
Integrating ROS and Android for Rescuers in a Cloud Robotics
Architecture: Application to a Casualty Evacuation Exercise

Manuel Toscano-Moreno, Juan Bravo-Arrabal, Manuel Sánchez-Montero, Javier Serón Barba,
Ricardo Vázquez-Martı́n, J.J. Fernandez-Lozano, Anthony Mandow, and Alfonso Garcia-Cerezo

Abstract— Cloud robotics and the Internet of robotic things
(IoRT) can boost the performance of human-robot cooperative
teams in demanding environments (e.g., disaster response,
mining, demolition, and nuclear sites) by allowing timely
information sharing between agents on the field (both human
and robotic) and the mission control center. In previous works,
we defined an Edge/Cloud-based IoRT and communications
architecture for heterogeneous multi-agent systems that was
applied to search and rescue missions (SAR-IoCA). In this
paper, we address the integration of a remote mission con-
trol center, which performs path planning, teleoperation and
mission supervision, into a ROS network. Furthermore, we
present the UMA-ROS-Android app, which allows publishing
smartphone sensor data, including audio and high definition
images from the rear camera, and can be used by responders
for requesting a robot to the control center from a geolocalized
field position. The app works up to API 32 and has been
shared for the ROS community. The paper offers a case study
where the proposed framework was applied to a cooperative
casualty evacuation mission with professional responders and
an unmanned rover with two detachable stretchers in a high-
fidelity exercise performed in Malaga (Spain) in June 2022.

Keywords: Cloud Robotics; Disaster Robotics; Distributed Ro-
bot Systems; ROS; Android; Search and Rescue

I. INTRODUCTION

Cloud robotics and the Internet of robotic things (IoRT)
can boost the performance of human-robot cooperative teams
in demanding applications like disaster response [1], [2],
agriculture [3] and nuclear surveillance [4], where robots
need to develop their tasks while communicating among
themselves and with their human operators [5]. However, no
consensus has been reached on the tools and technologies
for cloud robotics and use cases remain crucial [6].

The widely accepted Robot Operating System (ROS) [7]
can serve as the basis for new frameworks for cloud robotics
[8]. Thus, existing debugging and visualization tools for
ROS, such as RViz, have been useful for providing situational
awareness for teleoperation interfaces using streamed data
from search and rescue (SAR) robots [9]. Moreover, the
ROSLink custom protocol [10] aimed to integrate ROS based
robots with other devices through the Internet of things (IoT).
More recently, [11] proposed another open framework for
ROS-based cloud integration that can be used over public
Internet.

*This work has been partially funded by the Spanish Ministerio de Cien-
cia, Innovación y Universidades, Gobierno de España, projects RTI2018-
093421-B-I00 and PID2021-122944OB-I00.

The authors are with Robotics and Mechatronics Group, Institute of Me-
chatronics Engineering and Cyber-physical Systems, University of Malaga,
Spain.

Fig. 1: All terrain Rover J8 robot with the adapted detachable
onboard stretchers, two GPS and antennas, two lidars, two
180° field-of-view cameras, a 5G smartphone and a 5G
router.

In this context, smartphones are becoming a powerful
IoRT enabling technology [12], providing not only built-
in sensing and processing, but also communications for
cloud and edge computing. Experimental client libraries
such as rosjava add ROS support for Android smartphone
applications like embedding a smartphone in mobile robots
[13], [14] and controlling robots with live video stream [15].
Furthermore, smartphone apps can provide effective teleope-
ration human interfaces for robots running on ROS [16].
In fact, a user-friendly smartphone human-robot interaction
interface can improve mission performance and responder
acceptability in long-distance collaborative search [17]. The
ROS-Mobile Android application [18] is an alternative to
RViz for mobile devices, offering control and visualization
features.

In previous works we presented the Internet of cooperative
agents (X-IoCA) architecture [2], a generic cloud robotics
framework for the effective integration of heterogeneous
sensor networks and robots, multi-edge computing centers
(MECCs), and 5G communications in field applications
with cooperative human and robot teams. In particular, we
presented an implementation for SAR (SAR-IoCA) which
was not fully integrated with ROS. In [19], we explored
the application of SAR-IoCA with a remote mission control
center through commercial networks.

In this paper, we address the full integration of the
feedback information system (FIS), which performs path
planning, teleoperation and mission supervision, into a ROS

ACCEPTED VERSION 
 2022 IEEE International Symposium on Safety, Security, and Rescue Robotics.

