
 






AUTOR: Denisa-Andreea Constantinescu


        https://orcid.org/0000-0001-6736-5715 

EDITA: Publicaciones y Divulgación Científica. Universidad de Málaga


 
Esta obra está bajo una licencia de Creative Commons Reconocimiento-
NoComercial-SinObraDerivada 4.0 Internacional: 
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode 
Cualquier parte de esta obra se puede reproducir sin autorización  
pero con el reconocimiento y atribución de los autores. 
No se puede hacer uso comercial de la obra y no se puede alterar, transformar 
o hacer obras derivadas. 
 
Esta Tesis Doctoral está depositada en el Repositorio Institucional de la 
Universidad de Málaga (RIUMA): riuma.uma.es

http://orcid.org/0000-0001-6736-5715
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode


Escuela de Ingenieŕıas Industriales
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Abstract

Our goal in this work is to make it easy and feasible to implement solutions for

autonomous decision-making and planning under uncertainty on low-power mo-

bile platforms. We focus on practical applications, such as autonomous driving

and service robotics, that must run on mobile SoC platforms. These applications

often have real-time execution constraints. The main challenge is to keep the run-

time and energy performance in check while enabling the users (programmers) to

code efficient solvers for decision-making problems. Our proposal uses low-power

heterogeneous computing strategies, sparse data structures to fit real-world size

decision-making problems on SoCs with scarce memory and computing resources,

and oneAPI with DPC++ programming.

In the first part of this thesis, we compare three heterogeneous scheduling

strategies to run parallel code on CPU+iGPU SoCs. We evaluate their perfor-

mance on a set of benchmarks for planning sequences of actions for mobile robot

navigation. The benchmarks compute an optimal navigation plan through Value

Iteration algorithm—a fundamental method to find optimal policies in decision

making under uncertainty, allowing an intelligent agent modeled as Markov De-

cision Processes to act autonomously. Our experimental results show that the

implementations based on oneAPI programming model are up to 5× easier to

program than those based on OpenCL while incurring only 3 to 8% overhead.

In the second part, we take the lessons learned from optimizing Value Iter-

ation for low-power execution and apply them to a more complex autonomous

decision-making framework that accounts for all sources of uncertainty in the

agent interaction with the environment—Partially Observable Markov Decision

Processes. We propose a new method for online planning under uncertainty for

POMDPs, Recall-Planner, that outperforms the state-of-the-art online planners

for a known set of real-time navigation benchmarks.

This research demonstrates that it is feasible to solve large-scale (Partially Ob-

servable) Markov Decision Processes in real-time using low-power heterogeneous

CPU+iGPU platforms. We can achieve both performance and productivity if we

carefully select the scheduling strategy and programming model. In particular,

we remark that the oneAPI programming model creates new opportunities to

improve productivity, performance, and efficiency in low-power systems.





Contents

Acknowledgments i

Abstract iii

Contents viii

List of Figures xi

List of Tables xiii

Glossary xv

1.- Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Document structure . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.- Background 5

2.1 MDPs and the Value Iteration Method . . . . . . . . . . . . . . . . 5

2.1.1 The Value Iteration Method . . . . . . . . . . . . . . . . . . 7

2.2 POMDPs and Point-Based Methods . . . . . . . . . . . . . . . . . 8

2.2.1 The Point-Based Value Iteration Method . . . . . . . . . . 10

v



vi CONTENTS

2.2.2 Particle Filters for Belief State Estimation . . . . . . . . . . 11

2.2.3 Sequential Importance Sampling . . . . . . . . . . . . . . . 12

2.3 Programming heterogeneous MPSoCs . . . . . . . . . . . . . . . . 14

3.- Solving Large MDPs Optimally on Mobile Platforms 17

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Modeling, Simulation and Validation of the Use-Case . . . . 21

3.2.2 Solving Large MDPs Optimally on Low-Power SoCs . . . . 24

3.2.3 Performance and Productivity Evaluation . . . . . . . . . . 25

3.2.4 Mobile Robot Navigation MDP Use-Case . . . . . . . . . . 26

3.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Solving Large-Scale MDPs Optimally on Mobile Platforms . . . . . 31

3.4.1 Data Structures – 3D-lite-CSR . . . . . . . . . . . . . . . . 31

3.4.2 Taxonomy of VI Implementations . . . . . . . . . . . . . . . 34

3.4.3 Sequential Implementation . . . . . . . . . . . . . . . . . . 36

3.4.4 CPU-Only Implementations . . . . . . . . . . . . . . . . . . 37

3.4.5 CPU+GPU Heterogeneous Implementations . . . . . . . . . 39

3.4.5.1 Hybrid-1: Exploring Functional CPU-GPU exe-

cution . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.5.2 Hybrid-2: Exploring Heterogeneous Scheduling . . 40

3.4.5.3 Programming Interface . . . . . . . . . . . . . . . 43

3.5 Evaluation and Experimental Results . . . . . . . . . . . . . . . . . 47

3.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 47

3.5.2 Exploring the Limits of Mobile Platforms for Different MDP

Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.3 Productivity Evaluation: OpenCL vs. oneAPI . . . . . . . 51

3.5.4 Looking for the Sweet Spot: Productivity vs. Efficiency vs.

Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 53



CONTENTS vii

3.5.4.1 Impact of the Programming Model . . . . . . . . . 53

3.5.4.2 Impact of the Scheduling Strategy . . . . . . . . . 54

3.5.4.3 Study of Offline-Tuned Schedulers: HO and HD . 58

3.5.4.4 Study of the Adaptive Scheduler: HL . . . . . . . 59

3.5.5 Time and Energy Consumption Evaluation . . . . . . . . . 61

3.5.5.1 Scalability of Implementations . . . . . . . . . . . 62

3.5.5.2 Time Efficiency vs Energy Efficiency . . . . . . . . 66

3.5.6 Summary of Results and Lessons Learned . . . . . . . . . . 70

3.5.7 Rules of Thumb . . . . . . . . . . . . . . . . . . . . . . . . 71

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.- Online Planning on Mobile Platforms for POMDP Agents 74

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Efficient Memory Mechanisms for Storing and Retrieving Online

Planning Experience . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.1 Similarity Search in Belief Space . . . . . . . . . . . . . . . 81

4.3.2 Considerations in Designing the Experience Memory . . . . 85

4.4 Online Planning with Bloom Filter Memory . . . . . . . . . . . . . 87

4.4.1 Data Structures – Bloom Filter Memory . . . . . . . . . . . 87

4.4.2 The Recall-Planner Algorithm . . . . . . . . . . . . . . . . 89

4.5 Implementation Strategies and Guidelines . . . . . . . . . . . . . . 94

4.6 Parallel Implementation of Recall-Planner . . . . . . . . . . . . . . 95

4.7 Evaluation and Experimental Results . . . . . . . . . . . . . . . . . 98

4.7.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.7.2 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . 99

4.7.3 Preliminary Exploration and Tuning . . . . . . . . . . . . . 101

4.7.4 BF Memory Overhead Evaluation . . . . . . . . . . . . . . 105



viii CONTENTS

4.7.5 Exploring the Limits of Recall-Planner . . . . . . . . . . . . 110

4.7.6 Summary of Performance Results . . . . . . . . . . . . . . . 116

4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.- Conclusions 121

5.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . 122

5.1.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.1.2 Stage 1: Solving Large MDPs Optimally on SoCs . . . . . . 123

5.1.3 Stage 2: Online Planning for POMDPs on SoCs . . . . . . 124

5.1.4 Answer to Research Question . . . . . . . . . . . . . . . . . 126

6.- Future Work: Decision Making for Real-World Scenarios 127

6.1 Application Architecture Proposal . . . . . . . . . . . . . . . . . . 127

6.2 Modeling People Intentions as a POMDP for Social-Aware Navi-

gation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Appendices 133

A.- Resumen en español 133
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1 Introduction

(Partially Observable) Markov Decision Processes, or (PO)MDPs, are power-

ful frameworks to model how intelligent agents operate in the physical world. In

most real-world problems, sensory perception is imperfect, and the agent-world

dynamics are rarely entirely known. Thus, the system is not fully observable, and

any action’s outcome is not fully controllable either. When planning, the ability

to account for uncertainty comes at a high computational and memory cost. In

this work, we research and propose answers to the question: is it possible to solve

large-scale decision-making problems on mobile consumer platforms, despite their

inherent limited computing, memory, and energy resources?

Given the current rate at which consumer embedded and mobile systems have

been evolving in the last decades, we are inclined to assume that mobile SoCs

are, or will soon be, capable of running complex decision-making applications.

We know for a fact that the development of mobile SoC hardware—driven by the

need to increase the performance and energy efficiency and simultaneously reduce

the cost and size of chips—shifts towards heterogeneity and specialization. Un-

fortunately, running code on heterogeneous SoCs is fundamentally more complex

than on single-core processors, posing a major challenge for programmers to use

these computing platforms efficiently.

In summary, in this research, we make a thorough evaluation of the energy,

performance, and productivity of modern heterogeneous computing techniques to

solve computationally complex decision-making problems. We use a selection of

representative low to medium power CPU+iGPU SoCs as testbeds, all consumer

platforms likely to be found onboard a mobile phone, laptop, and even a mobile

robot. We propose a series of strategies to optimize the memory, energy efficiency,

runtime, and productivity of the state-of-the-art methods for online planning

1



2 Chapter 1. Introduction

in (PO)MDPs. Finally, we illustrate our study with mobile robot navigation

tasks and provide a list of guidelines and lessons learned through this project to

facilitate the transfer of best practices to other use case scenarios and platforms.

We focus our efforts on mobile robot navigation because the specific problems

that mobile robots can perform are heavily influenced by the degree of energy and

decision-making autonomy. Mobile robots are helpful and even indispensable in

access and operations in dangerous or inaccessible environments, such as nuclear

and chemical, but also in missions of civil rescue, protection, and even exploration

of outer space.

In this work, we use V-REP [92] (rebranded as CoppeliaSim) robot simulation

for fast prototyping with broad support for learning robots that make use of heavy

use of differentiable physics. V-REP can accurately simulate RGBD+LiDAR

sensors and random external forces using different options for multiple physics

engines [25]. According to [17], this simulator can reproduce the behavior of the

real robotic system very accurately. For a test with an e-PuCK robot and camera

SLAM localization, the simulation had a maximum error of 2cm.

1.1 Motivation

We formulate the motivation for this research in the context of the overarching

challenge of our research group, i.e., to hide complexity without compromising

performance, applied to decision-making under uncertainty for mobile robot nav-

igation. This work builds upon previous research in our group on techniques

that enable the simultaneous execution of the workload of a given software by

using both the CPU cores and the integrated GPU on high-performance HCPs

to low-power SoCs [29, 80].

In the literature study, we have noticed the knowledge gap between the state-

of-the-art implementations of decision-making research for physical systems and

state-of-the-art methods in parallel and heterogeneous computing. Proving the

feasibility of planning for large (PO)MDPs is insufficient, so we attempt to facil-

itate and simplify the use of cross-domain know-how in practice. In particular,

we target use case scenarios where energy consumption awareness is mandatory

and close to real-time response restrictions may be required too.

In particular, we aim to provide a generalizable approach to help professionals

and researchers implement energy-efficient decision-making applications on het-

erogeneous mobile SoCs by using a variety of well-known parallel programming

models, namely OpenMP, TBB, OpenCL, and oneAPI.
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1.2 Objectives

Our main objective is to investigate and improve the feasibility of solving large

(PO)MDPs in near real-time while minimizing the overall energy consumption.

We quantify feasibility in this context by the ease of programming efficient

decision-making applications for mobile and physical intelligent agents.

As a means to it, our first action is exploring the capabilities and limitations

of low-power Heterogeneous Computing Platforms (HCPs). In particular, we

study the pervasive mobile SoCs integrating a CPU and GPU, commonly used

in the smartphone and laptop industry. From a hardware point of view, we are

interested in how well they can handle performance and power efficiency, while

from a software point of view, our focus point is on productivity—how easy it is

to program these SoCs.

Following, we list the main steps taken towards reaching our objective:

1. Study the state-of-art for online planning in (PO)MDPs.

2. Propose data structures and methods to reduce memory and computation

constraints for solving large (PO)MDPs on mobile platforms.

3. Evaluate and compare the energy and runtime performance of (1) exist-

ing heterogeneous programming models and (2) scheduling techniques for

partitioning and load balancing the execution on low-power CPU+GPU

SoCs.

4. Propose directions for implementing (PO)MDP planning solutions suitable

for (near) real-time use onboard of a mobile platform, like a mobile robot,

tablet, or smartphone.

1.3 Document structure

The rest of this work is organized as follows. In Chapter 2, we introduce two

core decision-making frameworks in the literature: Markov Decision Processes

and Partially observable Markov Decision Processes, which are the foundation of

the research in this thesis. Then, in Chapter 3, we study how to efficiently solve

MDP problems on low-power CPU+iGPU SoCs by leveraging modern heteroge-

neous programming models. Next, in Chapter 4, we use the lessons learned from

Chapter 3 to propose a novel solution for online planning in POMDP. Finally, in

Chapter 5, we present the conclusions of this work, followed by a plan to use the

proposed methods in this thesis in a real-world use-case for social-aware mobile

robot navigation, in Chapter 6.





2 Background

The research in this thesis builds upon two core frameworks in sequential

decision making under uncertainty: Markov Decision Processes (MDPs), used

in Chapter 3, and Partially Observable Markov Decision Processes (POMDPs),

used in chapter 4. We dedicate this chapter to introducing how MDPs and

POMDPs are used to model intelligent agents and the methods we use as a

foundation for planning in these frameworks. We end the chapter by presenting

an introduction to heterogeneous multiprocessing SoCs and the supported open

parallel programming models and tools 2.3.

2.1 MDPs and the Value Iteration Method

A discrete MDP is defined as a tuple < S,A, T, r >, where < S,A > is a directed

graph, T the so-called transition function, and r a reward function. More con-

cretely, S is a finite set of states where the agent and its environment may be at

a given time. A is a finite set of actions that the agent may take. Each action

produces a stochastic change of the current state; this gets the decision-making

agent a certain reward. The state transition encodes the uncertain dynamics

in the system, governed by T = P (st+1|st, at). This equation also reflects the

Markovianity of the process, i.e., the next state, st+1, only depends on the cur-

rent state, st, and the selected action, at. The reward, in turn, is defined by

r : (S ×A)→ R and associates state-action pairs to real numbers.

The reward establishes the problem to solve (the goal the agent should at-

tain) in an indirect and intuitive form: optimizing that reward optimizes the

5
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decision-making policy. Rewards can also have uncertainty, but we are particu-

larly interested in the expected reward of being in state s and taking action a,

disregarding the next state, which can be defined as:

R(s, a) = Esucc(s)[r(s, a)] =
∑

s′∈succ(s)

T (s′|s, a)r(s, a) (2.1)

In Eq. 2.1, succ(s) is the set of reachable states when taking action a while

being in state s.

A policy π : S → A provides the action that should be taken at any state.

Usually, policies are stationary, that is, they always indicate either the same ac-

tion (deterministic policies) or a probability distribution over actions (stochastic

policies), given the current state. Here we focus on stationary, deterministic poli-

cies. Each such policy π can be assigned a value Vπ (a vector of real numbers

that map to S, each one indicating the utility of the policy when started at that

state) that allows us to find the best one for some criteria of optimality.

The most common criterion of optimization is the expected total discounted

reward, which would be accumulated after an infinite number of actions are taken

starting at each state s and using π to decide the action at every step. See Eq. 2.2

for details: γ ∈ (0, 1) is the discount factor (defines how myopic the algorithm is)

and seq(s) is the set of all possible sequences of states followed from s according

to π. The discount factor represents the difference of importance between future

and present rewards. When γ equals one, all rewards are equally important in the

decision making, while γ equal to zero indicates that only the immediate reward

matters.

Vπ(s) = Eseq(s)[r(s1, π(s)) + γr(s2, π(s1)) + γ2r(s3, π(s2)) + . . . ] (2.2)

The value function has a recursive form if we use the linearity of expectation:

Vπ(sk) = R(sk, π(sk)) + γEseq(succ(sk))[Vπ(sk+1)] (2.3)

or, in more detail:

Vπ(sk) = R(sk, π(sk)) + γ
∑

s′∈succ(sk)

T (s′|s, π(s))Vπ(sk+1) (2.4)

This is the so-called Bellman equation. In the following, we need a more

relaxed definition of value function, when the first action is not forced by the

policy:
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Qπ(sk, ak) = R(sk, ak) + γ
∑

s′∈succ(sk)

T (s′|s, π(s))Vπ(sk+1) (2.5)

Actually, Qπ(sk, π(sk)) = Vπ(sk), thus, [2.6], which is recursive again.

Qπ(sk, ak) = R(sk, ak) + γ
∑

s′∈succ(sk)

T (s′|s, π(s))Qπ(sk+1, π(sk+1)) (2.6)

2.1.1 The Value Iteration Method

Solving an MDP consists in finding a policy that is optimal under some definition

of value, such as the expected total discounted reward explained before. For this

case, it can be demonstrated that at least one policy π∗ exists that has a maximum

value (it is not required to be unique).

T -based methods for solving MDPs through dynamic programming use the

Bellman equation in these forms, where the (*) superscript means “optimal”:

∀s : Vπ∗(s) = max
a∈A

Qπ∗(s, a), π∗(s) = arg max
a∈A

Qπ∗(s, a)

These methods serve to set up iterative optimization procedures. In particular,

Value Iteration (VI) iterates on the value of Q until close-enough convergence

to the optimal Q∗, and consequently to V ∗ and π∗, is achieved. It calculates at

each iteration step i a new Qi(s, a) = R(s, a) + γ
∑
s′∈succ(s) T (s′|s, a)V i−1(s′),

then gets V i and πi from that Qi, then repeats everything until, for instance, a

suitable proximity between consecutive V occurs.

VI method, whose pseudo-code is shown in Fig. 2.1, has a superlinear com-

plexity on the number of states and actions. This makes it impractical when

the state or action space is large, which is common practice. It iterates on the

execution of two kernels, “Evaluate Policy”, with a complexity of O(|A||S|2)),

and “Improve Policy” with a complexity of O(|A||S|), until the expected total

discounted reward does not improve over a given threshold θ.

The VI procedure of Fig. 2.1, as in [99], needs as inputs the set S of states,

the set A of actions, the transition distribution matrix T specifying T(s’|s,a), the

expected reward function R for every state-action pair, a threshold that specifies

whether we consider that the algorithm has converged to the optimal policy,

θ > 0, and the discount factor γ ∈ [0, 1]. The outputs are the last V and π.
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1 procedure ValueIteration(S,A, T,R, θ, γ)

2 assign V 0(S) arbitrarily, i← 0
3 repeat

4 i← i+ 1
5 // Evaluate policy

6 for each state s

7 for each action a

8 V i(s) =
∑

s′T(s’|s,a)(R(s, a) + γV i−1(s′))
9 end

10 end

11 // Improve policy

12 for each state s

13 πi(s) = argmaxa

∑
s′T(s’|s,a)(R(s, a) + γV i(s′)

14 end

15 until ∀s|V i(s)− V i−1(s)| < θ
16 // Return optimal policy and its value

17 return πi, V i

18 end

Figure 2.1: VI algorithm.

For a more detailed theoretical treatment of MDPs and related methods, there

are several excellent texts on the matter [91, 99, 117].

2.2 POMDPs and Point-Based Methods

The POMDP is a formalism used in sequential decision making for an agent

with sensory perception uncertainty (sensor readings are imprecise or incomplete;

therefore, the agent state is uncertain too, unlike in MDPs). As the agent cannot

fully observe its underlying state, the concept of belief, belief state or information

state is introduced. The belief is often represented as a probability distribution

over the state space. A POMDP is thus a tuple < S,A,Z, T,O,R, γ >, where:

• S is the state space. It can be either continuous or discrete. Here we study

the discrete case.

• A is the action space, usually a small set of discrete actions, even though

they may represent a continuous quantity such as a velocity (it could be

discretized in “accelerate, decelerate, stop”, or through incremental updates

over the current velocity value).

• O is the observation space. An observation offers partial information about

the state of the system. It can be either continuous or discrete.

• Z(s′, a, o) = p(o|s′, a) is the observation model and models the probability

that the agent observes o when reaching state s′ after executing action a.
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In other words, it provides indirect, noisy access to the state. We use here

a finite set of possible observations.

• T is the state transition function, T (s, a, s′) = p(s′|s, a), i.e., the probabil-

ity of transitioning to state s′ from state s by performing action a. The

probability of transition from the current state to any other state adds to

1. The same principle applies to Z.

• R(s, a) is the reward obtained when taking action a from state s.

• γ ∈ (0, 1) is the discount factor that ponderates the current reward relative

to the past ones, as in MDPs. Its effect is that immediate rewards weigh

more than future rewards.

The primary source of uncertainty in a POMDP is modeled by maintaining

an information state called belief, b ∈ B, representing a probability distribution

over the state space S. In practice, a particle-based representation of the belief

is commonly used—an approximation that reduces the belief to a number of

sampled points, intended to be condensed in the vicinity of the actual state of

the agent. This is called “belief space sampling”, and it goes hand in hand with

the “point-based methods”, the state-of-the-art in online POMDP solvers that

can handle very large POMDPs. Everything we know about MDPs applies to

POMDPs, only that instead of having a tabular format, the policy maps over

information states.

At any time t, the agent is in one of the possible states, s (recall that it only

knows its belief b), and must take an action a among a finite set of possible actions.

Taking action a results in an immediate reward r(s, a) ∈ R and in a transition

to state s′ with probability p(s′|s, a). After each transition, the agent makes an

observation o with probability p(o|s′, a) (or p(o|s′), a common simplification in

the literature). Based on the observed information, the belief state b is updated

to b′. This can be done with the following formula in the case of continuous belief

representations 1:

b′ = b(s′) = τ(b, a, o) =
p(o|s′, a)

p(o|b, a)

∫
s

p(s′|s, a)b(s)ds (2.7)

For discrete belief representations, we have:

b′ = b(s′) =
p(o|s′, a)

∑
s∈S p(s

′|s, a)b(s)

p(o|b, a)
(2.8)

1This is a Recursive Bayesian Filter in the literature on the estimation of the state of
dynamical systems [97].
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where

p(o|b, a) =
∑
s′∈S

p(o|s′, a)
∑
s′∈S

p(s′|s, a)b(s) (2.9)

is a normalization constant that can be dropped out if Eq. 2.8 is turned into a

proportionality.

This discrete representation is similar to a particle filter, where 1/p(o|b, a)

is equivalent to the normalization factor. PFs have been successfully used for

decades for state approximation, with practical application in robot localization,

in particular, for Simultaneous Localization and Mapping (SLAM) [33].

Solving a POMDP consists in finding a policy π : B → A that maps a belief

b ∈ B to action a ∈ A, so that it maximizes some definition of value, such as the

expected total discounted reward. The discount rate, which controls how much

future rewards count compared to present ones, γ, indirectly defines how greedy

the decision-making is.

A key concept when solving POMDPs is the belief tree that emerges from

exploring all possible actions and likely observations (edges) starting at a given

belief (node). An optimal policy results from picking the branch of the belief tree

that begins at the current belief and has the maximum reward or value expected

over the entire horizon. This tree is often called a decision tree.

Offline solvers are not bound by real-time restrictions and can explore the

whole space to find the optimal policy. This is not feasible in some applications,

thus online solvers that provide a good enough policy in real time are needed. On-

line solvers can scale to very large POMDPs but usually use previous knowledge

less efficiently since they do forward search at every step.

2.2.1 The Point-Based Value Iteration Method

Most online methods for POMDP planning are at their core a variation of Point

Based Value Iteration (PBVI), so it is worthwhile presenting the original al-

gorithm. PBVI addresses the curse of history—the planning complexity grows

exponentially with the planning horizon [87], as a function of possible histories, or

sequences of actions and observations, from the first iteration to planning time-

step t, and can be approximated by O(|A||O|t−1

)—by limiting the planning to a

reduced set of likely beliefs. What made it so successful is the idea of selecting the

smallest set of reachable beliefs and planning for those beliefs only. The planning

involves learning their value and gradient.
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The PBVI algorithm alternates between 1) growing the set B of belief points

or belief expansion (e.g, the set doubles in size every time) and 2) planning for

those belief points or value update. The algorithm iterates over these two steps

until it runs out of time or has found a good enough policy.

PBVI is an anytime algorithm, meaning that the procedure returns a valid

solution (policy) even if the search is interrupted before it converges to an optimal

solution. The algorithm is expected to find better solutions the longer it runs,

and, given sufficient time, it approximates the optimal policy with a bounded

error [86], as stated in the following theorem.

Theorem

For any set of belief points B and planning horizon n, the error of the PBVI

algorithms is bounded by ||V Bn − V ∗n ||∞ ≤ Rmax−Rmin

(1−γ)2 maxb′∈∆maxb∈B ||b− b′||1,

where ∆ is the set of reachable.

The general outline of the value update function (polynomial complexity), is

the following:

1 function ValueUpdate(S,A, Z, T,O,R,B, γ)
2 // Initialize value functions

3 ...

4 for each belief b ∈ B
5 for each action-observation pair, < a, o >
6 // Project one step forward the belief -> new belief

7 b→ ba,o

8 Find the best value, βa,o
b (s) = Vn(ba,o), for the new belief:

9 // Sum over observations

10 βa,o
b (s) = R(s, a) + γ

∑
a∈A,s′∈S T (s, a, s′)O(s, a, o)βa,o

b (s′)

11 end

12 // Maximize over the action space (backup)

13 Vn+1(b) = argmaxaβ
a
b

14 end

15 end

Figure 2.2: PBVI value update pseudo-code.

2.2.2 Particle Filters for Belief State Estimation

Particle Filters (PF) are essential for the point-based methods used in planning

for POMDPs. We are interested here in variations of particle filters used to

represent uncertain beliefs states in the context of POMDPs. This representation

is most commonly used in approximated online methods, making it possible to

solve large POMDPs while meeting time constraints.
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In a particle filter, beliefs are distributions over the state space represented as

(approximated by) finite sets St of N weighted particles or samples < sit, w
i
t >.

For each i = 1, ..., N and time-step t, particle i refers to a possible state, sit,

where the system may be at that time (also known as state hypothesis) and to

a weight or importance wit ≥ 0 of that state. Weights must sum up to one, i.e.,∑N
i=0 w

i = 1.

Particle Filters implement this sample-based form into a Bayes filter, which

recursively estimates the belief b (posterior density) on the state st of a dy-

namic system: b(st) ∝ P (ot|st)
∫
P (st|st−1, at−1)b(st−1)dst−1. Here, ot is a sen-

sor measurement and at is the action or control command; P (ot|st) models the

observations (provided by sensors) while transition P (st|st−1, at−1) describes the

dynamics (motion due to actuators) of the system.

The samples that approximate a belief represent the posterior of that belief

after the motion/observation step: p(s) =
∑N
i=1 w

iδsi , δsi is the Dirac distribu-

tion centered in that state. If the filter converges, it is expected that the more

particles fall into a region, the higher is the probability of the agent actually

being in that region.

A particle filter has two steps:

1. Prediction: draw samples from the proposal distribution (e.g., agent motion

model).

2. Correction: weight the samples by a ratio of the target and proposal; the

observation is used for correction.

We must decide how to generate random samples for the actual implementa-

tion of the belief. Closed-form sampling is only possible for a few distributions,

such as Gaussian.

2.2.3 Sequential Importance Sampling

Importance Sampling (IS) is a simulation technique that can estimate a probabil-

ity distribution with better accuracy than Monte Carlo methods. This method

generates random weighted samples from an auxiliary distribution (also called

the proposal distribution) instead of drawing them from the distribution of in-

terest. The most delicate part of IS is the choice of an efficient proposal distribu-

tion for the probability density function (PDF) that can simulate (generate) the

more rare random events of the target distribution. [76] proposes an approach

to optimize the proposal distribution with non-parametric adaptive importance

sampling (NAIS).
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Importance sampling is based on the following key ideas:

• Use particle sets to represent arbitrary distributions.

• Model the target distribution through weights—the larger the set of parti-

cles and the closer their weights to the actual distribution, the better the

approximation is. Particles are initially randomly distributed and therefore

have equal weights.

• Use a different distribution g (proposal distribution) to generate samples

for the target distribution f ; account for the differences between g and f

using a weight correction factor, so w = f/g, while f and g must meet the

following precondition: f(x) > 0→ g(x) > 0.

In the context of POMDPs, the task of IS is to sample from probability

densities T (and sometimes O), which are not always available nor easy to obtain.

A solution is to sample from a proposal density g and weight each particle si by
Target PDF (si)

g(si) . In some cases, this expression has simple forms (not needing to

know the actual target PDF).

A widely used and simple form of importance sampling is Sequential Impor-

tance Sampling with Resampling (SIR/SISR). This procedure has three steps:

sampling, importance sampling, and resampling. This is an old method that has

been around for nearly two decades, but only recently has it been adopted in

POMDP solutions. We also use it in our solutions.

The three steps of the SIR algorithm to model the current belief of the

POMDP agent, b(s), are:

1) Sampling: sample the next state s′ using the states s of the current belief

and action a, according to the transition probability function T (s′|s, a), which

describes the dynamics of the agent. If T is not available, generate the particles

using the proposal distribution.

2) Importance sampling: weight each s′ in the sample generated in the

previous step by using the actual observation gathered by the agent, o, and the

observation model (e.g., camera, rangefinder, sonar; it can also encode a map of

the environment), i.e., w′ = O(o|s, a, s′).

3) Resampling: if needed, draw with replacement a random sample of N

particles from the belief resulting from the previous step, using the weights as

probabilities. Set the final weights as uniform. This sampling with replacement

assures that only the samples with the highest weight survive, i.e., it is called

“survival of the fittest”.

A well-known problem of SIR is the so-called particle deprivation. It occurs
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when there are no particles in the vicinity of the correct state. A possible solution

is to add a small number of randomly generated particles when resampling. This

method reduces particle deprivation and is simple to implement. It cuts out

particles that are not consistent with past evidence, therefore it increases the

chances of getting closer to the real state. However, its main disadvantage is that

the posterior estimate is incorrect even in the limit of infinite particles.

Alternatively, we can choose dynamically the number of samples needed to en-

sure a bound on the error made on the belief approximation by using an adaptive

PF as in [63]. The authors use the Kullback-Leiber (KL) divergence to measure

how much a probability distribution is different from another (also called relative

entropy). KL should not be confused with the distance between two distribu-

tions (Jensen-Shannon divergence, for instance, computes the distance between

two distributions).

An essential parameter in any PF application is the number of particles.

Larger samples result in a better estimation, but there is a memory and com-

putational cost associated. The simplest way is to use a fixed number for each

use-case (ranging from 500 to 1000 particles for use-cases of navigation in grid-

worlds), which is not optimal, but is computationally efficient. We have explored

adaptive strategies, but it turns out they bring little improvement in precision at

a high computational cost:

• Typically, more particles are needed initially, as the uncertainty in highest.

Similarly, a higher number of particles are needed if the agent gets lost

(its whereabouts become uncertain). A sampling procedure taking these

aspects into account is called adaptive, because it adapts the number of

particles on the run.

• The probability of the sensors measurement, P (zt|z1 : zt−1, u1:t,m), has

to be constantly monitored. It can be approximated by 1
N

∑N
i=1 w

i
t, and

average over multiple time steps to compare typical values when having

reasonably accurate state estimates. If the accuracy is low, inject random

particles.

