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A B S T R A C T

We consider a two-stage generation scheduling problem comprising a forward dispatch and a real-time re-
dispatch. The former must be conducted facing an uncertain net demand that includes non-dispatchable
electricity consumption and renewable power generation. The latter copes with the plausible deviations with
respect to the forward schedule by making use of balancing power during the actual operation of the system.
Standard industry practice deals with the uncertain net demand in the forward stage by replacing it with a
good estimate of its conditional expectation (usually referred to as a point forecast), so as to minimize the
need for balancing power in real time. However, it is well known that the cost structure of a power system is
highly asymmetric and dependent on its operating point, with the result that minimizing the amount of power
imbalances is not necessarily aligned with minimizing operating costs. In this paper, we propose a bilevel
program to construct, from the available historical data, a prescription of the net demand that does account
for the power system’s cost asymmetry. Furthermore, to accommodate the strong dependence of this cost
on the power system’s operating point, we use clustering to tailor the proposed prescription to the foreseen
net-demand regime. By way of an illustrative example and a more realistic case study based on the European
power system, we show that our approach leads to substantial cost savings compared to the customary way
of doing.
1. Introduction

Many decision-making processes under uncertainty can be modeled
by optimization problems where some of the input parameters are
not perfectly known. The field of Optimization under Uncertainty
focuses on developing tools to tackle these problems depending on
the knowledge of those parameters that the decision maker actually
has. For example, if these parameters can be modeled reasonably well
as random variables following certain probability distributions, then
the decision maker should probably resort to stochastic programming
techniques [1]. In contrast, if all the decision maker knows about said
parameters is their range of variation or support, then she should rather
opt for robust optimization methods instead [2].

In the realm of power system operations, there is a vast literature
on operations research methods, models, and algorithms for power
dispatch that rely on stochastic programming or robust optimization or
hybrids of both. The richness of this literature makes it materially im-
possible and pointless to embrace it all in this paper. Instead, we refer
the reader to monograph Morales et al. [3] and references therein for
examples of power systems operating problems based on stochastic pro-
gramming, to the seminal work Bertsimas et al. [4] on the application
of robust optimization for unit commitment and generation scheduling,

∗ Corresponding author.
E-mail addresses: juan.morales@uma.es (J.M. Morales), miguelangeljmd@uma.es (M.A. Muñoz), spineda@uma.es (S. Pineda).

and to the recent contribution Dvorkin [5] on a distributionally robust
chance-constrained electricity market.

Despite the firm and promising advances in Optimization under
Uncertainty, still one of the most widely extended practices in decision
making is to replace the unknown parameter with a sensible value or
estimate, some sort of ‘‘the most likely value’’ that the parameter can
take on. A natural candidate to play that role is the expected value
of the parameter. Thus, the decision maker can, in addition, exploit
all the powerful tools that the disciplines of Statistics, Forecasting
and Machine Learning have developed for decades to estimate that
expected value conditional on all the information the decision maker has
available at the moment the decision must be made. The adherence of
the power sector to this strategy is particularly notorious, essentially
because it is argued to be simpler, more transparent, computation-
ally cheaper and easily accepted by the different stakeholders (see,
e.g., Morales et al. [6], Wang and Hobbs [7], Morales and Pineda [8],
Kazempour et al. [9] for further details on this issue). However, op-
erations researchers have repeatedly shown that this strategy results in
suboptimal decisions in general, because the conditional expected value
of the parameter ignores the impact of the parameter’s uncertainty on
the decision’s value [1].
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Against this background, research efforts have been recently placed
on finding a compromise solution. Intuitively, the idea is still to replace
the uncertain parameter but with a point estimate (generally differ-
ent from the parameter’s conditional expectation) that is purposely
computed to result in the optimal or a nearly optimal decision in
view of the parameter’s uncertainty. This alternative point estimate
is usually called a prescription and the term smart predict has been
recently coined to refer to this midway solution strategy. In this line,
we find a number of research works, e.g., Donti et al. [10], Muñoz et al.
[11], Elmachtoub and Grigas [12], El Balghiti et al. [13]. In particular,
the authors in Donti et al. [10] propose a heuristic gradient-based
procedure to produce estimates of uncertain parameters in optimization
problems based on the objective of the task for which these estimates
will be used. In Muñoz et al. [11], instead, they introduce a bilevel
programming framework to the same end. In Elmachtoub and Grigas
[12], they deal with linear programs with an uncertain cost vector,
for which they develop a tailored convex loss function to compute
an estimate of the cost vector that accounts for the underlying linear
optimization problem. Finally, the work in El Balghiti et al. [13] is
a continuation of that in Elmachtoub and Grigas [12] (first released
as an arXiv preprint in 2017), where the authors provide bounds on
how well a certain method to predict the cost vector from training data
generalizes out of sample.

In the field of power systems, it has also been shown that, by smartly
tuning the input parameters of current operational and procedures,
these can mimic the performance of their stochastic-programming-
based counterparts to a large extent. For instance, in Morales et al. [6],
they propose a bilevel programming model to compute the amount of
(uncertain) renewable power generation that must be considered in a
forward electricity market to maximize the short-run market efficiency.
In the same vein, the authors in Dvorkin et al. [14] show that, by
means of bilevel programming too, the reserve requirements in an
European-style two-stage electricity market can be set so that the
market can be almost as cost-efficient as the ideal two-stage electricity
market run by a full stochastic programming approach. Our proposal
is in the same spirit, but we make use of bilevel programming not to
directly prescribe renewable production or reserve capacity, but to de-
termine straightforward rules to improve the value of the (net-demand)
forecasts currently employed by system operators. In any case, the
works of Morales et al. [6], Dvorkin et al. [14] reveal that the power
sector can highly benefit from the aforementioned smart-predict strat-
egy. Actually, in Donti et al. [10], they apply it to power generation and
grid-scale electricity battery operation, and in Muñoz et al. [11] to the
offering problem of a thermal power producer competing strategically
in an electricity market. In Carriere and Kariniotakis [15], Muñoz et al.
[16], they focus instead on renewable energy producers, for which they
propose different smart-predict strategies for energy trading. Lastly, the
authors in Garcia et al. [17] use a bilevel programming framework
similar to that proposed in Muñoz et al. [11] whereby they train several
autoregressive models to estimate the uncertain demand and the size
of the energy reserves in a joint reserve allocation and energy dispatch
problem.

Within this context, and given a two-stage power scheduling prob-
lem, our contributions are the following:

• We propose a bilevel program to learn the value of the net
demand (i.e., that obtained by subtracting the weather-driven
renewable power production from the non-dispatchable power
load) that the scheduling problem must consider so that the
power system operating costs are minimized in expectation. This
value (that is, the prescription) is, in general, different from the
conditional mean of the net demand that is currently employed
in standard industry practice.

• We show that our method can be easily used to upgrade any given
point forecast of the net demand into a prescription that accounts
2

for the power system’s cost asymmetry.
• Motivated by the fact that a power system usually features distinct
net-demand regimes, we introduce a data clustering and partition-
ing strategy that, on the one hand, increases the performance of
the prescription of the net demand that our approach produces
(by making it dependent on the foreseen net-demand regime),
and, on the other, substantially decreases the computational effort
to solve the associated bilevel estimation problem.

• We evaluate the economic benefits that our approach achieves
through an out-of-sample test on a stylized version of the Euro-
pean power system that makes use of real data, in particular, of
actual and day-ahead predicted net-demand values downloaded
from the ENTSO-e Transparency Platform [18].

The rest of this paper is organized as follows. Section 2 describes the
two-stage power generation scheduling problem we consider through-
out our paper, motivates the ultimate goal of our work, and formulates
the generic bilevel program we use to construct, from the available
historical data, prescriptions of the net demand intended to minimize
the expected system operation costs. In Section 3, we resort to various
simplifying assumptions to guarantee that the globally optimal solution
of the bilevel program can be obtained by solving a mixed-integer
linear program (MILP). The potential of the net-demand prescriptions
provided by this MILP is then illustrated, discussed and justified using a
small power system in Section 4. In Section 5, we introduce a procedure
based on data clustering and partitioning to enhance the value of our
prescription and to speed up the solution of the mixed-integer prescrip-
tion problem. A case study based on the European power system is used
in Section 6 to investigate the benefits of our approach on real data.
Finally, Section 7 concludes the paper with some final remarks.

