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Abstract: Front wings are a key element in the aerodynamic performance of Formula 1 race cars. Thus,
their optimisation makes an important contribution to the performance of cars in races. However,
their design is constrained by regulation, which makes it more difficult to find good designs. The
present work develops a hybrid shape optimisation approach to obtain an optimal five-element airfoil
front wing under the FIA regulations and 17 design parameters. A first baseline design is obtained
by parametric optimisation, on which the adjoint method is applied for shape optimisation via Mesh
Morphing with Radial Basis Functions. The optimal front wing candidate obtained outperforms the
parametric baseline up to a 25% at certain local positions. This shows that the proposed and tested
hybrid approach can be a very efficient alternative. Although a direct 3D optimisation approach could
be developed, the computational costs would be dramatically increased (possibly unaffordable for such
a complex five-element front wing realistic shape with 17 design parameters and regulatory constraints).
Thus, the present approach is of strong interest if the computational budget is low and/or a fast new
front wing design is desired, which is a frequent scenario in Formula 1 race car design.

Keywords: race car aerodynamics; adjoint method; mesh morphing; optimisation; CFD; mechanical
engineering

1. Introduction

Design optimisation in aerodynamics is a key element in many industrial applications
to gain a prominent position in particular areas, such as the aviation industry [1,2], racing
motorbikes [3] and Formula 1 (F1) race cars [4]. In F1, there are two major aerodynamic
optimisation objectives: to minimise drag and to maximise downforce. The parts of the
car that contribute to the generation of downforce (almost entirely) are the front wing,
rear wing and diffuser [5]. Among these, the front wings can be considered the most
influential element, since they are the first part to interact with undisturbed air and their
wake interacts with other parts of the car, such as brake cooling inlets, diffuser, main engine
or the car bodywork itself [6]. Front wings also work under physical constraints such as
the ground effect, which also influences downforce, creating suction force [7]. For this
reason, front wings have a large lift-to-drag ratio [5]. Therefore, the design of front wings is
complex and obtaining an optimal element capable of increasing downforce and reducing
drag can make a difference to win a race.

Very few works on the designs of front wings can be found in the literature, and some
authors attribute this to high competition secrecy [5]. Actually, there is no literature at
all on the optimisation of front wings with five elements (designs regulated by the 2021
Federation Internationale de l’Automobile (FIA) regulations). The regulatory body limited
the number of elements to five, and teams intended to exploit this configuration. The
main purpose of the limits imposed on the front wing geometry is to generate greater

Machines 2023, 11, 231. https://doi.org/10.3390/machines11020231 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines11020231
https://doi.org/10.3390/machines11020231
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0001-7660-6875
https://orcid.org/0000-0002-5908-7580
https://doi.org/10.3390/machines11020231
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines11020231?type=check_update&version=2


Machines 2023, 11, 231 2 of 28

lift. Although these regulations are not standard to date, the approach in the present
work is useful to other applications, such as amateur/student car competition designs
or even for future FIA regulations involving five elements in airfoils. In the literature,
one can find optimisation studies such as [8], where a front wing with a single airfoil is
optimised via the adjoint method without FIA regulatory rules. This front wing was also
optimised in [9,10], but this time under uncertain conditions. Uncertainty in front wing
designs was also considered in [11], who conducted aerodynamic analysis under a data-
driven Polynomial Chaos approach for scarce data, namely SAMBA. In [5], a front wing
structural analysis was developed considering the aerodynamic forces acting on the wing,
via Finite Volume for Computational Fluid Dynamics (CFD) and a finite element method
for structural analysis. In [12], an adjoint-based optimisation analysis was developed
for a front wing, simulating via CFD a simplified version of competition front wings
consisting of an upper flap and main plane of the front wing. The only design optimisation
of multi-element front wings was found for the two-element design in [13], where a 2D
optimisation was carried out using the adjoint method. There are other works in the
literature to highlight, but these are not related to design improvement. In [7], the pressure
suction due to the ground effect on front wing performance was analysed via CFD on a
single element, testing different height-to-chord ratios. In [14], front wings with/without
Gurney flaps are investigated to quantify how these elements can contribute to enhance
the ground effect and the general aerodynamic performance of front wings. In [15], the
effect of front wing pressure distribution variations on wheels wakes, whose changes in
pressure distribution, were controlled via changing the incidence angle of a flap. In [2],
a computational study was conducted to improve the aerodynamic performance of an
airfoil with a variable camber continuous trailing edge flap under cruise conditions. Full
car simulations can also be found in the literature [16,17], which provide a useful insight
into the contribution to drag/downforce of front wings over the total drag/downforce of
the car.

Obtaining an optimal five-element front wing design is the aim of the present inves-
tigation. When analytical solutions are not possible, in order to find an optimal design
in aerodynamics, one can either test several prototypes or perform a computational ex-
ploratory analysis. The development of an optimal design by means of a simulation
framework allows a faster, more flexible and usually cheaper life cycle than that achieved
through the fabrication of physical prototypes to be tested experimentally [18]. To be able
to simulate nearly any design is one of the main reasons for the unstoppable popular-
ity of Computational Fluid Dynamics (CFD) in both industry and academia, surpassing
the weight of experimental testing in the design life cycle of most engineering applica-
tions [11,19]. However, to find a design that satisfies certain standards of quality, it is
necessary to develop programs that can operate multiple times, running in reasonable
computation times on not-too-sophisticated machines, and with the ability to capture local
geometry details for a realistic and reliable simulation [20].

The use of a suitable computational approach to carry out an adequate design op-
timisation is a key part of the process, due to the high costs incurred in running a large
number of CFD simulations until an optimal candidate is found. There are many works
in the literature on design optimisation methods, but depending on the application and
conditions, a method may or may not be applicable. For instance, if a mathematical model
or theoretical equation is available, this analytical model can be sampled inexpensively and
popular sampling methods such as Particle Swarm Optimisation (PSO) [21] and Genetic
Algorithms (GA) [22] can be deployed directly. Examples of the application of this direct
sampling in optimisation can be found in many scientific fields. However, this favourable
scenario is not usually present in optimisation problems involving complex CFD, such as
front wing race car aerodynamics. When a sample is expensive to obtain (one sample = one
CFD simulation), optimisation by direct sampling is not affordable because usually it re-
quires hundreds or thousands of samples, and thus efficient alternatives must be explored.
Amongst these, the most popular approach is to generate Response Surface Models (RSM)
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(also known as surrogate models or metamodels) [23]. The reduced-order models can
be sampled without extra costs, being an efficient approach with many applications in
engineering [24–26].

The use of Gaussian Processes (GP) to construct response surfaces (also often called
Kriging interpolation) is very popular amongst practitioners. This approach is an interpola-
tion method based on the use of a first approximation and the use of a Gaussian process
upon this, which is well-established in the response surface optimisation literature. A
vast number of examples of application can be found, for instance, in the optimisation of
combustion chambers [27], centrifugal pump design optimisation [28] or the propagation
of uncertainty in simulations of exhaust jet flows [23]. Radial Basis Function (RBF) inter-
polation is another interesting method to construct response surfaces, which has a strong
resemblance to GP. This method uses a polynomial approximation function in aggregation
to the evaluation of distance between points by means of the Euclidean norm applied
on a specific so-called radial function, which can be either a linear, multiquadratic, cubic,
Gaussian or thin flat spline [29]. Although RBF and GP share similar structures, it has been
observed by some authors that GP offers the advantage of a predictor uncertainty over RBF,
but RBF admits a larger variety of correlation functions than GP [30]. Thus, the selection
of one method over another is more a matter of preference of the practitioner than a rule
of thumb, which depends on the problem under study. In this work, surrogate models
are built using GP. However, further details on RBF can be found in [31,32] and will not
be discussed here. Examples of the application of RBF in a response surface optimisation
framework are [33], where multifidelity RSMs are used with adaptive grids; [34], where
several response surface methods are tested in the optimisation of complex reactive flow
systems and sampled by genetic algorithms, or in the optimal design of thin-walled beams
under lateral forces via computational structural simulations in combination with NSGA-II
sampling algorithms [35].

