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Abstract
The problem of estimating missing fragments of curves from a functional sample 
has been widely considered in the literature. However, most reconstruction methods 
rely on estimating the covariance matrix or the components of its eigendecomposi-
tion, which may be difficult. In particular, the estimation accuracy might be affected 
by the complexity of the covariance function, the noise of the discrete observations, 
and the poor availability of complete discrete functional data. We introduce a non-
parametric alternative based on depth measures for partially observed functional 
data. Our simulations point out that the benchmark methods perform better when the 
data come from one population, curves are smooth, and there is a large proportion of 
complete data. However, our approach is superior when considering more complex 
covariance structures, non-smooth curves, and when the proportion of complete 
functions is scarce. Moreover, even in the most severe case of having all the func-
tions incomplete, our method provides good estimates; meanwhile, the competitors 
are unable. The methodology is illustrated with two real data sets: the Spanish daily 
temperatures observed in different weather stations and the age-specific mortality by 
prefectures in Japan. They highlight the interpretability potential of the depth-based 
method.
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1 Introduction

Partially observed functional data (POFD) are becoming more recurrent, invali-
dating many existing methodologies of Functional Data Analysis (FDA) (Ram-
say and Silverman 2005; Ferraty and Vieu 2006). Diverse case studies motivate 
the development of statistical tools for these data types. For example, many data 
sets are recorded in medical studies through periodical check-ups. Patients who 
miss appointments or devices that fail to register may be typical sources of censor-
ing. These situations may present in different types of monitoring, such as ambu-
latory blood pressure, the health status of human immunodeficiency virus tests, 
growth curves, and the evolution of lung function (James et  al. 2000; James and 
Hastie 2001; Delaigle and Hall 2013; Kraus 2015; Delaigle and Hall 2016). Sangalli 
et  al. (2009, 2014) also consider POFD from aneurysm studies where the source 
of censoring comes from a prior reconstruction of the sample and posterior pro-
cessing to make the data comparable across subjects. In demography, it is common 
that age-specific mortality rates for older ages are not completely observed due to 
the decreasing number of survivors (Human Mortality Database 2022) and this 
cohort is the focus of actuarial science studies (see, e.g., D’Amato et al. 2011). Other 
examples involve electricity supply functions that may not be completely observed 
because suppliers and buyers typically agree on prices and quantities depending on 
the market conditions (Kneip and Liebl 2020; Liebl and Rameseder 2019).

Prominent literature has tackled estimating missing parts of POFD, providing sev-
eral benchmark methods. Among them, the methods of (Yao et al. 2005; Goldberg 
et al. 2014; Kraus 2015; Delaigle and Hall 2016; Kneip and Liebl 2020). This article 
proposes a new method and compares it with two of the above benchmark methods. 
We selected those that provided the best performance to minimize the mean squared 
prediction error (MSPE) on our simulations and considered case studies. The chosen 
benchmark methods are the method of Kraus (2015) and the method of Kneip and 
Liebl (2020). Notably, Kraus (2015) develops a procedure based on functional ridge 
regression with automatic parameters to predict the principal component scores and 
the unobserved part of a function when only a fragment of the curve is available. In 
Kraus and Stefanucci (2020), the authors prove that this ridge reconstruction method 
is asymptotically optimal. On the other hand, Kneip and Liebl (2020) approaches the 
problem by introducing a new optimal operator based on a local linear kernel to pro-
duce smooth results and avoid artificial jumps between observed and reconstructed 
parts. The best-performing reconstruction methods that outperform Yao et al. (2005) 
and Kraus (2015) involve an alignment step to link the predicted fragments with the 
partially observed curve. In this article, we focus on a comparison between methods 
without any post-processing step.

Our approach combines two novel functional tools: (1) the concept of functional 
envelope and projection methods proposed in Elías et al. (2022b); and (2) a func-
tional depth for POFD (Elías et al. 2022a). The literature on depth-based reconstruc-
tion methods for functional data is scarce. Remarkably, Mozharovskyi et al. (2020) 
proposed an iterative imputation method for multivariate data by data depth moti-
vated by iterative regression imputation methods. The authors propose to replace 
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the missing values on some of the dimensions with the corresponding value that 
maximizes the depth on the remaining completely observed dimensions. Differently, 
we select a subset of sample trajectories representative of the curve to reconstruct in 
terms of shape and magnitude, called envelope (Elías et al. 2022b), that maximizes 
the functional depth of the curve to reconstruct. Then, we “project” the envelope 
to the missing regions and use all the projected curves to provide a reconstruction. 
We do not restrict our search to a completely observed part of the domain nor to 
completely observed functions, thanks to a suitable functional depth for partially 
observed data (Elías et  al. 2022a) and a measure of similarity between POFD. In 
our context, every single datum might contain missing parts, and we do not require 
to have complete observability at any region of the curves’ domain. This fact also 
makes our problem different from the imputation problem of Liebl and Rameseder 
(2019) where the missing parts are not systematic.

