
fluids

Review

Electroviscous Effects in Stationary Solid Phase Suspensions

Francisco J. Rubio-Hernández

����������
�������

Citation: Rubio-Hernández, F.J.

Electroviscous Effects in Stationary

Solid Phase Suspensions. Fluids 2021,

6, 69. https://doi.org/10.3390/

fluids6020069

Academic Editor: Rajinder Pal

Received: 19 January 2021

Accepted: 2 February 2021

Published: 5 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Departamento de Física Aplicada II, Universidad de Málaga, 29071-Málaga, Spain; fjrubio@uma.es

Abstract: Flowing through porous media is a matter of interest in different research fields such as
medicine, engineering and science. The spontaneous appearance of ionic distribution at the solid
liquid interface gives place to a reduction in the flow rate, which is generally named electroviscous
effect. However, this should be differentiated in two more specific effects, the primary effect due
to the distortion of ionic clouds, and the secondary effect due to the overlapping of ionic clouds.
Theoretical and experimental works have not always been clearly conducted in order to separate both
effects. Instead, they have been globally grouped. The purpose of this review is to revise theoretical
and experimental bibliography on the electroviscous effect in stationary solid phase suspensions
(porous plugs, membranes, microchannels, capillaries). The main conclusions of this brief revision
are: (i) when ionic clouds are relatively small, it is possible to accept that only the primary effect is the
cause for the apparent increase of the viscosity of the liquid phase when it is forced to flow relative to
the stationary solid phase; (ii) although theory predicts a maximum for the variation of the overall
electroviscous effect vs the relative size of the ionic cloud, it has been experimentally observed but
not properly reasoned that its existence depends on the salt type; and (iii) it is necessary to justify
why, if the fluid is non-Newtonian, electrokinetic parameters dominate the characteristics of the flow
due to high pressure gradients, but the rheological parameters are more decisive when the flow is
generated by low pressure gradients.

Keywords: electroviscous effects; suspensions; electrical double layer; electrokinetic phenomena

1. Introduction

The study of liquid flow through porous media is of great interest for practical appli-
cations in a variety of fields like medicine, engineering and science. A deviation from the
normal liquid flow with respect to the stationary solid phase results from the existence
of an ionic charge distribution in the vicinity of the solid surface. This ionic charge dis-
tribution generates spontaneously when solid and liquid phases contact. Its existence is
not an exception and, consequently, it cannot be ignored. Although it has been a matter
of interest since 1960′s and more specifically during the last decade, some unsolved basic
and specific questions need to be answered. These refer to some theoretical predictions
and also to the necessity to clearly define the experimental conditions that allow us to
differentiate between the primary and the secondary effects that are jointly considered with
term electroviscous effect.

The aim of this minireview is to briefly and concisely presents the state of the art
on theoretical and experimental results relative to the electroviscous effect observed in
suspensions when the liquid phase moves with respect to the stationary solid phase. Parts
2–4 guide the reader towards the main content of the manuscript, which is dealt with in
part 5. Some concluding remarks are listed in part 6.

2. The Viscosity of Hard-Particles Suspensions

When the size of solid particles dispersed in a base fluid is small enough compared
with the dimensions of the vessel that contains the suspension, it can be considered as
a homogeneous medium. Assuming the accomplishment of this physical condition, the
viscosity of the suspension (η) can be defined and calculated as the quotient between the
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shear stress and the shear rate, and then it can be compared with the viscosity of the liquid
phase (ηo). In fact, when particles are spherical and the suspension is diluted, i.e., when
each individual particle does not affect to another or the volume occupied by particles is
enough small for the accomplishment of that condition, the viscosity of the suspension can
be calculated [1–3]. Einstein considered the perturbation that a single particle (Figure 1b)
provokes on the original low-Reynolds-flow-field or Stokes flow existing in the unperturbed
liquid phase (Figure 1a).

