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Developmental dyslexia is characterized by a deficit of phonological awareness whose origin is related
to atypical neural processing of speech streams. This can lead to differences in the neural networks
that encode audio information for dyslexics. In this work, we investigate whether there exist such
differences using fNIRS and complex network analysis. We have explored functional brain networks
derived from the low-level auditory processing of non-speech stimuli related to speech units such as
stress, syllables or phonemes of skilled and dyslexic seven-year-old readers. A complex network analysis
was performed to examine the properties of functional brain networks and their temporal evolution.
We characterized aspects of brain connectivity such as functional segregation, functional integration
or small-worldness. These properties are used as features to extract differential patterns in controls
and dyslexic subjects. The results corroborate the presence of topological organizations discrepancies of
functional brain networks and their dynamics that differentiate between controls and dyslexic subjects,
reaching an AUC up to 0.89 in classification experiments.
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1. Introduction

Children with Developmental Dyslexia (DD) are at

risk for detrimental effects on self-esteem, depression

and school failure. This learning disability affects 5%-

12% of the world’s population1 hindering the learn-

ing process for the acquisition of reading skills, de-

spite normal intelligence and educational opportuni-

ties. In this process, children base their learning on

the correspondence of distinctive visual symbols with

sound units (phonology).2 The ability to recognize,

identify, or manipulate any phonological unit within

a word (phoneme, rime, or syllable) is named phono-

logical awareness and is predictive of reading and

spelling acquisition.2 In most theories, DD is charac-

terized by showing a phonological processing deficit

across ages, languages and cultures. However, the bi-

ological causes and processes underlying DD are not

well understood. Studying the causes of this phono-

logical disorder may provide objective markers for a

more precise and early diagnosis that lack the draw-

backs of traditional diagnosis methods. Traditional

assessment is specifically designed to measure the

different behavioral variables involved in the read-

ing process. They are designed for readers, limiting
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the minimum age for an early diagnosis, and are fre-

quently affected by exogenous variants. This results

in delayed diagnosis and errors that can have a fun-

damental impact on the personal and intellectual de-

velopment of affected children.3

Moreover, biomarker research offers valuable in-

formation to better understand the neural basis of

DD. Several hypotheses have been proposed to ex-

plain the underlying cause of the phonological deficit.

On the one hand, works as Refs. 4, 5, 6 attribute

the phonological deficit to difficulties in the spe-

cific language processing domain. On the other hand,

Goswami7 proposed the Temporal Sampling Frame-

work (TSF) attributing the phonological disorders to

low-frequency phase locking mechanisms in auditory

cortex. Other works take this hypothesis as a start-

ing point, such as Refs. 8, 9, 10, 11, and regardless

of the different methodological approaches, there is

consensus that phonological difficulties originate in

the atypical neural processing of speech streams.7

The speech signal contains information on dif-

ferent time scales that correspond to key phonologi-

cal units: slow rhythmic prosody (0.5–1 Hz), syllable

(4–8 Hz) and phoneme (12–40 Hz).12 The brain en-

code this phonological structure (of speech rhythm)

through neural entrainment of cortical oscillations

at different preferred rates with temporal informa-

tion in the speech signal.13 This multi-time resolu-

tion analysis take place in cortical areas connected

into networks that are themselves organized to sup-

port speech and language processing. The number

and arrangement of these cortical regions demon-

strate that the system is considerably more complex

and distributed.14 This paves the way for applying

advances in complex network analysis to the study of

neurobiological mechanisms that process speech and

language, and to the neuroscience field in general.15

Many complex systems can be represented

mathematically as a network consisting of a set of

nodes and links. Complex network analysis offers

valuable avenues to characterize brain networks. It

uses measures from graph theory that are neurobi-

ologically meaningful.16 It allows the exploration of

connectivity abnormalities of the brain processes in

neurological and psychiatric conditions. In DD atyp-

ical auditory oscillatory activity is proposed to be

a central mechanism. This would alter the involved

brain functional network, impairing speech coding

and yielding the phonological deficit that dyslexic

children and adults exhibit.

There are several works that apply complex net-

works analysis to the study, exploration and diag-

nosis of DD. Ref. 17 examines the network topol-

ogy of the phase synchronization connectivity in the

recorded electroencephalograph (EEG) data from

typical and dyslexic readers while listening to a

random sequence of syllables and a series of tri-

syllabic real words. They noticed a more intercon-

nected topology in the theta-band network in the

right frontal site for word tracking in dyslexic read-

ers. Other works18–20 investigate the organization

of functional connectivity networks from EEG of

dyslexics and typical readers at rest and while per-

forming an audiovisual task. They explore differences

in the topological properties with graph metrics.

