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Simple Summary: The study of cell features has historically been key for the progress of biological
sciences and its relevance remains intact. In recent years, mass cytometry has emerged as a promising
and powerful technology, capable of studying multiple parameters of cells in the same sample.
Mass cytometry has been quickly applied to many research areas, particularly to the study of the
immune system for different purposes, in which the simultaneous analysis of a large number of
proteins is crucial. However, despite being a technique that is on the rise, its performance in scientific
publications has not yet been evaluated. In this work, a bibliometric methodology known as H-
Classics was applied to analyse the most relevant articles, known as highly cited papers (HCPs), and
determine the main scientific producers (authors, institutions, and countries) and trends around mass
cytometry research field. The results confirmed a high interest and application in immunological
studies. The identified HCPs came from prestigious institutions and were published in high impact
journals. These results may help researchers to expand their knowledge and to establish new valuable
collaborative networks around mass cytometry.

Abstract: Mass cytometry (CyTOF) is a relatively novel technique for the multiparametric analysis of
single-cell features with an increasing central role in cell biology, immunology, pharmacology, and
biomedicine. This technique mixes the fundamentals of flow cytometry with mass spectrometry and
is mainly used for in-depth studies of the immune system and diseases with a significant immune
load, such as cancer, autoimmune diseases, and viral diseases like HIV or the recently emerged
COVID-19, produced by the SARS-CoV-2 coronavirus. The objective of this study was to provide
a useful insight into the evolution of the mass cytometry research field, revealing the knowledge
structure (conceptual and social) and authors, countries, sources, documents, and organizations
that have made the most significant contribution to its development. We retrieved 937 articles from
the Web of Science (2010–2019), analysed 71 Highly Cited Papers (HCP) through the H-Classics
methodology and computed the data by using Bibliometrix R package. HCP sources corresponded to
high-impact journals, such as Nature Biotechnology and Cell, and its production was concentrated in
the US, and specifically Stanford University, affiliation of the most relevant authors in the field. HCPs
analysis confirmed great interest in the study of the immune system and complex data processing in
the mass cytometry research field.

Keywords: mass cytometry; cytometry by time of flight (CyTOF); H-index; H-classics; highly cited
papers (HCP); bibliometric indicators; scientometrics; science communication; Bibliometrix
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1. Introduction

Studying a broad range of single-cell features has always been of great interest to
both researchers and clinicians. For decades, this purpose has been partly fulfilled by
flow-cytometry technology [1]. For the study of cellular constituents and biomarkers
by flow cytometry, cells are typically stained with monoclonal antibodies conjugated to
fluorochromes. The key principle of flow cytometry is that, after the excitation of stained
cells in a flow cytometer, a variety of aspects of individual particles can be measured
through light scattering and fluorescence emission [2]. Flow cytometry has allowed the
study of countless biological features [3] and is also being clinically used for the diagnosis
of haematological diseases, such as leukaemia [4].

However, since flow cytometry is not without limitations, more comprehensive ap-
proaches to single-cell feature analysis have been developed, especially for multiparametric
analyses [5]. Some examples are high dimensional fluorescent flow cytometry, single-cell
mRNA sequencing, and mass cytometry [6]. The mass cytometry technology or cytometry
by time of flight (CyTOF), is a relatively novel technique that was first described by Ban-
dura et al., as an instrument for real-time analysis of individual biological cells or other
microparticles [7]. The CyTOF constitutes a hybrid between flow cytometry and mass
spectrometry. Instead of fluorophores, the cells are immunologically stained with anti-
bodies conjugated with unique and stable metallic particles. Then, in the mass cytometer,
samples ionised and focused under the same acceleration potential. The ions arrive at the
detector in an ion mass-dependent manner, which enables the differentiation of single-cell
parameters. For analysing this information, the detector is coupled to a time of flight
analyser (TOF), from where the data is acquired and subsequently processed [8,9]. Due to
the high availability of different metallic particles, mass cytometry allows the study of
more than 40 different parameters simultaneously in the same sample [6].

The applications of mass cytometry are as broad as previous fluorescence-based tech-
niques for studying single-cell features, with the exception that CyTOF does not allow
cell recovery by sorting, as cells are destroyed in the process. Through performing deep
profiling of samples, mass cytometry experiments have obtained comparable results to
those of flow-cytometry, for example, being in the same way capable of quantifying surface
and intracellular biomarkers from both non-stimulated [10] and stimulated [11] cells. The
most important use of this technique is probably its capacity for immunophenotyping,
that its, in-depth study of the characteristics and diversity of the immune system under
different conditions [6]. Deep CyTOF profiling has also been applied in several drug phar-
macodynamics, pharmacokinetics and discovery studies [12] to help determine better drug
combinations and drug targets, especially for autoimmune diseases and cancer [13–15],
and has also been used to support vaccine evaluation and development processes [16].

The huge potential of this technique suggests a booming trend in the use of CyTOF
within the research community. However, limited information on the research evaluation
of this new technology in scientific communications is currently available. A widely used
approach for analysing scientific publications is the citation classics methodology. Citation
classics was first defined by Garfield as a way to retrospectively determine the most highly
cited papers (HCP) around a research topic [17]. The HCPs analysis aims to discover trends
in the research community and identify relevant authors, institutions, or groups [17–19].
This analysis may facilitate comprehension of the research output and provide the basis for
developing new theories, techniques, research lines and collaboration networks. However,
to perform a good analysis, the criteria used to select the most cited papers should not be
arbitrary. For example, some authors have arbitrarily established thresholds in the number
of articles selected, limiting the list to the 50 [20] or 100 [21] most cited, or limiting the
selection to those articles that have been cited at least 400 times [22].