2. Problem description

We consider a two-stage generation scheduling problem consisting
of a forward power dispatch and a real-time balancing phase. The
forward dispatch is decided some time prior to the actual delivery of
energy, for instance, from 15 min to 36 h in advance. The forward
dispatch is required to decide the output levels of inflexible generating
units (e.g. nuclear-based power plants) that need advance planning due
to technical limits such as ramping constraints or minimum times. The
real-time balancing phase processes the energy imbalances with respect
to the forward production schedule. The real-time balancing reschedul-
ing aims at adjusting the output of flexible generating units (such as
gas-based power plants) that can quickly deviate from the forward
schedule to ensure the equilibrium between electricity production and
consumption. More details about the two-stage generation scheduling
problem used in this paper can be found in Morales et al. [3]

In our framework, the forward stage first determines the power
dispatch that minimizes the anticipated electricity production costs by
solving

min
𝐳F

𝑓obj(𝐳F, �̂�) (1a)

s.t. 𝑓 gen(𝐳F, �̂�) ≤ 0 (1b)

𝑓net(𝐳F, �̂�) ≤ 0, (1c)

where 𝐳F denotes the scheduling decisions (such as the dispatch of
thermal generating units and the consumption of dispatchable loads)
and �̂� represents a point or single-value estimate of the uncertain pa-
rameters (in our case, the net demand, given as the difference between
the non-dispatchable load and the weather-driven renewable power
generation). Objective function (1a) determines the forward system
operating costs, while the generic constraints (1b) and (1c) enforce
the technical limitations of the generating units and the network,
respectively.

Since the net demand is uncertain, the scheduling decisions that

results from the forward problem (1) are to be adjusted during the
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real-time operation of the power system to accommodate the even-
tual net-demand value that is realized. This adjustment is conducted
through the following generic real-time balancing problem:

min
𝐳B

𝑔obj(𝐳F, 𝐳B, 𝐲) (2a)

s.t. 𝑔gen(𝐳F, 𝐳B, 𝐲) ≤ 0 (2b)

𝑔net(𝐳F, 𝐳B, 𝐲) ≤ 0, (2c)

where 𝐳B symbolizes the adjustment variables in relation to the for-
ward decisions 𝐳F–here treated as a known and fixed input vector
coming from (1)– and 𝐲 represents the eventually realized value of
the uncertain parameters. The objective function (2a) includes both the
forward dispatch cost (which, at this point, is known and constant and,
therefore, could be removed from the minimization) and the imbalance
cost caused by unexpected net-load variations that occur very close to
the real-time operation of the system. Similarly to problem (1), the
constraints (2b) and (2c) enforce the technical limitations of the gener-
ating units and the network, respectively. As customary, the objective
function and constraints of models (1) and (2) are well known and
properly defined.

Morales et al. [6] show that the value �̂� of the net demand that is
used in the forward scheduling problem (1) may have a major impact
on the subsequent balancing costs (2a). Current practice, however, is
content with a simple and direct solution, which is to take �̂� as an
estimate of the expectation of the net demand 𝐲 conditional on all the
information at the forecaster’s disposal. This information is generally
known as context. Yet, this expectation is oblivious to the minimization
of the balancing costs that drives the real-time balancing problem (2)
and therefore, may turn out to be highly suboptimal. In other words,
the conditional expectation overlooks the typical asymmetries affecting
the minimization of the balancing costs, such as the fact that the
distribution of the renewable generation is often skewed and that the
costs of supplying upward and downward balancing energy are usually
different.

Instead of employing the conditional expectation of the uncertain
parameters 𝐲 as the estimate �̂� used in the forward scheduling prob-
lem (1), we propose a regression procedure that provides an alternative
value for �̂� that explicitly accounts for the potential impact of the un-
certain parameters on the subsequent real-time balancing problem (2).
This alternative value is what is called a prescription and a procedure to
obtain it runs as follows. Suppose we have a sample of 𝑁 data points
expressed in the form {(𝐱𝑖, 𝐲𝑖)}𝑖∈ ∶= {(𝐱1, 𝐲1),… , (𝐱𝑖, 𝐲𝑖),… , (𝐱𝑁 , 𝐲𝑁 )},

here 𝐱 ∈ R𝑝 is a vector of features or covariates making up the
ontext and 𝐲 ∈ R𝑚 is a vector of uncertain parameters. Our objective
s to utilize said sample to infer a functional relation �̂� = ℎ(𝐱) with
∶ R𝑝 → R𝑚 such that, given the context 𝐱, the provided prescription

̂ is trained to deliver the minimum total system costs in expectation
hen inserted into the forward scheduling problem (1).

Now suppose that the prescriptive function ℎ is parameterized on
a coefficient vector 𝒒 of appropriate dimension, we propose to train
ℎ𝒒(⋅), i.e., to estimate 𝒒, by way of the following bilevel optimization
roblem:

min
,𝐳F𝑖 ,𝐳

B
𝑖

1
| |

∑

𝑖∈
𝑔obj(𝐳F𝑖 , 𝐳

B
𝑖 , 𝐲𝑖) (3a)

s.t. 𝑔gen(𝐳F𝑖 , 𝐳
B
𝑖 , 𝐲𝑖) ≤ 0, ∀𝑖 ∈  (3b)

𝑔net(𝐳F𝑖 , 𝐳
B
𝑖 , 𝐲𝑖) ≤ 0, ∀𝑖 ∈  (3c)

𝐳F𝑖 ∈ {arg min
𝐳

𝑓obj(𝐳, ℎ𝒒(𝐱𝑖)) (3d)

s.t. 𝑓 gen(𝐳, ℎ𝒒(𝐱𝑖)) ≤ 0 (3e)

𝑓net(𝐳, ℎ𝒒(𝐱𝑖)) ≤ 0},∀𝑖 ∈  . (3f)

Essentially, the bilevel program (3) seeks the 𝒒-parameterized pre-
scriptive function ℎ𝒒(⋅) that minimizes the empirical expectation of
the total dispatch and re-dispatch costs over the data set {(𝐱 , 𝐲 )} .
3

𝑖 𝑖 𝑖∈
For this purpose, it replicates, per data point {(𝐱𝑖, 𝐲𝑖)}, the sequential
two-stage scheduling process consisting of the forward power dispatch
(3d)–(3f) and the subsequent balancing re-dispatch (3a)–(3c). From
a statistical point of view, problem (3) takes the form of an empirical
risk minimization problem and as such, is amenable to regularization and
robustification [19], admitting strategies for feature selection too.

Depending on the nature of variables 𝐳F, 𝐳B and functions 𝑓obj,
𝑓 gen, 𝑓net, 𝑔obj, 𝑔gen, 𝑔net, and ℎ𝒒 , the difficulty of solving the bilevel
optimization problem (3) can vary significantly. For instance, if the
forward scheduling decisions 𝐳F include binary variables representing
the on/off status of thermal generating units, then computing the global
optimal solution of the bilevel problem is tremendously challenging
as discussed in Fanghänel and Dempe [20]. Likewise, even in the
case that all scheduling decisions 𝐳F are continuous, the lower-level
problem (3d)–(3f) can be non-convex if constraints 𝑔net account for
he nonlinear AC power flow equations. In that case too, computing
he global optimal solution of (3) is also a very challenging task. If
ll variables are continuous and all functions affine, then the bilevel
ptimization problem (3) can be solved by replacing the lower-level
roblem with its equivalent KKT optimality conditions [11]. Said strat-
gy, however, requires additional binary variables and large enough
onstants that increase the numerical instability and the computational
urden of the resulting single-level optimization problem. Besides, as
iscussed in Pineda and Morales [21], Kleinert et al. [22], existing
ethods to validate these upper bounds may fail and lead to suboptimal

olutions.
Given that the development of methods to solve a generic bilevel

rogram like (3) is outside the scope of this paper, in the next sec-
ion we make use of some simplifying assumptions that allow us to
fficiently solve the bilevel problem (3) to global optimality using
ommercially available software for mixed-integer programming. In
ractice, we may not need to solve the estimation problem (3) to global
ptimality. In effect, finding a good feasible solution to this problem
ay be enough to reap the bulk of the benefits of our approach. This

nables the use of heuristics to solve problem (3).
We also remark that some system operators are indeed aware of

he importance of scheduling generation taking into account the sub-
equent real-time operation of the power system. For example, the
alifornia Independent System Operator (CAISO) manually modifies the
load forecast, anticipating the ramping capacity needs based on the
operator’s experience [23]. This is explicitly explained in California In-
dependent System Operator [24] as follows: ‘‘Operators in the ISO and
energy imbalance market can manually modify load forecasts used in
the market through load adjustments (...) to increase ramping capacity
within the ISO by (...) committing additional units’’. Our approach is
not only consistent with this modus operandi, but also supports it with
a scientifically grounded methodology to modify the load forecast.