Once these response surfaces are built, they can be sampled to find optimal candi-
dates. Basically, reduced-order functions are available to be explored with negligible
computational costs. Thus, classic optimisation algorithms can be used to sample and
search for optimal candidates. There are many optimisation algorithms in the literature
for engineering [36], from which metaheuristic optimisation algorithms are the ones of
strong interest in RSM-based optimisation. The metaheuristic optimisation term (first
used in [37]) refers to the search for optimal candidates in a problem that is not fully
specified (incomplete information) and/or thus uses a less formal approach (hence the
heuristic designation) to find a good enough solution. These methods are very robust
because they amalgamate two search configurations: exploration (searching areas of
potential candidates) and exploitation (selection of optimal candidates surrounding such
areas) [38]. Although there are many metaheuristic optimisation algorithms (see [38]
for a comprehensive review), ultimately, the ones that have been used the most in RSM
problems (possibly due to their generality and adaptability to a large number of problems)
are biology-based metaheuristic algorithms. The number of metaheuristic algorithms is
increasing continuously, mainly because new improvements on existing ones are being
investigated to overcome certain drawbacks. Such a rising number of metaheuristic
algorithms can be observed in recent publications in the field [39–42]. Even though many
of the biology-based algorithms would work in the optimisation search upon GP response
surfaces, Non-dominated Sorting Genetic Algorithm-II (NSGA-II) has been selected in this
investigation, due to its popularity, the extensive number of applications, the relatively
smooth behaviour of the response surface, and our previous experience [18,43–45]. In
the literature, one can find many successful applications of the optimisation method. For
instance, NSGA-II was used in [46] to find an optimal autonomous underwater vehicle
using CFD simulations. In [47], a multi-objective optimisation of a wavy fin-and-elliptical
tube heat exchanger was developed to maximise heat transfer and minimise pressure
drop. Similarly, in [18], a vortex shedding-based heat/mass mixer was optimised with
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the same objective sampling GP surfaces with NSGA-II algorithms. In [48], the NSGA-II
algorithm was also used in order to optimise an axial compressor.

In all the examples mentioned here, the application of RBF (and GP) has been focused
on a non-intrusive framework to create a response surface to be sampled at no extra cost.
However, the usefulness of RBF has been further extended by previous researchers to the
development of shape optimisation directly on the CFD code. This has been possible thanks
to the development of Mesh Morphing techniques (MM) [49]. This methodology allows us
to simulate variations in shapes directly on the CFD solver by adapting the mesh using RBF.
The use of this technique is gaining a lot of interest in recent years, with many applications
in aeronautical and mechanical engineering. For instance, in [49], RBF is used to explore
and computationally test the performance of different designs of trims of yacht sails. The
computational results were compared to the brute force method of creating a mesh for each
variation, with a very accurate match. In [50], the shape optimisation of the performance
of a glider under a large wing-fuselage joint is developed using MM with RBF again. The
use of this technique allowed the researchers to achieve an optimal design of the glider
by reducing the separation and keeping the wing airfoil unchanged. The RBF morphing
method has been used not only in CFD, but also in structural mechanics studies using finite
element methods [51].

In this work, the MM with RBF (namely MM-RBF throughout this manuscript) is
applied as an additional step to the optimal parametric design of the F1 front wing obtained
from classical RSM sampled optimisation. In the F1 front wing context, MM-RBF has
also been applied previously with successful results, as can be seen in [8], where the
method was applied for the first time. A more advanced application is [9], considering a
problem of optimisation under uncertainty. In this work, although the authors performed
an optimisation of a front wing driven by an adjoint approach similar to our application,
their front wing was much simpler. Whilst they considered a one-element wing and
no competition regulations, the present work considers a complex five-element scenario
plus the restrictive FIA 2021 regulations. Additional details of the problem studied in [9]
can be found in [10]. Other relevant applications using MM-RBF similar to the problem
considered in the present manuscript are the aerodynamic optimisation of a motorbike
windshield [3], where variations in the mesh were made according to variations in the
height of the rider, the hunching angle of the rider, and the adjustment of a variotouring
acting on the deflector angle; or [52], where the 50:50:50 method is described in aerodynamic
optimisation environments (50 designs, 50 million cells per design, 50h of elapsed time).
Another interesting and promising application of MM-RBF is the field of Digital Twins.
In [53], a medical Digital Twin of the bulge shape for the ascending thoracic aorta is
developed by means of the same MM-RBF mesh technology, providing a valuable tool
to develop computational simulations of the progression from a healthy patient to an
aneurismatic one. This technology can be extended to industrial Digital Twins, which
already exist in several applications, such as gas turbines [54].

The present work is novel in both methodology and application. It aims to optimise
the shape of a five-element F1 car front wing to increase downforce and decrease drag force
under the FIA 2021 regulations. A five-element wing is of high complexity (computationally
demanding, a high number of design parameters, airfoil–wake interactions, ground effect,
different NACA profiles for each element, different NACA profiles at each longitudinal
position for an element, etc.), and its optimisation has never been addressed before in the
literature despite the strong interest in race aerodynamics (although it is believed that
competition teams have performed optimisation studies). The only known multi-element
wing optimisation has been found in [13], which considered a 2D adjoint problem and
only two airfoils with a constant airfoil shape. The present investigation goes one step
beyond: five elements are optimised at the same time, optimised at different positions along
each element (thus, the same element’s NACA shape will vary depending on position; see
Figure 1). It is also worth pointing out that, in order to create a full 3D surface from 2D
studies, a series of cross-sections must be specified. It is necessary to specify at least two
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five-element cross-sections to be connected to form the 3D front wing; however, this would
generate a linear shape. In order to create a more realistic curved shape, three five-element
cross-sections (namely A-A, B-B and C-C throughout this paper) are specified, which can be
connected to a three-dimensional CAD software. The FIA 2021 regulations do not permit
notable changes in the curvature of spoilers (see regulations in Appendix A), so to study
more than three cross-sections would not provide relevant improvements.

A hybrid approach methodology is followed to achieve the best optimal five-element
front wing candidate through local optimisation at three different five-element cross-
sections. The proposed hybrid optimisation is a two-step approach: first, an optimal
candidate (namely parametric optimisation throughout this manuscript) is obtained
based on 17 design parameters, in which, to overcome the complex geometric constraints,
specific restrictions are imposed. The regulations are described in Appendix A, where
the limitations in the design are also discussed. Second, adjoint-based RBF optimisation
will be applied to further improve the optimal candidate solution. This novel hybrid
approach is more robust than direct adjoint-based optimisation since a good initial guess
(the optimal from parametric optimisation) is provided to the adjoint-driven approach,
avoiding local minima/maxima [55,56] or slow convergence of the adjoint approach [57].

To end up this introductory section, this paper is structured as follows: In Section 2,
the methodology followed in the hybrid (parametric and adjoint) optimisation method
is explained. In Section 3, details on the mathematical foundations behind the methods
are given. Later, in Section 4, the CFD simulations are described, from their set-up to their
validation. In Sections 5 and 6, the results from the parametric and hybrid optimisation are
discussed, respectively. Finally, the conclusions from this work are drawn in Section 7. The
FIA regulations that constrained the optimal search are described in Appendix A.

Figure 1. View and location of the three different planes where the cross-sections for the front wing
shape design optimisation have been defined.

2. Methodology

Due to the complexity of the simulation of a multi-element front wing and the large
number of design parameters, the direct application of adjoint-based optimisation under
the FIA-specified constraints is nearly impractical. For this reason, the optimisation study
will be developed in two steps as a hybrid optimisation approach. The first step will consist
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of a parametric optimisation study using GP as the RSM approach, and the second step is
the adjoint-based optimisation with MM-RBF (see Figure 2).

Initial sampling plan

Parametric Optimization

Numerical simulation
at selected locations

Construction of the
surrogate model

Selected model
evaluation

Update Mesh

Adjoint Optimization

Simulator (CFD) Sensitivity analysis

Gradient Based
Algorithm

Stop, does it meet
the conditions?

Final
No Yes

Figure 2. Schematic overview of the optimisation framework.

