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Abstract: There are physical Human–Robot Interaction (pHRI) applications where the robot has
to grab the human body, such as rescue or assistive robotics. Being able to precisely estimate the
grasping location when grabbing a human limb is crucial to perform a safe manipulation of the
human. Computer vision methods provide pre-grasp information with strong constraints imposed by
the field environments. Force-based compliant control, after grasping, limits the amount of applied
strength. On the other hand, valuable tactile and proprioceptive information can be obtained from
the pHRI gripper, which can be used to better know the features of the human and the contact state
between the human and the robot. This paper presents a novel dataset of tactile and kinesthetic
data obtained from a robot gripper that grabs a human forearm. The dataset is collected with a
three-fingered gripper with two underactuated fingers and a fixed finger with a high-resolution
tactile sensor. A palpation procedure is performed to record the shape of the forearm and to recognize
the bones and muscles in different sections. Moreover, an application for the use of the database is
included. In particular, a fusion approach is used to estimate the actual grasped forearm section using
both kinesthetic and tactile information on a regression deep-learning neural network. First, tactile
and kinesthetic data are trained separately with Long Short-Term Memory (LSTM) neural networks,
considering the data are sequential. Then, the outputs are fed to a Fusion neural network to enhance
the estimation. The experiments conducted show good results in training both sources separately,
with superior performance when the fusion approach is considered.

Keywords: physical human–robot interaction; grippers for physical human-robot interaction; conv-
LSTM; haptic perception

1. Introduction

In recent years, Human–Robot Interaction (HRI) has become a relevant topic in robotic
research. HRI studies focus on analyzing the collaboration and communication between
humans and robots. Some fields in robotics have used HRI solutions in complex tasks that
robots or humans can not solve individually [1]. Many solutions focus on improving task
performance without reducing safety [2–7]. In surgical robotics, doctors are assisted by
robots, improving their skills and reducing the risks associated with an intervention [2,3].
Collaborative robot manipulators (co-bots) are frequently used to improve productivity
inside industries [4,5]. Further, some HRI studies have played a significant role in Search
And Rescue (SAR) operations, such as developing systems that place sensors and mon-
itor vital signs [6] or optimizing signal policies in rescue operations using game theoric
approaches [7].

Physical Human–Robot Interaction (pHRI) is required for many applications, such
as exoskeletons [8], rehabilitation [9,10], or prostheses [11]. Usually, these applications
need solutions that satisfy multiple objectives, as in [12], where Genetic Algorithms (GA)
are implemented. One of the ultimate goals for several scenarios involving pHRI is to
achieve natural contact through touch between the participants [13]. A common definition
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of touch sensing is the perception of tactile and kinesthetic signals through the skin [14].
Kinesthetic is defined as two sources of information: the relative positions of the limbs
and the dynamical forces produced by the muscles [15]. Haptic perception is the term
used to describe the combination of tactile and kinesthetic information. Without the
sensations experienced in this sense, we would be unable to perform numerous essential
tasks. This necessity is also present in the field of robotics [16]. Tactile sensors have
played a crucial role in this sense, enhancing the capabilities whenever integrated into
robotic systems [17,18]. The most common haptic perception approaches use static tactile
information only. Traditional computer vision and machine learning techniques have been
used to challenge the problem of tactile object recognition [19,20]. Considering tactile data
as dynamic information is an approach some researchers have considered [21,22]. Other
researchers proved that haptic data could be treated as sequential data; therefore, Long-
Short Term Memory (LSTM) provided excellent results in detecting the slip direction [23].
Kinesthetic data have also been proven to be useful. In [24], the interaction forces between
a gripper and a human are estimated using proprioceptive information only. Moreover,
an estimation of the roll angle of a wrist using kinesthetic data is presented in [25]. Despite
the benefits of combining numerous haptic-based sources, only a few studies have followed
this strategy. In [26], a single and unplanned grasp is performed on multiple objects,
and an approach to classify them using the proprioceptive and tactile data of the gripper
is presented. Further, in our previous work, we developed a fusion of haptic data to
classify objects and enhance the results of the tactile and kinesthetic approaches performed
separately [27].