To improve the selection criteria for HCP, Martinez et al. [23] proposed that the
selection of HCPs should be based on two parameters: the H-Index [24] and the H-core



Biology 2021, 10, 104 3 of 25

concept [25]. The H-Index, defined as the number of papers with citation number > h,
as was presented by Hirsch as a way to improve quantitative measures and impact of a
researcher’s scientific output in one robust single parameter and avoid the disadvantage of
using other indicators, such as the total number of papers, the total number of citations,
citations per paper, or the number of significant papers [24]. Therefore, the application of
H-index on citation classics reduces unpredictability [23].

Martinez et al. [23] gave the name H-Classics to this new identification method of
HCPs based on the H-index. Two great advantages of using H-Classics is that it provides
standardization of the criteria and thresholds used for selecting HCPs and includes the col-
lection of papers published in a given field and their impact on a single procedure [26]. The
H-Classics methodology has already been applied to medical areas such as paediatrics [27],
dentistry [18], rheumatology [28], and microbiology [19].

In this paper, we focus on the study of mass cytometry research by using the H-Classics
methodology. This H-Classics study aims to answer the following research questions (RQ):

• RQ1. Which are the most relevant journals, authors, institutions, and countries in
mass cytometry research?

• RQ2. Which are the most cited documents in mass cytometry?
• RQ3. Which are the knowledge structures (conceptual and social structure) in mass

cytometry?

2. Materials and Methods
2.1. Bibliographic Database and Query Design

The source of information related to scientific production and citations was the Web
of Science (WoS) database (Clarivate Analytics). Academic publications indexed in WoS
on CyTOF from 2010 to 2019 were obtained. To set and adequately delimit the research
area under study, a specific search equation was formulated according to the database
search logic of WoS. Table 1 demonstrates the query design, indexes, timespan, and data
download date. The retrieved WoS dataset and the citation report are available at Zenodo
repository [29].

Table 1. Details of dataset search strategy for the identification of mass cytometry papers in WoS.

Indexes Timespan Query N. of
Documents Download

Web of Science
Core Collection:

SCI-EXPANDED,
SSCI, A&HCI, CPCI-S,

CPCI-SSH, BKCI-S,
BKCI-SSH, ESCI,

CCR-EXPANDED, IC.

2010–2019

(TS = (“Mass
Cytometry” OR

“Cytometry by Time
of Flight” OR

“CyTOF”)) AND
document types:

(Article OR Review)

937 01.07.2020

2.2. H-Classics Methodology

After choosing the database and the query design, the following two steps for identify-
ing HCPs were applied for the mass cytometry research field, accordingly to Martinez et al.,
description of the H- Classics methodology [23]:

1. Compute the H-index of the research area. The computation of H-index of the research
area is done by establishing a ranking of the papers according to their citations. The
WoS database provides filtering tools to easily compute the H-index of the research
area.

2. Compute the H-core of the research area. This step consists of recovering the highly
cited papers that are included in the H-core of the research area [23].
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2.3. Bibliometrix (Science Mapping Analysis)

A comprehensive science mapping analysis [30,31] was performed to the data obtained
from the HCPs selected. Data were processed and H-Classics scientific production was
analysed through a bibliometric workflow supported by the open-source tool Bibliometrix
package, which is programmed in R [32,33]. Following Aria et al., methodology, data were
extracted from the Clarivate Analytics WoS database, loaded in R, and converted into a
bibliographic data frame into which several elements, such as the authors’ names, titles,
keywords, and other information, were introduced [33].

The descriptive analysis was performed applying several Bibliometrix functions de-
scribed by Aria et al., to obtain tables and figures of HCPs production and citations over
time, most productive authors, institutions, countries, most globally cited documents
and authors production over time. Author productivity and citation impact were also
calculated through H-index functions. The next step was the creation of networks in
which different connections between attributes of a document were represented through
a matrix. These connections were used to represent figures and networks corresponding
to the collaboration network between HCPs’ authors (social structure) and co-occurrence
network (conceptual structure) [33]. Co-ocurrence networks are generated by connecting
pairs of terms (keywords) using a set of criteria defining co-occurrence. Data visualiza-
tions of author production and representation of social and conceptual structures were
created through the Biblioshiny R package (https://bibliometrix.org/Biblioshiny.html), a
Bibliometrix R Package web interface.

3. Results
3.1. Citation Report and Record Count

The total mass cytometry publications retrieved (937) combined a sum of 25,801 times
cited, making an average of 27.54 citations per paper. The H-index was 71, which means
that 71 studies (Table A1) had received at least 71 citations and were therefore categorised
as HCPs (H-Classics publications). Of these, 56 were original articles, 14 were reviews and
1 was a book chapter.

3.2. Distribution of Publications by Year, Average Citations per Year and Record Count

Figure 1 shows the yearly distribution of HCP documents from 2010 to 2019. The main
production was concentred in the period 2014–2017. The peak number of HCPs occurred
in 2016, with 17 HCP published.
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Figure 2 shows the average citations per year of HCPs in the mass cytometry field,
remaining fairly constant between 2010 and 2018, before seeing a sharp increase to 208
in 2019.

Biology 2021, 10, x FOR PEER REVIEW 5 of 23 
 

 

Figure 2 shows the average citations per year of HCPs in the mass cytometry field, 
remaining fairly constant between 2010 and 2018, before seeing a sharp increase to 208 in 
2019. 

 
Figure 2. Average citations per year of HCPs in the mass cytometry research field (2010–2019). 