2.1. Parametric Optimisation

The first step (parametric optimisation) is divided into several stages: Design of
Experiment (DoE), the automatic generation of geometry, mesh and simulation, and in turn,
the exploration of the response surface by means of the optimisation algorithm. The DoE
determines the exact simulations (CFD sample individuals) to be run to build the response
surface. The selection of individuals depends on the number of design parameters, which
in this study corresponds to a total of 17 design parameters, summarised in Table 1. These
parameters correspond to the parametric characterisation of profiles (NACA digits), angles
of attack and position (spacing and overlap). It is worth mentioning that inside each profile
a naming convention is defined to identify each NACA four-digit wing variable: chord (c),
maximum camber (m), maximum camber location (p), maximum thickness as a fraction of
the chord (t), and preceding it the profile (P) is identified. The input parameters vary in a
continuous manner within a specific range of analysis. The range is defined by the upper
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and lower bounds of the parameter and then an Optimal Space-Filling Design (OSF) creates
optimal space filling DoE plans according to the specified number of simulations. In essence,
OSF is a Latin Hypercube Sampling Design (LHS). The objective is to achieve the most
uniform spatial distribution of points (maximizing the distance between points). It must be
outlined that, in order to reduce the design parameter space up to the said 17 parameters,
as the fourth and fifth elements of the front wing have the smallest dimensions, these share
the same NACA profile obtained for the third element but with rescaled dimensions. The
scaling to be applied is a factor scale from P3_c over P2_c (that is to say, the ratio between
the third and second profile chords) resulting from multiplying the fourth and fifth chord
values by 0.8 successively (20% of variation). The angles were modified similarly, but with a
1.2 increase (growth of a 20%). All the constraints set by the FIA applicable to the design of
the front wing are described in Appendix A. It is important to let the reader know that these
constraints require certain configurations in the DoE to be discarded. That is, for instance,
if the total chord of the front wing as a result of the combination of certain overlapping,
angles, etc., surpasses the size limit set by the FIA, this individual from the DoE must be
discarded. Thus, a corrective function is applied to rescale the profiles, recalculate their
NACA, and test if they now satisfy the constraints.

Table 1. Ranges of each variable in the parametric study.

Name Description
Limits

Units
Lower Higher

P1_c Chord 175 220 mm
P1_m Maximum camber 0 4 -
P1_p Maximum camber location 0 4 -

P1_t Maximum thickness as a fraction of
the chord 8 16 -

P1_Angle Angle α respect to the horizontal 1 6 º
P2_c Chord 130 185 mm
P2_m Maximum camber 0 4 -
P2_p Maximum camber location 0 4 -

P2_t Maximum thickness as a fraction of
the chord 6 8 -

P2_Angle Angle β, respect to α 8 11 º
P3_c Chord 95 135 mm
P3_m Maximum camber 0 4 -
P3_p Maximum camber location 0 4 -

P3_t Maximum thickness as a fraction of
the chord 8 14 -

P3_Angle Angle γ, respect to β 8 11 º
Overlap Horizontal Overlap 6 14 mm

Space Vertical gap or spacing 6 14 mm

Once a sufficient number of simulations are run (in the present work, a total of
150 simulations in the DoE was a decent number to obtain surrogate models), GP models
can be built. GP are used to interpolate data and construct the response surfaces. This
reduced order approximation aims at modelling the drag and lift coefficients CD and CL,
respectively, as a function of the design parameters. The NSGA-II optimisation algorithm
can be then used to sample response surfaces to find the optimal candidate that maximises
CL and minimises CD.

It is obvious that this problem is three-dimensional. However, to deploy the optimisa-
tion framework for 17 design parameters in 3D CFD simulations would be too demanding
(and nearly impractical). To overcome these restrictions, the parametric (and adjoint-based)
optimisation procedure has been developed on three different key sections—A-A, B-B and
C-C, as shown in Figure 1. This allowed us to perform three independent 2D computa-
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tional optimisation studies, whose optimal designs can be transformed into a final 3D front
wing design.

2.2. Adjoint-Based Optimisation

By using the parametric optimisation outcome as the initial (baseline) design, the
adjoint-based optimisation method is applied to continue the process (Figure 2). Based on
the parametric baseline mesh, the RBFmorph add-on in ANSYS Fluent (adjoint tool) is
used [58]. This allows us to compute local sensitivity estimates to guide the optimisation
process, by deforming the computational mesh accordingly. These adjoint-based model
iterations were fixed to 20 iterations in order to achieve sufficient improvement and avoid-
ing to keep changing shape without substantial improvement whilst diverging excessively
from the baseline shape. An additional mathematical description of the method is provided
in Section 3.2. Further information on how to implement the ANSYS Adjoint Solver can be
found in the handbook [59].

In order to work with a morphing mesh, it is necessary to constrain the space and
define a current objective output. The objective output must be controlled to perform the
shape modification. In the present application, the objective output is the CL/CD ratio.
The adjoint method works by searching for solutions in the design space in which for
each adjoint iteration the ratio is increased (reducing drag will increase vehicle speed,
whilst downforce is also intended to increase). The method also requires to implement
spatial contraints. In order to ensure the proper development of the adjoint-based shape
modifications, a boundary box (envelope) of 575 × 225 mm was created, which is in
accordance with the FIA regulations. This box guarantees that the different geometries of
the profiles will not exceed the front wing workable volume established in the regulations.

3. Mathematical Considerations
3.1. Gaussian Process Surrogate Sampling with Genetic Algorithms

Response Surface Models (RSM) are used in the initial step in the optimisation process.
The objective of this method is to approximate an exact model y(x) in the parameter design
space x by a model function ŷ(x) with an error ε(x). Thus, the approximation takes the
form [60]:

y(x) = ŷ(x) + ε(x). (1)

GPs approximate the exact response y(x) by means of a regression function f (x) to
capture the largest variance of the training data. Later on, a Gaussian process Z(x) is added
to the model, so that [60]:

ŷ(x) = f (x) + Z(x) =
n

∑
j=1

aj f j(x) + Z(x) =
Ns

∑
i=1

Wi(x)Y(xi) = W(x)TY, (2)

where Y is the vector of training data, W represents the weighting functions, aj represents
the coefficients of the regression function and f (x) stands for the n × 1 vector of basis
functions [ f1(x) f2(x) . . . fn(x)] in the construction of the regression model polynomials.
The model consists of obtaining an approximation to the exact model by means of weight-
ing the existing points Y(xi) with weighting functions Wi(x) to estimate the behaviour
surrounding the xi points.

The selection of the regression function defines different types of GPs. The most gen-
eral case is to model f (x) as multivariate polynomial, as carried out in Equation (2), which
is popularly known as universal kriging interpolation. A simpler model consists of using a
known constant, i.e., f (x) = 0 (simple kriging), which can be also generalised to a constant
unknown regression such that f (x) = a0 (ordinary kriging). More elaborated data interpo-
lations can be also developed by means of Gradient-enhanced Gaussian processes [61,62],
thanks to the use of gradient information to decrease the number of samples needed to
build the surrogates. This method allows us, through interpolation, to construct the re-
sponse surface under the strong influence of the correlation function in Z(x). The Gaussian
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process Z(x) has zero mean and covariance E[Z(xi), Z(x′i)] = σ2
pC(θi, xi, x′i), where σ2

p is the
process variance. In addition, Mean Square Error (MSE) estimates can be obtained with
this method, since the GP is able to compute its predictor variance. These error estimations
allow the practitioner to increase the number of points between individuals to decrease
such variance if necessary [18]. This error measure is obtained by means of [63]:

MSE = E[(y(x)− ŷ(x))2] = σ2
p

(
WT(x)CW(x) + 1− 2WT(x)~c(x)

)
, (3)

where~c(x) is the vector

~c(x) = [C(θ; x1, x) C(θ; x2, x) . . . C(θ; xNs , x)]T . (4)

For further information on the method, please see [64,65].
The surface is then sampled by Genetic Algorithms (GA), where Non-dominated