A graph-theoretic approach have been employed in

Ref. 21 to assess functional connectivity in DD while

presenting a visual stimuli in an event-related EEG

experiment. Ref. 22 use a stimulus-driven approach

to test the TSF with the exploration and analysis of

the functional connectivity from the speech process-

ing network in magnetoencephalograph (MEG) sig-

nals. In Ref. 11 they analyze MEG signals recorded

in an experiment in which spoken sentences were

presented to dyslexic readers and age-matched con-

trols. Then, they apply graph metrics to speech per-

ception networks evidencing that abnormal neural

entrainment and impaired connectivity within these

networks are associated with phonological disorders

in dyslexia. Ref. 23 performs a data-driven approach

to study whole brain networks of functional mag-

netic resonance imaging (fMRI) functional connec-

tivity in dyslexic versus typical readers. The authors

of Ref. 24 investigate the use of graph metrics of

functional connectivity that emerge throughout the

reading network under different audiovisual task to

predict reading difficulty. Recently we have presented

a work where we explore brain coupling between fre-

quency bands from EEG data to construct networks

and apply graph theory analysis.25 With this we in-

vestigate differences in the graph metrics between

skilled readers and dyslexic children.

All these works use common data acquisition

techniques as EEG, MEG and fMRI. However, we

note the absence of the application of complex

networks analysis to functional near-infrared spec-

troscopy (fNIRS) data in DD. This quiet, safe and

non-invasive technique is particularly suitable for the
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study of functional connectivity and brain networks

in children.26 fNIRS has practical advantages such as

low operating costs, ease of application and tolerance

to movement,27 and has been used for experiments

with children, infants, and adults. Ref. 28 explores

brain functional connectivity in rest and sleep states,

and Ref. 29 applies graph analysis to functional con-

nectivity in prefrontal cortex of healthy adults. More

related to our aim, Ref. 30 study the relationship

between functional connectivity in children’s read-

ing networks and reading ability, and Ref. 31 explore

fNIRS signals to investigate possible hemispheric

asymmetry during speech processing in children with

DD.

We propose the use of complex network analysis

and functional connectivity via fNIRS for the explo-

ration and diagnosis of DD. The study is based on

an experiment with 57 seven year-old children, typ-

ical readers and dyslexics. The fNIRS signals were

recorded while the participants were presented non-

interactive auditory stimuli. These stimuli consist in

amplitude modulated white noise at frequencies re-

lated to the phonological units of the Spanish lan-

guage. We hypothesize that exploration and analysis

of the functional brain networks thus originated will

provide information and reveal characteristic pat-

terns of DD. The remainder of the paper includes:

First, in Section 2 we describe the database and

methodology. In Section 3 we present the main re-

sults, and in Section 4, these are discussed and inter-

preted. Lastly, main conclusions are given in Section

5

2. Materials and Methods

2.1. Database

In this work we rely in a dataset provided by

the LEEDUCA research group at the University of

Málaga (Spain).32 This dataset consists of 57 se-

lected right-handed native Spanish speakers of seven

years old, with no hearing impairments and normal

or corrected-to-normal vision. The procedure to es-

tablish the 40 skilled readers of control group and the

17 dyslexic readers of experimental group was car-

ried out according to the Special Education School

Services (SESS) and following the standards.33 All

dyslexic children in this study had received a for-

mal diagnosis of dyslexia at school. None of the

skilled readers reported having reading or spelling

difficulties or have received a prior formal diagnosis

of dyslexia. The legal guardians of the participants

understood the study, were present throughout the

experiment, and gave written consent.

2.2. fNIRS and Preprocessing

fNIRS is a noninvasive method of extracting infor-

mation of the brain by using near-infrared spectrum

light in the range of 650–900nm.34 In this range

near-infrared light is relatively transparent to hu-

man tissues. However, it is absorbed by oxygenated

hemoglobin (HbO) and deoxygenated hemoglobin

(Hbr) in the human cortex. In our system a source

emitted the light at two wavelengths 760Hz and

850Hz, for HbR and HbO respectively. fNIRS is

based on the physiological principle of neurovascu-

lar coupling like fMRI. This concept describes the

relationship between neuronal activity and localized

changes in cerebral blood flow. Active neurons re-

ceive more oxygen from the blood than the inactive

ones through a process called the hemodynamic re-

sponse or the Blood Oxygenation Level–Dependent

(BOLD) response. As in fMRI, an increase in HbO

is an indicator of neuronal activity. In fNIRS this is

followed by a a decrease in Hbr.

Figure 1. fNIRS optodes for left and right hemispheres.
Sources are red and detectors yellow.

The equipment used for the fNIRS acquisitions

was the NIRSport system with 16 optodes. The sys-

tem consists of 8 sources, that emit the light, and 8

detectors. A source–detector pair makes up a chan-

nel, altogether we have 20 fNIRS channels. In Fig.

1 we can see the location of the optodes. These are

placed over the language and auditory areas of the

human brain. Fig. 2 shows the position of the optodes

and channels in the EEG 10-20 system. For the left

hemisphere, the sources were placed in the positions

FC5, T7, CP5, P7, and detectors in FT7, C5, TP7,
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P5. For the right hemisphere, sources were placed in

FT8, C6, TP8, P6, and detectors in FC6, T8, CP6,

P8 positions of the EEG 10-20 system. This provides

information on which brain areas are acquired by the

fNIRS channels. The fNIRS signals were recorded at

7.8Hz, while participants were exposed to auditory

stimuli consisting of white noise modulated at 4.8,

16, and 40 Hz. Each stimulus had a duration of 2.5

minutes and was presented sequentially twice (4.8Hz-

16Hz-40Hz and 40Hz-16Hz-4.8Hz) with a total dura-

tion of 15 minutes.