η = ηo(1 + 2.5φ) (1)

In Equation (1) φ is the volume fraction occupied by solid particles. Using other
approaches, Jeffery [4], Burgers [5], Happel and Brenner [6] obtained the same result. It is
necessary to emphasize that Equation (1) is strictly valid only for monodisperse spherical
suspensions and low Reynolds number.

Using a cell model, according to which the radius of influence of a particle is higher
than its solid radius, Simha [7] calculated the dependence on the solid volume fraction
of the viscosity of a monodisperse and concentrated suspension of spherical particles.
The asymptotic expression for dilute suspensions (φ→ 0), was slightly different from
Einstein’s result.

η = ηo(1 + 5.5φ) (2)

Figure 1. (a) Laminar flow field in a liquid medium. (b) Distortion in the laminar flow field due to the presence of a single
spherical particle.

Equations (1) and (2) can be generalized to include dilute suspensions of particles
with shapes other than the spherical one. For that, we will consider [8] the definition of
intrinsic viscosity.

[η] = lim
φ→0

η
ηo
− 1

φ
(3)

Therefore, we can write, in general, for dilute suspensions of particles with any shape.

η = ηo(1 + [η]φ) (4)

When the particle volume fraction increases to values higher than 10% but smaller than
20%, which determines the so named moderately concentrated suspensions, the average
distance between particles is around the same size as the particle diameter. In this specific
case, the flow field around each individual particle is slightly influenced by the presence of
neighbor particles, and the rate of energy dissipation when the suspension is forced to flow
increases by an amount that is proportional to the square of φ. This new situation gives
place to a quadratic dependence of the viscosity with the solid volume fraction.

η = ηo

(
1 + [η]φ + Cφ2

)
(5)

The first calculation of C was published only in 1972 [9]. This long wait was due to the
complexity of the flow field that is generated between particles, even in the simplest case of
only two spheres with the same radius [10]. Batchelor and Green [9] obtained C = 7.6 for a
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non-Brownian moderately concentrated monodisperse suspension of hard spheres. When
the Brownian motion is taken into account, a different result, C = 6.0, is obtained [11].

If the solid volume fraction increases beyond 20%, many-body hydrodynamic interac-
tions must be considered. Therefore, a huge unsolved theoretical challenge is still in front
of theoreticians. A manner to approximate to the solution, particle simulation methods
such as Stokesian [12] lattice Boltzmann [13], or dissipative particle dynamics [14] have
been used. Alternatively, semi-empirical (therefore also approximate) equations have been
proposed to describe the dependence of the viscosity of suspensions in the whole range of
solid volume fraction, i.e., including concentrated suspensions. However, it is worthy to
note that fine comparison to experimental results is really problematic because it is very
difficult to achieve a monodisperse concentrated suspension of hard spheres for accurate
testing. Following with the description of this approach, the most popular semiempirical
equations for the dependence of the viscosity of a concentrated suspension with the solid
volume fraction are those proposed by Krieger and Dougherty [15],

η = ηo

(
1− φ

φm

)−[η]φm

(6)

Quemada [16],

η = ηo

(
1− φ

φm

)−2
(7)

and Mooney [17].

η = ηoexp

 [η]φ

1− φ
φm

 (8)

In these equations φm is the maximum packing fraction, which expresses the ability
of the particles to achieve the most compact distribution. It should be noted that in
these proposals no dependence of the suspension viscosity with shear (rate or stress)
is assumed. In other words, these expressions were formulated assuming Newtonian
behavior of the suspension in the whole solid volume fraction interval despite that, as it is
well known, concentrated suspensions show a variety of non-Newtonian behaviors. This
is, consequently, a failure of these semiempirical approaches that clearly needs to be solved.
Some attempts have been made to complete these equations including empiric shear rate
dependencies. For example, Gómez-Merino et al. [18] obtained the shear rate dependence
of [η] and φm in Equations (6) and (8) using data of the relative viscosity of anatase water
nanofluids in the low and high shear rate limits.