Sorting Genetic Algorithm-II (NSGA-II) [66] is used. This GA was developed to improve the
deficiencies of the popular NSGA [22,67]. This new version of the algorithm overcomes the
classical difficulties in evolutionary algorithms by decreasing the computational complexity
and use of elitism, and avoiding the requirement of a sharing parameter [66]. NSGA-
II consists of a fast non-dominated sorting approach, much more efficient than other
evolutionary algorithms existing in the literature. This is so because in order to determine
the first non-dominated solutions from a total of N population size for M objectives, a
number of comparisons of order O(MN) must be carried out for each solution, leading to
a total of O(MN2) computational costs just for the first non-dominated front. This process
is then repeated for the next stages, leading to computational costs of order O(MN3). The
fast non-dominated approach suggested in [66] leads to a total of O(MN2) computational
costs in non-dominated sorting. This reduction in computational resources is based on
two calculations for each solution s: (i) A domination count ns (number of solutions that
dominate s) and (ii) to set a group Ss of solutions dominated by the solution s. This process
is carried out at the different front levels to rank the solutions according to the level of
domination. To allow a certain level of spreading in the solutions from the method, the
original NSGA used a sharing function approach. This function involves the sharing
parameter (input to the algorithm) to compute distance measures between two individuals.
To avoid this dependency, the NSGA-II incorporates a crowding-distance calculation, which
consists of creating a cuboid whose vertices are extended up to the nearest neighbours
(upper and lower limits) around a particular solution si. This allows the computation of
how crowded a solution is, what supports the selection process towards more uniform
Pareto fronts: the logical operation (called crowded-comparison operator) for classification
is that (i) between two solutions with different ranks, the one with the lowest rank is
selected; (ii) however, if both solutions share the same rank (are at the same front), then
the one with the lowest crowding distance is selected. To summarise the full process in
one iteration (see Equation (5) below), from a population set Pt of N samples, genetic
recombination and mutation operators are applied to create the new additional samples
Qt. These 2N samples (the samples from the union of Pt and Qt) are sorted according to
non-domination, and elitism is guaranteed at this point since all initial samples are included
in the population of size 2N. The samples are now sorted according to the front rank, and
from these, only a total of N samples are selected, which will be chosen according to the
aforementioned crowded-comparison operator. The selected samples conform the Pt+1
sample. The process is then repeated until convergence. Elitism is ensured in the algorithm
since the best previous optimal samples are included in the following population sets: This
supports the convergence of the method, as optimal candidates already found are not lost
during the next iterations. For further details on the method, see the original paper by
Deb et al. [66].

Pt
mutation, crossover, etc.−−−−−−−−−−−−−→ Pt + Qt

nondominated sorting−−−−−−−−−−−−→ Pt + Qt|sorted
crowded-comparison operator−−−−−−−−−−−−−−−−→ Pt+1. (5)
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3.2. Adjoint Approach to Optimisation

CFD-based shape modification can be developed through mesh geometry modification
via MM-RBF, instead of developing a new geometry via CAD and its mesh every time. This
more efficient approach includes both the interior as well as the boundary nodes. In this
case, mesh geometry is created upon control variables, since in engineering problems the
mesh geometry can be modified for a more optimal performance according to the iterative
evaluation of the objective function. Thus, the adjoint solver is coupled with the flow solver.
This coupling allows the quantification the influence of variations of design variables on
the performance. The goal of the adjoint method is then to determine the sensitivity of the
objective function with respect to the user-specified control variables. The linearisation of
the objective function can be represented by the equation

J = J(q0, q1, . . . , qM−1; c) = J(q, c), (6)

with q being the flow state variables and c the control design variable. Thence, the derivative
of the objective function depends on the flow state and the control variable, which can be
expressed as

δJ =
∂J
∂q

δq +
∂J
∂c

δc, (7)

where δq denotes variations of flow state variables and δc denotes variations of control
variables [68]. The derivative of the objective function is therefore the superposition of
two partial derivatives: one for the geometric sensitivities and another for the flow field
sensitivities. The very important advantage of the use of the adjoint method is that the flow
state-dependent part can be rewritten as dependent on control parameters.

With the governing Navier–Stokes equations written as

R(q, c) = 0, (8)

then
δR = 0 =

∂R
∂q

δq +
∂R
∂c

δc. (9)

This equation basically means that when the flow field changes, δR is zero. To trans-
form the nature of the optimisation problem from a constrained into an unconstrained
problem, the Lagrange multiplier can be used by combining δJ and δR. Thus, δJ can be
written as

δJ =
∂J
∂q

T
δq +

∂J
∂c

T
δc− λT

(
∂R
∂q

δq +
∂R
∂c

δc
)

. (10)

By grouping the terms multiplied by δq and δc, respectively, the vector of adjoint
variables λ can be chosen so that there is no influence of flow variables in the computation,
which leads to the adjoint equation to be solved [69]:

∂J
∂q

T
= λT ∂R

∂q
. (11)

If Equation (11) is substituted into Equation (10), then the derivative of the objective
function can be obtained from the design variables:

δJ =

(
∂J
∂c

T
− λT ∂R

∂c

)
δc. (12)

3.3. Radial Basis Functions

In this work, adjoint-driven shape modifications in the CFD domain are developed
according to a mesh morphing technique. This technique consists of the use of Radial
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Basis Functions (RBF). This method evaluates the distance between points by means of the
Euclidean norm as

ŷ(x) =
Ns

∑
i=1

biφ(‖x− xi‖) + g(x), (13)

where φ is the radial function, which can be either linear, multiquadratic, cubic, Gaussian
or thin flat spline [29]; b is a constant with b ∈ R, and g(x) is a polynomial approximation
function. This polynomial fit of order n can be expressed as

g(x) =
n

∑
j=1

β jgj(x), (14)

where β j are the polynomial coefficients and gj are the basis of polynomial functions for
the span. To obtain the β j coefficients from Equation (14) and the bi coefficients from
Equation (13), the RBF approximation must satisfy that the provided values at the known
source points coincide with the RBF value at these points [32]:

ŷ(xi) = yi, (15)

and the orthogonality condition:

(
b1 b2 . . . bNs

)


1 x1 y1 z1
1 x2 y2 z2
...

...
...

...
1 xNs yNs zNs

 =
(
0 0 . . . 0

)
, (16)

with Ns the number of samples. In RBF mesh morphing, the sampling points Ns are
interpolated in space for the mesh nodes to be adapted to their new position (morphing).
Together with the adjoint sensitivity calculation, the mesh is then adapted to a new shape
driven by the calculated sensitivities. Further details on RBF (including different radial
functions φ and its fast version) can be found in [31,32].

3.4. Governing Equations Turbulence Modelling

The governing equations in fluid mechanics are the Navier–Stokes equations, which
are solved numerically by the software ANSYS Fluent. The Reynolds-averaged Navier–
Stokes (RANS) continuity and momentum equations can be written in cartesian tensor
form as [70]:

∂ρ

∂t
+

∂ρ

∂xi
(ρui) = 0, (17)

∂(ρui)

∂t
+

∂(ρui uj)

∂xj
= − ∂p

∂xi
+

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj

∂xi
− 2

3
δij

∂ul
∂xl

)]
+

∂

∂xj
(−ρu′iu

′
j), (18)

where ui represents the velocity components, u′i shows the velocity fluctuation components,
xi represents spacial coordinates, and overbars represent averaged quantities. The term
−ρu′iu

′
j stands for the Reynolds stresses, which is modelled according to the selected

turbulence model closure. In this work, the Boussinesq hypothesis is applied, selecting the
eddy viscosity turbulence models such as the Shear Stress Transport (SST) k−ω turbulence
model. The SST k−ω model was developed by Menter [71]. It assimilates the boundary
layer between the eddy viscosity and full turbulent viscosity formation. The SST model
draws up the best effects of k− ε (accurate at far-field region) and k−ω (good accuracy at
near-wall region). The k− ε is modelled as
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∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj

[(
µ +

µt

σk

)
∂k
∂xj

]
+ Gk + Gb − ρε−YM + Sk, (19)

∂

∂t
(ρε) +

∂

∂xi
(ρεui) =

∂

∂xj

[(
µ +

µt

σε

)
∂ε

∂xj

]
+ C1ε

ε

k
(Gk + C3εGb)− C2ερ

ε2

k
+ Sε; (20)

where k is the turbulence kinetic energy, ε is the dissipation rate, µt is the turbulent viscosity,
Gk (Gb) refers to the generation of turbulence kinetic energy as a consequence of velocity
gradients (buoyancy), YM stands for the fluctuating dilatation in compressible turbulence
to dissipation rate, C1ε, C2ε, and C3ε are empirical model constants, σk and σε are the
turbulent Prandtl number for k and ε, and Sk and Sε are user-defined source terms for
each equation. The k−ω turbulence model also prevents being too sensitive to the inlet
free stream turbulence. For this model, the two additional closure equations in compact
notation for k (turbulent kinetic energy) and ω (specific turbulent dissipation rate) are:

∂

∂xi
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj

(
Γk

∂k
∂xj

)
+ Gk −Yk + Dω, (21)

∂

∂xi
(ρω) +

∂

∂xi
(ρωui) =

∂

∂xj

(
Γω

∂ω

∂xj

)
+ Gω −Yω, (22)

where Γk and Γω are the effective diffusivity of k and ω, Gk and Gω are the generation
of k and ω due to mean velocity gradients, and Yk and Yω are the dissipation of k and ω,
respectively. Dω is the cross-diffusion term. For further details, please see [72].