2.3 Programming heterogeneous MPSoCs

A heterogeneous multiprocessing System-on-Chip (MPSoC) is a platform that

contains multiple types of computational devices optimized for performance, en-

ergy efficiency, and specialized hardware accelerators on the same chip. An exam-

ple is the Samsung Exynos 5422, whose architecture is illustrated in Fig. 2.3. Its
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heterogeneous computing architecture (HSA) integrates two types of multicore

processors, a GPU accelerator and a unified shared memory. The LITTLE pro-

cessor is designed for power efficiency, while the “big” processor is for compute

performance. Each multicore cluster has its dedicated shared L2 cache, the same

applies to the GPU execute units, and they all share the main memory.

C0

C3C2

C1

Cache

C0

C3C2

C1

Cache

EU2

EU5EU4

EU3

Cache

EU0 EU1

Bus interface

2GB DRAM

Cortex A15 Cortex A7 Mali T628 GPU

Exynos 5422 SoC

Figure 2.3: Example of heterogeneous MPSoC.

The heterogeneous computing platforms market is increasing since special-

ization has become an esstential means to improving energy efficiency and per-

formance when miniaturization, increasing the computing frequency and adding

more cores are no longer feasible. Unfortunately, specialization and heterogene-

ity make programmability and performance portability among platforms from

different vendors and even from the same vendor extremely complex and unsus-

tainable.

In the shared-memory programming model, some of the most used program-

ming models to abstract how tasks are mapped to execute asynchronously or in

parallel on the MPSoC include combinations of shared memory, message passing,

data-parallel programming, and map-reduce.

The industry and academia communities have been laboriously contributing to

standard and open vendor-agnostic parallel programming models in creating and

improving directive-based programming models for C code and STL-based pro-

gramming models for C++. Directive-based programming models are easy to use

and debug, allowing the programmer to incrementally annotate their code using

both industry standards as OpenMP and OpenACC and community-maintained
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efforts, such as OmpSs and XcalableMP.

Among the STL-based programming models, TBB (Threading Building Blocks) 2

and HPX (High Performance ParallelX) 3 are worth mentioning. TBB is a C++

template library that implements a set of parallel containers and algorithms for

running code in parallel on multicore CPUs. HPX is C++ runtime system for

asynchronous, parallel, and distributed computing, using CUDA, SYCL, and

HCC as backend.

A plethora of vendor-specific programming models bind the users to the man-

ufacturer, be it NVIDIA, AMD, or Intel, and we will not dive into them. Instead,

we focus on OpenCL 4, the unified programming model for high-performance com-

puting with the widest vendor support for many-core processors, GPUs, APUs,

and FPGAs. It is highly portable but does not necessarily guarantee performance

portability, nor is it user-friendly. Among the C++-based parallel programming

models that attempt to fill the gaps, there is heavy development in SYCL cross-

platform abstraction, DPC++/C++ 5 compiler and its oneAPI 6 imlementation.

SYCL 7 inherits the main characteristics of OpenCL and uses it as a backend

while improving on the programmability and performance portability aspects.

2https://github.com/oneapi-src/oneTBB
3https://stellar-group.org/libraries/hpx/
4https://www.khronos.org/opencl/
5https://intel.github.io/llvm-docs/
6https://www.oneapi.io/
7https://www.khronos.org/sycl/
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Solving Large MDPs
Optimally on Mobile
Platforms

3.1 Introduction

A Markov Decision Process (MDP) is a standard framework for modeling stochas-

tic planning and sequential decision-making under uncertainty in many disci-

plines, e.g., artificial intelligence, control systems, robotics, logistics, and main-

tenance, to name just a few [99, 11, 117, 91]. In this chapter, we focus mainly on

how to efficiently solve a problem defined as an MDP and find a policy that deter-

mines the best sequence of actions for a decision-making agent. The policy that

maximizes—under certain optimality criteria—the reward for the agent is called

optimal and can only be obtained by solving the MDP exactly. This exactness

relies on knowing the true Transition Probability Matrix (T) of the problem, i.e.,

the stochastic behavior or model of the decision-making agent while interacting

with its environment.

The MDP model knowledge can be either given before executing the method

or acquired online, during execution [99]. The most used methods for solving

MDPs with explicit knowledge about T are known as model-based methods. They

are based on Dynamic programming and include Value iteration (VI) and Policy

iteration (PI). Other sort of methods that may converge asymptotically to the op-

timal policy (under suitable constraints), in spite of not using explicit knowledge

about T, include Temporal difference learning, Q-learning and SARSA. They

17
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are known as model-free methods for learning and decision making, and are fre-

quently applied in Reinforcement Learning [9, 91]. We visually illustrate some

of the key differences and similarities between the model-free and model-based

methods in Fig. 3.1.
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Figure 3.1: Model-based vs model-free decision making and planning strategies.

In this chapter, we deal with solving large-scale (with millions of states) tabu-

lar model-based MDPs efficiently on low-power computing platforms when using

T explicitly. Notice that this can be impractical for large MDP sizes due to

the “curse of dimensionality”, i.e., the memory required to represent an MDP

increase quadratically with the states, and the time to find the optimal solu-

tion, exponentially [8]. Model-free methods spread this computational cost over

longer, smaller-grained sequences of experiences of the agent. However, this is

not a clear dichotomy [9, 40, 90], since model-based methods are used in online

scenarios as well, and in their approximate forms can employ at their core dy-

namic programming algorithms, such as VI, for progressively estimating the true

T—the same as in T -based calculations. In the particular case of learning in

physical environments (e.g., in robotics), model-free methods are recognized not

to be as suitable as model-based ones (see Chapter 18 - Reinforcement Learn-

ing in Robotics: A Survey in [118]). This highlights the importance of dynamic

programming and T -based methods (originally devised for offline and exact com-

putation) in approximate, real-time, and physical applications.

Although the execution of decision-making algorithms in physical agents (e.g.,

mobile robotics, autonomous driving) reveals the important problem of having

a limited energy supply, most previous works in solving large MDPs use high-

performance platforms connected to an uninterruptible power source. They use

one or a combination of the following three approaches to improve efficiency:

exploiting parallelism on CPU (SPMD, implemented with OpenMP and vector-

ization) [96, 54, 122, 49], exploiting parallelism on GPU (SIMT, implemented

with CUDA on discrete GPUs) [96, 46, 126, 77], and using approximate methods
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(parallelized for multicore and GPU execution) [109, 54]. Some of the reviewed

works consider solving MDPs on low-power platforms [96], but do not evaluate

the power dissipation [96, 54, 122, 46]. All these approaches have the common

goal to reduce the time required to compute a policy while neglecting the energy

footprint. Also, they do not exploit the full potential of simultaneous heteroge-

neous computing, i.e., they use one kind of device at a time —CPU or GPU, but

not both simultaneously.

In contrast, we target low-power platforms that usually rely on battery power

supply; in this scenario, energy consumption awareness is mandatory. Our ap-

proach to solving this kind of computationally complex problems is using low-

power high-performance accelerator hardware along with multicore processors.

The demand for high-performance and energy-efficient computing on consumer

mobile devices such as tablets, smartphones, laptops, and gaming consoles has

created the perfect conditions for the development of the ubiquitous low-power

heterogeneous System on Chip (SoC) that integrates a GPU accelerator with a

multicore. There is also a growing interest from the scientific community and

the industry in low-power Heterogeneous Computing Platforms (HCPs) because

they promise improved resource utilization, energy efficiency and an overall gain

in performance cheaply. Their use in embedded and mobile systems is being

extended to solve complex decision problems, e.g., in autonomous driving and

service robotics [28, 110, 123].

We illustrate this study with a bare implementation of VI for mobile robot

navigation, where a robot is intended to reach some metrical target from its cur-

rent position while avoiding obstacles. This is not the best approach for learning

this robotic task, since we simplify some parts and abstract away several details

and components of a complete solution—those not related to the VI procedure

itself. The implemented VI core should certainly be part of more complex meth-

ods. But it is a suitable scenario where the benefits of different approaches to

reduce the computational and energy costs of decision making can be analyzed

and compared.

The remainder of the chapter is structured as follows. In the next section,

we present the research methodology used. Next, we explain the MDP formal-

ism and the VI core method that we use as a benchmark, the approaches to

be analyzed and studied for improving performance and programmer productiv-

ity (Section 3.2). Then, we present our experimental setup and results of the

evaluation of the ease of programming, the computational time, and the energy

consumption (Section 3.5). We end the chapter with a discussions and conclu-

sions section (Section 3.6).
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3.2 Research Methodology

Throughout this chapter we employ the use-case methodology to study and opti-

mize the VI method for solving large decision-making making problems efficiently

onboard of mobile platforms. We formally define our navigation use-case as an

MDP in Subsection 3.2.4, where the main actor is CRUMB [34] —a mobile robot

that has to safely navigate to a target. Our aim is to evaluate and propose tech-

niques that improve the planning time and energy efficiency of VI in low-power

computers, and we use navigation as an illustration of their use. We are not

proposing a new navigation or learning method; there are a number of excel-

lent robotic navigation algorithms that do not involve MDP decision making or

learning, as [7].

This work has been developed in three main phases, illustrated in Fig. 3.2:

• Phase 1 – Modeling, simulation and validation of the robot navigation

problem as a Markov decision process.

• Phase 2 – Implementation and optimization of VI algorithm for execution

on low-power HCPs.

• Phase 3 – Evaluation of productivity, performance and energy efficiency on

the target platforms.
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Figure 3.2: Outline of the work done in this chapter.

We use an iterative and incremental approach to improve the proposed VI

implementations. This strategy is applied in all phases. First, in obtaining



3.2. Research Methodology 21

a valid MDP model for the robot navigation use-case (phase 1, upper part of

the diagram), through repeated evaluation, improvement and validation of the

interim model for the transition probability matrix (or transition function T).

Second, as you may see in the lower part of the diagram (phases 2 and 3), the

processes of implementation, optimization and evaluation feed each other through

an optimization and feedback loop.

3.2.1 Modeling, Simulation and Validation of the Use-Case

Our use-case involves a single agent, the CRUMB robot [34], a non-holonomic

mobile robot that has to navigate through a structured indoor environment to

reach a given target while avoiding obstacles. The agent does not possess a map of

its surroundings, but it is capable of perceiving them locally through its sensors.

From an MDP perspective, the goal of this agent is to find an optimal policy to

perform such navigation. The target can vary: it could be the recharging station

or maybe a desk where mail has to be delivered. We define the environment as a

five by five square meters space bounded by walls that can contain any number

of obstacles.

To formally define the robot navigation problem as an MDP, we must describe

the robot states, actions, transition probabilities of reaching a state from any

other state by taking a particular action (i.e., T), and the rewards matrix (R) or

utility of performing a certain action in the current state. Given the complexity

of the problem, we need to set up a simulation to gather the necessary data to

make a probabilistic model of the robot interaction with the environment—the

method marked in blue in Fig. 3.3. A more precise outline of its implementation

is depicted in Fig. 3.5, showing how robot simulation provides data to extract the

underlying model of the MDP, i.e., the T component of the MDP model. The

MDP for our use-case scenario is described in section 3.2.4.

For the simulation task we have used the educational version of V-REP robot

simulator (V-REP PRO EDU, version 3.3.2.) [1], integrated with Matlab devel-

opment environment and a CRUMB toolbox for V-REP [114, 34] to realistically

simulate and control the robot. The communication between the V-REP and

Matlab is made possible with a Robot Operating System (ROS) API that is

available for Matlab. This API is a library of functions that allows the program-

mer to exchange data with ROS-enabled physical robots, or with robot simulators

such as Gazebo [84] or V-REP[92]. We have chosen V-REP because it is an ex-

cellent platform for creating and simulating highly realistic robots and it is freely

available for educational entities.
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Figure 3.3: Learning the underlying model for the MDP based on simulated

experience allows us to obtain the T matrix safely (for the physical robot) and

timely. The model resulting from simulation is the input for the VI algorithm

(i.e., the planner).
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Figure 3.4: The CRUMB robot: physical (a) and simulated (b).

In our experiments, we use the CRUMB robot (Cognitive Robotics sUpporting

Mobile Base), pictured in Fig. 3.4a [34]. CRUMB is a relatively low-cost, personal

robot kit with open-source software for education and research, compatible with

ROS, that is essentially a Turtlebot-2 mobile robot with a WidowX articulated

arm. Turtlebot-2 features a ROS architecture. It integrates a Kobuki base, the

Turtlebot structure, a Microsoft Kinect sensor and a netbook (running ROS). It

also comes with a docking station for battery recharge.

A CRUMB robot model [114, 34] has been previously designed with V-REP

to accurately match the physical description of the real robot. V-REP allows
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us to simulate the robot behavior in any environment setting when we give it

specific commands. This CRUMB model also includes a Hokuyo URG-04LX

scanning laser rangefinder, featuring a detectable range from 2 cm to 400 cm,

100 ms/scan and with a 240◦ scanning range with 0.36◦ angular resolution. We

use the Hokuyo laser sensor for the rangefinder component of the state in the

MDP. Both the physical and simulated CRUMB robot can be controlled via an

embedded script, a plug-in, a ROS node, a remote API client, etc., and the

controllers can be written in C/C++, Python, Java, Lua, Matlab or Octave [92].

To gather the data needed to build the model (T matrix), we have developed a

controller in Matlab that works as a remote API client. This controller generates

the commands for the simulated robot to run in different scenarios like the ones in

Fig. 3.4b, then processes and logs the raw data from the sensors into state-action

tuples, as shown in in Fig. 3.5. For the robot controller, we use a programming

toolbox developed in collaboration with the CRUMB research team [114]. This

toolbox is an extension of the Matlab Robotics System Toolbox and allows us to

easily connect to the robot and run the same program (controller) both on the

simulator and the actual robot.

Using this setup, we have recorded the navigation experience from the sim-

Figure 3.5: Simulation setup used to gather data from the robot interaction with

different scenario configurations in the environment. Some of the scenarios used

to learn T are shown in Fig. 3.4b.
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ulation in a log file containing a list of state-action tuples. Based on a chosen

discretization and the log file data, we build a parametric model of a continuous-

space-time stochastic process. The result is a discrete MDP whose T represents

the navigation experience from the CRUMB navigation simulation in V-REP. To

generate smaller or larger MDP problems (benchmarks) we alter how fine-grained

the state discretization is while keeping the number of actions constant. Since

these details do not affect our analysis on performance and productivity of VI

algorithm implementations, we will not dive in deeper. A detailed report of the

simulation and validation of the MDP is available in [26], Sections 3.2 and 3.3.

Once we have the T functions for the navigation benchmarks, we can sys-

tematically evaluate different strategies to implement the VI method and solve

increasingly large MDP problems. Keep in mind that the computation of T is

not part of the VI method (see Fig. 3.4b), as we build it in a previous simulation

stage carried out off-line entirely so it does not affect the results on the evaluation

of the VI performance.

3.2.2 Solving Large MDPs Optimally on Low-Power SoCs

In the second phase, we first optimize the data structures for solving large-scale

MDPs exactly with a sequential implementation of VI. Then we focus on accel-

erating our sequential VI implementation to compute the optimal policy while

minimizing the runtime and power required for it. We made use of three pro-

gramming models to optimize VI, which we identify as CPU-only, Hybrid-1, and

Hybrid-2:

1. CPU-only: optimizations using SPMD parallelism on a multicore CPU,

based on OpenMP and TBB [85, 52].

2. Hybrid-1: optimizations using both SPMD parallelism and SIMT paral-

lelism (on a GPU), developed in OpenCL [58] and oneAPI [51]. We ac-

celerate the evaluate policy kernel1 (the more computationally expensive

kernel) with the GPU and compute the other kernel (improve policy) on

the multicore processor(s).

3. Hybrid-2: an extension of Hybrid-1, with the addition that the evaluate

policy kernel is executed in parallel on both the GPU and the CPU, using

two load balancing techniques for improved resources utilization.

1We have divided the VI algorithm in two kernels, evaluate policy kernel and the improve
policy, as it can bee seen in Fig. 3.8
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3.2.3 Performance and Productivity Evaluation

In this final phase, we: 1) explore the computational burden of different MDP

problem sizes together with the platforms limits, 2) assess the obtained solutions

for the available heterogeneous platforms and evaluate their efficiency and power

consumption, and 3) measure the impact on productivity when increasing the

abstraction level of the programming model. For the latter, we employ two well

known metrics for complexity and ease of programming a code: the cyclomatic

complexity and the programming effort [39, 73].

For the implementation and testing purpose we use four representative het-

erogeneous mobile platforms ranging from low to medium computing capacity,

memory, and power requirements. We choose these platforms because they allow

us to evaluate the implementability of small to very large MDPs for different

power and computational capacity requirements. We identify them as TP0,

TP1, TP2, and TP3, whereas TP0, TP1 and TP2 are clear examples of low

power computing platforms; TP3 is an example of a higher performance system

with medium power requirements and is included here for comparison:

1. TP0 – An Odroid-XU3 board featuring a Samsung Exynos-5422 CPU

(Cortex-A15 and Cortex-A7 big.LITTLE processor), an ARM Mali-T628

GPU (600 MHz, OpenCL 1.1), 2GB of LPDDR3 RAM, and a TDP of 4 to

10 Watts.

2. TP1 – A 1.60GHz Intel(R) quad core CPU i5-8250U, featuring an UHD

620 integrated GPU with a base frequency of 300 MHz, 8GB of DDR4 and

a TDP of 10 to 15 Watts.

3. TP2 – A 3.10GHz Intel(R) dual core CPU i7-5557U, featuring an Iris in-

tegrated GPU (6100) with a base frequency of 300 MHz, 16GB of DDR3

RAM and a TDP of 23 to 28 Watts.

4. TP3 – A 3.30GHz Intel(R) quad core CPU, i7-5775C, featuring an Iris Pro

integrated GPU (6200) with a base frequency of 300 MHz, 32GB of DDR3L

RAM, and a TDP of 37 to 65 Watts.

We used two tools to evaluate the performance of our VI implementations

on the four platforms. For TP0 we have an in-house library to measure energy

consumption [29] on TP0. The board features four on-board INA231 current

and power monitors to monitor A15 cores, A7 cores, DRAM and GPU power

dissipation in real time. The readouts from these power sensors are accessible

through the /sys file system from user-space. The sample rate used is 10 Hz.

This way, one sampled power value is obtained every 100 milliseconds. We have

chosen this sample rate because the power sensors actualize their values every 260

milliseconds approximately, so a sample rate two times faster is good enough for
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getting accurate measurements. The in-house library allows starting/stopping a

dedicated thread to sample power readings and integrate them through time using

the real-time system clock. A previous study demonstrated that the overhead

introduced by this sampling thread was negligible [29]. We rely on the Processor

Counter Monitor (PCM) library [119] to access the hardware counters on TP1,

TP2 and TP3. They allow us to measure the energy consumption (in Joules)

on the CPU, GPU and Uncore components for a given application at runtime.

In the Intel terminology, the Uncore is the part of the processor that contains

the integrated memory controller and the Intel QuickPath Interconnect to the

other processors and the I/O hub. Overall, the following metrics are supported

by PCM:

• Core metrics: instructions retired, elapsed core clock ticks, core frequency

including Intel Turbo boost technology, L2 and L3 cache hits and misses.

• Uncore metrics: read and written bytes from and to memory controllers,

data traffic transferred by the Intel QuickPath Interconnect links. This

metric is equivalent to the memory energy measurement available for the

Odroid platform and is the one that we use as reference.

We have used ANalysis Of VAriance (ANOVA) framework to determine whether

there are any statistically significant differences both in the execution time and

energy consumption measurements of the different VI implementations, including

a Tukey’s post-hoc test to decide the ordering of elements when differences that

are significant are detected. Previously, we have verified that the measurements

are independent.

3.2.4 Mobile Robot Navigation MDP Use-Case

Our robotic problem has one agent, CRUMB, with a builtin low power processor.

The robot has to navigate through a structured indoor environment realistically

simulated to reach a given metrical target (in any orientation) while avoiding

obstacles. From a practical view, the target can be the recharging station, a desk

where mail has to be delivered, or maybe a moving person. We define an indoor

environment as a five by five square meters space surrounded by walls. The inner

space may contain any number of obstacles, placed in any position. From an

MDP perspective, the goal of the robot is to find an optimal policy to perform

such navigation.

When modeling our use-case as an MDP, as a requirement, the system must

have full observability. In our case, the robot state has to be completely (deter-

ministically) observable, derived directly from the values of the sensor readings.
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This is only possible when the sensors are accurate enough. Otherwise, we would

have to formalize our problem as a Partially Observable MDP or POMDP. In our

case, the sensors of CRUMB can measure with sufficient accuracy the following

parts of the state (we use structured formulation of a discrete MDP):

• Robot orientation in the universal frame of coordinates or θ angle.

• Measurements of distances to obstacles r, equally spaced in the frontal

area of the robot (egocentrically), provided by the Hokuyo URG-04LX laser

range finder, g being one such obstacle-distance.

• Distance d to the target.

• Angle a between the robot orientation and the relative location of the target.

All in all, the number of states of the resulting MDP is |S| = NT ·NR ·NG ·
ND ·NA, where S represents the state space and NT , NG, ND, NA the cardinal

of the discretized measurements corresponding to θ, g, d, and a, respectively.

As for the actions, CRUMB can take any of the following at any iteration

of the sequential decision-making process: stay still (a0), move forward (a1),

move along a curved trajectory to the left (a2) or the right (a3), turn around

without displacement (a4), and move backward (a5). The number of actions

is thus |A| = 6, where A represents the action space. The actions last for a

given fixed time that is long enough to produce all their effects and avoid any

non-markovianity caused by the dynamics of the physical system.

The T matrix models the robot-environment interaction and has the form of

a 3D sparse matrix stored in the CSR (Compressed Sparse Row) format. Thus,

it does not store the values for those state transitions that have a zero or close

to zero probability to occur.

The robot receives a positive reward R(s) = y when it reaches the target, or

possibly when getting close enough to it (attracting state, Eq. 3.1), a negative

large negative reward x if it collides with obstacles (repelling states), and usually

a small negative or zero reward z in other cases (neutral states). The reward

matrix, R(s, a) (Eq. 3.2), quantifies the expected reward after taking action a

while being in state s, reaching state s′. The reward function indirectly defines

the task to accomplish or the behavior of the agent, so it must be prescribed

carefully.

R(s) =


x : x < 0, if r(i) = 0

y : y > 0, if d = 0 , ∀i ∈ [1, NR], s ∈ S, a ∈ A

z : x < z < y, otherwise

, (3.1)
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R(s, a) =
∑
s′∈S

P (s′ | s, a)R(s′) (3.2)

T contains the probability of reaching any state s′ provided that the agent is
in a state s and executes action a, i.e., it models the behavior of the world when
the robot acts in it. Since it holds probabilities, T must satisfy the condition
defined by Eq. 3.3, where next(s, a) is the set of states that can be reached from
state s by executing action a.

∑
s′∈next(s,a)

T (s, a, s′) = 1, ∀s, a, s ∈ S, a ∈ A (3.3)

There are many ways to get the model of the agent interaction with the
world for model-based decision making and planning scenarios, as you may see
in Fig. 3.1. This include imagining it, using expert knowledge and creating the
model based on real experience or simulation. We use the latter (marked in blue
in the figure) to get the data to form this T. We have realistically simulated the
robot using the physical simulator V-REP [92]. Our MDP is a discrete parametric
model of a continuous-space-time stochastic process. To generate smaller or
larger MDPs, which is necessary to evaluate our parallelizations of VI for different
problem sizes, we alter the state quantization while keeping the number of actions
constant. In this case, for MDPs with different levels of discretization, a way to
find the optimal quantization is to compare the total estimated reward obtained
when exploiting the optimal policy in the long-term, Rπ (see Eq. 3.4). Rπ is
computed as the sum of the value of the policy in each state weighted by the
marginal probability of reaching that state.

Rπ =
∑
s′

V (s′)
∑
s,a

T (s′|s, a)P (s, a). P (s, a) =

{
1 : a = π(a)

0 : otherwise
(3.4)

Note that this use-case study is not a practical nor complete solution to solve

the robot navigation problem under the decision making perspective. Such a solu-

tion would involve more sophisticated methods, possibly based on reinforcement

learning (RL), that can be built upon VI, but also add supplementary aspects

to consider, which are out of the scope of this work. For instance, we provide

the robot with a pre-built T matrix (learned in off-line simulation) instead of a

progressively estimated one while executing the planning for navigation. RL ap-

proaches that make very efficient use of progressive knowledge about the system

dynamics can be found, for instance, in asynchronous RL [75].



3.3. Related Work 29

3.3 Related Work

Markov decision processes are a classic mathematical formalism for modeling se-

quential decision making under uncertainty in systems where the next state can

only be determined stochastically from the current state and the action taken.

They have been applied to a diversity of areas, such as operations research, civil

engineering, communications engineering, ecology, finance & economics, trans-

portation, and robotics [99, 11]. They can be extended to cope with additional

sources of uncertainty, like in POMDPs [61], large and continuous spaces (the

basic formulation uses discrete states and actions), and many other issues [118].

There are numerous methods to solve MDPs exactly, i.e., to plan an optimal

course of action that may not be unique, known as a policy. When planning

for MDPs, the norm is using VI (the method used in this study) or PI imple-

mentations which are only optimized for faster execution on platforms that have

unlimited power supply. Although we have found some related works consid-

ering solving MDPs on low-power platforms [96], the power dissipation is not

analyzed [110, 96, 55, 121, 54, 122, 46, 50]. Focusing then on the efficient use

of computational resources, Zhou et al. [126] appear to be the first to develop a

customized representation for sparse data to store and access the transition func-

tion in a (Bayesian) MDP implementation on a GPU. Their approach gives a 5×
reduction in memory utilization (although this reduction is problem dependent)

and a proportional decrease in the computations needed to solve the MDP.

The transition function T is a 3D matrix (|States| × |Actions| × |States|)
that can be compressed using a CSR-like format only for the 3rd dimension.

This representation makes sense in a navigation scenario because the agent can

attempt any action from the current state (i.e., T is dense in width and height),

though not all states are reachable by taking any action from the current state

(i.e., T is sparse in depth). We do not use GPU-vendor-optimized Sparse BLAS

libraries, such as cuSparse or clSparse [83, 41] because they do not support 3D

sparse matrices (they support only sparse vectors and 2D matrices). We need

a custom made solution that accounts for two facts: (1) VI does not require

direct access to particular values in T, and (2) in model-based MDPs T is known

apriori. In other words, VI does not require a lookup routine to access values in

T, nor an update routine to add new nonzero values to it, as in [126]. We opt

for a lightweight representation of T that employs only three array vectors. It

allows O(1) data access for its use by VI by orderly grouping the access to the

T values by the contents of the (current) state-action cell (see Fig. 3.6). We call

it “3D-lite-CSR”. Our representation improves memory utilization up to 9× for

the evaluated benchmarks.
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Besides choosing a suitable representation for the data, there are three main

approaches to improve the computational efficiency of solving MDPs: exploit-

ing parallelism on CPU (usually SPMD), exploiting parallelism on GPU (mainly

SIMT), and using approximate methods. The first one can be based on multi-

thread standard programming APIs such as OpenMP and vectorization strate-

gies [96, 110, 54, 122, 50, 49]. The second one proposes discrete GPUs and,

typically, CUDA to speed up both approximate and exact methods [96, 50, 55,

121, 46, 126, 77]; although these GPU-based solutions have been implemented

on high-performance HCPs, they do not fully exploit the hardware resources for

the VI implementation and are unconcerned about energy efficiency2. Some hy-

brid solutions use both CPUs and GPUs, but not simultaneously [96, 110, 122].

Finally, approximate methods for solving MDPs (our third category) have been

proposed and parallelized for multicore and GPU execution in [109, 54].
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i7-2620M (35W)
7 7 7

UVS

trajectory

planning

[55]
Value

Iteration
7 3 7

1,048,576

4
180W

GeForce 8800 GTX (155W)

Intel Core 2 Duo (25W)
7 7 7 Generic

[121]

Loxicogr.

Value

Iteration

7 3 7
3608

10
137W

i7-4702HQ (37W)

GTX 870M (100W)
7 7 7

Semi

autonomous

driving

[122]
Value

Iteration
3 7 3

2,400,000

6

365 to

415W

Geforce Titan (250W)

Kepler GK110 (250-300W)

2x Xeon E5-2670 (115W)

3D CSR 7 7
Model

checking

[50]

Value

Iteration

Inifinite

Stage

3 3 7 N/A 272W
GTX680 (195W)

i7-3770 (77W)
7 7 7

Animat

&

mountain

car probl.

[126]
Bayesian

MDP
7 3 7

512

2
334W

i5-4670 (84W)

GTX 780 (250W)

2D duplex

sparse

storage

(DSS)

7 7

Gene

regulatory

network

control

[49]
Value

Iteration
3 3 7

270

70
680W

2x Xeon E5-2680v2 (115W)

2x Xeon Phi 5100 (225W)
7 7 7

Intrusion

Detection

Systems

[21]
Policy

Iteration
7 3 7

1,000

N/A
N/A N/A 7 7 7 Generic

This

work

Value

Iteration
3 3

3

Simultaneous

Execution

82,800,000

6

4 to

65W

Odroid XU3 (4-10W)

i5-8250U (10-15W)

i7-5557U (23-28W)

i7-5775C (65W)

3D lite

CSR
3 3

Autonomous

Navigation

Table 3.1: A qualitative review of related works.

Our research group has previously developed techniques that enable the si-

multaneous execution of the workload of a given software by using both the CPU

cores and the integrated GPU on high-performance HCPs to low-power SoCs

2Some methods based on approximate solutions to MDPs have been applied to manage the
energy consumption of CPUs when these CPUs are computing other problems [101], but up
to our knowledge there has not been any study reported on the energy consumption of the
parallelization of VI itself.
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[29, 80]. Elsewhere, we have studied the use of VI for solving discrete MDPs

in small educational robots equipped with an embedded microcontroller [70].

Here, we are interested in exploiting the parallelization capabilities of emerging

low-power heterogeneous computing platforms to execute the VI method more

efficiently.

In this proposal, we do not consider model-free methods, but focus on solving

the MDP as optimally as the exactness of T allows it. Moreover, we enhance the

previously mentioned parallelism approaches by including heterogeneous schedul-

ing strategies that allow the simultaneous execution in all devices on a HCP (both

GPU and CPU cores) while considering load balancing between them. We have

picked this line of research because although existing strategies work well for

small problems when applied to regular, dense data structures, like arrays and

matrices, they do not perform so well with irregular computation and sparse data

structures, which are common in real-life MDP applications. We also contribute

with characterizing the ease of programming and energy efficiency of our parallel

implementations.

It is difficult to make a fair quantitative comparison between this work and

others because of the high variety of use-cases, problem dimensionality, and plat-

forms used for evaluation, not to mention our focus on both good energy con-

sumption and speed-up (not only on the latter). Nevertheless, we have compiled

in Table 3.1 a qualitative comparison among the methods mentioned above aimed

at providing a quick overview of the state-of-the-art in these aspects.

3.4 Solving Large-Scale MDPs Optimally on Mo-

bile Platforms

We use a mobile robot navigation problem as a use-case to study the feasibility

of solving exactly large decision making problems on low power SoCs. In this

section introduce the data structures and over a dozen parallel alternatives of

implementing the VI method to plan for our navigation usecase.