Once the bilevel problem (3) is solved and the prescriptive function
ℎ𝒒 is obtained, the forward dispatch for an unseen value of the context
𝐱 can be easily determined by solving the following deterministic
optimization problem:

min
𝐳F

𝑓obj(𝐳F, ℎ𝒒(𝐱)) (4a)

s.t. 𝑓 gen(𝐳F, ℎ𝒒(𝐱)) ≤ 0 (4b)

𝑓net(𝐳F, ℎ𝒒(𝐱)) ≤ 0. (4c)

It is important to realize that the strategy we propose is completely
in contrast with those other approaches that make use of stochastic
programming to simultaneously decide the forward scheduling decisions
and the real-time adjustments, see, e.g., Aghaei et al. [25], Pritchard
et al. [26], Zavala et al. [27]. Indeed, our approach builds upon the fact
that, in practice, the forward dispatch and the subsequent balancing re-
dispatch are sequentially optimized. The next section elaborates on the
simplifying hypotheses we make to transform the bilevel program (3)

into a single-level mixed-integer optimization problem.
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3. Contextual merit-order dispatch

For the remainder of this article, we assume the following.

• Forward dispatch decisions and real-time balancing actions are all
modeled by continuous variables, that is, on/off binary variables
are not considered.

• The inter-temporal constraints of power production portfolios,
such as ramping limits and minimum-up and -down times, are not
explicitly accounted for in the generation scheduling problem.

• Network constraints are only taken care of in the real-time stage
using a pipeline representation of the transmission network. That
is, constraints (3f) are removed from the bilevel optimization
problem (3).

• All power loads are assumed to be non-dispatchable and there-
fore, the objective function of the two-stage scheduling prob-
lem boils down to the minimization of the generating cost of
dispatchable units.

With these assumptions in place, the forward scheduling prob-
lem (1) is simplified to a merit-order dispatch whereby generators
are scheduled based on their marginal production costs, as explained
later. Furthermore, with the pipeline representation of the transmission
network, our setup becomes more aligned with European practices,
in keeping with the case study we present in Section 6. Likewise, we
consider non-dispatchable loads only just to simplify the subsequent
exposition of our approach. Finally, by way of the rest of the as-
sumptions, the bilevel model (3) becomes simpler and computationally
manageable.

Nevertheless, any of these assumptions could also be dropped at
the expense of increasing the complexity of this model as discussed at
the end of Section 2. For instance, if on/off commitment decisions
of the generating units are considered, solving the bilevel model (3)
requires specific solution methodologies depending on the application.
If all decisions are continuous but additional intertemporal or network
constraints are included in the day-ahead stage, then the single-level
reformulation of model (3) requires dual variables of the lower-level
constraints and large enough constants, which increases its computa-
tional burden and endangers optimality guarantees. Finally, the use of
a linearized (e.g., DC) power flow model in the real-time operational
stage (2) of the generation scheduling problem would not have any
qualitative impact on the computational complexity of the estimation
problem (3).

All in all, the particular forward generation scheduling problem we
consider in this paper is given as follows:

min
𝑝𝑔 ,𝑔∈𝐺

∑

𝑔∈𝐺
𝐶𝑔𝑝𝑔 (5a)

s.t.
∑

𝑔∈𝐺
𝑝𝑔 = �̂� (5b)

0 ≤ 𝑝𝑔 ≤ 𝑃 𝑔 , ∀𝑔 ∈ 𝐺, (5c)

where 𝑝𝑔 , 𝑃 𝑔 , 𝐶𝑔 ∈ R+ and 𝐺 ⊆ N is the set of generation units (it
can also represent generation blocks with different cost). Each unit 𝑔
has associated a production level 𝑝𝑔 and a marginal cost 𝐶𝑔 . Eq. (5b)
enforces the aggregate power balance, with parameter �̂� ∈ R+ repre-
senting a point or single-value estimate of the total net demand 𝐿 ∈ R+

n the system, which is unknown at the moment the forward scheduling
s determined and thus, is to be treated as a random variable. Lastly,
q. (5c) sets the capacity of each generation unit.

The linear program (5) stands for an economic dispatch problem
hereby generation units are dispatched following a cost-merit order,
eaning that units 𝑔 with a lower cost 𝐶𝑔 are dispatched first. This

s illustrated in Fig. 1 for four units with capacities 𝑃 1, 𝑃 2, 𝑃 3, 𝑃 4
nd marginal costs 𝐶1, 𝐶2, 𝐶3, 𝐶4, respectively. The vertical solid line
epresents the total net demand �̂� and the shadow area indicates the
ptimal dispatch computed by model (5). Since units 1 and 2 are the
4

Fig. 1. Illustration of a cost-merit order dispatch. The vertical solid line represents the
total net demand �̂� and the shadow area represents the optimal dispatch computed by
model (5).

cheapest ones, their dispatch is set at their maximum capacity. Unit 3
is partially dispatched until the demand is fulfilled. Unit 4 is the most
expensive one and therefore, is left out of the demand supply. To ease
the discussion that follows, hereinafter we consider that the units in
the set 𝐺 are ordered such that 𝑔 < 𝑔′ if and only if 𝐶𝑔 < 𝐶𝑔′ . Hence, if
we denote the optimal solution to (5) as {𝑝∗𝑔}𝑔∈𝐺, it holds that 𝑝∗𝑔′ > 0
mplies that 𝑝∗𝑔 = 𝑃 𝑔 , whenever 𝑔 < 𝑔′.

Since the system net demand is uncertain, the power dispatch that
results from the forward problem (5) is to be adjusted during the real-
time operation of the power system to satisfy the actual net demand.

he aim of the real-time balancing problem is to correct the imbalance
f the system in a cost-efficient manner. To this end, we consider a
ipeline model where 𝐺(𝑏) and 𝐷(𝑏) represent the set of generation
nits and loads that are connected to node 𝑏, in that order. With some
buse of notation, let (𝐿𝑑𝑖 ∈ R)𝑑∈𝐷(𝑏) be a certain realization 𝑖 ∈ 

of the net load 𝑑 ∈ 𝐷(𝑏) connected to node 𝑏 of the system. We also
define 𝑜(𝑙) and 𝑒(𝑙) as the origin and ending nodes of line 𝑙, respectively.

hus, {𝑙 ∶ 𝑜(𝑙) = 𝑏} and {𝑙 ∶ 𝑒(𝑙) = 𝑏} represent the subset of lines that
tart or end at node 𝑏, in that order. Once introduced this notation, the
eal-time balancing problem under consideration renders

in
𝛯

𝐺
∑

𝑔=1
(𝐶u

𝑔 𝑟
u
𝑔 − 𝐶d

𝑔 𝑟
d
𝑔 ) (6a)

s.t. 0 ≤ 𝑝∗𝑔 + 𝑟u
𝑔 − 𝑟d

𝑔 ≤ 𝑃 𝑔 , ∀𝑔 ∈ 𝐺 (6b)

0 ≤ 𝑟u
𝑔 ≤ 𝑅u

𝑔 , ∀𝑔 ∈ 𝐺 (6c)

0 ≤ 𝑟d
𝑔 ≤ 𝑅d

𝑔 , ∀𝑔 ∈ 𝐺 (6d)
∑

𝑔∈𝐺(𝑏)
(𝑝∗𝑔 + 𝑟u

𝑔 − 𝑟d
𝑔 ) =

∑

𝑑∈𝐷(𝑏)
𝐿𝑑𝑖 +

∑

𝑙∶𝑜(𝑙)=𝑏
𝑓𝑙 −

∑

𝑙∶𝑒(𝑙)=𝑏
𝑓𝑙 , ∀𝑏 ∈ 𝐵 (6e)

|𝑓𝑙| ≤ 𝐹 𝑙 , ∀𝑙 ∈ 𝛬, (6f)

where 𝛯 ∶= {𝑟u
𝑔 , 𝑟

d
𝑔 ∈ R+, 𝑔 ∈ 𝐺, 𝑓𝑙 ∈ R, 𝑙 ∈ 𝛬} is the set of decision

variables and 𝑝∗𝑔 , 𝑅
u
𝑔 , 𝑅

d
𝑔 , 𝐶

u
𝑔 , 𝐶

d
𝑔 , 𝑃 𝑔 , 𝐹 𝑙 ∈ R+ and 𝐿𝑑𝑖 ∈ R are known

parameters.
The power output of each flexible unit 𝑔 may be increased by an

amount 𝑟u𝑔 , based on the marginal cost for upward balancing energy
𝐶u
𝑔 , or decreased by an amount 𝑟d𝑔 of downward balancing energy,

which entails a marginal benefit (linked to fuel-cost savings) of 𝐶d
𝑔 .