Figure 2. fNIRS channels and optodes with EEG 10-
20 system. Sources are red, detectors blue, and channels
are at the midpoint of each green line between a source-
detector pair.

Acquired signals were then preprocessed using

the python library MNE-Python,35 MNE-NIRS36

and nirsLAB (www.nitrc.org). Fig. 3. shows an

overview of the fNIRS preprocessing pipeline. First,

we interpolate the detectors saturation and convert

the intensity to optical density. Then, we apply Tem-

poral Derivative Distribution Repair (TDDR) to cor-

rect the motion artifacts of the optical density sig-

nal.37 This method does not require any tuning pa-

rameters to efficiently remove baseline shift and spike

artifacts.

We transform the raw signal to hemoglobin

concentration applying the modified Beer–Lambert

law38 that uses an effective path length to account

for light scattering and optical path length as it prop-

agates through the tissue39 as:

∆ODλ ∼= (
∑
i

ϵλi ci) · L · PPFλ (1)

where the effective pathlength is approximated by

the product of an scaling factor to consider the part

of the path that belongs to the brain called the

Partial Pathlength Factor (PPF) and the distance

along the surface between a source–detector pair (L);

∆ODλ is the variation in optical density in an fNIRS

channel, ϵλi is the extinction coefficient for a wave-

length (λ) and the ith chromophore (HbO or Hbr in

fNIRS), and ci is the chromophore concentration.

We filter the hemoglobin concentration signals

with cutoff frequencies of 0.01Hz and 0.2Hz remov-

ing artifacts of heart rate and breathing from the

hemodynamic response. Then, we extract epochs re-

lated to each stimuli and apply baseline correction.

In this way, we have separated the stimuli for each

subject. Finally, each stimulus is segmented into 25s

temporal segments to explore the evolution of the

hemodynamic response. The stimuli have a duration

of 150s, resulting in a total of six temporal segments.

2.2.1. Functional connectivity

Functional connectivity is calculated by computing

Spearman correlation coefficient for the hemoglobin

concentration time series. We have measured this

correlation coefficient for every fNIRS channel. This

results in a set of 20× 20 connectivity matrices, Mc,

for HbO and HbR data. Fig. 4.a show an example

of a connectivity matrix with the Spearman correla-

tion coefficient between fNIRS channels. We have six

connectivity matrices for each stimulus, representing

the temporal evolution of functional connectivity in

the hemodynamic response.

Figure 4. fNIRS connectivity matrices. a) Spearman
correlation coefficient. b) Z-score connectivity matrix. c)
Binanrized connectivity matrix

Surrogate permutation testing has been used to

assess the significance of the connections measured.40
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Figure 3. Schema of the overall fNIRS preprocessing. 1) Acquisition of raw intensity signals. 2) Conversion to optical
density. 3) Transform the signal to hemoglobin concentration. 4) Extraction of stimuli and temporal segmentation.

We approximate the null distribution by computing

for each connectivity matrix 1000 surrogate connec-

tivity matrices, Msur. This is done by calculating the

Spearman correlation coefficient between surrogates

of the hemoglobin concentration time series. These

surrogates are computed by swapping time blocks of

the original signal. Then, we obtain a Z-score con-

nectivity matrix, Mz, where each position indicates

the significance of the connection (Spearman correla-

tion coefficient) calculated with the original hemody-

namic time series. We use the absolute values greater

than 0.8 of the correlation coefficient and we calcu-

late the Z-score connectivity matrix as

Mz =
Mc − µsur

σsur
(2)

where µsur is the mean of Msur and σsur is the stan-

dard deviation ofMsur. From this significance matrix

we select the ones with Z − score > 1.65, equivalent

to a p − value < 0.05. Fig. 4.b represents the corre-

sponding Z-score matrix of Fig. 4.a. Then, we bina-

rize the Z-score connectivity matrices denoting the

presence, 1, or absence, 0, of significant connections

as we can see in Fig. 4.c.

