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Abstract

ABSTRACT

Anthropological activity is the major factor enhancing species movements throughout the globe.
The magnitude of the movements of species around the globe associated with human activities is
greatly impacted by the increase of commercialization, transportation, travelling and touristy.
Consequently, the establishment of species into non-original regions intentionally or accidentally
seems to be importantly affected, and inevitable. Either intentionally or accidentally, the
introduction of a species into its non-original regions presents a significant risk for the local
biodiversity. The introduced species presents a potential to disrupt the relationships existing
between species-to-species and the different observable associations in the native ecosystem.
Many of the exotics species have escaped experimental areas and invaded several pastoral lands.
In this respect, many ecosystems in both terrestrial and aquatic ecosystems have been affected by
invasive species, and the negative effects associated with their invasiveness are significantly high
regionally and globally. Invasive species are identified and recognized in many plant species and
the scientific studies on invasive plants addressed their noticeable negative ecological, social, and
economic impacts in the introduced ecosystems. Globally, the findings of most studies showed
that exotics invaders constitute the major cause of native habitats degradation. Invasive species
present significant threats to ecosystem services and human health. In general, invasive plants
cause biological pollution by reducing plant species diversity in addition to strongly impact on the
underground water. Furthermore, invasive plants strongly affect the physiochemical properties of
the native soils and therefore, interfere negatively on the local microbial activities. On the other
hand, the global evaluation of the effect of invasive species is associated with the recent ecological
impact of climate change.

Exotic invasive plants affect global biodiversity and ecosystem functioning in the invaded
range, and their management is a complex and challenging task. One of the most widespread and
high-impact invasive plant is the genus Prosopis. Prosopis comprises 44 species, out of which P.
cineraria (L.) Druce is native to India, Pakistan, Afghanistan, and Iran. It is rarely reported as
exotic outside its native range. However, the P. juliflora (Sw.) DC. and P. pallida (Humb. & Bonpl.
ex Wild.) Kunth are the most documented species in the literature due to their greater capacity to
colonize different ecosystems outside their native range. Both exotic species P. juliflora and P.
pallida are thorny shrubs at approximately 15 m to 20 m high, respectively. In most cases, the

invasive Prosopis form dense and impenetrable populations of much branched individuals. In
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particular, the invasive P. juliflora causes a considerable negative impact in many regions of the
world, reducing biodiversity, water, and ecosystem services, and negatively affecting people
livelihoods.

P. juliflora was introduced to the arid habitats of the United Arab Emirates (UAE) in the
seventies to combat desertification and improve soil fertility as it tolerates drought, salinity, high
temperature and fixes atmospheric nitrogen. However, seeds of P. juliflora can be disseminated
by domestic live stocks such as goats, cattle, mules, camels, and wild fauna such as gazelles. Thus,
the plant invaded large areas in the northern and western Emirates, such as Ras Al-Khaimah,
Fujairah, Sharjah, Dubai, and Umm Al Quwain. Several years after its introduction, local farmers
and environmentalists viewed it as an unwelcome, rapidly spreading, invasive species. The two
exotic Prosopis species and P. cineraria grow in different habitats of the United Arab Emirates.
Compared to invasive Prosopis species, which grows faster and has the potential to tolerate a wide
range of environmental conditions, the native P. cineraria is slow growing and has limited
distribution in its global range. Like the exotic invaders, P. cineraria could also fix atmospheric
nitrogen, but the tolerable environmental conditions associated with its adaption are relatively less.

Prosopis species have naturalized and become problematic weeds in their introduced
range. Importantly, they are reported to be unmanageable, and the costs allocated to their control
are significantly higher globally. Accordingly, exotics Prosopis have been declared as a major
noxious species in numerous world regions, including Ethiopia, Kenya, UAE, South Africa, India,
Australia, Pakistan, and Sudan. Nevertheless, the rate of invasiveness and adverse effects strongly
depend on the Prosopis species. It has been reported that P. juliflora is the main invader species
that harmfully affect the indigenous ecosystem more than the other species of the same genus. In
this respect, P. juliflora was considered the worst invasive species out of 36 plant species in the
list of the world 100 worst species published by the Invasive Species Specialist Group. This species
is expanding its range at an alarming rate and damaging native diversity and the ecosystem health
of the arid and hyper-arid regions of Arabia. P. juliflora is often observed to form pure stands and
does not allow other species to grow beneath or around its canopies.