Reacting to haptic inputs is a key component in pHRI, which typically requires a robot
with tactile sensors and/or kinesthetic perception capabilities. The recognition system’s
algorithm usually needs a dataset for training purposes. In recent years, several haptic
datasets have been presented. In [28], Wang et al. present "TacAct", which contains tactile
data from multiple subjects and differentiates types of touch actions using a convolutional
neural network. On the other hand, in [29], tactile data are recorded from grasping objects
with a sensed globe. A neural network is also trained to classify the objects in the dataset.
Albini et al. presented a method to discriminate between touch from human and non-
human hands, trained with the collected dataset [30]. Not many datasets containing both
tactile and kinesthetic information are found in the literature. In [31], both sources are
recorded from the NICO humanoid robot, classifying in-hand objects using various neural
network approaches. Nevertheless, no regression approaches were found in the literature
using tactile and kinesthetic data as the input, primarily due to the lack of haptic datasets.

This paper presents a novel dataset of a forearm obtained with a gripper that records
full haptic perception. The three-fingered gripper contains a high-resolution tactile sensor in
a finger and two independent underactuated fingers with proprioceptive sensors to provide
kinesthetic data. The gripper performs a squeeze and release process, which approximates
human palpation to obtain both tactile and kinesthetic data over time. With this procedure,
some characteristics can be obtained, such as size, stiffness, and hard inclusions [22].
Thirteen equally spaced measurements, from the wrist to the elbow, have been recorded,
with a total of sixty experiments each (13× 60). This dataset provides information about
the bones and muscles, whose size and position vary along the forearm, as seen in Figure 1,
and could be used as training data in pHRI applications. To illustrate the application of the
recorded dataset, we present an estimation of the forearm’s grasping location. A regression
approach has been taken into consideration using LSTM neural networks. To the best of our
knowledge, this is the first dataset that provides tactile and kinesthetic information about a
whole human forearm. This information is relevant in the case of performing a safe upper-
limb manipulation to avoid the wrong manipulation that could hurt the human. Moreover,
some procedures must be performed in specific parts of the forearm, such as locating
sensors to obtain optimal biomedical signal readings or performing medical assistance.
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Figure 1. The robotic manipulator with the three-fingered gripper performs a grasp to recognize the
location of the grasped forearm. Bones and muscles present different shapes and sizes along the
forearm. The 3D images of the musculoskeletal model at the bottom are from BioDigital [32].

The main contributions of this work are:

• A tactile-kinesthetic dataset obtained with a gripper of a whole human forearm for
pHRI applications.

• An example of the use of this dataset with a deep learning fusion-based regression
approach, where both tactile and kinesthetic information are utilized to estimate the
location of the gripped section on the forearm.

The performance of the proposed neural network is analyzed, providing non-trained
examples to the regression approach, and comparing the outputs with the ground truth
data. The dataset and code are publicly available in a GitHub repository (https://github.
com/fpastorm/Forearm-tactile-kinesthetic-dataset, accessed on 8 November 2022).

This paper is organized as follows: Section 2 presents the experimental setup necessary
for the dataset acquisition. Section 3 details the dataset collection process. Section 4
describes how the tactile and the kinesthetic data can be used for a regression approach.
The experiments performed are related in Section 5, followed by the results obtained and
the discussion of the results in Section 6. Finally, Section 7 includes the conclusions and
prospective research work.

2. Experimental Setup

The experimental setup used to record the dataset is described in this section. On the
one hand, the two-sources haptic gripper is presented, describing the sensors and actuators
it contains. On the other hand, the novel-designed device used to obtain the forearm dataset
is described.

2.1. Underactuated Gripper

The presented robotic hand is a three-fingered gripper used in our previous works [22,27]
(see Figure 2). One finger is fixed and contains a tactile sensor over its entire surface.
The two reaming fingers are underactuated fingers that are responsible for performing the
squeeze-and-release procedure.

The tactile data are collected using the tactile sensor Teskcan (South Boston, MA, USA)
6077 model. The device is a rectangular sensor with 53.3 mm height and 95.3 mm width
and with 58× 50 tactels or sensels. Moreover, a 3 mm silicon pad covers the entire tactile
sensor to enhance the tactile measurements. Table 1 describes the main sensor parameters.
A data acquisition system, with the help of the Teskscan real-time SDK, is used to obtain
the recorded tactile data in Matlab. The fixed finger with a large tactile sensor is crucial for

https://github.com/fpastorm/Forearm-tactile-kinesthetic-dataset
https://github.com/fpastorm/Forearm-tactile-kinesthetic-dataset
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obtaining the shape of the grasped bodies. Moreover, with this design, the distribution of
forces will generally not be applied homogeneously; therefore, in the areas where more
significant pressures are applied, some internal characteristics are likely to be obtained.