4. CFD Simulation

The CFD simulations carried out in this optimisation work consisted of three 2D cross-
sections of the front wing, which consists of a total of five airfoil elements per simulation.
This simulation is quite complex, as there is an interaction between several front-wing
airfoils, which will be also further deformed by the MM-RBF approach. Thus, these
simulations have been first validated and tested, in order to use a suitable mesh. At the end
of the day, this 2D approach allows us to recreate the final full 3D front wing by connecting
the three optimal 2D cross-section sections of the front wing e.g., via CAD software.

4.1. Set-Up of the CFD Simulations

All CFD simulations have been run in ANSYS Fluent. The solver has been config-
ured on a pressure-based formulation with air as working fluid. The numerical scheme
corresponds to a second-order spatial discretisation, and the Semi-Implicit Method for
Pressure-Linked Equations algorithm to solve the pressure-velocity coupling. Boundary
conditions are imposed on the simulation to solve the Navier-Stokes equations. The bound-
ary conditions imposed are shown in Figure 3 and correspond to Wall boundary condition
on the airfoils and ground; Velocity-inlet at the inflow of the domain; Pressure-outlet at the
outflow of the domain; and Symmetry at the top of the domain. More specifically, the
Velocity-inlet is a uniform velocity profile of Vin = 30 m/s. The selection of an inlet velocity
of 30 m/s is founded on the aspect that wind tunnel testing of entire racing cars is carried
out on reduced size models lower or equal to 50–60% of the real car size, and at wind
tunnel speeds not exceeding 40 m/s [73,74]. This means that the Reynolds number is
sufficiently high. In our simulated five-element front wings, the Reynolds number was of
order O(106) (with the mentioned velocity, air as working fluid, and a total five-element
chord of approximately c = 575 mm). On the other hand, the performance of the ailerons
can be also estimated from slow/medium velocity curves. On the very popular Autosport
resource [75], it is explicitly said that “Hungary, Imola, Singapore, Spain and Monaco are
all examples of high downforce tracks, with relatively short straights and lots of turns
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putting a greater emphasis on cornering speed". Actually, as outlined in the article, the
performance in one of these tracks can be used to estimate the performance in others due
to the series of low-speed turns. It is likely that selecting lower speeds in the simulation
could give us a design not suitable for all types of circuit. Thus, with our decision, we could
relate our designs with existing wind tunnel data and, moreover, the selected velocity is
quite consistent with increase in downforce and reduction in drag in popular race tracks.
Thus, for all these reasons, 30 m/s was considered a very good option as inlet velocity.
The Wall boundary condition on the ground is imposed as a 2D moving plate with the
same Vin velocity, and as static for the airfoils. In both cases, the surfaces are adiabatic
and non-permeable, with non-slip velocity boundary condition v(x, y)|sur f ace = 0. The
Pressure-outlet boundary condition on the outflow is imposed to satisfy the atmospheric
pressure, and gradients are fixed to zero value for the transported quantities. The Symmetry
boundary condition at the top is used because the upper boundary is far enough from the
wings so that the inlet velocity profile is nearly invariant across it. More concretely, the
upper boundary condition is located at 10 times the existing distance from the floor to the
highest point of P5. at the top is just a mathematical calculation to satisfy a zero flux of all
quantities across its boundary.

(a)

(b) (c)

Figure 3. Sketch of (a) computational domain including boundary conditions, (b) computational
grid, and (c) detail of computational grid around the front wing.

The geometry of the front wing is created automatically according to the parametri-
sation of the NACA airfoils and their distribution along the domain. The parametric
aerodynamic profiles were designed in ANSYS SpaceClaim using IronPython, which is an
open-source language built on Python. Each profile is based on four NACA parameters,
producing airfoils of any thickness, thickness distribution, or camber [76]. Complying with
the restrictions imposed by the F1 regulations, the code readjusts the input variables for



Machines 2023, 11, 231 14 of 28

each profile, as well as the spaces between them, as explained in Section 2. A sketch of the
boundary conditions applied to the geometry is shown in Figure 3, where a five-element
cross-section of the full wing is shown. The c parameter represents the total chord of the
front wing, and h is the separation from the ground. The upstream distance from the
wings must be long enough for not being affected by the front wing. For this reason, a
distance of 3c has been chosen, so that the fluid can adapt consistently from the inlet to the
presence of the wings. Additionally, the downstream distance from the front wing must be
also large enough so that the near wing region (and its flow structures) are not affected by
the imposed boundary condition at the outlet. For this reason, the downstream region has
been extended up to a 7c distance from the front wings.

4.2. Validation of Simulations
Convergence Analysis of the Full Front Wing Mesh

The CFD simulations have been carried out as 2D planar simulations using the SST
k− ω turbulence model, at uniform Vin = 30 m/s, which was a velocity value robust in
experimental test rigs in [73]. The use of this turbulence model in turbulent simulations
of airfoil applications has been vastly studied in the literature demonstrating that it is a
suitable model for this application and providing a very good match with experimental
data [77–80]. As additional information, current wind tunnel testing of entire race cars is
performed using models not greater than 50% scale, at speeds lower than 40 m/s. Actually,
in the present study, the reference speed and model size correspond to Reynolds numbers
in the range of approximately 20% to 50% greater than current race car model testing. The
under-relaxation factors used for pressure, density, force, momentum, and kinetic energy,
have been 0.3, 1, 1, 0.7 and 0.8, respectively.

The grid convergence study was performed by developing three different meshes:
with a coarse, medium, and fine grid of a straight airfoil blade with ground effect (with
height h/c = 0.224) to determine how the mesh quality affects the CFD simulation re-
sults. The Reynolds number according to this 1-element wing chord of c = 223.4 mm
is Re = 4.536× 105. Both the number of nodes and the elapsed time for the three cases
simulated using the SST model are highlighted in Table 2. The meshes generated have
near-wall resolution with a y+ < 5. There is very little difference between the medium and
fine mesh, as well as with the experimental value, so the medium mesh will be the one
replicated in the five-element front wing. The convergence of simulations was found after
approximately 100 iterations, as observed in all residuals below 10−4. To be conservative,
once all residuals were below 10−4, the simulations were run up to a total of 200 iterations.

Table 2. Mesh size, elapsed time, and calculated values of CL for validation and convergence analysis
on a single airfoil.

Mesh Resolution Coarse Mesh (M1) Med. Mesh (M2) Fine Mesh (M3)

Number of nodes 25,152 30,592 41,321
Elapsed time (CPU

hours) 0.21 0.23 0.27

CL (Exp.: 1.286 [73]) 1.334 1.302 1.301

Finally, as the front wing consists of several elements in cascade, the interaction
between profiles and ground effect has been tested by means of a mesh of similar char-
acteristics to the medium mesh achieved in the convergence analysis. To validate the
simulations, CFD simulations of a 2-element wing with ground effect at a similar Reynolds
number of the race car experimental performance test in [73] are developed. The Reynolds
number according to this 2-element wing chord of c = 380 mm is Re = 7.7236× 105. In
Figure 4, the performance of the downforce (lift coefficient) and drag force (drag coefficient)
of a 2-element front wing is tested at different heights (h/c ratio) and compared to the
experimental data reported in [73]. In their work, the first element is always fixed, and the
second profile has two possible deflection angles (low and high flap angles, of −8.5 and
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+9.5 degrees, respectively). The match between the experimental data and the present
simulation shows that the computational simulation is quite accurate and the search for an
optimal candidate via CFD is reliable.