The ecological impacts of invasive plants include displacement of indigenous species and
declines in species richness and diversity. However, P. juliflora exerts a positive impact on species
richness in its native range but a strong negative impact on species richness in its invaded range.

In the introduced range of the arid climate of the United Arab Emirates, P. juliflora showed a
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depressive effect on the number, richness, evenness, density, and frequency of the associated
native species. Especially important is that this depressive effect extended beyond the canopy-
covered ground for dense sites. Old and dense sites of P. juliflora resulted in significantly lower
density, frequency, and diversity for most associated annual species. Similarly, the growth of P.
juliflora shrubs and exotic Eucalyptus in the forests of the UAE have also resulted in significant
reductions in species diversity and abundance of understory species compared to the native P.
cineraria and Acacia arabica.

Prosopis pallida is a highly adapted species to extremely dry and wet conditions. It is a
tropical legume species native to arid and semi-arid areas of South America, mainly along the
coast of Peru, Ecuador and Colombia. P. pallida is characterized by high intraspecific variability
that helped the expansion of its geographic distribution. This species is invaded several places
outside its native range, including Australia and the Caribbean islands. The global review of the
distribution of P. pallida indicated that it had been introduced to Bolivia, Puerto Rico, the Virgin
Islands (USA), Papua New Guinea, Colombia, Kenya, French Polynesia, Senegal, Mauritania,
Djibouti, and Botswana. In addition, few countries in the Middle and far East have few occurrences
of P. pallida, including Jordan, Israel and India. P. pallida has detrimental effects on the local
habitats, such as depleting the groundwater and deterioration of associated native plant diversity.
Recently, careful morphological investigations of P. juliflora plants in the UAE indicated the
presence of another Prosopis species. According to the morphological and molecular features, we
found it fits more with P. pallida. It forms monoculture in some places, especially around Sharjah
City.

Unlike the exotic P. juliflora and P. pallida, the native P. cineraria can enhance the
abundance and growth of the associated native flora. As reported in several comparative and
congeneric studies, P. cineraria has important stimulatory compounds that interact with the
surrounding environment and positively affect plants growing in its vicinity. Furthermore,
documentation on the effects of P. cineraria addressed that this plant species had much higher
plant species diversity than the exotic P. juliflora. For example, no significant difference in the
density of the associated species beneath and away from the canopies of P. cineraria was found.
However, the density of associated native plants was significantly lower beneath than away from
the canopies of P. juliflora. Similarly, evenness and richness of associated species did not differ

significantly beneath and at the margin of the canopy, but both were significantly lower compared
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with beyond the canopies of P. cineraria. However, evenness, richness and density of associated
species were significantly lower beneath the canopies than with outside and at the margin of the
canopies of P. juliflora.

Regarding the edaphic factors, exotic Prosopis invaders dramatically influence the soil
quality in their introduced range. According to some recent findings, invader P. juliflora greatly
improved the soil pH (1.5%), reduced the cation exchangeable (24.2%), percentage of sodium
exchangeable (21.6%), and the percentage of water-soluble calcium and other constituents (39.9%)
compared to the non-infested site. Interestingly, the soil properties improvements were greater
under the canopies of P. juliflora than P. cineraria. The soil under P. juliflora was lower in pH
and higher in % clay, % silt, total nitrogen, magnesium and sodium than the non-infested site and
those occupied with the native P. cineraria. With the view on water consumption associated with
the invasiveness of P. juliflora, the findings of some works carried out in Ethiopia revealed that
this plant consumes huge amounts of water with around 3.1-3.3 billion m%/year. Similar results
were obtained in South Africa with approximately 1.5-2.5 billion m® of water consumption per
year. Regarding UAE, the groundwater requirement of P. juliflora in three heavily invaded sites
(near Sharjah Airport, Umm Fannan, and Al Talla) showed about a 7372% increase in groundwater
consumption from the year 1990 to 2019.

