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Abstract: The depletion of oil reserves and concerns about the environmental impact of the use and
incorrect disposal of mineral lubricants have been promoting the development of bio-based lubricants.
In this study, biolubricants obtained from fatty acids of castor oil were synthesized by esterification
(>wt.%93), epoxidation (>wt.%92), and oxirane ring opening reactions using water (>wt.%92) or
2-ethylhexanol (>wt.%94) as nucleophilic agents. The frictional characteristics of the synthesized
samples were obtained through tribological tests performed in a four-ball tester and compared with
a commercial mineral oil. The sample obtained through oxirane ring opening with water showed
the best frictional performance (FC = 0.0699 ± 0.0007) among the prepared samples, with equivalent
wear rate (WSD = 281.2 ± 5.54 µm) and ca. 20% lower friction coefficient when compared to the
commercial mineral oil, indicating its great potential for replacing mineral fossil oils.

Keywords: tribology; biolubricant; oxirane ring opening

1. Introduction

Lubrication, which is the application of a fluid film between the contacting metal
surfaces in static and dynamic operating conditions, is used to minimize the effects of
friction and wear on machinery and equipment. Currently, most lubricants are produced
from mineral oil; although these lubricants meet technical requirements, their production
is limited by the availability of oil reserves. Increased worldwide concerns about the
environmental impact of the incorrect disposal of mineral oils and emissions of metals
generated during the operation of internal combustion engines led, for example, to the
introduction of non-technical criteria (ecotoxicological and sustainability properties) to
reduce the environmental impact of lubricants [1–4].

Thus, efforts are devoted to the development of bio-based lubricants produced from
renewable and biodegradable sources. Vegetable oils, particularly non-edible vegetable oils,
are used as the main basis for the production of biolubricants. Although edible vegetable
oils may serve as a basis for the production of biolubricants, such usage is associated
with sustainability concerns because increased demand for edible oils would result in the
expansion of plantations which could lead to deforestation and eutrophication [1,5]. At
the same time, non-edible oilseeds can be cultivated in low-fertility dry and semi-arid
environments [6].

Castor oil stands out among non-edible vegetable oils because of its main composition
of hydroxylated fatty acids [4]. Ricinoleic acid comprises wt.% 82–90 of fatty acids in
castor oil (Ricinus communis L.) [7–9]. Ricinoleic acid contains a hydroxyl group (–OH) in
its chain, which provides good lubricity, especially for applications as hydraulic fluid, in
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which the lubricant operates in the mixed lubrication/EHL and hydrodynamic regimes
since the hydroxyl group (-OH) forms a thick and viscous lubricant due to intermolecular
hydrogen bonding. [10–13]. Although ricinoleic acid has good tribological properties, the
presence of a double bond in its structure increases its susceptibility to oxidation, which is
disadvantageous for direct applications in mechanical systems [14,15].

To improve the oxidative stability and other physicochemical properties of unsat-
urated vegetable oils, studies have been carried out to obtain esters through chemical
processes [16,17]. The most common chemical modification routes are transesterifica-
tion/esterification, hydrogenation, estolide formation, and epoxidation reactions [18–20].
The transesterification route consists of replacing the glycerol portions of the triglyceride
molecule of vegetable oils with a long- or branched-chain alcohol and performing esterifi-
cation with free fatty acids extracted from vegetable oils [19,21]. Hydrogenation consists
of the isomerization of cis- and trans-acids. Estolide esters are obtained by bonding a
carboxylic acid group to the double bond of another fatty acid [22]. Epoxidation is the
removal of double carbon bonds through the introduction of an oxygen atom, resulting
in the formation of an epoxide functional group [20]. Although epoxidation of vegetable
oils removes unsaturations, it yields biolubricants with poor low-temperature properties,
which need to be further submitted to an oxirane ring opening reaction and subsequent
esterification [16–22]. The possibility of using a variety of vegetable oils, alcohols, and
other materials results in a wide variety of products with diverse physicochemical and
tribological characteristics.

