conferencia pre-
sentó una versión mejorada de DyMu. Fue escrita junto a la Sección de Robótica y
Automatización de la ESA (Paz-Delgado et al., 2020). Esta publicación detalla más
experimentos que fueron llevados a cabo con el robot HDPR en una misión de ida y
vuelta. Finalmente, DyMu tiene la capacidad de ser implementado con otros planifi-
cadores basados en la resolución de derivadas parciales. Ello es debido a la sinergia
entre ambas capas, con el uso de funciones heurísticas en la capa local basados en
información global.
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Contribución 3: Creación de una función de coste que depende de la dirección
para la planificación óptima de caminos en terrenos con cuestas.

El Capítulo 5 introduce CAMIS. Este es un método para construir una función
de coste anisotrópica para ser empleada por planificadores de caminos en escenarios
con cuestas. CAMIS hace que el planificador encuentre el camino que se ajuste mejor
a determinados criterios. Estos pueden ser la minimización del consumo de energía
o preservar la estabilidad lateral. Esto último es equivalente a minimizar el ángulo
de alabeo del robot. Para ello, la función anisotrópica de coste toma en consideración
la dirección de la cuesta y su gradiente. CAMIS es modelado en base a la función po-
lar inversa de una elipse desplazada de su centro. Con ello, CAMIS cumple con los
requerimientos de planificadores anisotrópicos de caminos tales como OUM. Los
resultados de dos experimentos de simulación y un experimento de campo sirven
para validar el uso de CAMIS en planificación de caminos. En estos experimentos,
un robot planificó caminos óptimos para atravesar escenarios con cuestas y alcan-
zar varios puntos. La primera simulación sirvió para estudiar cómo las propiedades
del terreno afectan a la función anisotrópica de coste. Además, sirvió para averiguar
cuándo es más adecuado usar un planificador anisotrópico en vez de uno isotrópico.
Los resultados muestran que, para escenarios con superficies inclinadas, los plani-
ficadores anisotrópicos funcionan mucho mejor cuando el coeficiente de resistencia
específica es bajo y el derrape es alto. La reducción en el coste total (energía con-
sumida) es significante, a cambio de aumentar la carga computacional. Bajo otras
condiciones, el planificador isotrópico es más adecuado, por ejemplo, empleando
FMM, puesto que su complejidad computacional es mucho menor. La segunda si-
mulación sirvió para analizar el uso de una función de penalización para minimizar
el ángulo de alabeo. Esta función aumenta el coste en las direcciones perpendicu-
lares a la de la cuesta. Los resultados muestran cómo esta función hace que el camino
vaya más paralelo a la dirección de las cuestas. Como resultado, el camino obtenido
reduce el ángulo de alabeo que el robot experimenta cuando avanza. El experi-
mento de campo puso el foco en las dificultades que surgen para aterrizar CAMIS
en planificación local. Los resultados muestran cómo los errores de seguimiento que
el robot experimenta hacen crecer el ángulo de alabeo. Además, la función de coste
no considera el coste de giro. Aun así, el robot se mantuvo paralelo a la dirección
de la cuesta. Las estimaciones del planificador sobre la orientación y el consumo de
energía estuvieron cercanos a los valores reales.

Contribución 4: Experimentos de campo empleando plataformas móviles ex-
perimentales.

El Capítulo 6 presenta dos experimentos de campo, uno para comprobar el fun-
cionamiento de DyMu y otro para CAMIS. El primero de estos consistió en emplear
una plataforma móvil experimental en forma de prototipo de rover. Esta dispone de
seis ruedas, cuadro de ellas direccionables, y una configuración cinemática rocker-
bogie. Este rover es HDPR, y llevaba equipado una cámara frontal estéreo Bum-
blebee. El software de navegación, basado en el sistema RoCK, es el encargado
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de manejar la información proveniente de las cámaras. También se encarga de en-
viar comandos a los motores. Una antena GNSS fue también instalada a bordo una
estación fija externa proporcionaba la localización. La precisión de esta localización
era RTK, de unos pocos centímetros o incluso menos. El escenario, un terreno ro-
coso que se asemeja al paisaje marciano, contiene cráteres más grandes que el rover.
Además, réplicas de rocas fueron distribuidas por todo el lugar. Una publicación
anterior (Gerdes et al., 2020), recoge información más detallada acerca de esta insta-
lación. Con respecto al segundo experimento de campo, se empleó una plataforma
móvil de cuatro ruedas llamada Cuádriga. Esta fue equipada con un módulo RTK
GNSS, del modelo Emlid Reach M+, conectado a la red andaluza de posicionamiento
RAP. De esta manera, la precisión en la localización también estaba al orden de cen-
tímetros. Un sensor de corriente eléctrica, la placa ACS754, fue instalada junto a
una placa Arduino AtMEGA. Sirvieron para medir la corriente suministrada a los
motores con la que posteriormente se construyó la función anisotrópica de coste.
Con relación a la región de interés, esta contenía una cuesta en el medio. Este te-
rreno fue modelade en base a imágenes geo-referenciadas que fueron procesadas
mediante técnicas de fotogrametría. La configuración de ambos experimentos de
campo sirvió para tener un mejor entendimiento de las soluciones de planificación
de caminos propuestas en esta tesis. Esta configuración permitió llevar a DyMu y a
CAMIS a aplicaciones reales.

Contribución 5: Clasificación general de los algoritmos de planificación de
trayectorias más relevantes y empleados con robots móviles sobre tierra.

La última contribución de esta tesis sirve para complementar a las anteriores.
Esta surge tras el tiempo invertido en la revisión de la literatura. Esta contribución
consiste en el uso de un método para clasificar planificadores de trayectorias. Este
método organiza los algoritmos de planificación que han sido encontrados por el
autor de esta tesis. Esta clasificación divide estos algoritmos en cuatro clases: Com-
putación Reactiva, Computación Suave, Búsqueda en el Espacio de Configuraciones
y Control Óptimo. Los algoritmos que pertenecen a la Computación Reactiva suelen
ser empleados para planificar caminos a escala local en escenarios con obstáculos.
Los algoritmos de Computación Suave son configurables por el usuario a través de
reglas difusas, redes neuronales o parámetros que definen técnicas de computación
evolutiva. A continuación, los algoritmos de Búsqueda en el Espacio de Configura-
ciones extraen el camino de una malla. Esta malla puede ser dinámicamente creada
o ser proporcionada al principio, siendo estática. Finalmente, los algoritmos de Con-
trol Óptimo general el camino óptimo a partir de un entorno conocido y modelado.
La clasificación propuesta, presentada en el Capítulo 2, sirve como punto de partida
para cualquiera interesado en elegir un planificador de caminos para una aplicación
de navegación autónoma.
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