3.3. Journals, Authors, Institutions and Countries 
In this section, different social units (journals, authors, institutions, and countries) 

were analysed. First, the most productive journals were determined in terms of the total 
number of HCPs in the selected time frame. Table 2 shows journals with two or more 
HCPs in the mass cytometry research field. Nature Biotechnology with 9 HCPs was the 
most productive journal, followed by Cell and Cytometry Part A, with 8 and 5 HCPs, 
respectively. 

Table 2. Distribution of sources with two or more HCPs in the area of mass cytometry. 

Rank Sources HCPs (%) JIF 2019 JIF 5 Years Quartile 
#1 Nature Biotechnology 9 (12.68) 36.56 42.3 Q1 
#2 Cell 8 (11.27) 38.64 38.62 Q1 
#3 Cytometry Part A 5 (7.04) 3.12 3.47 Q2 
#3 Immunity 5 (7.04) 22.55 25.73 Q1 
#3 Science Translational Medicine 5 (7.04) 16.3 18.56 Q1 
#4 Nature Immunology 4 (5.63) 20.48 22.3 Q1 
#4 Science 4 (5.63) 41.85 44.37 Q1 
#5 Nature Methods 3 (4.23) 30.82 36.15 Q1 
#6 Cell Stem Cell 2 (2.82) 20.86 23.45 Q1 
#6 Nature 2 (2.82) 42.78 46.47 Q1 
#6 Nature Reviews Immunology 2 (2.82) 40.36 49.05 Q1 

#6 Proceedings of The National Academy of 
Sciences of The United States of America 

2 (2.82) 9.41 10.62 Q1 

#6 Trends in Genetics 2 (2.82) 11.33 11.64 Q1 
Abbreviations: JIF, journal impact factor. 

Table 3 highlights the 20 most relevant authors in mass cytometry according to the 
number of published HCPs. Nolan GP ranked highest with 23 HCPs followed by Bendall 
SC (14 HCPs) and Newell EW (12 HCPs). Nolan GP was also one of the authors with the 

Figure 2. Average citations per year of HCPs in the mass cytometry research field (2010–2019).

3.3. Journals, Authors, Institutions and Countries

In this section, different social units (journals, authors, institutions, and countries)
were analysed. First, the most productive journals were determined in terms of the total
number of HCPs in the selected time frame. Table 2 shows journals with two or more HCPs
in the mass cytometry research field. Nature Biotechnology with 9 HCPs was the most
productive journal, followed by Cell and Cytometry Part A, with 8 and 5 HCPs, respectively.

Table 2. Distribution of sources with two or more HCPs in the area of mass cytometry.

Rank Sources HCPs (%) JIF 2019 JIF 5 Years Quartile

#1 Nature
Biotechnology 9 (12.68) 36.56 42.3 Q1

#2 Cell 8 (11.27) 38.64 38.62 Q1
#3 Cytometry Part A 5 (7.04) 3.12 3.47 Q2
#3 Immunity 5 (7.04) 22.55 25.73 Q1

#3
Science

Translational
Medicine

5 (7.04) 16.3 18.56 Q1

#4 Nature
Immunology 4 (5.63) 20.48 22.3 Q1

#4 Science 4 (5.63) 41.85 44.37 Q1
#5 Nature Methods 3 (4.23) 30.82 36.15 Q1
#6 Cell Stem Cell 2 (2.82) 20.86 23.45 Q1
#6 Nature 2 (2.82) 42.78 46.47 Q1

#6 Nature Reviews
Immunology 2 (2.82) 40.36 49.05 Q1

#6

Proceedings of The
National Academy
of Sciences of The
United States of

America

2 (2.82) 9.41 10.62 Q1

#6 Trends in Genetics 2 (2.82) 11.33 11.64 Q1

Abbreviations: JIF, journal impact factor.
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Table 3 highlights the 20 most relevant authors in mass cytometry according to the
number of published HCPs. Nolan GP ranked highest with 23 HCPs followed by Bendall
SC (14 HCPs) and Newell EW (12 HCPs). Nolan GP was also one of the authors with
the earliest date of first publication and the highest number of total citations (6531). The
affiliations of these authors (75%) corresponded mainly to American hospitals, research
centers, and universities.

Table 3. Top 20 most relevant authors and their impact (H-index and TC) in the field of mass cytometry.

Rank Authors Articles H- Index TC FPY Affiliation Country

#1 Nolan GP 23 23 6531 2011 Stanford University USA

#2 Bendall
SC 14 14 5197 2011 Stanford University USA

#3 Newell
EW 12 12 2044 2012

Stanford University &
Singapore Immunology

Network (Sign)
USA & Singapore

#4 Pe’er D 10 10 3978 2011 Columbia University USA

#5 Simonds
EF 8 8 3891 2011 Stanford University USA

#5 Davis
MM 8 8 1347 2012 Stanford University USA

#6 Finck R 7 7 2626 2011 Stanford University USA

#6 Spitzer
MH 7 7 1155 2014 Stanford University &

University of California USA

#7 Bodenmiller
B 6 6 1465 2012 Stanford University &

University of Zurich USA & Switzerland

#7 Zunder
ER 6 6 1206 2012 Stanford University USA

#7 Ginhoux
F 6 6 1116 2014 Singapore Immunology

Network (Sign) Singapore

#7 Fantl WJ 6 6 759 2012 Stanford University USA

#8 Bruggner
EV 5 5 2356 2011 Stanford University USA

#9 Levine JH 4 4 1641 2013 Columbia University USA
#9 Davis KL 4 4 1591 2013 Stanford University USA

#9 Krishnaswam
YS 4 4 1225 2013 Yale School of Medicine USA

#9 Chen JM 4 4 729 2014 Singapore Immunology
Network (Sign) Singapore

#9 Chan JKY 4 4 710 2016
Kk Women’s and Children’s

Hospital & Duke-Nus
Medical School

Singapore

#9 Mcgovern
N 4 4 710 2016 University of Cambridge UK

#9 Becher B 4 4 595 2014 University of Zurich Switzerland

Abbreviations: TC, total citations; FPY, First publication year.