3.4.1 Data Structures – 3D-lite-CSR

The state in our MDP problem is defined and structured by its components, and

each component of the state has values determined by the chosen discretization:

[0..NT − 1] for θ, [0..ND− 1] for d, etc. If NS is the total number of states and

NX is the number of actions, the matrix of expected rewards R(s, a) contains
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NS×NX real values; although individual rewards are highly sparse, this averaged

matrix (through Eq. 3.2) becomes dense. The policy, π (or P ), and the policy

values, V , are one-dimensional arrays of NS values each (one per state). The

former contains integer identifiers of actions in the interval [0..NX − 1], while

the latter contains real values of discounted rewards. Both of them have to be

implemented as dense arrays. Finally, T matrix contains NS × NX × NS real

values. T is a sparse matrix because when parting from any initial state with any

possible action it is very common not to reach every other state. In the evaluated

benchmarks, there are approximately one to ten reachable states from any state-

action combination, the majority of the states being too far to be reached in one

step.
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Figure 3.6: Sparse representations of the transition probability matrix, T.

Our HCP platforms are bound in memory and computing power, so we need

to decide carefully how to represent and store the T matrix, that is potentially

large, depending on the granularity of the state discretization. Using its sparsity,

for the sequential and CPU-only versions we could use a NS×NX matrix, each

cell containing a map (unordered_map in C++); every map would contain in

turn a list with pairs <nextStateId,probability> for all reachable states from

the state-action corresponding to the cell, as shown in the upper part of Fig. 3.6.
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Pairs corresponding to a probability of zero are not stored in the map.

Unfortunately, the previously described representation is not appropriate for

the OpenCL programming model that we use to code the kernels (and which are

offloaded to the GPU in some of the parallelized versions). This is because the

OpenCL (v1.1) kernel allows only built-in scalar data types, 1D arrays (pointers

to the built-in data-types), and well-aligned structures as arguments. In these

implementations, we use instead a representation of T with 1D arrays, as shown

in the lower part of Fig. 3.6. This 1D representation is composed of three arrays:

• probability: containing the non-zero transition probabilities from the ma-

trix, ordered row-wise (first, all the transition probabilities for S0, then for

S1, etc.). Its size, Sz, is given by the total number of non-zero transition

probabilities for all state-action combinations.

• nextStateId: each cell stores the Id of the “next state”, with its associated

probability being held in the corresponding cell (i.e., same position) of

the probability vector. It also has size Sz.

• nextCell: it indicates the starting position of groups of consecutive ele-

ments from the probability and nextStateId arrays that correspond to

a given state-action pair. Its size is NS×NX + 1, so that nextCell[NS×
NX] = Sz.

In our experiments, we have noticed that the implementations using 3D-lite-

CSR representation for T matrix outperform the ones based on the unordered_map

and non-sparse representations in all cases, so in the following sections we review

only the findings concerning the implementations using 3D-lite-CSR format. The

main advantage of our sparse representation is that it reduces the memory and

computation requirements of the algorithm by ≈ 90% while conserving an O(1)

data access by orderly grouping the T values by the contents of the state-action

cells. This is only possible because of the sparse nature of T.

Studying the typical sparsity of the T matrix, we observe that nonzero tran-

sition probabilities occur almost exclusively for neighboring states and are con-

centrated on the diagonal. This pattern can be observed for small, medium, and

large MDP models. For instance, in Figure 3 from [57] you can see the T matrix

of a four states MDP for pediatric sepsis; in Figure 4 from [32] the T matrix of

a typical small-medium MDP for analyzing human movement trajectories, and

in Figure 8 from [31] we can observe a medium T MDP used in fabric-aware

3D capacitance extraction. Generally, the larger the state space, the higher the

sparsity. Figure 3.7 gives an intuition on the typical sparsity of T for medium,

large and very large MDP problems.

However, 3D-lite-CSR format does have some drawbacks (that we consider
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Figure 3.7: Transitions existence from the current state to the next state when

attempting every possible action from every state. A blue dot on the graph

indicates that there is at least one transition from s1 (current state, X-axis) to

s2 (next state, Y-axis) by taking action a, where a takes values from 1 to 6, each

corresponding to action stay, move forward, move to the left with displacement,

etc. Here, nz indicates the number of nonzero state-action-state triples (number

of blue dots). We define the sparsity of T as sp = (NS ×NS − nz)/(NS ×NS).

less important than its benefits): one problem is that it produces memory diver-

gences, a type of irregularity that causes load imbalance in the GPU (the GPU

performance benefits most from coalesced memory access). Besides, when com-

puting “Evaluate policy”, the robot can end up in a variable number of states and,

as a result, nextCell[idxState] points to a varying number of possible state

transitions, which produces control divergences, another type of irregularity that

causes load imbalance in GPUs.

3.4.2 Taxonomy of VI Implementations

In total, we evaluate thirteen implementations, incrementally optimized for run-

time, energy efficiency, and ease of use. The first version is sequential, SEQ, based

on the pseudo-code in Fig. 2.1, and serves as a reference for correctness. The sec-

ond and third variants (CPU-only) are optimized for multicore CPU execution.

We call them OMP and TBB, for using the OpenMP and Threading Building
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Blocks frameworks, respectively [85, 115]. We use TBB implementation as the

baseline for comparing the efficiency of different heterogeneous implementations.

In the fourth implementation (Hybrid-1), we program the heaviest kernel of VI

with OpenCL, so we call it OCL. It runs VI in parallel on the GPU and on the

multicore, but not simultaneously.

The nine remaining implementations are all heterogeneous, simultaneously ex-

ploiting the CPU and the GPU. They are the result of combining three different

coding styles for the GPU (OCL, BUFF and USM) and three different hetero-

geneous schedulers (HO, HD, and HL), that we explain next. Therefore, these

implementations are: HO-OCL, HO-BUFF, HO-USM; HD-OCL, HD-BUFF, HD-

USM; and HL-OCL, HL-BUFF and HL-USM.

Regarding the three different coding styles, we first have OpenCL, OCL, that

represent a low-level programming model in which HW aspects of the GPU are

exposed to the user. This implies that the developer has to learn and manage

data types as OpenCL platform, device, context, queue, kernel, etc. and

deal with low-level functions to compile the GPU kernel, move data to and from

the GPU, pass the kernel arguments, enqueue the GPU kernel, etc. These low

level details are hidden if we use oneAPI, that offers two coding models:

• BUFF (SYCL style): explicitly declare buffers that encapsulate the data

across the CPU and the GPU and accessors that give access to the data

and define data dependencies.

• USM (Unified Shared Memory): a pointer-based alternative to BUFF,

where the data is allocated using malloc shared() and accessed as a regu-

lar array from both the CPU and the GPU. This particular data allocation

used to be an Intel extension only available in the Intel’s DPC++ compiler

(part of the 2020 SYCL standard, Feb. 2021 release, when these experi-

ments were performed). However, it has been included in the latest review

of the SYCL standard. Using USM requires HW support for Shared Virtual

Memory (a.k.a. SVM or unified virtual address space). The clear benefit is

that data movement between the CPU and the GPU is avoided, although

cache coherency can be a source of overhead.

Finally, our three scheduler implementations (HO, HD, and HL) have been

devised to improve the overall heterogeneous performance. They extend the TBB

implementation using increasingly complex scheduling strategies for CPU+GPU

heterogeneous computing, and are described in Section 3.4.5.2.
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3.4.3 Sequential Implementation

Our sequential implementation of VI has two parts: the MDP initialization block

which encompasses the creation of the transition function T and the rewards ma-

trix R, and the core computation of the VI Algorithm that produces the optimal

policy. In Fig. 3.13, we show the general structure of our VI implementations.

First, the parametric MDP is initialized using the navigation experience from the

V-REP simulation stored in Log file (a CSV-format file containing a list of state-

action tuples), the number of actions, NX, and the discretization parameters,

NT, NR, NG, ND and, NA. This corresponds to the MDP Initialization block

of Fig. 3.8. Next, given an MDP model, the Value Iteration Algorithm executes

in a loop until an Optimal policy is produced.

Figure 3.8: VI control flow graph.

The sequential version is a plain C++ implementation of the VI algorithm

(Figs. 2.1 and 3.8) and serves as a reference for the correctness and relative

improvement of further optimized versions. From now on, we focus only on the

VI Algorithm.

The VI Algorithm consists of three kernels: “Evaluate policy”, “Improve

policy” and “Check convergence & update”. “Evaluate policy” and “Improve

policy” kernels solve the Bellman equation. In particular, the “Evaluate policy”

kernel computes the expected value of each subsequent state: Vk[s] =
∑
s′ P (s′ |

s, a)(R(s, a)+γVk−1[s′]), for the current state s (see line 8 in Fig. 3.10 for details).

This kernel is the most computationally intensive with a complexity of O(kMN2).

The k term represents the number of iterations required by VI to converge to an

optimal policy; N and M are the number of states and actions of the MDP,

respectively. Next, the “Improve policy” kernel searches for the action with

highest value for each state and uses it to update the current policy: π[s] =

argmaxa
∑
s′ P (s′ | s, a)(R(s, a) + γVk[s′]) (see line 12 in Fig. 3.10). This kernel

has a complexity of O(kMN). Finally, the “Check convergence & update” kernel

has a complexity of O(N).

The three kernels have sequential dependencies; therefore, it is necessary to

execute them one after the other. We have identified “Evaluate policy” kernel

–K1– as the most computationally intensive, followed by the “Improve policy”

kernel –K2– (the first two blocks of Fig. 3.13). “Evaluate policy” kernel uses up
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to 80% of the computing resources, so in this work we focus our attention on

optimizing the execution of this kernel. Due to the main data structure that is

traversed by this kernel, T, a 3D sparse matrix stored in our 3D-lite-CSR format,

two challenges arise: i) the memory access pattern is not coalescent; and ii) the

computational load of each iteration of the parallel iteration space is different.

Therefore, the CPU and GPU threads unavoidably have unbalanced workloads

to process regardless of the workload distribution strategy.

3.4.4 CPU-Only Implementations

Figure 3.9: CPU-only: OpenMP and TBB VI implementations.

The first and simplest parallel strategy that we can use attempts to takes

advantage of the all the CPU resources by using parallel threads in the multicore

processor(s). We present two CPU-only implementations, based on OpenMP and

TBB respectively (Fig. 3.9). Both OpenMP and TBB offer task-based frame-

works based on lightweight runtimes that enable efficient implementations of

parallel applications; however, the data accessed in the “Evaluate policy” kernel

is irregular due to the sparse nature of the T matrix. We want to assess the

efficiency of these two different frameworks for handling the load imbalance due

to the irregular data accesses in the “Evaluate policy” kernel, as well as their be-

havior with the “Improve policy” kernel where data accesses are regular. One of

our test platform’s CPU has a big.LITTLE architecture, which is quite common

in low-power heterogeneous computing, adding further complexity to the issue of

load balancing.

OpenMP provides a set of compiler directives and environment variables

that allow shared memory parallel programming. It supports dynamic and guided

scheduling strategies for orchestrating imbalanced workloads. They both use an

internal work queue to give a chunk-sized block of loop iterations to each thread.

When a thread has finished, it retrieves the next block of loop iterations from

the top of the work queue. The difference between the two is that the first

one uses a fixed chunk size, while the second starts with a large chunk size

that is decreased to handle better the load imbalance between the threads for

the remaining iterations. This kind of scheduling involves additional overhead;
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1 #include <omp.h>

2 int main(int argc, char **argv) {

3 while(notReady) { // Value iteration algorithm

4 // Evaluate policy (OMP)

5 #pragma omp parallel for schedule(guided)

6 for (s = 0; s < NS; s++) //for each state

7 for (a = 0; a < NA; a++) // for each action

8 Vk[s] =
∑

s′ P (s′ | s, a)(R(s, a) + γVk−1[s′])
9 // Improve policy (OMP)

10 # pragma omp parallel for schedule(dynamic)

11 for (s = 0; s < NS; s++) //for each state

12 π[s] = argmaxa

∑
s′ P (s′ | s, a)(R(s, a) + γVk[s′])

13 // Check convergence condition and update (OMP)

14 #pragma omp parallel for reduction(+:norm2PolicyValue)

15 for (s = 0; s < NS; s++) {...}

16 if ∀s, |Vk[s]− Vk−1[s]| < precisionThreshold notReady = false

17 }

Figure 3.10: OpenMP implementation of VI when selecting the guided scheduling

strategy.

1 #include <tbb/tbb.h>

2 using namespace tbb;

3 int main(int argc, char **argv) {

4 while(notReady) { // Value iteration algorithm

5 // Evaluate & Improve policy (TBB)

6 parallel_for(blocked_range<size_t>(0,NS), evaluatePolicy);

7 parallel_for(blocked_range<size_t>(0,NS), improvePolicy);

8 // Check convergence condition and update (TBB)

9 parallel_reduce(blocked_range<size_t>(0,NS), norm2PolicyValue);

10 ...

Figure 3.11: TBB implementation of VI.

thus it may not be advantageous for the “Improve policy” kernel (regular data

accesses).

TBB is a template library for shared memory parallel programming that

provides several template functions, among them, functions for performing par-

allel execution of a loop over a range of iterations. The default partitioner

of these functions recursively performs binary splitting of the range of itera-

tions into chunks, until a minimum threshold size is reached. Each chunk is

then run as an independent task; the internal TBB runtime scheduler employs

a work-stealing technique to balance the load of tasks across all CPU cores.

Work stealing usually works better than dynamic or guided approaches in cases

of imbalanced workloads. For instance, the library provides parallel for()

and parallel reduce() function templates, which are functionally equivalent to
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the OpenMP #pragma omp parallel for and omp parallel for reduction

directives used in our implementations.

Fig. 3.10 (lines 5, 10, and 14) and Fig. 3.11 (lines 6, 7, and 9) illustrate the

use of the OMP directives and TBB functions for our CPU-only implementations

in order to parallelise the “Evaluate policy” and “Improve policy” kernels, as well

as the convergence check. The operator() for functor evaluatePolicy (functor

improvePolicy) in line 6 (line 7) in Fig. 3.11 is equivalent to lines 6-8 (11-12) in

Fig. 3.10.

An outline of this implementation is presented in Fig. 3.11. The scheduler

of TBB uses an internal queue to give to each thread a chunk-sized block of

the loop iterations. When a thread has finished its chunk, it retrieves the next

one from the top of the work queue. The scheduler partitions the work in large

chunks in the beginning and then it decreases the chunk sizes to better handle

the load imbalance among the threads for the remaining iterations. Fig. 3.11

(lines 6, 7, and 9) illustrates in C++ style the use of TBB template functions for

our multicore implementation to parallelize the “Evaluate policy” and “Improve

policy” kernels, as well as the convergence check.

3.4.5 CPU+GPU Heterogeneous Implementations

The VI algorithm does not allow concurrent execution of the “Evaluate policy”

and the “Improve policy” kernels because the second one depends on the results

of the first one. Therefore, it is necessary to execute the two kernels one after the

other. We propose here different heterogeneous implementations to accelerate

the “Evaluate policy” kernel, which is the most computationally expensive part

of the algorithm as stated before. These heterogeneous implementations will use

the CPU and the GPU to collaborate in the execution of the iterations of the

kernel parallel loop.

One of the main challenges of CPU+GPU heterogeneous implementations is

how to partition and schedule the work among the devices that collaborate in the

computation to avoid load imbalance between them. Another challenge is related

to the sources of irregularity (memory and control divergencies) associated to the

sparse matrix representation of T that affect the work offloaded to the GPU (load

imbalance among the GPU threads, as explained in section 3.4.1). To study the

impact that different work partitioning and scheduling strategies have in this

highly irregular kernel, we study three implementations: -HO-, -HD-, and -HL-.

In all of them, we use TBB as orchestrator to offload chunks (blocks) of parallel

iterations to the GPU and to the CPU cores.
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3.4.5.1 Hybrid-1: Exploring Functional CPU-GPU execution

1 #include <tbb/tbb.h>

2 using namespace tbb;

3 int main(int argc, char **argv) {

4 while(notReady) { // Value iteration algorithm

5 // Evaluate policy (no scheduling: OpenCL vs oneAPI(BUFF or USM) on GPU)

6 gpu_parallel_for(blocked_range<size_t>(0,NS),evaluatePolicy);

7 // Improve policy (TBB-CPU)

8 parallel_for(blocked_range<size_t>(0,NS), improvePolicy);

9 // Check convergence condition and update (TBB-CPU)

10 parallel_reduce(blocked_range<size_t>(0,NS), norm2PolicyValue);

11 ...

12 }

13 }

Figure 3.12: Hybrid-1 implementation of VI.

In a first approximation, named OCL, we offload all the parallel loop iterations

of the “Evaluate policy” kernel (Fig. 3.12, line 6) on the GPU using OpenCL

and oneAPI, while the other kernels execute on the CPU multicore using TBB

(Fig. 3.12, lines 8-10). In this implementation, we apply a form of functional

parallelism in which each device computes different kernels at a given time. The

problem with this implementation is that the CPU cores are idle while the GPU

is computing the “Evaluate policy” kernel, and likewise, the GPU is idle when

the CPU cores are computing the other kernels. So the resource utilization is not

optimal.

The goal of our next implementations is to incorporate the CPU cores to

collaborate simultaneously with the GPU in the computation of the “Evaluate

policy” kernel to improve resource utilization.

3.4.5.2 Hybrid-2: Exploring Heterogeneous Scheduling

Here we explore three heterogeneous scheduling strategies that allow the simul-

taneous execution of the parallel iterations of the “Evaluate policy” kernel on

the GPU and CPU cores. The three strategies are results of previous research of

our group. In [80], we propose Oracle and LogFit, two scheduling strategies that

enable simultaneous execution and efficient use of resources on CPU+GPU plat-

forms. Also, in [93], we study a CPU+FPGA scheduler called Dynamic. These

three scheduling strategies have been implemented in a library that extends the

functionality of the Intel TBB function parallel for to heterogeneous parallel for

by including the possibility to simultaneously orchestrate the work between the
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CPU cores and the GPU.

In these previous works [80, 93], the CPU code is implemented with TBB and

the accelerator code with OpenCL. Here we re-implement the schedulers on top

of oneAPI to ease the development of the GPU kernels. In Sec. 3.5, we discuss

the benefits and costs of using the oneAPI programming model with respect to

the initial implementation, but for now, let us see how these three schedulers

work under the hood.

Figure 3.13: Control flow graph for heterogeneous implementation of VI.

Oracle scheduler (HO): makes a static, one-time, partition of iterations

between the CPU and the GPU. HO divides the workload between them using

a RatioGPU parameter in [0%..100%] to indicate the ratio of the iterations that

goes to the GPU. This ratio is set as an input parameter to the scheduler (see

lines 9 and 13 in Fig. 3.15). The scheduler sends the remaining iterations to 100%

to the multicore. To obtain the optimal work balance between the two devices

for HO, one should assess every possible partition. For a good approximation of

the optimal work division, we have trained the scheduler by executing HO for all

work-ratios from 0% to 100% with an increment of 10%. We show two examples

of how the optimal GPU chunk size for HO is selected on two heterogeneous

platforms, Kaby-Lake and Broadwell-Desktop, in Fig. 3.23 (upper-side graphs).

Dynamic scheduler (HD): works as a dynamic scheduling approach (simi-

lar to OpenMP). So the programmer has to set a GPU chunk size, ChunkGPU ,

which is passed as an argument to the scheduler (see lines 10 and 14 in Fig. 3.15).

HD measures the time that the GPU needs to compute a chunk, and estimates an-

other chunk size for the CPU cores that adapts to that time by using a heuristic.

This heuristic aims to adaptively set the chunk size for a CPU core by ensuring

that it is proportional to the ratio of GPU/CPU-core throughputs (see [93] for

details). All devices are dynamically offloaded with their correspondingly sized

chunk of iterations until the iterations have been executed.

For HD scheduler, we see the execution of a heterogeneous_parallel_for

loop as a sequence of scheduling intervals {IG0 , IG1 ..., IGi , ...} for the GPU, and

{IC0
, IC1

..., ICi
, ...} for each CPU core. At the ith interval, each computing

device computes a chunk of iterations of size Chunk(IGi
) = ChunkGPU (GPU

Chunk size) and Chunk(ICi) (the estimated CPU chunk size for a CPU core),
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respectively. The execution time for the assigned GPU chunk, T (IGi
), or CPU

chunk, T (ICi
), is measured in the interval; this time is used to compute the

throughput in the corresponding interval, λ(IGi) = ChunkGPU/T (IGi) for the

GPU or λ(ICi) = Chunk(ICi)/T (ICi) for a CPU core. We keep monitoring the

throughput to adapt and estimate the chunk size for a CPU core in the next

interval as, Chunk(ICi+1
) = ChunkGPU · λ(ICi

)

λ(IGi
) . This way, we ensure optimal

resource utilization during each scheduling interval and avoid load imbalance [80].

We show two examples of how the optimal GPU chunk size for HD is selected

on two heterogeneous platforms, Kaby Lake and Broadwell-Desktop, in Fig. 3.23

(lower-side graphs).

LogFit scheduler (HL): in contrast to HO and HD, which need offline

training for optimal partitioning of the workload, HL is specially designed for

irregular applications on heterogeneous CPU+GPU chips. It has an adaptive

partitioning strategy that computes the near-optimal chunk size at runtime, both

for CPU and GPU, without user intervention nor previous training. The CPU

cores and GPU run at their own pace, while HL adaptively offloads chunks of the

remaining iteration to each device so that the overall throughput is maximized.

HL computes the CPU chunk in the same way as HD.

For computing the GPU chunk, HL uses a log fitting heuristic. This heuristic

is composed of an Exploration Phase (EP), a Stable Phase (SP), and a Final

Phase (FP). The EP initializes the GPU chunk to the number of Execution

Units of the GPU. Next, the EP proceeds in three iterative steps: (1) the GPU

chunk size is offloaded to the GPU, (2) the corresponding GPU throughput is

measured (and the GPU chunk size recorded —ChGPU), and if this throughput

improves more than 1% the throughput of the previous GPU chunk, then (3) the

GPU chunk is duplicated and going back to step (1). Otherwise, the scheduler

transitions to the SP. The SP also proceeds in three iterative steps: (1) it fits

a logarithmic curve through the GPU throughput of the previously recorded

chunk sizes (ChGPU), a · ln(ChGPU) + b, and compute its elbow, i.e., the point

with maximum curvature. The elbow point of the logarithmic curve allows us to

determine a value for ChGPU that is going to be the next optimal GPU chunk

size. Then (2) the new GPU chunk size is offloaded to the GPU and (3) the

corresponding GPU throughput is measured and recorded. The SP repeats steps

from (1) to (3) until the remaining iterations are fewer than the GPU chunk size

computed by step (1). In this case, the scheduler transitions to the FP. In FP, if

there are sufficient remaining iterations, the scheduler splits them once between

the two devices so that they finish the execution at the same time. Otherwise, it

sends remaining iterations either to the multicore or GPU (more details in [80]).
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One advantage of HD and HL is that they adapt better than a static scheduler

as HO for irregular applications. This way, HD and HL ensure near-optimal

resource utilization during each scheduling interval and avoid load imbalance [79],

but at a cost. They introduce additional overheads (especially HL) due to the

reiterative calls to the scheduler during the partition of the parallel loop and the

costs of the fitting operation.

1 class ValueIteration {

2 public:

3 //Serial version of the code for a CPU thread (TBB)

4 void OperatorCPU(int begin, int end) {

5 // Evaluate policy

6 for (idxCell=begin; idxCell!=end; idxCell++) {...}

7 }

8 void OperatorGPU(int begin, int end) {

9 // Set GPU (OpenCL) kernel arguments

10 setKernelArg(kernel, 0, sizeof(cl_mem), &d_probability);

11 setKernelArg(kernel, 1, sizeof(cl_mem), &d_nextCell);

12 setKernelArg(kernel, 2, sizeof(cl_mem), &d_nextStateId);

13 ...

14 setKernelArg(kernel, 8, sizeof(int), &begin);

15 setKernelArg(kernel, 9, sizeof(int), &end);

16 //Launch GPU kernel

17 clEnqueueNDRangeKernel(command_queue,evaluatePolicyKernel,...);

18 }

19 };

Figure 3.14: ValueIteration class.

3.4.5.3 Programming Interface

From the programmer’s perspective, the implementation of the VI algorithm for

execution on a CPU+GPU platform implies calling our heterogeneous parallel for

template function. This function receives three input arguments: first iteration,

last iteration and an object of a class that implements the operatorCPU() and

operatorGPU() member functions. These two functions implement how a block

of iterations are processed on the CPU and on the GPU, respectively.

In Fig. 3.15, we exemplify the initialization of the three schedulers (lines 5-15),

which allows the simultaneous execution of the parallel iterations of the “Evaluate

policy” kernel, both on the GPU and the multicore. The heterogeneous kernel

is launched using the heterogeneous parallel for function, line 19) which re-

ceives as input the range of iterations that will be executed (begin = 0, and

end = NS×NX) and an instance of a functor class implementing the “Evaluate

policy” kernel. We have implemented three variants for functor classes: one that
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1 int main(int argc, char **argv) {

2 // ViBodyOCL vib;

3 // ViBodyBUFF vib;

4 ViBodyUSM vib;

5 // Scheduler params

6 Params p;

7 p.numcpus = numCPUCores;

8 p.numgpus = numGPUs;

9 p.ratioGPU = RatioGPU; // Used in HO - Oracle

10 p.chunkGPU = ChunkGPU; // Used in HD - Dynamic

11 ...

12 // Heterogeneous scheduler (hs) HO, HD or HL

13 // Oracle* hs = Oracle::getInstance(&p);

14 // Dynamic* hs = Dynamic::getInstance(&p);

15 LogFit* hs = LogFit::getInstance(&p);

16 startTimeAndEnergy();

17 while(notReady) { // Value iteration algorithm

18 // Evaluate policy (Heterogeneous scheduling: CPU+GPU)

19 hs->heterogeneous_parallel_for(0, NS*NX, &vib);

20 // Improve policy, Check convergence & update (TBB-CPU)

21 ...

22 }

23 endTimeAndEnergy();

24 saveResultsForBenchmark();

25 }

Figure 3.15: Heterogeneous implementations using the Oracle/Dynamic/LogFit

Schedulers and OpenCL/oneAPI programming for the heterogeneous kernel.

uses OpenCL for the heterogeneous kernel code (line 2), and two that use oneAPI

for it (lines 3-4)—we give more details on their implementation in Figs. 3.16 and

3.17.

We explain the code snippets from Figs. 3.16 and 3.17 in parallel, as they

are closely related. The first is the functor class used in the *-USM implemen-

tations, while the second is its *-BUFF counterpart. Their role is to define how

shared memory objects are stored and accessed from the host and the device (see

allocateMemoryObjects method in Fig. 3.16: lines 9-11 and in Fig. 3.17: lines 3-

6) and to send work to the GPU and CPU (see operatorGPU and operatorCPU

methods).

In particular, ViBodyUSM uses the Unified Shared Memory, or USM, feature

of DPC++ to allocate and automatically manage data transfers and synchro-

nization between the GPU and CPU. For our kernel, we need four arrays to

represent the MDP model—probability, nextCell, nextState, and R—and

two more to store intermediary results while computing an optimal policy with

Value Iteration—Q, and V. We represent them all as X for brevity (line 10 in

ViBodyUSM and lines 4, 5, and 9 in ViBodyBUFF). All of them are to be accessed
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for reading from both the CPU and GPU, and Q for writing. USM offers three

types of allocation: malloc device (can be accessed by the GPU), malloc host

(can be accessed by the host CPU and any other device), and malloc shared

(like malloc host, additionally, it can migrate to/from the CPU and GPU). The

1 #include "CL/sycl.hpp"

2 using namespace cl::sycl;

3 queue q_cpu(cpu_selector{});

4 queue q_gpu(gpu_selector{});

5 auto ctx = q_gpu.get_context();

6 auto dev = q_gpu.get_device();

7 // [ DPC++ with USM ] functor class for heterogeneous_parallel_for

8 class ViBodyUSM {

9 void allocateMemoryObjects { //6 memory allocations

10 type* X = (type*) malloc_shared(sizeX,dev,ctx); //X = R\Q\V\probability\nextCell\nextState

11 }

12 void operatorGPU(size_t begin, size_t end, event& e){ // send work to GPU

13 e = q_gpu.submit([&](handler& cgh) { // 3 LOC.

14 PolicyEvaluationF kernel{begin,nextCell,probability,V,nextState,R,Q};

15 cgh.parallel_for(range<1>(end-begin), kernel); });

16 }

17 void operatorCPU(size_t begin, size_t end, event& e){} // same as operatorGPU(), uses q_cpu

18 ...

19 }

Figure 3.16: Pseudo-C++ code of the functor class ViBodyUSM required by

the heterogeneous schedulers to execute the Policy Evaluation kernel of VI.

ViBodyUSM is implemented with oneAPI & the USM feature of DPC++.

1 // [ SYCL buffers & accessors ] functor class for heterogeneous_parallel_for

2 class ViBodyBUFF {

3 void allocateMemoryObjects { // 6 mallocs + 6 buffers

4 type* X = (type*) malloc(sizeX); // X = R\Q\V\probability\nextCell\nextState

5 buffer<type, 1> buf_X(X, range<1>(sizeX)); // X = R\Q\V\probability\nextCell\nextState

6 }

7 void operatorGPU(size_t begin, size_t end, event& e) { // send work to GPU

8 e = q_gpu.submit([&](handler& cgh) { // 6 accessors

9 auto a_X = b_X.get_access<read>(cgh); // X = R\V\probability\nextCell\nextState

10 auto a_Q = b_Q.get_access<discard_write>(cgh);

11 PolicyEvaluationF kernel{a_begin,a_nextCell,a_probability,a_V,a_nextState,a_R,a_Q};

12 cgh.parallel_for(range<1>(end-begin), kernel); });

13 }

14 void operatorCPU(size_t begin, size_t end, event& e){} // same as operatorGPU(), uses q_cpu

15 ...

16 }

Figure 3.17: Pseudo-C++ code of the functor class ViBodyBUFF required by the

heterogeneous schedulers to execute the Policy Evaluation kernel of VI. It uses

SYCL style buffers & accessors.
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simplest way to meet our requirements is to use malloc shared for all of them

(see line 10, Fig. 3.16). As you see, the USM allocation types have a similar

syntax to the standard C/C++ malloc. The difference is that they receive one

or two extra arguments: the context (ctx, defined in line 5, Fig. 3.16), and addi-

tionally, for device and shared type, the device (dev, defined in line 6, Fig. 3.16).

The memory objects allocated like this can be accessed as regular pointers in the

kernel code of the CPU and GPU.

ViBodyBUFF uses the Buffer abstraction of the SYCL standard for data man-

agement. Our six arrays are allocated with malloc and later encapsulated in six

buffers (Fig. 3.17, lines 4-5 where again we use X to reduce the number of lines in

the pseudo-code). Buffer’s data can be accessed from the CPU or GPU via acces-

sors, which inform the runtime about the access type (e.g., read, write) and about

the device that is actually accessing the buffer. For instance, inside operatorGPU,

in lines 9 and 10, the helper function member get access initialize the GPU ac-

cessors: a X (for X in {R, V, probability, nextCell and nextState}) for reading

in line 9, and Q for writing in line 10. We need to do the same in order to get access

for the CPU in operatorCPU. We use sycl::access::mode::discard write, ab-

breviated as discard write (line 10) for Q, to point out that the GPU does not

need an initialized copy of Q because it will be completely rewritten. The other

5 accessors are initialized with the read template argument (line 9). There are

other access modes available for buffers that we do no use: write, read write,

discard read write, and atomic.