Several mechanisms have been proposed to help understand the higher invasiveness of the
exotics Prosopis. Specifically, allelopathy was proposed to be a strategy used by the invaders
Prosopis to exclude the associated native species. Allelopathy is seen as a natural phenomenon by
which the invasive plant releases chemical compounds known as allelochemicals into the
environment through decomposition, leaching, vitalization, and root exudates. The effects of
allelochemicals on the recipient plant might depend strongly on the type of compounds released
by the donor plant. Therefore, allelopathic effects could be considered as beneficial or detrimental
depending on the recipient organism. Exotics Prosopis are declared to present detrimental
allelopathy with greater inhibitory bioactive compounds. Oppositely, the native P. cineraria is
documented to have beneficial allelopathy effects on the associated native species.

As a cause of invasion, allelopathy has been studied in the context of three approaches:
traditional, biogeographic and congenital. The traditional approach focuses on the fate, dose,
replenishment, and effect of chemicals produced by invaders in the soil environment. However,

the congeneric approach involves comparative studies of exotic species with natives in the same
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genus; more allelopathic effects are expected in the introduced than the native congener; both
congeners do not share a co-evolutionary history. The biogeographic approach studies species
ecological traits and processes in native and non-native ranges. In that approach, introduced
species bring chemicals novel for invaded communities that has the potential to exhibit allelopathic
effects due to naive soil communities and sensitive neighbors.

The adverse effects of the allelochemicals on the recipient plants are physiologically,
morphologically, anatomically and molecularly disastrous. With regards to Prosopis species,
several published papers dealing with invasive plants addressed their noticeable impacts in the
introduced range. The allelopathic effects of exotic and native congeners are studied in the
congeneric approach. Assessable impact of allelopathy produced by P. juliflora and P. cineraria
and soil properties on understory native plants in the arid deserts of the UAE, revealed that the
aqueous extracts of fresh and old leaves of P. juliflora on the associated flora were inhibitory, but
P. cineraria leaves and litter positively affected other native species. The inhibitory effect of P.
juliflora was stronger on annual species than perennials. The biogeographic approach studies
ecological traits of species and ecological processes in native and non-native ranges. Exotic species
bring chemicals novel for invaded communities that has the potential to exhibit allelopathic effects
due, as already mentioned, to naive soil communities and sensitive neighbors.

Introduced species face environmental conditions that vary from those in the native range.
Phenotypic plasticity is considered one of the primary ways plants can cope with environmental
factor variability. Therefore, exotic invasive species seem to have distinguished adaptive
evolutionary plasticity that allows them to colonize unreachable places and dominate in the
introduced range. Such plasticity makes introduced plants more invasive and has more competitive
ability than native plants. The phenotypic plasticity makes the invasive plants attain a higher
growth rate and put greater reproductive efforts than the native species. For example, it has been
reported that invasive plants had significantly higher plasticity in water use efficiency overall than
native plants. The high plasticity in water use efficiency provided invasive species with a fitness
advantage when the available water is either higher, or lower than the average conditions. Such
plasticity in using the available water enhances the invasiveness ability of the exotic plants. The
comparison of the water use efficiency of the exotic and native Prosopis could help understand
the causes of the higher invasive ability of P. juliflora and P. pallida compared to the native P.

cineraria.
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Moreover, the higher growth rate of the invasive species compared to the native could be
attributed to their greater water use and photosynthesis efficiencies. Water use efficiency is
considered as the fraction of water utilized in plant metabolism to water lost across
evapotranspiration. Therefore, any changes associated with this plant attribute could be an
important ecological indicator when this latter is exposed to drought stress. In this regard, invasive
plants might increase their water use efficiency more than native to dominate the introduced range.
In most cases, exotics Prosopis species grow faster than the local species and are evergreen
throughout the year compared to the native P. cineraria. Furthermore, they are more drought
tolerant than the native P. cineraria. So, intrinsic water use efficiency might be another strategy
the exotics Prosopis invader uses to cope with the drought stress in the non-native range. However,
there are not sufficient data, or there are not scientific documents dealing with this topic. This
noticeable case was reported in the invasive plant Berberis darwinii. In this respect, congeneric
comparison between species-to-species can give the opportunity to identify the evolutional traits
that may help the exotics invaders to be stronger than the indigenous species. Yet, regrettably, the
literature review seems to be very less documented with such important data. Many of the earlier
works have aimed to explore the negative effects associated with plants invasiveness emphasizing
invasive versus native, but with no concept about the congeneric approach.