Affiliations and countries were also analysed. To determine the most relevant institu-
tions, all authors from each HCP were considered. Table 4 shows the ranking of institutions
with 6 or more HCP. The most productive affiliations were compared with two quality and
performance indicators of global university ranking: the 2019 Quacquarelli Symonds (QS)
World University Rankings and 2019 Academic Ranking of World Universities (ARWU),
which allow an approximate measurement of the relative position in which the most in-
fluential institutions in CyTOF publications were found. The most productive institution
was Stanford University (USA), with 172 registered affiliations in HCPs, and it was also the
affiliation of the top 3 authors (Table 3). As shown in Table 4, the 2019 QS/ARWU rankings
indicate that top positions were held by Stanford University.
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Table 4. Top number of affiliations registered (institutions) in mass cytometry highly cited papers (HCPs).

Rank Institutions Country AR QS 2019 ARWU 2019

#1 Stanford University USA 172 2 2
#2 Harvard University USA 28 3 1
#2 University of Zurich Switzerland 28 78 61
#3 Columbia University USA 18 16 8
#3 Singapore General Hospital Singapore 18 - -
#3 University of Texas Md Anderson Cancer Centre USA 18 - 68
#4 University of California, San Francisco USA 16 - 20
#4 Weizmann Institute of Science Israel 16 - 101–150
#5 National University of Singapore Singapore 14 11 67
#6 KK Women’s and Children’s Hospital Singapore 12 - -
#6 Washington University USA 12 100 22
#7 Howard Hughes Medical Institute USA 10 - -
#7 University of Oxford UK 10 5 7
#8 Brigham and Women’s Hospital USA 8 - -
#8 Karolinska Institutet Sweden 8 - 38
#8 University of Copenhagen Denmark 8 79 26
#8 Universiteit Gent Belgium 8 138 66
#8 University of Washington USA 8 66 14
#8 Duke-NUS Medical School USA 6 - -

Abbreviations: AR, number of affiliations registered; QS, Quacquarelli Symonds; ARWU, Academic Ranking of World Universities.

Table 5 shows the ranking of countries among producers of HCPs in mass cytometry,
based on the affiliation of the corresponding author, and ordered according to the total
number of HCPs. For a more global view of HCP contribution, the affiliations of all authors
were also determined (Freq SCP) (Table 5). The countries of origin of all authors, and not
only of the corresponding authors, were considered when determining the importance of a
country in HCPs production.

Table 5. Corresponding author’s country and country scientific production in the field of mass cytometry’s highly cited
papers (HCPs).

Rank Country Freq CSP HCPs (%) SCP MCP MCP Ratio Global Rank GDP GDP/Capita ($) AI

#1 USA 444 44 (61.97) 33 11 0.25 #8 65,280.68 0.067
#2 Switzerland 66 8 (11.27) 4 4 0.5 #4 81,993.73 0.01
#3 Singapore 104 6 (8.45) 2 4 0.667 #9 65,233.28 0.009

#4 United
Kingdom 38 3 (4.23) 0 3 1 #23 42,300.27 0.007

#5 Belgium 18 2 (2.82) 1 1 0.5 #20 46,116.69 0.004
#6 Sweden 18 2 (2.82) 1 1 0.5 #14 51,610.07 0.004
#7 Canada 16 1 (1.41) 1 0 0 #19 46,194.72 0.002
#8 China 2 1 (1.41) 0 1 1 #68 10,261.68 0.01
#9 Denmark 14 1 (1.41) 0 1 1 #11 59,822.09 0.002

#10 Germany 18 1 (1.41) 1 0 0 #18 46,258.89 0.002
#11 Israel 18 1 (1.41) 0 1 1 #21 43,641.39 0.002
#12 Netherlands 12 1 (1.41) 0 1 1 #13 52,447.83 0.002

Multiple Country Publications (MCP) ratio was calculated dividing MCP by single Country Publications (SCP). Abbreviations: Freq CSP,
Country scientific production Frequency; GDP, Gross Domestic Product; AI, Adjustment Index.

Most of the H-Classics were derived from USA (n = 44, 61.97%), followed by Switzer-
land (n = 8, 11, 27%) and Singapore (n = 6, 8, 45%). Interestingly, only 25% of the USA
HCPs were categorised as multiple country publications (MCP), the lowest ratio among the
12 top countries measured, after Canada and Germany. To relate gross domestic product
(GDP) with the production of HCPs, Table 5 also displays the ranking of countries ordered
by Adjustment Index (AI) based on GDP per capita [28]. The adjustment index (AI) was
calculated as AI = ((total number of HCP/GDP per capita of the country) × 100).
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3.4. Content Analysis: Highly Cited Papers

The first HCP is from 2010, “Highly multiparametric analysis by mass cytometry”
by Olga Ornatsky et al. [8]. They reviewed mass cytometry as a new technology capable
of addressing the studies usually run by flow cytometers with better results, emphasiz-
ing its multiparametric analysis potential for biological research and drug development.
To describe the basic principles of this technique, they used 20 different antibodies for
immunophenotyping of human leukaemia cell lines and patient samples; and performed
differential cell analysis, proteins identification, and metal-encoded bead arrays. This
article pointed out the next steps in CyTOF development, such as improving measurement
efficiency, the construction of isotope-binding polymer tags for a wider group of elements,
and challenges of multiparametric data processing and representation. Ornatsky’s article,
with 203 total citations, is the only HCP from 2010.