(a) (b)

(c) (d)

Figure 4. Results of 2-element cascade front wing simulation with ground effect at different heights
for downforce with (a) Low flap angle, and with (b) High flap angle; as well as for drag with (c) Low
flap angle, and with (d) High flap angle. Reference data from J. Zerihan [73].

5. Results from Parametric Optimisation

The design space introduced in Table 1 is explored by the optimisation algorithm on
the GP surrogates to obtain the final optimal parametric front wing. This optimal design
becomes the initial guess for the iterative adjoint-based approach in order to perform a
hybrid optimisation.

5.1. Exploratory Analysis

An initial exploratory analysis was carried out to evaluate the surrogates with a
172 random samples (at least 4 sampled points per design space variable) in order to
determine whether any relation between variables is strong enough to reduce the number
of design variables or redo the value ranges shown in Table 1. The computational time
was approximately 0.2 CPU hours for each design. The drag and lift coefficients are
also shown in order to analyse any potential remarkable relationship with the inputs. In
Figure 5 it is shown the Pearson correlation between variables for the three cross-sectional
planes. It must be recalled that some variables from Table 1 are strongly related to other
variables. More concretely, parameters related to Profile 4 and 5 are not shown, as there is
a geometrical relation with other design space parameters imposed beforehand. This was
done to limit the design space and reduce the number of samples. Thus, Profile 4 and 5
have the same NACA profile as Profile 3: their respective angles are shared with Profile 3
with an increase of a 20%, just like with the changes in chord, in which the code included
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a reduction of a 20%. The only relations worthy of discussion in Figure 5 are observed for
the chords, which is something predictable as the FIA regulation constraints related to
the maximum and minimum sizes of the front wing are applied. Thus, a chord influences
the other as its chord is adapted to the existing space. In other words, due to the FIA
regulations, there is a limit in the maximum length of the front wing geometry. Therefore,
a change in the chord of a profile restricts the chord size of the rest, as well as the
separation between profiles, in order not to violate the regulations. The angles also
exhibit some degree of correlation, especially in A-A and B-B cross-sections. However,
these are reasonable. A zero-value correlation would mean that variations in the angle
of an airfoil do not influence others, which is not realistic. Thus, the relations between
parameters seem consistent.

(a) (b)

(c)

Figure 5. Parameter exploration via Pearson correlation for (a) A-A cross-section (400 mm), (b) B-B
cross-section (670 mm), and (c) C-C cross-section (940 mm), of the five-element front wings from the
specified input design variable ranges.
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Parallel Coordinate Plots were also used to explore the relations between parameters.
This type of plot allows us to observe the best paths to achieve the expected optimal
design (increased downforce over decreased drag). As observed in Figure 6, it is very
complex to determine a specific value or narrow range for each parameter to obtain the
optimal design(s). These plots show that the problem mechanics have a strong underlying
non-linear relationship. From the three planes shown in the figure, it is observed more
convergence to desirable solutions in the C-C cross-section (Figure 6c), as most sampled
designs yield a low CL/CD ratio, reflected by the dark colour in the colour range. Also,
for these designs, the ratio is the lowest. On the other hand, the A-A cross-sectional area
(Figure 6a) exhibits less promising outcomes, because there is a range of potential solutions
that could result in a relatively good design, but a clear path (selection of design parameter
values) cannot be identified. In other words, the connection between good candidates is
more diffuse in this cross-sectional area.

(a)

(b)

Figure 6. Cont.
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(c)

Figure 6. Parameter exploration via Parallel Coordinate Plot for (a) https://plotly.com/pablomh/16/,
A-A cross-section (400 mm), (b) https://plotly.com/pablomh/18/, B-B cross-section (670 mm), and
(c) https://plotly.com/pablomh/20/, C-C cross-section (940 mm), of the five-element front wings
from the specified input design variable ranges. Please note that hyperlinks to Plotly graphs are
included in the electronic version of this paper for interactive visualisation of the results.

5.2. Optimal Parametric Design

From the application of the NSGA-II optimisation algorithm on the Gaussian Process
surrogates, an optimal parametric solution is obtained quickly. Although the maximisation
of the ratio between CL and CD could be a single objective, it is a better practice in this type
of aerodynamic performance optimisation problems to deal with CL and CD separately. This
is beneficial because it is possible to find a better balance between the optimal solutions and
the final desired performance, since one may need, for instance, a stronger downforce by
increasing slightly the drag. This complicates the optimisation problem as it is transformed
into a multi-objective rather than a single-objective, leading to a set of dominated and
non-dominated solutions. The non-dominated solutions for each cross-sectional plane can
be identified in Figure 7, from which a design is selected as optimal for each cross-sectional
front wing highlighted with a star symbol. The optimal solution is selected amongst
the configurations as the one with the lowest ratio, meaning the lowest drag with the
highest negative lift (downforce) in each plane. To ensure enough degree of confidence
in the selection of an optimal candidate, a near neighbour criteria has been applied: at
least other two neighbouring candidates should lie inside the ±15% of variance for both
the drag and lift coefficients. The colours of points in Figure 7 stand for how far designs
are from the selected optimal candidate (the closer, the darker). The front wing designs
are shown in Figure 8. The parametric configuration of these designs is given in Table 3.
These selected designs provided the following (CL, CD) performances: (CL = −3.46E− 01,
CD = 173E− 02) for the A-A plane, (CL = −3.61E− 01, CD = 1.50E− 02) for the B-B
plane, and (CL = −1.12E− 01, CD = 3.34E− 03) for the C-C plane. These designs will be
the baseline design for the adjoint-based optimisation solver in ANSYS Fluent.

https://plotly.com/pablomh/16/
https://plotly.com/pablomh/18/
https://plotly.com/pablomh/20/
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Table 3. Optimal front wing profiles from parametric optimisation.

Plane A (400 mm) B (670 mm) C (940 mm) Unit

Position axes x −1145.00 −1091.00 −1037.00 mm
Position axes y −400.00 −670.00 −940.00 mm
Position axes z 65.00 70.00 95.00 mm

P1 Chord 185.30 196.79 208.28 mm
P1 NACA 3314 3312 3310

P1 Angle (α) −1.66 −2.00 −2.35 ◦

P2 Chord 162.33 164.79 167.25 mm
P2 NACA 2216 2516 3316

P2 Angle (β) 13.70 8.71 3.71 ◦

P3 Chord 100.25 120.44 115.57 mm
P3,P4,P5 NACA 4414 2213 0012

P3 Angle (γ) 9.71 7.25 2.36 ◦

P4 Chord 77.39 88.30 79.86 mm
P4 Angle (δ) 8.71 6.73 2.57 ◦

P5 Chord 61.92 70.64 63.89 mm
P5 Angle (ε) 10.45 8.07 3.08 ◦

Overlap 12.13 12.30 12.46 mm
Space 11.92 9.75 7.57 mm

(a) (b)

(c)

Figure 7. Dominated and non-dominated optimal parametric designs for the (a) A-A cross-section
(400 mm), (b) B-B cross-section (670 mm), and (c) C-C cross-section (940 mm), of the five-element
front wings from the specified input design variable ranges.
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(a) (b)

(c)

Figure 8. Optimal parametric designs for (a) A-A cross-section (400 mm), (b) B-B cross-section
(670 mm), and (c) C-C cross-section (940 mm).

6. Results from Hybrid Optimisation: Final Design

Once the parametric optimal design is available, one can explore further improvements
on this front wing design via the MM-RBF adjoint-based optimisation add-on in ANSYS
Fluent, performing so a hybrid optimisation approach.