Once we have configured how data is managed for our kernel, we can send

work to the GPU (or CPU). All work requests are done via queues. A queue

attaches to a single device (e.g., CPU, GPU, Host, FPGA) and accepts work as

a submission (line 13 for ViBodyUSM and 8 for ViBodyBUFF). We use the SYCL

queues q cpu and q gpu to submit code to the GPU and CPU for execution.

Inside the submit call we construct a kernel object (line 14 for ViBodyUSM and

11 for ViBodyBUFF) passing the data pointers (USM) or accessors (BUFF) to the

constructor. With this we can invoke the SYCL parallel for member function

of the queue handler cgh that will run the code on the device. This method can

only be called at command-group scope (cgh stands for command-group handler).

Inside the kernel, data is accessed via pointers for the USM case or via accessors

for the BUFF one.

Note that all oneAPI programs must include the “CL/sycl.hpp” header (Fig. 3.16

line 1), and to avoid wordiness, we use the cl::sycl namespace for both snippets

(Fig. 3.16 line 2).

Next, we evaluate the performance of these three schedulers for our application



3.5. Evaluation and Experimental Results 47

in a low-power heterogeneous platform.

3.5 Evaluation and Experimental Results

In this section we will:

1. Present the the experimental setup, including the low-power platform used

to carry out the experiments [Subsection 3.5.1].

2. Explore the computational limits of the platforms for different MDP prob-

lem sizes for the mobile robot navigation case study introduced in Section

3.2.4.

3. Discuss the impact on productivity of the different programming models

used in the heterogeneous implementations: OpenCL vs. oneAPI with

Unified Shared Memory (USM) and oneAPI with SYCL Buffers (BUFF)

[Subsection 3.5.3].

4. Analyze the impact on the efficiency of the three heterogeneous program-

ming models, as well as the impact of the scheduling strategies presented

previously: static (Oracle, HO) vs. dynamic (Dynamic, HD) and adaptive

(LogFit, HL) [Subsection 3.5.4].

3.5.1 Experimental Setup

We need to test different strategies for implementing VI for a particular MDP

problem in engineering: the reactive navigation of an indoor mobile robot, which

requires taking motion actions sequentially (with uncertain outcomes) towards a

target while avoiding obstacles. Mobile autonomous robots have limited resources

in terms of processing capabilities, memory and energy availability. Despite this,

the use of diverse variants of MDPs and their algorithms has been frequent in

this area for more than a decade [112] (mostly through approximate solutions).

For implementation and testing purposes, we used four representative HCPs,

ranging from low to medium computing, memory, and power capacity. Relevant

information about their vendor name, CPU, accelerator GPU, RAM, Thermal

Design Power (TDP - power consumption under maximum theoretical load) and

configuration can be consulted in Table 3.2. We identify the four platforms

as TP0, TP1, TP2 and TP3. These devices are convenient test-beds for our

experiments, as they allow us to evaluate the implementability of small to large-

scale MDPs for diverse power and computational requirements.
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Platform CPU Integrated GPU RAM TDP Configuration

TP0

Odroid

XU3

big.Little:

- Cortex-A15

4C @2.1GHz

- Cortex-A7

4C @1.4GHz

ARM Mali-T628

6 EUs @600 MHz

2GB

LPDDR3
4 -10W

Ubuntu 14.04 LTS

gcc 6.2.0 C/C++

OpenCL 1.1

TP1

Kaby

Lake

Refresh

i5-8250U

4C@1.60GHz

UHD 620

24 EUs @300MHz

8GB

DDR4
10-15W

Ubuntu 16.04 LTS

gcc 6.2.0 C/C++

OpenCL 2.1

TP2

Broadwell

Mobile

i7-5557U

2C @3.10GHz

Iris 6100

48 EUs @300MHz

16GB

DDR3
23-28W

MacOS High Sierra

gcc 4.2.1 C/C++

OpenCL 1.2

TP3

Broadwell

Desktop

i7-5775C

4C@3.30GHz

Iris Pro 6200

48 EUs @300MHz

32GB

DDR3L
37-65 W

Ubuntu 18.04 LTS

gcc 6.2.0 C/C++

OpenCL 2.1

Table 3.2: Description of low-power HCPs used for testing and evaluating our

implementations.

In this research, it is interesting to compare Broadwell-Mobile (TP2) and

Broadwell-Desktop (TP3) because they use very similar technology and have al-

most identical integrated GPUs. However, the Broadwell-Desktop platform has

double the RAM, and memory is a limiting factor in solving large-scale MDPs.

Although Broadwell-Desktop is more in the mid-power range, an energy efficiency

tradeoff could be required if execution time is the application’s bottleneck. This

platform has twice as many cores as Broadwell-Mobile that can speed up compu-

tation. For the opposite use-case scenario, when the MDP model is very small,

and the application is energy-bound, the ARM Odroid platform (TP0) or an-

other computing platform like Jetson Nano, Jetson TX1, Jetson TX2. For the

use-cases in between, with moderate memory, compute power, and relatively low

TDP, we have Kaby Lake (TP1) and Jetson Xavier.

Finally, we do not explore platforms like Jetson Nano, Jetson TX1, Jetson

TX2, or Jetson Xavier because at the time this work is being done, they do not

have official support for portable and vendor-independent programming models

with open standards such as OpenCL3,4,5, nor SYCL, or oneAPI, as they use

OpenCL as a backend. On the other hand, Codeplay6 is working on offering

support for DPC++ and SYCL for NVIDIA GPUs using CUDA and OpenCL

backends. However, the drivers are still experimental, and currently, only a few

discrete GPUs, such as the NVIDIA A100 GPUs, can run sycl code. We do

3https://forums.developer.nvidia.com/t/opencl-support/74071
4https://forums.developer.nvidia.com/t/opencl-support/74071
5https://forums.developer.nvidia.com/t/can-the-xavier-run-opencl-applications/70262
6https://www.codeplay.com/
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not consider them because they are not in the low-medium power TDP range

(their TDP ranges from 300W to 400W). Currently, a wider range of NVIDIA

GPUs support the latest version of OpenCL 3.0 (please see the NVIDIA release

note7 on supported desktop and notebook GPUs) and are likely support open

parallel programming models in the future, which would allow us to compare

contemporary and competing platforms.

As mentioned in the methods section, we use two libraries to to monitor

the runtime (in seconds) and the energy consumption (in Joules) on the CPU,

GPU and Uncore components for a given application. We employ a custom-made

library for ODROID-XU3 (TP0) and the PCM library for the Intel mobile (TP1,

TP2) and desktop (TP3) platforms.

For performance evaluation, we have launched our VI implementations for

different input sizes, and measured the execution time and energy consumption

by calling the startTimeAndEnergy() method before the execution of the VI

while loop, and the endTimeAndEnergy() and saveResultsForBench() methods

afterwards, like in Fig. 3.15, lines 16, 23, and 24. Time and energy consumption

measurements reported in this section have been computed using the average

from fifteen executions.

3.5.2 Exploring the Limits of Mobile Platforms for Differ-
ent MDP Sizes

For this study, we have generated a number of MDP benchmarks for autonomous

navigation by sampling the MDP model. In particular, we tackle with the dis-

cretization parameters NT, NG, and ND of the MDP, and implicitly, with the

navigation precision. The resulting MDPs are exponentially increasing (by a

factor of two approximately) both in the number of states of the MDP and rep-

resentation size in MB.

More precisely, our implementations of the VI algorithm have been evaluated

for fourteen MDP sizes, named from IN0 to IN13, listed in Table 3.3. The goal of

this first study is to explore the computational limits of the HCPs and assess the

maximum solvable MDP problem size for each platform. For each benchmark, we

provide its ID, its size on memory in Megabytes (Size), the corresponding number

of MDP states (NStates) and an indication of whether the MDP is solvable (3)

or not (7) on the test platforms (TP0, TP1, TP2, and TP3).

7https://us.download.nvidia.com/Windows/465.89/465.89-win10-win8-win7-release-
notes.pdf
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MDP-ID Size (MB) NStates TP0 TP1 TP2 TP3 Rπ

IN0 1.1 2,160 3 3 3 3 238,587.46

IN1 2.0 5,400 3 3 3 3 302,509.90

IN2 3.9 17,496 3 3 3 3 563,574.68

IN3 7.9 50,544 3 3 3 3 602,792.93

IN4 16.0 131,625 3 3 3 3 1,013,505.31

IN5 32.0 295,750 3 3 3 3 1,148,107.50

IN6 64.4 631,750 3 3 3 3 1,316,330.75

IN7 127.9 1,296,000 3 3 3 3 1,321,889.87

IN8 255.4 2,628,288 3 3 3 3 1,549,531.12

IN9 510.0 5,302,368 7 3 3 3 1,408,671.75

IN10 1,100.0 11,520,000 7 3 3 3 1,761,181.25

IN11 2,057.6 21,600,000 7 7 7 3 1,750,877.75

IN12 3,962.5 41,600,000 7 7 7 3 1,790,669.12

IN13 7,881.1 82,800,000 7 7 7 3 1,951,489.75

Table 3.3: MDP problem sizes. Each row contains information regarding the ID,

size, number of states and indication if the input data fit in the device memory.

Rπ column shows the expected exploitation reward of the optimal policy found

in each case by VI (see main text).

The size of the MDP benchmark that is solvable heterogeneously on a platform

is mainly limited by the available RAM and memory of the GPU, but also by

how lightweight its operating system is. For instance, Kaby-Lake (Ubuntu) and

Broadwell-Mobile (MacOS) can both handle MDP benchmarks that go up to

IN11 in spite of the difference in RAM between the two. Broadwell-Desktop,

the most resourceful from our selection, leaning towards medium-power use, can

solve MDPs as large as IN13.

To generate MDPs of increasing size, we sample the robot interaction within

the defined environment in the physically realistic V-REP simulator. The re-

sulting data serves to model statistically representative transition functions for

the real robot, as long as the model has ≈ 30,000 states. This size is far from

being the largest solvable MDP on any of the test platforms. To go beyond, we

have artificially generated larger MDP models using finer grained discretization

of the continuous process (i.e. by setting the values for NT, ND, NR, NG and

NA). Thus we not only show the adequacy of our results to robot navigation

but to any other application that require more than 2,000,000 states (for all test

platforms), or even reach over 80,000,000 states (for TP3).

In practice, a finer grain discretization of the MDP model does not necessar-

ily help improving the policy. As explained in section 3.2.4, a way to find the

optimal quantization is to compare the total estimated reward when exploiting

the optimal policy in the long-term, Rπ (see Eq. 3.4), for different levels of dis-
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cretization. If this measure does not improve, then the use of a finer grain MDP

is not justified.

Rπ can be used for a fair comparison only as long as the reward definition

does not change across different discretizations. In our navigation use-case, we

have noticed that if the agent is rewarded with a much higher bonus for reaching

the goal than the cost for colliding, the optimal discretization becomes IN6,

and the resulting policy allows collisions in favor of reaching the target faster.

On the contrary, if we penalize collision higher (not hitting people or obstacle

while navigating is desirable in robot navigation), the policy benefits from a finer

grain discretization, and, as a result, IN13 gives the highest valued Rπ. We have

included the value of Rπ in Table 3.3, calculated with a reward of 100 for reaching

the goal state and a penalty of -500 for a collision in Eq. 3.1.

3.5.3 Productivity Evaluation: OpenCL vs. oneAPI

In this section, we discuss our findings regarding the evaluation of the Pro-

grammability of the programming models used for our implementations: OCL,

BUFF, and USM. In particular, we want to characterize how productive, from

a programmer’s point of view, are the different approaches. In other words, we

evaluate the ease of programming of each one. For it, we follow the methodol-

ogy proposed in [39], where we find, among others, two quantitative metrics to

measure the easiness of programming a code: the Cyclomatic complexity and the

Programming effort. The Cyclomatic complexity (CC) is the number of predi-

cates plus one, while the Programming effort (PE) is a function of the number

of unique operands, unique operators, total operands, and total operators. The

operands correspond to constants and identifiers, while the symbols or combi-

nations of symbols that affect the value of operands constitute the operators.

Higher values for both CC and PE metrics mean that it is more complicated for

a programmer to code the algorithm.

Fig. 3.18 shows the results of the Programmability metrics (CC and PE) com-

paring OpenCL vs. the two oneAPI versions discussed in section 3.2, USM and

BUFF. We break down the metrics for: i) each ViBody functor class (the ker-

nel), ii) the scheduler engine part that is independent of the scheduling algorithm

(ScheduleOCL vs. ScheduleUSM8); and iii) the total values of each metric when

considering the kernel and the scheduler engine. As we see, oneAPI implementa-

tions achieve much lower complexity and programming effort than OpenCL. In

particular, the most interesting metric, PE, shows that for the kernel implemen-

8ScheduleUSM has the same code as ScheduleBUFF, thus, their CC and PE are equal.
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Figure 3.18: Evaluation of the cyclomatic complexity (left Y-axis) and program-

ming effort (right Y-axis) of OpenCL (OCL) and oneAPI (BUFF, USM) based

implementations. The lower, the better.

tation, BUFF and USM reduce 1,2x and 3x the programming effort, respectively,

when compared to OCL. The reduction is even more significant when considering

the whole application: 3.4× and 5.1×, respectively. Interestingly, the program-

ming effort for the implementation of the kernel in USM is 86% lower than for

BUFF, although the complexity is the same. Clearly, USM is the implementation

with the least effort required.

From a programmer’s point of view, the main difference between OpenCL and

oneAPI, when coding ViBody and Scheduler are the following:

ViBody, Scheduler – The kernel source code in OpenCL is defined in a

kernel.cl file. Next, a program is created using the device context and manually

built into a program that can run on the device (clCreateProgramWithSources).

Finally, we can create a kernel object with an OpenCL API call (clCreateKernel),

and we are finally ready to set its arguments and enqueue work to it. When us-

ing oneAPI, one only has to submit a functor object to the GPU queue with

the code (written in plain C++) that has to execute on the device. Also,

the error checking code required for every OpenCL API call (clCreateBuffer,

clEnqueueWriteBuffer, clEnqueueReadBuffer, clSetKernelArgument, ...) rep-

resents a considerable ratio of total lines of code of an OpenCL implementation.

In oneAPI, we avoid this by wrapping the code in a try-catch-block, which cap-

tures the most frequent error codes and parses them to human readable messages.

Scheduler – All the code needed in OpenCL to get the platform, find the

device, create a context and a command queue for the device are replaced by a

single line of code in oneAPI (see line 4 Fig. 3.16).
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3.5.4 Looking for the Sweet Spot: Productivity vs. Effi-
ciency vs. Performance

Can we have energy-efficiency and performance while keeping the ease of pro-

gramming? In this section, we discuss the impact on performance and energy

efficiency of the different programming approaches [Subsection 3.5.4.1], as well

as the impact of the scheduling strategies [Subsection 3.5.4.2].

3.5.4.1 Impact of the Programming Model

Here, we focus on the impact the programming model approach has on the per-

formance and energy efficiency, factoring out the effect of the scheduling strategy.

In Figs. 3.19 (a) and (b) we compare the time (in seconds) and energy consump-

tion (in Joules) that each programming approach obtains in two scenarios: a) all

the workload executes on the GPU, and b) the workload is statically distributed

between the CPU multicore and the GPU devices at the beginning of the execu-

tion with the Oracle scheduler (HO). For HO, prior to the evaluation, we perform

offline training to find the optimal partition between devices.

For both GPU-only and HO-* heterogeneous implementations, we find that

BUFF implementations are the ones with worse performance, while both OCL

and USM present similarly good results.
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Figure 3.19: a) and b) Execution time (left Y-axis, bars) and energy consump-

tion (right Y-axis, lines) for GPU-only and heterogeneous implementations based

on Oracle scheduling (HO-*) using OpenCL (OCL), oneAPI & Unified Shared

Memory (USM) and oneAPI & Sycl buffers (BUFF). The lower, the better.

In particular, if we focus on GPU-only implementations (Fig. 3.19.a) USM

exhibits up to 5% and 78% more performance efficiency than OCL and BUFF,

respectively, and up to 7% and 97% more energy efficiency than OCL and BUFF.

Experiments with heterogeneous implementations based on the Oracle scheduler
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(HO-*) (Fig. 3.19.b) reveal that HO-OCL always performs slightly better than

HO-USM in terms of energy performance and execution time. They are both up

to 380% more energy and time-efficient than HO-BUFF.

As we see, increasing the level of abstraction of the programming model to

improve productivity may have a significant impact on the efficiency if we are not

careful. In BUFF implementations, increasing the level of abstraction for data

management through Buffer functionality helps to hide how different memory

locations are mapped on different devices. But it degrades performance because

the use of accessors suppose data movements (communication/copy operations).

On the contrary, these data transfers are avoided in USM implementations, due

to the hardware support of shared virtual memory among devices, so memory

locations are accessed directly from the CPU and the GPU.

As USM performs better than BUFF for our set of benchmarks, from now on,

we discard the HX-BUFF implementations for further tests and use HX-USM to

represent oneAPI.

3.5.4.2 Impact of the Scheduling Strategy

Now let us discuss the impact of scheduling strategies in performance and energy

efficiency. Fig. 3.20 shows the energy improvement and speedup (Y-axis) for the

heterogeneous schedulers studied in this work: HO, HD, and HL when solving

MDPs of sizes IN8 to IN11 (X-axis) on Kaby Lake. We compute the energy

improvement and speedup against the baseline SEQ1 implementation (see Ta-

ble 3.4). For the HO and HD schedulers, we perform offline profiling in which we

explore the RatioGPU and ChunkGPU that achieve the maximum throughput

for each input, and for them, we report the speedup and energy improvement

we see in the figure. Let us recall that HL adaptively computes the optimal

chunk sizes for the GPU and the CPU cores automatically, without user explo-

ration. Table 3.5 reports the optimal RatioGPU for HO-* schedulers, optimal

ChunkGPU for HD-* schedulers and average GPU chunk size for HL-* ones. We

also show the final GPU ratio for Dynamic (HD-*) and LogFit (HL-*). Inter-

estingly, HL-* schedulers tend to finally offload to the GPU a percentage of the

workload similar to the optimal ratio manually found with HO-* (note that this

search is done in steps of 10%).

In Table 3.4, we show the mean execution time (in seconds) and energy con-

sumption (in Joules) for the VI execution of the sequential implementation (SEQ),

which we use as the baseline for speedup and energy improvement. We show the

results from IN8 to IN11 MDP sizes when executing on Kaby-Lake.



3.5. Evaluation and Experimental Results 55

1.00

2.00

3.00
4.00

5.00

6.00

TB
B

OC
L

HO
-O
CL

HD
-O
CL

HL
-O
CL

HO
-O
NE

HD
-O
NE

HL
-O
NE

Sp
ee

du
p

SE
Q

 /
 P

ar
al

le
l I

m
pl

em
. IN8 IN9 IN10 IN11

1.00

2.00

3.00
4.00

5.00

6.00

TB
B

OC
L

HO
-O
CL

HD
-O
CL

HL
-O
CL

HO
-O
NE

HD
-O
NE

HL
-O
NE

En
er

gy
 Im

pr
ov

em
en

t  
SE

Q
 / 

Pa
ra

lle
l I

m
pl

em
. IN8 IN9 IN10 IN11

Figure 3.20: Energy improvement and Speedup of heterogeneous using Oracle

(HO), Dynamic (HD), and LogFit (HL) schedulers implementations with oneAPI

(*-USM) and OpenCL (*-OCL) on Kaby Lake. We include for reference the

energy improvement and Speedup for CPU-only (TBB) and GPU-only (OCL)

implementations. All the results are compared against the sequential (SEQ)

code. Higher is better.

Execution Time (s) Energy Consumption (Joule)

IN8 IN9 IN10 IN11 IN8 IN9 IN10 IN11

1.17 2.30 5.07 8.98 14.38 28.43 62.72 111.96

Table 3.4: Mean execution time and energy consumption of SEQ1 implementa-

tion for benchmarks IN8-IN11. Used as baseline to compare the heterogeneous

implementations (Fig. 3.20).

An interesting observation can be drawn from Fig. 3.20: for all four platforms

and heterogeneous schedulers, the time and energy performance results are corre-

lated, i.e., time and energy improve at a similar rate for all input sizes, although

energy efficiency tends to achieve better values than speedup for HD and HL

schedulers. When comparing the overall scalability of heterogeneous schedules

with respect to TBB (see Fig. 3.21), we also observe that for HO rutime and

energy improvements are highly correlated on all platforms. On the other hand,

for HL, and especially for HD, energy improves at a higher rate than runtime.

It is important to notice that except for Odroid-XU3, all heterogeneous imple-

mentations improve time and energy performance (TBB/Hx runtime and energy

ratios are greater than one). On Odroid-XU3, we achieve a significant energy

efficiency improvement only with HD, other strategies do not outperform TBB.

As we see from Fig. 3.20, the time and energy performance results are corre-

lated, i.e., time and energy improve at a similar rate for all implementations and

input sizes, although energy efficiency tends to achieve slightly better values than

speedup. Also, all heterogeneous implementations outperform CPU-only (TBB)

and GPU-only (OCL) implementations for execution time and energy consump-

tion. We see that CPU+GPU heterogeneous strategies can be up to 54% (61%)
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Figure 3.21: Time and energy ratios for heterogeneous vs CPU-only TBB imple-

mentations on the four SoC platforms.

faster and 57% (65%) more energy efficient when compared to CPU-only (or

GPU-only) implementation. We also notice that Oracle scheduling tends to pro-

vide the best results, both for OCL and USM programming models. In other

words, in spite of the application irregularities, a static partition can provide

good results avoiding the partitioning overhead that Dynamic and LogFit incur.

For any benchmark size, HO-OCL slightly outperforms HO-USM (see Fig. 3.22).

Both HD-* and HL-* tend to provide similar performance and energy ef-

ficiency, although HD-USM and HL-USM obtain better efficiencies than their

OCL counterpart for larger benchmark sizes. This is visualized in Fig. 3.22(a),

HO-OCL HD-OCL HL-OCL HO-USM HD-USM HL-USM

IN8 70% 4194304 — 53% 3555388 — 60% 50% 1048576 — 31% 1417346 — 62%

IN9 70% 4194304 — 52% 7230334 — 61% 50% 1048576 — 43% 8696996 — 69%

IN10 70% 8388608 — 36% 9907622 — 61% 50% 2097152 — 41% 3800115 — 50%

IN11 70% 8388608 — 37% 11643141 — 60% 50% 4194304 — 45% 3361717 — 52%

Table 3.5: Optimal workload distribution for different scheduling strategies when

executing IN8 to IN11 on Kaby-Lake. GPU ratio is shown for HO-OCL and

HO-USM; (Chunk size | final GPU ratio) is shown for HD-OCL and HD-USM;

(Average GPU Chunk Size | final GPU ratio) is shown for HL-OCL and HL-USM.
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where we show the execution time ratio of OCL vs. USM for all schedulers and

benchmarks sizes from IN8 to IN11. We mark the 1 ratio with a red horizontal

line, indicating no difference between the execution time of x-OCL and x-USM.

The energy ratios are similar for all inputs (not shown). From this figure, we

conclude that for the three schedulers, the overhead introduced by using USM

high-level programming over OpenCL decreases with the benchmark size, and

as USM achieves better locality with bigger data sets, eventually it outperforms

OCL.
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Figure 3.22: a) Execution time ratio of OpenCL (x-OCL) vs oneAPI (x-USM)

based heterogeneous schedulers (HO, HD, HL). b) Time (bars) and energy (lines)

degradation (IN8, IN11) with respect to HO-OCL, the implementation which

gives the best energy and execution time results. The lower the better.

Fig. 3.22(b) assesses the performance degradation of our heterogeneous im-

plementations with respect to the best one: HO-OCL, and for IN8 and IN11. We

see that for the larger benchmark size, HD-USM and HL-USM only degrade time

by 15% and 18%, and energy consumption by 16% and 19%, respectively, while

higher degradation values are seen for HD-OCL and HL-OCL.

An important conclusion that we can draw from this discussion is that for

large enough benchmarks, dynamic and adaptive heterogeneous schedulers ben-

efit more from using oneAPI & USM than from using OpenCL. This probably

happens because of the USM feature of oneAPI, which best exploits the locality

of shared data thanks to the hardware support of shared virtual memory (e.g.,

memory allocated with malloc shared(.)) and using the Level-Zero backend in-

stead of OpenCL. Sycl buffers are also mapped to the Level-Zero backend under

the hood; thus the data can migrate between for faster access 9.
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Figure 3.23: HO and HD Chunk Size exploration for IN10 on Kaby-Lake and

Broadwell-Desktop. In the primary and secondary Y-axis, we show the through-

put for sampled GPU chunk sizes (X-axis), measured as the number of parallel

iterations per millisecond (left Y-axis) and the number of parallel iterations per

Joule (right-Y axis).

3.5.4.3 Study of Offline-Tuned Schedulers: HO and HD

We start our analysis with the schedulers that require offline training to find

the best work partition between the CPU and GPU: HO and HD. In Fig. 3.23,

we illustrate how HO and HD work out the GPU ratio and GPU chunk size,

respectively, for IN10 and Kaby-Lake and Broadwell-Desktop. Similar graphs

are obtained for the other inputs. Note that, while for a static partitioner as

HO, the GPU ratio that typically produces the highest iterations per Joule is the

same that achieves the highest iterations per millisecond, this is not the case for

a dynamic partitioner as HD.

For dynamic schedulers, we must compromise between energy and runtime

when choosing the integrated GPU chunk size. Also, sending a larger chunk

size to the GPU does not necessarily provide a better overall performance, as it

happens with discrete GPUs, and this is especially true for the energy. Usually,

throughput (iterations/ms) is conserved for increasingly large chunk sizes, but

the energy efficiency (iterations/Joule) degrades when the chunk size increases

over a certain point. For instance, on Kaby-Lake, chunk sizes larger than 65536

conserve the throughput relatively constant, while the energy steadily degrades.

9https://intel.github.io/llvm-docs/MultiTileCardWithLevelZero.html
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The same happens on Broadwell-Desktop for chunk sizes larger than 32768.

To summarize, in the case of HO, the throughput and energy efficiency are

proportional for all ratios in all platforms and MDP sizes. In the case of HD,

the smallest chunk size that gives the highest throughput also provides the best

energy efficiency. This is the insight that justifies why, when designing HL, we

look for the smallest GPU chunk size that guarantees near-optimal throughput:

it shall also guarantee near-optimal energy efficiency.

3.5.4.4 Study of the Adaptive Scheduler: HL
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Figure 3.24: Adaptive vs offline-tuned Static and Dynamic scheduling: perfor-

mance degradation of HL scheduler with respect to the experimental results of

Oracle and Dynamic schedulers execution.

In this section, we discuss the properties of HL, our adaptive scheduler, and

evaluate its performance in terms of scalability, energy and runtime performance

against HO and HD. We report the Adaptive vs offline-tuned Static and Dynamic

scheduling relative performance in Fig. 3.24, where we indicate the time and

energy performance degradation of HL proportionately to the best result of HO

and HD.

We note that HL over-performs HO and HD implementations only for energy

consumption on Kaby-Lake and for IN6 on Broadwell-Mobile (see Fig. 3.24). On

average, LogFit has the least performance loss on Kaby-Lake: it gains 1% for

execution time and a has a loss of 3% in energy use. Next is Broadwell-Mobile,

which presents a 3.1% performance degradation in execution time and a 5.5% in

energy use. Last is Broadwell-Desktop platform with an 11.7% loss in execution

time and 17.1% in energy. HD and HO give the best results for energy and time,

respectively on this platform.
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This degradation in performance is an indication of the overhead incurred in

this scheduler due to the online training performed by the Exploration Phase, as

well as the impact of the Final Phase. In both phases, the scheduler offloads to

the GPU chunk sizes smaller than the optimal one, which produce sub-optimal

performance. We explore this issue in more detail by looking at the through-

put evolution we get for IN10 in Kaby-Lake –Fig. 3.25– and Broadwell-Desktop

–Fig. 3.26–, the two platforms with the highest difference in performance degra-

dation.
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Figure 3.25: HL GPU Chunk Size exploration for IN10 on Kaby-Lake. In the

left-side graph, we picture the throughput (parallel iterations/ms, left Y-axis)

and GPU Chunk Sizes (right Y-axis) through the execution of VI (X-axis). In

the right-side graph we show a histogram of the chunk size distribution through

the execution of VI (left Y-axis) and the mean throughput of each chunk (right

Y-axis).
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Figure 3.26: HL GPU Chunk Size exploration for IN10 on Broadwell-Desktop.

Axis as in Fig. 3.25.

We observe two behaviors of HL, depending on the platform by studying

Figs. 3.25 and 3.26. The left-side graph in Fig. 3.25 shows the GPU through-

put/chunk size evolution (blue vs orange line) of the VI execution using HL on

Kaby-Lake, while the right-side graph shows the histogram of the GPU chunk

sizes distribution (bars) and their corresponding average throughput (orange line)

for that execution. Similar information is displayed for Broadwell-Desktop in

Fig. 3.26.
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1. On Kaby-Lake, the Exploration Phase (EP) explores 15 samples and takes

about two time-steps10 (400 ms). Eventually, in the following time-steps

LogFit remains in the Stable Phase (SP), where it delivers chunk sizes of

≈ 4.3− 4.8× 107 parallel iterations.

2. On Broadwell-Desktop, the Exploration Phase takes less time (just eight

samples, less than 100 ms). Next, LogFit enters the Stable Phase, where it

provides chunk sizes of ≈ 2.4−2.8×106 parallel iterations, which is close to

the optimal we found training HD (3.2×106 iterations). We notice that the

GPU chunks in the Stable Phase are an order of magnitude smaller than on

Kaby-Lake for the same MDP size. We can also clearly see how the GPU

chunk size actively adapts in response to the changes in throughput. Every

peak and fall in throughput is mirrored with the GPU chunk size. We

notice a periodic behavior due to the time-steps. In fact, at the end of each

time-step HL enters the Final Phase (FP), where it splits the remaining

iterations of the time-step between the GPU and the CPU. In the case of

Broadwell-Desktop, this last GPU chunk size is too small and, therefore,

sub-optimal, translating into a sharp drop in throughput.

As we see in Figs. 3.25 and 3.26 (especially), a significant number of chunks

used in the EP and FP are small and produce lower throughput, in other words,

are sub-optimal. This explains the higher degradation of throughput and energy

efficiency for HL in Broadwell-Desktop. Thus, alternative implementations of the

Exploration and Final Phase to avoid sub-optimal GPU chunk assignments must

be studied for these platforms.

3.5.5 Time and Energy Consumption Evaluation

Here we discuss the performance of the CPU-only, Hybrid-1 and Hybrid-2 VI

implementation strategies. To analyse and compare their performance, we have

executed each one a hundred times (a statistically meaningful number of times

for all platforms), recording the total execution time, total energy consumption,

and the energy consumption corresponding to the CPU(s), GPU and Uncore

components separately. We have then conducted a three-way ANalysis Of VAri-

ance (ANOVA) on the results to determine whether there are any statistically

significant differences both in the execution time and in the energy consumption

measurements of the different VI implementations, input sizes and platforms.