The 2011 article “Single-cell mass cytometry of differential immune and drug re-
sponses across a human hematopoietic continuum” by Bendall et al. [34] was the most
cited mass cytometry HCP, with 1233 total citations (Table 6). In this article, healthy hu-
man bone marrow was used to simultaneously measure 34 parameters in single cells. It
provided a system-wide view of immune signalling in healthy human haematopoiesis as
a powerful way to compare mechanistic and pharmacologic studies. The second highest
cited paper in the list (Table 6), with 716 total citations, was the 2012 article entitled “viSNE
enables visualization of high dimensional single-cell data and reveals phenotypic hetero-
geneity of leukaemia” by Amir et al. In the article, the authors presented and validated
a computerised tool that allows correct visualization of multiparametric mass cytometry
information [35]. The third most cited paper was published by Ginsen et al., in 2014 and
entitled “Highly multiplexed imaging of tumour tissues with subcellular resolution by
mass cytometry” (500 total citations). The authors mixed mass cytometry with immuno-
histochemical techniques to study the heterogeneity of breast cancer tumours in tissues,
rather than cell suspensions [36]. In 2011, Qiu et al. published the article “Extracting a
cellular hierarchy from high-dimensional cytometry data with sPADE” [37], intending to
solve some of the difficulties of analysing huge amounts of multidimensional single-cell
data. The authors presented a computational approach that facilitates the analysis of
cellular heterogeneity, the identification of cell types, and the comparison of functional
markers in response to perturbations. This article was the fourth most cited HCP, with 498
total citations.

Table 6. Top 10 most highly cited papers in mass cytometry (2010–2019).

Rank N. Authors Article TC TCY Ref.

#1 16

Bendall SC, Simonds EF, Qiu P, et al. Single-cell mass
cytometry of differential immune and drug responses

across a human hematopoietic continuum. Science.
2011; 332(6030):687–696.

1233 123.3 [34]

#2 10

Amir el-AD, Davis KL, Tadmor MD, et al. viSNE
enables visualization of high dimensional single-cell

data and reveals phenotypic heterogeneity of leukaemia.
Nat Biotechnol. 2013; 31(6):545–552.

716 89.5 [35]

#3 14

Giesen C, Wang HA, Schapiro D, et al. Highly
multiplexed imaging of tumour tissues with subcellular

resolution by mass cytometry. Nat Methods. 2014;
11(4):417–422.

500 71.4 [36]

#4 9

Qiu P, Simonds EF, Bendall SC, et al. Extracting a
cellular hierarchy from high-dimensional cytometry

data with SPADE. Nat Biotechnol. 2011; 29(10):886–891.
Published 2 October 2011.

498 49.8 [37]
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Table 6. Cont.

Rank N. Authors Article TC TCY Ref.

#5 3

Maecker HT, McCoy JP, Nussenblatt R. Standardizing
immunophenotyping for the Human Immunology

Project. Nat Rev Immunol. 2012; 12(3):191–200.
Published 17 February 2012.

450 50 [38]

#6 1 Ransohoff RM. A polarizing question: do M1 and M2
microglia exist? Nat Neurosci. 2016; 19(8):987–991. 435 87 [39]

#7 16

Levine JH, Simonds EF, Bendall SC, et al. Data-Driven
Phenotypic Dissection of AML Reveals Progenitor-like

Cells that Correlate with Prognosis. Cell. 2015;
162(1):184–197.

413 68.8 [40]

#8 9

Bendall SC, Davis KL, Amir el-AD, et al. Single-cell
trajectory detection uncovers progression and

regulatory coordination in human B cell development.
Cell. 2014; 157(3):714–725.

377 53.9 [41]

#9 5

Newell EW, Sigal N, Bendall SC, Nolan GP, Davis MM.
Cytometry by time-of-flight shows combinatorial

cytokine expression and virus-specific cell niches within
a continuum of CD8+ T cell phenotypes. Immunity.

2012; 36(1):142–152.

360 40 [42]

#10 4
Bendall SC, Nolan GP, Roederer M, Chattopadhyay PK.
A deep profiler’s guide to cytometry. Trends Immunol.

2012; 33(7):323–332.
351 39 [43]

Abbreviations: TC, total citations; TCY, total citation per year.

Finally, the latest HCP published was “Dimensionality reduction for visualizing single-
cell data using UMAP” by Becht et al., (2019) [44], who used a nonlinear dimensionality-
reduction technique for analysing mass cytometry biological data. This new algorithm,
called UMAP, achieved a more efficient and improved visualization and understanding of
single-cell data, which is still a challenge in recent years despite advances in computational
methods for visualizing high dimensional data.

3.5. Top Author’s Production Over Time

Figure 3 shows the top authors’ production in mass cytometry HCPs over time.
Authors such as Nolan GP or Bendall SC have maintained a consistent scientific production
throughout almost the entire decade. Authors such as Simonds EF, Finck R, and Fantil WJ,
had a higher contribution during the first half of the study period, while Spitzer MH had a
more significant contribution during the second half.