Due to the high degree of freedom in adjoint calculations, the adjoint-based optimi-
sation strategy was carried out carefully. First, in order to avoid uncontrolled divergence
in results, the A-A plane cross-sectional airfoils are fixed to their parametric optimum
solution. That is to say, only the B-B and C-C plane cross-sectional airfoils are optimised
via the adjoint approach. As a side effect, this also allows fair comparison with parametric
optimisation results. Second, at this point, the problem is treated as single-objective, aiming
at maximising the CL/CD ratio. The morphing limits in the MM-RBF adjoint approach are
set according to the FIA regulation in [81]. This geometric constraint has been applied to
the five elements (airfoils) that conform the front wing. Finally, after some preliminary
testing, it was observed that a total of 20 iterations was enough to achieve optimal solutions
with no remarkable improvement from 20 iterations on. The results when increasing the
number of iterations are shown in Table 4. The initial guess (number of iterations equals
zero) corresponds to the parametric optimal front wing, which, compared to the results at
the 20th adjoint iteration, reveals the important improvement achieved with the hybrid
optimisation approach. A visual comparison by superposition between parametric opti-
mal and hybrid optimal front wings can be also seen in Figure 9, where it is noticed an
important change in the shape and distribution of the five elements of the front wing. The
new front wing obtained by hybrid optimisation has been able to considerably decrease the
drag in the B-B plane cross-section while also increasing the downforce. For the C-C plane,
surprisingly, although the drag was slightly increased, the downforce was increased very
notably, being the CL/CD ratio considerably improved.
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Table 4. Adjoint optimisation results up to 20 iterations.

Number of Adjoint Iterations CL CD CL/CD

B-B Plane
0 −3.61× 10−1 1.50 × 10−2 −24.06

10 −3.67× 10−1 1.45 × 10−2 −25.31
20 −3.72× 10−1 1.31 × 10−2 −28.40

C-C Plane
0 −1.12× 10−1 3.34 × 10−3 −33.51

10 −1.21× 10−1 3.34 × 10−3 −36.23
20 −1.24× 10−1 3.34 × 10−3 −37.15

(a) (b)

Figure 9. Visual differences between parametric (color blue) and hybrid optimal designs (color green).
(a) Plane B-B, and (b) Plane C-C.

To gain more knowledge about the differences in the performance of the front wings,
the pressure coefficient Cp has been also compared between the parametric and hybrid
optimisation profiles, as illustrated in Figure 10, where just a detail of the domain around
the wings is shown. Figure 10a shows important improvements in the B-B plane: it can be
observed that the negative values of pressure (suction effect, blue colors in the colorbar)
are distributed up to Profile 4. On the upper side, pressure is higher in the hybrid optimal
front wing, especially on the last three profiles. Similarly, in Figure 10b the comparison
between the parametric and hybrid optimal profiles shows improvement. At the bottom
side, although the first profile exhibits less suction, the rest of the profiles have a clear
increase in suction, which, together with the pressure increase at the upper side of the
profiles, increases downforce. To end up the optimisation process, a final shape of the
actual 3D front wing design can be obtained by using a CAD software that interpolates
with splines the three 2D optimal five elements to define the 3D design. The proposed 3D
design is shown in Figure 11.

Therefore, the application of the MM-RBF adjoint-based optimisation has led to an
improvement of the ratio of coefficients of up to 25% for the B-B plane and 14% for the C-C
plane (see Table 4). This important enhancement, together with the previous search of the
parametric optimal candidate, shows that the hybrid optimisation via a 2D approach is a
useful and efficient procedure to design an F1 race car front wing under the FIA regulations.
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(a)

(b)

Figure 10. Cp comparison between parametric (left) and hybrid (right) optimal front wings for
(a) B-B cross-section (670 mm), and (b) C-C cross-section (940 mm).

Figure 11. Final proposed 3D design by the hybrid optimisation approach.

7. Conclusions

In this paper, we have investigated the application of a computationally efficient
2D-based hybrid optimisation approach (parametric optimisation plus adjoint-based opti-
misation) for the design of an F1 race car five-element front wing constrained by the FIA
regulations, for which there are no studies in the literature. The process started with the
search for an optimal parametric design of the front wing from a Space-Filling Design of
Experiment to construct Gaussian process surrogates. These are later sampled by a NSGA-
II algorithm to obtain a set of solutions. A specific solution is then selected to later use
the Mesh Morphing Radial Basis Function (MM-RBF) adjoint optimisation with the CFD
code. The 2D-based approach is less computationally intensive than a 3D computational
simulation problem, and by selecting strategically different cross-sections along the front
wing, the procedure allowed to obtain a final 3D front wing quite fast in comparison to a
full 3D simulation environment of such a complex five-element front wing realistic design
under a large design space of 17 design parameters.

From this approach, the application of adjoint optimisation under the FIA regulation
constraints led to the selection of a potential optimal five-element front wing that exhibits
a local improvement of up to 25% with respect to the parametric optimal one. Pressure
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coefficient contours have also shown that the improvements in the geometric design
increase the suction effect at the bottom side of the front wing, and increase the pressure
force at the upper side, whereas the drag coefficient is decreased at the same time (except for
the C-C plane cross-section, where a slight increase in drag is observed, but the lift-to-drag
ratio is highly improved). Hybrid adjoint-based optimisation exhibits two relevant aspects
that makes this a very attractive optimisation approach to refine the parametric baseline.

First, by considering that the time per case is approximately 0.64 CPU hours (thanks to
the use of a converged solution as initialisation) and with a search space of 172 points (CFD
simulations), an optimal parametric solution is achieved after 110.08 CPU hours. After
the selection of this optimal solution as the baseline, the adjoint simulation only increases
the total CPU computation by 1 hour, yielding an enhancement in design performance
of around 10–20%. This improvement at the last computational stage is an important
advantage compared to a full search in the entire parametric space (17 parameters), and
there is no guarantee to find such a degree of improvement in any parametric search. The
reason behind this actually connects with the second aspect to outline from our adjoint-
based approach.

Second, the profile shapes obtained from the adjoint approach do not belong to a
library or standardised classification of aerodynamic profiles, and thus solutions are strictly
adapted to the problem conditions. The adjoint alone may not be able to generate profiles
that meet all the requirements imposed, but by starting from a good parametric baseline
candidate and by controlling its evolution an outstanding final candidate can be obtained
in a relatively short time.

Although the performance of the 3D front wing obtained from this 2D approach would
be more optimal than a non-optimised front wing, a full 3D simulation environment would
be actually a more accurate approach (but undoubtedly more computationally costly) as 3D
effects/interactions would be considered. However, it must be the decision of the engineers
whether the computational costs of the process are affordable or not. If the computational
budget is low and/or a new front-wing design must be obtained quickly (a common
situation in F1 in order to gain advantage over competitors), then the proposed alternative
is of high interest. As a latter stage, the performance of the 2D optimal adjoint-based front
wing can be further tested via 3D simulation by creating the 3D shape with a CAD software
by using splines. This can be simulated in CFD to extract conclusions on whether or not
this final design is efficient before manufacturing it for the F1 car. This is the aim of starting
with a 2D optimisation process: to finally achieve a model which can be turned into a 3D
design without requiring a full 3D design optimisation environment. Another limitation
of the present work is that it would be of interest to study the effect of this front wing
downstream on 3D key elements of the F1 car geometry. Future work could then be related
to extend this analysis with 3D simulations on the interaction of the front wing vortical
structures and race car elements such as wheels and/or car frame.
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Appendix A. Formula 1 Technical Regulations 2021: Front Wings

A front wing works in the opposite way of how an aircraft wing works. The airfoil
of a front wing is profiled so that it helps to attach the car to the ground, promoting the
contact of wheels with the surface. Thus, the front wing plays a major role in ensuring
sufficient grip for the car. In addition to the effect on the downforce, front wings also control
the total airflow surrounding the car, by directing the airflow in a way that optimises the
aerodynamics of the full car.

The geometrical constraints of the front wing can be observed in Figure A1. The
total front wing volume is comprised by 2000 mm in width, 575 mm in length, and a
minimum and a maximum height of 75 and 300 mm, respectively, above the reference
plane. The region from the centerline up to 250 mm consists of a profile that is the same for
all competitors. The only bodywork allowed in this region of the car is a pair of symmetrical
pylons for mounting the front wing.