The new method is designed for: (1) Scenarios where the estimation of the 
covariance function is complex or impossible: The existing reconstruction methods 
depend on a proper covariance estimation. Its estimators might be very sensitive and 
become unreliable for many analyses, particularly for principal component analysis 
(Hubert et  al. 2005). In addition, data coming from multiple populations and low 
number of complete functions in the sample also hampers the estimation procedures 
and makes it impossible if all the sample functions are partially observed (Kneip and 
Liebl 2020). (2) Reconstructing non-smooth functions: Some methods are designed 
to deal with smooth functions; consequently, their results are smooth and aligned 
functions (Kneip and Liebl 2020). Our goal is to provide a method that produces 
reconstructed functions while remaining as accurate as possible in roughness and 
variability. (3) Adding interpretability: It might be useful to get a precise estima-
tion and insights into the final reconstruction drivers. We consider simulated and 
empirical data for illustrating the issues listed above. On the one hand, we consider 
yearly curves of Spanish daily temperatures. This data set is gathered by the Spanish 
Agency of Meteorology (AEMET) at different weather stations spread along with 
the Spanish territory. On the other hand, we consider age-specific yearly mortality 
rates recorded at each Japanese prefecture (political territory division).

The structure of this paper is as follows: Sect.  2 introduces notation and the 
method. Section  3 shows various simulated results based on Gaussian Processes 
under different simulated regimes of partial observability. In addition, we illustrate 
the method’s performance with the Spanish daily temperatures data set and the Japa-
nese age-specific mortality rates by prefecture. In Sect.  4, we make some conclu-
sions, along with some ideas on how the methodology can be further extended.

2  Depth‑based reconstruction method

2.1  Definition and notation

Let X = {X(t) ∶ t ∈ [a, b]} be a stochastic process of continuous trajectories and 
(X1,… ,Xn) independent copies of X. To simplify the notation, we assume with-
out loss of generality [a, b] = [0, 1] . We consider the case X1,… ,Xn are partially 
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observed. Following Delaigle and Hall (2013), we model the partially observed 
setting by considering a random mechanism Q that generates compact subsets of 
[0,  1] where the functional data are observed. Specifically, let O be a random 
compact set generated by Q,   and let (O1,… ,On) be independent copies of O. 
Therefore, for 1 ≤ i ≤ n, the functional datum Xi is only observed on Oi . Let 
(Xi,Oi) = {Xi(u) ∶ u ∈ Oi} and Mi = [0, 1] ⧵ Oi . Then, the observed and missing 
parts of Xi are (Xi,Oi) and (Xi,Mi) . As it is standard in the literature of POFD, 
we assume that (X1,O1),… , (Xn,On) are i.i.d. realizations from P × Q . This is, 
{X1,… ,Xn} and {O1,… ,On} are independent samples. This assumption has been 
termed Missing-Completely-at-Random and, notedly, only Liebl and Rameseder 
(2019) has considered a specific violation of this assumption. As illustration, the 
top panel of Fig.  1 presents two examples of incomplete functional data under 
two different missing scenarios (left and right panels). The observed fragments of 
two incomplete curves (Xi,Oi) are in red.

The core idea of our method is based on the depth-based method for 
dynamic updating on functional time series Elías et  al. (2022b). In this con-
text, by using the notation introduced here, the functional sample, ( X1,… ,Xn ), 
was ordered in time, n being the most recent time period. Xn was only observed 
on On = [0, q] , with 0 ≪ q < 1 , and the rest of sample curves {Xj ∶ j < n} were 
fully observed on [0,  1]. This is, for all j < n , Oj = [0, 1] . We may summarize 
the depth-based approach for dynamic updating as follows: if (Xn,On) is depth in 
{(Xj,On) ∶ j ∈ Jn} , for some set of curves Jn ⊂ {1,… , n − 1} , and the band delim-
ited by the curve segments {(Xj,On) ∶ j ∈ Jn} captures both the shape and mag-
nitude of (Xn,On) , we may estimate (Xn,Mn) from {(Xj,Mn) ∶ j ∈ Jn} . In particu-
lar, point estimators of (Xn,Mn) were obtained by computing weighted averages 
on the curve segments of {(Xj,Mn) ∶ j ∈ Jn} . In our jargon, {(Xj,On) ∶ j ∈ Jn} is 
called the envelope of (Xn,On).

