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While the brain connectivity network can inform the understanding and diagnosis of developmental dyslexia, its 

cause-effect relationships have not yet enough been examined. Employing electroencephalography signals and band-

limited white noise stimulus at 4.8 Hz (prosodic-syllabic frequency), we measure the phase Granger causalities among 

channels to identify differences between dyslexic learners and controls, thereby proposing a method to calculate 

directional connectivity. As causal relationships run in both directions, we explore three scenarios, namely channels’ 

activity as sources, as sinks, and in total. Our proposed method can be used for both classification and exploratory 

analysis. In all scenarios, we find confirmation of the established right-lateralized Theta sampling network anomaly, 

in line with the assumption of the temporal sampling framework of oscillatory differences in the Theta and Gamma 

bands. Further, we show that this anomaly primarily occurs in the causal relationships of channels acting as sinks, 

where it is significantly more pronounced than when only total activity is observed. In the sink scenario, our classifier 

obtains 0.84 and 0.88 accuracy and 0.87 and 0.93 AUC for the Theta and Gamma bands, respectively. 

Keywords: EEG, Granger causality, functional connectivity, anomaly detection, Developmental Dyslexia; 

1. Introduction 

Developmental dyslexia (DD) is a learning difficulty that 

typically causes various reading difficulties, including 

letter migration and frequent spelling errors. In any given 

population, between 5% and 12% of learners are likely to 

have DD, depending on the test battery used 1. DD is 

traditionally diagnosed using behavioral tests of reading 

and writing skills, but these are vulnerable to exogenous 

factors, such as attitude or disposition, leading to 

diagnoses that may be fundamentally unsound 2. It is, 

therefore, imperative to develop more objective metrics 

that can offer a more accurate diagnosis among young 

learners. A stimulus system that remains uninfluenced by 

the learner’s behavior, actions and context (e.g., native 

language or learning level) would be extremely valuable. 

If the stimulus further involves the simulation of prosody, 

i.e. the white noise at the usual frequency of the language 

envelope, it may also inform our understanding of the 

brain areas active in auditory processing, indicating the 

differences between learners with and without dyslexia. 

While various neuroscience methods for gathering 

functional brain data exist, including functional magnetic 

resonance imaging (fMRI) 3, magnetoencephalography 

(MEG) and functional near-infrared spectroscopy 

(fNIRS), electroencephalography (EEG) continues to be 

the most widely used and least costly method to assess 

cortical brain activity with enhanced temporal resolution.  

An EEG measures several frequency bands, namely the 

Delta, Theta, Alpha, Beta, and Gamma bands, which do 

not experience stimulation equally, and it is thus 

generally held that the stimulation of one band can 

transfer to the others. Using EEG to separately 

investigate the patterns emerging in these bands may 

offer valuable insights for the research on DD. 

EEG is well-established in DD studies exploring the 

functional network connectivity and organization of the 

brain. Functional connectivity means the level of 

coordination between the activities in different areas of 

the brain while the learner is engaging in a task. Prior 

research has produced various techniques that employ 

EEG to assess functional connectivity to, for example, 

determine what patterns are characteristic of neurological 

conditions, including Parkinson’s disease 4. Studies in 

cognitive neuroscience have also used brain connectivity 

to identify brain areas crucial to language and learning 5. 
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Connectivity analysis has allowed neuroscience to 

provide even deeper insights 6 by analyzing the 

parameters linking two signals gathered through two 

distinct channels, such as their correlation, causality and 

covariance 7. Employing connectivity analysis to brain 

signals measured in different regions allows us to explore 

the neural network, in line with the notion that the brain 

is hyper-connected 8. 

Notably, brain connectivity is not solely limited to the 

interactions between areas, with regions potentially 

influencing each other through, e.g., phase-phase or 

phase-amplitude modulations among bands 9. We here 

consider areas that primarily exert an influence as 

sources, while those more likely to be subject to this 

influence are sinks. This novel consideration of 

connectivity in terms of sources and sinks can not only 

serve classification but also facilitate exploratory 

analysis. 

We propose extracting the frequency components of each 

band from the EEG signals acquired under prosodic 

auditory stimuli, subsequently using them to generate a 

connectivity model based on inter-channel Granger 

causality 10. By modelling connectivity as sources and 

sinks, we seek to clarify the existence of abnormalities 

between learners with and without DD, aiming to offer 

an enhanced understanding of the mechanisms 

underlying DD, ultimately allowing early diagnosis. 

The remainder of the paper is structured as follows. 

Section 2 describes the most relevant extant work in this 

field, and Section 3 outlines the data and methodology, 

including the preprocessing, Granger causality matrices 

and connectivity matrices construction, and classification 

algorithms. Section 4 presents our main results, leading 

to the discussion in Section 5. Finally, Section 6 presents 

the main conclusions and contributions of this work. 

2. Related works 

Previous studies have indicated that the phonological 

deficit that causes DD may be due to an impairment in 

the neural encoding of low-frequency speech envelopes 

relating to speech prosody 11. There is evidence of 

significant difficulties among that learners with DD in 

tasks relying on prosodic awareness, e.g., identifying 

syllable stress, compared to controls at an earlier reading 

level 12. This indicates the presence of atypical oscillatory 

functioning in low-frequency brain rhythms in DD 13. 