2.3. Complex Network Analysis

We use the resulting binarized Z-score connectivity

matrices (as in Fig. 4.c) to construct our brain net-

works. Graph theory is the natural framework to

study and measure complex networks.41 Each row

and column from these matrices designate the nodes

-fNIRS channels-, and matrix entries the links. Each

link represents the presence of a significant functional

connectivity between the hemodynamic time series

of a fNIRS channel pair. These connectivity matri-

ces are symmetrical, thus we use the lower triangu-

lar to construct the networks. As a result, we have

networks represented by undirected and unweighted

graphs as shown in Fig. 5. Thus, our networks have

N = 20 nodes and K links depending on the connec-

tivity matrix.
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Figure 5. fNIRS network from matrix in Fig. 4 c)

These networks have properties that help us

characterize aspects of brain connectivity. In our

case, functional connectivity between fNIRS chan-

nels. Graph-theoretic approaches provide measure-

ments to quantify how a network is connected. This

network measurements are tools to understand and

explore functional brain networks. It reveals proper-

ties of the underling networks derived from the ac-

tivity over time of brain cognitive processes. A net-

work measure characterize atributes of integration

and segregation, test the resilience of networks, and

evaluate the relevance of brain regions.16

An important measure is the node degree. It is

the number of links connected to that node, and is

computed as:

ki =

N∑
j=1

aij (3)

where aij is an entry for the connectivity matrix and

ki is the ith node degree. This basic characteristic of

the network can influence other more sophisticated

network measures to be defined below.

2.3.1. Functional segregation

First, we will describe measures of functional segre-

gation. This characteristic refers to the capacity of

different brain regions to perform specialized pro-

cessing,16 quantifying the presence of clusters or

modules in the network (Fig.6), and indicate seg-

regated neural processing. The base measure is the

number of triangles in the network. A triangle, ti, is

formed by sets of three nodes each of which is con-

nected to each of the others42

ti =
1

2

N∑
j,h=1

aijaihajh (4)

and for an individual node, we can measure the clus-

tering coefficient (Ci) as the quantity of connected

triangles among its neighbors.43 The mean clustering

coefficient, C, denotes the rates of clustered connec-

tivity around individual nodes in a network

C =
1

N

N∑
i=1

Ci (5)

where Ci is the clustering coefficient of node i. A re-

lated measure that is normalized and unaffected by

low-degree nodes is the transitivity of the network

(T ):

T =

∑N
j,h=1 2ti∑N

j,h=1 ki(ki − 1)
(6)

Other measures of segregation used are based

on the community structure, which are clusters of

nodes that have the maximum number of connec-

tions among themselves and the minimum number of

connections between other groups (Fig. 6).16 These

metrics describe the size and composition of the in-

terconnected groups of regions. This is quantified

by the modularity (Q) computed by subdividing the

network into communities42

Q =
∑
u∈N

[euu − (
∑
v∈M

euv)
2] (7)

where Q is a set of nonoverlapping communities, and

euv the fraction of the total number of edges connect-

ing the community u with the community v.

2.3.2. Functional integration

The brain must complement this ability to segregate

the information processing and specialized compu-

tations in local circuits with the capacity to inte-

grate specialized information from distributed brain

regions.44 This is known as functional integration,

and use paths (Fig. 6) to characterize the communi-

cation of brain regions. It is necessary to note that

functional connectivity paths cannot be directly as-

sociated to information flow on anatomical connec-

tions.16 This is due to the statistical origin of func-

tional connectivity path. A common measure of func-

tional integration is the characteristic path length
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of the network (L). It is the average shortest path

length between all pairs of nodes in the network43

L =
1

N

N∑
i=1

Li (8)

where Li is the average distance between node i and

all other nodes. The average inverse shortest path

length between node i all other nodes j of the net-

work is the node efficiency (Ei)
45

Ei =
1

(N − 1)

N∑
j=1

1

dij
(9)

where dij is the shortest path length between node i

and node j. The average efficiency of the network is

known as the global efficiency (Eglob) and is propor-

tional to the average inverse shortest path length of

the nodes in the network.

Eglob =
1

N

N∑
i=1

Ei (10)

This measure denotes how efficient is the parallel in-

formation transfer in the network, making it a supe-

rior measure of integration.46 Here we can define the

local efficiency (Eloc) as the average efficiency of the

local subgraphs of the network

Eloc =
1

NGi
(NGi

− 1)

∑
j,k∈Gi

1

djk
(11)

where Gi is a subgraph formed byNGi nodes that are

each directly connected to the node i. Eloc is applied

as a measure of segregation. Since the node i does

not belong to Gi, Eloc also measure the fault tol-

erance by quantifying the communication efficiency

when the node i is removed.45,46

Figure 6. Illustration of network measures. The decom-
position into modules (circles) and triangles (blue) are

the base for measures of functional segregation. The
shortest path lengths (green) are used for measures of
integration. If we increase the network integration by
adding the dashed links, the modules tend to disappear
and the network segregation is reduced. Hub nodes (red)
are part of a large number of short paths.

2.3.3. Small-world networks

There is evidence that functional brain networks are

capable of rapid and real-time integration of infor-

mation (functional integration) across segregated ef-

ficient brain regions (functional segregation).47 This

is due to a small-world organization of the networks,

characterized by being significantly more clustered

than random networks and having similar character-

istic path length.43 Ref. 48 proposed a measured of

the small-worldness, S,

S =
γ

δ
=

C
Crand

L
Lrand

(12)

where Lrand and Crand are measures for the equiv-

alent random graph, and L is the average shortest

path length and C is the clustering coefficient of the

original network. There is a small-world organization

if L ≥ Lrand and C ≫ Crand, likewise, if S > 1.