3. The Electrical Double Layer

It is an extensively observed experimental fact that, in most of the cases, when solid
particles are put in contact with a polar liquid phase, an excess of electrical charge appears
on the solid surface. This surface charge provokes an additional distribution of ions in
the volume that surrounds the particle. Charges of the same sign (co-ions) are repelled
from the particle surface, while charges of the opposite sign (counter-ions) are attracted
to it. Random thermal agitation tends to mix the ions in the liquid phase giving place to
the formation of a diffuse electrical layer that, with the surface charge originally formed
on the solid particle surface, a charge configuration named electrical double layer (EDL)
develops [19].

Obviously, the distribution of ions in the EDL is directly related to the electric potential
value on the charged solid surface (ψo), which is measured with respect to the zero-
reference value in the liquid bulk, where the electric neutrality is logically achieved. The
first model relating charge distribution and electric potential in the EDL was developed
by Helmholtz in 1879 [20]. In Helmholtz’s model the EDL is assumed small enough to be
represented by a parallel plate capacitor with a gap κ−1 (named Debye length) between
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plates (Figure 2a). In this case, the potential decreases linearly with the distance x to the
particle surface.

ψ = ψo(1− κx) (9)

Later, and independently, Gouy [21] and Chapman [22] developed a second model
that also considers the thermal agitation of both types of ions in the liquid phase (Figure 2b).
Consequently, the “plate of the capacitor” representing the charge in the liquid phase is
really a diffuse layer (DL) of charge that results from the equilibrium state achieved by
ions when both, the electric field and the thermal agitation, are simultaneously considered.
The DL extends a distance d towards the bulk of the liquid phase. According to the Gouy-
Chapman model, the potential decreases with the distance to the particle surface following
a much more complicated function,

ψ =
2kT
ze

ln
[

1 + Aexp(−κx)
1− Aexp(−κx)

]
(10)

where,

A =
exp(zeψo/2kT)− 1
exp(zeψo/2kT) + 1

(11)

and e is the elementary charge, k the Boltzmann constant, and T the absolute temperature.

Figure 2. Models of the electrical double layer: (a) Helmholtz, (b) Gouy and Chapman, (c) Stern and Grahame, and (d) Stern
and Grahame with specific adsorption of co-ions.

Stern [23] and Grahame [24] modified the Gouy-Chapman model by considering
the finite size of ions and the adsorption or solvation forces of chemical origin that gives
place to an ion hydrodynamic radius larger than the radius of “dry” ions. Therefore,
counter-ions can maintain a finite distance ds from the particle surface (Figure 2c). There
the potential takes the value ψs, and the Gouy-Chapman model for the diffuse layer can
be used substituting ψo by ψs. It is a good approximation to assume that the mobile part
of the EDL starts at the distance ds, in which the slipping plane is localized. Therefore, it
coincides with the Debye length. This electric potential, that can be correlated with the
wettability in porous media [25], is measurable with electrokinetics methods and takes the
specific name of zeta potential (ζ). The Stern-Grahame model can be refined by including
the formation of a surface layer of thickness da that consists of specific adsorbed co-ions
(Figure 2d). At a distance da of the particle surface the potential takes a value ψa > ψo. The
potential decreases until a value ζ at a distance κ−1, which defines the slipping plane from
where the mobile part of the EDL starts.

If the relative movement of the parts separated by the slipping plane is forced, a series
of electrokinetic phenomena appear. These can be used to obtain the ζ-potential value.
Therefore, a brief description of the classical electrokinetic phenomena will be given now.
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4. Electrokinetic Phenomena

The relative movement at the slipping plane, where the electric potential in the EDL
takes the value ψ = ζ, can be provoked by an external action (electric field, pressure gradi-
ent, gravitational field). This mechanism defines the so-called electrokinetic phenomena,
being electro-osmosis, electrophoresis, streaming potential, and sedimentation potential,
the classical ones. Therefore, the use of experimental electrokinetic methods can lead to
calculate the value of ζ-potential [26].