3.6. Conceptual and Social Structure
3.6.1. Conceptual Structure: Co-Occurrence Network

To analyse the frequency of keywords associated with the HCPs and study possible
relationships between them, a co-occurrence keyword network was generated. Figure 4
shows the most used keywords in the analysed HCPs and predicted interconnections based
on paired presence. Despite the presence of differentiated clusters, no noteworthy distinc-
tions of nodes were observed. Frequent terms closely related to each other, such as “flow
cytometry” and “mass cytometry”, were found to be interconnected with most other less
frequent terms like “network” or “peripheral blood”. Terms such as “expression”, “T-cells,
“macrophages”, “homeostasis” or “disease” tended to be interconnected. Similarly, terms
like “responses”, “activation”, “populations”, “natural killer cells” were clustered together.
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in the network throughout the HCPs (co-occurrence). Network parameters: field (keyword plus),
network layout (Fruchterman & Reingold), normalization (association), node colour by year (No),
clustering algorithm (Louvain), number of nodes (5–50), remove isolated nodes (No), and minimum
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Biblioshiny web interface.
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3.6.2. Social Structure: Collaboration Network

Figure 5 shows the social structure through a collaboration network, where nodes
are authors and links are co-authorships. There were two strongly differentiated clusters.
On the one hand, the red cluster, led by Nolan GP and Bendall SC had a solid structure
of collaborations with other influential authors, for example, Simonds EF, Finck R, and
Levine JH.
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(authors), normalization (No), clustering algorithm (Louvain), network Layout (automatic layout), number of nodes (37),
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On the other hand, the violet cluster, led by Newell EW had a structure of collaboration
with other impact authors such as Chen JM, Chan JKY, Ginhoux F and Mcgovern N
among others. The author who acted as inter-collaborator between groups was Davis MM.
The violet cluster appears related to a small orange cluster, with satellite collaborations
involving Kurioka A and Kleneman P.

4. Discussion

In the present study, Mass Cytometry highly cited papers have been identified and
analysed for the first time using the H-Classics methodology. The analysis of the HCPs
allows us to highlight the following findings:

71 Mass Cytometry HCPs were identified in the period 2010–2019, with a predomi-
nance of original articles (56) compared to reviews (14). The increasing trend in citations
per year presented in this work indicates a robust interest in mass cytometry in recent
years, as CyTOF research is currently experiencing a potential growth phase. The HCPs
were more frequent in the second half of the study period, with relatively recent publica-
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tions attracting scientific interest. During the period analysed, 2016 showed the highest
number of HCPs in mass cytometry. A peak so close to the end of the analysed time frame
indicates that there is a growing interest in mass cytometry in the research community,
considering that a minimum citation time window of 5 years is usually needed by a paper
to obtain its maximum number of cites [45]. The immediate recognition of mass cytometry
articles is probably also a consequence of most of them being published in open access
journals, which usually results into a higher number of citations and impact compared to
publications in non-open access journals [46]. Having this in mind and knowing that older
articles are expected to have higher absolute citation rates, it is expected that the peak of
HCPs will be actualised to a more recent date in years to come.

Compared with other H-Classics studies on other disciplines, a smaller number of
HCPs was identified in the present work. This is an expected result, considering that
H-Classics studies usually focus on more general thematic areas and tend to analyse longer
periods. For example, in the study by Moral-Muñoz et al., 645 HCPs in the microbiology
area were analysed, covering a period of more than 100 years [19]. In our study, the
timespan analysed was chosen considering that it covers most of the scientific production
in mass cytometry. The rationale for choosing WoS as a source of the HCPs instead of other
databases such as Scopus or Google Scholar, was that it provides numerous analysis tools
for processing the data and offers highly reliable research information, which is particularly
good for the study of biological sciences [47].

The HCP with the highest citations count, about differential immune and drug re-
sponses, was authored by Bendall et al., (2011). The reason that this article is the most
cited in the field of mass cytometry may be due to two facts: first, it is one of the first
works to successfully apply this novel technology (2011). Secondly, the paper highlights
the utility of CyTOF in drug action and mechanistic studies and therefore could attract the
attention of numerous pharmacology studies. The capacity of CyTOF for the evaluation
of the effects of drugs both in the clinical and pre-clinical setting has been indicated in
several studies [12,48,49]. The first HCP was published by Ornatsky et al., (2010) about
immunophenotyping potential of the technique and it occupies position 24 out of 71. This
article helps to understand how, from the beginning, this technique has been focused on
the study of the immune system [8]. Interestingly, among the most cited papers, the second
and the fourth-ranked were based on computer strategies to achieve adequate visualization
and analysis of the results obtained by mass cytometry. This topic is repeated among
HCPs throughout the entire decade studied, and was observed even in the most recently
published HCP corresponding to 2019 [44]. The consistent interest in these articles suggests
that the treatment of multiparametric data continues to be a challenge for this technique.

Nature Biotechnology was the most productive journal with 9 HCPs, followed by
Cell with 8 HCPs. It is expected that the most cited articles of modern technology such
as CyTOF, used in medicine and biology, will appear in more influential journals in this
field. Nature Biotechnology is a journal belonging to Journal Citation Report from Web
of Science, found in Q1 Quartile and ranked 02/156 (2019) in the area of Biotechnology &
Applied Microbiology, with a Journal Impact Factor (JIF) of 36.56 (2019). High JIF journals
are usually considered as a standard of quality and reliability in the scientific community.
Equally applicable to our findings, high journal impact factors helped explain the high
number of citations of HCPs studied in the field of paediatrics [27].