2.3.4. Centrality

Small-world topology are also related with the abun-

dance of hubs: influential brain regions (nodes) that

exchange information with a high number of regions

facilitating functional integration (Fig. 6).16 The im-

portance of individual nodes to be considered as hubs

is evaluated with centrality measures. An usual mea-

sure of centrality is the nodal degree. Other measures

are closeness centrality (CC) and betweenness cen-

trality (BC). The former is, for each node, the in-

verse of the average shortest path length to all other

nodes,49 and the latter the proportion of all shortest

paths that cross a particular node.16

2.3.5. Network resilience

Finally, we can characterize the network resilience,

i.e., the network capacity to withstand disturbed

brain function. A convenient measure is the assor-

tativity coefficient (r),50 it is usually quantified by

a correlation coefficient between the number of links

of the nodes. A positive assortativity coefficient in-

dicate that the network is resilient to the removal of
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high-degree hubs, since these hubs tend to be clus-

tered together in an interconnected core. In a net-

work with a negative assortativity coefficient, these

hubs are broadly distributed over the network, which

makes the network vulnerable to the removal of a

high-degree hub. Other measure related to assorta-

tivity is the average neighbor degree that is com-

puted on individual nodes.51

knn,i =

N∑
j=1

aijkj
ki

(13)

2.4. Classification

These network measurements have direct applica-

tion in quantifying differences between the functional

brain networks of patient groups and appropriate

comparison groups.15 Here, we consider networks

measurements as features with potential diagnostic

capability. We have measures from brain networks

of controls and dyslexics over six temporal segments

and three stimuli. In each stimulus we aggregate the

measures of the temporal segments. Then, we use a

Support Vector Machine classifier (SVC)52 to assess

the diagnostic accuracy of these features while taking

into account the sensitivity-specificity trade-off.

The classification is performed in each stimulus

as follows (Fig. 7). First, we construct datasets with

the features from the functional brain networks mea-

sures using control and dyslexic subjects. We have a

dataset for each feature (Clustering coefficient, tran-

sitivity, characteristic path length,..), and datasets

for the combination of two, three and four features.

Then, a stratified 5-fold cross-validation is used to

split the dataset into train and test sets that change

in each iteration. With this scheme, we train an SVC

and estimate the performance.

Figure 7. Schema of proposed classification methodol-
ogy. We have four datasets with features from the func-
tional brain networks measures of control and dyslexic
subjects. The classification is performed by using one fea-
ture, the combination of two, three and four features. A
stratified five-fold cross-validation is used.

3. Results

Complex network analysis provides features for the

study and diagnosis of DD. To achieve this, an ex-

ploratory analysis of fNIRS signals and functional

connectivity is essential. Once fNIRS signals have

been processed, we examine them. First, we explore

the average HbO and Hbr signals for control and

dyslexic groups. We examine the temporal evolution

for each stimulus separately, considering the mean

between the first and second exposure of each stimu-

lus to enhance the quality of the acquired signal. Fig.

8 shows a comparison of the HbO and Hbr signals

for the three stimuli between control and dyslexic

groups. We can see the mean hemoglobin concen-

tration of each fNIRS channel and the topographic

representation of the hemodynamic response at the

beginning of each of the six temporal segments.

Once the stimulus signals have been explored,

we analyze the functional connectivity in the fNIRS

signals. Before investigating the development of con-

nectivity in time segments, a result that provides

valuable information is the globally significant con-

nectivity matrices. These matrices are obtained fol-

lowing the procedure described in Sec. 2 and by

merging the results of all the subjects in two sets,

one for controls and another for dyslexics. We use

aggregated surrogate matrices to obtain the signifi-

cant connections of each group. This way, in Fig. 9

we can see the global Z-score connectivity matrices

for each stimuli. These matrices show the significant

connections with a Z-score greater than 1.65. Fig. 9

also shows the corresponding networks for HbO and

Hbr signals in control and dyslexic groups. We can

distinguish that there is more significant connections

for dyslexia in all three stimuli, and that it presents

interconnectivity between hemispheres. There is a

common connectivity pattern between fNIRS chan-

nels 17, 18, 19 and 20, which derives from the source-

detector pairs in the EEG 10-20 position of CP6,

TP8, P6, P8.
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Figure 8. Average hemoglobin response for control and dyslexic groups. In each graph, the mean hemoglobin concen-
tration of each fNIRS channel is represented and the topographic representation of the hemodynamic response at the
beginning of each temporal segment. Each row corresponds to one stimulus: a) and b) 4.8Hz. c) and d) 16Hz. e) and f)
40Hz.

Figure 9. Global Z-score connectivity matrices and net-
works. a) and b) 4.8Hz. c) and d) 16Hz. e) and f) 40Hz.

3.1. Complex Network Analysis Results

We have employed complex network analysis to ex-

plore the development of functional connectivity in

time segments. The connectivity matrices have been

computed for each subject as described in Sec. 2.2.1.