These actions are driven by the nodal power balance equation (6e)
and the minimization of the total balancing costs (6a). Naturally, the
amount of balancing energy provided from each generation unit 𝑔,
either upward or downward, must be such that the eventual power
output from that unit (taking into account the forward optimal schedule
𝑝∗) is positive and lower than its capacity 𝑃 , as stated in Eq. (6b).
𝑔 𝑔
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Moreover, constraints (6c) and (6d) limit the amount of up- and down-
balancing power that can be deployed from each generation unit to
𝑅u
𝑔 and 𝑅d

𝑔 , which are indicative of how flexible the underlying asset
actually is. Finally, line capacity limits are imposed by (6f), with 𝑓𝑙
being the power flow through line 𝑙 and 𝐹 𝑙 the capacity of the line.

Now suppose we have a sample of 𝑁 data points expressed in the
form {(𝐱𝑖, 𝐿𝑖)}𝑖∈ ∶= {(𝐱1, 𝐿1),… , (𝐱𝑖, 𝐿𝑖),… , (𝐱𝑁 , 𝐿𝑁 )}, where 𝐱 ∈ R𝑝

is a vector of features or covariates making up the context and 𝐿 ∈ R+

is the random net system demand. As stated in the previous section, our
objective is to utilize said sample to infer a functional relation �̂� = ℎ(𝐱),
ℎ ∶ R𝑝 → R+, such that, given the context 𝐱, the provided prescription
�̂� is trained to deliver the minimum total system costs in expectation
when inserted into the power balance equation (5b). For simplicity,
and because it proves to perform very satisfactorily in the numerical
experiments of Section 6, we restrict ℎ to the family of affine linear
functions, i.e., ℎ(𝐱) = 𝐪⊤ 𝐱, with 𝐪 ∈ R𝑝 and with one of the features, say
𝑥1, fixed to one. This selection, together with the particular structure of
problems (5) and (6) circumvent the need for applying the conventional
procedures to solve the bilevel problem (3). Instead, to determine 𝐪, we
solve the following empirical risk minimization problem:

min
𝐪, 𝛶

1
𝑁

∑

𝑖∈

∑

𝑔∈𝐺
(𝐶𝑔𝑝𝑔𝑖 + 𝐶u

𝑔 𝑟
u
𝑔𝑖 − 𝐶d

𝑔 𝑟
d
𝑔𝑖) (7a)

s.t. 0 ≤ 𝑝𝑔𝑖 + 𝑟u
𝑔𝑖 − 𝑟d

𝑔𝑖 ≤ 𝑃 𝑔𝑖, ∀𝑖 ∈  , ∀𝑔 ∈ 𝐺 (7b)

0 ≤ 𝑟u
𝑔𝑖 ≤ 𝑅u

𝑔 , ∀𝑖 ∈  , ∀𝑔 ∈ 𝐺 (7c)

0 ≤ 𝑟d
𝑔𝑖 ≤ 𝑅d

𝑔 , ∀𝑖 ∈  , ∀𝑔 ∈ 𝐺 (7d)
∑

𝑔∈𝐺(𝑏)
(𝑝𝑔𝑖 + 𝑟u

𝑔𝑖 − 𝑟d
𝑔𝑖) =

∑

𝑑∈𝐷(𝑏)
𝐿𝑑𝑖 +

∑

𝑙∶𝑜(𝑙)=𝑏
𝑓𝑙𝑖 −

∑

𝑙∶𝑒(𝑙)=𝑏
𝑓𝑙𝑖,∀𝑖 ∈  ,∀𝑏 ∈ 𝐵 (7e)

|𝑓𝑙𝑖| ≤ 𝐹 𝑙 , ∀𝑖 ∈  , ∀𝑙 ∈ 𝛬 (7f)
∑

𝑔∈𝐺
𝑝𝑔𝑖 = �̂�𝑖, ∀𝑖 ∈  (7g)

�̂�𝑖 =
𝑝
∑

𝑗=1
𝑞𝑗𝑥𝑗𝑖, ∀𝑖 ∈  (7h)

𝑢𝑔𝑖𝑃 𝑔 ≤ 𝑝𝑔𝑖 ≤ 𝑢(𝑔−1)𝑖 𝑃 𝑔 , ∀𝑖 ∈  , ∀𝑔 ∈ 𝐺 ∶ 𝑔 > 1 (7i)

𝑢𝑔𝑖𝑃 𝑔 ≤ 𝑝𝑔𝑖 ≤ 𝑃 𝑔 , ∀𝑖 ∈  , 𝑔 = 1 (7j)

𝑢𝑔𝑖 ≤ 𝑢(𝑔−1)𝑖, ∀𝑖 ∈  , ∀𝑔 ∈ 𝐺 ∶ 𝑔 > 1 (7k)

𝑢𝑔𝑖 ∈ {0, 1}, ∀𝑖 ∈  , ∀𝑔 ∈ 𝐺, (7l)

where 𝛶 ∶= {𝑝𝑔𝑖, 𝑟u
𝑔𝑖, 𝑟

d
𝑔𝑖, 𝑢𝑔𝑖, 𝑓𝑙𝑖}{𝑖,𝑔,𝑙}. Intuitively, the estimation prob-

lem (7) computes the coefficient vector 𝐪 = (𝑞1,… , 𝑞𝑝) such that the
total system cost averaged over the sample is minimized. This is the
reason why all the decision variables related to the power dispatch and
the provision of regulating power, i.e., 𝑝𝑔𝑖, 𝑟u

𝑔𝑖, 𝑟
d
𝑔𝑖, appear augmented

with the sample index 𝑖 in (7). Constraints (7b)–(7g) serve exactly the
same purpose as their analogs in (5) and (6). Eq. (7h) expresses the
prescription �̂�𝑖 of the net system demand 𝐿 under context 𝐱𝑖 as an
affine function of the features, whose coefficients are to be computed
by solving (7). Finally, the set of constraints (7i)–(7l) guarantee that the
power dispatch {𝑝𝑔𝑖}𝑔∈𝐺 coming from (7) for each sample 𝑖 is optimal
in the forward problem (5), that is, these constraints constitute the
optimality conditions of the forward dispatch problem (5). Accordingly,
these constraints enforce, for each sample 𝑖, the merit-order dispatch
of the generation units {𝑝𝑔𝑖}𝑔∈𝐺, forcing that 𝑝𝑔′𝑖 > 0 ⟹ 𝑝𝑔𝑖 = 𝑃 𝑔 ,
for all 𝑔 ∈ 𝐺 ∶ 𝑔 < 𝑔′. Importantly, this formulation of the optimality
conditions of problem (5) neither necessitates dual variables, nor large
enough constants, both of which are frequently used to solve lineal
bilevel programs [21].

Problem (7) is, therefore, a mixed-integer linear program due to the
binary character of variables 𝑢𝑔𝑖, which are used to impose the cost-
merit order. As such, this problem can be solved using commercially
available solvers such as CPLEX [28]. Once we obtain the optimal

∗ ̂
5

coefficient vector 𝐪 , we can produce the net-demand prescription 𝐿 =
Fig. 2. Three-bus power system with one random demand and two thermal generators.