DOI pending. Please find the published version in https://ieeexplore.ieee.org . 

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to 

servers or lists, or reuse of any copyrighted component of this work in other works.



Fig. 2: The X-IoCA architecture

network. Furthermore, we present an update of UMA-ROS-
Android app [20], which allows publishing smartphone sen-
sors, including audio and high definition images from the rear
camera, and can be used by responders for requesting a robot
to the control center from a geolocated field position. The app
has been developed for current Android versions (API 32)
and has been shared for the ROS community [21]. We have
implemented and tested the evolved SAR-IoCA framework
for a cooperative casualty evacuation mission with professio-
nal responders and an unmanned rover with two detachable
stretchers (see Fig.1) in a high-fidelity exercise performed in
Malaga (Spain) in June 2022. The paper discusses lessons
learned from this use case.

The rest of the paper is organized as follows: Sect. II
gives a brief review of the X-IoCA architecture, Sect. III
presents the evolution of the architecture integrating ROS
and Android, Sect. IV is dedicated to the experiments de-
signed to validate the new characteristics of the SAR-IoCA
architecture. Finally, Sect. V is devoted to the concluding
remarks.

II. REVIEW OF THE X-IOCA ARCHITECTURE

This section briefly reviews the generic Internet of coope-
rative agents (X-IoCA) architecture (see Fig. 2) [2], where
agents are entities that carry or wear end-devices. Agents can
be humans, different types of robots (e.g., UGVs and UAVs),
vehicles, and even sensorized animals.

The X-IoCA architecture comprises sensing and com-
puting elements, and is divided into two subsystems: an
IoRT, which is the source of sensor data, and a feedback
information system (FIS) for data monitoring, storing, and
processing. The MECC consist of computing devices (e.g.,
PCs or smartphones) that can be used within both the IoRT or
the FIS. Regarding to communications, each MECC can have
one or more user-equipment (UE) devices (e.g., a 5G CPE or
a 5G smartphone). Local edges (green rounded rectangles)
correspond to local hosts in the operation area, while cloud
edges (green ellipsoids) are remote MECCs. The MECC in
the FIS are made up of an X-FIS and a ROS-FIS, each
dedicated to a specific type of information flow coming

IMU, GPS, cameras, 
mics, lidars, Arduino

Internal sensors
(IMU, GPS, camera, mic)

Internal sensors
(IMU, GPS, camera, mic)

Onboard
Smartphone

Fog

Local Edge
LANs

Onboard
Computer

Smartphones

Io
R

T

M
EC

 C
e

n
te

rs
(R

O
S 

th
in

gs
an

d
 lo

ca
l e

d
ge

s)

FI
S

Monitoring & Planning

Sensory event

SAR-FIS

UGV Rover J8Human agents

Fig. 3: An implementation of the new SAR-IoCA system.

from the two parts of the IoRT: a hybrid and heterogeneous
network of wireless transceivers (H2WTN), composed of
radio-capable (LoRa, BLE, UWB, WiFi, etc.) sensor-nodes
covering short and long ranges (SR and LR, respectively),
and a ROS-based distributed network. Similarly, the local
edges within the IoRT can manage the H2WTN and the
ROS network. Thus, the information is not necessarily at
the physical place where the data are acquired, and a given
agent can use a resource more or less distant from it, which
entails complying or not with a series of requirements [22].

III. INTEGRATION OF ROS AND ANDROID IN THE
SAR-IOCA ARCHITECTURE

III-A. The new SAR-IoCA architecture

This section presents the evolution of the SAR-IoCA
architecture, where the FIS has been fully integrated in
a ROS architecture for SAR for a more efficient use of
resources such as: smartphones and lidars included as sensor-
nodes in the IoRT, UGV path-planning systems, and MECCs.
The cloud has been omitted since non-ROS elements (e.g.,
H2WTN and Message Queing Telemetry Transport –MQTT–
brokers) within the IoRT have not been considered for this
paper (see Fig. 3). The most relevant element of the FIS
is the SAR-FIS application, an ad-hoc MATLAB software
for monitoring and processing the sensory information that
includes a strategic global path planner for SAR missions.

The 5G communications are represented by a thick red
line, to which all the UEs are connected. Each UE has a
SIM card with a static and public IP address (SP-IPa). This
ensures that communications between UEs, and thus between
the MECCs and the IoRT, are point-to-point, without network
address translation (NAT) issues.