Figure 2. Experimental setup used to obtain a forearm dataset. A description of the elements of the
underactuated gripper attached to the forearm measurement device.

Table 1. Features of Tekscan 6077 tactile sensor and silicone pad.

Parameter Description

Number of tactels 1700
Max. pressure 34 KPa
Temperature range −40 ◦C to +60 ◦C
Thickness 0.102 mm
Tactels density 27.6 tactels/cm2

Silicone pad EcoflexTM 00-30

Two symmetric independent underactuated fingers complete the entire design of the
robotic gripper. Each finger presents two phalanxes to adapt to the shape of the forearm,
applying the pressure evenly and on more surfaces than with a conventional single-phalanx
finger. The mechanism of an underactuated finger consists of a five-link bar mechanism.
As seen in Figure 3, both underactuated fingers have two degrees of freedom (θu and
θp), one actuator which is able to apply a given torque (τa), and a spring that provides
rigidness to the whole mechanism when no external forces are applied. Two dynamixel
motors (XM430-W210-T) have been used as actuators, and they are controlled with a PWM
signal sent to an open-loop torque control mode provided by dynamixel. The passive
joint angle between both phalanxes (θp) is obtained with a potentiometer that acts as an
angular sensor (muRata SV01). θu is obtained by solving the five-bar mechanism with
trigonometric methods [24], knowing θa, the value of which is provided by the actuator,
and θp. The parameters of the kinematics of the gripper are shown in Table 2. Hereinafter,
we will add to the θ angle the subindex r (right) or l (left), depending on whether we are
referring to the right or the left underactuated finger.

Table 2. Parameter values for the kinematic model of the gripper with underactuated fingers.

Parameter Value Parameter Value

a 40 mm l1 40 mm
b 20 mm l2 44.72 mm
c 60 mm l3 70 mm
d 25 mm w 10 mm
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.

Figure 3. Kinematic design of the gripper, defining the two underactuated fingers parameters and
the fixed finger.

2.2. Forearm Measurement Device

The forearm measurement device has been designed and built using additive man-
ufacturing technology. Evenly spread measurements are obtained thanks to its design.
The device has different elements, which are described below. The first part is the union of
the robotic gripper with the device. The second part is the semicircular forearm support,
adapted to withstand the whole weight of the forearm. It has also been designed to be
comfortable for the human whenever the dataset is being obtained, as its semicircular
shape allows the forearm to rest fixed in the device, distributing the weight homogeneously.
The device has evenly distributed slots for the placement of the elbow support units.
The support units are one centimeter wide.

The steps that have to be carried out to create a dataset with this device are summarized
in the flowchart in Figure 4. First, the gripper is attached to the measurement device, and
the forearm is placed on it. The forearm must be aligned with the gripper. Then, an elbow
support unit is placed in its corresponding slot so that the back of the elbow is in touch
with that element, ensuring that the forearm remains completely stationary. The next step
is to perform the data collection process as described in Section 3 for that specific section
of the forearm. Then, a new support unit is added to the same slot so that the forearm is
moved one centimeter from its previous position once the elbow is in touch with the new
support unit. The data collection step is repeated until reaching the elbow.
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Start

Fix the gripper with the measurement device

Place the wrist aligned with the gripper

Add an elbow support unit to the measurement device

Rest the elbow over the support placed

Collect the Kinesthetic and Tactile data

Has been the elbow
measured?

Finish

Yes

No

Figure 4. Flowchart of the steps needed to record a full haptic dataset using the forearm measurement
device.

3. Dataset Collection Process

Haptic information can be obtained by multiple approaches, realizing different explo-
ration procedures (EPs) [33]. In the case of in-hand recognition, one of the most common
EPs is to measure the shape of a grasped body with the kinesthetic information fingers pro-
vide. Another common EP is to perform a palpation procedure to measure the stiffness the
body has, and to detect some internal features it might present. Both EPs can be performed
at the same time, realizing a squeeze-and-release procedure.