In contrast to the dynamic updating framework of Elías et  al. (2022b), this 
article deals with sample curves that might not be temporarily ordered in the 
partially observed scenario. What is more important, every single curve may 
be partially observed. So, for enveloping the observed part of a curve, say us 
(Xi,Oi) , we could only have curve segments, namely {(Xj,Oi ∩ Oj) ∶ j ≠ i} , with 
|Oi ∩ Oj| ≠ � . Moreover, without loss of generality, we assume that Oi ∩ Oj has a 
non-zero Lebesgue measure. Similarly, we may only have curve segments, specif-
ically {(Xj,Mi ∩ Oj) ∶ j ≠ i} , for estimating the missing part of Xi , that is (Xi,Mi) . 
Applying the depth-based approach to these cases is a challenging and open prob-
lem we address in this article. The method can be explained in two steps: one 
concerned about how to obtain an envelope of each (Xi,Oi) , described in Sect. 2.2 
and one on how to estimate or reconstruct (Xi,Mi) from the observed parts of the 
curves used for enveloping (Xi,Oi) , described in Sect. 2.3.

2.2  A depth‑based algorithm for focal‑curve enveloping

The concept of depth arises for ordering multivariate data from the center to out-
ward (Liu 1990; Liu et  al. 1999; Rousseeuw et  al. 1999; Zuo and Serfling 2000; 
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Serfling 2006; Li et  al. 2012). Let F  be the collection of all probability distribu-
tion functions on ℝ , F ∈ F  and x ∈ ℝ . In the univariate context, a depth measure 
is a function D ∶ ℝ × F → [0, 1] such that, for any fixed F, D(x,  F) reaches their 
maximum value at the median of F, this is at x such that F(x) = 1∕2 , and decreases 

Fig. 1  In the top panels, an illustration of how Algorithm  1 works. The sample curves correspond to 
1000 i.i.d. trajectories of a Gaussian process. We considered partially observed curves for the left pan-
els by removing six random intervals from [0, 1]. For the right panels, we considered missing data uni-
formly. On average, only 50% of each curve was observed for both runs. The partially observed function 
that we reconstructed is colored in red and plotted entirely in the bottom panels jointly with its estimation 
(in blue)
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to the extent that x is farthest from the median. Examples of such univariate depth 
measures are

and

Denote by P to the generating law of the process X and by Pt to the marginal distri-
bution of X(t), this is Pt(x) = ℙ[X(t) ≤ x] . Given a univariate depth measure D, the 
Integrated Functional Depth of X with respect to P is defined as

where w is a weight function that integrates to one (Claeskens et  al. 2014; Nagy 
et al. 2016). It is worth mentioning that when w(t) = 1,∀t , and D is defined by (1), 
the integrated functional depth corresponds to the seminal Fraiman and Muniz ’s 
(2001) functional depth. When D is defined by  (2), the corresponding IFD is the 
celebrated Modified Band Depth with bands formed by two curves (López-Pintado 
and Romo 2009).

Define J(t) = {1 ≤ j ≤ n ∶ t ∈ Oj} . Suppose J(t) ≠ � and let q(t) be the cardi-
nality of J(t) . Denote by FJ(t) to the empirical distribution function of the univari-
ate sample {Xj(t) ∶ j ∈ J(t)} . This is the probability distribution that assigns con-
stant mass equals to 1/q(t) to each available observation at time t. Then, for any pair 
(Xi,Oi) and a given univariate depth D, we consider the Partially Observed Inte-
grated Functional Depth (Elías et al. 2022a) restricted to Oi defined by

This definition of depth considers that the sample of curves is incomplete and 
weights the parts of the domain proportionally to the number of observed curves. 
The larger POIFD ((Xi,Oi),P × Q) , the deeper will be (Xi,Oi) in the partially 
observed sample.

In line with the approach for dynamic updating introduced by Elías et al. (2022b), 
we search for an envelope J  that is a subset of incomplete curves, as big as possible, 
that captures the shape and magnitude of (Xi,Oi) such that i ∉ J  and with the fol-
lowing desirable properties: 

P1) (Xi,Oi) is deep in {(Xj,Oj) ∶ j ∈ J ∪ {i}} , the deepest if possible. For measuring 
depth here we use the Partially Observed Integrated Functional Depth restricted 
to Oi defined in (4).

(1)D(x,F) = 1 −
|||
1

2
− F(x)

|||

(2)D(x,F) = 2{F(x)
[
1 − F(x)

]
}.