Our study includes a Tukey’s post-hoc test to decide the ordering of elements

when differences that are significant are detected [72]. Previously, we verified

10a time-step corresponds to a call of the heterogeneous parallel for function.
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that the main ANOVA assumptions 11 are satisfied.

Please recall that the evaluated CPU-only implementations are SEQ1, OMP

and TBB (see section 3.4.4). OMP and TBB use all available cores to execute

VI on the CPU multicore: eight cores in TP0 from its two quad-core processors

(big.LITTLE: Cortex-A7 and Cortex-A15); two cores in TP2 from a dual-core i7,

and four cores in TP3 from a quad-core i7. The heterogeneous implementations

are denoted OCL- (Hybrid-1), HO-OCL, and HD-OCL (Hybrid-2) (H stands for

heterogeneous execution—please see section 3.4.5.1; O and D stand for using

the Oracle, Dynamic or LogFit policy for the heterogeneous scheduling, thus

enabling the simultaneous CPU-GPU exploitation—please see section 3.4.5.2).

SEQ1 represents the best sequential implementation and it is used as reference.

All of our implementations use the sparse 3D-lite-CSR representation for T.

In the following subsections, we investigate how the parallel VI implementa-

tion strategies behave for different MDP sizes across our three HCPs. We start

by explaining how we tune the heterogeneous schedulers for optimal time and

energy use and then continue with a global analysis of time and energy perfor-

mance for all the parallel implementations. We end the current section with a

summary of our findings and lessons learned.

3.5.5.1 Scalability of Implementations

Let us examine now how well the parallel implementations scale up when increas-

ing the MDP size by looking at Fig. 3.27. In plots a), b) and c) we distinguish the

average speedup (left Y axis, bars) and normalized energy consumption (right Y

axis, lines) for solving MDPs IN2, IN4, IN6, IN8 and IN10 on platforms TP1,

TP2 and TP3. The sequential version (SEQ1) is used as baseline to compute

the speedup and normalise the energy. The corresponding average execution

time and total energy for SEQ1 are noted in Table d) (the bottom-left side of

Fig. 3.27). The minimum average execution time and energy consumption for

each input size are in bold.

Alternatively, Table 3.6 provides the energy and time per parallel iteration

(mJoules/iteration and msec./iteration, respectively), which give us an idea of

the minimum task grain (computational load) for each input problem (from a few

msec. to several hundred msec.). In any case, for this task grain, the overhead due

to scheduling management or kernel launching is negligible in the heterogeneous

implementations (less than 0,04% in our experiments). Also, we would like to

11The measurements are normally distributed with homogeneous variance, and the measured
observations are independent.
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Median values of the sequential implementation total energy and 
execution time from 100 measurements
MDP SIZE TP0 TP2 TP3

Total 
Energy
(Joule)

IN2 0.2182 0.4758 0.7467
IN4 1.7181 2.4323 3.3939
IN6 7.7834 9.2474 14.2966
IN8 31.9055 37.5512 57.5220
IN10 N/A 166.3583 251.6363

Execution
Time (s)

IN2 0.1111 0.0336 0.0810
IN4 0.6025 0.1723 0.2585
IN6 2.4727 0.6487 0.6846
IN8 9.8776 2.5158 2.3210
IN10 N/A 10.8459 9.5590
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Figure 3.27: a)-c) Average speedup and normalized energy consumption for CPU-

only (OMP and TBB) and heterogeneous (OCL, HO-OCL, HD-OCL) implemen-

tations on the three test platforms, TP1, TP2 and TP3, with different problem

sizes. Higher speedups and lower energy values are better; d) Average time and

energy consumption evaluation for the sequential (SEQ1) implementation.

note that our heterogeneous implementations are based on the zero-copy buffer

mechanism provided by OpenCL 1.2, so there is no communication overhead due

to data movement. For TP2 and TP3 the main source of overhead is due to

the map/unmap OpenCL operations that implement the zero-copy semantics,

but they represent less than 2% of the execution time for any input problem.

TP0 only supports OpenCL 1.1, so here it is mainly the device-to-host operation

invoked for synchronising the Value array the responsible of an overhead of up

30% for the evaluated inputs.

1 Core Odroid-XU3 Broadwell-Mobile Broadwell-Desktop

Execution IN2 IN4 IN6 IN8 IN2 IN4 IN6 IN8 IN10 IN2 IN4 IN6 IN8 IN10

Energy/Iter (mJ) 14.55 114.54 518.89 2127.03 31.72 162.15 616.49 2503.41 11090.56 49.74 226.26 953.11 3834.80 16775.75

Time/Iter (ms) 7.41 40.17 164.84 658.51 2.24 11.49 43.24 167.72 723.06 5.40 17.23 45.64 154.73 637.27

Table 3.6: Energy and time task grain for SEQ1.

We can draw three main conclusions from Fig. 3.27. First, platforms that

provide minimum execution time and platforms with minimum energy consump-

tion do not coincide. The best results for execution time are found for TP2/TP3,

while the best energy results are obtained in TP1. In other words, execution
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time and energy performance are platform dependent. Moreover, if we look at

the performance of our parallel implementations at a given platform (plots a)-c)),

the implementation that achieves the best speedup is not always the same as the

one that offers the best energy result. Second, the heterogeneous implementa-

tions OCL, HO-OCL and HD-OCL usually obtain better results than CPU-only

implementations, both for execution time and energy consumption. However, the

heterogeneous scheduling that performs best depends on the platform and input

size. Third, if we focus on CPU-only implementations, we can appreciate that

TBB performs better than OMP, both for time and energy, in all cases.
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Figure 3.28: a) Speedup and energy improvement of Hybrid-2 implementations

w.r.t. the best of CPU-only (TBB).

Now we examine how well the heterogeneous implementations scale up when

increasing the MDP size with respect to the TBB-based implementation (best of

multicore). In the graphs from Fig. 3.28 we distinguish the energy improvement

and speedup (left Y -axis) of solutions based on heterogeneous schedulers: HO,

HD, and HL for solving MDPs of sizes corresponding IN4, IN6, IN8 and IN10 (i.e.,

16 MB, 68 MB, 274 MB, and 1190MB MDP models, X-axis) on our three test

platforms, Kaby-Lake, Broadwell-Mobile, and Broadwell-Desktop. We compute

the energy improvement and speedup against the baseline TBB implementation

(see Table 3.7). For the HO and HD schedulers, we perform offline profiling

in which we explore the RatioGPU and ChunkGPU that achieve the maximum

throughput for each input on each platform, and for them, we report the speedup

and energy improvement we see in the figure. Let’s recall that HL adaptively

computes the optimal chunk sizes for the GPU and the CPU cores automatically

without user exploration.

In Table 3.8, we also report the mean execution time (in seconds) and energy

consumption (in milliJoules) for the heterogeneous schedulers when using IN10

input on the three test platforms. In the table, for each platform, we mark the

minimum time and energy consumption in bold.
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CPU-Only

Results

MDP

Size

Kaby

Lake

Broadwell

Mobile

Broadwell

Desktop

Execution

Time

(second)

IN4 0.066 0.089 0.040

IN6 0.200 0.303 0.140

IN8 0.732 1.136 0.527

IN10 3.093 4.860 2.234

Energy

Consumption

(milliJoule)

IN4 4.138 5.568 2.506

IN6 12.525 18.948 8.743

IN8 45.774 71.023 32.925

IN10 193.325 303.735 139.601

Table 3.7: Mean time and energy of TBB implementation. In parentheses the

total number of cores of each platform.

Heterogeneous

Results
Scheduler

Kaby

Lake

Broadwell

Mobile

Broadwell

Desktop

Execution HO 1.340 1.776 1.122

Time HD 1.415 1.880 1.247

(second) HL 1.410 1.942 1.363

Energy HO 83.788 111.011 70.185

Consumption HD 81.344 110.297 65.642

(milliJoule) HL 80.060 116.176 81.575

Table 3.8: Mean time and energy of heterogeneous schedulers for IN10.

A first observation is that the speedup and energy improvement (Fig. 3.28)

scale up for all heterogeneous implementations when increasing the MDP size on

the platforms with the lower TDP (Kaby-Lake, Broadwell-Mobile). On the con-

trary, on the medium-power platform (Broadwell-Desktop), we see a deterioration

in performance for MDPs larger than IN6. This can be more clearly appreciated

in Fig. 3.27. In any case, we improve the execution time by up to 2.8x and, most

importantly, reduce the energy consumption, by up to 3.2x, which clearly illus-

trates the importance of exploiting all computational devices in a heterogenous

low-power SoC.

A second observation is that the static HO scheduler tends to achieve the

best speedup for any input and platform, while dynamic schedulers HD or HL

tend to provide the highest energy efficiency on all platforms. On average, HO

performs best in terms of speedup and worst in terms of energy improvement on

all platforms. HD gives the best results for energy, while HL second best, except

on Kaby-Lake, where it has the best energy performance.

The main conclusions from Fig. 3.28 and Tables 3.7 and 3.8. is that, except

for TP0, the heterogeneous implementations HO, HD and HL always improve

the CPU-only implementation, both for execution time and energy consumption.
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However, the implementation that performs best in terms of time is Oracle (Static

scheduling), but in terms of energy consumption is either Dynamic or LogFit

(Dynamic scheduling) —depending on the platform and input size.

3.5.5.2 Time Efficiency vs Energy Efficiency

To provide a global view of the time and energy efficiency of our implementations,

we represent energy efficiency versus runtime efficiency of the parallel implemen-

tations in Fig. 3.29: OMP - O, TBB - *, OCL - +, HO-OCL - ×, and HD-OCL

- o, and for representative problem sizes (IN2-blue, IN4-red, IN6-turquoise, and

IN8-green). The energy and time values are normalized against the average en-

ergy consumption and execution time of the sequential implementation (SEQ1),

so the lower values, the better, meaning both less energy consumption and smaller

execution time.
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Figure 3.29: Normalized energy (Y axis) vs execution time (X axis) for different

problem sizes, implementations and platforms. Bottom-left is better.

One interesting global observation is that parallel implementations show, in

general, a high time efficiency in TP3 (the high performance computing plat-

form) with values usually below 0.4), while in TP2 time efficiencies are worse

(usually above 0.4). On TP0 (the low-power platform with lowest TDP), parallel

implementations tend to show good time efficiency, except for small input sizes.
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In particular, on TP0, all implementations with small MDPs have a low per-

formance for time and energy (e.g., IN2, see top-right corner, blue), due to the

not negligible device-to-host overhead that for these cases can be up to 30%. For

larger MDPs (red, green, blue) this overhead is much smaller and the heteroge-

neous implementations HO-OCL and HD-OCL give better energy efficiency (i.e.,

they are placed at the bottom).

On TP2, heterogeneous implementations are similar in terms of energy and

time behavior, while OMP implementations perform the worst for all MDP prob-

lem sizes but the smallest (IN2). Surprisingly, OCL gives the worst performance

of all for input IN2 (due to a more noticeable overhead of map/unmap operations

for this small input), but for larger input sizes OCL is the implementation with

the best energy efficiency.

On TP3, the platform with the highest TDP, we observe something exciting:

the energy efficiency is quite constant for all MDP sizes and implementations,

while the time efficiency varies. Small problem sizes have better time efficiency

here.

Table 3.9 shows average energy consumption (Joules), the execution time (sec-

onds) and µWatts per Iteration for the implementations that perform the best for

each input size on each platform. In parenthesis, we indicate the best implementa-

tion. In some cases, the best result is obtained by more than one implementation,

i.e., they are indistinguishable under the statistical ANOVA procedure we have

applied. For instance, HO-OCL and HD-OCL are both the best in terms of ex-

MDP-ID TP0 Odroid-XU3 TP2 Broadwell-Mobile TP3 Broadwell-Desktop

IN2 0.0945 (GO-TBB) 0.3091 (TBB) 0.3669 (TBB)

Total IN4 0.5364 (GO-TBB) 1.1375 (G-TBB) 1.7187 (TBB)

Energy IN6 3.0906 (GD-TBB) 4.2591 (G-TBB) 6.8607 (GO-TBB,TBB)

(Joule) IN8 15.4417 (GD-TBB) 19.9627 (G-TBB) 29.2663 (GO-TBB)

IN10 N/A 96.0208 (G-TBB) 128.7177 (GO-TBB)

IN2 0.0415 (TBB) 0.0139 (TBB, GO-TBB, GD-TBB) 0.0061 (GO-TBB, GD-TBB, TBB)

Execution IN4 0.1622 (TBB) 0.0656 (GD-TBB) 0.0278 (G-TBB, GO-TBB, GD-TBB)

Time (s) IN6 0.6412 (TBB) 0.2606 (GO-TBB) 0.1085 (GO-TBB, GD-TBB)

IN8 2.2973 (TBB) 0.9538 (GO-TBB) 0.5085 (GO-TBB)

IN10 N/A 4.0252 (G-TBB) 2.2261 (GO-TBB)

IN2 123.6378 (HO-OCL) 1151.7860 (TBB) 666.6623 (TBB)

E/(T × |S|) IN4 20.1153 (HO-OCL) 131.3184 (OCL) 138.2441 (TBB)

(µWatts/ IN6 5.9316 (HD-OCL) 20.9176 (OCL) 99.6891 (HO-OCL)

Iteration) IN8 2.1110 (HD-OCL) 7.8317 (OCL) 21.9246 (HO-OCL)

IN10 N/A 2.0707 (OCL) 5.0292 (HO-OCL)

Table 3.9: Performance of the best implementation for our test platforms and

some representative problem sizes. We report the average total energy (Joules),

time (sec.) and µWatts per Iteration. In bold the best result across platforms

for each input. The lower the better.
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Energy

Bounds

(Joule)

Odroid-XU3 Broadwell-Mobile Broadwell-Desktop

IN2 IN4 IN6 IN8 IN2 IN4 IN6 IN8 IN10 IN2 IN4 IN6 IN8 IN10

Lower 0.044 0.468 2.828 15.368 0.292 1.025 3.924 18.967 90.415 0.301 1.462 6.223 27.309 123.386

HO-OCL 0.0957 0.516 4.056 15.502 0.330 1.123 4.571 21.767 99.467 0.395 2.043 6.517 29.199 128.786

HD-OCL 0.180 0.686 3.077 15.430 0.336 1.331 6.991 26.458 108.995 0.398 2.067 6.913 32.884 152.705

Upper 0.358 2.054 6.772 24.617 0.739 2.364 9.130 36.107 153.565 0.553 2.559 9.688 38.923 242.727

Table 3.10: Energy bounds (in Joules) for all platforms and MDP sizes. We mark

in bold the inter-platform best (Lower bound) and worst (Upper bound) expected

energy. We also report the energy consumption for HO-OCL and HD-OCL.

ecution time when executing a problem of size IN6 on platform TP3. Again in

bold, we mark the minimum energy, execution time or µWatts per iteration for

each input size. As we see from the table, heterogeneous implementations that

exploit both devices simultaneously (HO-OCL and HD-OCL) usually achieve the

best performance concerning time and energy. Interestingly, energy efficiency im-

proves on each platform when the problem input size increases. The improvement

is more pronounced on the platforms with lower TDP: TP0 and TP2.
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Figure 3.30: Normalized execution time for medium (IN4) and large (IN8) prob-

lem sizes. Averages are red bars; blue bars indicate 1-σ intervals.

To better appreciate how good the heterogeneous scheduling approaches per-

form from an energy point of view, we compare HO-OCL and HD-OCL to the

best (Lower) and worst-case (Upper) scenarios, which can be found in Table 3.10.
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Figure 3.31: Normalized energy for medium (IN4) and large (IN8) problem sizes.

Averages are red bars; blue bars indicate 1-σ intervals.

These Upper12 and Lower energy bounds have been obtained empirically, using

the minimum and maximum energy measured for all parallel strategies for a

particular platform and MDP size. We remark that on average, HO-OCL (HD-

OCL) is 18% (18%), 12% (36%) and 17% (25%) less energy efficient than the

ideal scenario for TP0, TP2 and TP3, respectively. On the other hand, they

demand around 2× less energy than the most energy-greedy parallel implemen-

tation, which clearly helps us to quantify the benefits of heterogeneous scheduling

for the HCPs studied.

We end this section peeking at the behavior of our measurements of the to-

tal execution time and energy of the VI method. We also comment how our

statistical analysis detects when the execution time and energy distributions of

the implementations are statistically indistinguishable or not. We exemplify in

detail the normalized time (Fig. 3.30) and energy (Fig. 3.31) for two of the most

representative MDP sizes, IN4 and IN8. We have performed a similar study

for IN2, IN6, and IN10 and observed a significant deviation for smaller inputs

measurements (≤IN4). We note that for large inputs (≥IN8), the deviations in

12A theoretical energy upper bound of each platform and MDP size can be obtained by
multiplying the maximum TDP (Watts) of the platform with the execution time of the slowest
parallel implementation. This theoretical upper bound is always higher than the empirical
upper bound we report in the paper, so we use the measured empirical value in the discussion.
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the measurements, both for time and energy, remain small. In the figures, we

also see that results are all different except for IN4 and the heterogeneous imple-

mentations in platform TP3 (time and energy), and for IN8 and HO-OCL and

HD-OCL in TP0 (time). In these cases, the indicated implementations produce,

statistically, the same results.

3.5.6 Summary of Results and Lessons Learned

From a quantitative perspective, concerning energy, TP1 is 1.3 to 3.3 times more

efficient than TP2, and 1.9 to 3.9 times more efficient than TP3. Regarding time

performance, TP3 executes 4.5 to 6.8 times faster than TP1 and 1.9 to 2.3 times

faster than TP2.

Considering the CPU-only implementations for the evaluated benchmarks and

platforms, TBB is always more efficient than OMP, both for time and energy,

even though they use the same hardware resources. This aspect is most evident

for TP1, the test platform with asymmetrical CPUs, where TBB executes 38%

to 83% faster than OMP while using 12% to 61% less energy. It is important

to mention that the TBB implementation gives the best time performance on

TP1 for all implementations. These results seem to confirm that TBB work-

stealing approach works better than dynamic or guided OMP approaches in our

case of study. Lesson Learned 1: TBB is better suited for ARM big.LITTLE

heterogeneous computing architecture. In future work, it would be valuable to

evaluate the performance and energy efficiency of OpenMP and TBB for different

platforms with asymmetrical CPUs.

The heterogeneous implementations, HO-OCL, and HD-OCL, perform better

than TBB (the best of CPU-only) in all cases except for runtime in TP0 (Ta-

ble 3.9, values in bold) or energy when solving small MDPs (with task granularity

of a few msec.) on TP2 and TP3. Lesson Learned 2: low power platforms with

asymmetrical computing units are more energy efficient exploiting all the units -

heterogeneous implementations - but can be more time efficient exploiting only

the faster units. The best heterogeneous implementation reduces the energy re-

quirements of VI by up to 64% on TP0, 72% on TP2 and 19% on TP3, when

compared to TBB (the most energy efficient CPU-only implementation). Re-

garding time, the heterogeneous implementations speedup up to 33% and 420%

on TP2 and TP3, respectively, when compared to TBB. Lesson Learned 3: het-

erogeneous implementations obtain higher energy gains in platforms with lower

TDPs, and higher time gains in platforms with higher TDPs.

Regarding the heterogeneous scheduling strategies (HO-OCL and HD-OCL),
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HD-OCL performs best for large MDPs (hundreds of msec.) on TP1, which is

the most heterogeneous platform. In this case, the power use is reduced in ≈25%

of the cases). HO-OCL either works better, or it is statistically indistinguishable

from HD-OCL in the rest of the cases. Lesson Learned 4: the more heterogeneous

the platform, the more benefit we can obtain from a dynamic work partition

approach like the one applied in HD-OCL, versus the static partition approach

applied in HO-OCL, being one additional advantage for HD-OCL that it does

not need to assess all possible static partitions to find the optimal.

3.5.7 Rules of Thumb

Our study allows us to propose a simple set of rules to help programmers se-

lect the appropriate programming model and scheduling strategy for MDP-based

solutions suitable for using the on-board low-power mobile platform:

• From a productivity’s programmer point of view, oneAPI BUFF and USM

implementations are easy to program. They result in much simpler codes

than OpenCL. However, from a performance and energy efficiency point

of view, USM is the choice to go, if the platform supports shared virtual

memory by hardware.

• When considering the scheduling strategy, fine-tuned static scheduling per-

forms best, both from time and energy efficiency point of view.

• On average, fine-tuned dynamic scheduling is the best compromise from an

energy & performance point of view.

• From a practical point of view, both static (HO) and dynamic (HD) schedul-

ing require time-consuming offline training to find the optimal GPU ra-

tio/chunk size, which needs to be repeated every time the execution condi-

tions or the input change.

• Adaptive scheduling (HL) offers a good trade-off between performance and

ease of use, as it requires no previous training, given that the problem size

is large enough and the HCP supports USM.

3.6 Conclusions

We seek to widen the applicability of decision-making methods that embed VI as

an inner component to real-world problems, so we study the impact on the per-

formance and energy efficiency of implementing VI with different heterogeneous

programming approaches and scheduling strategies.



72 Chapter 3. Solving Large MDPs Optimally on Mobile Platforms

The implementation of a heterogeneous application that makes the most out

of a CPU+iGPU SoC is a daunting task due to low-level considerations: data

sharing, synchronization, load balancing, scheduling, etc. Usually, the user is

responsible for providing the implementation of the code that processes a block

of iterations (from the parallel iteration space) on the CPU and the GPU. To

make this task more approachable, we have developed a high-level heteroge-

neous parallel for template [80] that takes care of many of the low-level details,

like data partitioning, CPU-GPU synchronization, and scheduling.

For most of the SoCs with integrated GPU, OpenCL is the main alternative to

write the GPU code, and C/C++ the widely accepted language to write the CPU

code. This leads to a “dual-source programming paradigm” in which C/C++

has to interact with low-level OpenCL, and the developer has to master two dif-

ferent languages and learn how they interplay. A “single-source programming

paradigm” alternative is the just-released Intel oneAPI [51]: a unified program-

ming model that aims to simplify coding across multiple architectures, including

CPUs, GPUs, FPGAs, and AI accelerators. It is an open standard based on

the cross-architecture language Data Parallel C++ (DPC++). DPC++ comple-

ments SYCL [42] language and extensions for Unified Shared Memory (USM),

ordered queues, reductions, subgroups (on CPU and GPU implementations), and

data flow pipes (for FPGAs) support are being integrated and absorbed in the

SYCL standard as they mature. DPC++ includes an abstraction layer on top of

SYCL, which is a C++ abstraction layer over OpenCL.

The main benefit of using oneAPI over OpenCL is the single programming

language approach, which enables us to target multiple devices using the same

programming model, and, therefore, to have a cleaner, portable, and more read-

able code. Although oneAPI simplifies the development of heterogeneous appli-

cations, it does not automate the distribution and scheduling of the workload

among the CPU cores and the GPU. To add this capability, in this work, we

implement the heterogeneous parallel for template from [80] with oneAPI, and

experimentally evaluate the pros and cons of oneAPI vs OpenCL for a heteroge-

neous application [27].

We have tested and analyzed the feasibility of solving large-scale Markov

Decision Processes exactly with Value Iteration in low-power heterogeneous com-

puting platforms for a set of robot navigation use-case benchmarks. From our

experimental evaluation of the impact of the programming models on produc-

tivity, namely of OpenCL –OCL–, oneAPI & SYCL style buffers –BUFF– and

oneAPI & USM feature –USM–, we have learned that oneAPI implementations

can be up to 5x easier to program than OpenCL while incurring a negligible

overhead in performance.
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Although increasing the level of abstraction of the programming model im-

proves productivity, this may significantly impact the efficiency if we are not

careful: BUFF can be 380% less time-energy efficient than OCL. USM appears

as a good alternative if the platform supports shared virtual memory by hard-

ware. Last, from the three scheduling strategies evaluated, static –HO–, dynamic

–HD–, and adaptive –HL–, the static scheduling performs best in terms of per-

formance and energy efficiency, though it requires exhaustive offline searching.

Adaptive scheduling provides good results with no previous training, in partic-

ular when using the USM approach to code the kernels and scheduler, and for

large problem sizes.

In the next chapter, we branch from this research line and dive into a more

complex decision-making framework—Partially Observable MDPs.



4
Online Planning on Mobile
Platforms for POMDP
Agents

4.1 Introduction

Used to model and solve real-world problems where uncertainty is always a given,

partially observable decision-making processes (POMDPs) find applications in

all sorts of domains, from management in agro-food industry [43], to stock mar-

ket [4, 24], robotics [48, 36, 5, 71], air traffic control [59], and medicine [45, 47],

to mention just a few. Karl Johan Åström first described the general frame-

work of POMDPs in 1965 as a Markov Decision Process with incomplete state

information [3]. It then became a hot topic ever since it was adapted for AI

in autonomous decision-making and planning by Leslie Kaebling and Michael

Littman [56]. However, in spite of having been intensely studied for half a cen-

tury, the challenge of solving large POMDPs on platforms with limited resources

remains open.

Solving exactly a POMDP to get the optimal plan is an EXPTIME-complete

problem if the agent is a finite state machine with infinite memory [22]. In

practice, POMDPs are computationally intractable due to the “curse of dimen-

sionality” and the “curse of history”. The two curses define the dimensions of

complexity when planning for a POMDP and are often independent [87]. On

the one hand, the curse of dimensionality, as first defined in [56], states that

the belief space B grows exponentially with the size of the state space |S|. On

74
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Figure 4.1: Online planning for a POMDP agent. Solving or planning for a

POMDP consists in finding a policy that maps the current belief bt to an action

at, so that it maximizes some definition of a value, such as the expected total

discounted reward rt. The belief infers (approximately estimates) the underlying

state of the agent, st, based on the observations of the agent, ot, ot−1, ..., and its

previous actions.

the other hand, the curse of history states that computing an optimal policy for

action selection grows exponentially with the planning horizon and the number

of distinct possible action-observation histories [87]. In practical terms, we can

compute an optimal policy only for toy problems whose state, action and obser-

vation spaces have few elements (e.g., tiger [19], crying baby [60]), and also for

some medium-sized problems that admit an offline solution, when we have the

luxury to compromise memory for time.

Unfortunately, for physical agents that have to make decisions online in the

real-world, where an almost immediate response is required, we can only rely on

approximate methods, which in the best case converge asymptotically to optimal

solutions [44, 86, 78]. Online methods can scale to solve very large POMDPs,

but often they are still slow for real-time online planning (they require roughly

one second to plan for an action as of current technology) [37]. That is the

issue we are addressing in this work. For completeness, we have included a

detailed description of the POMDP formalism and methods in Section 2.2. How

a POMDP models uncertainty and how an online planner works are depicted in

Fig. 4.1, right and left respectively.

By analyzing the most relevant state-of-the-art works on online planning in

POMDPs, such as POMCPOW, DESPOT, POMCP, or PBVI [107, 5, 100, 86],

we have noticed that none of them attempts at saving and reusing previous

planning experience. At every time-step, they simulate from scratch the execution

of long sequences of actions and gathering of observations starting at the current
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belief state, in order to build a large approximation of the decision tree (step

1), then use it to choose a single action in the current time-step (step 2), and

completely discard it afterwards (step 3). This process repeats until the agent

reaches its goal or the stop condition. We think that online planning can be done

more efficiently by tweaking with the last step and salvaging useful experience

instead of discarding and forgetting the policy every time.

We claim that an experience memory based on lightweight data structures

can be the link between seamless online search, offline policy computation and

learning from example. Planning in the following three scenarios will likely benefit

if the intelligent agent could retrieve precomputed policies or part of them based

on similarity search to query for an entry similar to the current belief state:

• Offline training : We can incrementally store in an experience graph partial

or approximated policies learned during offline training (from simulation)

to provide a base of knowledge to the agent. Information about policies in

this data structure can be added, updated and queried using the fingerprint

of their belief state representation.

• Learning from examples: The same memory structure has the potential to

serve as the base for learning admissible (not necessarily optimal) policies

from example from expert and qualified operators. Another option is learn-

ing from playbacks of datasets that include valid sequences of histories for

navigation, be it from simulation or on a real robot. By history we mean a

sequence of actions and observations.

• Online exploration and exploitation: The base of knowledge built offline can

be later accessed to get policy recommendations (or default actions) using

similarity search queries for the current belief. Furthermore, the knowledge

base can be further updated during online execution if a better policy with

higher estimated value is found for the current belief.

Our goal is to do real-time planning for POMDP agents on low-power comput-

ing platforms, suitable for running on-board of physical agents that need efficient

planning, such as mobile robots. Given this demanding context, we aim to reduce

the computational cost of online planning for medium-large POMDPs.

The main result of our research presented in this chapter is a new method

for online planning, the Recall-Planner. This proposal enhances existing online

planners with a fast and lightweight memory based on Bloom filters, which al-

lows the planner to store and recall experience. This experience can be obtained

through direct interaction with the environment (on-policy) or simulation in pre-

vious planning steps (off-policy).

The rest of the chapter is organized as follows. We proceed with a Section 4.2
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on related work. Then, we discuss the challenges of an online memory-based

POMDP solver and our plan to make the memory proposal feasible in Section 4.3.

Next, we present our proposal in Section 4.4, where we introduce a new algorithm

for online planning and considerations for its implementations. We end the chap-

ter with a systematic evaluation of the proposed algorithm in Section 4.7. Finally,

we present an overview of the results in 4.7.6 and conclusions in Section 4.8.

4.2 Related Work
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Figure 4.2: Taxonomy of related work in POMDP literature, showing the di-

mensions that define a POMDP problem and its solution: model, belief, reward,

policy, and planning method. Marked in a red circle is our proposal for improving

online planning methods, Recall-Planner. It is a type of Online planning method.

Concretely, with an arrow-line directed from DESPOT to Our method we indi-

cate that Recall-Planner builds on top of DESPOT. The same relationship rules

apply to all elements in the diagram. We mark in bold the subset of methods

in the POMDP literature that have been used in and are directly related to our

proposal.
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Chronologically, we start this work with an exploratory research phase to

find which POMDP methods are more suitable for planning and decision making

under uncertainty for mobile robot applications. The result of this phase is

outlined in a taxonomy of POMDP methods presented in this section.

The proposed taxonomy of POMDPs is obtained by categorizing the different

approaches to represent a POMDP problem (data structures) and the methods

(algorithms) employed to solve it, which leads to five axes: model, belief, reward,

policy, and planning (and decision making) method, as shown in Fig. 4.2.

As in MDPs, the starting point to use the POMDP framework is defining the

model of the problem to be solved: i) the problem state, action, and observation

domains, which can be each either discrete or continuous, and ii) the transition

and observation functions, which can be either deterministic or stochastic. The

difference with MDPs lies in the observations: we know from the previous chapter

that MDPs plan and make decisions about the real underlying state of the system,

but instead of the actual underlying state, POMDPs operate with a compact

representation of the observable history of actions and observations of the agent,

known as the belief state [12]. In an early application of POMDPs for “spoken

dialogue management as planning and acting under uncertainty”, the authors

define the POMDP as “an MDP in which the agent can only make an observation

based on the action and resulting state, without knowing the current state” [127].