There are two requirements for any PC within the ar-
chitecture: bidirectionality, i.e., the possibility to publish
information from any LAN and to subscribe to information in
the WAN; and fluidity (symmetrical bitrates) in the existing
communications in the Fog-distributed ROS network, i.e.,
what a node publications reaches the subscriber node with the
same bandwidth. In the case of computers hosted in MECCs,
it is necessary to establish port forwarding rules to ensure
that ROS nodes hosted on all the PCs of the local edge LANs
can play the double role of subscriber and publisher with the
rest of the WAN.



SAR-FIS

smartphone

namespace/calling_to_robot

namespace/camera/compressed

namespace/fix

namespace/audio

robot/status

MEC centers

IoRT

namespace/imu

images_sm_monitoring

UMA-ROS-Android

4

gamepad_arduino

camera_driver
rear_camera

front_camera
images360_monitoring

joystick_driverjoy

control_loop

gps0

obj_fixer
ntrip_ros

gps1/fix

gps0/fix

gps1/ori
cur_obj

next_obj

gps_j8/fix

center_gps

cmd_vel
gps_objs

RTCM

ROS-Mobile

smartphone

gps1

lidar_driver lidar_processinglidar/packets lidar/pointCloud lidar_monitoring

2

3

Fig. 4: ROS nodes distributed through the Fog.

Each device in any LAN of a MECC must register the
SP-IPa that the rest of LANs within the Fog use to access
to the Internet. Only one PC in each LAN will be able to
identify itself with the SP-IPa associated with its CPE, so
that only it can be seen from the outside (WAN).

For the PC onboard the UGV Rover J8 (hosting ROS
nodes in the IoRT), a Demilitarized Zone (DMZ) has been
established for its local IP address. In this way, all the
messages published by ROS nodes hosted on the robot can
flow out to the WAN. In the case of smartphones, there is no
two-way problem, so ROS nodes created by the UMA-ROS-
Android app can subscribe and publish through the Fog.

With regard to fluidity, it is necessary to define which ROS
nodes require information and from where, and to take into
account the bandwidth occupied by the messages published
in each ROS topic. An excessive number of subscriptions
may cause saturation in the throughput capacity of UEs.

Fig. 4 shows how the ROS nodes (ellipsoids) have been
distributed between the IoRT and the MECCs, publishing
and obtaining information via ROS topics (rectangles). The
ROS master node can be hosted by any PC within the Fog.
The nodes in the IoRT include several nodes publishing
sensor-related data (camera driver, smartphone, gps0, gps1,
ntrip ros, center gps). UGV motion control is performed th-
rough a main control node (control loop) and three other no-
des devoted to reading and publishing location and velocity
objectives (obj fixer, joystick driver and padsim arduino).
In the MECCs, the main node (SAR-FIS, in purple in
Fig. 4) runs inside the SAR-FIS application in MATLAB,
monitoring the agents’ positions and generating a list of
waypoints. Three other nodes read inputs from a joystick,
cameras, and lidar (joystick driver, images360 monitoring,
images sm monitoring and lidar monitoring). A detailed des-
cription of the nodes can be found at [21].

III-B. The UMA Cloud Robotics app for ROS and Android

This section presents the design (frontend) and functio-
nality (backend) of the developed UMA-ROS-Android app,
compatible with the current Android version (API 32). The
main goal is to integrate a smartphone as a sensor-node, by
publishing information, via ROS, from and about the SAR
agent carrying it. The interaction between the SAR agent and
the UMA-ROS-Android app must be user-friendly and agile
(see Fig. 5), leading to a double purpose:

To expand the ROS network, adding new sensor-nodes
to the IoRT ecosystem, either through a LAN or via
WAN, by means of smartphones.
To acquire information from the agents’ surroundings,
and encourage cooperation between them.

III-B.1. Frontend: The app has two screens for the user
interface: the setup and the connection activities. A dark,
high contrast colour gamut has been chosen for proper
outdoor viewing and so that devices with OLED displays
can benefit from reduced battery consumption. Two user
inputs are requested: the ROS master socket (local or public
IP address and port) and the SAR ID, which is associated
with the namespace of the ROS topics where the desired
information will be published. This can be done by selecting
the switches related to each of the smartphone’s internal
sensors (camera, microphone, IMU and GPS). Finally, the
connect button activates the smartphone in the ROS network,
being all the topics visible in any host of the architecture:
Cloud, MECCs and IoRT.