(3)IFD (X,P) = ∫
1

0

D
(
X(t),Pt

)
w(t)dt,

(4)POIFD
(
(Xi,Oi),P × Q

)
=

∫
Oi
D
(
X(t),FJ(t)

)
q(t)dt

∫
Oi
q(t)dt

.
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P2) (Xi,Oi) is enveloped by {(Xj,Oj) ∶ j ∈ J} as much as possible. Here, we say 
(Xi,Oi) is more enveloped by {(Xj,Oj) ∶ j ∈ J} than by {(Xj,Oj) ∶ j ∈ J

�} if and 
only if 

 with � being the Lebesgue measure on ℝ.
P3) {(Xj,Oj) ∶ j ∈ J} contains near curves to (Xi,Oi) , as many as possible. For meas-

uring nearness, we use mean L2 distance between couples of POFD that overlap 
i.e. 𝜆(Oi ∩ Oj) > 0 . This is, 

Algorithm 1 provides a set of curves with the three features above that we call the 
i-curve envelope and denote by Ji hereafter. The algorithm is a variation of Algo-
rithm  1 of Elías et  al. (2022b), adapted to POFD. It iteratively selects as many 
sample curves as possible, from the nearest to the farthest to (Xi,Oi) , for envelop-
ing (Xi,Oi) (algorithm lines from 3 to 10) and increasing its depth at each iteration 
(algorithm lines from 11 to 13). The second row of Fig. 1 presents the first iteration 
where the black curves are not only the closest ones to their corresponding red curve 
(P3) but also they surround and cover the curve to reconstruct (Xi,Oi) on Oi (P2). 
The third row is the last iteration of the algorithm that contributes with an additional 
set of curves that makes (Xi,Oi) deeper (P1).

𝜆

({
t ∈ Oi ∶ min

j∈J(t)
Xj(t) ≤ Xi(t) ≤ max

j∈J(t)
Xj(t)

})

> 𝜆

({
t ∈ Oi ∶ min

j∈J�(t)
Xj(t) ≤ Xi(t) ≤ max

j∈J�(t)
Xj(t)

})
,

(5)‖(Xi,Oi) − (Xj,Oj)‖ =

�∫
Oi∩Oj

�Xi(t) − Xj(t)�2dt

�(Oi ∩ Oj)
.
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Figure 1 illustrates how Algorithm 1 works. We consider the first, second, and 
final iteration of two runs from the algorithm based on 1000 i.i.d. trajectories of a 
Gaussian process. We considered partially observed curves for the run shown in the 
left panels by removing six random intervals of the observation domain for every 
single functional datum. We considered missing data uniformly on the observation 
domain for the run shown in the right panels. On average, only 50% of each curve 
was observed for both runs. The partially observed function we intend to reconstruct 
is colored in red and plotted entirely in the bottom panels jointly with its estimation 
that we describe below.

2.3  Reconstruction of missing parts

For estimating the unobserved part of Xi , this is (Xi,Mi) , we use a weighted func-
tional mean from data of the curve envelope Ji . Only here, these functional data 
may be partially observed. Specifically, these data are {(Xj,Mi ∩ Oj) ∶ j ∈ Ji} . 
Consider Ji(t) = {j ∈ Ji ∶ t ∈ Oj} , assume Ji(t) ≠ � for all t ∈ Oi , and let 
� = minj∈Ji

‖(Xi,Oi) − (Xj,Oj)‖ . Then, we estimate Xi on Mi by

This estimator is a version of the envelope projection with exponential weights 
(see Elías et  al. 2022b, Equation (2)), adapted to the partially observed data con-
text. Notice that the exponential weights increase the influence of the closest curves 
in the estimation and give little importance to the farthest trajectories of the enve-
lope. The parameter � is automatically chosen by minimizing the mean squared error 
(MSE) on (Xi,Oi) , and it tunes the importance of each curve of the envelope in the 
reconstruction. In practice, if Ôi is the observational set where X̂i can be computable, 
this is ∪j∈Ji

(Oi ∩ Oj) , then

As an illustration, the bottom panels of Fig. 1 show reconstructions of missing parts 
of the two simulated cases discussed above.

3  Results

We compare results obtained using the depth-based method with those obtained 
from studies by Kraus (2015) and Kneip and Liebl (2020). Kraus (2015) propose 
a regularized regression model to predict the principal component scores (Reg. 
Regression), whereas Kneip and Liebl (2020) introduces a new class of reconstruc-
tion operators that are optimal (Opt. Operator). The two methods were implemented 

(6)X̂�
i
(t) =

∑
j∈Ji(t)

wjXj(t)
∑

j∈Ji(t)
wj

, with wj = exp

�
−�‖(Xi,Oi) − (Xj,Oj)‖

�

�
.