The belief (blue axis in our taxonomy) can be represented either explic-

itly, as a probability distribution over the state space, or implicitly. Innova-

tions in the belief representation and in the methods for collecting, updating

and expanding the belief have lead to major improvements in POMDP litera-

ture [86, 95, 106, 15, 105, 107]. In particular, in state-of-the-art online plan-

ning [107, 37], point-based methods and particle filters are key to represent and

propagate the belief. Common strategies for belief expansion in that case include

stochastic simulation with random action, greedy action (choose the belief ba

that brings most reward), exploitative action (choose the belief ba that is farthest

from any b ∈ B) [86], heuristic actions and combinations, such as PEMA [88],

GapMin [89] and FIB [104], etc.

Also similarly to MDPs, a POMDP can be defined as an optimization prob-

lem whose objective is to maximize some value described by a reward function

(the mauve axis in our taxonomy). In other words, the reward function specifies

the goal and behavior of the POMDP agent. The way the rewards are repre-

sented, chosen, or taught to the “intelligent” agent makes a whole field in AI

research —closer to reinforcement learning. Some interesting lines of research

on modeling the reward function include reward shaping [81], imitation learning,
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and try-and-error search. Regardless, the POMDP literature rarely ventures into

learning the reward model; most common use-cases employ basic sparse rewards

and so do we.

Comparing the existing methods, we conclude that online anytime point-based

planning methods [98] have the potential to suit our needs as a foundation for

planning in real-time for robot navigation use-cases. For more details on point-

based methods, please check Section 2.2 in the background chapter. Conse-

quently, we focus our efforts to improve the state of the art in this line of research.

In particular, by enhancing online planning methods with a memory mechanism.

Modern online planners like DESPOT mitigate the two curses (dimensionality

and history) and control the branching factor for both actions and observations

by combining branch and bound techniques with sparse sampling. They end up

with an approximation instead of an optimal policy (unlike VI for MDPs). All

these online planners are anytime point-based methods, i.e., they approximately

represent and update the belief using particle filters. They are widely used to

compute approximately optimal solutions for POMDPs with high dimensional

belief spaces and have been particularly successful in online planning. Some ex-

amples of point-based methods, such as PBVI, Perseus, HSVI, AEMS, POMCP,

POMCPOW and DESPOT, are listed in Table 4.1 together with other represen-

tative planning methods.

Our contribution, the Recall-Planner, is located in the planning methods

axis (orange). It is a type of online, value based, approximate, anytime, memory-

based planning method. We do not draw all the connections for clarity, but we

mark all relationships to the proposed method in bold. Looking at the taxonomy

in Fig. 4.2, you may note that Recall-Planner is based on DESPOT [105, 37],

which uses a point-based determinized belief tree to explore from the current

belief. In turn, DESPOT is based on POMCP [100].

The novelty to our method is the use of a memory that can be used to store and

recall off-policy belief-action entries, having a similar effect on planning to belief-

integrated Finite State Controllers (FSC) [120]. Therefore, the current policy can

be decided both based on experience from online planning (on-policy) and from

prior experience (off-policy). The resulting plan is known as a policy, which is

the last axis in our taxonomy (represented in gray color in Fig. 4.2). Anytime

methods guarantee to return a policy in a given time and with a bounded regret.

This property is desirable for online real-time applications.
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Solver Reff. Online Offline
Conti.

States

Cont.

Actions

Cont.

Observ.

Belief Grid Value Iteration [67] - 3 N N N

Point Based Value Iteration (PBVI) [86] 3 - N N N

A hybrid between MDPs and POMDPs (QMDP) [2] - 3 N N N

Anytime Error Minimization Search (AEMS) [94] 3 - N N N

Successive Approximations of the Reachable

Space under Optimal Policies (SARSOP)
[62] - 3 N N N

Monte Carlo Value Iteration (MCVI) [6, 65] - 3 Y N Y

Partially Observable Monte Carlo Planning (POMCP) [100] 3 - Y N N

POMDPSolve [18, 74] - 3 N N N

Heuristic Search Value Iteration (HSVI) [104] - 3 N N N

Fast Informed Bound Solver (FIB) [89] - 3 N N N

Incremental Pruning [20, 124] - 3 N N N

Determinized Sparse Partially Observable Tree (DESPOT) [105, 16, 37] 3 - Y N N

POMCP with with Observation Widening (POMCPOW) [107] 3 - Y Y[*] Y

Predictive State Representation MCTS (PSR-MCTS) [66] 3 3 N N N

Information Particle Filter Tree (IPFT) [35] 3 - Y Y Y

Recall-Planner This work 3 3 Y N Y

Table 4.1: Representative POMDP methods with their main features. [*] Con-

vergence to an optimal solution is not proven, and is not guaranteed to work for

multidimensional action spaces.

4.3 Efficient Memory Mechanisms for Storing and

Retrieving Online Planning Experience

Here, we study the implications of using a memory in combination with a point-

based online planner, and possible implementation strategies for it. We are faced

here with two design challenges:

1. When exploring the belief space of a POMDP, it is unlikely to revisit the

exact same belief state: an exact memory mechanism would be useless be-

cause everything is new and different even by minor details. A “similarity”-

recalling procedure is more practical. For instance, for a mobile robot, fol-

lowing a wall, turning around a corner, or entering through a door require

very similar basic motion policies, regardless of the colors, textures and

even shape of these elements. Thus we are looking for a way to systemati-

cally abstract the differences from states that require the same policy from

a practical point of view.

2. Memory, computation and energy cost are of the utmost importance in the

kind of physical agents we are interested in—we have to design a lightweight

experience controller with a low computational and memory footprint to

be useful in practice. The “compute, use, forget” planning strategy is

the choice design in state-of-the-art methods because storing and recalling

history statistics is prohibitive when considered in addition to the curse of
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dimensionality.

We dedicate the following two sections to discuss different strategies we con-

sider to minimize the effect of these major challenges on a memory-planner im-

plementation that is usable in practice. Ultimately, we propose a new algorithm

for online planning which uses a memory mechanism based on a combination of

Bloom filters and similarity hashes.

4.3.1 Similarity Search in Belief Space

We need to design an efficient memory with minimum query delay and lightweight

data structure to store and retrieve the policies already computed from explored

belief states. Ideally, it should be able to generalize from past experience in

order to recommended actions, even for previously unexplored beliefs, given that

a belief similar enough to the one queried is recorded in memory.

We look for approximate search data structures and algorithms that can deal

with high dimensional spaces, such as K-NN. We have identified three main

groups of methods base on: space partition, locality sensitive hashing, and Bloom

filters.

Space partition methods cluster all high-dimensional elements into multiple

spaces and converts them into 1D space. K-d trees, R-trees, and SS-tress are such

space-partitioning data structures used for organizing points in a k-dimensional

space. K-d trees, for instance, work well on 1D and 2D data sets, but unfortu-

nately, they handle poorly insertion and search for large multidimensional data

sets [68, 102], i.e. they require sorting lists to add and delete items.

Either of these methods can do a lookup operation in multi-dimensional O(N)

time, N , being the number of entries in memory (for details, please consult

Chapters 9 and 10 on K-d trees and similarity search tress in the Advanced Algo-

rithms and Data Structures book [64]). Although randomized K-d tree improve

the search and query performance and promise O(log(N)) [69], given that these

methods are highly affected by the curse of dimensionality, they are not the most

suitable for mapping and searching for multi-dimensional beliefs in POMDPs.

Said this, we render them as as too computationally expensive to serve our pur-

pose.

Locality sensitive hashing (LSH) methods solve the nearest neighbor problem

by grouping points in bins or buckets; given a distance metric, those points

that are close to each other end up in the same bin with high probability [102].

Implementations of LSH may take as input documents, images or other kinds of
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objects which can be represented as vectors in some metrical space. The output

is a hash table. Objects with the same index in the hash-table are likely to

be similar and objects with different indexes are likely to be “dissimilar”. This

“similar” function is defined by the distance metric and a chosen threshold for

similarity.

Query and space are expensive, as these approaches store buckets of similar

items and search through them. Fortunately, we do not need to store individual

elements in buckets, just their signature and some associated data that is com-

mon to similar items (with the same or very similar signature, given a threshold).

The complexity of LSH depends on the distance metrics used. A well designed

hash table should allow an entry lookup in O(1) time. LSH has been success-

fully applied to domains such as near-duplicate web page detection, genome-wide

association study, and audio fingerprint [53, 113, 13].

Bloom Filter (BF) methods are based on probabilistic data structures, gen-

erally represented as bit vectors, and support membership queries using one or

more hash functions. The BF data structure is called probabilistic because it can

tell with 100% accuracy if an element is not a member of the set, but has an

accuracy—controllable by design—lower than 100% when queried whether the

element is in the set. With careful design, a number of d BFs can be used to

store in memory and do membership retrieval of d-dimensional data elements in

constant, O(1), time. The most simple BF acts like a set that supports only

two operations: add and check if an element is in the set. Functionalities such

as counting and deleting elements can be implemented if necessary with layered

Bloom filters [125], but with additional computational cost.

It is important to note that basic BFs are equivalent to lighter and faster

hash sets, and we can only use them to store if a key is present or absent. The

BFs’ counterpart of hash tables, allowing us to store and consult key-value pairs,

are the so-called Bloomier filters [23]. BFs, although not as popular as space

partitioning and LSH methods, have seen much success in optimizing network

and memory applications, such as routing, crawlers, and caching [14, 38, 30, 82].

We pay special attention to BFs because they have several interesting prop-

erties that make them a good candidate in the design of our experience memory

controller:

• The time needed to add or check the membership of an element in the BF

can be as small as a fixed constant, O(K), if the hash functions are simple

enough. K is the number of hash functions.

• The K hash functions of look-ups are independent, thus they can be run

concurrently.
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• Fewer than 10 bits per element guarantee a false positive probability lower

than 1% for any set size and independently of the number of elements in

the set [10].

Regarding to the false positive issue, there have been proposed multiple strate-

gies in the literature to improve the precision metric and reduce the false positive

rate [125]. Some prescribe using a larger number of hash functions, others sug-

gest that instead of using a fixed size BF, the BF size can adapt and grow as

needed to accommodate more entries in the set while maintaining the precision

metric within the prescribed range. Another interesting strategy is to combine

multiple Bloom filters. This improves both on the accuracy and parallelism of

the implementations, but at the cost of multiplying the storage needed for the

BF.

Our proposal, briefly introduced in the next subsection, and presented in

detail in Section 4.4, uses a combination of the last two methods: Bloom filters

and locality sensitive hashing. BFs are traditionally used in combination with

cryptographic hash functions, which assure that small differences in the inputs

lead to very different outputs. LSH, like perceptual hashes, have the opposite

effect, i.e., similar inputs are mapped to similar outputs. We opt for using Bloom

filters with locality sensitive hashing for being a generic approach that might as

well be applied to varied domains such as documents of text, points in space,

or audio files, to mention just a few examples. This versatility would make our

experience memory proposal work for all sorts of POMDP problems.

The metrics for similarity embedded in these approaches make the difference

between specific problems and implementations. In the case of robot navigation,

we work with beliefs represented as multi-dimensional data points which approx-

imate poses (positions+orientations) in space. In online planning the belief is

represented as discrete probability distributions, while in the BF memory we

operate with beliefs compressed in binary format. Considering this, we list the

candidates for distance metrics we could use to quantify the similarity between

two discrete probability distributions P = (p1, . . . , pN ) and Q = (q1, . . . , qN ), or,

correspondingly, for binary strings A and B of size N :

• Manhattan Distance: It is computed with the L1 norm, as dM (P,Q) =

‖P−Q‖1 =
∑N
i=1 |pi − qi|

• Euclidean Distance: It is computed with the L2 norm: dE(P,Q) = ‖P −
Q‖2 =

√∑N
i=1 |pi − qi|

• Random Projection: It partitions the space with hyperplanes and counts

how many times the data falls on the same side of the same hyperplane.

The closer together in space two points are, the more likely it is they will
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not be separated by a random hyperplane and end on either side together.

This metric is useful for K-NN applications.

• Hamming Distance: It is symmetric and easy to compute for binary strings

A and B of N bits: dHD = count ones(XOR(A,B))).

• Hellinger distance: It is computed as dH(P,Q) = 1√
2

√∑N
i=1(
√
pi −

√
qi)2

It has several desirable properties: it is symmetric, non-negative and bounded

- close to zero for similar distributions and close to
√

2 when they are dif-

ferent.

• Kullback–Leibler divergence: Also known as relative entropy, it is a measure

of how one probability distribution is different from another. For two distri-

butions Q and P , the KL-divergence is defined as dKL(P ||Q) =
∑
i pi ln pi

qi
(change the sum by an integral for random continuous variables). It is a rel-

atively easy to implement for point-based beliefs. It is popular in robotics

and POMDPs, but it is not commutative nor symmetric, and it is not

bounded either. It has been used in Monte Carlo POMDPs by Sebastian

Thrun [111].

• Jensen–Shannon divergence: Also known as information radius, it is an-

other method for measuring the similarity between two probability distri-

butions. It is based on the Kullback–Leibler divergence, but it is symmetric

and it always has a finite value.

• Jaccard Similarity : Also known as MinHash, it computes the intersection

of points in two data sets, divided by their union.

• Cosine Similarity : Also known as SimHash, it represents data as vectors

in multidimensional space; the distance between two such elements is com-

puted as the cosine of the angle between them.

Preferably, the chosen metric for distance or similarity should be symmetric,

i.e., d(a, b) = d(b, a) in order to promote proper mapping for similar beliefs in

both ways. Also, if we use the belief as such (sets of sampled states with their

weights), it is very likely to always have near void intersection of two any pairs of

beliefs, even overlapping ones, as required for Jaccard Similarity and Hamming

distance. Euclidean Distance and Cosine Similarity are more likely to detect

similarity correctly in this case.

To reduce the computational complexity of the metric, we need a lower dimen-

sion representation of the belief. A point-based representation already reduces

the belief to a number of sampled points in the vicinity of likely states, but this

may have to be further reduced. We could do this using different features of

the belief probability distribution, such as the mean, standard deviation or other

moments. These features will be the d dimensions used as input for the d BFs.
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4.3.2 Considerations in Designing the Experience Memory

Being more specific, our experience memory design should implement these two

requirements:

1. Generalize over the belief space, so that, given a belief, b, it returns the

action associated to a belief b′, previously visited and now stored in memory,

that is at least s percent similar to b.

2. Efficiently store and recall experience entries from a bank of knowledge. By

efficient, we mean compact data representation, timely insertion and query

operations for the POMDP problem being solved.

We combine a state-of-the-art online planner with a Bloom filter memory us-

ing locality sensitive hashing—BF memory—into what we call the Recall-Planner.

The motivation for proposing a design based on Bloom filters is the memory and

computational cost of directly storing and searching for beliefs in memory. A

belief is implemented as a set of N weighted particles, a particle is made of a

sampled state and its likelihood of being the true state, and each state has d

dimensions. If we were to search for the most similar belief to the current belief

in a history of length L, we would need N2 × d2 × L comparisons, which is very

costly provided that each belief is represented as a large set of particles.

Bloom filters are lightweight and simple data structures with many desirable

properties for our experience memory design (details in Sec. 4.3.1), but they are

normally implemented with hash functions which assure that even slightly dif-

ferent inputs result into very different encodings. We need the exact opposite

behavior in our memory for planning use-case, i.e., the hashes should encode

similar inputs into similar encoding, allowing us to store similar experience in-

dexed close to each other. This is exactly what locality-sensitive hashes do, and

we naturally combine the two best candidates for solving our problem: BFs and

LSHs.

To implement the BF memory proposal for a particular problem, we first need

to identify the dominant features in the belief state that discriminate a belief from

another. We also need a set of locality-sensitive hash functions for the problem

at hand and corresponding features. The hash functions should assure that two

similar beliefs, b1 and b2, having defined a threshold for similarity s, have the

same encoding or coincide in the majority of the on bits with a high probability

(ideally, with a well defined and bounded error for mismatching beliefs). The

idea is to first encode (and compress) the queried belief based on its features,

then use this encoding as a search key to answer similarity queries. If there is no

match, the same key or encoding will be used to add a new entry to the memory
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(with the policy computed by the planner). Both the belief encoding and hash

functions must be as simple and efficient as possible.

There are many questions we need to answer to produce an efficient design

for our BF memory and the answers highly depend on the problem we want to

solve, the hardware used to implement it, and what we consider a good solution.

Let us start with the problem. We focus this work on 2D navigation (e.g., mobile

robotics, autonomous vehicles), hence our states will always feature some distance

metric to a target position relative to a universal coordinate system. In a sample-

based multi dimensional belief such as this, the most practical features are the

mean values and standard deviation in each dimension of the state. If the state of

the agent is defined only by its position and orientation in space, the belief about

the underlying state could be reduced to only 6 numbers: 3 mean values and 3

standard deviations, corresponding to the position x, y, and the orientation α

relative to the target state.

Another critical question in our design is how many bits should the Bloom

filter have? The size depends on what we consider an admissible discretization

of the state space in our use case scenario. For the online case, we could limit

the BF to adding only reachable belief points in the fashion of a discrete sliding

window on top of the state space. Also, we keep in mind to balance costs of the

memory storage, access, search and (re)computation of a policy from scratch.

Finally, how many independent hashes do we need for a BF? In general, at

least as many as the number of features the encoded data has. It is common

practice to apply the same hash to all features, given a different, constant seed

for each dimension as an additional input to the hash function. This works fine

for a prototype with a sequential implementation, but it is difficult to scale and

use it for large high dimensional state problems because multiple hashes will have

to access and write over the same positions in memory. As an alternative, instead

of using a single large BF for all features, with many different hash functions that

read and write to overlapping regions in memory, we opt to use multiple, smaller

BFs, each with few hash functions. This design decision makes the solution

scalable for larger problems. It simplifies load balancing tasks for parallel and

heterogeneous computing, which is particularly useful, as we will implement the

Bloom memory solution on a CPU+GPU SoC.
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4.4 Online Planning with Bloom Filter Memory

Recall that our proposal is based on Bloom filters and similarity search, intro-

duced in section 4.3.1. In this section, we describe in detail how we use these

methods to design a lightweight memory that can store and retrieve online plan-

ning experience.

4.4.1 Data Structures – Bloom Filter Memory

Bloom filters are simple and efficient probabilistic data structures that can be

used to add and test the membership of an element to a set. A basic BF is

composed of two elements. First, a bit vector, which is a data structure with

indexed binary values (zeros and ones) of size m. Second, k LSH functions,

h0, h1, ...hk−1. Each hash function gets input data (e.g., a string) and optionally,

a seed, and returns an integer i ∈ {0,m − 1}. Optionally, a set of seeds for the

hash functions may be used.

We use the following notations and formulas to define the BF memory in our

proposal:

• m = [ n∗ln(p)
ln(1/2ln(2))

] - Size for the bit vector used to represent the BF (number

of bits in the filter), given the number of elements in the sets, n, and the

desired probability for false positives, p.

• n = [− m
k/ln(1−eln(p)/k)

] - Capacity or maximum number of different elements

that can be stored in the set.

• E = {e1, e2, ..., en∗} - Set of elements or entries in the BF memory. n∗ =

−mk ln
[
1− X

m

]
approximates the number of elements in the BF, given that

X is the number of bits set to 1 in the BF [108].

• p = ε ≈
(
1− e−kn/m

)k
- The false positive error tolerance (probability of

false positives, ε ∈ [0, 1]).

• k - Number of independent locality sensitive hash functions. The optimal

number of hash function that minimizes the false probability, for a given

m and n, is k = m
n ∗ ln(2). In particular, we use two hashes for each belief

state dimension.

• f = 2d - Number of features, is equal to twice the number of dimensions of

the belief representation.

Some of these notations can be identified in the graphical description of the

BF memory from Fig. 4.3. From left to right, we depict how a belief state is

transformed into the belief marker using the 2 × d LSH hash functions. This
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belief marker is used as a key to identify an entry the BF memory (BF key,

colored rectangles).

We illustrate the main components of the BF experience memory and how it

is used for online planning in Fig. 4.3. From left to right, we see how the belief

features are extracted from the current belief and encoded with LSH to obtain a

BF key. This key is compared to the memory trace BFs and depending on the

result—whether the query key and memory trace match—there are three possible

outcomes:

• Outcome [1], in green: happens if the key matches and it is a true positive,

the agent is returned the key-value pair stored in memory and can use the

recalled policy.

• Outcome [2], in red: happens if the key matches but it is a false positive.

False positives occur with a small probability, controlled by design with

the false positive tolerance parameter, ε. This case has a close to zero

probability, but in the event of it, the recall returns “not found” (line 15 in

Alg. 1) and the agent proceeds to compute the policy with online search.

• Outcome [3], in blue: it happens if the key does not match the memory

trace BFs and is a true negative. When this is the case, we have a 100%

probability of accuracy (the memory stores no entry whose key is similar to

the queried belief). Similarly to case 2, the agent proceeds to finding the
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Figure 4.3: Representation of the Bloom filter memory use to recall a belief.

From left to right, we have the input for a BF Memory query: the current belief,

whose fingerprint is extracted in a feature vector and hashed into a BF key (belief

marker). Next, the BF key is used to query the existence of a similar entry (a BF

key of previously visited belief) in the history trace BF set. Finally, depending

on the query result, the BF memory (hash table) may be searched or not to

return the policy/value of a similar BF key.
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policy with online search, but without the cost of searching the memory

first.

4.4.2 The Recall-Planner Algorithm

The Recall-Planner is an anytime POMDP solver based on DESPOT-α [37],

which is our baseline, enhanced with an experience memory controller. By “any-

time”, we mean that the search for a good policy can be interrupted at any time,

and the algorithm would still return a valid action to execute. The algorithm

requires as input at least the current belief b and the BF memory, which is com-

posed by the memory trace (mem trace) and experience memory (memory). The

memory trace is implemented with a number of n bfs Bloom filters where each

BF has a bit vector of size m.

Our implementation uses a large number of parameters. Here, we explain

only the most relevant in our evaluation. The first four (N, d, t, γ) are used in

any standard online planner—for in depth details, please consult the background

Section 2.2 on POMDPs and point based methods for online planning—and the

rest (n bfs, s th,m, n on, r d) are specific to our memory-based implementation:

1. N : Number of particles used to approximate the belief state (default: 500).

2. d: Maximum depth of the search tree (default: 90).

3. t: Search time per move - the search stops after t seconds, and the best

valued action found thus far is returned (default: 1 second).

4. γ: POMDP discount factor (default: 0.95).

5. c th: Percentage of value range that is allowed in STD deviation for an

experience to be stored in memory (default: 0.05).

6. n bfs: Number of BFs used. It equals 2× f , being f the number of belief

features. The features used in our 2D-navigation benchmarks include the

mean and standard deviation for each dimension of the agent state in the

POMDP model, i.e., the pose (x, y, α) of the robot.

7. m: Size of the bit vector of the BFs (default: 2048).

8. n on: Fixed number of bits set to 1 by the hash functions, used to encode

the belief features into the belief marker (default: 24).

9. s th: Similarity threshold, measured as the percentage of belief overlapping

between memory and planning for recalling the former. Values within the

range 0-1 (default: 1).

10. r d: The search tree depth at which the solver stops storing experiences in

memory. If it is set to one, it only stores experience from direct interaction

with the environment. Higher values enable the memory controller to in-
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clude experience from Forward Search with Monte Carlo Simulation. We

keep this parameter low to limit the possibility of storing experience entries

from unreachable belief states, unlikely to be recalled in real interaction

with the environment (default: 3).

Algorithm 1: Recall-Planner

Input: model = {S, A, T, Z, R, γ} // POMDP model

1 memory trace(n bfs, m) // m BFs of size n

2 memory // experience memory

3 c th // belief certainty threshold

4 s th // belief similarity threshold

5 st // the target state

6 b = sample(b0, N) // sample N particles from initial belief b0
Output: updated memory and memory trace

7 while st is not reached do
8 if certainty(b) > c th then

/* Only if certainty(b) > c th we may recall from and store into the

experience memory */

9 found = false
10 b f = extract features(b) // mean, std

11 b marker = sim hash(b f, n on, m)
12 if b marker & memory trace == 1 then

/* Bitwise and operation between the corresponding belief marker

(multiple bit vector encodings) and memory trace (composed of

an equal number of BF bit vectors) equals 1. */

13 found, a = memory.recall(b marker, s th)

14 end
15 if not found then
16 a = solve(model, b, t, d, r d)
17 memory.store(b marker, a)

/* Update memory trace with bitwise or operation of the

corresponding belief marker and memory trace vectors. */

18 memory trace | = b marker

19 end

20 else
21 a = solve(model, b, t, d, r d)
22 end

/* Robot executes action a */

23 execute(a)
/* Get observation from sensor readings */

24 o = observe()
/* Update belief estimate using a weighted particle filter */

25 b = update(b, o)

26 end

In Alg. 1 we show how a POMDP agent could use our BF memory in com-

bination with an online planner. The robot executes the operations in the while
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loop until the stop condition is reached, which could be either a response time

constraint or that the task is completed. The agent starts in an initial belief

b = b0 with an empty experience memory. In every time step of the loop, the

agent plans for the next action, executes it, observes the outcomes of its action in

the environment, and, based on this information, updates its state estimation. If

the certainty of this state estimation (belief b in the algorithm) is over a threshold

c th, the robot uses the experience memory to recall the best action a. Otherwise,

it calls the action selection method solve, which chooses the action with highest

value.

The solve(.) method simulates forward in time, taking all possible actions

and likely observations from the current belief (the root node of the decision

tree) to a depth d or until timeout t, and returns the action with the highest

expected (discounted) reward. Some examples of methods used in the literature

for searching, planning or solving a POMDP online are UCB, Rollout Search,

greedy UCB, DESPOT, and POMCPOW. In Alg. 2, we present a generic pseudo-

code for the solve(.) method.

1 <bool, int> recall(bitset<m>* b_marker, float s_th){

2 int max_sim_score(0), max_sim_id(0), action(0);

3 // for each experience entry in memory

4 for (i = 0:memory.size()){

5 int sim_score = 0;

6 // compute similarity score of experience entry wrt b_marker

7 for (j = 0:n_bfs) {

8 // sum similarity score for each feature

9 sim_score += (b_marker[j]) & memory[i].b_marker[j]).count();

10 }

11 //find the id of the most similar experience entry to b_marker

12 if (sim_score > max_sim_score) {

13 max_sim_score = sim_score;

14 max_sim_id = i;

15 }

16 }

17 bool found_sim_experience = s_th <= max_sim_score;

18 if (found_sim_experience)

19 action = memory.getAction(max_sim_id);

20 return <found_sim_experience, action>;

21 }

Figure 4.4: Kernel used to find in memory the experience entry most similar

to the current belief. The similarity score (sim score) is computed with the

Hamming weight (counting the number of ones) of a bit set resulting from the

AND operation between belief markers.

The core kernel of the Recall-Planner is represented by the recall(.) method.

The kernel searches for the experience entry in memory that is most similar to
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Algorithm 2: Generic online point-based POMDP planner

Input: model, b0, t, d
Output: a∗

1 depth=0
2 B ← ∅
3 Sample N particles p from b0 and set their weight to 1/N
4 B ← B ∪ b0

/* Expand belief (decision) tree from b0: */

5 while depth of the tree < d ∧ elapsed time < t do
6 for each leaf node b ∈ B do
7 for each a ∈ A do

/* Expand the belief tree, branching from node b */

8 for each particle pi = (si, wi) in b do
9 Apply action a and obtain s′i, ri, oi through transition and

observation models
10 end
11 for each observation oi do
12 Create a new belief baoi (child of b through a and oi) from all

samples with state = s′i and weight = wi · P (oi|s′i, a)
13 Annotate ri and wi in the new belief node baoi
14 B ← B ∪ baoi ;

15 end

16 end
17 depth++

18 end

19 end
/* Backup: */

20 for all leaf nodes b ∈ B do
21 Annotate V (b) = 0 in all leaf nodes b ∈ B
22 end
23 for all nodes b ∈ B do

/* Computed in post order (from leaves to root), first all children,

then the parent */

24 Annotate the node b with V (b) and the arc to its offspring with Q(b, a):

V (b) = argmaxaQ(b, a), Q(b, a) =
∑N

i=1 wi/
∑

wi
(ri + γ · V (baoi ))

25 end
26 Compute best action for b0 as a∗ = argmaxaQ(b0, a)
27 Return a∗

the current belief and returns its corresponding policy (action) or false if there

is no entry similar enough to the current belief. The method takes as input the

current belief marker, b marker, and a similarity threshold, s th (see line 13 in

Alg.1). In Fig. 4.4 we show its pseudo-C++ code.

For a graphical view of how the Recall-Planner algorithm works, we present

in Fig. 4.5 a sequence diagram of the main classes in our C++ implementation,
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while goal not reached

else

if beliefMarker in BF

RecallPlanner ExperienceController Memory

recall( belief )

beliefMarker = encode( belief )

getExperienceNode( experienceNode )

experienceNode

true, action

create & store  
ExperienceNode( beliefMarker, experiece )

false, beliefMarker

action = solve( model, belief )

retain( beliefMarker,  experiece )

action = getAction(experienceNode)

BF |= beliefMarker

 belief = update( observation)

World

 observation =  
observe()

execute(action) 

Figure 4.5: Sequence diagram of Recall-Planner: the modules in blue correspond

to the agent controller which interacts with the world through actions and ob-

servations.
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and how they interact. As in any online planning problem, we have an agent

that sequentially observes and acts in a given environment. In the diagram,

we show the planner components in green, and the environment—the world in

which it operates—in gray. First, Recall-Planner processes the agent observation

to actualize a belief state about the world. Second, based on this new belief and

prior entries in the memory, it 1) computes an action that takes the agent closer

to reaching its goal and 2) updates its memory in the process. Last, the agent

interacts with the environment and possibly changes the state of the world by

executing the action. The planner reiterates over these steps until the goal is

reached.

4.5 Implementation Strategies and Guidelines

The Recall-Planner combines a state-of-the-art online planner with BFs and LSH,

as described in the previous section (see Fig. 4.5 for reference). In the following,

we enumerate the key strategies used in our implementation:

1. Never store the full belief —we minimize memory use by storing only a

“belief marker”, the learned action, and the estimated value of that policy

for each experience entry. We represent the belief marker by the smallest

number of features that distinguish any two beliefs requiring different ac-

tions. We choose these features depending on the problem. For instance,

in mobile robot 2D navigation, we use the mean and standard deviation for

each dimension of the particle belief. Thus, we store only a belief marker

of 2× d values.

2. Do store and recall operations only when we have sufficient confidence about

the underlying state. We set this parameter experimentally to c th < 0.05,

which translates to more than 95% confidence. In every other case, we

use a state-of-the-art memoryless online planner based on DESPOT and

DESPOT-α [105, 37].

3. Store only those experience entries likely to be revisited in a few steps of

arbitrary sequences of actions and observations gathered in the decision

tree, starting at the current belief state.

4. We define the memory trace as a set of BFs, one for each feature and

dimension of the belief (6 BFs in the 2D navigation example, since the

state has 3 dimensions: x, y and the orientation α). All BFs bit vectors

are initially set to zeros.

5. Always update the memory trace (history fingerprint) when storing a new

experience entry in memory; otherwise, the BF becomes useless. We do this
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with a binary or operation between the corresponding BF and the belief

feature encoded with its LSH function.

6. Make sure that similar beliefs have encodings that end up close to each

other in memory so that when one entry is recalled, the neighbors (similar

experience entries) are cached in memory. For instance, experience entries

of two similar beliefs, b and b′, should be mapped to neighboring keys

(indexes) in memory, as 100 and 101. Assuming that we can predict the

maximum number of entries for a problem and there is enough space from

them in RAM, the use of statically allocated arrays whose indexes map to

experience keys would be highly efficient.