A robotic hand (presented in Section 2) is utilized to perform these two EPs. The
squeeze-and-release process is realized by holding the forearm inside the robotic hand and
grasping it with the help of the two underactuated fingers. Both motors apply random
increased (in the squeeze) and decreased (in the release) torque to simulate human palpation.
An initial 10% of the max torque is applied, increasing by 5% every 0.5 s, with a random
variation of ±2% until 90% of the max torque is applied. Then, the torque decreases to 10%,
similarly as described in the squeeze procedure. The randomness in the torque applied is
included considering a human does not always perform palpation in exactly the same way.
The kinesthetic information is provided by the two underactuated fingers and the tactile
information is obtained by the tactile sensor located in the fixed finger.

We will define X% as the percentage the forearm grasped, considering the wrist is
X0%, and the elbow is X100%, following a linear scale for the intermediate grasps, as seen in
Figure 1. Overall, thirteen equally spaced EPs have been performed, from the wrist to the
elbow of a right forearm of a subject, obtaining the following dataset (DS ∈ R13) vector:

DS = [X1, . . . ,Xk, . . . ,X13] = [X0%,Xn%,X2n%, . . . ,X100%] (1)

Each DS subindex (k) is associated with the percentage of the grasped location with
the following relationship % = n(̇k− 1), with n = 8.Û3:

A total of 60 iterations have been carried out for each subindex, with a total of 780 ex-
periments. Tactile information is recorded as a time tensor T ∈ R28×50×K, with K = 95
being the number of tactile frames obtained in each squeeze-and-release process. An exam-
ple of some of those tactile frames is represented in Figure 5a. The kinesthetic data recorded
are a time matrix θ ∈ R4×I , where I = 79 represents the number of samples recorded in
each squeeze-and-release EP. The time matrix records the position of both actuators (θra, θla)
and the angle between the underactuated joints (θrp, θlp), as seen in Figure 5b. We will
define the roll angle constant, considering it can be estimated and reoriented to a given
angle [25]. Therefore, for this dataset, we will define the wrist roll angle as 0 for each
measurement.
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Figure 5. Time sequences of tactile and kinesthetic information are excerpted during the grasping
process. A collection of tactile images composing tactile information (a). Five tactile images are
presented in this figure to demonstrate how the pressure distribution evolves along the sequence,
distinguishing the bones and muscles of the forearm. The variation in the joint position of the
underactuated fingers’ joints produces kinesthetic information (b). Here, θla and θra denote the left
and right fingers’ actuated joint angles, respectively, while θlp and θrp denote the left and right fingers’
underactuated joint angles.

4. Tactile and Kinesthetic Data Fusion for Regression

Physical interaction between robots and human upper limbs is crucial for many
applications. For instance, rescue tasks, where a triage must be performed, locating
biomedical sensors in specific parts of the forearm where they obtain better locations,
or injecting medicine to survivors in critical condition. Other applications, such as assistive
robotics, perform robot-initiated upper limb pHrI. Manipulating human upper limbs can
be a high-risk task, in the sense we could harm the subject if we lack information about the
grasped position and the forearm roll angle. Considering these necessities, in this work,
we present a regression method using the haptic dataset to estimate the grasped forearm
location (X%). Both tactile and kinesthetic information are trained individually, and then,
the outputs are fused to enhance the results, similar to our previous work [27], where we
fused the haptic information but for classification purposes.

4.1. Neural Networks Structure

A schematic of the three regression neural networks is presented in Figure 6. Both
tactile and kinesthetic networks are based on LSTM layers. This type of layer learns long-
term dependencies between sequence data obtained in time series and is able to preserve
previous information, as demonstrated in various works [27,34]. The squeeze-and-release
process provides haptic information with an evident temporal structure; therefore, it seems
intuitive to conclude that LSTM networks will perform adequately.

The tactile images time series (T) is used to train the tactile network, which is formed
by four layers. It presents a Convolutional LSTM [35] layer (L C = ConvLSTM2D), with a
kernel of 16× [5× 3] and a hyperbolic tangent (tanh) activation function, followed by a
convolutional layer (C = Conv2D) with a kernel of 32× [2× 2] and a Rectified Linear
Unit (ReLU) activation function. Then, two fully connected layers (F = Dense) with
64 neurons, and ReLU activation function, and a single-neuron and linear activation
function, respectively.

The kinesthetic network is fed with the angle time matrix (θ) and is formed by four
layers. The first three layers are LSTM layers (L = LSTM), with 1000, 500, and 100 neurons,
respectively, to achieve a progressive codification of the input matrix. All of them have
tanh as an activation function. The last layer is a single-neuron fully connected layer with a
linear activation function.