Figure A1. 2021 Regulations. Image extracted from the FIA regulations (Article 3.3 front wing [81]).
The green areas are the size limits set by the FIA regulations. The non-dimensional numbers on
the green areas stand for the subsection of Article 3.3 from the FIA regulations, in which additional
information can be found.

On the sides, an endplate is defined from a 2D curved surface (virtual surface). This
surface is constrained within a box between 910 mm and 950 mm from the car center line.
The design should not create an angle greater than 15◦ from the center line of the car. Its
surface must be continuous and uninterrupted, enclosing at least 95% of the virtual surface
of the final plate. The end-plane surface can be offset from the virtual endplate surface by
10 mm in the first 150 mm of the plate and 6 mm in the rest of the endplate. In reality, the
restrictions imposed make it difficult to deviate too far from the surface, as the front wing
endplate is required to be at least 10 mm thick over its length, with a radius of at least 5 mm,
to prevent damage to the tires of competitors. The baseplate is also defined by regulations.
This can only protrude from the virtual surface up to 30 mm, while any geometry in this
region cannot exceed 10 mm of thickness. The outer section of the baseplate may not exceed a
height of 110 mm from the reference plane. Together, these rules almost completely define the
shape of the endplate and baseplate, restricting design freedom and being barely optimisable.
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Regarding the design of the profiles, the F1 rules give to designers and engineers re-
strictive rules. The front wing profiles are defined as a bodywork element that is constrained
within the volume that extends from 250 mm to 950 mm from the car centreplane, and
within the volume defined in Article 3.3.3 in the regulation [81], represented in Figure A1.
Additionally, any intersection of these profiles with any longitudinal vertical plane may
contain no more than five closed sections, each of which must contain a concave radius of
curvature of maximum 50 mm. The regulation prohibits the visibility of the trailing edges
of the wing elements when viewed from above. On the contrary, it requires the visibility of
the trailing edges when viewed from below. The trailing edge limitations mean that the
elements must be placed in series, without large overlaps. This rule is supported by a limit
on element spacing between 5 mm and 15 mm, and from 400 mm up to 950 mm from the
centerline, giving 150 mm of freedom to manipulate the Y250 vortex using the internal tips
of the wing elements.

To avoid extreme angles in the profiles, the regulation also stipulates that the elements
must join the virtual endplate surface at an angle of at least 15◦ from the horizontal, and at
least one profile must be attached to the central mandatory section.
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and RBF mesh morphing. Aircr. Eng. Aerosp. Technol. 2016, 88, 740–750. [CrossRef]

http://dx.doi.org/10.1162/evco.1994.2.3.221
http://dx.doi.org/10.1016/j.compfluid.2018.12.003
http://dx.doi.org/10.1016/j.ijmecsci.2015.08.029
http://dx.doi.org/10.1016/j.cep.2017.03.012
http://dx.doi.org/10.1016/j.ijmecsci.2017.09.014
http://dx.doi.org/10.1016/j.advengsoft.2014.04.001
http://dx.doi.org/10.1007/s10898-004-0570-0
http://dx.doi.org/10.1007/s11081-009-9087-1
http://dx.doi.org/10.1080/10618562.2019.1683164
http://dx.doi.org/10.1016/j.compchemeng.2017.09.008
http://dx.doi.org/10.1016/j.ijmecsci.2016.09.009
http://dx.doi.org/10.1016/0305-0548(86)90048-1
http://dx.doi.org/10.1504/IJBIC.2018.093328
http://dx.doi.org/10.1007/s10462-019-09732-5
http://dx.doi.org/10.1016/j.applthermaleng.2017.04.031
http://dx.doi.org/10.1016/j.compfluid.2018.03.068
http://dx.doi.org/10.1016/j.mio.2014.08.002
http://dx.doi.org/10.1016/j.applthermaleng.2016.09.120
http://dx.doi.org/10.1016/j.cma.2010.11.014
http://dx.doi.org/10.1016/j.compfluid.2014.01.007
http://dx.doi.org/10.1108/AEAT-12-2014-0211


Machines 2023, 11, 231 27 of 28

51. Porziani, S.; Groth, C.; Waldman, W.; Biancolini, M.E. Automatic shape optimisation of structural parts driven by BGM and RBF
mesh morphing. Int. J. Mech. Sci. 2021, 189, 105976. [CrossRef]

52. Sovani, S.; Khondge, A. Scaling New Heights in Aerodynamics Optimization: The 50:50:50 Method; SAE Technical Paper (No.
2012-01-0174); SAE: Pittsburgh, PA, USA, 2012.

53. Biancolini, M.E.; Capellini, K.; Costa, E.; Groth, C.; Celi, S. Fast interactive CFD evaluation of hemodynamics assisted by RBF
mesh morphing and reduced order models: The case of aTAA modelling. Int. J. Interact. Des. Manuf. IJIDM 2020, 14, 1227–1238.
[CrossRef]

54. Dawes, W.N.; Meah, N.; Kudryavtsev, A.; Evans, R.; Hunt, M.; Tiller, P. Digital geometry to support a gas turbine digital twin. In
AIAA Scitech 2019 Forum; AIAA: Reston, VA, USA, 2019; p. 1715.

55. Kenway, G.; Mader, C.; He, P.; Martins, J. Effective adjoint approaches for computational fluid dynamics. Prog. Aerosp. Sci. 2019,
110, 100542. [CrossRef]

56. Arora, J.S. Optimum design problem formulation. In Introduction to Optimum Design, 2nd ed.; Aurora, J.S, Ed.; Academic Press:
San Diego, CA, USA, 2004; pp. 15–54.

57. Fleischli, B.; Mangani, L.; Rio, A.; Casartelli, E. A discrete adjoint method for pressure-based algorithms. Comput. Fluids 2021,
227, 105037. [CrossRef]

58. Biancolini, M.E. Mesh morphing and smoothing by means of radial basis functions (RBF): A practical example using fluent and
RBF Morph. In Handbook of Research on Computational Science and Engineering: Theory and Practice; IGI Global: Hershey, PA, USA,
2012; pp. 347–380.

59. ANSYS Release 15.0. ANSYS Fluent Adjoint Solver Manual; Original Typescript; 2013. Available online: https://www.scirp.org/
(S(lz5mqp453ed%20snp55rrgjct55))/reference/referencespapers.aspx?referenceid=2869465 (accessed on 22 December 2022).

60. Myers, R.H.; Montgomery, D.C. Response Surface Methodology: Process and Product in Optimization Using Designed Experiments;
Taylor & Francis: Abingdon, UK, 1995.

61. Deng, Y.; Lin, G.; Yang, X. Multifidelity data fusion via gradient-enhanced gaussian process regression. arXiv 2020,
arXiv:2008.01066.

62. Baar, J.H.D.; Scholcz, T.P.; Verhoosel, C.V.; Dwight, R.P.; van Zuijlen, A.H.; Bijl, H. Efficient Uncertainty Quantification with
Gradient-Enhanced Kriging: Applications in Fsi; ECCOMAS: Vienna, Austria, 2012.

63. Jouhaud, J.; Sagaut, P.; Labeyrie, B. A kriging approach for CFD/wind-tunnel data comparison. J. Fluid Eng. 2006, 128, 847–855.
[CrossRef]

64. Williams, C.K.I.; Rasmussen, C.E. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2006; Volume 2.
65. Lophaven, S.N.; Nielsen, H.B.; Sondergaard, J.; Dace, A. DACE: A Matlab Kriging Toolbox; Technical Report No. IMMTR-2002;

Technical University of Denmark: Lyngby, Denmark, 2002; Volume 12.
66. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.

Comput. 2002, 6, 182–197. [CrossRef]
67. Srinivas, N.; Deb, K. Multiobjective optimization using NSGA. Evol. Comput. 1995, 2 .
68. Tzanakis, A. Duct Optimization Using CFD Software ‘ANSYS Fluent Adjoint Solver’. 2014. Available online: https://hdl.handle.

net/20.500.12380/202020 (accessed on 25 May 2021).
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