7. Whenever we need to recall an experience entry from memory, we only do

the search operation if the current belief marker has hit in the memory

trace. In other words, the binary and operation with the memory trace

and current belief encoding results in one. These simple operations save us

from more than 99% of the unnecessary searches in the experience memory,

resulting in no experience recall. The 1% experience entries we erroneously

identified as hits in the memory trace but are not stored in memory is the

price we pay.

8. To mitigate the possibly damaging effect of false-positive recalls, we can

shorten the duration of the actions. Two or more consecutive false positives

have a close to zero chance of occurring; thus, the following action will

immediately compensate for undesired deviations in the robot trajectory.

9. Keep in mind that the encoding and storing of real numbers is done with

limited precision arithmetic.

10. Take advantage of the parallel nature of the BF memory.

4.6 Parallel Implementation of Recall-Planner

The Bloom filter memory of the Recall-Planner has been implemented in C++,

as the baseline online solver, and evaluated for standard 2D robot navigation

POMDP benchmarks.

After evaluating the execution of the Recall-Planner with perf 1 profiler when

executing the Recall-Planner with the default parameters, we have observed the

most effective way to improve it is by parallelizing the recall(.) method. This

method takes from 2% to 87% of the total execution time, depending on the

benchmark and whether past experience is reused between executions.

1https://www.brendangregg.com/perf.html

https://www.brendangregg.com/perf.html
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This high variation has been expected: if we reload the experience memory

dump between experiments (episodes), there are more opportunities for recall.

But if the experiment starts with en empty memory, or the new scenario is

completely different to prior experience, there is nothing to recall and the BF

assures the memory is not searched (the method recall(.) is not called) except

in the rare case of a false positive. On the contrary, if the experience have many

entries from varied scenarios, this translates into a higher likelihood for BF hits

and calls of the recall(.) method to retrieve the best action from the experience

memory, instead of calling the online search(.) method.

We have used the results from solving the benchmarks with no prior experience

in memory, experience from 1 previous episode, and experience accumulated from

2 previous episodes to get these numbers. In the first case, as the agent starts

with an empty experience memory, most of the execution time is dedicated to the

online planner - the solve(.) method, while in the last case, this method takes

the least of the execution time.

The recall(.) kernel has the highest impact on runtime when we scale up the

problem (larger number of states, observations, particles, etc.), so it is our first

candidate for parallelization.

Candidates with less impact are the extract features(.) and sim hash(.) meth-

ods. The former is used to extract the features of the belief and uses from 7.5%

to 29.3% of the runtime. The latter, with 1% to 8%, encodes the belief features

(float numbers) into a belief marker (set of bit vectors, each with a length of m).

For the parallel implementation of the core kernel in recall(.) method, we use

the oneDPL (please see Fig. 4.6). From lines 21 to 24, you may see the use of

oneDPL template library for each. The for each implementation takes as first

input parameter an execution policy. This policy, is defined as in lines 19 and 20,

and instantiated for a particular device by calling the function make device policy.

On line 19, the constructor uses the gpu selector, so this policy executes the code

in brackets on the GPU. In the same way, in line 19, we use a cpu selector to

execute the code in parallel on the CPU.

We also make use of oneDPL zip iterators—the start and end variable (lines

17 and 18). Using zip iterators allows us to iterate over several containers at

the same time. In our case, the memory entry vector, experienceNodes and

the similarityScores vector. The last one stores the similarity measure between

current belief and what is in memory.

As you have seen in Fig. 4.6, the is compact and it is easy to make it run in

parallel on a desired device.
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1 #include <oneapi/dpl/algorithm>

2 #include <oneapi/dpl/execution>

3 #include <oneapi/dpl/iterator>

4 #include <CL/sycl.hpp>

5 ...

6 using namespace oneapi::dpl;

7 class Memory {

8 std::vector<ExperienceNode> experienceNodes;

9 ...

10 ExperienceNode *recall(bitset<2048> *curBeliefMarker) {

11 size_t size = experienceNodes.size();

12 vector<int> similarityScores(size);

13 //1. compute similarity score each experience entries in memory to current belief

14 {

15 cl::sycl::buffer bufSim(similarityScores);

16 cl::sycl::buffer bufExp(experienceNodes);

17 auto start = make_zip_iterator(similarityScores.begin(), experienceNodes.begin());

18 auto end = make_zip_iterator(similarityScores.end(), experienceNodes.end());

19 auto policy = execution::make_device_policy(queue(gpu_selector{}));

20 // auto policy = execution::make_device_policy(queue(cpu_selector{}));

21 std::for_each(policy, start, end, [=](auto sim_exp_entry) {

22 using std::get;

23 get<0>(sim_exp_entry) = get<1>(sim_exp_entry).similarityScore(curBeliefMarker);

24 });

25 }

26 // 2. get index of entry with the highest similarity to current belief & return

corresponding experience

27 int maxOverlapID = std::max_element(similarityScores.begin(), similarityScores.end()) -

similarityScores.begin();

28 return &experienceNodes.at(bestOverlapID);

29 }

30 ...

31 }

Figure 4.6: Parallel implementation of the BF Memory class with oneAPI

DPC++ Library (oneDPL).

For the parallel implementation of the next most compute intensive kernel,

extract features, we use a simple parallel for and parallel reduce strategy, similar

to our Value Iteration implementation in TBB of the improve policy, and the

check convergence & update kernels.

In this work, we do not tackle the problem of parallelizing the solve() method.

We use the original C++ implementation of [37] and only adapt it to support

continuous observation POMDPs, instead of only discrete representations.
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4.7 Evaluation and Experimental Results

In this section we will:

• Present the methodology and the experimental setup [Subsections 4.7.1 and

4.7.2].

• Evaluate how the use of the BF memory affects the planning performance

[Subsections 4.7.3 and 4.7.4].

• Characterize Recall-Planner and study its optimal parameters and limita-

tions. [SubSection 4.7.5].

• Evaluate the Recall-Planner performance with respect to a state-of-the-art

online planner [SubSection 4.7.6].

4.7.1 Methodology

To compare the performance of different online planning methods and imple-

mentations, we use the following metrics: the number of time steps the agent

needs to reach the target state, the total discounted reward and the execution

time. We characterize and evaluate the Recall-Planner for three benchmarks

and two testbeds. We run each POMDP benchmark for 10 episodic scenarios

(S0, S1, ..., S9) on each testbed. To better understand how different amounts of

experience affect planning and performance, we experiment with two test cases:

1. Test case 1 - on-policy planning (PM0): start experiments with clean mem-

ory. The Bloom filter memory is empty at the beginning of each episode.

We call these PM0 experiments, PM stands for Prior Memory, and 0 in-

dicating the empty memory at the beginning of the episode execution.

2. Test case 2 - off-policy planning (PMx>0): start experiments with prior

experience in memory. The experience memory persists between consecu-

tive executions, i.e., a PM1 experiment starts with the experience resulting

from an PM0 experiment, PM2 starts with the accumulated experience of

experiments PM0 and PM1, and so on. In practice, we write the memory

contents in a file at the end of the experiment PMx, and at the beginning

of PMx+1, we load the contents of PMx in the BF memory.

The first test case is designed to reveal the possible overhead of using the BF

memory on top of the baseline and if it brings any advantage with respect to the

state-of-the-art. Recall-Planner starts from the same common ground with the

baseline; they are both memoryless, to begin with, and are evaluated in iden-

tical conditions. Both solvers have the same parameters configuration, and we

make sure that the solved POMDP has the same initial state, scenario, and seeds
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for random number generation for transitions the state and observation models.

In this first test case, we evaluate the following metrics, given the average val-

ues obtained from 10 PM0 experiments running Recall-Planner for 10 scenarios,

S0, ..., S9, and the same for the baseline (we perform 100 experiments per planner,

benchmark, and platform):

1. The average number of timesteps needed to complete an episode.

2. The average total discounted reward.

3. Average execution time per timestep needed to compute the policy, tpolicy,

to store an entry of experience entry to memory, tstore, and to recall (re-

trieve) it from memory, trecall.

4. Average number of new experience entries and recalls per timestep.

The second test case is aimed to reveal the limitations of the Recall-Planner,

by studying how tpolicy, tstore, trecall, and reward vary with the number of entries

and recalls from the BF memory. We start with an empty BF memory, PM0,

and continue running experiments PM1, PM2, PM3, ..., with new episodes corre-

sponding to different scenarios (different initial state). This could go on until the

BF memory becomes saturated, i.e., the number of entries in memory is equal or

greater than the maximum capacity of the BF set, n (Section 4.4.1). Here, we

evaluate the average values obtained from measurements obtained from 10 PM0

experiments of running Recall-Planner for S0, 10 PM1 for S1,..., and 10 PM9 for

S9 (summing up to 100 experiments for each testbed and benchmark).

We use as a baseline an implementation of DESPOT-α [37]—a memoryless,

state-of-the-art online planner. Our different implementations of Recall-Planner

embed at their core the baseline planner plus the BF memory. In every experi-

ment, both the baseline and Recall-Planner have set the maximum planning time

parameter, t, to one second. As both are anytime planning methods, t = 1 second

means that they return the best action they can find in memory or from forward

search in one second or less. We limit the planning time to one second because

it is a loose enough requirement so that the baseline can compute a good policy

in soft real-time, while assuming the agent does not need higher frequency deci-

sion making. However, for real-time performance in robotics, the planner must

compute a good navigation policy within a fraction of a second, and this is what

we are aiming for.

4.7.2 Experimental Setting

We experimentally evaluate the Recall-Planner using three well-established bench-

marks in the POMDP literature [86, 103], namely Tag, LaserTag, and RockSam-
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ple. Each one models a mobile robot as a discrete POMDP that has to complete

a particular task in a two-dimensional grid world, similar to a chess table.

• Tag - the robot must find and tag a target that runs away in a 7 × 11

grid world while avoiding fixed obstacles. The two agents start in random

positions, and the robot only knows its position, one of the 29 free positions

in the grid world. The robot can observe the target only if they are both

in the same grid cell. The robot can choose to stay in the same position

or move to an adjacent cell in one of four cardinal directions, given that

an obstacle does not occupy it. Every move costs -1, a successful tag has a

reward of 10, and failing to tag the target results in a -10 penalty.

• LaserTag - an extension of the Tag problem, with the difference that the

robot does not know its position, but it is equipped with a laser range finder

which allows it to localize itself. An observation produced with the range

finder is composed of eight distance measurements from the robot position

to obstacles in the eight cardinal directions. Each distance is generated

from a normal distribution centered at the true distance of the robot to the

nearest obstacle. Initially, the robot position is normally distributed over

the grid map cells.

• RockSample(N,X) - in this case, the robot is a rover whose job is to

sample X rocks randomly placed in a grid world of N ×N . The robot may

move to an adjacent cell, sense a rock, or sample a rock at each step. Moving

and sensing have a reward of 0, sampling a good rock gives a reward of +10,

and sampling a bad rock a penalty of −10. The probability of making a

correct observation when sensing a rock (whether it is a “good” or a “bad”

rock) decreases exponentially with the robot’s distance to the rock.

Tag Laser Tag RockSample(7,8) RockSample(11,11)

|S| 870 4830 12544 247808

|A| 5 5 13 16

|Z| 30 1.5× 106 3 3

Table 4.2: Discrete POMDP problems used in our experiments: Tag, Laser Tag

and Rock Sample. For each benchmark, we note its corresponding number of

states |S|, actions |A| and observations |Z|.

For all three benchmarks, the state, action, and observation spaces are discrete

and represented as integer values. Their particular dimensions are indicated in

Table 4.2. We have chosen them to cover problems with increasing state spaces,

but also a combination of small, medium and large observation spaces.

In the discrete POMDPs literature, the size of the action space is typically
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a one-digit number and rarely goes over a dozen, but why? This is not always

the case in practice; it is a limitation imposed by state-of-the-art online methods,

which are exclusively based on Monte Carlo Tree Search. The search tree grows

exponentially with the number of actions and observations, so memory and com-

putation power are limiting factors for how deep the exploration can go through

Monte Carlo Simulations. An ideal online method should provide timely and in-

formed actions for decision-making. Still, even the best state-of-the-art solutions

are unusable for this type of use-case scenario, becoming either unresponsive or

greedy. This leaves way for future improvements.

In this phase of the research, we are using only two testbeds for different tech-

nical reasons. The compute and memory requirements of the evaluated bench-

marks surpass the resources available on Odroid-XU3; therefore, we do not con-

sider it in this evaluation. The PC running Broadwell-Desktop has been retired;

thus, it cannot be included in this evaluation.

Platform CPU GPU RAM
TDP

(Watt)
OS

Kaby

Lake

i5-8250U

@1.60GHz

4 cores

UHD 620

@300MHz

24 EUs

12GB of

DDR4

10 to

15W

Ubuntu

18.04

Tiger

Lake

i7-1165G7

@2.8GHz

4 cores

Iris(R) Xe

@1.3Ghz

96 EUs

16GB of

LPDDR4x

12 to

28 W

Ubuntu

20.04

Table 4.3: Description of the low-power HCP for testing and evaluating our im-

plementations. It uses oneAPI DPC++ 2021.1 Compiler (C++14) and Intel(R)

NEO (Gen11) Graphics Driver.

We implement the Recall-Planner in C++ and evaluate it on the two low-

power heterogeneous computing platforms described in Table 4.3. Both embed

a quad-core processors and an integrated GPUs on chip. We employ the Intel

VTune and Advisor tools for profiling and detecting opportunities for improving

the performance of the code. We use oneAPI DPC++/C++ compiler and the

oneAPI base toolkit with the oneAPI Data Parallel C++ Library (or oneDPL)

to parallelize some of the more computationally expensive kernels of the BF

memory, as explained in Section 4.6. oneDPL allows us to run many of the C++

STL algorithms in parallel on a CPU, GPU device, even an FPGA.

4.7.3 Preliminary Exploration and Tuning

Our first implementation of Recall-Planner is sequential. In a preliminary eval-

uation of this implementation for PM0 test case (on-policy planning), we note
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two things by looking at Fig. 4.7.

1. The average execution time per time step of the Recall-Planner (green line)

and baseline (blue line) are indistinguishable (both take the maximum time

available to search for the action, t = 1 second).

2. By carefully setting the BF memory parameters, the Recall-Planner may

converge in fewer time steps and produce a superior policy. As an example,

we can see in Fig. 4.7 that the robot tags its target in 13 moves (time steps

or actions) when it uses the BF memory, while it requires 18 moves with

the baseline online search implementation. This is equivalent to summing

up less penalty (each move has a fixed cost) and getting the reward (red

line versus orange line) for reaching the goal sooner. It is important to

note that this is a rare occurrence. Recall-Planner and the baseline obtain

indistinguishably “good” policies in most of the experiments.

-12
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

TIMESTEP

Total discounted reward vs action search time per time step (seconds)

Baselinetimeperstep BaselineReward Recall-Plannertimeperstep Recall-PlannerReward

Figure 4.7: Preliminary results for Tag benchmark on Kaby Lake. We use the

default values for all Recall-Planner parameters, except for N = 100, d = 50.

The experiment starts with an empty BF memory (test case 1 - PM 0). The

graph shows the action search time (green and blue lines, lower values are better)

and total discounted reward accumulated (yellow and orange lines, higher values

are better) by the robot agent in each time step for memoryless online planner

(Baseline) and our proposal (Recall-Planner) with the default configuration.

Also, in the exploration stage, we have observed that the BF memory pro-

vides the policy for the current belief by recall only occasionally (once every ten

timesteps). However, in every timestep, the BF memory is consulted millions of

times during the belief tree simulation, in the solve(.) method calls, to store and

recall entries. Unfortunately, the bulk of these calls happens very deep in the

search tree. This type of store and recalls (deep in the search tree) bring little to
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Figure 4.8: The four graphs illustrate how many times experience entry entries

are recalled on average per time step (yellow bars) and the average of experience

entries available for recall at the end of the corresponding time step. Here we

show the measurements from Kaby Lake for Tag, Laser Tag, RockSample(7,8)

and RockSample(11,11) benchmarks. Each experiment starts with an empty BF

memory (PM0 - test case 1). In the experiments, we use the default parameters

for Recall-Planner (parallel implementation), and set the recall depth threshold,

r d to 3.

no benefit to the planning performance. Moreover, they saturate the BF memory

with entries that are never recalled. Consequently, we have tuned the store/recall

maximum depth parameter, r d to 3. The value of 3 for this parameter is chosen

experimentally and strategically to get the best planning time per timestep (see

the graphs from Fig. 4.9) while reducing the overhead incurred from encoding and

storing simulated experience deep in the search tree. This overhead is explored

and quantified in Sec. 4.7.4.

The other reason for setting a limit to the store/recall depth during search is to

maximize the number of recalls per entry in the BF memory. This is important in

our design because it directly affects the second requirement (please see Sec. 4.3.2)

for the experience memory design. Not setting a limit implies we have an infinitely

large memory to store all simulated experience nodes from every belief tree, which

is not the case, especially in the context of mobile physical agents. Limiting the

store/recall depth results in a small and fast experience memory that stores only

those experience entries that are likely to be recalled in the next iterations.
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(a)

(b)

Figure 4.9: Two examples of how the recall depth affects the planning time in the

parallel implementation when using the default planner parameters and vary only

the maximum recall depth, rd, to 3, 6, and 9. The X-axis shows the time step and

the Y-axis the planning time in seconds (lower is better). In example a), setting

r d to 3 and 6 gives similar performance, while for r d = 9 the action planning

time takes longer. The lower value, r d = 3, is preferred to avoid filling the BF

memory with entries of simulated beliefs that are far from the root node (current

belief). The farther the simulated belief from the root, the less likely it will be

useful to obtain a policy in practice. In example b), we have a closeup look at

the planning time and see that r d = 3 is clearly the better option. Here we show

the measurements from Tiger Lake for Tag, and RockSample(7,8) benchmarks.

Each experiment starts with an empty BF memory (PM0 - test case 1).
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Finally, we use a simple and effective strategy to maximize the number of

recalls per timestep: we reduce the overall execution time of the recall(.) method

with parallel computing (see 4.6). In the following evaluations, we use our most

time-efficient parallel implementation of the BF Memory, which is based on the

lessons learned from the previous chapter (Sec. 3.5.7). As a result of introducing

these two measures—setting recall/store depth threshold to 3 and using a parallel

implementation for recall(.) method—the number of entries stored in the BF

memory in PM0 experiments run for the four benchmarks is reduced to 12-80

entries, depending on the benchmark. At the same time, the number of recalls is

kept at a maximum from depth 0 to 3. Please see Fig. 4.8 as a reference. Note

that the recall and store operations on the BF memory are completely turned off

for belief nodes at d > 3 in the decision tree exploration (in the search(.) method

of Recall-Planner).

4.7.4 BF Memory Overhead Evaluation

We propose a thought experiment to understand how and when it might benefit

us using the BF memory in combination with an online planner. For it, we assume

that 1) per timestep, it takes far less time to recall from our BF memory than

performing an online search to plan the following policy (trecall � tsearch), and

that 2) there is an experience entry to be recalled for the current belief. Given

this, the use of the BF memory has four possible effects on online planning.

Case 1: If the recall happens at the root node of the decision tree, it replaces

the online planning call altogether for the current timestep, and the policy is

available for execution as early as it can be recalled. This is the ideal use of

memory, returning a plan in trecall. As a counterexample, see Fig. 4.10, depicting

the baseline online planner with no use of memory. In case 1, the search tree

would never be constructed.

Case 2: The recall happens at a small depth in the decision tree (in the

vicinity of the root node or current belief node, at a depth of 1, 2, or 3). In that

case, the BF memory recall will boost the online planning by pruning the search

for the belief nodes whose value can be consulted from the BF memory, replacing

the node value estimation through simulation. In the best-case scenario, all direct

children of the root belief (d = 1) are recalled from memory, each one would be

labeled with the corresponding values stored in the BF memory, and the most

valued policy can be provided in |A| × |O| × trecall. The time is proportional

with the number of actions and observations of the POMDP agent, which may

still be lower than tsearch. We illustrate this case in Fig. 4.11.
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Figure 4.10: Basic online planning using forward search and no pruning. Note

that all modern online planners use some form of pruning to avoid exploring

the branches estimated to bring poor reward. Here we discuss a new pruning

criterion that does not necessarily enter this category. For instance, it might

prune the exploration both on the most and least rewarding paths. The main

difference with traditional pruning techniques is that the pruned paths are not

discarded when deciding the best path. Their expected reward is set from the

corresponding experience entry value.
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Figure 4.11: Recall planning with ideal pruning factor. The forward search is

pruned by recall from the experience memory for the belief nodes marked in

purple.
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Figure 4.12: A typical use-case of Recall-Planner with recall pruning (purple

belief nodes) at varying depths.
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Figure 4.13: Memoryless-search execution time distribution, tpolicy = tsearch, as

illustrated in Fig. 4.10. We show the time measurements in a histogram (upper

graph) and box-and-whiskers plot (lower graph). We see that 99% of the values

are in the range of [0.91, 1.04] seconds, with some outliers on the left side of the

whiskers-box plot.
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Case 3: The recall happens deeper in the decision tree, in the vicinity of the

leaf nodes, (e.g., at a depth ranging from 50 to 100). Increasing the planning hori-

zon, d, the memory-less forward simulation will become cheaper relative to the

combination of planning and querying the node value from the BF memory with

the Recall-Planner. We expect the number of recalls to increase exponentially

with the number of actions, observations and forward simulation depth, resulting

in a planning time for trecall+search that is higher than tsearch. Consequently, the

BF memory should not be used deeper than a few levels in the forward search

simulation within the online planning, for it would only hinder the performance

of the already costly planning function.
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Figure 4.14: Recall execution time distribution, tpolicy = trecall. We show the

measurements for the parallel Recall-Planner execution when the policy is ob-

tained by recall only (no search(.) call). The data shows that 99% of the

measurements are under 1 millisecond for all combinations of benchmarks and

testbeds. The maximum recall time measured has a value of ≈ 0.0017 seconds

(right gray bar). Note that these time measurements are exclusively from the

recall(.) method execution (presented in Fig. 4.6), and do not account for the

time needed to encode and store the recalled entries to the BF memory.

Case 4: Is a combination of cases 2 and 3, and the most likely of all cases.

Here, we strategically allow only recalls up to depth r d = 3 in the decision tree

and prune accordingly any belief node whose value can be recalled. All remaining

(unpruned) nodes are explored to depth d using memoryless online planning. The

effect of using the BF memory, in this case, needs to be explored experimentally,

which we do in Section 4.7. We illustrate this case in Fig. 4.12.
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Before proceeding with the evaluation of the off-policy test case (PMx>0) of

our proposal, we check experimentally if the main assumption for our thought

experiment—the recall time (trecall) is much smaller than the search time (tsearch)—

is true. To see the bigger picture, we have generated histograms and box-and-

whiskers plots with the recall time (trecall), search time (tsearch), and search plus

the recall time (trecall+search) per time step. These graphs summarize the three

measurements on all benchmarks (Tag, LaserTag, RS(7,8) and RS(11,11)) on

Tiger Lake for the default Recall-Planner configuration, presented in Sec. 4.4.2

and test case 1 (PM0). Please see Fig. 4.14, Fig. 4.13, and Fig. 4.15, respectively.

On the top graphs of each figure (the histograms), we mark the minimum and

maximum values in gray, mean values in cyan, median values in red, and the

modes in yellow. The results on Kaby Lake are equivalent.
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Figure 4.15: Execution time distribution for online search combined with memory

recall, tpolicy = trecall+tsearch. The measurements for running the online planner

used in combination with BF Memory to obtain a policy spread in the range of

[0.0001, 1.17] seconds.

In a nutshell, these figures confirm that trecall � tsearch is true in all cases.

This can be deduced by comparing the corresponding histograms and whiskers-

box-plots of online planning with (Fig. 4.15) and without (Fig. 4.13) recall.

Therefore, the implications of using the proposed BF memory in combination

with online planning, as presented in Cases 1-3, are also likely to be true.

The most interesting of the three figures for us is Fig. 4.15. The histogram

shows a multimodal distribution, whose values we group into three regions, from

left to right. Region 1 has roughly 20% of values in the range of [0.0001, 0.1]
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seconds and has 4 modes (marked by the red, green, blue, and yellow arrows).

Mode 0 corresponds to Case 1 in our thought experiment (recall at d = 0,

red arrow). Mode 1 corresponds to Case 2 in our thought experiment (ideal

recall-pruning at d = 1, green arrow). Mode 2 and 3 correspond to search with

complete recall-pruning at depths d = 2 (blue arrow) and d = 3 (yellow arrow),

respectively. Region 2 corresponds to Case 4 (partial recall-pruning at d ≤ 3) and

contains roughly 30% of the total measurements, which are valued in the range of

[0.2, 0.32] seconds. Region 3 has approximately 50% of the measurements tightly

packed in the range of [1, 1.1] seconds and the samples are skewed towards 1

second. Region 3 also corresponds to Case 4, but it has little to no recall-pruning

at d ≤ 3, i.e., most calls to recall(.) method return false.

Comparing the measurement from the baseline memoryless-search in Fig. 4.13

to the Recall-Planner in Fig. 4.15, we observe that in the worst-case scenario,

there is a planning time degradation of up to 130ms when using Recall-Planner.

This value is computed by subtracting the maximum values for the two cases:

overhead = tmaxrecall+search − tmaxsearch = 1.17 − 1.04 = 0.13 s. Fortunately, in 95%

of the experiments, the recall overhead is under 50ms. The maximum overhead

measured here is acceptable in 2D navigation problems for indoor use-cases, where

the speed of the agent is limited. However, it would be of concern if Recall-

Planner were used to plan for navigating a drone in a cluttered 3D space.

4.7.5 Exploring the Limits of Recall-Planner

In this section, we focus on the effects of using experience entries from prior

experiments, besides the entries stored in memory while planning in the cur-

rent episode—the PMx>0 off-policy planning test case. Following the procedure

presented in the methodology (Sec. 4.7.1), we evaluate the BF memory and com-

puting required for Recall-Planner using the following metrics: the average total

discounted reward, the planning time, and the number of iterations (timesteps)

needed to reach the goal for an episode, and how these values evolve in a series

of episodes with cumulative memory.

Our aim here is twofold:

• To chart the limitations for BF memory size and the largest POMDP prob-

lem size solvable on a low-power platform.

• To find a recipe for which parameters of the BF work best.

To this end, we systematically and experimentally evaluate the Recall-Planner

performance for each benchmark and a range of parameters. In these experi-

ments, most parameters are permanently set to the values that give the best
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BF SIZE

(m bits)

Nr. bits set

by hash

(n on)

Nr. unique

keys in BF

set (n’)

Nr. hashes

per BF

(k)

False

positive

rate (p)

BF memory

capacity

(n)

Benchmark

matching

(Name (|S|))

256 24 233 2 0.05 41 -

512 24 489 2 0.05 82 -

1024 24 1001 2 0.05 164 Tag (870)

2048 24 2025 2 0.05 328 -

4096 24 4073 2 0.05 656 -

8192 24 8169 2 0.05 1312 LaserTag (4830)

16384 24 16361 2 0.05 2624 RS(7,8) (12544)

32768 24 32745 2 0.05 5249 -

65536 24 65513 2 0.05 10498 -

131072 24 131049 2 0.05 20996 -

262144 24 262121 2 0.05 41991 RS(11,11) (247808)

524288 24 524265 2 0.05 83983 -

1048576 24 1048553 2 0.05 167966 -

2097152 24 2097129 2 0.05 335932 -

4194304 24 4194281 2 0.05 671864 -

8388608 24 8388585 2 0.05 1343727 -

16777216 24 16777193 2 0.05 2687454 -

33554432 24 33554401 2 0.05 5374909 -

67108864 24 67108833 2 0.05 10749818 -

Table 4.4: Precomputed BF parameters by plugging in the formulas from

Sec. 4.4.1. We use this table to decide the configuration of the parametric BF

memory for a given POMDP problem. Although we only use the configuration

with an m ranging from 1024 to 262144 in the evaluation, it is interesting to

note that for a configuration of m = 256, the BF memory guarantees a false

positive rate of p = 5% only for up to 41 experience entries.

results for the baseline planner. We keep constant the number of particles used

to approximate the belief state (N = 500), the maximum depth of search tree

(d = 90), the maximum search time per move (t = 1 second), the POMDP

discount factor (γ = 0.95), and a set of seeds used to obtain a deterministic se-

quence of random numbers, and generate identical episodes both for the baseline

and Recall-Planner. Some specific parameters to Recall-Planner are also set to

a fixed value experimentally, such as a maximum recall depth, r d = 3. We vary

the following parameters:

1. e n: The current episode (experiment) number in a series starting with 0

(no prior experience used). Episode 1 loads experience from the prior ex-

periment execution (episode 0), episode 2 loads the accumulated experience

from 0 and 1, and so on. We evaluate e n ∈ [0, 1, 2, ..., 9].

2. m: Size of the bit vector of the BFs. We evaluate m ∈ [1024, 2048,

4096, 8192, 16284, 32768, 65536, 131072, 262144].

For convenience in this evaluation, we have precomputed 19 combinations of
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BF parameters of interest, which are based on the formulas presented in Sec. 4.4.1

and shown in Table 4.4. In the first two columns, we choose configurations for

m and n on that have a computational advantage (sizes multiples of 8 bits) and

so that the BF set (the memory trace data structure in our implementation) can

accommodate sufficient distinguishable entries in the BF memory. The values

for m and n on are set to guarantee a false positive rate p lower than 5%—5’th

column of the table.
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Figure 4.16: Reward exploration for different BF sizes. On the X-axis we group

the experimental results by the scenario number (each scenario has different initial

conditions). Higher reward values are better.



4.7. Evaluation and Experimental Results 113

The BF will guarantee a false positive rate lower than 5% as long it contains

less than n entries, which also is the real BF memory capacity—the penultimate

column. As you might have noticed, n is much lower than n′ = m−n on+1—the

number of unique keys that can be stored in the BF set, 3’rd column 2.

We propose a simple heuristic for choosing a configuration for the BF for

a POMDP: select a BF so that n′ ≥ |S|, where |S| is the number of states of

the POMDP. In the last column of table 4.4, we map the BF configurations to

concrete benchmarks, according to the BF n′ and and POMDP |S|. You may

consult the details of the benchmarks in Table 4.2. Nevertheless, we explore

all combinations of BF size (from 1024 to 262144) and benchmark, and for the

evaluated benchmarks, we find that in all cases, any BF size larger than 16284

does not bring more improvement in the planning time nor in the reward.

Figure 4.17: Kaby Lake - Tag: X-axis shows the episode number in the PMx ex-

periment and the Y-axis indicate the planning time for different BF sizes, ranging

from 1024 to 262144. Lower values are better. The planning time improves as

the BF size increases, but only up to a value of 16284.

2A direct implication of n� m is that the memory trace data structure in our implementa-
tion is composed of sparse bit arrays, and this could be leveraged to fit more experience entries
in memory.
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Figure 4.18: Kaby Lake - LaserTag: X-axis shows the episode number in the

PMx experiment and the Y-axis indicate the planning time for different BF sizes,

ranging from 1024 to 262144. Lower values are better. For PM1, the two smallest

BF sizes, give a slightly worse planning time than all the rest, but over all PMx

experiments, these configurations (1024 and 2048) bring the best planning time

performance.