Differences in photosynthetic efficiency traits are fundamental for invasion success. The
invasive P. juliflora and P. cineraria species have higher growth rates than their native congener
P. cineraria. In addition, the invasive plants have denser canopies, i.e., more branches and leaf
density, than the native species. Such differences in the growth rate and canopy density might
explain the greater invasive ability of the invasive than the native Prosopis species. The growing
of the introduced and native populations of the invasive Ageratina in a common garden
experimentally, showed that higher nitrogen was allocated to photosynthetic organs in introduced
A. adenophora, which led to a higher photosynthetic rate than the native conspecifics, contributing
to its successful invasion. The comparison of the photosynthetic efficiency of native and exotic
species would help understand the invasive ability of the invasive species.

Globally, exotic P. juliflora is among the more redoubtable invasive plants worldwide.
Therefore, its greater adaptability to a wide range of climates and its invasiveness ability compared
to the indigenous congeners would have other evolutionary strategies. Therefore, deeper

congeneric comparative studies within Prosopis species can bring out more understanding of their
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exceptional adaptive traits under the hot hyper arid environments of the UAE. However, only a
few attempts have been made in this regard. Consequently, assessing more evolutionary traits
considered as keys to invasiveness within the Prosopis species can clarify the mechanisms behind
the higher invasiveness potential of the invaders Prosopis species.

Therefore, the objectives of this PhD thesis are to (1) Make congeneric comparisons of the
impacts of P. juliflora and its congener P. cineraria on aboveground diversity of weedy and non-
weedy plants in the UAE (2) Elucidate allelopathy as a mechanism of invasion success of P.
juliflora in its introduced ranges. This will be through assessing the impact of allelochemicals from
the litters on germination of associated plants in conventional controlled conditions (i.e., in Petri-
dishes in growth chambers) and challenging conditions (i.e., potted soils), (3) Assess the intrinsic
water use efficiency of invasive and native Prosopis congeners, and (4) Assess the thermal energy
dissipation, photosynthetic efficiency, carbon gain and nitrogen partitioning in invasive and native
Prosopis congeners.

Congeneric comparisons of the impacts of Prosopis juliflora and its congener P. cineraria on

aboveground diversity of weedy and non-weedy plants in the UAE

The first chapter of this thesis explores the canopy-understory relationships between the
two Prosopis congeners and the understory species that are considered agricultural weeds (ag-
weeds) and non-agricultural weeds (non-weeds) in the United Arab Emirates. Exotic invasive plant
species alter ecosystems and locally extirpate native plant species; therefore, altering community
structure. Changes in plant community structure may be particularly important if invaders promote
species with certain traits. For example, the positive effects of most invaders on soil fertility may
promote species with weedy traits, whether native or not. The effects of the canopies of the
Prosopis species have been extensively studied. However, few attempts have been focused on the
relationships between the canopies of the Prosopis congeners and the understory species
considered as agricultural weeds and non-weeds. So, here, we examined the effects of two co-
occurring Prosopis congeners, the native P. cineraria and the exotic invader P. juliflora, on species
identified as ‘‘agricultural weeds’’ and species that were not agricultural weeds in the UAE. We
focused on the following questions: (1) Is non-weed diversity higher under canopies of the native
P. cineraria and lower under canopies of the exotic P. juliflora? (2) Does the exotic P. juliflora
increases ag-weeds more than the native P. cineraria, thus potentially creating reservoirs of these

species? and (3) Does soil under canopies of the exotic P. juliflora have higher soil fertility than
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the native P. cineraria? To answer these questions, we compared the richness and density of non-
weeds and ag-weeds beneath P. cineraria and P. juliflora canopies. We also measured soil
properties, litter depth, and fine tree root mass beneath the canopies of both species.