Considering tactile and kinesthetic estimation outputs may differ, its results are inter-
esting for learning the strengths and weaknesses of each network with a new fusion neural
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network that uses both sources. Estimation outputs are concatenated, creating a new input
matrix V ∈ R2. The fusion network presented is a four-layer fully connected network with
128, 64, 32, and 1 neurons, respectively. All layers have a ReLU activation function, with the
exception of the last layer, which has the linear activation function.

Figure 6. Diagram of the regression neural network structure. Kinesthetic and tactile data are trained
separately. The kinesthetic network is defined by three LSTM layers and a fully connected layer.
The tactile network is formed by a convolutional LSTM layer with a convolutional layer and two fully
connected layers. Both outputs are concatenated and fed to a fully connected layer fusion network
that uses both sources of information to improve the output.

4.2. Training

To effectively train the tactile and kinesthetic data and then the fusion neural network,
let us define two new subsets created from the original dataset (DS):

SO =

ß
SOi ∈ DS / i = 2k, k ∈ Z+

™
= [Xn%,X3n%, . . . ,X11n%] (2)

SE =

ß
SE l ∈ DS / l = 2k− 1, k ∈ Z+

™
= [X0%,X2n%,X4n%, . . . ,X100%] (3)

SO ∈ R6 contains the elements of the odd subindex of DS , while SE ∈ R7 is formed
by the even subindex elements of DS . This division of data is not arbitrary and will be
discussed in Section 5.

The tactile and kinesthetic networks are trained with the SE subset. On the one hand,
the tactile network estimation model is trained with 54 examples for each X% (90% of the
subset), using 20% of the training data for validation. An Adam optimizer function is
utilized for training, using the mean squared error as a loss function, with a learning rate
of 8× 10−4 over 500 epochs. On the other hand, the kinesthetic network estimation model
is trained on the same 54 samples with the same 20% of the training data for validation
purposes. An Adam optimizer function is also utilized for training, using the mean squared
error as a loss function, with a learning rate of 1× 10−5 over 2000 epochs.

Finally, both tactile and kinesthetic networks are fed with the entire SO subset,
and then, as described in Section 4.1, the outputs are used to train the Fusion neural
network estimation model. Similarly, as with the tactile and kinesthetic neural networks,
90% of the data has been used for training purposes, with 20% for validation procedures.
An Adam optimizer function is also used for training, using the mean squared error as a
loss function, with a learning rate of 1× 10−6 over 2500 epochs.
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5. Experiments

To effectively evaluate the performance of the three neural networks, they will all
be fed with non-tested data from the known subset and completely new data from the
other subset. Therefore, tactile and kinesthetic neural networks will be tested with the
remaining 10% examples from each l SE element and with the entirely unknown SO.
Similarly, the fusion network will be tested with the remaining 10% of examples from each
i SO element and with the entirely unknown SE subset. To obtain significant statistical
performance metrics, 20 trainings and tests of each regression neural network have been
performed. In each of the iterations, random training data and random test data are taken
from the 60 experiments, but the tactile data and the kinesthetic data always belong to
the same squeeze-and-release process. We will evaluate the performance by analyzing the
maximum and minimum estimated values, the amplitude of the 25/75 percentiles, and the
median of the estimated values. Moreover, an analysis of the Root Mean Squared Error
(RMSE) and the Mean Absolute Error (MAE) of each percentage of the grasped forearm
will be performed.

The training and test experiments were performed using the Keras API in an Intel Core
i7-8700K computer with 16 GB of RAM, equipped with an NVIDIA RTX 2080Ti graphics
processing unit (GPU).

6. Results and Discussion

The results of the 20 iterations of experiments are presented in this section. The estima-
tion output values are presented in a box plot for each neural network, as seen in Figure 7.
Moreover, the RMSE and the MAE of each percentage of the grasped forearm for each
neural network are shown in Figure 8, with Table 3 summarizing the results.

0 8.3 16.6 25 33.3 41.6 50 58.3 66.6 75 83.3 91.6 100
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Figure 7. The median, 25/75 percentiles, and the maximum and the minimum estimation output of
each X%. The test is presented for the tactile, kinesthetic, and fusion neural networks.