There has been substantial research on the critical role the 

ability to perceive prosodic frequency plays. After 

directly measuring the neural encoding of the speech of 

children using EEG, Power et al. 11 reconstructed the 

participants’ speech stimulus envelopes using the 

emergent patterns. The EEG recordings were done while 

the participants were performing a word report task using 

noise-vocoded speech, i.e. still with a low-frequency 

envelope yet with a degraded temporal fine structure 

(TFS) of speech. Due to this degradation, the participants 

necessarily derived the spoken words and sentences from 

the information given by the envelope. If the learners 

could accurately perceive the words and sentences, it was 

possible to evaluate the functioning of their neural 

encoding of the low-frequency envelopes in speech, 

which is likely impaired in learners with DD according 

to temporal sampling theory. 

Brain activity, and thus the connectivity network, occurs 

across various frequency bands, as demonstrated via the 

temporal sampling framework (TSF). Temporal coding 

is thought to be partially attributed to synchronous 

auditory cortex activity, wherein the network neurons 

synchronize endogenous oscillations at different 

preferred rates while matching the temporal information 

of the acoustic speech signal 14 15 16. The auditory and 

visual parts of speech unfold across different timescales, 

and thus, when the neurons in auditory and visual cortices 

oscillate, they are believed to phase-align their activity to 

match the input’s modulation rates 17. 

TSF proposes that atypical oscillatory sampling at 

various temporal rates may be the cause of the 

phonological impairment in DD. Furthermore, a potential 

biological mechanism for DD has recently been 

suggested, highlighting the presence of atypical 

dominant neural entrainment 18 for the slow rhythmic 

prosodic (0.5–1 Hz), syllabic (4–8 Hz) and phoneme (12–

40Hz) rhythm categories 19. Following this line of 

thought, we might consider learners with DD to have 

atypical oscillatory sampling for at least one temporal 

rate, leading to difficulties in phonologically capturing 

linguistic units such as syllables or phonemes.  

However, this phenomenon is not likely to be 

experienced equally across all frequency bands (i.e. 

Delta, Theta, Alpha, Beta, and Gamma). Thus, it seems 

pertinent to examine connectivity of these bands patterns 

separately using EEG. Prior research has indeed used 

EEG or MEG to investigate the fundamental mechanisms 

underlying DD, implementing speech-based stimuli 

under the premise that DD is essentially derived from a 

lesser awareness of individual speech units 20. Using 

visual and auditory stimulus, Power et al. 21, for example, 

identified differences between learners with DD and a 

control group in the preferred entrainment phase of the 

Delta and Theta bands. Based on changes in the 

frequency, phase, and power spectrum, it thus becomes 

feasible to derive measures of spectral connectivity. In 

line with this, there are techniques showing the statistical 



 Neural source/sink phase connectivity in Developmental Dyslexia 
 

3 

relationship between electrodes on the same frequency 

band 22. 

Previous research has also explored the inference from 

connectivity patterns during reading tasks. For example, 

Žarić et al. 23 used visual word and false font processing 

tasks to investigate disruptions in the connectivity 

between the visual and language processing networks. 

They hereby calculated the connectivity patterns based 

on how statistically significant the differences in the 

power spectral density (PSD) were for each EEG band. 

Language-based reading or writing-related tasks have 

also been used in previous studies identifying 

discriminant patterns in EEG signals. For instance, using 

graph theory, González et al. 24 compared the EEG 

measurements of participants performing audiovisual 

tasks or at rest to determine differences in the 

connectivity patterns. Meanwhile, Stam et al. 25 used a 

phase lag index to compute multiple weighted 

connectivity matrices for multiple frequency bands.  

Assessing the connectivity of two channels requires a 

separate analysis of their respective phases. A signal’s 

phase, φ(t), changes over time when being captured with 

an electrode, and thus it must be measured for each 

channel i, referring to the instantaneous phase, captured 

using a Hilbert transform and computed via band-pass 

filtered signals. Consequently, the phase value can be 

pinpointed at each time point, allowing inter-channel 

correlation and causality to be determined. Using this 

method to track changes in the phase synchronization of 

epileptic patients, Mormann et al. 26 showed that 

characteristic changes in synchrony often precede 

epileptic episodes. Following this, we can estimate the 

inter-channel connectivity based on the cause-effect 

relationships. The Granger causality test can hereby show 

whether one of the factors is a time series, allowing the 

characteristics of additional time series to be predicted. 

First employed in the 1980s in the economics field, 

Granger causality is a statistical hypothesis test that has 

been used to produce good results in a wide range of other 

fields 10. Neuroscience research has applied it to EEG 

measurements, producing findings on brain activity in 

emotion recognition 27, Vagus nerve stimulation 28, and 

pain perception 29. 