If an electric field (E) provokes a movement of the liquid phase parallel to the
stationary solid surface plane, the electrokinetic phenomenon is called Electro-osmosis.
The movement of the liquid phase is caused by the drag of counter-ions that are more
abundant near the solid surface, which is opposite charged. The maximum velocity of the
liquid phase with respect to the stationary solid phase (veo) can be measured and related
to the ζ-potential using Smoluchowski´s original theory [27].

veo

E
= µeo = −

ε

η
ζ (12)

In Equation (12) ε is the dielectric constant of the liquid phase, η its viscosity and µeo
the electro-osmotic mobility.

If an electric field provokes the movement of the solid particles with a velocity ve
with respect to the stationary liquid phase, the electrokinetic phenomenon is called Elec-
trophoresis. Again, the simplest calculation of the relationship between the velocity of the
particles and ζ-potential was derived by Smoluchowski assuming that the electric field
was parallel to the particle surface [26].

ve

E
= µe =

ε

η
ζ (13)

In Equation (13) µe is the electrophoretic mobility. It is worthy to note that Smolu-
chowski´s analysis assumes the EDL is very small compared to the solid particle size. In
other words, if a is the particle radius, Smoluchowski´s derivations are valid with the
accomplishment of the condition κa � 1. Hückel [28] obtained a relationship between
the electrophoretic mobility and ζ when the opposite condition is accomplished (κa� 1),
i.e., when the EDL is thick compared to the particle size.

µe =
2
3

ε

η
ζ (14)

For his derivation, Hückel neglected the distortion of the electric field provoked
by the presence of particles. Therefore, when Henry [29] considered in his calculations
the alteration of the electric field in the vicinity of solid particles, he obtained a general
expression that asymptotically tends to Smoluchowski and Hückel equations in the limits
κa� 1 and κa� 1, respectively.

µe =
2
3

ε

η
ζ f (κa) (15)

In Equation (15) f (κa) is a correction factor called the Henry´s function. Logically,
f (κa) = 3

2 for κa� 1 and f (κa) = 1 for κa� 1.
If the movement of the liquid phase with respect to the stationary solid particles that

form a porous plug is provoked by a pressure gradient (∆P), the electrokinetic phenomenon
is called Streaming potential. The movement of the liquid phase provokes a distortion
of the EDL and, consequently, the development of a potential difference between the
porous plug extremes. This electric potential difference is also named streaming potential
(∆φ). The first relationship between streaming potential and ζ-potential was obtained
by Helmholtz [20], and later by Smoluchowski [30], assuming laminar flow, absence of
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surface conductance, and narrow EDL compared to the average radius of the porous plug
(κa� 1) [26]. a refers now to the radius of the porous plug.

ζ =

(
∆φ

∆P

)
η

ε
λ (16)

In Equation (16) λ is the specific electrical conductivity of the suspension. Equation (16)
was extended to any κa value and small ζ-potentials by Rice and Whitehead [31], and any
κa value and ζ-potentials by Levine et al. [32]. These authors added a corrective factor
to Equation (16),

ζ =

(
∆φ

∆P

)
η

ε
λ

1
F(κa)

(17)

where,

F(κa) =
1− 2I1(κa)

κaI0(κa)

1− 1
λη

(
εκkT

e

)2
[

1− 2I1(κa)
κaI0(κa) −

(
I1(κa)
I0(κa)

)2
] (18)

was the value obtained by Rice and Whitehead for the corrective factor. In Equation (18),
I0 and I1 are the Bessel functions of 0 and 1 order, respectively. On the other hand,
Levine et al. [32] proposed a different expression for the corrective factor when extended
the applicability of Equation (17) to any ζ-potential value, which could justify the best
agreement of this approach with some experimental results [33].