Recent studies have used castor oil and/or ricinoleic acid to obtain biolubricants via
an estolide formation route [23]. The obtained products showed a similar pour point and
higher oxidative stability than castor oil-based lubricants reported in the literature. Encinar
et al., (2020) used castor oil transesterification to obtain biolubricants with a higher flash
point than mineral oils [8]. Saboya et al., (2017) obtained castor oil-based biolubricants
by esterification and demonstrated that 2-ethylhexyl ricinoleate exhibits excellent low-
flow properties, viscosity index (VI) comparable to that of commercial synthetic oils,
biodegradability higher than mineral oil, and better oxidative stability than castor oil [24].
Rios et al., (2020) prepared biolubricants through epoxidation followed by an oxirane ring
opening, and the obtained products exhibited excellent low-temperature properties with
high oxidative stability [7].

Although the mentioned studies report significant improvements in physicochem-
ical properties, neither of them evaluated the frictional characteristics of the obtained
products. Tribological tests simulate lubricant operation, and proper performance (high
energy efficiency, low friction coefficients (FC), and wear scar diameter (WSD)) in the test is
paramount to validate the use of the considered lubricant in mechanical systems [13,25–27].
The present study aimed at producing biolubricants from fatty acids of castor oil through
esterification, epoxidation, and oxirane ring opening reactions with 2-ethylhexanol and
water used as nucleophilic agents to produce the ether branches, since these consecutive
reactions improve their properties at low temperatures, viscosity index, and oxidative
stability [13]. The study of their tribological characteristics becomes of fundamental im-
portance to meet all the technical criteria for their application in machinery lubrication.
Therefore, the main physicochemical properties of the products were determined, and the
tribological characteristics were evaluated using a four-ball tester.

2. Materials and Methods
2.1. Materials

A sample of fatty acids from castor oil was purchased from Azevedo Ind. e Com.
de Óleos LTDA (São Paulo, Brazil). The sample presented in its composition a mixture
of ricinoleic acid (82–90 wt.%), linoleic acid (wt.% 2–8), oleic acid (wt.% 2–7), stearic
acid (2 wt.%), and palmitic acid (wt.% 2). Acetone (>wt.% 99.5), p-toluenesulfonic acid
(>wt.% 98), toluene (>wt.% 99), and sodium bicarbonate (>wt.% 99) were supplied by Neon
(Suzano, Brazil). Hydrogen peroxide (35.5% v/v), anhydrous sodium sulfate (>wt.% 99),
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and formic acid (>wt.% 85) were purchased from Dinâmica (São Paulo, Brazil). Amberlyst
15 resin, 2-ethylhexanol (>wt.% 99), potassium bromide, and deuterated chloroform (CDCl3,
99.8%) were supplied by Sigma-Aldrich (San Luis, Missouri, USA). A commercial mineral
oil sample (SAE 20W50) was purchased from Maxon Oil (São José dos Pinhas, Brazil), with
physicochemical properties listed in Table 1.

Table 1. Physicochemical properties of the commercial mineral oil (SAE 20W50).

Property Value Method

Density at 20 ◦C (g/cm3) 0.87 ASTM D7042/NBR 7148
Kinematic viscosity at 40 ◦C (cSt) 152.1 ASTM D445/NBR 10441
Kinematic viscosity at 100 ◦C (cSt) 18.04 ASTM D445/NBR 10441

Viscosity index 132 ASTM D2270/NBR 14358
Open cup flash point (◦C) 223 ASTM D921/NBR 11341

2.2. Synthesis Procedure

Biolubricants were obtained using the synthesis route adapted from the previous
studies [7,28]. A scheme of the reactions used to synthesize the bio-based lubricants is
shown in Figure 1. The sample of fatty acids from castor oil (FACO) was submitted to
esterification (Figure 1b), epoxidation (Figure 1c), and oxirane ring opening reactions
(Figure 1d,e).

Lubricants 2023, 10, x FOR PEER REVIEW 4 of 13 
 

 

and the OR2EHRIC (ring opening with 2-ethylhexanol) product was distilled in a Ku-
gelrohr system under vacuum (3∙10−2 mbar) at 110 °C to remove excess 2-ethylhexanol. 

 
Figure 1. Scheme of the synthesis routes used to obtain bio-based lubricants. (a) FACO (fatty acids 
from castor oil), (b) ERIC (esterification reaction product), (c) EPOXIRIC (epoxidation reaction prod-
uct), (d) ORWATER (product of the oxirane ring opening reaction with water as a nucleophilic 
agent), and (e) OR2EHRIC (product of the oxirane ring opening reaction with 2-ethylhexanol as a 
nucleophilic agent).  