Connectivity based on causality implies cause-effect 

relationships between various areas of the brain, but these 

are not necessarily bidirectional. Thus, some brain areas 

will be very active because they are influencing others, 

and other areas may be very active because they are being 

influenced by remote areas. Likewise, it could be the case 

that high activity may be due to both situations.  While 

this concept of sources/sinks is not new, it has been 

subject to a variety of different approaches. For example, 

Rimehaug et al. 30 integrated it into their model of the 

visual cortex’s local field potential, while Sotero et al. 31 

used it to explain the laminar distribution of phase-

amplitude coupling of spontaneous current sources and 

sinks in rat brains. However, neither of those studies 

based their modeling of sources and sinks on causality 

relationships, instead using the electrical activity in the 

cerebral cortex. 

The concepts of Granger causality and source/sink 

relationships have been used to address the clinical issue 

of surgical resection planning by capturing high-

frequency ictal and preictal oscillations on an intracranial 

EEG 32, although no connectivity maps were constructed; 

furthermore, the study did not use machine learning to 

examine whether this approach could be applied in the 

differential diagnosis of impairments. 

Building on the work outlined above, we apply machine 

learning classification algorithms to assess the potential 

of diagnosing DD via a learner’s sources, sinks and total 

activity under stimulus, identified using Granger 

causality matrices. Due to the impenetrable nature of 

EEG signal classification and the complexity of the 

problem being addressed, machine learning is highly 

suitable 33. Briefly, we seek to demonstrate that different 

connectivity patterns are induced in certain brain 

networks by low-level auditory processing. To this end, 

we delineate this connectivity by establishing the source 

and sink relationships through the application of Granger 

causality to the phase synchronization among EEG 

channels. 

3. Materials and methods 

3.1. Data acquisition 

The dataset comprised EEG data from the University of 

Málaga’s Leeduca Study Group 34, gathered from 48 age-

matched child participants (32 skilled readers and 16 

dyslexic readers) (t(1) = -1.4, p > 0.05, age range: 88-100 

months). All participants were righthanded native 

Spanish speakers with normal or corrected-to-normal 

vision; none had a hearing impairment. All participants 

in the dyslexic group had been formally diagnosed with 

dyslexia at school. All participants in the skilled reader 

group were free from reading and writing difficulties and 

had not been formally diagnosed with dyslexia. The 

participants’ legal guardians expressed their 

understanding of the study, gave their written consent, 

and were present throughout the experiment. 

All participants experienced an auditory stimulus in 15-

minute sessions. The stimulus, which was modulated at 

4.8 Hz (prosodic-syllabic frequency) in 2.5-minute 
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segments, was band-limited white noise. This type of 

stimulus was chosen to identify what synchronicity 

patterns the low-level auditory processing would induce 

and on the basis of the expert knowledge of linguistic 

psychologists concerning the main frequency 

components representing words in the human voice. The 

participants’ EEG signals were recorded with a 

BrainVision actiCHamp Plus with 32 active electrodes 

(actiCAP, Brain Products GmbH, Germany) at a 500 Hz 

sampling rate. The 10–20 standardized system was used 

to place the 32 electrodes. 

3.2. Preprocessing 

The preprocessing involved removing all eye-blinking 

and movement/impedance variation artifacts from the 

EEG signals. The former were eliminated via 

independent component analysis (ICA) 35 based on the 

eye movements observed in the EOG channel, while for 

the latter the relevant EEG segments were excluded. The 

channels were then referenced to the Cz channel. 

Then, a band-pass filter was applied to the EEG channels 

to collect information for the five EEG frequency bands 

(Delta, 1.5–4 Hz; Theta, 4–8 Hz, Alpha, 8–13 Hz; Beta, 

13–30 Hz; and Gamma, 30–80 Hz). We used finite 

impulse response (FIR) filters because these ensure a 

constant phase lag that can later be corrected. To be 

specific, each signal was sent forward and backward 

through the two-way zero-phase lag band-pass FIR least-

squares filter, producing a zero-lag phase in the overall 

filtering process that addressed the issue of phase lag 36. 

As low-pass filtering with an 80 Hz threshold was 

employed, we added a 50 Hz notch filter during 

preprocessing to eliminate this frequency component. 

3.3. Hilbert Transform 

A Hilbert transform (HT) transforms real signals into 

analytic signals, i.e. complex-valued time series without 

negative frequency components, allowing the time-

varying amplitude, phase and frequency, i.e., the 

instantaneous amplitude, phase and frequency, to be 

calculated from the analytic signal. 

We define HT for a signal x(t) as: 

 

ℋ[𝑥(𝑡)] =
1

𝜋
∫

𝑥(𝑡)

𝑡 − 𝜏
𝑑𝜏

+∞

−∞

 (1) 

 

and we obtain the analytic signal zi(t) for signal x(t) as: 

 
𝑧𝑖(𝑡) = 𝑥𝑖(𝑡) + 𝑗ℋ{𝑥𝑖(𝑡)} = 𝑎(𝑡)𝑒𝑗𝜙(𝑡) (2) 

 

From zi(t), computing the instantaneous amplitude is 

straightforward: 

 

𝑎(𝑡) = √𝑟𝑒(𝑧𝑖(𝑡))2 + 𝑖𝑚(𝑧𝑖(𝑡))2 (3) 

 

with the instantaneous phase as: 

 

𝜙(𝑡) = 𝑡𝑎𝑛−1
𝑖𝑚(𝑧𝑖(𝑡))

𝑟𝑒(𝑧𝑖(𝑡))
 (4) 

 

The above technique gives the phase value for each time 

point, allowing the inter-channel synchronization to be 

estimated based on the phase variation. 