F(κa) =
1
2

(κa)2
(

1− 2
(κa)2ψs

∫ κa
0 rψ(r)dr

)
∫ κa

0 rcoshψ(r)dr + 1
λη

(
εκkT

e

)2 ∫ κa
0 r

(
dψ(r)

dr

)2
dr

(19)

In Equation (19) ψ(r) is the electric potential at a distance r from the particle surface
and ψs the electric potential value at the particle surface (r = 0).

If the solid particles sediment due to the action of gravity, a displacement of counter-
ions from front to back occurs giving place to an electric current equal, in absolute terms, to
the current generated down by the charge that exists onto the particle surface. The equality
of both currents in the steady state leads to the appearance of an electric field (E) named
Sedimentation potential, which is related to the ζ-potential.

ζ =
3ηλ0

8πε0εa3(ρs − ρl)gn(1 + κa)
E (20)

In Equation (20) λ0 is the bulk conductivity, ε0 the permittivity of the vacuum, ρs the
density of the solid phase, ρl the density of the liquid medium, g the gravitational field,
and n the number of particles per unit volume [26].

All these models that relate ζ-potential with some macroscopic magnitude that is
experimentally accessible, have been progressively improved considering the influence of
the type of ions, the shape of particles, the mobility of ions near the particle surface, etc.
However, it is not necessary for our purpose to revise that deeper description of the elec-
trokinetic phenomena. It is enough in this context to realize that a microscopic magnitude
that characterizes the EDL, i.e., the ζ-potential, can be indirectly accessible for the researcher
thanks to the use of macroscopic experimental techniques that derive from the existence of
electrokinetic phenomena.

5. Electroviscous Effects

It is expected that the existence of an EDL that surrounds solid particles has some
influence in the flow of suspensions. This must happen when the liquid phase moves
with respect to the stationary solid phase or when the solid phase moves with respect to
the stationary liquid media. Here we are concerned in the results obtained on the first
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experimental and theoretical design, i.e., when the liquid phase moves with respect to the
stationary solid phase. Revisions of the primary electroviscous effect in suspensions when
the solid phase moves with respect to the stationary liquid phase can found in [34,35].

If an electrolyte (ionic solution) is forced to flow through a porous plug due to the
application of a pressure gradient, the streaming potential which is generated due to the
separation of ions of different signs, provokes a backflow of liquid by the electro-osmotic
effect (drag due to the movement of co-ions). Therefore, as the flow rate diminishes, the
viscosity of the electrolyte is apparently higher as compared to the viscosity of the system
in absence of EDL. The deformation of each EDL and not the overlapping of different
EDLs will be the most relevant mechanism in the process only if the radius of the porous is
large enough compared to the extent of the EDL (Figure 3). It is worthy to note that only
in this case we could talk properly about the primary electroviscous effect in these sorts
of concentrated suspensions. Therefore, considering surface charge-dependent slip, the
Navier-Stokes equation was solved for the flow in a microtube of radius a much larger than
the Debye length (1/κ), i.e., for κa � 1. Consequently, the calculations about the effect
of the EDL on the flow rate were in fact referred to as the primary electroviscous effect;
despite it not specifically being indicated by the authors [36]. These authors found that the
(primary) electroviscous effect increases with the increase of ζ-potential. It is worthy to note
that neglecting secondary electroviscous effect due to the overlapping of EDL from different
particles when it exists, gives place to mistakes as high as 30% in the estimation of streaming
conductance in microchannels [37]. Consequently, differences between experimental data
and theoretical results are higher when the ionic concentration in the liquid phase is smaller
because, in this case, the EDL thickness is larger and the consequences of the overlapping of
different EDLs are more dramatic. On the other hand, when the ionic strength is relatively
high

(
10−2M KCl

)
or the pH value is near the isoelectric point, the EDL is small enough

(κa� 1) to consider the influence of only the primary electroviscous effect. This is an
important condition that should be considered for proper interpretation of the results.