Nolan GP and Bendall SC were the authors present in the highest number of HCPs,
23 and 14, respectively. The high participation of these authors in HCPs consolidates
them as world leaders in this technique and demonstrates the predominance of USA
in global mass cytometry production, from which Standford University (172 affiliations
registered) and Harvard University (28 affiliations registered) stand out as the most relevant
institutions. According to ARWU/QS 2019, these institutions stand out for their high
funding, internationalization of research, and quality of teaching staff/researchers. USA
appears to have a low MCP ratio but, considering that the largest collaboration networks
and the highest production of HCP occur in this territory, it is to be expected that the
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possibilities of international collaboration will be limited. This high scientific production
is also possible thanks to a high number of collaborative works between the two main
authors as they appear to cluster together in the collaboration network and have similar
HCP production over time. Nolan GP leads the research group known as Nolan Lab
(Stanford University), focused on the study of haematopoiesis, cancer and leukaemia,
autoimmunity and inflammation, and computational approaches for network and systems
immunology, with special knowledge in the mass cytometry technology [35].

Another collaboration cluster is that led by Newell EW, who is also the third author
with regards to HCPs in mass cytometry, with 2044 total citations. Newell EW, affiliated to
Stanford University & Singapore Immunology Network (SIGN), leads the Newell Lab re-
search laboratory. This group innovatively applies mass cytometry to T-cell responses. They
focus on unravelling the roles of extremely diverse immune cells with clinical implications
in cancer and infectious diseases [50].

Although CyTOF has quickly emerged as a very useful and powerful technology
for multidimensional analysis, the costs of the equipment and reagents (mass cytometer
and metal-conjugated antibodies) are still much higher than those of conventional flow
cytometry. This would explain why only groups and institutions with high funding
and accessibility to a mass cytometer, such as Standford University, produce most of
the HCPs in mass cytometry. The USA is the country with the highest funding in mass
cytometry according to the Web of Science (Funding Agencies). American dominance in
the production of H-Classics is also observed in other medical-related areas [27,28]. If we
consider the value of AI as a strategy to adjust the production of HCPs to GDP, the ranking
of the most productive countries in HCP would not change significantly. USA remains
the country with the highest HCP and AI value (0.067). The only country for which the
ranking would change is China. Despite having the lowest GDP in the list ($10,261.68), it
has a considerable HCP production reflected in its AI (0.010).

Co-occurrence is a concept which refers to the common presence, frequency of occur-
rence, and close proximity of similar keywords associated with several articles [51]. Looking
at the co-occurrence network (keywords) as an indicator of the conceptual structure of
mass cytometry research field, keywords like “flow cytometry” and “mass cytometry”
appear quite frequently linked and closely related to the rest of the network terms. The
co-occurrence of these two terms was highly expected, as they are often complementary
techniques or are under constant comparisons throughout the HCPs. These comparisons
often highlight the advantages of one technology over the other. Probably the most men-
tioned issue is that flow cytometry has its multiplexing capacity limited by the number
of markers (fluorochromes) that can be simultaneously analysed due to spectral over-
lap and autofluorescence [52], while that mass cytometry can accurately quantify more
than 40 parameters on single cells due to the broadest spectrum of heavy-metals isotopes
available [53].

Other topics that appear clustered together are those related to immune cells (“T-cells”,
“macrophages”) or the ones related to the “activation” “responses” or “natural killer cells”.
These frequently repeated topics were also expected among CyTOF HCPs as one of the
most notable strengths of mass cytometry is its great immunophenotyping power for a
vast diversity of study purposes. In the field of oncology research, the characterization of
immune cell subsets through mass cytometry have pushed new knowledge in different
types of cancer, such as melanoma, glioblastoma, pancreatic, breast or colon [54] and
have also contributed to the study of less frequent diseases, such as the lungs Löfgren’s
syndrome [55] or common ones like type I diabetes [56].

Other nodes that appear linked together are those related to data analysis (“differential
expression analysis” or “network”). These results on the conceptual structure are further
supported by what was observed in the content analysis mentioned above. The com-
plexity of the multiparametric analysis involved in CyTOF has been reviewed in various
publications [57,58].
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It is important to highlight the impact that this technique is likely to have in areas such
as clinical medicine, where it already has been proposed as a powerful tool for the diagnosis
of autoimmune and complex hematologic diseases [59,60]. Similarly, a recent expansion
of CyTOF, known as Imaging Mass Cytometry (IMC), has been proposed in the field of
personalised medicine [61,62]. Finally, it is highly expected that CyTOF will contribute
to the research on the recently emerged COVID-19 disease, caused by the SARS-COV2
coronavirus, which can cause serious immunological responses, in a similar way as it
has contributed to the study of HIV [63]. In fact, this technology has already been used
to elucidate the characteristics of the immune system in patients with COVID-19 during
infection and recovery [64,65]. It would not be surprising if this technology gained more
prominence in drug and vaccine development processes, as it has already supported the
development and evaluation of hepatitis C and influenza vaccines [66,67].

5. Conclusions

In conclusion, this study shows for the first time the main protagonists and predomi-
nant trends in the area of mass cytometry, reflected in the most cited articles in the discipline.
Likewise with studies in other areas, we think that this bibliometric information can help
researchers, in particular those with an interest in immunology, to expand knowledge in
this field and set valuable collaborations in the mass cytometry research field.
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Appendix A

Table A1. H-Classics collection in mass cytometry (71 HCP).

Title Authors DOI Total Citations

Single-Cell Mass Cytometry of
Differential Immune and Drug

Responses Across a Human
Hematopoietic Continuum

Bendall, Sean C.; Simonds, Erin F.; Qiu,
Peng; Amir, El-ad D.; Krutzik, Peter O.;

Finck, Rachel; Bruggner, Robert V.;
Melamed, Rachel; Trejo, Angelica;

Ornatsky, Olga I.; Balderas, Robert S.;
Plevritis, Sylvia K.; Sachs, Karen; Pe’er,
Dana; Tanner, Scott D.; Nolan, Garry P.

10.1126/science.1198704 1233

http://doi.org/10.5281/zenodo.4462149
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Table A1. Cont.