3.4. Granger Causality 

Developed for the field of econometrics by Clive 

Granger, Granger causality 37 describes causal 

interactions occurring between continuous-valued time 

series. As a statistical hypothesis test, it essentially states 

that “the past and present may cause the future, but the 

future cannot cause the past”; hence, knowing a cause 

will be more helpful in predicting future effects than an 

auto-regression will. Specifically, variable x will 

Granger-cause y if the auto-regression for y that uses past 

values of x and y is significantly more accurate than one 

using only past values of y. We may exemplify this by 

taking two stationary time-series sequences, xt and yt, 

whereby xt−k and yt−k are, respectively, the past k values 

of xt and yt. We then use two regressions to perform 

Granger causality:  

 

𝑦�̂�1
= ∑ 𝑎𝑘

𝑙

𝑘=1

𝑦𝑡−𝑘 + 𝜀𝑡 (5) 

 

𝑦�̂�2
= ∑ 𝑎𝑘

𝑙

𝑘=1

𝑦𝑡−𝑘 + ∑ 𝑏𝑘

𝑤

𝑘=1

𝑥𝑡−𝑘 + 𝜂𝑡 (6) 

 

where 𝑦�̂�1
 and 𝑦�̂�2

 are, respectively, the fitting values of 

the first and second regressions; l and w are the maximum 

numbers of the lagged observations of xt and yt; ak; bk ∈ 

R are the regression coefficient vectors estimated using 

least squares; and εt and ηt are white noise (prediction 

errors). Note that even though w can be infinite, due to 

the finite nature of our data, we consider w finite and give 

it a length well below the time series length, estimated 

using model selection, such as the Akaike information 

criterion (AIC) 38. Next, an F-test is applied 39 to give a 

p-value indicating whether the regression model 

produced by Eq. (5) is statistically better than that of Eq. 

(6). If it is, then x Granger-causes y.  
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We performed Granger causality testing for each 

participant and evaluate the channels’ interactions, 

producing an n x n square matrix of p-values (n = number 

of channels). 

Using Granger causality to analyze the neural network’s 

directed functional connectivity intuitively demonstrates 

the directionality with which information is transmitted 

between neurons or brain regions. Previous studies have 

already applied this technique to EEG analysis with great 

success 40 41. 

3.5. Source/Sink connectivity features 

The field of neuroscience tends to consider the brain as a 

network using functional information 42 43 44, culminating 

in the so-called connectome. This refers to the complete 

mapping of all connections between brain regions as an 

adjacency matrix, and often includes the covariance, as 

well as other metrics, between fMRI signals measured for 

different regions. Several studies have also examined the 

temporal covariance between EEG electrodes. 

Once we had assembled the Granger causality matrices 

for each participant subject, we established a threshold 

value that evidenced a causal relationship between the 

channels. Then, we formulated the three scenarios used 

to produce each participant’s feature set:  

• Sources: Array of n x 1 elements; each element 

relates each channel with the number of channels that 

it influences. 

• Sinks: Array of n x 1 elements; each element relates 

each channel with the number of channels that it is 

influenced by. 

• Total activity: Array of n x 1 elements; the sum of 

the two previous scenarios, acting as a reference for 

each channel’s global activity. 

By organizing the information thus, we receive the same 

number of features as there are channels for each 

participant, each with a number that indicates its activity 

as a source, as a sink, or the total. A summary of this 

process is presented in Figure 1. 

3.6. Ensemble feature selection 

If the model includes many features, it will be more 

complex, potentially leading to data overfitting. 

Moreover, some of the features may be noise and could 

adversely affect the model. Thus, we removed such 

features to ensure the better generalization of the model. 

We hereby selected the variables based on majority 

voting through the application of several techniques. If a 

variable was chosen by an algorithm, it received one 

vote.  The votes were then summed for each variable, and 

those with the most votes were selected. (Fig. 2). This 

method has been found to be suitable for datasets that are 

high-dimensional yet have few instances 45. The voting 

strategy used a variety of feature selection methods 46, as 

outlined in the following:  

 

 

Fig. 1. Assembling the source and sink connectivity arrays for 

a participant, given the relevant Granger matrix. [P(k)] is an 

Iverson bracket function. 

Information value (IV) using weight of evidence 

(WOE). This indicates the predictive power of an 

independent variable concerning the dependent variable 
47. It allows a continuous independent variable to be 

transformed into a set of groups or bins based on the 

similarity of the dependent variable distribution (i.e. 

numbers of events and non-events). Using WOE allows 

outliers and missing values to be addressed and 

eliminates the need for dummy variables 48: 

 

𝑊𝑂𝐸 = ln (
𝐸𝑣𝑒𝑛𝑡%

𝑁𝑜𝑛 𝐸𝑣𝑒𝑛𝑡%
) (7) 

 
𝐼𝑉 = Σ[(𝐸𝑣𝑒𝑛𝑡% − 𝑁𝑜𝑛 𝐸𝑣𝑒𝑛𝑡%) ∗ 𝑊𝑂𝐸] (8) 

 

An IV statistic above 0.3 is held to indicate a strong 

relationship between the predictor and the event/non-

event odds ratio 49. 