2.3. Physicochemical Characterization 
All samples were analyzed by one-dimensional proton nuclear magnetic resonance 

spectroscopy (1H NMR; Bruker Avance DRX-500, Billerica, Massachusetts, USA) operat-
ing at 500 MHz with deuterated chloroform as a solvent. 

Fourier-transform infrared spectroscopy (FTIR; Shimadzu IRTracer-100, Quioto, Ja-
pan) was performed for all samples to confirm the esterification, epoxidation, and oxirane 
ring opening reactions. The analysis was carried out using a potassium bromide (KBr) 
tablet in the scanning range of 400–4000 cm−1 [29]. The tablet was prepared by pressing at 
a force of 8 kN. Thirty-two scans were performed at a resolution of 4 cm−1. 

Density at 20 °C and kinematic viscosity at 40 °C and 100 °C of all samples were 
determined following ASTM D7042 and ASTM D445 methods, respectively, in an Anton 

Figure 1. Scheme of the synthesis routes used to obtain bio-based lubricants. (a) FACO (fatty
acids from castor oil), (b) ERIC (esterification reaction product), (c) EPOXIRIC (epoxidation reaction
product), (d) ORWATER (product of the oxirane ring opening reaction with water as a nucleophilic
agent), and (e) OR2EHRIC (product of the oxirane ring opening reaction with 2-ethylhexanol as a
nucleophilic agent).
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Esterification was performed in a 3-neck flask, where 100 g (0.336 mol) of fatty acids
from castor oil (FACO) were mixed with 131 g (1.01 mol) of 2-ethylhexanol (molar ratio
FACO:2-ethylhexanol = 1:3) and 10 g of p-toluenesulfonic acid (10% of fatty acids by
weight). The reaction was conducted for 6 h at 90 ◦C, under reflux and constant stirring
at 900 rpm. Then, the mixture was transferred to a separatory funnel, and the organic
phase was washed with a solution of NaHCO3 (5% w/v) and distilled water until pH 7
was attained. The product was dried with anhydrous Na2SO4 and distilled in a Kugelrohr
system under vacuum (3·10−2 mbar) at 110 ◦C to remove the excess of 2-ethylhexanol. The
final product of this step was named ERIC.

Next, the ERIC sample was submitted to epoxidation: in a flat-bottom flask, a solution
of 70 g (0.171 mol) of ERIC, 7.4 mL (0.171 mol) of formic acid, and 50 mL of toluene were
prepared. Subsequently, 57 mL (0.684 mol) of the hydrogen peroxide solution (molar ratio
ERIC:CH2O2:H2O2 1:1:4) was added dropwise to the reaction solution. The reaction was
conducted for 24 h at room temperature and under constant stirring at 900 rpm. Then,
the liquid was transferred from the flask to a separatory funnel. The upper phase was
neutralized with a solution of NaHCO3 (5% w/v), washed with distilled water, and dried
with anhydrous sodium sulfate. The toluene was removed using a rotary evaporator, under
reduced pressure at 90 ◦C for 40 min. The product of this step was named EPOXIRIC.

Via the oxirane ring opening reaction, two products were obtained from the EPOXIRIC
sample with 2-ethylhexanol (named OR2EHRIC) and with water (named ORWATER) used for
the nucleophilic attack with molar ratios of 10:1 water/EPOXIRIC and 3:1 alcohol/EPOXIRIC.
Dry Amberlyst 15 (A15) was used as a catalyst at a mass ratio (EPOXIRIC/A15) of 10:1.
The reaction was conducted in a three-neck flask at 90 ◦C for 4 h under reflux and constant
magnetic stirring (900 rpm). Subsequently, the product was filtered to separate the catalyst
and washed in a separatory funnel with a solution of sodium bicarbonate (5% w/v) and
distilled water, until reaching pH 7. The samples were dried with anhydrous Na2SO4. Then,
the ORWATER (ring opening with water) sample was stored, and the OR2EHRIC (ring
opening with 2-ethylhexanol) product was distilled in a Kugelrohr system under vacuum
(3·10−2 mbar) at 110 ◦C to remove excess 2-ethylhexanol.