For each benchmark and platform, we search for the smallest bloom filter

size that gives the best reward and planning time for all scenarios. We first

evaluate how the bloom filter size affects the reward (the quality of the policy)

for the different scenarios and summarize the results in Fig. 4.16. Then, we

evaluate how the planning time behaves and show the most interesting results

in Figs. 4.17, 4.18, 4.19, 4.20. For the reward, higher values are better while for

planning time, smaller values are better.

A first observation is that for the same testbed, benchmark, scenarios, and BF

size, the reward is consistent, while the planning time varies slightly depending on

the testbed. For instance, for Tag benchmark, the optimal BF size—the smallest

BF size that gives the highest reward for all scenarios—is equal to 1024 bits,

both on Kaby Lake and Tiger Lake. For LaserTag, the optimal BF size is 8192,
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Figure 4.19: Tiger Lake - Tag: X-axis shows the episode number in the PMx

experiment and the Y-axis indicate the planning time for different BF sizes,

ranging from 1024 to 131072. Lower values are better. Similar to Kaby Lake, the

planning time improves as the BF size increases, but only up to a value of 16284.

for RockSample(7,8) it is 1024 bits, and for RockSample(11,11) it is 16284 bits.

The optimal BF size for RockSample benchmarks is lower than predicted by the

proposed heuristic, but it is spot-on for Tag and LaserTag, which have a lower

number of states.

By looking at the evolution of the planning time for consecutive PMx ex-

periments, in Figs. 4.17, 4.18, 4.19, and 4.20, we notice similar patterns for all

the benchmarks and BF size configurations on the two testbeds. Also, we see

that most BF configurations lead to a stable, predictable planning time after

only four episodes. For instance, the planning time settles at under 220 ms in

all cases for Tag on Kaby Lake and at under 195 ms on Tiger Lake, with two

exceptions: BF sizes of 4096 and 8192, which appear to find a stationary value

after ten consecutive episodes. For RockSample benchmarks, the planning time

results are indistinguishable for all BF sizes. In this case, the optimal BF setup

is the smallest size that offers the shortest execution time for all episodes.
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Figure 4.20: Tiger Lake - LaserTag: X-axis shows the episode number in the

PMx experiment and the Y-axis indicate the planning time for different BF sizes,

ranging from 1024 to 131072. Lower values are better. Similar to Kaby Lake, for

PM1, the two smallest BF sizes, give a slightly worse planning time, but over all

the PMx experiments, BF sizes of 1024 and 2048 bring the best performance.

These results suggest that for fine-tuning the BF size for a new benchmark

to obtain either the best reward, execution time, or a compromise of both, a

wide range of scenarios should be explored with different BF size values, both

on the left and right side of the POMDP number of states. In future work, a

possible improvement of our method for usability is to find a smarter heuristic

that considers more characteristics of the POMDP and reduces the work for

tuning the BF size for a particular benchmark to obtain the best performance.

4.7.6 Summary of Performance Results

In the previous sections we have explored the optimal parameters of Recall-

Planner—used in the experiments summarizing the results—and evaluated the

limitations, gains and costs incurred from using a BF Memory in combination
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with a state-of-the-art online planner. From the experiments evaluated in Sec-

tion 4.7.4, we can confirm there is a benefit from using a BF memory for on-

policy planning, especially as a means to prune the decision tree search of an

online planner and reduce the planning time per iteration. This benefit comes at

a cost acceptable when planning for indoor navigation and autonomous decision

making problems in general that have soft real-time constraints.
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Figure 4.21: Planning time of parallel implementation. On the X-axis we use as a

timescale the planning timestep. In the Y-axis we show the planning time of the

Recall-Planner when parallelizing the kernel for similar experience search from

Fig. 4.4. For Recall-Planner we evaluate three implementations: with a red line

we show the GPU time, in green the multicore time, and in yellow the sequential

time. The baseline time is shown in blue.

Here we compare the performance of a state-of-the-art planner to that of

Recall-Planner for the case when we compute the similarity score kernel on the

multicore versus on embedded GPU. We show the results for the case when the

agent starts the execution with no prior experience in the BF memory (PM0). In

the graphs from Fig.4.21 we illustrate the overall speedup obtained by computing

in parallel the kernel which finds the most similar experience entry to the current

belief for three benchmarks and the two testbeds, Kaby Lake and Tiger Lake. In

our parallel implementations, we use oneDPL—the oneAPI DPC++ Library 3.

3https://spec.oneapi.com/versions/0.5.0/oneAPI/Elements/onedpl/onedpl_root.html

https://spec.oneapi.com/versions/0.5.0/oneAPI/Elements/onedpl/onedpl_root.html
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Implementation \Time step 1 2 3 4 5 6 7

tag-baseline 1.0073 1.0511 1.0297 1.0740 1.0097 1.0360 1.0198

tag-bf-seq 1.0001 1.0001 1.0503 1.0365 1.0410 1.0001 1.0001

tag-bf-cpu 0.7229 0.2056 1.0064 1.0576 1.0204 0.3406 0.1780

tag-bf-gpu 0.9946 0.8940 1.0583 1.0477 1.0202 0.8965 0.9156

ltag-baseline 0.1001 0.1052 0.0725 0.0654 0.0555 0.0524 0.0369

ltag-bf-seq 1.0005 1.0003 1.0004 1.0003 1.0003 1.0003 1.0003

ltag-bf-cpu 0.4787 0.3146 0.3262 0.2931 0.2866 0.2848 0.2817

ltag-bf-gpu 1.0319 0.9176 0.8767 0.9041 0.8960 0.8963 0.8866

rs(7,8)-baseline 1.0069 1.0119 1.0093 1.0088 1.0119 1.0098 1.0164

rs(7,8)-bf-seq 1.0001 1.0001 1.0001 1.0001 1.0001 1.0001 1.0001

rs(7,8)-bf-cpu 0.3620 0.1588 0.1477 0.1409 0.1479 0.1386 0.1388

rs(7,8)-bf-gpu 0.9606 0.9137 0.8855 0.8789 0.9081 0.9341 0.9448

rs(11,11)-baseline 1.0083 1.0081 1.0073 1.0108 1.0079 1.0090 1.0079

rs(11,11)-bf-seq 1.0001 1.0001 1.0001 1.0001 1.0001 1.0001 1.0001

rs(11,11)-bf-cpu 0.4287 0.1614 0.1556 0.1519 0.1481 0.1394 0.1384

rs(11,11)-bf-gpu 0.9673 0.9480 0.8775 0.9086 0.9498 0.8930 0.8892

Table 4.5: Average execution time per time step (in seconds) for the sequential

baseline online planner (*-baseline), sequential Recall-Planner (*-bf-seq), mul-

ticore (*-bf-cpu) and gpu (*-bf-gpu) implementation. The * symbol stands for

the corresponding benchmarks the Tag (tag) Laser Tag (ltag), and RockSample

(rs(7,8) and rs(11,11)). We have marked in bold the best execution time results

for each benchmark and the default parameter values.

In Table 4.5 we outline the execution time to compute an action for each

implementation for the first seven timesteps for Kaby Lake, which has the most

interesting pattern of the two tesbeds. Just like in Fig. 4.21, we see that it takes

a few time steps for the planning time of the Recall-Planner implementation

to become stable. We observe that the Recall-Planner with multicore execution

improves the search time significantly after only two time steps in almost all cases.

The only exception being Tag benchmark, which takes five steps to gather enough

useful experience entries to make the use of a Bloom filter memory significantly

more advantageous than a memoryless online search strategy.

Summarizing our experimental results for two scenarios. First, when using

the sequential implementation of the BF memory scheme (on top of the baseline)

versus the memoryless baseline, the overhead is negligible, with the advantage

that the agent running Recall-Planner converges faster by reaching the goal in

less steps in some cases (see Fig. 4.7). Unfortunately, we were not able to find

a pattern to systematically reproduce this result for all benchmarks. Second,

when parallelizing the computation of the similarity search for the current belief

and existing experience entries in the Bloom filter memory, we see a reduction

of 3.5 to 7.5× in the overall execution time. Therefore, our parallel BF memory
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makes it possible for an online planner to take reasonably good actions in only a

fraction of the time required by a memoryless planner. This is true only for our

multicore implementation. Although, running the same kernel on the GPU, we

only see marginal improvements in the planning time, of up to 10%, for the PM0

test case.

The iGPU vs CPU performance results for PM0 suggests that it is not justified

using a CPU+iGPU heterogeneous implementation when starting the planning

with an empty experience memory, given that our adaptive scheduler has ap-

proximately a 5% overhead, plus the complexity added to implementing it. But

when the BF memory has a larger number of entries (hundreds of thousands),

using a heterogeneous scheduler should be worthwhile exploring. For the largest

benchmarks used, even in PM9 the BF memory has only 3156 entries and the

GPU only improves the planning time up to 13%. In a future work we will eval-

uate a heterogeneous CPU+iGPU implementation based on our oneAPI LogFit

scheduler for larger POMDP benchmarks.

4.8 Conclusions

In this chapter, we propose a new design for online planning for POMDP agents.

We introduce an online planner with Bloom filter memory, Recall-Planner, then

implement and evaluate it on two low-power CPU+GPU SoCs suitable for run-

ning the online planning for navigation decision-making onboard a mobile robot.

Using multicore execution of the most computing-intensive kernel of our Bloom

filter memory, we reduce the overall planning time from 3.5 to 7.5× for three

representative benchmarks in the POMDP literature. This result promises new

opportunities for using POMDP agents on low-power mobile platforms and in

real-time use cases. With some modifications, our memory solution could en-

hance state-of-the-art online planning methods to reuse past decisions of similar

experiences from history, compute better policies and reduce the overall cost of

finding the best action to execute. In future work, we will explore the possible

benefits in terms of energy consumption using a heterogeneous implementation

of the Recall-Planner.

In conclusion, when the Bloom filter experience memory parameters are tuned

accordingly, the computation time of planning an action is reduced from one

second to a fraction of a second. Moreover, the overhead incurred from using the

proposed Bloom filter memory data structure together with an online planner is

negligible. This result could allow us to solve more variety of problems that need



120 Chapter 4. Online Planning on Mobile Platforms for POMDP Agents

a real-time response on board low-power and consumer SoCs.



5 Conclusions

In this thesis, we pursue the goal of extending the use of intelligent (PO)MDP

agents in applications for planning and decision-making for mobile robots—as

described in Chapters 1 and 2. Throughout this quest, we propose new methods

and ways to implement portable and efficient planners on low-power SoCs.

First, in the 3’rd chapter, we introduce a new data structure to represent

the transition model of an MDP agent efficiently. Then, we explore a wide

range of heterogeneous programming models and parallel implementations on

CPU+iGPU SoCs, and evaluate their performance, energy efficiency and ease

of programming. From our evaluation, it results that a heterogeneous planner

based on DPC++ is the optimal approach to achieve both performance and pro-

ductivity.

Next, we take the lessons learned from this experience and apply them in the

4’th chapter for solving problems more computationally complex than MDPs,

while using the same type of low-power SoCs. Here, we propose a new method

based on Bloom filter memory to enhance online planning under uncertainty for

intelligent agents modeled as POMDPs. Our experimental evaluation suggests

that our proposal improves the state-of-the-art in online point-based planning

methods.

With this work, we show that it is feasible to implement real-time and energy-

efficient solutions for decision-making under uncertainty on mobile platforms.

As future work, we will first transfer the lessons learned and results from this

thesis into a general-purpose ROS1 robot navigation framework, then include a

1ROS stands for Robot Operating System, an open-source framework for robotics, used

121
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new package for planning and decision-making in social environments based on

Recall-Planner. We briefly present the follow-up plan in Chapter 6.

5.1 Summary of Contributions

The work in this thesis has been motivated by the need to find a way to effi-

ciently implement planning and decision-making onboard service robots, such as

Human Support Robot (HSR) 2. This section summarizes the principal results,

contributions, how we came about the motivation behind it, and the answer to

the proposed research question.

5.1.1 Previous Work

During a brief stay at Northeastern University (Boston, US) in late 2018, we

had access to an HSR mobile robot to experiment with state-of-the-art people

tracking and path planning for social-aware navigation. As we struggled to make

independent pieces of research for people detection and tracking, and robot local-

ization and mapping work on top of the ROS navigation stack, we realized there

was no way to run everything onboard the robot. The system would become

unresponsive under the sheer amount of data and computation it had to process

per second. As a result, we had to do part of the computation on a ROS master

node connected by WiFi, which made everything slow and faulty when the robot

was going far from the router or just moving behind the metal door of the lab.

This experience has inspired and shaped this thesis’s end goal—to uncover

recipes and guidelines to implement efficient planning for mobile robot navigation.

We have worked towards this goal by combining methods for decision-making,

reinforcement learning, and data-intensive parallel computing.

Prior to this, some work has been done to understand the fundamentals of

decision-making algorithms, similarity search in multi-dimensional spaces, and

optimizing implementations using parallel computing and heterogeneous pro-

gramming models.

The results of this stage have been presented at three conferences:

1. Cáncer Gil, J., Escúın Blasco, C., Constantinescu, DA., Pérez Pavón, B.,

and backed up by a global open-source community that contributes to make robots better and
accessible to everyone.

2https://robots.ieee.org/robots/hsr/
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Canales Mayo M., Three is not a crowd: a CPU-GPU-FPGA K-means im-

plementation. HiPEAC Computing Systems Week 2017, Zagreb, Croatia,

April 2017 (International Conference)

2. Constantinescu, DA., Navarro, A., Fernández Madrigal, JA., Asenjo, R.

Optimization of a decision-making algorithm for heterogeneous platforms.

XXVIII Edición de las Jornadas de Paralelismo, Spain, September 2017.

(National Conference)

3. Constantinescu DA., Rohra A., Padir T., Kaeli D. Path Planning for Socially-

Aware Humanoid Robots. RISE Expo 2019, Northeastern University, Boston,

USA, April 2019. (International Conference)

5.1.2 Stage 1: Solving Large MDPs Optimally on SoCs

In this stage, we provide a generalizable approach for computing an optimal policy

with Value iteration (VI) through the use of TBB, OpenCL, and oneAPI [116,

58, 51] parallel programming models and advanced load balancing techniques for

concurrent execution on the CPU and GPU embedded on chip [80].

For it, we implement and evaluate three heterogeneous CPU+GPU schedulers

based on oneAPI programming model, using VI as a case study. Additionally,

we compare oneAPI with the canonical framework, OpenCL, in terms of per-

formance, energy efficiency, and programmability. Our evaluation discusses the

impact of the abstraction penalties due to the programming model approach

and the scheduling strategy. It provides guidelines to help programmers select

the appropriate programming model and scheduling strategy for MDP-based so-

lutions suitable for low-power platforms. Also, we demonstrate how to assess

the Pareto-optimal implementation of a standard decision-making algorithm in

terms of energy and time performance according to the problem size, platform

resources, and optimization criteria for a diversity of platforms.

Overall, we explore fourteen parallel strategies for implementing the VI algo-

rithm and analyze both their computational speed-ups and energy consumption.

The implementations use open parallelization technologies to increase general-

ity. Moreover, our evaluation has been extended to a representative set of het-

erogeneous computing platforms, varying from low-power embedded systems to

medium-power systems, with thermal design power ranging from 4W to 65W.

The selected testbeds feature memory ranging from 2GB to 32 GB and a wide

range of computing capabilities that make them good candidates to be used for

mobile robot navigation use-cases and other mobile decision-making applications.

The main result of this analysis is that the solution with the minimum execu-
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tion time does not always achieve the minimum energy consumption. Also, both

execution time and energy consumption are reduced on all studied platforms by

exploiting heterogeneous scheduling strategies that allow the simultaneous execu-

tion of work in all devices (CPUs and GPU). We validate our results statistically

through ANOVA.

Also, we optimize the MDP representation by leveraging the commonly sparse

nature of the agent-world interaction model (MDP model) in real-world problems

and propose the 3D-lite-CSR format. This enables us to execute large problems

on low-to-medium power SoCs.

Finally, we build a set of MDP benchmarks for indoor mobile robot navigation,

based on modeling the CRUMB robot-environment interaction (see Fig. 3.4a) in

a physically realistic simulation [34].

The results in this stage have been published in two journal articles and

presented at two international conferences:

1. Constantinescu DA., Navarro A., Corbera F., Fernández-Madrigal JA.,

Asenjo R. Solving Large-Scale Markov Decision Processes on Low-Power

Heterogeneous Platforms, 19th International Conference on Computational

and Mathematical Methods in Science and Engineering, Costa Ballena,

Cádiz (España), Universidad de Cádiz, 2019. (International Conference)

2. Constantinescu DA., Navarro A, Fernández-Madrigal JA., Asenjo R. Per-

formance evaluation of decision making under uncertainty for low power

heterogeneous platforms. Journal of Parallel and Distributed Computing.

November 2019. DOI:10.1016/j.jpdc.2019.11.009 (JCR T1/Q1 Journal)

3. Constantinescu, DA., Navarro, A., Corbera, F., Fernández-Madrigal, JA.,

Asenjo, R. Efficiency and productivity for decision making on low-power

heterogeneous CPU+ GPU SoCs. The Journal of Supercomputing, 1-22.

March 2020. DOI:10.1007/s11227-020-03257-3 (JCR T1/Q2 Journal)

4. Constantinescu, DA., Asenjo, R. Boosting Productivity of Decision-Making

with oneAPI-based Heterogeneous Schedulers on SoCs. oneAPI Developer

Summit 2020, November 2020. (International Conference)

5.1.3 Stage 2: Online Planning for POMDPs on SoCs

In this stage, we extend the state-of-the-art in online point-based planning for

POMDP agents to support off-policy planning—the ability to use planning ex-

perience from prior execution scenarios. We propose and design a Bloom filter

experience memory for this purpose. Then, we introduce the Recall-Planner al-

gorithm to show how to use this experience memory to enhance any on-policy—
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memoryless—online planner.

The proposed algorithm is generic enough to be transferable to a multitude

of POMDP online planners, such as POMCP [100] and POMCPOW [107]. We

exemplify its use with DESPOT [105, 37], a state-of-the-art point-based online

planner that has no memory mechanism, which allows us to evaluate the benefits

and limitations of our proposal experimentally.

We provide an efficient implementation of the Bloom filter memory and evalu-

ate the performance of Recall-Planner (Bloom filter memory + baseline planner)

for four POMDP benchmarks and two SoC platforms, and compare it to DESPOT

(the baseline planner). Our results show that the planning time per timestep is

sufficiently reduced to make Recall-Planner usable to make decisions in real-time

applications while running all the code onboard a mobile platform. In contrast,

the baseline alone could not achieve similar performance for the same test cases.

Additionally, we compile a taxonomy of POMDP literature to identify which

methods could work best for online planning in real-time onboard a mobile robot.

This result could help others navigate the principal axes of research in POMDP

research more easily.

The results in this stage have been presented at two conferences, an IEEE

magazine, and a journal article will be submitted for review by the end of June

2022:

1. Constantinescu, DA., Asenjo, R., Navarro, A., Fernández Madrigal, JA.,

Cruz-Martin, A., Enhancing Online Planning under Uncertainty via Bloom

Filter Based Memory. Jornadas SARTECO 20/21, pp. 327-335. Spain,

September 2021. (National Conference)

2. Constantinescu, DA., Asenjo, R., Enhancing Online Planning under Un-

certainty via Bloom Filter Based Memory. oneAPI Developer Summit at

SC21, November 2021. (International Conference)

3. Constantinescu, DA., Asenjo, R., Navarro, A., Fernández Madrigal, JA.,

Cruz-Martin, A., Enabling Easier Programming of Machine Learning Algo-

rithms on Robots with oneAPI Toolkits. IEEE Computer Society, March

2022. (IEEE Magazine)

4. Constantinescu, DA., Navarro, A., Fernández Madrigal, JA., Asenjo, R.,

Cruz-Martin, A. Accelerating on-line POMDP-based decision making for

low power platforms using Bloom filters. IEEE Transactions on Cybernet-

ics, June 2022. (JCR T1/Q1 Journal, under review)
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5.1.4 Answer to Research Question

Here we answer the Research Question introduced in Chapter 1:

Is it possible to solve large-scale decision-making problems on mobile con-

sumer platforms, despite their inherent limited computing, memory, and energy

resources?

Our experimental evaluations show that the answer is positive, at least for the

proposed use-case scenarios. We are now much closer to a decisive yes than at the

beginning of this Thesis. However, there is still work to be done to make these

results usable in practice by roboticists, hobbyists, and researchers worldwide,

that are not necessarily experts in parallel computing. Next, we outline the

following steps in this direction.



6
Future Work: Decision
Making for Real-World
Scenarios

Realistic use-case scenarios for sequential decision-making with physical agents

such as mobile robots are challenging to simulate. In this thesis, we have exper-

imented mostly with simulated use-case scenarios because we did not have a

modern robot at our disposal until recently. As a follow-up to this research, we

will work on decision-making and planning onboard physical robots for social-

aware indoor navigation. Our next target is to optimize the ROS navigation

stack and enhance it with a new feature for social-aware navigation based on

Recall-Planner. We aim to provide a power-efficient and real-time navigation

decision-making solution for ROS. In the following two sections, we draft a mod-

ular architecture for this purpose and a practical use-case for Recall-Planner.

For any of these robotic applications to be feasible, we need a base navi-

gation layer that is safe (for the robot, environment, and people), social-aware

(can detect people, their intention, and make navigation decisions accordingly),

energy-efficient (for increased autonomy), and responsive (real-time navigation

and decision making).

6.1 Application Architecture Proposal

We already see mobile robots working in constrained and controlled environments,

such as assembly lines and logistics. However, we are far from having mobile
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robots run freely in social settings, both indoors and in open spaces. Some

appealing uses of social mobile robots include:

• Remote medical attention and care.

• Companion robot.

• Self-service and room service in museums, hotels, and restaurants.

• Helping with tasks of carrying and delivery.

In the next stage of this research, we will work on optimizing a generic social-

aware navigation architecture based on Robot Operating System (ROS) naviga-

tion stack, and on integrating our online POMDP planner as a plugin for local

navigation.
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Figure 6.1: ROS navigation stack proposal.

As we can see in Fig. 6.1, the navigation stack has a modular architecture,

composed of the following high-level modules:

• Goal selection – keeps track of the current state and goal state of the robot.

• Perception & localization – used to estimate the current state of the robot,

that is, its location in the world and relative to its target.
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• Path planning – used to make fine grain and coarse grain navigation deci-

sions, given the current state, goal, and information from the environment.

• Robot interaction model – models the navigation constraints in the envi-

ronment using costmaps. These costmaps (local, global, social), overlap on

top of the global map generated with SLAM and ponder how costly it is to

navigate in certain areas. Free spaces in the map have a cost close to zero,

while regions where an obstacle (person, wall) or future path of a person

may collide with the robot, have a very high cost.

• People states extraction – models the intentions of people nearby the robot.

• Motion control – executes motor control commands (orientation, speed),

given the trajectory computed in the path planning module and intentions

of nearby people.

A concerning fact is that in realistic scenarios, we could easily deplete all

onboard computing resources of the robot with just one of the core modules

(localization/people detection & tracking/path-planning/ tracking people states).

Our task here is to identify optimization opportunities that would help make

social-aware navigation planning possible onboard, while still leaving some room

for the specific application that makes use of it.

The most obvious application of the lessons learned and methods proposed

throughout this work are in optimizing the modules for perception and local-

ization and people detection & tracking for real-time and energy efficiency with

heterogeneous computing. Existing implementations of these modules in ROS

are normally sequential and do not account for energy use.

The perception and localization module answers the “where am I?” based

on sensory data from a laser scanner, point cloud sensor, or an RGB-D camera.

This data is used by a Simultaneous Localization And Mapping library (SLAM)

to build a map of the environment, and at the same time, localize the robot in

it. The same data is used as an input in people detection & tracking module,

which allows the robot to distinguish static and moving obstacles from people.

Other uses of the work methods presented in this thesis, especially on the

modeling problems for decision making and planning under uncertainty, are in

the people states extraction and path planning modules to enhance a robot agent

to make socially-aware navigation decisions.

For navigation in social environments, it is essential to differentiate people

from obstacles to program different behaviors for the robot while navigating in

their proximity. Some fundamental behaviors a social-aware robot may incorpo-

rate are:
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• Assuring a minimum safety distance that is comfortable for people, es-

pecially in the case when the robot task does not directly dictate close

interaction with the person (e.g., feeding, delivering an object);

• Implement cultural and courtesy habits: passing on the right side “lane”

when crossing paths with a person; make room for the person to pass or

stay still on the side when crossing paths with a person in a narrow corridor;

• Driving slightly slower nearby people to make them feel safe.

Essentially, the perception and localization module estimates the state of the

robot. Given the current state (where am I?), a goal state (where am I going?),

and a map of the environment, the robot has the prerequisites to compute a

navigation plan. The plan is then executed through motion commands. Every

step, new observations about the environment are made, the robot belief state is

actualized, the local plan is recomputed accordingly, then executed again, and so

on, until the goal is reached.

We list the robot requirements for the proposed use-case:

• Scanning Laser Rangefinder (e.g., LIDAR, Hokuyo UST-20LX) or/and RGB-

D camera sensor (e.g., Xtion PRO LIVE, Kinect) and/or point cloud sensor.

• Low-power and high performance on-board computing capabilities.

• IMU motion tracking module.

• ROS compatible.

• Microphone and speakers (optional).

We consider three robot platforms suitable for prototyping the social naviga-

tion stack and other human-robot interaction applications:

• Human Support Robot - a highly versatile mobile robot for medical applica-

tions, equipped with all the required sensors and more. This work proposal

was initially planned with this robot in mind, but we no longer have access

to it, and it is prohibitively costly.

• TurtleBot 2/3 - both versions comply with the bare minimum requirements

for the use-case and are relatively affordable. We currently have access to

a Turtlebot 3.

• AgileX Scout - makes an ideal compromise between price and features for

our follow up work, and fortunately, we now have access to one (Fig. 6.2).
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Figure 6.2: AgileX AI and mobile robot research kit.

6.2 Modeling People Intentions as a POMDP for

Social-Aware Navigation

The desired behavior for social robot navigation has to comply with a simple set

of rules:

1. Do not collide.

2. Do not bother people by making them stop, change direction, or speed.

Have a set of courtesy responses.

3. Follow the least costly path to reach the target, which may be a place, or

a moving person, while complying with points 1 and 2.

With careful configuration and an accurate global map, the navigation stack

does the job of not colliding reasonably well and does a satisfactory job with

autonomous navigation, too. However, the belief inferences from sensor readings

are reliable only if the world is not too symmetrical. The tricky part is “guessing”

what the people nearby will be doing in the immediate future and planning

accordingly.

We define this problem as a POMDP that can be solved with Recall-Planner—

our proposal from Chapter 4—to obtain a plan for navigation based on people’s

intentions. The goal of the planner is to learn social behavior for safe, social-aware

navigation.

States (continuous) – the POMDP keeps track of the robot inner state

and the relative state of a number of people, NP that are closest to it. The

robot state tracks its velocity, ~Vego, (i.e., Vx, Vy, and ω). The state of the tracked

persons is stored in a list of objects with information about the tracked people,

trackedPeople. A tracked person is represented in the robot state by an id,
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relative distance, and orientation with respect to the robot. If one of the tracked

people is the target (goal), the state of the POMDP also includes the person id

from the trackedPeople list.

Actions (discrete) – set a way-point in space (at a distance smaller than

the distance between the robot and the target) that leads the robot to either

stay still or move towards one of the cardinal directions: towards the target,

given that the target person always indicates the North of the robot. The ac-

tion lasts, t, a sufficiently long time, ensuring that the action has the desired

effect. A local navigation planner controls the execution of the action and we

have two options. The straightforward option is to use a ROS local planner that

implements the Trajectory Rollout, and Dynamic Window approaches for (lo-

cal) robot navigation on a plane. Other ROS packages for local navigation in

ROS are carrot planner and dwa local planner. Alternatively, we could adapt

our MDP model for robot navigation in dynamic indoor scenarios—presented in

Chapter 3—for local navigation together with a Value Iteration solver.

Observation (discrete) – the robot is equipped with an IMU which mea-

sures the robot instant velocity. We use a LIDAR to measure distances to ob-

stacles as input for the leg tracker package. Leg tracker publishes a list with the

positions, orientations, and ids of people close to the robot. This list is used as

an observation in the POMDP. Every person tracked has associated a confidence

parameter. A Kalman filter keeps track of each person from one observation

frame to another.



Apéndice A
Resumen en español

El objetivo de este trabajo es hacer que sea factible y fácil de implementar

soluciones para la toma de decisiones y la planificación autónoma bajo incer-

tidumbre en plataformas móviles de bajo consumo. El fin es usar estas solu-

ciones para aplicaciones prácticas, como la conducción autónoma y la robótica

de servicios, que deben ejecutarse en plataformas móviles SoC. Estas platafor-

mas, además de tener restricciones de ejecución en tiempo real, suelen tener pocos

recursos computacionales y de memoria disponibles. El principal desaf́ıo es en-

contrar el modelo de programación heterogénea con la menor complejidad para

codificar soluciones de problemas de toma de decisiones, que además cumplan

con los requisitos de ejecución y eficiencia energética. Nuestra propuesta utiliza

estrategias de computación heterogéneas de bajo consumo basadas en el modelo

de programación oneAPI y estructuras de datos dispersas, las cuales nos permiten

resolver problemas de toma de decisión con millones de estados en tiempo real a

bordo de sitemas SoC de bajo consumo.

En la primera parte de la tesis, comparamos tres estrategias de programación

heterogénea para ejecutar código paralelo en SoC CPU+iGPU. Evaluamos su

rendimiento en un conjunto de benchmarks para planificar secuencias de acciones

para el caso de uso de navegación de un robot móvil. Los benchmarks calculan

un plan de navegación óptimo a través del algoritmo de Value Iteration—un

método fundamental para encontrar poĺıticas óptimas en la toma de decisiones

bajo incertidumbre—lo que permite que un agente inteligente modelado como

proceso de decisión de Markov (MDP) actúe de forma autónoma. Nuestros resul-

tados experimentales muestran que las implementaciones basadas en el modelo

de programación oneAPI son hasta 5× más fáciles de programar que las basadas

en OpenCL, mientras que incurren en solo de 3 a 8% en el consumo de enerǵıa y
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en rendimiento.

En la segunda parte, transferimos las lecciones aprendidas de la optimización

del algoritmo Value Iteration a un marco de toma de decisiones autónomo más

complejo—los procesos de decisión de Markov parcialmente observables (POMDPs).

A diferencia de los MDP, los POMDPs tienen en cuenta todas las fuentes de in-

certidumbre en la interacción del agente con el entorno. Proponemos un nuevo

método para la planificación online bajo incertidumbre para POMDPs, Recall-

Planner, que supera a los planificadores en ĺınea de última generación para un

conjunto conocido de benchmarks de navegación en la literatura de los POMDP.

Esta investigación demuestra que es factible resolver procesos de decisión de

Markov (parcialmente observables) a gran escala y en tiempo real utilizando

plataformas CPU+iGPU heterogéneas de bajo consumo. Podemos mejorar tanto

el rendimiento como la productividad si seleccionamos cuidadosamente la estrate-

gia y el modelo de programación. En concreto, destacamos que el modelo de

programación oneAPI crea nuevas oportunidades para mejorar la productividad,

el rendimiento y la eficiencia en sistemas heterogéneos de bajo consumo.
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