A total of 29 understory species (23 non-weeds 6 weeds or P. juliflora seedlings) were
recorded. Compared to plots in the open, P. cineraria canopies were associated with lower richness
and density of non-weeds while having no impact on agricultural weed species. In contrast, there
was lower richness and densities of non-weeds under canopies of P. juliflora but higher densities
of agricultural weeds than in the open surrounding the canopies. These patterns associated with
Prosopis congeners and understory plant community composition might be due to the much higher
litter deposition, if the litter is inhibitory, and shallow root biomass under P. juliflora, or the
different soil properties that corresponded with the two Prosopis canopies. In general, soils
contained more nitrogen under P. juliflora than P. cineraria, and both understories were more
fertile than soil in the open. Our results suggest that evolutionary history may play a role in how
exotic invasive species may select for some traits over others in plant communities, with an exotic
invader potentially creating reservoirs of agricultural weeds.

Allelopathy as a mechanism of invasion success of Prosopis juliflora in its introduced ranges:

Test of the congeneric approach

The second chapter of this thesis assesses the congeneric approach by comparing relative
role of the allelopathic effect of the exotic invasive Prosopis compared to native congeners on seed
germination and seedling growth of the associated species. The congeneric or phylogenetic
approach assesses the relative role of exotic invasive compared to native plants on associated
species. This approach was used to assess exotic species allelopathic impact on the associated flora
compared to native congeners. Greater allelopathic effects of the alien invasive on native flora are
expected compared with the native congeners. This is true as native plants typically do not share a
co-evolutionary history with the exotic invasive species in the introduced range. Invasive plants
produce allelochemicals that are new to the native plant communities (i.e., novel weapons).
Prosopis species produce several chemicals such as phenolics, syringin, and (-)-lariciresinol, and
tryptophan and Juliflorine. Besides, allelochemicals production explained the reduction in the
abundance of several native species associated with P. juliflora. Some studies showed that litter
leachates and aaqueous extracts of P. juliflora inhibited or significantly reduced seed germination

of many associated natives, cultivated species and weeds. However, P. cineraria leachates of both
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fresh and old leaves did not inhibit seed germination of four native species, especially in the lower
concentrations.

The studies on seed germination were conducted in the laboratory in the Petri-dishes that
do not reflect natural soil conditions. Here, we compared the effects of different litters extracts of
the exotic invasive P. juliflora and P. pallida, and the native P. cineraria on seed germination and
seedling dry weight of two weedy (Amaranthus graecizans and Sisymbrium irio) and the native
Senecio flavus in Petri-dishes and potted soil experiments. The three species grew around and
underneath the three Prosopis species. We hypothesize that the allelopathic effect of the exotic
species is greater than that of the native species. Besides, we expect potting soil's environmental
conditions to reduce the exotic plants allelopathic effect compared to Petri-dishes.

The results indicate that the three species non-treated seeds (control) attained more than
95% germination in the Petri-dishes (in vitro). The increase in the litter concentrations of both
invasive Prosopis species inhibited the native S. flavus germination and significantly reduced the
germination and seedling weight of the weedy A. graecizans and S. irio. The significant reduction
in their germination when they were exposed to different Prosopis species extracts indicates their
seeds ability to enter a dormancy stage under unfavorable conditions. The results also showed
significantly greater germination of the three test species in Petri-dishes than in potted soil; the
final germination reached over 90% in Petri dishes but below 50% in soils. This indicates that
germination results in sterile Petri-dishes cannot predict what would happen in the field. In
allelochemicals studies, the lack of drainage in Petri-dishes, for example, can help accumulate
allelochemicals, but drained soil helps them wash away from the seedbed. Besides, both soil
microflora and substrate conditions can determine the fate of allelochemicals. Despite the higher
inhibition effect of the litter extracts of the invasive Prosopis species on germination and seedling
growth of the three studied species, the native P cineraria extracts had significant depressive
effects on seed germination and seedling growth of the native S. flavus but limited effects on the

weedy A. graecizans and S. irio.