(𝐪∗)⊤𝐱, which is to be fed into (5b) under the context 𝐱 to readily obtain
he forward dispatch decisions.

Now, let 𝐿F denote the expected net-demand value (which is typ-
cally known as a point prediction of the net demand). Even though

this expected value has been and is normally used as �̂� in the forward
problem (5), it is not consistent with the plausible asymmetry in the
cost of dealing with the subsequent prediction errors through the real-
time problem (6). Indeed, it is most often the case that the cost of
increasing the electricity production in real time is different from that
of diminishing it. In this line, problem (7) offers a handy way to
construct a new estimate �̂� to be used in (5) that takes into account the
referred cost asymmetry. Indeed, the training problem (7) can be used
in practice to upgrade the point prediction 𝐿F to a prescription for �̂�,

hich does account for the asymmetry of the power system’s balancing
osts. For this, it suffices to include 𝐿F as one of the features that are
art of the context 𝐱. This is what we do in the following example
nd in the case study of Section 6. That said, the context 𝒙 could
nclude any other information that could be deemed useful to improve
he prescription �̂�, for instance, the estimated standard deviation or
uantiles of the conditional net demand, if these were available through
probabilistic forecast.

We finish this discussion with an important remark. Despite the
act that constraints (7i)–(7l) turn our training problem (7) into a
ixed-integer program, enforcing the cost-merit order through these

onstraints is critical to train an affine model ℎ(𝐱) = 𝐪⊤𝐱 that renders
economic benefits within the two-stage scheduling problem described
in Section 2. Furthermore, even though the training problem (7) may
require some computational effort to be solved, the affine model it de-
livers is intended to remain effective for a period of time (e.g., weeks or
months), and hence, the task of solving the mixed-integer program (7)
only has to be undertaken once in a while. That said, the parameter
vector 𝐪 is to be re-estimated offline on a regular basis to capture
changes in the dynamics of the electricity market and the power system
(for example, to account for seasonal variations).

4. Example

Consider the small three-bus system depicted in Fig. 2, which is
composed of one random demand 𝐿 at bus 3, two thermal generators,
𝐺1 and 𝐺2, at buses 1 and 2, respectively; and two lines, Line 1 and
Line 2, connecting nodes 1 and 3, and buses 2 and 3, in that order.

The technical and economic characteristics of generating units 𝐺1
and 𝐺2 are collated in Table 1. Note that, in comparison, unit 𝐺1 is
smaller and cheaper than 𝐺2. In contrast, the latter is significantly more
flexible as it features re-dispatch costs, i.e., 𝐶u

𝑔 and 𝐶d
𝑔 , that are much

more competitive. We remark that 𝐶d
1 = −20 e/MWh implies that

this power unit must be paid 20 e for each MWh its production is
decreased in the real-time stage. Unless stated otherwise, line capacities
are assumed infinite.

The only demand in the system, namely, 𝐿, is random. Suppose we
have a sample {(𝐱𝑖, 𝐿𝑖)}𝑁𝑖=1, where the feature 𝐱𝑖 = (1, 𝐿F

𝑖 )
⊤. Again, 𝐿F

𝑖

represents a classical point prediction of the demand 𝐿 built out of
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Table 1
Technical and economic specifications of power plants.
Marginal costs are given in e/MWh and capacities in MW.

𝐶𝑔 𝐶u
𝑔 𝐶d

𝑔 𝑃 𝑔 𝑅u
𝑔 𝑅d

𝑔

𝐺1 5 30 −20 60 60 60
𝐺2 15 20 10 150 150 150

whichever available information the forecaster had at her disposal to
produce it by way of whatever machine learning or forecasting tech-
nique she could have developed to that end. We stress that this setup
is very common in reality, where power system operators often count
on specialized software to produce good point predictions 𝐿F

𝑖 . Our
objective is to use our methodology and training model (7) described
in Section 3 to recycle this standard point prediction with the aim of
fabricating a better value for �̂� in Eq. (5b).

For this small example, we generate samples in the form {(𝐱𝑖, 𝐿𝑖)}𝑁𝑖=1
s follows. We consider that the per-unit (p.u.) point forecast of the net
emand 𝐿 follows a uniform distribution between 𝑎 and 𝑏. Therefore,
F ∼ 𝐿 ⋅ 𝑈 (𝑎, 𝑏), where 𝐿 is a factor representing the maximum power

oad at bus 3. We further assume that the per-unit net demand itself
∕𝐿 follows a Beta distribution with mean equal to 𝐿F∕𝐿 and standard

deviation 𝜎. Hence, 𝐿 ∼ 𝐿 ⋅ Beta(𝛼, 𝛽), where the scale and shape
parameters 𝛼 and 𝛽 are related to the mean 𝐿F∕𝐿 and the standard
deviation 𝜎 as follows:

𝐿F

𝐿
= 𝛼

𝛼 + 𝛽
, (8a)

𝜎2 =
𝛼 ⋅ 𝛽

(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1)
. (8b)

Eqs. (8) guarantee that the point prediction 𝐿F is an unbiased esti-
mator of the conditional net demand 𝐿. In this illustrative example we
fix 𝜎 = 0.075 p.u. and generate 20 samples {(𝐱𝑖, 𝐿𝑖)}𝑁𝑖=1 with 𝑁 = 750.
Each 𝐿F

𝑖 in 𝐱𝑖 is randomly drawn from 𝐿 ⋅ 𝑈 (𝑎, 𝑏). Given 𝐿F
𝑖 ∕𝐿 and 𝜎,

nd provided that the system of nonlinear equations (8) has a solution
notice that 𝛼, 𝛽 > 0), parameters 𝛼𝑖 and 𝛽𝑖 can be computed as

𝛼𝑖 = − 1
𝜎2

⎛

⎜

⎜

⎝

(

𝐿F
𝑖

𝐿

)2

−
𝐿F
𝑖

𝐿
+ 𝜎2

⎞

⎟

⎟

⎠

𝐿F
𝑖

𝐿
, (9a)

𝛽𝑖 =
1
𝜎2

⎛

⎜

⎜

⎝

(

𝐿F
𝑖

𝐿

)2

−
𝐿F
𝑖

𝐿
+ 𝜎2

⎞

⎟

⎟

⎠

(

𝐿F
𝑖

𝐿
− 1

)

. (9b)

Each 𝐿𝑖 is then randomly taken from 𝐿 ⋅ Beta(𝛼𝑖, 𝛽𝑖). We take the first
00 data points of each sample as the training set and the last 250 as
he test set.

We postulate the affine model �̂� = 𝑞0 + 𝑞1𝐿F and solve problem (7)
on the training set to determine coefficients 𝑞0 and 𝑞1. Finally, to
evaluate the performance of the affine model, for each data point
(𝐱𝑖, 𝐿𝑖) in the test set, we simulate the sequential forward and real-time
roblems (5) and (6), with �̂� = 𝑞0 + 𝑞1𝐿F

𝑖 in (5b), and 𝐿𝑖 in (6e).
We then compute the sum of the forward and real-time production
costs averaged over the 250 data points in the test set. This mean sum
is further averaged over the 20 samples we generate. Our approach,
which uses a prescription of the system net demand for scheduling
generation, is referred to as P-SC (from prescriptive scheduling). We
compare it with the customary practice of directly using the point
forecast 𝐿F

𝑖 as �̂� in (5b), which is referred to as F-SC (from forecast
scheduling). Notice that our approach boils down to the conventional
one if 𝑞0 = 0 and 𝑞1 = 1. Finally, the relative cost difference between
these approaches is denoted as 𝛥cost.

In the results we discuss next, we set a base case with 𝑎 = 0.03,
𝑏 = 0.97, 𝐿 = 100 MW, and the technical and economic parameters of
he three-bus system described above.1 We then define variants of this
ase by changing one or some of those parameters.

1 We take 𝑎 = 0.03 and 𝑏 = 0.97 pu to ensure that (8) has a real solution.
6

4.1. Impact of power regulation costs

Table 2 provides the cost savings that our approach achieves with
respect to the conventional one under different 𝐺2’s power regulation
costs. For completeness, this table also includes the average cost of
these two approaches for the test set and the values of the intercept
𝑞0 and the linear coefficient 𝑞1 of the affine model for �̂� our approach
utilizes. These values represent expectations over the test data points
of the 20 samples generated as indicated above. The first row in the
table corresponds to the base case.