Variable importance using random forest/extra trees 

classifier. Calculated using a tree-based estimator, this 

can be used to eliminate irrelevant features. Variable 

importance is conventionally computed using the mean 

decrease in impurity (i.e., gini importance 50) 

mechanism, wherein the improvement in the split 

criterion for each split of each tree is the importance 

measure assigned to the splitting variable. For each 

variable, this is separately accumulated over all the trees 

in the forest. This measure is similar to the R2 in the 

training set regression. 
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Recursive Feature Elimination. This can be used to 

select features by recursively considering feature sets 

with diminishing size based on an external estimator (a 

linear regression model) that assigns weights to the 

features 51. The estimator is trained on the first feature 

set, noting each feature’s importance based on a given 

attribute. The least important features are subsequently 

removed from the current set. The process is performed 

recursively on the pruned set until the desired number of 

features is achieved. 

Chi-square best variables. The main mechanism is a 

chi-square (χ2) test to assess the correlations among a 

dataset’s features and identify multicollinearity. The aim 

is revealing any relationships between the dependent 

variable and any of the independent variables 52. In the 

chi-square test, H₀ (null hypothesis) assumes that two 

features are independent, while H₁ (alternative 

hypothesis) predicts that they are related.  We set a 

α=0.05 and a p-value of 0.05 or greater is considered 

critical, anything less means the deviations are significant 

hence the hypothesis must be rejected. 

L1-based feature selection. Some features can be 

eliminated using a linear model with an L1 penalty. This 

method involves regularization, wherein a penalty is 

added to various parameters of a machine learning model 

to reduce the model’s freedom and prevent overfitting. 

When regularizing linear models, the penalty is applied 

in addition to the coefficients multiplying the predictors 
53. Unlike other forms of regularization, L1 can reduce 

some coefficients to zero, meaning the feature is 

removed. 

Once the best variables had been chosen by voting, we 

performed a multicollinearity check on them. 

 

  

Fig. 2. The feature selection procedure for the ‘Sources’ 

scenario using a vote-based approach. 

3.7. Classification process 

In an ensemble method, multiple models are first 

generated and then integrated to produce higher-quality 

results. The respective predictions are hereby combined 

using weighted majority voting to make the final 

prediction. At each boosting iteration, the data are 

modified by applying w1, w2 , …, wn to each training 

sample. As the weights are initially wi=1/N, a weak 

learner is trained in the first step using the raw data. At 

each successive iteration, the sample weights are 

modified individually, and the algorithm is then applied 

to the reweighted data. Training examples that are 

incorrectly predicted relative to the boosted model of the 

previous step are given increased weights; correctly 

predicted examples are given decreased weights. As a 

result, the examples that were difficult to predict become 

increasingly influential as the number of iterations 

increases, and the weak learners that follow are forced to 

focus on the examples previously missed. 

Ensemble methods deliver more accurate results than 

single models, and are particularly suitable for improving 

binary prediction on small data sets. We use the Gradient 

Boosting classifier 54, it creates an additive model based 

on a forward stage-wise construction, allowing the 

optimization of the arbitrary differentiable loss function. 

At each stage, n regression trees are fit to the multinomial 

or deviance binomial negative gradient of the loss 

function, with a single regression tree being used for the 

special case of binary classification. To identify the best 

parameter set, we cross-validate with 20 folds and a 

parameter grid, as shown in Table 1. 

Table 1. Parameter grid of machine learning classifiers. 

Algorithm Parameter Range 

Gradient  n_estimators 1 to 12 

Boosting Loss deviance, exponential 
 Learning rate 0.05 to 1.5 

 Criterion friedm_mse, sq_error, mse, mae 

 Min_samples_split 0.01 to 3 

 Min_samples_leaf 0.01 to 3 

 Max_depth 1 to 4 
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Fig. 3. Boxplot of the total activity in the Alpha band. Fig 4. The equivalent graphical representation of Fig. 3 in a 

topoplot. 

 

 

 

 

Fig. 5. Source/sink activity in the Theta, Beta and Gamma bands in the control and dyslexic groups. Numbers represent how many 

channels are affected by each channel as a source, or how many channels are affecting each channel as a sink. 

4. Results 

Plotting the array of each learner of sources and sinks 

permits the visual extraction of the respective patterns of 

the dyslexic and control groups. To this end, we 

examined the channel distributions for both groups by 

calculating the means and dispersions and producing a 

box-and-whisker plot. We also constructed a topoplot as 

this can illustrate the results with greater clarity. For 

example, Fig. 3 shows the Theta band connectivity of the 

control and dyslexic groups specifically for total activity. 

Please note that Fig. 3 and Fig. 4 do not directly represent 

the electrical activity of the cerebral cortex, but rather 

show the levels of the cause-effect relationships between 

the channels, i.e. in one direction or in the other direction 

or in total. It immediately becomes clear that despite the 

similarity of the patterns, the dyslexic group has a 

significantly higher activity level in the Theta band. 