We can conclude that it is hard to understand germination results in general and allelopathy
under sterile Petri-dishes conditions. The results support the congeneric approach of the greater
impact of exotic Prosopis species allelochemicals than the native P. cineraria on germination and

seedling growth of the associated plants.
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Intrinsic water use efficiency of invasive and native Prosopis congeners

The third chapter of this study assesses the intrinsic water use efficiency (iWUE) of
invasive and native Prosopis congeners. Water use efficiency is defined as the fraction of water
utilized in plant metabolism to water lost by plants through evapotranspiration processes. So, any
changes associated with water used efficiency could be considered as the response of plant
adaption to drought stress. Besides, carbon isotope ratios were considered effective for detecting
environmental stresses in various crops, weeds, vegetables and herbaceous plants. Taken into
consideration that the exotics Prosopis species. grow faster and tolerate more drought than the
native P. cineraria, it is expected that the iWUE could be a strategy used by the exotics Prosopis
invader to cope with the drought stress in the non-native range. This study involved the
measurements of stable carbon isotope composition (5!3C) and intrinsic water use efficiency
(IWUE) of three Cs leguminous Prosopis species (two exotic invasive, P. juliflora, and P. pallida,
and the native P. cineraria). The aim was to investigate the 3**C and iWUE in the foliage of the
three Prosopis species from different canopy positions (East, West) from saline and non-saline
habitats. We also compared the occurrence and extent of carbon isotope discrimination (A*C)
between young and mature leaves carbon pools on an organic matter basis and evaluated the
magnitude of changes for predictions of IWUE. We hypothesize that invasive exotic plants might
increase their water use efficiency than the native to dominate in the introduced range.

The results showed that the native shrub P. cineraria, the invasive shrubs P. juliflora, and
P. pallida showed contrasted physiological and isotopic responses due to their leaf age, canopy
position, and their interaction. The foliar §'3C values from the three Prosopis species fell within
the range of 3*3C of C3 leguminous species (0+2%o). The results also revealed that the patterns of
S13C are similar for the three Prosopis species. Besides, the difference in carbon isotope
discrimination (A'3C) between the canopy position (west and east) is relatively consistent among
species and sites, ranging between 17.8 + 4.43% for the young foliage in the west and 18.05 *
4.35% for the east canopy position. We observed higher §*3C (less negative) from the west than
the east canopy position in the exoctic invasive P. pallida from saline habitat. This indicates that
plants of the saline habitat might suffer from water limitation, less photosynthesis due to stomatal
closure, and hence more carbon isotope discrimination.

The results also indicate that mature leaves possessed a higher iWUE than the young

leaves. The IWUE of the exotic invasive P. juliflora was higher in the non-saline than saline
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habitats. Besides, the intercellular CO2 concentration from inside to ambient air (Ci/Ca) values
was higher on the west than east side in P. juliflora and P. pallida plants young leaves. However,
an opposite trend was observed in Ci/Ca in young leaves of P. cineraria. This result indicates that
young leaves in the west canopy position of the invasive P. juliflora and P. pallida might not suffer
from excess light and heat stress compared with the native P. cineraria. A lower Ci/Ca ratio in
young leaves of P. cineraria could result either from stomatal closure induced by water stress or
higher photosynthetic capacity rates.

We concluded that exotic invasive P. juliflora and P. pallida have higher iWUE values
than the native P. cineraria, which might be due to the rapid below ground development of plant
roots in the Arabian deserts of the United Arab Emirates. This could enable the alien species to
access deeper humid soil or water resources.

Thermal energy dissipation, photosynthetic efficiency, carbon gain and nitrogen partitioning

in invasive and native Prosopis congeners

In this study of the thesis, we will discuss the photosynthesis efficiency of the Prosopis
species. In the photosynthesis process, some of the sunlight is fixed and converted into chemical
energy during photosynthesis. However, some sunlight can still not be fully utilized and might
cause potential damage. In the hot hyper-arid deserts, higher solar radiation and heat are major
limiting ecological factors challenging desert plants. Under the high solar intensity of hot hyper-
arid deserts, some captured light is not used and might cause excess excitation energy that could
result in a drop in photosynthetic capacity and restrict plant growth and development. The excess
sunlight can combine with oxygen and convert into harmful reactive oxygen species (ROS), which
might lead to photo-oxidative stress that can cause damage to the plant metabolic process. To
escape and avoid the potential damage from excess sunlight, and accumulation of reactive oxygen
species (ROS), plants exhibit a series of self-protection mechanisms that include efficient
utilization of sunlight and dissipation of excess and through biochemical defense mechanisms such
as antioxidant systems. Therefore, the present work was done to elucidate the survival mechanisms
of Prosopis species congeners under different light intensities of shaded and exposed sun leaves
at different directions of the canopies.