� = argmin
�

n�

i=1

‖(Xi,Oi) − (X̂�
i
, Ôi)‖2.
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by using the R-codes available at https:// is. muni. cz/ www/ david. kraus/ web_ files/ 
papers/ parti al_ fda_ code. zip and https:// github. com/ lidom/ Recon stPoFD. The depth 
for partially observed curves and the data generation settings are implemented using 
the R-package fdaPOIFD of Elías et al. (2021).

Section  3.1 introduces the simulation setting and the data generation process 
for POFD and shows results with synthetic data. Section 3.2 uses the same simula-
tion settings but applied to AEMET temperature data. Additionally, it illustrates the 
reconstruction of some yearly temperature curves that are partially observed in real-
ity. Finally, Sect. 3.3 presents another real case study where Japanese age-specific 
mortality functions are reconstructed.

3.1  Simulation study

Let us denote by c% the percentage of sample curves that are partially observed. 
Benchmark methods perform better as the parameter c is larger. This finding is 
because these reconstruction methods strongly depend on the information of the 
completely observed curves to estimate the covariance or the components of its 
eigendecomposition. However, the depth-based method can handle the case c = 0 , 
i.e., there are no complete functions in the sample. Therefore, results for this case 
are reported without comparison.

We considered two Missing-Completely-at-Random procedures for generating 
partially observed data for our simulation study. These procedures have previously 
been used in the literature (Elías et al. 2022a) and are in line with the partial observ-
ability of the real case studies. They are: 

Random Intervals,  with which c% of the sample curves is observed on a number 
m of random disjointed intervals of [0, 1].

Random points,  with which c% of the functions is observed on a very sparse 
random grid.

 First, we apply these observability patterns to simulated trajectories. Concretely, 
we consider a Gaussian process X(t) = �(t) + �(t) where �(t) is a centered Gauss-
ian process with covariance kernel ��(s, t) = �e−�|s−t| for s, t ∈ [0, 1] . The functional 
mean �(t) is a periodic function randomly generated by a centered Gaussian process 
with covariance ��(s, t) = �e−(2 sin(�|s−t|)

2∕l2) . Thus, each sample will present different 
functional means. The set of parameters used for our study were � = 2 , � = 1 , � = 3 
and l = 0.5 . Examples of the generated trajectories by this model are those shown in 
Fig. 1.

We considered small and large sample sizes for the study by making n = 200 
and 1000. Also, we considered different percentages of observed curves that were 
partially observed. Specifically, we tested with c = 0, 25, 50 and 75. In addition, 
we considered different percentages of time on which the incomplete curves of a 

https://is.muni.cz/www/david.kraus/web_files/papers/partial_fda_code.zip
https://is.muni.cz/www/david.kraus/web_files/papers/partial_fda_code.zip
https://github.com/lidom/ReconstPoFD
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sample were observed. Henceforth, we term this percentage by p% . We considered 
p = 25, 50 and 75 for small samples but only p = 25 and 50 for large samples. This 
is due to the computational cost of the benchmark methods when n = 1000 and 
p = 75 . Note that this parameter setting implies the highest computational cost for 
estimating covariance functions. Finally, we replicate 100 samples of each data set 
to estimate median values of MSPE.

Table 1 presents results for n = 200 . It shows MSPE from the Gaussian data and 
points out the superiority of the Reg. Regression method (Kraus 2015) when covari-
ance function is simple to estimate, as is the case of the exponential decay covari-
ance function involved in these data (see left panel of Fig.  2). Even in this case, 
we remark that the depth-based method is slightly better than the Opt. Operator 
method (Kneip and Liebl 2020). When all the functions of the sample are partially 
observed ( c = 0% ), only the depth-based method can provide a reconstruction, and, 
surprisingly, the MSPE remains reasonably similar to those cases with a proportion 
of complete functions significantly large ( c = 25, 50, 75% ). With regards to estima-
tion uncertainty, the depth-based method is superior to Opt. Operator and compara-
ble with Reg. Regression, observed from the top panel of Fig. 3. Similar results are 
obtained with other sample sizes and the Random Interval setting (see the detailed 
results in Appendix 1.1).

Appendix 1.2 includes results with functional data generated from truncated Kar-
hunen-Loève expansions following the simulations in Liebl and Rameseder (2019) 
for sample sizes of 100 and 500. First, we consider one population data and, in 
this setting, Opt. performs better than the Gaussian processes making Opt. Opera-
tor method and Reg. Regression comparable. This finding is in line with the results 
reported in Liebl and Rameseder (2019). Additionally, motivated by our empirical 
case studies, we consider a setting with smooth functions generated with truncated 
Karhunen-Loève expansions for generating multiple populations. In this context, 
our depth-based proposal starts being competitive, achieving better results than Opt. 
Operator and sometimes even better than Reg. Regression. The detailed explanation 
of the data generation and the results are reported in Sect. A.3.