Fig. 5 compares channel activity in the Theta, Beta and 

Gamma bands, and can be viewed separately as sources, 

sinks, or total activity for both the control and dyslexic 

groups. Please note that the range of visualization is the 

same in all sinks/sources topoplots, while different in the 

total activity ones, for better representation. Once more, 

it is immediately clear that while the patterns are broadly 

similar, the activity level is higher in the dyslexic group, 

primarily observed in the sink activity (less in the source 

activity). Thus, although the sources, broadly speaking, 

behave similarly between the groups, the dyslexic group 

has significantly more concentrated sinks and more 

activity. Consequently, the overall activity level is also 

affected. 
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Fig. 6. Feature importance in Theta, Beta and Gamma bands considering sources, sinks and total activity. 

With as many arrays as subjects, and with each array 

having as many components as channels, we performed 

feature selection to identify channels that can help 

differentiate between the control and dyslexic groups. 

The feature selection procedure outlined above was thus 

applied for the cases of sources, sinks and total activity, 

according to the band. Fig. 6 presents the results for the 

Theta, Beta and Gamma bands, whereby the importance 

values are normalized to permit fair and simple 

comparison. Channels showing a higher significance are 

those with more dissimilarity between the control and 

dyslexic groups, directing us to where we can find 

different patterns of functioning. 

After performing the feature selection for each band, for 

each case (sources, sinks and total activity), we optimize 

the hyperparameters of the Gradient Boosting classifier 

to obtain the best performance. The results are 

summarized in Table 2, with performances achieving at 

least 80% marked bold. 

According to the results, the greatest differences between 

the control and dyslexic groups (i.e., the best classifier 

results) emerge in the Theta and Gamma bands when 

accounting for the activity sink role of the different 

channels, achieving accuracies of 84% and 88%, 

respectively. We also wish to highlight the results for the 

Beta band for the activity sources regarding the Area 

Under the Curve (AUC), in addition to accuracy. 
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Table 2. Results of the Gradient Boosting 

classifier. 

Band Features set Accuracy AUC 

Delta Sources 0.77 ± 0.14 0.65 ± 0.31 

 Sinks 0.79 ± 0.20 0.70 ± 0.29 

 Total activity 0.74 ± 0.19 0.76 ± 0.25 

Theta Sources 0.77 ± 0.17 0.77 ± 0.30 

 Sinks 0.84 ± 0.15 0.87 ± 0.18 

 Total activity 0.74 ± 0.17 0.72 ± 0.28 

Alpha Sources 0.79 ± 0.19 0.74 ± 0.25 

 Sinks 0.76 ± 0.21 0.71 ± 0.29 

 Total activity 0.79 ± 0.17 0.77 ± 0.21 

Beta Sources 0.80 ± 0.17 0.86 ± 0.18 

 Sinks 0.79 ± 0.24 0.81 ± 0.27 

 Total activity 0.76 ± 0.23 0.75 ± 0.32 

Gamma Sources 0.81 ± 0.18 0.83 ± 0.22 

 Sinks 0.88 ± 0.14 0.93 ± 0.16 

 Total activity 0.82 ± 0.12 0.87 ± 0.18 

 

The Receiver Operating Curve (ROC) space is a valuable 

data interpretation tool that can be used to assess the 

performance of a binary classifier, wherein it indicates 

the cutoff point at which sensitivity is traded for 

specificity. Hence, it can be used to evaluate the 

classifier’s performance in distinguishing positive and 

negative samples. Related to this, AUC is the probability 

that the classifier will assign a random positive instance 

a more extreme value than a random negative instance. 

Fig. 7 presents the ROC curves for the Theta, Beta and 

Gamma bands, to identify those with the best 

performance. Notably, the Gamma band with the 

channels’ sinks activity as the features presents a 93% 

under the curve. 

As is often the case in biomedical studies, statistical tests 

are required to check that the number of samples has not 

introduced bias in the classification stage (e.g., through 

overfitting). Moreover, there is a need to check the 

probability of these results having been obtained by 

chance. For large datasets, such tests need not be as 

stringent, but real-world studies demand special attention 

due to the small sample sizes and unbalanced classes. 

Specifically, in experimental studies the prevalence of 

the disorder among the population being treated must be 

taken into account. For DD, this is around 5-12%, as 

mentioned above. 

To this end, a null distribution is generated by estimating 

the classifier’s accuracy for 1000 permutations of the 

labels. This indicates the distribution for the null 

hypothesis that the features are not dependent on the 

labels, and enables the estimation of the probability that 

the classification results will be reproduced with shuffled 

labels. The result is an empirical p-value determined by: 

 

 

 

Fig. 7. ROC curves for the Theta, Beta and Gamma bands with 

the Gradient Boosting classifier. 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 =
#𝑝𝑒𝑟𝑚 𝑤𝑖𝑡ℎ 𝑎𝑐𝑐. ℎ𝑖𝑔ℎ𝑒𝑟 𝑡ℎ𝑎𝑛 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

#𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠
 (9) 

 

Fig. 8 gives the permutation test results for the Theta, 

Beta, and Gamma bands for sources, sinks and total 

activity. The null distribution from the label 

permutations, as outlined above, is in blue, while the 
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vertical red line represents the accuracy obtained for the 

non-permuted case. At each permutation iteration, a 20-

fold stratified cross-validation is performed and based on 

the average of the results obtained at these 20 folds, the 

corresponding permutation iteration is determined. 