We evaluated the impact of surface canopy positions on the photosynthetic adjustments
and chlorophyll fluorescence attributes (photosystem Il photochemistry, quantum vyield,

fluorescence quenching, and photon energy dissipation), leaf biomass, and nutrient content of sun-
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exposed leaves at the southwest canopy position and shaded-leaves at the northwest canopy
position in the invasive P. juliflora and native P. cineraria in the extreme environment (hyper-arid
desert area, United Arab Emirates). The main aim of this research was to study the photo-
protection mechanism in invasive and native Prosopis congeners via the safe removal -as thermal
energy- of excess solar energy absorbed by the light collecting system, which counteracts the
formation of reactive oxygen species (ROS).

Maximum photosynthetic efficiency (Fv/Fm) from dark-adapted leaves in P. juliflora and
P. cineraria was higher in northwest than southwest canopy position. Such a result indicates that
leaves at southwest canopy position were exposed to stronger light intensities and high
temperatures that might reduce the photosynthetic efficiency. The results also demonstrated that
the invasive P. juliflora maintain a slightly lower but stable photosynthetic efficiency (Fv/Fm)
than the native P. cineraria under the hyper-arid environment of UAE. This result indicates that
photosynthesis, as an individual trait, could not be held responsible for driving the invasive success
of P. juliflora, and other factors might contribute to its range expansion and stand establishment
in non native habitats.

Quantum yield (®PSII) was lower in both P. juliflora and P. cineraria on the southwest
than in the northwest canopy position. Such reduction in ®PSII could coincide with a decrease in
the efficiency of excitation energy trapping of PSII reaction centers on the SE side. It has been
well documented that ®PSII is reduced under water-limited conditions. The high temperature
increased transpiration due to excess sunlight, which might cause stress that reduced ®PSII values
on the southwest canopy position. Furthermore, the non-photochemical fluorescence quenching
(NPQ) value was also higher in P. juliflora than P. cineraria, indicating that the former is more
adapted to local climatic conditions and can dissipate excess energy as heat, which otherwise might
disturb the photosynthetic machinery. The protective ability of non-photochemical fluorescence
quenching (NPQ) decreased in the native P. cineraria, which led to the accumulation of excess
excitation energy and the aggravation of photo-inhibition. Prosopis leaves dissipated excess light
energy in the southwest canopy position by increasing the NPQ.

The results also explain the role of different physiological attributes contributing to the
invasiveness of exotic invasive P. juliflora and evaluate the relationships between the plasticity of

these characters and invasiveness potencial.
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RESUMEN

La actividad antropoldgica es el principal factor que favorece los movimientos de especies
en todo el mundo. La magnitud de estos movimientos asociados a las actividades humanas se ve
afectado por el aumento del comercio, transporte, viajes y turismo. En consecuencia, el
establecimiento de especies en otras regiones, intencional o accidentalmente es un hecho
importante e inevitable. La introduccion de una especie en regiones no nativas presenta un riesgo
significativo para la biodiversidad local ya que la especie introducida puede potencialmente
interrumpir las relaciones existentes entre especies en el ecosistema nativo. Muchas de las especies
exoticas que han escapado de areas experimentales han invadido diferentes ecosistemas, entre ellos
las zonas pastoreadas. Muchos ecosistemas, tanto terrestres como acuéticos, se han visto altamente
afectados por especies invasoras, y los efectos negativos asociados con su invasividad. Estudios
sobre plantas invasoras abordan sus multiples impactos negativos en el ambito ecolégico, social y
econdmico ya que constituyen la principal causa de degradacion de los habitats presentando
amenazas significativas para los servicios ecosistémicos y la salud humana. Las plantas invasoras
causan contaminacion biol6gica al reducir la diversidad de especies de plantas, ademas de tener
un fuerte impacto en las aguas subterraneas y en las propiedades fisicoquimicas de los suelos v,
por lo tanto, interfieren negativamente en las actividades microbianas locales. Por otro lado, la
evaluacion global sobre el efecto de las especies invasoras se asocia al impacto del cambio
climatico.