3.2  Case study: reconstructing AEMET temperatures

Spanish Agency of Meteorology (AEMET) provides meteorological variables 
recorded from different stations in the whole Spanish territory (see http:// www. 
aemet. es/ es/ porta da). This analysis focus on maximum daily temperatures of 73 sta-
tions located in the capital of provinces. Following the literature of FDA, we con-
sider this data as a functional data set where each function is the temperatures of 
each complete year (see also Febrero-Bande and Oviedo de la Fuente 2012; García-
Portugués et al. 2014). Some of the curves are partially observed in the historical 
data, and our goal is to reconstruct the data set.

Temporal data availability depends from one station to the other. For example, 
Madrid-Retiro station is the oldest, being monitored from 1893, and Ceuta from 
2003. We consider a set of 2786 entirely observed curves of different years and 
weather stations. This large sample of complete functions allows reproducing the 

http://www.aemet.es/es/portada
http://www.aemet.es/es/portada
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simulation in Sect. 3.1 by randomly generating random functional samples. To do 
that, we randomly generate 100 samples of curves without replacement. The results 
for sample sizes of n = 200 and n = 1000 are given in Table  2. Unlike Gaussian 

Fig. 2  Covariance estimations based on the available functions are completely observed. Left panel, 
Gaussian processes with an exponential decay covariance. Central panel: Spanish daily temperatures 
with lower covariance values in Spring and Autumn periods and higher covariance in Summer and Win-
ter. Right panel: Japanese age-specific mortality rates with higher correlations at the oldest ages

Fig. 3  Boxplots of the MSPE for 100 replicates, p = 50 and n = 200 . Top (Gaussian data) and bottom 
(AEMET data) panels were obtained with the same data as Tables 1 and 2, respectively
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data, the depth-based method is superior to the competitors in the simulation with 
AEMET data, showing small MSPE and comparable variances (see bottom panel of 
Fig. 3 for an insight into the uncertainty of the estimation for each method). Only for 
high proportions of complete functions c = 75 and small sample size n = 200 , Kraus 
’s (2015) method was superior. The depth-based method is superior for smaller val-
ues of c or larger sample sizes n = 1000 . These results can be explained by the com-
plex structure of AEMET data and the availability of multiple stations with different 
weather conditions, as shown in the center panel of Fig. 2.

Table 3 shows the same simulation setup with AEMET data but under the Ran-
dom Interval setting and small sample size. In this setting, we generate partially 
observed data for a different number of observed intervals (m), percentages of com-
pletely observed curves (p), and the mean observability percentage of each partially 
observed curve (c). The result shows that when p = 25 , the regression method per-
forms better than the competitors. This finding is because our implementation of 
the partially observed mechanism produces a sample of POFD with more propor-
tion of observed curves in the center of the domain than in the extreme. Then, for 
small p the reconstruction of POFD observed in the middle of the domain worsens 
the results of the depth-based method. However, when p increases, our implementa-
tion of the random censoring mechanism produces a sample of POFD that uniformly 
covers the complete domain.

In Fig. 4, we plot the reconstructions obtained by the three methods under con-
sideration from one random sample. This was obtained by randomly taking 1000 
curves from the total observed curves of the AEMET data. Then, we generated 
partially observed data by applying the Missing-Completely-at-Random procedure 
based on random intervals described above, with m = 4 , p = 50 , and c = 50 . Finally, 
we randomly selected one function to reconstruct, namely, VALLADOLID/VIL-
LANUBLA-1956, where VALLADOLID/VILLANUBLA refers to the location of 
the station and 1956 is the observation year. VALLADOLID/VILLANUBLA-1956 
is plotted in red according to a general view of its shape. In contrast, the recon-
structions are only plotted on the four intervals where the curve was observed in our 

Table 2  Median values of MSPE over 100 pseudo-random replicates

Each replicate comprises 1000 and 200 curves (results between parenthesis). A dash (-) represents that 
the method cannot produce any reconstruction. The partially observed samples are obtained by observing 
p% of the total discrete realization points (Random Points). The smallest error is bolded for each combi-
nation of c and p

Method c = 75 c = 50 c = 25 c = 0

p = 25 50 25 50 25 50 25 50

Depth-based 5.393 4.920 6.384 5.274 7.874 6.321 10.252 7.606
(9.639) (9.099) (10.879) (9.585) (12.555) (10.079) (14.691) (10.900)

Opt. operator 13.081 13.403 13.201 13.442 13.259 13.229 – –
(13.184) (13.530) (13.296) (13.493) (13.412) (13.436) – –