The second screen is the connection activity, where the
user can select one or more switches in order to call one or
more of the robots (UGVs) available in the IoRT. The list of
UGVs presented is static, and includes three UGVs from our
Robotics and Mechatronics Group: Cuadriga, Rambler and
Rover J8. All of them can be called from the app, thanks
to the integration of SAR-FIS in the ROS network. Fig. 5
shows how the agent Garcia has performed a request for the
Rover J8 to be planned to the location of the smartphone,
which is taken by SAR-FIS in the ROS topic /Garcia/fix.
Finally, the bottom of the connection activity shows what
information is transmitted from this smartphone and through
which ROS topics.

III-B.2. Backend: The functionality of the application is
structured in 10 classes written in Java, eight of which inclu-
de the construction of the ROS nodes needed to exchange
information with the rest of ROS nodes in the SAR-IoCA
architecture. The information published includes the rear
camera of the smartphone (sensor msgs/CompressedImage),
the GPS and IMU data (sensor msgs/NavSatFix and sen-
sor msgs/IMU) and audio (.WAV). Three classes publish
a Bool message associated with the user’s choice of the
robot, which triggers the path planning for the selected UGV
(calling to robot, where robot is the name of the UGV.) The
two other Java classes are associated with the two activities
that make up the frontend, so that the user can switch from
one to the other using objects. A detailed descriptions of the
classes and their functionalities can be found at [21].



Write to
RAW temporal file

Fig. 5: UMA-ROS-Android frontend: setup (left) and con-
nection activities (right). Comments are shown in yellow.

III-C. Integration of a path planner

SAR-FIS has been designed and implemented by the UMA
Robotics and Mechatronics Group for the global planning of
UGV paths over natural terrain and the monitoring of sensory
devices deployed over the environment, e.g., IP cameras,
LoRa devices and/or heterogeneous sensors distributed in a
ROS network. SAR-FIS integrates a strategic global planner,
i.e., a global path planning system for a set of UGVs towards
a set of target points with different priorities. Therefore, the
scope of SAR-FIS exceeds the aim proposed in this work,
which is to highlight the SAR-IoCA capability to integrate a
UGV path planner through a ROS network by request from
a human agent. Consequently, neither the description of the
path planning algorithm nor all the functionalities of SAR-
FIS are within the scope of this paper.

The area where the agents are deployed is defined by a
digital elevation model (DEM) and an orthophoto or zenith
aerial photograph. The global path planner uses the DEM
to estimate the terrain slopes and obtain a feasible path.
Each agent publishes the current geolocation coming from
GPS devices by a single ROS topic. SAR-FIS uses points of
interest (PoI) as target positions for the path planning. A PoI
is triggered by geo-referenced events (e.g., a call for a robot
from a smartphone app).

Two alternative navigation modes have been defined for
Rover J8: (1) planned navigation to a PoI triggered by a call
for a robot from a smartphone; and (2) teleoperation.

Planned navigation: A smartphone running the ap-
plication UMA-ROS-Android (Fig. 5) allows a human
agent to request a UGV. SAR-FIS receives the GPS
position and request through subscriber ROS nodes as-
sociated to the respective topics. Upon detecting a chan-
ge of planning request of a particular robot, SAR-FIS
enables (if the request is on) or disables (otherwise)
that agent for path planning. If enabled, SAR-FIS also
creates a temporary PoI associated with the current

Fig. 6: Casualty extraction and evacuation scenario layout
over an aerial view of the disaster response exercise site
[23].

location of the smartphone. Therefore, once the robot
and the PoI are defined and enabled for planning, a list
of waypoints is found from the current robot position to
the PoI location. The resulting path is conditioned by the
terrain slopes in the DEM as well as the pitch and roll
thresholds admissible by the UGV. The resulting path
is stored as an array of UTM coordinates. This array
is sent through the ROS network by a ROS publisher
associated to the corresponding topic. Finally, the ROS
node control loop running in Rover J8 subscribes to the
GPS waypoint list and performs a path-following algo-
rithm using the position and orientation data obtained
from its dual GPS-receiver setup.
Tele-operation: For navigation in extremely complex
and dangerous environments, the SAR-IoCA implemen-
tation is compatible with teleoperation from the control
center. Through the ROS network, a human operator
can send velocity commands from a joystick, and get
the visual feedback from the onboard cameras.