Figure 3. Scheme for the description of the primary electroviscous effect in a porous plug. It is assumed that the sign of the
charge developed onto the particle surface is negative. Therefore, the EDL is mainly positive. At rest (figure on the top) the
EDL maintains its symmetry. However, when a pressure difference generates a flow along the capillaries of the porous plug
from left to right (figure on the bottom), the distortion of the EDL gives place to an excess of positive charge at the right part
of the porous plug. Consequently, an electric field pointing from right to left is induced, generating an electro-osmotic effect
on the positive ions (counter-ions in this case) that reduces the velocity of the flow, i.e., the viscosity is apparently enhanced.
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Some authors [38] have also reported the increase of the resistance to flow of elec-
trolytes in rectangular microchannels, which is an indication of the existence of electro-
viscous effects in these sorts of liquid flows. Apparently, their measurements refer to the
whole effect that provokes the existence of EDL in solid-liquid interfaces, without discrimi-
nating against the separate effects on the liquid flow due to only the distortion (primary
electroviscous effect) or considering specifically the overlapping (secondary electroviscous
effect) of EDL. However, an analysis of the experimental conditions in which their results
were obtained, lead us to conclude that the study was referring to the primary effect. Effec-
tively, the results by Ren et al. [38] correspond to electrokinetic channels with electrokinetic
radius (κa) that varied between 200 to 700 for the 10−4 M (KCl or LiCl) solutions, and
between 500 to 1700 for the 10−4 M AlCl3 solution. It is clear that, even considering the
lowest value (κa = 200) the thickness of the EDL (1/κ) is 200 times thinner than the half
of the microchannel despite the use of low electrolyte concentration. In other words, only
the distortion of EDL must play a significant role in the reduction of the liquid flow or
the increase of its apparent viscosity. Results by Ren et al. [38] agree qualitatively with
models that predict a decrease of the electroviscous effect with the increase of the ionic
strength in the liquid media [39] except for the case of 10−4 M LiCl solutions. With this
electrolyte, a maximum in the dependence of the relative viscosity with the electrokinetic
radius was found at κa = 400. The authors did not justify the existence of a maximum in
the electroviscous effect that, on the other hand, is predicted (although no explained) by the
majority of the theoretical approaches [31,32,40–42]. Therefore, on one hand, it is worthy to
establish clearly whether the reduction of the liquid rate flow is due to only the distortion
(primary electroviscous effect) of EDL or if the overlapping of different EDLs (secondary
electroviscous effect) play a role, and, on the other hand, it is necessary to answer two
questions: does the maximum in the electroviscosity vs ionic strength plot depend on the
salt type for the same microchannel? If so, why? In addition, to generate more confusion,
results of a recent model for the drag flow in microchannels with non-overlapping EDL [43]
show that a maximum in the primary electroviscous effect appears only when the flow
produces with charge-dependent slip condition. When the flow is accomplished with
the non-slip condition, the maximum disappears. So, we think that this result should be
considered as a clue to justify previous experimental and theoretical results. Moreover, this
idea is supported by a recent study [44] which found that the slip increases the influence of
ionic concentration on the dimensionless flow rate.

When the flow of the liquid phase through a porous plug is analyzed from a phe-
nomenological point of view, the non-Equilibrium Thermodynamics establishes linear
relationships between generalized forces and fluxes [45] and can supply an efficient way
for the study of the electroviscous effect. For porous plugs it is appropriate to consider
that the generalized forces are the hydrostatic pressure difference (∆P) and the electrical
potential difference (∆φ), and the generalized fluxes are the total volumetric flux (Q) and
the electric current flux (J). Then, the linear relationships are:

Q = L11∆P + L12∆φ (21)

J = L21∆P + L22∆φ (22)

In Equations (21) and (22) Lij are the phenomenological coefficients. From Equation (21)
it is clear that L11 characterizes the hydrodynamic flow,

L11 =

(
Q

∆P

)
∆φ=0

(23)

i.e., this coefficient can be experimentally obtained from the slope of the linear plot of the
total volumetric flux vs. the increasing hydrostatic pressure difference. The condition of lin-
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earity is accomplished when laminar flow is maintained and, according to the relationship
obtained by Overbeek [46], a classical result for uncharged Poiseuille flow is obtained.

