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Diradical polycyclic aromatic 

hydrocarbons (PAHs) offer unique 

properties to be use in organic 

electronic and magnetic materials. 

DIAn close shell form has a 

characteristic antiaromatic moiety. 

The diradical formation produces 

the core aromatization that exhibit 

remarkable stability [1]. 

Modulation of the ∆EST  

?1) Extension of the molecule with 

another fused benzene (i.e., forming 

terminal napthalenes) 

2) Isomerization resulting from the 

fusion topology of these terminal 

benzenes [2].
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In conclusion we carry out a complete study of the electronic and molecular structure characterization together with model

quantum chemical calculations. Based on the 2 electron in 2 sites model, the diradical character is dictated by two electronic

parameters, the repulsion term U and the transfer integral, tab. Here, we have shown how to design new diradicaloids based

on the fine-tuning of the transfer integral term using structure refinement of a series of molecules containing a common 2,6-

anthracene conjugation of the two radical centers. We were able to incrementally and rationally tune the singlet-triplet energy

gap of the DBDIAn series over a narrow 1.6 kcal·mol-1 range. As demonstrated by this study, we are aiming to produce real,

synthesizable compounds with tailored singlet-triplet energy gaps for specific organic electronic applications.
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