IV. APPLICATION TO VICTIM EVACUATION EXERCISE

IV-A. Brief description of the Exercise

The casualty extraction and evacuation scenario was part
of an annual Workshop organized by the Chair of Security,
Emergencies and Disasters at the University of Malaga
(UMA) held on June 3, 2022. The robotic stretcher was tested
in a cooperative training exercise with a combat medical unit
of the Spanish Army (Tercio “Alejandro Farnesio” 4o of the
Spanish Legion).

An aerial view of the exercise area with a layout of the
casualty extraction and evacuation robot mission is shown
in Fig. 6. The initial location of the UGV is close to the
forward control center (FCC). This is the starting point for
the path planning of the UGV (extraction route) waiting for
the call from the rescuers in the hot zone, where a terrorist



attack is simulated. The finishing point of the UGV mission
(evacuation route) is near the medical post tent.

The exercise site was a dedicated 90 000m2 outdoor
experimental area within the UMA campus. This natural
terrain zone was set up as a simulated disaster site, including
rubble mounds, crushed vehicles, and tunnels [24]. This
outdoor area is an unstructured natural environment with
different altitudes. For instance, the points-of-injury are about
eight meters above the medical post.

The objectives of this exercise were twofold: the aim of
our research group was to test vehicle path-planning and
smartphone calling in real scenarios, whilst the military
rescue team wanted to test and get acquainted with the use of
robotic vehicles in search and rescue missions, in the context
of a program for testing new technologies (Force 2035).

IV-B. Vehicle setup and hardware

Rover J8 (see Fig. 1), developed by Argo (Kitchener,
Ontario, Canada), is an electric off-road 8×8 UGV designed
for outdoor navigation and driven by a dual electric motor
(main and steer) working with a 46V battery that can last up
to 6 h. This UGV drives at a maximum speed of 30 kmh−1,
with a weight of 1090 kg and a maximum payload of 567 kg.
The vehicle includes a follow-me mode in which the robot
can follow a person autonomously. A button in the front of
the robot activates this feature.

Some hardware elements were added to the Rover J8 in
order to integrate it in the described SAR-IoCA architecture.
As the robot does not allow to run user made programs,
a NUC8i7BEH with Ubuntu 18.04 and ROS Melodic has
been installed to implement the corresponding software to
the Rover J8 described in the Section III. To get the position
and orientation to perform the path-following task, two GPS
receivers connected to the NUC through different Universal
Serial Bus (USB) ports were added, both of them getting dif-
ferential correction data via the standard Networked Trans-
port of RTCM via Internet Protocol (NTRIP) through regio-
nal public positioning networks. Rover J8 can be controlled
through a Logitech Gamepad controller, directly plugging
it to the robot’s main PC. To be able to send velocity
commands to the robot and controlling it in teleoperation
and path-following mode, an Arduino Leonardo with the
Xinput library [25] has been connected to the Rover’s main
computer to replicate the Gamepad controller. Lastly, a 5G
router model HUAWEI Router 5G CPE Pro 2 H122-373 is
used for wireless communication through Internet.

We used commercial stretchers with two wheels on the
front end and two legs on the back, as seen in Fig. 7.
According to the space available for the payload and the
capacity of the UGV, two stretchers are used to transport up
to two victims in each run. A reliable locking mechanism
for the stretchers is needed to transport victims safely. Thus,
we adapted the same locking mechanism from a previous
work [26] to accommodate both the front wheels and the leg
ends of the stretchers (see Fig. 7).

(a) (b)

Fig. 7: Stretcher fixing details: a) front end wheel brackets
and b) rear manual locking mechanism.

Fig. 8: Planned (red) and executed (blue) paths for Rover J8.
The planned path was triggered by a human agent request
for Rover J8.

IV-C. Description of the robot mission

The current configuration using the Rover J8 was based
in a previous experience presented in [26], and it was
first tested during the Workshop on October 29, 2020, but
exclusively by members of our team. Rover J8 was used by
actual rescue teams during the Workshop held on June 18,
2021, in a similar scenario, and an exercise conducted in
the headquarters of Tercio “Alejandro Farnesio” 4º of the
Spanish Army (Ronda, Malaga) on August 8, 2021.

Although the combat medical unit has participated with
us three times in the last year, the members of the rescue
team in this mission were completely new, including the
non-commissioned officer (NCO) in charge of the operation.
However, the officers planning the mission had knowledge
and experience from the previous collaborations, and they
were aware of the capabilities of our modified Rover J8
platform and the way it can be useful in real scenarios.