Reg. regression 6.834 5.41 7.349 5.944 8.617 8.217 – –
(9.508) (8.826) (10.842) (10.472) (13.577) (13.251) – –
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Fig. 4  Simulated exercise reconstruction of “VALLADOLID/VILLANUBLA-1956”. Top three panels 
present the reconstruction by the depth-based method, Kraus (2015) and Kneip and Liebl (2020). Bottom 
panel, the spatial (Spanish map), and temporal (bubble plot) descriptive analyses are shown by the depth-
based methodology and the envelope
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simulation. The top panels of the figure show output produced by the depth-based 
method (Depth-based in blue), Kneip and Liebl (2020) (Opt. Operator in green), 
by Kraus (2015) (Reg. Regression in black). The depth-based method is superior 
to the benchmark methods. The bottom panel of the figure shows some descriptive 
statistics related to the depth-based method. We show the years used for reconstruct-
ing (the years of the curves in the envelope). The frequency of each year (number of 
curves into the envelope with the same year) is represented by a proportional blue 
bubble. Similarly, we show the locations of the curves on the right side of the enve-
lope. From our understanding, all of them have similar geographical features.

Finally, Fig. 5 illustrates the actual case of “BURGOS/VILLAFRÍA-1943” a sta-
tion that probably started operating in the middle of the year 1943. Consequently, 
only the year’s second half is recorded (red curve at the top panel). We apply the 

Fig. 5  Holdout partially observed function, “BURGOS/VILLAFRÍA-1943”. Top panel: reconstructions 
by Kraus (2015) (in black) Kneip and Liebl (2020) (in green) and the depth-based method (in blue). The 
bottom panel shows the descriptive analysis of the most relevant curves in reconstructing “BURGOS/
VILLAFRÍA-1943”. The left part is time analysis (bubble plot of the involved years); the right is spatial 
analysis (map with the most relevant and involved stations)
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three reconstructing methods to complete the first half of the curve (Reg. Regres-
sion (Kraus 2015) in black, Opt. Operator (Kneip and Liebl 2020) in green, and 
the depth-based method in blue). The depth-based methodology supports the recon-
struction with the additional information provided by the most important curves of 
the envelope. In this case, the envelope of “BURGOS/VILLAFRÍA-1943” contains 
distant-past functions from 1905 from the MADRID-RETIRO station and also more 
recent functions from the 90s from the same station. Additionally, the largest pro-
portion of functions belongs to 1943 (biggest blue bubble), the same year of the 
curve to reconstruct.

3.3  Case study: reconstructing Japanese mortality

The Human Mortality Data Set (https:// www. morta lity. org) provides detailed mor-
tality and population data of 41, mainly in developed countries. Some countries also 
offer micro-information by subdividing territory, providing challenging spatial and 
temporal information. In particular, the Japanese mortality data set is available at 
http:// www. ipss. go. jp/p- toukei/ JMD/ index- en. asp for its 47 prefectures for males, 
females, and the total population.

A common FDA approach to analyzing mortality data is to consider that each 
function is the yearly mortality for each age cohort (see, e.g. Shang and Hyndman 
2017; Shang and Haberman 2018; Gao et  al. 2019; Shang 2019). With this con-
figuration and arranging the 47 prefectures together, we deal with a male, female, 
or total Japanese mortality data set of size 2007. Each prefecture does not have the 
same number of functions, and the range of observed years is also different. How-
ever, roughly, we have yearly mortality functions between 1975 and 2016.

In this case study, the poor availability of complete functions invalidates the 
possibility of resampling as done for the AEMET data set. Thus, we are only 
able to illustrate some empirical situations. Figures 6 and 7 present two recon-
struction problems and the results obtained from the three methods. In Fig. 6, we 
reconstruct the shortest available curve, “Saitama-2007”, that was only available 
in a very short interval of mortality rates for the youngest cohorts. Reg. Regres-
sion (Kraus 2015) and Opt. Operator (Kneip and Liebl 2020) methods produce 
smooth results (black and green, respectively). The depth-based method pro-
duces more spiky results in concordance with other available curves. The bottom 
panel presents the bubble plot illustrating the period of the envelope functions 
and the prefectures on the map. Figure 7 presents a case with the function “Tot-
tori-2015” that is not observed in six intervals fragments (domain where only 
the red curve is visible).

4  Conclusion

This article introduces a non-parametric method to reconstruct samples of incom-
plete functional data. Our proposal relies on the concept of depth for POFD to select 
a subset of sample curves defined to share shape and magnitude with the observed 

https://www.mortality.org
http://www.ipss.go.jp/p-toukei/JMD/index-en.asp
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part of the curve to predict. This subset of sample curves is termed envelope, and 
we use it to propose a point reconstruction method based on a weighted average. 
These weights only depend on a parameter we set by minimizing the MSPE where 
the curve to predict is observed.