Then, with the binarized matrices, we construct a

network for each temporal segment with the signifi-

cant connections. We analyze the properties of these

networks using graph measures that reveal features

derived from functional connectivity of the underly-

ing brain processes.

We present some of the network measurements

used that are easier to interpret and make possi-

ble the analysis of network properties such as func-

tional integration and segregation. In Fig. 10 we can

see a comparison between global network metrics

of control and dyslexic groups with the metrics of

an ensemble of null-model networks generated with

matched random networks.53
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Figure 10. Global network metrics in the six temporal segments for control and dyslexics groups compared with the
metrics of a null-model from an ensemble of 1000 matched random networks in each stimulus. a) Transitivity. b) Charac-
teristic path length. c) Small-worldness. d) Global efficiency. e) Local efficiency. f) Modularity.

Figure 11. Mean clustering coefficient in each node for
controls and dyslexics. a) 4.8Hz b) 16Hz c) 40Hz.

Figure 12. Mean nodal efficiency for controls and
dyslexics. a) 4.8Hz b) 16Hz c) 40Hz.

Fig. 11 shows the clustering coefficient in each
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node. This is the mean value for control and dyslexic

groups, and the size of the node increases proportion-

ally to the clustering coefficient. In the same way,

Fig. 12 represents the mean nodal efficiency of the

networks for each segment. In these figures we can

examine the evolution of these measures comparing

controls and dyslexics for each stimulus. In Fig. 11 we

can observe that there is an increase of the cluster-

ing coefficient in the nodes of the dyslexic networks,

and the greatest mean value is found in the first seg-

ments of the 4.8Hz and 16Hz stimuli. Fig. 12 shows

greater mean values for the right hemisphere in both

groups, with an intensification of node efficiency for

dyslexics.

3.2. Classification Results

The classification is performed with the network

measures as features. Thus, revealing that the prop-

erties of the fNIRS functional connectivity networks

from the three stimuli entail differences between con-

trols and dyslexics with a diagnostic capacity. Table 1

presents the classification results for the three stim-

uli, HbO and Hbr. This table shows the best SVC ac-

curacy, sensitivity, specificity and Area Under ROC

Curve (AUC) for one, two, three and four network

features. Table 1 indicate the performance achieved

by the SVC in a five-fold cross-validation scheme.

The results reported better performance for the

networks from the HbO signals in 4.8Hz stimulus,

and for Hbr in 16Hz and 40Hz. We pick the best

classification result for each stimulus to evaluate the

classification accuracy obtained. In each stimuli we

have:

• small-worldness and local efficiency for 4.8Hz,

• clustering coefficient, local efficiency and betwee-

ness centrality for 16Hz,

• local efficiency, modularity, nodal efficiency and

assortativity coefficient for 40Hz.

We use permutation tests with a null distribution

drawn from 1000 labels permutations. This is done

in a five-fold cross-validation, in which we take as

null hypothesis that there is no relationship between

features and labels. With this, we evaluate such data-

label link established by the classifier. Fig. 13 shows

the performance achieved by the classifier with the

random datasets in each permutation and the accu-

racy with the original dataset. It also displays the

p-value calculated as the fraction of classification re-

sults where equal or better performance is achieved

with the random datasets than with the original one.

4. Discussion

In this work we have combined fNIRS data and com-

plex network analysis to investigate the neural en-

trainment to amplitude modulated white noise at

4.8Hz, 16Hz and 40Hz in Spanish children for DD

diagnosis. These are three core speech units in Span-

ish: 4.8Hz stimulus for syllables, 16Hz stimulus for

the intra-syllabic rhythms, and 40Hz stimulus for

phonemes. We have used fNIRS signals to explore the

functional brain connectivity of typical and dyslexic

seven-year-old readers. Importantly, we merged this

with a graph theory analysis of the resulting func-

tional brain networks.

Our results support the idea that an atypi-

cal neural sampling of auditory signals underlies

DD.8,54,55 We have used a SVC to assess the di-

agnostic capability of measures from brain complex

networks in DD. This classification use these mea-

sures as features, proving the existence of a link be-

tween the properties of functional brain connectivity

networks and the neural sampling of auditory signals

in typical readers and DD. Table 1 indicates that the

best classification result is obtained using network

features derived from the 40Hz stimulus, achieving

an AUC of 0.89. This stimulus mimics the rate of

phonemes in Spanish, where works as Ref. 13, 10, 54

have found a rightward synchronization asymmetry

for the dyslexic group, driven by an atypical synchro-

nization enhancement in the right auditory cortex.