2.3. Physicochemical Characterization

All samples were analyzed by one-dimensional proton nuclear magnetic resonance
spectroscopy (1H NMR; Bruker Avance DRX-500, Billerica, Massachusetts, USA) operating
at 500 MHz with deuterated chloroform as a solvent.

Fourier-transform infrared spectroscopy (FTIR; Shimadzu IRTracer-100, Quioto, Japan)
was performed for all samples to confirm the esterification, epoxidation, and oxirane ring
opening reactions. The analysis was carried out using a potassium bromide (KBr) tablet in
the scanning range of 400–4000 cm−1 [29]. The tablet was prepared by pressing at a force of
8 kN. Thirty-two scans were performed at a resolution of 4 cm−1.

Density at 20 ◦C and kinematic viscosity at 40 ◦C and 100 ◦C of all samples were
determined following ASTM D7042 and ASTM D445 methods, respectively, in an Anton
Paar SVM 3000 equipment (Graz, Austria) [30,31]. The ASTM D2270 method was used to
obtain the viscosity index value (VI) [32].

2.4. Tribological Evaluation

All samples were taken to a tribological test, using a four-ball tester coupled to a
DHR-3 rheometer (TA Instruments, New Castle, Delaware, USA). More information about
the tribological tester may be found in reference [33]. During the test, one ball rotated
at a constant sliding speed (0.228 m/s), temperature of 40 ◦C, and under loading force
(55 N) against three fixed balls submerged in the evaluated lubricant, as shown in Figure 2.
The test was conducted for 1 h. The balls used in this test were made of chrome steel
alloy (AISI52100) with a hardness of 64 HRC, diameter of 12.7 mm, and an initial surface
roughness of 0.015 µm. Prior to the test, the balls were cleaned with acetone and dried
under ambient conditions. Optical microscopy (Zeiss, Oberkochen, Germany) was used
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to evaluate the wear morphology and determine the WSD for each test. New balls were
used for each new test. The mineral oil sample (SAE 20W50) was used as a reference for
tribological comparison, using friction coefficients (FC) and wear scar diameters (WSD) of
the biolubricants.
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3. Results and Discussion
3.1. Physicochemical Characterization

Densities at 20 ◦C, kinematic viscosities at 40 ◦C and 100 ◦C, and viscosity indices
obtained for all samples are listed in Table 2. In lubricants, density is used for evaluation of
used lubricants: an increase in density compared to the fresh lubricant may indicate the
presence of insolubles, water, higher-density products, and oxidized compounds, while
a decrease in density may indicate the presence of lower-density contaminants and/or
fuel [34]. The ERIC, EPOXIRIC, and OR2EHRIC samples showed lower densities than the
FACO sample, whereas the ORWATER sample presented a higher density than the FACO
sample. These results may be related to the lower viscosities of the ERIC, EPOXIRIC, and
OR2EHRIC samples and the higher viscosity of the ORWATER sample, if compared to the
FACO sample, since density values depend on viscosity, quality, and additives content of
the sample [35–37].

Table 2. Physicochemical properties of the FACO, ERIC, EPOXIRIC, OR2EHRIC, and ORWATER samples.