0 8.3 16.6 25 33.3 41.6 50 58.3 66.6 75 83.3 91.6 100
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Figure 8. The root mean squared error (RMSE) and the medium absolute error (MAE) achieved for
each X% tested. Both errors are presented for the kinesthetic, the tactile, and the fusion neural net-
works.
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Table 3. RMSE and MAE% error of the entire test for each neural network.

Tactile Kinesthetic Fusion

RMSE 13.42 9.74 7.61
MAE 13.09 8.81 7.08

As appreciated in Figure 7, the tactile regression neural network presents the most
significant range between the minimum and the maximum output, with an average of
50.87%. On the other hand, the kinesthetic regression neural network presents better results,
having an average range of 41.56%. The fusion provides the minor range, with an average
of 28.24%. As expected, fusion is the best approach, considering that their results are the
most consistent over the 20 iterations. Similarly, the range of the 25/75 percentiles is the
highest in the tactile regression neural network, followed by the kinesthetic neural network.
Again, the fusion neural network outperforms with the lowest range.

Regarding MAE and RMSE errors, as seen in Table 3, the tactile neural network
approach presents the most significant average error. Nevertheless, the results provide
a fair estimation of the grasped section and could be utilized in applications that do not
require high accuracy. As presented in Figure 8, the accuracy of the estimation in the tactile
neural network is very precise from the wrist (X0%) until approximately half of the forearm
(X58.3%). Then, the accuracy decreases abruptly until the elbow (X100%). This occurs due to
the fact that in the zone between the wrist and the middle of the forearm, the bones are closer
to the skin; therefore, when performing the squeeze-and-release process, the tactile sensor
obtains a large amount of internal information. However, in the area from the middle of the
forearm to the end of the elbow, the bone is deeper with respect to the skin surface; thus,
the sensor finds less information that differentiates the forearm sections. The kinesthetic
neural network outperforms the average results of the tactile neural network; thus, it is
also possible to realize precise estimations. The kinesthetic estimation presents its best
results in the zones close to the wrist and the elbow. However, it lacks the capacity to
recognize half of the forearm zone. Kinesthetic data obtains information about the shape
of the forearm; therefore, we can assume that the shape of both the wrist and elbow are
sufficiently different. However, it is intuitive to conclude that the middle part of the forearm
presents similar shapes, considering the estimation is worse in that zone. Lastly, the fusion
estimator presents the best average error. The error is low in almost every X%, except in
X58.3% and X100%, coinciding with the highest errors of the kinesthetic and tactile neural
networks, respectively. The robustness of the fusion network is remarkable. Although some
error in the estimation is shown, no disparate outputs are presented.

Even though the results are satisfactory, they could be improved, including a more
extensive dataset incrementing the thirteen grasps measurements and increasing the sixty
experiments realized on each measurement. However, gathering a significant amount
of tactile and kinesthetic data is a big investment. Various techniques for this challenge
could be used, such as sim-to-real approaches that pre-train the models using simulated
data; or employing generative adversarial networks (GANs) or variational autoencoders to
produce new data that are equivalent to that received by the real sensor. It is also important
to remark that this is training performed with a dataset formed from only one subject’s
information; thus, a satisfactory performance in other subjects is not ensured.

7. Conclusions

In this work, a haptic database of a human upper limb was presented. Thirteen
equally spaced measures have been obtained from the wrist to the elbow of the right
forearm. The data have been recorded by a three-fingered robotic gripper, with a fixed
finger containing a tactile sensor to perceive tactile information and two underactuated
fingers that perform the grasping procedure and record proprioceptive information.

Moreover, an application using the collected dataset has been designed. An estimation
of the grasped forearm position was presented, fusing the haptic data in a neural network
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approach. Tactile and kinesthetic information have been trained separately, and their
outputs were fed to a new fusion neural network that has enhanced the results.

Future research shall consider the addition of tactile sensors to the underactuated
fingers to improve the sensing capabilities of the whole gripper, including different forearm
datasets, considering male and female subjects and different forearm profiles, taking into
account various factors, such as muscle, fat percentage, or wingspan. Some data augmenta-
tion procedures could also be applied to increase the provided dataset, using flipping and
scale techniques. Retraining this new dataset could lead to the regression fusion neural
network being able to estimate grasped sections of left hands grasped symmetrically and
sections of grasped forearms of different subjects. However, these assumptions must be
handled with caution and studied in depth.
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