Interestingly, our approach systematically corrects the point fore-
cast of the net demand 𝐿 downwards, with a linear coefficient 𝑞1 which
s, on average, lower than or equal to 1, and a negative intercept 𝑞0 in

expectation. This is so because it is economically advantageous for the
system to cope with positive net demand errors (i.e., eventual demand
increases) by deploying upward balancing energy from unit 𝐺2. Indeed,
the alternative would be to deal with negative demand errors by down-
regulating (i.e., by providing downward balancing energy) with unit
𝐺1, a recourse that is clearly much more expensive.

To further elaborate on this phenomenon, the second row in Table 2
provides results for a variant of the base case in which 𝐶𝑢

2 has been
decreased from 20 to 15 e/MWh. Now that up-regulating (i.e., pro-
viding upward balancing energy) through unit 𝐺2 is even cheaper,
the downward correction of our approach to the net demand point
forecast is more pronounced and the associated cost savings due to
said phenomenon become larger. On the contrary, if it is the provi-
sion of downward balancing energy by 𝐺2 what becomes 5 e/MWh
heaper and, hence, free (see third row of Table 2), the net demand
oint forecast is barely corrected and the costs savings brought by
ur approach (with regard to F-SC) become smaller as a result. Note
hat correcting the point forecast upwards in this case (in an attempt
o profit from the free downward balancing energy provided by 𝐺2)
ould be counterproductive in reality, as the system may risk having to

esort to the high-cost downward balancing energy of unit 𝐺1 in those
ikely scenarios in which the net demand ends up being lower than the
apacity of this unit.

At this point, it may be instructive to see what happens when
e drop constraints (7i)–(7l) from the mixed-integer program through
hich we train the affine model �̂� = 𝑞0 + 𝑞1𝐿F. This is indeed
ery tempting, because, if these constraints are removed, the train-
ng model (7) becomes a very pleasant linear program, similar to
he stochastic-programming-based formulation advocated, for instance,
n Pritchard et al. [26](with the data points in (7) playing the role of the
‘scenarios’’ in Pritchard et al. [26]). However, these constraints ensure
he optimality of the lower-level problem (3d)–(3f) and guarantee that
he above affine model is learned following a cost-merit-order principle.
herefore, if these constraints are dropped from (7), the affine model
̂ = 𝑞0 + 𝑞1𝐿F is not trained for the target task. This is exactly what
able 3 shows. This table is analogous to Table 2, but for a linear
raining model made up of constraints (7a)–(7h) only. We denote this
pproach as L-SC from ‘‘Linear’’. The training model L-SC ignores the
erit order and hence, takes for granted that the system can benefit

rom the cheap downward balancing energy of unit 𝐺2 by allocating
non-zero production to this unit in the forward problem regardless

f whether unit 𝐺1 has been fully dispatched or not. This is, however,
n strategy forbidden by the problem, which explains the poor actual
erformance of L-SC. This phenomenon is especially notorious for the
ase 𝐶𝑑

2 = 15 e/MWh, in which the demand is heavily overestimated
the mean of the estimated demand is increased by 45%) and only the
ree downward regulation from unit 𝐺2 is used.

Therefore, due to the catastrophic impact that removing the merit-
rder constraints (7i)–(7l) from the training model (7) may have on the
ctual performance of the obtained affine model, the strategy L-SC is
o longer considered in the rest of our analysis.
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Table 2
Cost savings in percentage under different values of 𝐺2 ’s balancing energy costs 𝐶u

2
nd 𝐶d

2 (both given in e/MWh).

𝐶2 𝐶u
2 𝐶d

2 F-SC cost P-SC cost 𝛥cost 𝑞0 𝑞1
15 20 10 418.59e 416.91e 0.40% −0.277 0.982
15 15 10 404.40e 391.88e 3.10% −0.253 0.899
15 20 15 413.65e 412.93e 0.17% −0.285 1.009

Table 3
Cost savings in percentage under different values of 𝐺2 ’s balancing energy costs 𝐶u

2 and
d
2 (both given in e/MWh). Constraints (7i)–(7l) have been dropped from the training
odel (7).
𝐶2 𝐶u

2 𝐶d
2 F-SC cost L-SC cost 𝛥cost 𝑞0 𝑞1

15 20 10 418.59e 444.05e −6.08% 4.967 0.964
15 15 10 404.40e 418.84e −3.57% 5.490 0.883
15 20 15 413.65e 680.92e −64.61% 36.807 0.722

Table 4
Impact of grid congestion on cost savings.
𝐹 1 (MW) F-SC cost P-SC cost 𝛥cost 𝑞0 𝑞1
∞ 418.59e 416.91e 0.40% −0.277 0.982
30 1034.70e 724.46e 29.98% 15.725 0.175

4.2. Impact of grid congestion

Here we introduce a variant of the base case in which the capacity
of Line 1 has been set to 30 MW. Recall that the capacity of this line in
the base case is unlimited, which we denote by symbol ‘‘∞’’ in Table 4.
The results collated in this new table are analogous to those in Table 2.

Recall that the estimation problem (7), whereby we determine the
affine function �̂� = 𝑞0 + 𝑞1𝐿F, explicitly accounts for network con-
straints. In contrast, the computation of the net-demand point forecast
𝐿F is typically based on statistical criteria alone and, consequently,
ignores any possible limiting effect of the grid.

When the capacity of Line 1 is limited to 30 MW, our approach
strongly corrects the point prediction 𝐿F downwards, so that �̂� is kept
in between 16 and 32 MW approximately. Thus, unit 𝐺1 is dispatched
well below the expected demand. This is clever because, in doing so,
no (expensive) downward regulation from this unit has to be deployed
in real time to comply with the limiting capacity of Line 1. In this way,
the eventual realized demand at bus 3 can be satisfied, instead, with
cheaper up-regulation from unit 𝐺2 through Line 2. The ultimate result
is that using �̂�, given by our approach, in the forward problem (5) is
way more profitable than using the raw point forecast 𝐿F.

Based on this analysis, if network constraints were accounted for at
the day-ahead stage, that is, in the optimization problem (5), the cost
savings achieved by our approach would decrease, at the expense of
significantly complicating the resolution of the bilevel problem (3).

4.3. Impact of the peak demand

Now we change the peak demand and consider two variants of the
base case in which we take 𝐿 = 50 MW and 𝐿 = 150 MW (in the base
ase, 𝐿 = 100 MW). The results of this new analysis are compiled in
able 5.

Again, as in the analysis of the impact of 𝐺2’s balancing energy costs
in Section 4.1, our approach systematically corrects the net-demand
point forecast downwards to reduce the usage of down-regulation
from 𝐺1 in favor of the up-regulation from 𝐺2. However, the cost
savings achieved by our approach get diluted as the peak demand is
augmented. The reason for this is twofold. First, the probability of
events where the net demand takes on a value below the capacity of
unit 𝐺1 diminishes with growing 𝐿. For instance, when 𝐿 = 50 MW,
the probability that the net demand is smaller than the capacity of 𝐺1
s equal to one, which explains why our method delivers the highest
7



Table 5
Impact of peak demand.
𝐿 F-SC cost P-SC cost 𝛥cost 𝑞0 𝑞1
50 182.92e 181.55e 0.75% −0.138 0.982
100 418.59e 416.91e 0.40% −0.277 0.982
150 751.73e 750.54e 0.16% −0.421 0.997

Table 6
Impact of the net-demand regime.

U(a, b) F-SC cost P-SC cost 𝛥cost 𝑞0 𝑞1
U(0.03, 0.97) 418.59e 416.91e 0.40% −0.277 0.982
U(0.03, 0.50) 239.60e 234.54e 2.11% −0.102 0.917
U(0.50, 0.97) 587.82e 586.42e 0.24% −6.646 1.088

cost savings in this variant (from among the three cases considered in
this analysis). In contrast, as 𝐿 grows, that probability diminishes and
he cheaper downward balancing generation from 𝐺2 becomes more

available. Second, the balancing costs account for a lower percentage
of the total costs as the peak demand 𝐿 increases.