Our classifier has also achieved an AUC above 0.85

for the 4.8Hz stimulus. This is in line with Ref. 7, 10,

where the deficit in encoding phonological informa-

tion also occurs in the slow rhythms as proposed by

the TSF. Both results sustain the hypothesis that

the phonological deficit in dyslexia arises from an

auditory deficit in neural entrainment to the low-

frequency syllabic rate that hinders the next steps

of phonological processing, where phonemes are pro-

cessed.11

The classification results stem from the use of

network measures through temporal segments as fea-

tures to train an SVC. Network measures charac-

terize the functional brain networks obtained from

fNIRS signals, helping to understand and reveal

properties of the underlying brain connectivity pro-
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Table 1. Classification results with stratified K-fold cross-validation (five-folds)

Stimulus Hemoglobin type Features Acc Sens Spec AUC

HbO S 0.845± 0.097 0.65± 0.226 0.925± 0.1 0.835± 0.158
HbO S, Eloc 0.842± 0.103 0.7± 0.267 0.9± 0.094 0.856± 0.147
HbO S, Eglob, Q 0.726± 0.203 0.75± 0.247 0.7± .359 0.81± 0.144

4.8Hz HbO S, Eglob, Q, r 0.715± 0.234 0.833± 0.211 0.675± 0.359 0.825± 0.145
Hbr T 0.583± 0.133 0.583± 0.269 0.575± 0.302 0.669± 0.203
Hbr L, Eloc 0.58± 0.21 0.533± 0.452 0.575± 0.472 0.654± 0.093
Hbr T, L, BC 0.552± 0.181 0.533± 0.452 0.525± 0.45 0.587± 0.05
Hbr C, L, Eglob, Eloc 0.57± 0.201 0.6± 0.389 0.525± 0.435 0.654± 0.085

HbO Q 0.579± 0.12 0.617± 0.393 0.575± 0.17 0.538± 0.134
HbO T, Eglob 0.598± 0.151 0.667± 0.365 0.55± 0.322 0.619± 0.162
HbO T, Eglob, Q 0.615± 0.17 0.5± 0.447 0.65± 0.374 0.554± 0.16

16Hz HbO C, Eglob, Eloc, Q 0.562± 0.137 0.567± 0.389 0.55± 0.302 0.604± 0.136
Hbr C 0.806± 0.04 0.7± 0.041 0.85± 0.05 0.79± 0.065
Hbr C, Eglob 0.826± 0.051 0.667± 0.183 0.9± 0.094 0.792± 0.04
Hbr C, Eloc, BC 0.842± 0.067 0.717± 0.163 0.9± 0.094 0.79± 0.074
Hbr C, Eloc, Q, BC 0.808± 0.029 0.7± 0.041 0.85± 0.05 0.806± 0.075

HbO Eglob 0.718± 0.147 0.483± 0.343 0.825± 0.127 0.652± 0.209
HbO Eglob, Eloc 0.614± 0.204 0.6± 0.327 0.6± 0.33 0.625± 0.247
HbO L, Q, Ei 0.636± 0.183 0.567± 0.389 0.65± 0.33 0.696± 0.216

40Hz HbO T, L, Ei, r 0.617± 0.149 0.567± 0.389 0.625± 0.323 0.673± 0.215
Hbr Ei 0.741± 0.23 0.683± 0.367 0.75± 0.387 0.86± 0.111
Hbr CC, r 0.839± 0.106 0.7± 0.267 0.9± 0.094 0.877± 0.105
Hbr Eglob, Ei, r 0.858± 0.111 0.683± 0.367 0.925± 0.1 0.892± 0.102
Hbr Eloc, Q, Ei, r 0.842± 0.034 0.75± 0.247 0.875± 0.079 0.892± 0.09

Figure 13. Permutation test with the best results of cross-validation. a) 4.8Hz. b) 16Hz. c) 40Hz.

cesses. In Fig. 10 we show the profiles of six global

network measures, where we can draw differences be-

tween the real functional brain networks from the

fNIRS signals and the equivalent random networks.

Small-world organization is a widespread behavior

in networks from complex systems, and this is also

found in functional brain networks.43 Fig. 10.c de-

picts the small-worldness of controls and dyslexics

for the three stimuli, where we can observe val-

ues greater than one for the small-worldness of con-

trol group except for the 40Hz stimuli. The dyslexic

group has a deficit of small-worldness value for 4.8Hz

and 16Hz. This reduction in the small-worldness of

functional brain networks may correspond to a loss

of efficient communication over time between dis-

tributed brain regions.

Despite these drops, network topology is closely

related to small-world organization showing a com-

promise between functional segregation and inte-

gration. Controls and dyslexics networks have both
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larger transitivity values that matched random net-

works (Fig. 10.a). This measure is normalized col-

lectively and quantifies the existence of intercon-

nected modules of brain regions that are indicative

of segregated neural processing. In addition, func-

tional brain networks in the three stimuli exhibited

systematically higher modularity compared to those

derived from paired ensemble of random networks

(Fig. 10.f). They also show a slightly larger char-

acteristic path length than matched random net-

works (Fig. 10.b). However, functional paths are less

easy to interpret and compute on disconnected net-

works.16 Small-world networks are also characterized

as systems with global and local efficiency.45 If brain

networks are compared with equivalent random net-

works, they have similar global information process-

ing efficiency, but more efficient local information

processing.56 Our functional brain networks for con-

trol and dyslexic groups have larger local efficiency

than the ensemble of random networks (Fig. 10.e),

and similar global efficiency (Fig. 10.d).