The exercise was performed under realistic conditions in
a one-shot basis. Before the exercise, the rescue team was
briefed about the robotic stretcher, the smartphone app to
call the UGV for assistance and the follow-me mode of the
vehicle. A demonstration of the Rover J8 path-planning to the



(a) (b)

(c) (d)

Fig. 9: Snapshots of the casualty extraction and evacuation exercise.

PoI was performed before the exercise, with the aim to show
the autonomous capabilities of the robot. The autonomous
demonstration trajectory was configured at a the moderate
speed of 5 kmh−1 due to safety. However, the rescue team
required a higher speed in order to attend the call more
quickly. Therefore, in the actual mission, the assistance to the
smartphone call (the extraction route) was not autonomous
but teleoperated at a speed of 10 kmh−1. Although the
extraction route was teleoperated, SAR-FIS succeeded in
producing timely and effective path. In fact, the teleoperated
path in the actual experiment only differs from the planned
path in the final part (see Fig. 8).

Fig. 9 shows a sequence of representative moments in the
rescue mission:

a) After finding the victims in the points-of-injury, the
rescue team called for assistance using the smartphone.

b) Rover J8 started the teleoperated extraction route to
the GPS location of the smartphone, reaching the PoI.
In each point of extraction the rescuers remove the
stretchers from the robot and secured the patient with
straps. Victims were played by volunteer drama students
simulating casualties during the attack.

c) The rescuers communicated the situation with the FCC:
six casualties found, two of them successfully locked
in the stretchers. The UGV in follow-me mode returned
with casualties escorted by the rescue team.

d) The evacuation route finished at the medical post, where
victims were cared for, and finally transported by an
ambulance to the helicopter evacuation area.

IV-D. Results, lessons learned, and feedback from end users
The mission lasted approximately 25 minutes, from the

beginning of the terrorist attack to the care of victims at the
medical post. The evacuation and extraction of victims were
successful, on both sides (research group and rescue team)
but we noted some lessons learnt for future work:

The stretcher locking mechanism is appropriate for
locking and removing victims in the UGV. There were
some issues in previous experiences, but they were
solved with an appropriate briefing to the rescue team.
The extraction route, using path-planning in response to
the call of the rescue team was successful, but it was
not used at the time of the mission since the rescue
team considered the speed of the UGV inappropriate to
respond to a critical situation with casualties. The UGV
speed should be increased in planned navigation mode
for this kind of missions.
The rescue team leader had to use the follow-me mode
to move the vehicle between points-of-injuries, but it
was not to deactivated when the team was loading the
stretchers, producing unexpected movements that may
put the team and the victims under risk. The follow-me
mode must be improved to avoid these situations, for
instance including a form of automatic deactivation.
The evacuation route was completed using the follow-
me mode due to the operational doctrine of the rescue
team: no injured personnel is left without protection.
This doctrine may be different for other rescue teams,
or other missions. Adaptability of the navigation modes
of the UGV is key for their effective integration with
rescue teams.
The idea of requesting a UGV using a smartphone
was successful, and considered useful by the rescue
team. One of the goals of the exercise was to test the
feasibility of the approach from the point of view of
the first responders. Once the feedback is positive, the
usability of the app should be specifically designed for
this kind of environments.

V. CONCLUSIONS

This paper presents an implementation of the distributed
X-IoCA architecture for SAR mission, integrating a remote



control center, which performs path planning, teleoperation
and mission supervision, into a ROS network. A specifi-
cally designed app, UMA-ROS-Android, allows publishing
smartphone sensors, including audio and high definition ima-
ges from the rear camera, and can be used by first responders
for requesting a robot to the control center from a geolocali-
zed field position. The app works up to API 32 and has been
shared for the ROS community. The proposed framework
was tested in a cooperative casualty evacuation mission with
professional first responders and an unmanned rover with two
detachable stretchers in a high-fidelity exercise performed
in Malaga (Spain) in June 2022. The experiments showed
the feasibility of the approach, allowing a rescue team to
request a UGV for victim extraction, and helping the team
to complete its mission. The feedback from the users was
very positive regarding the role of UGVs for this kind of
mission, and helped to define future improvements. Besides
the lines of work mentioned in the lessons learnt, the use of
this approach for logistic missions was also suggested. In this
sense, the simultaneous use of several UGVs to respond to
concurrent request is already possible in SAR-FIS, planning
the paths of the robots under different criteria. But field
experiments need to be conducted. Finally, migration of
the architecture to ROS2 may improve the communications
among the nodes in the fog, as well as their safety.