Property FACO ERIC EPOXIRIC OR2EHRIC ORWATER Method

Density at 20 ◦C
(g/cm3) 0.941 0.896 0.935 0.928 0.960 ASTM D7042

Kinematic viscosity
at 40 ◦C (cSt) 137.02 25.20 46.68 67.33 420.46

ASTM D445
Kinematic viscosity

at 100 ◦C (cSt) 13.04 4.55 6.95 8.79 24.39

Viscosity index 86.5 89.2 105.0 103.1 71.8 ASTM D2270

Viscosity is a measurement of the shear strength of a lubricant and depends primarily
on the molecular interactions within the lubricant [34]. The FACO sample is mainly
composed of ricinoleic acid, which contains a hydroxyl group that enhances attractive
intermolecular interactions due to hydrogen bonding. For this reason, its viscosity is higher
than those of other fatty acids [7,38,39]. The lower viscosity of the ERIC sample if compared
to the FACO sample may be ascribed to the introduction of a branched ethyl group that
makes intermolecular interactions more difficult [7,40].
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The insertion of the epoxy group into the EPOXIRIC sample led to an increase in
viscosity because of the intermolecular interactions induced by the presence of an oxy-
gen atom in the ring [41]. Through oxirane ring opening reactions, the OR2EHRIC and
ORWATER samples were obtained using 2-ethylhexanol and water, respectively, as nucle-
ophilic agents. The ORWATER sample showed higher viscosities due to the introduction of
two new hydroxyl groups that strengthened the molecular interactions through hydrogen
bonds [13]. At the same time, in the OR2EHRIC sample, an epoxy group was transformed
into an alcohol group and an ether group. Due to the lower number of hydrogen bonds,
the OR2EHRIC sample showed lower viscosities than ORWATER sample [7]. The viscosity
index (VI) describes the effect of temperature on the viscosity of the lubricant. The higher
the VI, the lower the influence of temperature on viscosity [42–44]. The studied samples
presented VI values (71.8–105) within the limits of mineral lubricants (groups I and II),
according to the API classification [45].

The FTIR spectra of all samples are shown in Figure 3. In the FACO sample, the band
at 1710 cm−1 was attributed to the carbonyl group (C=O) in the long-chain fatty acids.
For the ERIC sample, this peak shifts from 1710 to 1740 cm−1, indicating the presence of
an ethyl ester C=O group. This result indicates that the functional groups of carboxylic
acids present in the spectrum of the FACO sample were indeed transformed into esters
after the esterification reaction [46]. Furthermore, for the ERIC sample, a peak may be
observed at around 1170 cm−1; this peak is absent in the FACO sample and is characteristic
of the presence of the C=O functional group, from the ester formation [47,48]. In addition,
the CH3 group corresponding to the ethyl ester appears in the ERIC sample spectrum at
1461 cm−1 [49].
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Figure 3. FTIR spectra of the FACO, ERIC, EPOXIRIC, OR2EHRIC, and ORWATER samples.

The differences between the spectra of the FACO and ERIC samples demonstrate the
effective esterification of the fatty acids from castor oil. In the EPOXIRIC sample, bands at
825 and 841 cm−1, ascribed to the epoxide groups, are observed. These bands are absent
in the spectra of the OR2EHRIC and ORWATER samples, demonstrating the successful
oxirane ring opening. In addition, in the OR2EHRIC and ORWATER samples, the bands
at 1737 cm−1 represent carbonyl elongation (C=O). Bands at 1090, 1172, and 1244 cm−1

represent the C–O of the ether and ester, whereas the band at 3470 cm−1 represents the
elongation of the –OH group [21,41,50,51].
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The esterification, epoxidation, and oxirane ring opening reactions were also confirmed
through the 1H NMR spectra (Figure 4). In the FACO sample (Figure 4), peak (a) is ascribed
to the bonding of the hydrogen of the alkene to carbons 9 and 10 [7,52], whereas peak
(b) is associated with the hydrogen of the terminal chain (–CH3). Finally, peaks (c) and
(d) correspond to the hydrogen bonded to the sp3 carbon (–CH2–) [7,53]. For the ERIC
sample (Figure 3), the peak (e) corresponds to the hydrogen bonded to the carbon near
the sp3 oxygen of the ester functional group, confirming successful esterification. In the
spectrum of the EPOXIRIC sample (Figure 3), peak (f), representing unsaturated bonds
(still seen in the ERIC sample), has disappeared whereas peak (g) appears, indicating the
formation of the epoxide ring [28,54]. Lastly, the spectra of OR2EHRIC and ORWATER
samples (Figure 3) show the absence of peak (g) and the presence of peak (h), corresponding
to the hydrogen bonded to the hydroxyl carbon (–CH(OH)–) [28,54].
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3.2. Tribological Results