Title Authors DOI Total Citations

viSNE enables visualization of high
dimensional single-cell data and reveals
phenotypic heterogeneity of leukaemia

Amir, El-ad David; Davis, Kara L.;
Tadmor, Michelle D.; Simonds, Erin F.;

Levine, Jacob H.; Bendall, Sean C.;
Shenfeld, Daniel K.; Krishnaswamy,
Smita; Nolan, Garry P.; Pe’er, Dana

10.1038/nbt.2594 716

Highly multiplexed imaging of tumor
tissues with subcellular resolution by

mass cytometry

Giesen, Charlotte; Wang, Hao A. O.;
Schapiro, Denis; Zivanovic, Nevena;
Jacobs, Andrea; Hattendorf, Bodo;

Schueffler, Peter J.; Grolimund, Daniel;
Buhmann, Joachim M.; Brandt, Simone;

Varga, Zsuzsanna; Wild, Peter J.;
Guenther, Detlef; Bodenmiller, Bernd

10.1038/NMETH.2869 500

Extracting a cellular hierarchy from
high-dimensional cytometry data

with SPADE

Qiu, Peng; Simonds, Erin F.; Bendall,
Sean C.; Gibbs, Kenneth D., Jr.;

Bruggner, Robert V.; Linderman,
Michael D.; Sachs, Karen; Nolan, Garry

P.; Plevritis, Sylvia K.

10.1038/nbt.1991 498

Standardizing immunophenotyping for
the Human Immunology Project

Maecker, Holden T.; McCoy, J. Philip;
Nussenblatt, Robert 10.1038/nri3158 450

A polarizing question: do M1 and M2
microglia exist? Ransohoff, Richard M. 10.1038/nn.4338 435

Data-Driven Phenotypic Dissection of
AML Reveals Progenitor-like Cells that

Correlate with Prognosis

Levine, Jacob H.; Simonds, Erin F.;
Bendall, Sean C.; Davis, Kara L.; Amir,
El-ad D.; Tadmor, Michelle D.; Litvin,

Oren; Fienberg, Harris G.; Jager,
Astraea; Zunder, Eli R.; Finck, Rachel;

Gedman, Amanda L.; Radtke, Ina;
Downing, James R.; Pe’er, Dana; Nolan,

Garry P.

10.1016/j.cell.2015.05.047 413

Single-Cell Trajectory Detection
Uncovers Progression and Regulatory

Coordination in Human B
Cell Development

Bendall, Sean C.; Davis, Kara L.; Amir,
El-ad David; Tadmor, Michelle D.;
Simonds, Erin F.; Chen, Tiffany J.;

Shenfeld, Daniel K.; Nolan, Garry P.;
Pe’er, Dana

10.1016/j.cell.2014.04.005 377

Cytometry by Time-of-Flight Shows
Combinatorial Cytokine Expression

and Virus-Specific Cell Niches within a
Continuum of CD8( + ) T

Cell Phenotypes

Newell, Evan W.; Sigal, Natalia;
Bendall, Sean C.; Nolan, Garry P.;

Davis, Mark M.
10.1016/j.immuni.2012.01.002 360

A deep profiler’s guide to cytometry
Bendall, Sean C.; Nolan, Garry P.;
Roederer, Mario; Chattopadhyay,

Pratip K.
10.1016/j.it.2012.02.010 351

Mass Cytometry: Single Cells,
Many Features Spitzer, Matthew H.; Nolan, Garry P. 10.1016/j.cell.2016.04.019 341

Multiplexed mass cytometry profiling
of cellular states perturbed by

small-molecule regulators

Bodenmiller, Bernd; Zunder, Eli R.;
Finck, Rachel; Chen, Tiffany J.; Savig,

Erica S.; Bruggner, Robert V.; Simonds,
Erin F.; Bendall, Sean C.; Sachs, Karen;

Krutzik, Peter O.; Nolan, Garry P.

10.1038/nbt.2317 292
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Table A1. Cont.

Title Authors DOI Total Citations

Distinct Cellular Mechanisms Underlie
Anti-CTLA-4 and Anti-PD-1

Checkpoint Blockade

Wei, Spencer C.; Levine, Jacob H.;
Cogdill, Alexandria P.; Zhao, Yang;
Anang, Nana-Ama A. S.; Andrews,
Miles C.; Sharma, Padmanee; Wang,
Jing; Wargo, Jennifer A.; Pe’er, Dana;

Allison, James P.

10.1016/j.cell.2017.07.024 285

Unsupervised High-Dimensional
Analysis Aligns Dendritic Cells across

Tissues and Species

Guilliams, Martin; Dutertre,
Charles-Antoine; Scott, Charlotte L.;
McGovern, Naomi; Sichien, Dorine;

Chakarov, Svetoslav; Van Gassen, Sofie;
Chen, Jinmiao; Poidinger, Michael; De
Prijck, Sofie; Tavernier, Simon J.; Low,
Ivy; Irac, Sergio Erdal; Mattar, Citra

Nurfarah; Sumatoh, Hermi Rizal; Low,
Gillian Hui Ling; Chung, Tam John Kit;
Chan, Dedrick Kok Hong; Tan, Ker Kan;

Hon, Tony Lim Kiat; Fossum, Even;
Bogen, Bjame; Choolani, Mahesh; Chan,

Jerry Kok Yen; Larbi, Anis; Luche,
Herve; Henri, Sandrine; Saeys, Yvan;

Newell, Evan William; Lambrecht, Bart
N.; Malissen, Bernard; Ginhoux, Florent

10.1016/j.immuni.2016.08.015 274

Normalization of mass cytometry data
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