We compare the new method’s performance with other alternatives in the litera-
ture. Our simulation exercises consider simulated and empirical data as well as vari-
ous random procedures to generate incomplete data scenarios. The available recon-
struction methods seem unbeatable when covariance can be efficiently estimated in 
our settings. Gaussian processes exemplify these favorable circumstances with sta-
tionary covariance functions and other more complex covariance regimes, including 
a considerable proportion of completely observed curves. In contrast, our method 
outperforms when the covariance can not be properly estimated due to a richer 

Fig. 6  Reconstruction of the most poorly observed function of the sample, “Saitama-2007”. The top 
panel presents the reconstruction given by Reg. Regression method by Kraus (2015) (black), Opt. Opera-
tor method by Kneip and Liebl (2020) (green) and the depth-based method (blue). The bottom panel 
shows the year of the most important functions of the envelope, and the maps show the corresponding 
prefectures, in red the one to be reconstructed
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covariance structure and highly scarce data settings. To show that, we test the methods 
under severe incomplete data settings and introduce more complex covariance struc-
tures. We decrease the number of completely observed functions up to zero and con-
sider empirical data with complex covariance structures, such as yearly age-specific 
mortality and temperature data. Finally, our simulation exercises show that our pro-
posal can provide a reasonable reconstruction output when every function is partially 
observed or, in other words, when there are no complete functions in the sample.

The depth-based method requires the Missing-Completely-at-Random assump-
tion, which is standard in the literature. This assumption implies that the partially 
observed functions cover densely the reconstruction domain and that the observabil-
ity process is not conditional to external information. Future research could allow for 
specific relationships between the functional process and generate partial observa-
bility. In addition, the depth-based algorithm requires a notion of proximity between 

Fig. 7  Holdout partially observed sample function observed in six fragments, Tottori-2015. The top 
panel presents the reconstruction given by Reg. Regression method by Kraus (2015) (black), Opt. Opera-
tor method by Kneip and Liebl (2020) (green) and the depth-based method (blue). The bottom panel 
shows the year of the most important functions of the envelope, and the right map shows its prefectures
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POFD that we fill with a L2 distance between the observed segments. Developments 
along this line would also be valuable for our proposal.

In summary, this article provides an alternative data-driven and model-free 
method to reconstruct POFD preferable under challenging scenarios. Last but not 
least, we believe that the interpretability of the results might help provide different 
insides into the data under analysis.

Appendix 1: Additional simulation results

Appendix 1.1: Gaussian processes

The random functions are generated as explained in Sect. 3.1. Then, the Missing-
Completely-at-Random procedures are applied to generate partially observed func-
tional data (Xi,Oi) . The simulation results are collated in Table 4, for Random Inter-
vals, and in Table 5, for Random Points.

Appendix 1.2: Karhunen‑Loève processes

The random functions are generated by Karunhen-Loève expansions following 
the data generation processes in Kneip and Liebl (2020). Each function is gener-
ated as: Xi(t) = �(t) +

∑50

k=1
�ik,1cos(k�t) + �ik,1sin(k�t) where �(t) = t + sin(2�t) , 

�ik,1 = 50
√
exp(−(k − 1)2)Zi,1 and �ik,2 = 50

√
exp(−k2)Zi,2 with Zi,1, Zi,2 ∼ N(0, 1) . 

Then, the Missing-Completely-at-Random procedures are applied to generate POFD 
(Xi,Oi) . The simulation results are collated in Table 6, for Random Intervals, and in 
Table 7, for Random Points.

Appendix 1.3: Karhunen‑Loève processes with multiple populations

We follow the data generation procedure of Sect. A.2 but we create ten different populations 
by modifying the mean function �(t) as follows: �1(t) = sin(10�t) , �2(t) = − sin(10�t) , 
�3(t) = cos(10�t) , �4(t) = − cos(10�t) , �5(t) = 5t + sin(10�t + 0.5) , 
�6(t) = 5t − sin(10�t + 0.5) �6(t) = 5t − sin(10�t + 0.5)  , 
�7(t) = 5t + cos(10�t + 0.5) , �

8
(t) = 5t − cos(10�t + 0.5) , �9(t) = 2t + cos(3�t − 0.5) 

and �10(t) = −5t − cos(4�t sin(4�t) . These populations are equally probable. The Miss-
ing-Completely-at-Random procedures are applied to generate partially observed func-
tional data (Xi,Oi) . The simulation results are collated in Table 8, for Random Intervals, 
and in Table 9, for Random Points.

Appendix 1.4: Computational time performance

See Table 10.
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