4.4. Impact of the net demand regime

We conclude this small example by studying how the net demand
regime affects the prescriptive power of the affine function �̂� = 𝑞0+𝑞1𝐿F

hat we determine by way of problem (7). To this end, we modify
he support of the uniform distribution from which the per-unit net-
emand point prediction is randomly drawn. Thus, we distinguish a
ow-demand regime, with 𝐿F ∼ 𝐿 ⋅ U(0.03, 0.5), and a high-demand
regime, with 𝐿F ∼ 𝐿⋅U(0.5, 0.97). We also consider the base case, where
𝐿F ∼ 𝐿 ⋅U(0.03, 0.97) and therefore, no demand regime is differentiated.
The corresponding results are provided in Table 6.

In line with the observations in the previous analysis of the im-
pact of the peak demand, under a low-demand regime, the expensive,
but flexible unit 𝐺2 is not dispatched in the forward problem. The
downward correction to the net-demand point forecast our approach
prescribes is then intended to benefit from the up-regulation provided
by 𝐺2, which is clearly more competitive than the down-regulation
offered by 𝐺1. The system features, therefore, a distinct cost asymmetry
given by the expensive downward balancing generation of 𝐺1 versus
the cheap upward balancing generation of 𝐺2. Our approach sees this
asymmetry and corrects the net-demand point forecast downwards
accordingly. In addition, since the beta distribution modeling the point
forecast error is right-skewed for low levels of demand, said correction
leads to substantial cost savings. In contrast, under a high-demand
regime, 𝐺2 is very likely to participate in the forward dispatch, whereas
there is a lower probability that 𝐺1 be needed to provide downward
balancing energy, since the distribution of the point forecast error is
left-skewed. Consequently, the cost structure of the system looks very
different under a high-demand regime, which prompts a quite different
affine function and reduces the cost savings obtained from our method.

Most importantly, in the base case, when no net-demand regime is
distinguished, most of the benefits our approach can potentially bring
for low values of net demand are lost. This motivates us to cluster
net-demand observations into different regimes and use optimization
problem (7) to compute a possibly different affine model in the form
�̂� = 𝑞0 + 𝑞1𝐿F for each demand regime, similarly to segmented
regression in classical statistics. This is formalized in the next section.

5. Data clustering and partitioning

Take  ∶= {1,… , 𝑖,… , 𝑁}, that is, the index set of the data sample
{(𝐱1, 𝐿1), …, (𝐱𝑖, 𝐿𝑖), …, (𝐱𝑁 , 𝐿𝑁 )} with 𝐱𝑖 ∈ R𝑝 and 𝐿𝑖 ∈ R+,∀𝑖 ∈

. We partition  into a collection { }𝐾 of 𝐾 subsets that are
𝑘 𝑘=1
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Table 7
Base and peak generation capacity (GW) installed per node of the European network.
Country AT BE BG CH CZ DE DK EE ES FI FR GB GR HR

Base 0.4 6.1 6.7 3.4 14.4 46 2.4 2 16.3 6.5 68.3 20.6 3.9 1.3
Peak 5.9 6.8 1 0.6 1.3 27.9 1.7 0.2 29.6 3.6 11.9 31.2 4.9 0.7

Country HU IE IT LT LU LV NL NO PL PT RO SE SI SK

Base 3.3 1.8 8.7 0 0 0 4.5 0 27.8 1.8 5.4 11.1 1.8 2.7
Peak 4.1 4.2 46.2 1.8 0.1 1.2 19.3 0 3.5 4.6 2.9 1.1 0.7 1.5
T
i
t
c
𝐪

pairwise disjoint and whose union is equal to  . Consider the one-to-
one mapping 𝜙 ∶  → {1, 2,… , 𝐾}, such that 𝜙(𝑖) = 𝑘 if data point
(𝐱𝑖, 𝐿𝑖) ∈ 𝑘. Therefore, 𝑘 ∶= {𝑖 ∈  ∶ 𝜙(𝑖) = 𝑘}.

We compute 𝐾 affine models of the form �̂� = 𝐪⊤𝑘 𝐱, 𝑘 ≤ 𝐾, by solving
the estimation problem (7) for each subset sample 𝑘. In practice, this
means replacing 𝑁 and  in (7) with |𝑘| and 𝑘, respectively.

To construct a meaningful mapping 𝜙, we employ the 𝐾-means algo-
rithm that is implemented in the Python package scikit-learn [29], using
the Euclidean distance. We note that, to construct 𝜙, this algorithm
receives the feature sample {𝐱}𝑖∈ as input. Once the mapping 𝜙 is
computed, it is used to determine the cluster to which a new feature
vector 𝐱 belongs. That cluster is the one that minimizes the distance
between its centroid and the feature vector 𝐱. That is, given a new
observation of 𝐱, say 𝐱𝑁+1, 𝜙(𝐱𝑁+1) = 𝑘 means that 𝐱𝑁+1 is predicted
to belong to partition 𝑘, and therefore, �̂� = 𝐪⊤𝑘 𝐱𝑁+1 is to be used in
the forward problem (5).

On a different issue, the estimation problem (7) is a MIP program
and, as such, computationally expensive in general. Actually, the size
of (7) grows linearly with the sample size. To keep the time to solve (7)
reasonably low, we reduce the cardinality of subsets {𝑘}𝐾𝑘=1 by means
of the PAM K-medoids algorithm [30] through the Python package
implementation scikit-learn-extra. This algorithm selects the most rep-
resentative data points within each subset 𝑘, the so-called medoids,
by minimizing the sum of distances between each point in 𝑘 and said
medoids. We remark that this reduction process results in data points
(the medoids) with unequal probability masses, so extra care should
be taken when formulating objective function (7a) for each subset 𝑘
considering the medoids only. More specifically, the uniform weight
1
𝑁 appearing in the objective function (7a) should be replaced with a
medoid-dependent weight representing the probability mass assigned
to each medoid as a result of the reduction process.

6. Case study

In this section we assess the performance of our approach in a
realistic case study that is based on the stylized model for the Eu-
ropean power system that is described in Nahmmacher et al. [31].
Accordingly, we consider a pipeline network model with 28 nodes,
each representing an European country. The capacities of the lines are
also obtained from Nahmmacher et al. [31], in particular, we take the
values from ‘‘Table 14. Transmission capacities between model regions
(GW)’’ that correspond to the year 2020. We assume that each node in
the network (i.e., each European country) includes two types of power
plants technologies, which we denote as base and peak, respectively.

gain, the available capacity of both technologies has been assigned
ased on the data in Nahmmacher et al. [31] corresponding to 2020 for
ach country. More specifically, the base power-plant capacities have
een obtained by adding up the installed capacities of the technologies

‘Nuclear’’, ‘‘Hard coal’’, ‘‘Oil’’ and ‘‘Lignite’’ and the peak power-plant
apacities from the technologies ‘‘Natural Gas’’, ‘‘Waste’’ and ‘‘Other
ases’’. The nodes of the system and the resulting generation capacities
f each type are listed in Table 7.

To build a data sample of the form {(𝐱𝑖, 𝐿𝑖)}𝑖∈ , we have collected
he actual aggregate hourly demand, wind, solar and hydro energy
roduction for each country (node of the system) in 2020 from the
NTSO-e Transparency Platform [18]. We have also retrieved the day-
head forecast of the hourly demand and the produced wind and solar
8

a

Table 8
Uniform distributions from which the marginal pro-
duction, up- and down-balancing costs (in e/MWh) of
the units in the European system have been sampled.

𝐶 𝐶𝑢 𝐶𝑑

Base U(8, 12) U(60, 70) U(−40, −50)
Peak U(36, 44) U(45, 50) U(30, 35)

energy from this platform. To get series of net demand values (both
forecast and actual), we have subtracted the respective wind, solar and
hydro power data series from the aggregate day-ahead forecast/actual
demand series. We clarify that no day-ahead forecast for the hydro
power production is available in ENTSO-E Transparency Platform [18],
so the series of real hydro power production has been used (instead
of the missing day-ahead hydro forecast) for the computation of day-
ahead forecasts of the nodal net demands. Some minor gaps in the data
extracted from ENTSO-E Transparency Platform [18] have been filled
through linear interpolation.