Among all these results, if we focus on the pro-

files of controls and dyslexics through time, we can

observe patterns of deviation of the mean values of

network metrics between each group throughout the

development of the hemodynamic response to the

stimulus. This also occurs for regional measures as

nodal efficiency (Fig. 12), and the clustering coef-

ficient of each node (Fig. 11). Nodal efficiency is

larger in the right hemisphere for control and dyslex-

ics in the three stimuli. This indicates that there

are highly integrated areas where specialized infor-

mation is combined from distributed brain regions.

The difference in nodal efficiency between controls

and dyslexics is increased for the 40Hz stimulus, in

the line of Ref. 10 that have found and a rightward

lateralization for high frequencies. The clustering co-

efficient is larger for the dyslexic group revealing the

necessity of a greater number densely interconnected

cortical areas for auditory processing, reflecting an

inability to quickly settle in phonological represen-

tation.24 The differences found in the complex net-

works measures could explain why the SVC is capa-

ble of detecting DD using certain networks measures

as features for each stimulus. For example, mean val-

ues of modularity and local efficiency are distant in

the 40Hz stimulus through time.

In the present study, the best classification re-

sult was obtained by analyzing Hbr signals. Only

for the 4.8Hz stimulus the performance were greater

for the HbO signals. Consequently, the main re-

sults were presented by analyzing the Hbr signals

in 16Hz and 40Hz, and HbO signals in 4.8Hz stim-

uli. In Ref. 34 we can see that HbO and Hbr sig-

nals have been used in a large number of fNIRS

studies. Furthermore, Ref. 57, 56, 58 have employed

both HbO and HbR signals together with graph the-

ory to characterize functional brain networks, find-

ing that quantitative network measures differ be-

tween the different hemoglobin concentration signals.

These differences can be explained by variations in

SNR in the fNIRS measurement, the effects of arti-

facts on the hemodynamic response, even differences

in the origin of hemodynamic responses of differ-

ent hemoglobin concentration signals stemming from

neural activity. The aforementioned have been inves-

tigated in several works to identify the relationship

between neuronal activity, BOLD signal from fMRI,

and hemoglobin concentrations derived from fNIRS

data. Their findings are task specific, and depend

on the scope and objective of the work. There is

an agreement that temporal variations of the BOLD

signal are highly correlated with Hbr,59,60 and in-

creased cerebral blood flow results in a decrement

in Hbr and a rise in HbO. However, Ref. 61 come

to the needed of new studies to explore the tran-

sients of the BOLD signal. Ref. 62 demostrated that

the cortical content of the motor cortex fNIRS sig-

nal is more present in total hemoglobin concentra-

tion than in HbO and Hbr. In contrast, Ref. 63 found

stronger functional correlations in HbO and Hbr, but

noisier and less localized with total hemoglobin. Fi-

nally, Ref. 64 evinced that veins draining the scalp

while performing a task induce artifacts in the hemo-

dynamic response of fNIRS signals, affecting more

changes in HbO than in Hbr.

5. Conclusions

In this work, we propose a methodology to figure

out differential patterns in brain network dynam-

ics, measuring the evolution of the hemodynamic re-

sponse at different brain areas while an auditory,

non-interactive and slow-variation stimulus is pre-

sented. Correlation among areas in the hemodynamic

response measured by means of HbO and HbR allows

to construct a network that is represented as a graph.

Then, complex network analysis methodology is used

to characterize the graphs, and to extract features
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that 1) provide exploratory information to dive into

the brain processes related to low-level language pro-

cessing and 2) provide discriminative information al-

lowing to differentiate between controls and DD sub-

jects. Following the proposed methodology, we found

that the topological organization in functional brain

networks of control and dyslexic children has the

potential to be a diagnostic biomarker for develop-

mental dyslexia. These fluctuations in the networks

have been analyzed in the course of an experiment

in which children were presented non-speech audi-

tory stimuli. Using an approach in which fNIRS data

and complex network analysis are combined, which

is largely unexplored in the literature for dyslexia

diagnosis.

Of the three stimuli, the phonemic stimulus

(40Hz) was the best performing in classification. We

have used network measures of functional connec-

tivity in Hbr signals as features to train a SVC,

achieving and AUC of 0.89 in differential diagnosis

of DD. Complex network analysis also provides mea-

sures that quantify the properties of functional brain

networks. This can be interpreted to obtain informa-

tion about the relationship between brain regions in

the auditory processing of typical and dyslexic read-

ers.
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M. Bonte, Altered brain network topology during
speech tracking in developmental dyslexia, NeuroIm-
age 254 (July 2022) p. 119142.
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31. S. Cutini, D. Szűcs, N. Mead, M. Huss and
U. Goswami, Atypical right hemisphere response to
slow temporal modulations in children with develop-
mental dyslexia, NeuroImage 143 (December 2016)
40–49.

32. A. Ortiz, F. J. Martinez-Murcia, J. L. Luque,
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