Hence, Fig. 8 presents the classification’s probability 

density. According to the permutation tests, the results 

have low p-values and are significant. 

5. Discussion 

The participants were subjected to white noise at 4.8 Hz, 

i.e. between the syllabic and prosodic frequencies, as the 

sole stimulus. DD has been shown to link to impairments 

in syllabic and prosodic perception 55, suggesting general 

difficulties in identifying the different modulation 

frequencies. This influences the slower temporal rates of 

speech processing in particular, as well as the tracking of 

the amplitude envelope of speech, diminishing learners’ 

syllabic segmentation efficiency. 

Multi-time resolution models of speech processing 16 

have evidenced that phonetic segment identification 

associates with faster temporal modulations (Gamma 

rate, 30–80 Hz), syllable identification is linked to slower 

modulations (Theta rate, 4–10 Hz), and syllable stress 

and prosodic patterning information correlates with very 

slow modulations (Delta rate, 1.5–4 Hz). Nonetheless, 

anomalies can emerge in various frequency ranges due to 

inter-band entrainment. 

As it offers adequate time resolution, examining the 

patterns occurring in EEG channels at different bands can 

unveil the speech encoding linked to problems with 

speech prosody and sensorimotor synchronization. 

Exemplifying this, previous research 18 used speech-

based stimuli and time-frequency descriptors to reveal 

the link between speech features and neural dynamics. 

We find that the classifier performs better in the Theta 

and Gamma bands. The results for the Theta band are 

expected as the TSF suggests that the phonological 

deficit of DD – regardless of language – may be partially 

attributed to functionally atypical or impaired phonology 

entrainment mechanisms in the auditory cortex, 

especially as oscillations at slower temporal rates, i.e. 

Theta and Delta, relate to syllabic and prosodic 

processing 56. 

As per the TSF, group differences are expected in 

neuronal oscillatory entrainment at slower rates (approx. 

4 Hz, in line with the stimulus used) 57. Higher causality 

relationships emerged in the frontal area in all scenarios 

for the Theta band. In addition, the number of channels 

that g-causes causality is higher in the dyslexic domain, 

which was the case for the sources, sinks and total 

activity. This higher activity in terms of overall causality 

relations was evident across all bands. However, in the 

participants with DD there was significantly less 

entrainment in the auditory networks of the right 

hemisphere in the Theta band. As Fig. 6 (feature 

selection) shows, the C4 channel in the upper part, i.e. the 

Theta band, is predominantly influential for the causality 

regarding the sources, as well as the sinks and total 

activity. It has already been established that the right-

lateralized Theta sampling network tends to involve 

slower temporal rates and codes the speech signal’s lower 

modulation frequencies 57, facilitating syllable-scale 

temporal integration. In other words, spoken sentences 

are tracked and distinguished by the Theta band phase 

pattern, allowing the incoming speech signal to be broken 

into syllable-sized packets and speech dynamics to be 

tracked through resetting and sliding, such as with 

varying rates of speech 58. Fig. 5 (topoplots) clearly 

demonstrates that the C4 channel is the most interesting 

as it has the most Granger causality (causing and being 

caused) for all scenarios for the dyslexic group. For the 

sources, the frontal area contains other noteworthy 

channels (FP2, F7, F3 and Fz) that show differences 

between the control and dyslexic groups in terms of 

activity. The most influential channels in the sinks are F3 

and F4 (frontal area) and P3.  

Hence, it seems pertinent to suggest that the main 

differences in the causality relationships of the Theta 

band lie in the so-called dorsal and ventral pathways. In 

particular, the right area seems critical, as evidenced in 

the prior research and especially demonstrated here with 

the sinks scenario. 

Another interesting result worth discussing is that for the 

Beta band. Here, more activity was observed for all three 

scenarios in the dyslexic group; this agrees with the 

results for the Theta band as well as those from previous 

studies 59. For the sources, differences in the causal 

relationships were mainly identified in the C3 and C4 

channels, pointing to areas responsible for motor 

processing 11. It is becoming increasingly clear that 

speech perception is at least partially located in the motor 

areas, especially under less-than-optimal listening 

conditions. This cruciality of the C4 channel was 

similarly seen in the Theta band and is in line with prior 

research evidencing the important role played by the 

lower frequency bands in general and Beta band coupling 

in particular 60. Hence, inefficient phase locking in the 

auditory cortex may affect visual and motor processing 

development, which may in turn cause some of the 

visual, motor and attentional difficulties seen in DD 61. 
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Fig. 8. Permutation tests for Gradient Boosting classifier in Theta, Beta and Gamma bands. 

It should be noted, however, that the C3-C4 interaction is 

mostly relevant for the sources and is not important for 

either the C3 for the sinks or, as a result, for the total 

activity. Meanwhile, the causal activity in the Beta band 

is different in the occipital area in the sinks scenario, and 

it is remarkably different in the frontal area, especially in 

FP1 for all three scenarios and in the F3 channel for the 

sinks scenario. 