ACKNOWLEDGEMENTS

The authors want to thank the collaboration of the Chair
for Safety, Emergencies and Disasters of the University of
Malaga, led by Prof. Jesús Miranda-Páez for organizing the
exercises. We are also grateful to Tercio “Alejandro Farnesio”
4o of the Spanish Legion, for testing the robot and providing
valuable user feedback. Finally, we wish to acknowledge
the support from our colleagues of the UMA Robotics and
Mechatronics Group.

REFERENCES

[1] A. Botta, J. Cacace, R. De Vivo, B. Siciliano, and G. Ventre, “Networ-
king for cloud robotics: The DewROS platform and its application,”
Journal of Sensor and Actuator Networks, vol. 10, no. 2, p. 34, 2021.

[2] J. Bravo-Arrabal, M. Toscano-Moreno, J. Fernandez-Lozano, A. Man-
dow, J. A. Gomez-Ruiz, and A. Garcı́a-Cerezo, “The internet of
cooperative agents architecture (X-IoCA) for robots, hybrid sensor
networks, and MEC centers in complex environments: A search and
rescue case study,” Sensors, vol. 21, no. 23, p. 7843, 2021.

[3] P. Gonzalez-De-Santos, R. Fernández, D. Sepúlveda, E. Navas, L. Em-
mi, and M. Armada, “Field robots for intelligent farms–inhering
features from industry,” Agronomy, vol. 10, no. 11, 2020.

[4] M. Di Castro, M. Ferre, and A. Masi, “CERNTAURO: A modular
architecture for robotic inspection and telemanipulation in harsh and
semi-structured environments,” IEEE Access, vol. 6, pp. 37 506 –
37 522, 2018.

[5] D. Tardioli, L. Riazuelo, D. Sicignano, C. Rizzo, F. Lera, J. L.
Villarroel, and L. Montano, “Ground robotics in tunnels: Keys and
lessons learned after 10 years of research and experiments,” Journal
of Field Robotics, vol. 36, no. 6, pp. 1074 – 1101, 2019.

[6] V. Dawarka and G. Bekaroo, “Building and evaluating cloud robotic
systems: A systematic review,” Robotics and Computer-Integrated
Manufacturing, vol. 73, 2022.

[7] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Ng, “ROS: an open-source Robot Operating
System,” in IEEE ICRA Workshop on Open Source Software, vol. 3,
Kobe, Japan, 2009, pp. 1–6.

[8] G. Toffetti and T. M. Bohnert, “Cloud robotics with ROS,” in Robot
Operating System (ROS): The Complete Reference (Volume 4), 2020,
pp. 119–146.

[9] F. Perez-Grau, R. Ragel, F. Caballero, A. Viguria, and A. Ollero,
“Semi-autonomous teleoperation of UAVs in search and rescue sce-
narios,” in International Conference on Unmanned Aircraft Systems,
2017, pp. 1066 – 1074.

[10] A. Koubaa, M. Alajlan, and B. Qureshi, “ROSLink: Bridging ROS
with the Internet-of-Things for cloud robotics.”

[11] R. C. Mello, S. D. Sierra M., W. M. Scheidegger, M. C. Múnera,
C. A. Cifuentes, M. R. Ribeiro, and A. Frizera-Neto, “The PoundCloud
framework for ROS-based cloud robotics: Case studies on autonomous
navigation and human-robot interaction,” Robotics and Autonomous
Systems, vol. 150, 2022.

[12] A. Jiménez-González, J. R. Martinez-De Dios, and A. Ollero, “Test-
beds for ubiquitous robotics: A survey,” Robotics and Autonomous
Systems, vol. 61, no. 12, pp. 1487 – 1501, 2013.

[13] J. De A Barbosa, F. Do P De C Lima, L. Dos S Coutinho,
J. R Rodrigues Leite, J. Barbosa Machado, C. Henrique Valerio, and
G. Sousa Bastos, “Ros, android and cloud robotics: How to make a
powerful low cost robot,” in International Conference on Advanced
Robotics, 2015, pp. 158–163.

[14] H. M. Do, C. J. Mouser, Y. Gu, W. Sheng, S. Honarvar, and T. Chen,
“An open platform telepresence robot with natural human interface,”
in 2013 IEEE International Conference on Cyber Technology in
Automation, Control and Intelligent Systems, 2013, pp. 81–86.