The marginal costs of energy generation and up- and downward
balancing energy provision of each unit are randomly sampled from the
uniform distributions specified in Table 8. The so-obtained values for
these costs have remained fixed throughout the experiments performed
in this section. We point out that in the uniform distributions of Table 8,
we have considered that base power units are cheap but inflexible, and
thus, with costly balancing energy. In contrast, peak power plants are
expensive, but flexible, and hence, with more competitive balancing
energy costs.

We conduct a rolling simulation on the data of 2020, in which we
gradually select non-overlapping windows of 150 points each. From
each window, we randomly sub-sample (without replacement) the in-
dexes corresponding to the training and test sets, which are eventually
made up of 100 and 50 samples, respectively. We take ten windows
over which we average the results that follow. First, we compute the
average cost of the baseline method F-SC, i.e., the method that uses
the point forecast 𝐿F of the net demand as �̂� in (5), which amounts
to 5092.8ke. For comparison, we also compute the average cost of
a perfect information benchmark in which �̂� is equal to the actual
realization of the net demand 𝐿. This perfect forecast approach is
unrealistic but can be used to assess how much could be gained from
improving the prescribed net demand. For this case study, the perfect
information cost is 3380.9ke, i.e, 33.6% lower than that delivered by
method F-SC.

As in the example of Section 4, we consider a feature vector 𝐱
made up of the day-ahead forecast of the system net demand, 𝐿F,
(measured in MWh), enlarged with an additional feature fixed to one to
accommodate the intercept of the affine models �̂� = 𝐪⊤𝑘 𝐱 = 𝑞0𝑘 + 𝑞1𝑘𝐿F,
𝑘 ≤ 𝐾.

In the analysis we conduct next, we consider various values for 𝐾
(number of partitions and hence of affine models) and several percent-
age reductions of the number of data in each partition 𝑘, 𝑘 ≤ 𝐾.

he results of this analysis are summarized in Table 9, where ‘‘𝑟%’’
n the first column means that only that percentage of medoids in
he partition 𝑘 (more precisely

⌈

𝑟
100 |𝑘|

⌉

, where ⌈⋅⌉ denotes the
eiling operator) have been used to estimate the affine function �̂� =
⊤
𝑘 𝐱 through (7). This table shows the average cost achieved by our
pproach for different values of 𝑟 and 𝐾, the cost savings with respect
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Table 9
Average cost savings and average time to solve the estimation
problem (7) for a number 𝐾 of partitions and various levels 𝑟 of
reduction in the size of the original training sets (in percentage).
𝑟 𝐾 P-SC cost 𝛥cost Time (s)

100% 1 4948.7ke 2.83% 2127.7
100% 2 4874.4ke 4.29% 283.7
100% 5 4851.6ke 4.74% 75.9
100% 7 4851.1ke 4.75% 28.0

50% 1 4956.9ke 2.67% 180.0
50% 2 4877.3ke 4.23% 27.2
50% 5 4869.4ke 4.39% 7.4
50% 7 4886.1ke 4.06% 5.5

20% 1 4971.6ke 2.38% 8.3
20% 2 4883.2ke 4.12% 3.2
20% 5 4882.8ke 4.12% 1.1
20% 7 4890.9ke 3.97% 1.4

to the cost of the baseline method F-SC (5092.8ke), and the average
time the solution to the K estimation problems (7) takes. The reported
cost savings have been computed out of sample, that is, on the test
sets. Beyond the fact that these savings are significant in general, it is
clear that our prescriptive approach benefits from exploiting different
affine models under different net-demand regimes, which confirms
the preliminary conclusion we draw in this regard through the small
example of Section 4. Nevertheless, it is also true that the added benefit
rapidly plateaus as 𝐾 grows. Actually, the bulk of the economic gains
we get through the partitioning of the data sample is already reaped
with 𝐾 = 2. On the other hand, increasing 𝐾 has a positive side effect: It
remarkably reduces the time to solve the MIP problem (7). In addition,
this time can be shortened even further, with a tolerable reduction
in cost savings, by using only the medoids of the partitions 𝑘, 𝑘 ≤
𝐾, when estimating the affine models through (7). Notwithstanding
this, 𝐾 cannot be made arbitrarily big since it can lead to overfitting.
Therefore, the choice of 𝐾 should be guided by a training–validation
scheme similar to the one we show in Table 9 to ensure that increasing
𝐾 does not lead to a reduction in the benefits of the affine rules out of
sample.

To comprehend where those cost savings our approach yields come
from, in Fig. 3 we plot the predicted aggregate net demand 𝐿F against
the one prescribed by our method, i.e., �̂�. The plot corresponds to one
window of 150 data points taken at random out of the ten we have
considered in the rolling-window simulation. Furthermore, the figure
depicts results from the case with five partitions (𝐾 = 5). It can be
seen that, when the system net demand is predicted low, our method
prescribes to overestimate it. This prescription is motivated by two
facts. On the one hand, the overestimation of the net demand in the
forward problem is covered by cheap power plants, whereas it reduces
the need for upward balancing. On the other, even though it slightly
increases the demand for downward balancing, the group of units that
down-regulate remains the same in any case, i.e., with and without the
overestimation, due to the limitations of the network. As a result, the
cost savings linked to the reduction in up-balancing outweigh the extra
costs incurred by the increase in down-balancing. It is interesting to
note that, as mentioned at the end of Section 2, system operators, based
on their accumulated experience, often introduce an upward bias into
the net demand forecast [24], precisely as our model here suggests.

As the level of net demand grows, the overestimation of the system
net load that our method prescribes diminishes to a point where the
prescribed amount flattens (see partitions 4 and 5). Again, this
phenomenon is caused by the network and the limitations it imposes.
Indeed, our method avoids dispatching power plants in the forward
problem which, despite being their turn in the cost-merit order, would
have been irretrievably down-regulated in real time because of network
bottlenecks. For instance, in partition 4, F-SC consistently dispatches
the DE base generator, with its massive 46 GW, to maximum ca-
pacity. However, due to grid constraints, this unit is subsequently
9

Fig. 3. Prescribed affine transformation of the day-ahead net-demand forecast
(aggregated system-wise). Demand is given in GW.

down-redispatched to around 30 GW. On the contrary, P-SC takes into
consideration that this power plant is one of the latest to be scheduled
in this partition and foresees the grid limitation on the power flow,
thus constraining the aggregated energy production and systematically
dispatching such a unit to the previously mentioned 30 GW.

Finally, Fig. 3 also illustrates that, even though the prescriptive
functions ℎ𝒒(⋅) we employ are affine, the use of several clusters leads to
a piece-wise affine function that is able to approximate the non-linear
relationships between the features and the prescribed parameters.

7. Conclusions

In this paper, we have proposed a data-driven method to prescribe
the value of net demand that the forward stage in a two-stage genera-
tion scheduling problem should use in order to minimize the expected
total cost of operating the underlying power system. For this purpose,
we have formulated a mixed-integer linear program that trains an affine
function to map the predicted net demand into the prescribed one.

Numerical experiments conducted out of sample on a stylized model
of the European electricity grid reveal that the cost savings implied
by the estimated affine mappings are substantial, well above 2%.
Furthermore, on the grounds that the cost structure of a power system
is highly dependent on its operating point, and hence, on the level of
net demand, we have devised a 𝐾-means-based partition strategy of the
data sample to train different affine mappings for different net-demand
regimes. The utilization of this strategy is shown to have a positive
twofold effect in the form of substantially increased costs savings and
a remarkable drop in the computational burden of the proposed MIP
training model. Finally, we have further complemented the partitioning
of the data sample with a medoid-based reduction in the size of the
partitions, achieving additional speedups in solution times. All this
together opens up the possibility to leverage our prescriptive approach
in larger instances.

Future work will include attempts to optimize the partitioning of
the data sample by embedding it into the MIP training model and to
devise a procedure to efficiently update the parameters of the affine
rules as new data become available without having to solve a new
instance of the estimation problem (3). Another direction for future
research is the extension of the proposed methodology to prescribe net
demand trajectories (of 24 h, for example) for generation scheduling
problems that include inter-temporal constraints such as ramping limits
or minimum times.
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