L11 =
nπa4

8η`
(24)

If the geometry of the porous plug is constant (i.e, when the number n of capillaries,
the average radius a, and the length ` are constants), the variation of L11 must be due
only to changes in the viscosity of the liquid phase (η). As an example of the use of
this procedure elsewhere [47], it was obtained that L11 increased with the ionic strength
in methanol-water mixtures (50 % v/v) despite the fact that the viscosity of the liquid
phase was maintained constant. So, the existence of electroviscous effects was inferred
in order to justify this result [48]. To arrive at this conclusion, Levine et al.´s considered
the existence of an EDL [32]. Noting that

(
∆φ
∆P

)
J=0

= −
(

Q
J

)
∆P=0

, as it is deduced from

Equations (21) and (22), Levine et al. obtained the apparent viscosity (ηa) of the liquid
contained into the porous plug.

ηa =
η

1− 3CZ2

2(1+H)(κa)2

(25)

In Equation (25) Z = eζ
kT is the dimensionless ζ-potential, C = 4εkTN

λη with N the ion

concentration and λ the electrical conductivity of the liquid phase, and H =
4(1+C)sinh2( Z

4 )
κa .

When the electrokinetic radius is high (κa� 1), Equation (25) predicts that ηa ≈ η, which
was experimentally confirmed [48].

Electroviscous effects have also been observed in the flow of electrolytes through
fibers [49], ceramic [50], polysulphone [51], and polycarbonate [52] membranes. Experi-
mental results agree with theoretical predictions [31,32,40,41]. However, again the physical
justification for the existence of the maximum in the electroviscous effect vs. the electroki-
netic radius has not been adequately discussed. While it is clear that the electroviscous
effect must decrease when the electrokinetic radius increases due to narrowing of the EDL,
it is necessary to justify the decrease of the effect when the electrokinetic radius decreases
to very small values, i.e., despite the fact that the EDL largely extends towards the bulk of
the liquid phase. On the other hand, other authors have found only monotonous decrease
of the electroviscous effect in γ-alumina membranes by the increasing ionic strength of
the liquid media [53]. Therefore, two new questions maintain unanswered: does the maxi-
mum in the electroviscosity vs. ionic strength plot depend on membrane composition? If
so, why?

The last group of papers on electroviscous effects in stationary solid phase suspensions
that will be here referenced, discusses the flow of non-Newtonian liquid phases relative
to the stationary solid phase. If the viscosity of the fluid depends on the velocity gradient
(shear rate) according to a power law,

η = K
.
γ

n−1 (26)

where K and n are model parameters, and
.
γ is the shear rate, the influence of the electrovis-

cous effect on the flow respect to the stationary solid phase has been calculated considering
two non-Newtonian viscous behaviors, i.e., shear-thinning (n < 1) and shear-thickening
(n > 1) [54–57]. It was found that the electroviscous effect is dominant when the fluid is
shear thinning because the viscosity near the wall is smaller than that corresponding to
the Newtonian behavior (n = 1). This result has also been confirmed using the Carreau
model [58] for the dependence of the viscosity of a shear-thinning fluid with the shear rate.