[15] B. Gökcen, F. Baygül, F. Çakmak, E. Uslu, M. F. Amasyalı, and
S. Yavuz, “Android application for simultaneously control of multiple
land robots which have different drive strategy,” in 2017 International
Conference on Computer Science and Engineering (UBMK), 2017, pp.
724–728.

[16] E. Szymanska, L. Petrovic, I. Markovic, and I. Petrovic, “Mobile robot
teleoperation via Android mobile device with UDP communication,”
in International Convention on Information, Communication and Elec-
tronic Technology, 2021, pp. 1143 –1148.

[17] J. Dominguez-Vidal, I. J. Torres-Rodriguez, A. Garrell, and A. Sanfe-
liu, “User-friendly smartphone interface to share knowledge in human-
robot collaborative search tasks,” in IEEE Int. Conf. on Robot and
Human Interactive Communication, 2021, pp. 913 – 918.

[18] N. Rottmann, N. Studt, F. Ernst, and E. Rueckert, “ROS-Mobile: An
Android application for the Robot Operating System,” arXiv, 2020.

[19] M. Sánchez-Montero, M. Toscano-Moreno, J. Bravo-Arrabal, J. S.
Barba, P. Vera-Ortega, R. Vázquez-Martı́n, J. Fernandez-Lozano,
A. Mandow, and A. Garcı́a-Cerezo, “Remote planning and operation
of a UGV through ROS and commercial mobile networks,” in Fifth
Iberian Robotics Conference, 2022, p. Submitted to.

[20] G. Ruiz Mudarra, J. Bravo-Arrabal, J. Fernández-Lozano, and
A. Garcı́a-Cerezo, “Integración de smartphones 5G en redes de
sensores distribuidas para robótica de exteriores mediante ROS y
Android,” in Jornadas de Robótica, Educación y Biongenierı́a del
Comité Español de Automática, 2022, pp. 91–99.

[21] G. Ruiz-Mudarra, J. Bravo-Arrabal, and J. J. Fernández-Lozano,
“UMA-ROS-Android repository,” accessed: Jul 6, 2022. [Online].
Available: https://github.com/jjflozano/uma-ros-android

[22] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Nia-
kanlahiji, J. Kong, and J. P. Jue, “All one needs to know about
fog computing and related edge computing paradigms: A complete
survey,” Journal of Systems Architecture, vol. 98, pp. 289–330, 2019.

[23] Google, “Aerial view of the UMA search and rescue experimental
area,” accessed: Jul 6, 2022. [Online]. Available: https://goo.gl/maps/
EC2v2y1LtbRvBu4M7

[24] J. Morales, R. Vázquez-Martı́n, A. Mandow, D. Morilla-Cabello,
and A. Garcı́a-Cerezo, “The UMA-SAR Dataset: Multimodal data
collection from a ground vehicle during outdoor disaster response
training exercises,” The International Journal of Robotics Research,
vol. 40, no. 6-7, pp. 835–847, 2021.

[25] “Xinput: Library for emulating an Xbox controller over USB,” 2022,
accessed: Jul 6, 2022. [Online]. Available: https://www.arduino.cc/
reference/en/libraries/xinput/

[26] A. Mandow, J. Seron, F. Pastor, and A. Garcia-Cerezo, “Experimental
validation of a robotic stretcher for casualty evacuation in a man-made
disaster exercise,” 2020 IEEE International Symposium on Safety,
Security, and Rescue Robotics, SSRR 2020, pp. 241–245, 11 2020.

https://github.com/jjflozano/uma-ros-android
https://goo.gl/maps/EC2v2y1LtbRvBu4M7
https://goo.gl/maps/EC2v2y1LtbRvBu4M7
https://www.arduino.cc/reference/en/libraries/xinput/
https://www.arduino.cc/reference/en/libraries/xinput/

	Introduction
	Review of the X-IoCA Architecture
	Integration of ROS and Android in the SAR-IoCA Architecture
	The new SAR-IoCA architecture 
	The UMA Cloud Robotics app for ROS and Android
	Frontend
	Backend

	Integration of a path planner

	Application to Victim Evacuation Exercise
	Brief description of the Exercise
	Vehicle setup and hardware
	Description of the robot mission
	Results, lessons learned, and feedback from end users

	Conclusions
	References