In the Gamma band the activity is higher than in the Theta 

band for maximum values, although the occipital area 

shows more concentrated activity among the causality 

relations, as Fig. 5 shows. Nevertheless, the effect is 

different between the control and dyslexic groups, 

whereby the participants with DD show higher activity 

for the sinks, which increases their total activity.  

For the sources, the channels with the most explicit 

differences are FC1 and, more generally, TP9 in the left 

temporal area. In the case of sinks, this is also an 

important channel, although O1 and, as highlighted 

above, C3 also play a role.  

Meanwhile, in the Gamma band, despite the 

discrepancies between the dorsal and ventral pathways, 

the latter offers the main difference for the classification 

of TP9 for both sources and sinks. FC1 is linked to 

sources and C3 to sinks, suggesting a significant cause-

effect relationship, albeit with potentially less activity in 

the dyslexic group, facilitating classification. 

We can confirm that the classifier performs better in the 

Theta and Gamma bands, which can evidence atypical 

oscillatory differences based on both speech and non-

speech stimuli 56. According to Leong’s models 62, the 

slower rates (Delta and Theta) temporally constrain 

entrainment at the faster rates, such as Gamma.  

Lehongre et al. 63 contended that the oscillatory nesting 

seen between the Theta/Delta phase and the Gamma 

power 64 65 offers a way to integrate information at the 

phonemic (Gamma) rate into the syllabic rate. 

Meanwhile, the integration of the various acoustic 

features that contribute to the same phoneme being 

perceived may be hindered by impairments in the phase 
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locking by Theta generators. Otherwise, flaws in certain 

Theta mechanisms could influence the development of 

the phonological system, which thus tends to code 

information bilaterally with the Gamma oscillations 

independently and then link them perceptually with the 

Theta oscillator output. In this case, the impaired phase 

locking of the right hemisphere Theta oscillatory 

networks causes difficulties with lower frequency 

modulations 17 66. 

In addition, the spontaneous oscillatory neural activity 

identified in the auditory cortex in both the Theta and 

Gamma bands is known to associate with spontaneous 

activity in the visual and premotor areas 66. 

A bilateral Gamma sampling network codes the signal’s 

higher frequency modulations, thereby facilitating 

temporal integration at the phonetic (i.e., phoneme) scale.  

If we apply this model to DD, it is indicated that impaired 

processing at the syllable level (i.e., less efficient Theta 

phase locking) occurs alongside unimpaired Gamma 

sampling, meaning more weight is assigned to phonetic 

feature information during phonological development. 

Hence, as is the case in typical infant development, 

children with DD may have sensitivity to all phonetic 

contrasts of human languages 67. 

Leong and Goswami 62 found that learners with DD show 

a preference for different phase alignment between 

amplitude modulations (AMs) when these respectively 

convey syllable and phoneme information (Theta and 

Gamma-AMs). A different phase locking angle suggests 

a discrepancy in the integration of speech information 

that arrives at a temporal rate different to that of the final 

perception of the speech 14. Our results concerning the 

interaction between the Theta and Gamma bands support 

this. 

Finally, our results also seem to confirm that the dyslexic 

brain is less efficient at encoding the amplitude 

modulation hierarchy’s highest levels, i.e. those bearing 

information on the prosodic-syllabic structure, leading to 

cascade effects that impact the encoding of the 

phonological structure’s levels nested within the Delta 

band, such as the syllable-level (Theta band) and 

phoneme-level (Gamma band) AM information. 

Importantly, our results have been validated using a 

demanding permutation test, with the aim of ensuring 

that the results are not coincidental, despite the medium 

sample size. 

6. Conclusion and future works 

Our results support the main assumption of the TSF that 

DD involves a specific deficit in the low-frequency phase 

locking mechanisms in the auditory cortex, thereby 

potentially affecting phonological development 56.  

In confirmation of this, we find an anomaly that emerges 

primarily in the causal relationships of channels that 

function as sinks, which is significantly more pronounced 

than when only the total activity is considered. Hence, it 

is reasonable to consider a division into Granger-causing 

or Granger-caused relationships. This, in turn, suggests 

that the main differences contributing to DD emerge 

when certain brain areas must function as receptors in the 

interactions between channels.  

Furthermore, our results are in line with previous 

research, which has already detected an anomaly in the 

right-lateralized Theta band. We have clearly identified 

this here across all three scenarios (sources, sinks, total 

activity). 

We also find confirmation for the higher brain activity in 

learners with DD, although differences are more 

significant for the sinks in the Theta and Gamma bands, 

in turn leading to more total activity. The highest 

classifier performance (accuracy and AUC) is hereby 

found in the sink scenario. For the Beta band, the 

difference in activity is more consistent across all three 

scenarios. The classifier also performs well for the Beta 

band in all three scenarios, with few differences 

observed, thereby confirming the important role played 

by this band in the sensorimotor coding of speech. 

The results reflect the causal activity generated in the 

brain subjected to prosodic-syllabic stimulus at 4.8 Hz. 

Consequently, future work could consider the Granger 

causality relationships in the phases across channels and 

bands using higher frequency stimuli to stimulate 

syllabic-phonetic and phonetic activity. 
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