η = η∞ + (ηo − η∞)
[
1 +

(
m

.
γ
)2
] n−1

2 (27)
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In Equation (27), ηo and η∞ are limiting viscosity values at low and high shear rates,
and m and n are model parameters. On the other hand, due to the increase of the viscosity
near the wall when the fluid is shear-thickening as compared to the Newtonian case,
the influence of the electroviscous effect is negligible. We suggest an explanation for this
behavior. Considering Figure 4, the velocity gradient at the wall developed by a Newtonian
fluid can be taken as reference. Therefore, it is clear that the velocity gradient at the wall
developed by a power-law shear-thinning is higher, while the velocity gradient at the wall
developed by a power-law shear-thickening is lower.

Figure 4. Velocity profiles of shear-thinning (n < 1), Newtonian (n = 1), and shear-thickening (n > 1) fluids.

Also, the influence of the flow index value (n) on the heat transfer in microchannels
has been theoretically discussed [59]. Finally, very recently [60], the electroviscous flow of
Bingham-Papanastasiou fluids (ηo is the plastic viscosity, σy is the yield stress and m is the
stress growth index),

η = ηo +
σy
.
γ

[
1− exp

(
−m

.
γ
)]

(28)

in circular microtubes has been theoretically studied by solving simultaneously Poisson-
Boltzmann and the movement (equivalent to Navier-Stokes for Newtonian fluids) equa-
tions. The relative influence of electrokinetic (ζ- potential and Debye length) and rheological
(σy and m) parameters on the non-linear response of the flow has been studied. These
authors concluded that electrokinetic parameters dominate the characteristics of the flow
when it is provoked by higher pressure gradients, while the rheological parameters are
decisive for flows due to low pressure gradients.

6. Discussion and Further Work

Theoretical and semiempirical equations for the dependence of the viscosity of concen-
trated suspensions of hard particles have been formulated assuming Newtonian behavior
of the suspension. However, it is well-known that concentrated suspensions usually show
non-Newtonian behavior. This failure of the theory needs to be solved.

When measuring electroviscous effects in microchannels, membranes or porous plugs,
results on primary and secondary effects are overlapped. Only when the electrokinetic
radius (κa) is high enough to assume the EDL is really small, it is possible to accept that only
the distortion of the EDL and then, the primary effect, is the cause for the apparent increase
of the viscosity of the liquid phase when is forced to flow with respect to the stationary
solid phase. Therefore, experimental conditions for the study of each electroviscous effect
should be clearly established.

A maximum in the electroviscous effect vs ionic strength has been experimentally
observed. This trend is dependent on the salt type for the same microchannel. This
surprising observation needs to be justified. It should be taken into account that, related to
this observation, a recent model for the drag flow in microchannels with non-overlapping
EDL [43] shows that the maximum in the primary electroviscous effect appears when the
flow is generated with charge-dependent slip condition but, when the flow is accomplished
with the non-slip condition, the maximum disappears.
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Non-Equilibrium Thermodynamics approach is an efficient way for the study of the
electroviscous effect that should be extensively explored.

Although the electroviscous effect should decrease when the electrokinetic radius
increases, due to the narrowing of the EDL, the decrease of the effect when the electrokinetic
radius decreases to very small values has been experimentally observed in membranes,
despite the fact that the EDL largely extend towards the bulk of the liquid phase in this
case. On the other hand, other authors have found only a monotonous decrease of the
electroviscous effect with increasing ionic strength of the liquid media. Therefore, does the
maximum in the electroviscosity vs. ionic strength plot depend on membrane composition?
If so, why?

It has been observed that the electroviscous effect is dominant when the fluid is shear
thinning but negligible when the fluid is shear-thickening as compared to the Newtonian
case. These results can be justified noting that the velocity gradient at the wall developed
by shear-thinning fluids is higher, and the development by shear-thickening fluids is lower
than a Newtonian fluid.

Finally, related to the flow of non-Newtonian fluids respect to stationary solid phases,
it has been concluded, that electrokinetic parameters dominate the characteristics of the
flow when it is provoked by higher pressure gradients, but the rheological parameters are
decisive for flows due to low pressure gradients. Some physical justification for this result
is necessary.
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