The FC curves and WSD values of the FACO, ERIC, OR2EHRIC, and ORWATER
samples are shown in Figure 5, along with the results obtained for the mineral oil (SAE
20W50). The FC curves of the ORWATER and the mineral oil samples show essentially
constant friction values. On the other hand, the FC curves of the FACO and OR2EHRIC
samples gradually decrease with time. Interestingly, the FC curve of the ERIC sample
fluctuates throughout the test. According to the concept of friction traces, steady state
friction coefficients are classified into four types: type A—the FC is constant during the
steady state; type B—the FC gradually increases during the test; type C—the FC gradually
decreases during the test; and type D—the FC fluctuates throughout the test [55–57]. Type A
is usually associated with low wear; for this reason, the ORWATER and the mineral oil sam-
ples show the lowest WSD values observed in this study, 281.2 ± 5.54 and 225.2 ± 2.16 µm,
respectively [55,57]. Types B and C may be acceptable for lubricants, whereas type D is
unacceptable because it is normally associated with high wear. As seen, the FACO and
OR2EHRIC samples show friction curves with type C characteristics and thus exhibit
intermediate WSD values. Finally, the ERIC sample presents a type D friction curve and
thus exhibits the highest WSD observed in this study.
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commercial mineral oil sample (SAE 20W50).

All bio-based samples evaluated in this study present FC values lower than that
of the 20W50 mineral oil sample. This may be attributed to the molecular structure of
the biolubricants samples, which have polar and non-polar regions, whereas the 20W50
mineral oil contains predominantly non-polar molecules. The polar region of biolubricants
is responsible for the absorption or adhesion to the metallic surfaces, and the non-polar
region is responsible for the wear resistance of the lubricant film [13,58]. Previous studies
suggest that lubricity and wear protection are affected by criteria related to molecular
structure: degree of molecular branching, chain length, and number of ester functional
groups [13].

In this study, the branching of the ERIC structure with 2-ethylhexanol (forming the
OR2EHRIC structure) reduced the FC and WSD, corroborating those previously reported
results. Additionally, the use of water as the nucleophilic agent to open the oxirane ring
produced the most efficient biolubricant sample for wear reduction. The presence of three
hydroxyls (–OH) in the ORWATER molecule improved the wear resistance of the biolu-
bricant due to the strong molecular interactions induced by hydrogen bonding [10,13,59].
The WSD of the ORWATER sample (281.2 ± 5.54 µm) was close to that of the mineral oil
(225.2 ± 2.16 µm), demonstrating its promising potential for use as a lubricant, especially
considering that the commercial mineral oil sample (20W50) contains anti-wear additives
that significantly improve the wear reduction capacity of mineral oil [60–62].

The morphologies of the wear surfaces of the studied samples are presented in
Table 3. The grooves in the direction of application are caused by wear through abra-
sion and adhesion [26,63,64]. Among the bio-based samples, ORWATER showed the
highest wear resistance of the lubricant film, demonstrating its stronger absorption on the
metallic surfaces of the balls. Thus, the wear surfaces are smoother when using ORWA-
TER. Although the 20W50 sample yielded the lowest WSD values, its wear morphology
is visually rougher than those of the bio-based lubricants samples, which appear to be
more efficient in forming a monomolecular (or multimolecular) layered structure oriented
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toward the polar end, forming a film that inhibits the metal-to-metal contact. This would
yield lower roughness of the worn surfaces [26,65,66].

Table 3. Wear morphology of the balls lubricated with the bio-based samples, and of the balls
lubricated with the commercial mineral oil sample (SAE 20W50), after tribological tests.

Ball FACO ERIC OR2EHRIC ORWATER 20W50

1st ball
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4. Conclusions

In the present study, biolubricants samples were prepared through esterification
(ERIC), epoxidation (EPOXIRIC), and oxirane ring opening reactions, using 2-ethylhexanol
(OR2EHRIC) and water (ORWATER) as nucleophilic agents to create ether branches, and
compared to a commercial mineral oil sample (SAE 20W50). The viscosities of the samples
varied from 25.2 to 420.46 cSt at 40 ◦C and from 4.55 to 24.39 cSt at 100 ◦C. Successful
syntheses were confirmed using FTIR and NMR analyses. The ORWATER and 20W50
samples showed constant FC curves throughout the tribological test, suggesting that they
produce films that effectively reduce wear. The FC curve of the OR2EHRIC sample showed
type C friction behavior, whereas that of the ERIC sample showed type D behavior. The
ORWATER sample obtained from fatty acids of castor oil showed effective lubricant film
formation capacity, with similar wear resistance and FC lower than that of the commercial
mineral oil.
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