Las plantas exéticas invasoras afectan la biodiversidad global y el funcionamiento de los
ecosistemas en el area de distribucion invadida, y su manejo es un desafio y una tarea compleja.
Uno de los taxones de especies invasoras mas difundido y de mayor impacto es el género Prosopis.
Prosopis comprende 44 especies, de las cuales P. cineraria (L.) Druce es nativa de India, Pakistan,
Afganistan e Irdn y ha sido raramente documentada su capacidad invasora fuera de su &rea de
distribucion natural. Sin embargo, P. juliflora (Sw.) DC. y P. pallida (Humb. & Bonpl. ex Wild.)
Kunth son especies con elevada capacidad para colonizar diferentes ecosistemas fuera de su area
de distribucion natural. Tanto la exdtica P. juliflora como la P. pallida son arbustos espinosos de
aproximadamente 15 m a 20 m de altura, respectivamente. En la mayoria de los casos, las especies
de Prosopis invasoras forman poblaciones densas e impenetrables. En particular, la especie P.

juliflora causa un impacto negativo considerable en muchas regiones del mundo, reduce la
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biodiversidad, el agua y los servicios ecosistemicos, y tiene un impacto negativo en los medios de

subsistencia de las personas.

P. juliflora se introdujo en los habitats aridos de los Emiratos Arabes Unidos (EAU) en los
afios setenta para combatir la desertificacion y mejorar la fertilidad del suelo, ya que tolera la
sequia, la salinidad, las altas temperaturas y es fijadora de nitrégeno. Sin embargo, las semillas de
P. juliflora pueden ser diseminadas por ganado doméstico y la fauna silvestre. Asi, la planta
invadié grandes areas del norte y oeste de los Emiratos, como Ras Al-Khaimah, Fujairah, Sharjah,
Dubai y Umm Al Quwain. Varios afios después de su introduccion, los agricultores locales y los
ambientalistas la vieron como una especie invasora no deseada, que se propagaba rapidamente.
Las dos especies exdticas de Prosopis y P. cineraria crecen en diferentes habitats de los EAU. En
comparacion con las especies invasoras de Prosopis, que crecen mas rapido y toleran una amplia
gama de condiciones ambientales, P. cineraria nativa es de crecimiento lento y tiene un rango de
distribucion limitado. P. cineraria también puede fijar nitrogeno atmosférico, pero tiene menos
tolerancia a las condiciones ambientales.

Las especies de Prosopis se han naturalizado y se han convertido en ‘malas hierbas’
problematicas. Es importante destacar que que son inmanejables y que los costos asignados a su
control son muy altos. En consecuencia, las especies exoéticas de Prosopis han sido declaradas
como una de las principales especies nocivas en numerosas regiones del mundo, incluidas Etiopia,
Kenia, Emiratos Arabes Unidos, Sudéfrica, India, Australia, Pakistan y Sudan. Sin embargo, la
tasa de invasividad y los efectos adversos dependen en gran medida de la especie de Prosopis. P.
juliflora es la principal especie invasora que afecta negativamente al ecosistema autdctono mas
que las otras especies del mismo género. P. juliflora fue considerada la peor especie invasora entre
36 especies de plantas en la lista de las 100 peores especies del mundo publicada por el Grupo de
Especialistas en Especies Invasoras. Esta especie estd expandiendo su rango de distribucion a un
ritmo alarmante y dafiando la diversidad nativa del ecosistema de las regiones aridas e hiperaridas
de Arabia.

Los impactos ecoldgicos de las plantas invasoras incluyen el desplazamiento de especies
autoctonas y la disminucién de la riqueza y diversidad vegetal. P. juliflora ejerce un impacto
positivo en la riqueza de especies en su area de distribucion natural, pero un fuerte impacto
negativo en el area de distribucion invadida. En su rango de distribucion dentro de los habitats

aridos de los Emiratos Arabes Unidos, P. juliflora mostré un efecto depresivo en el niimero,
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riqueza, uniformidad, densidad y frecuencia de las especies nativas asociadas. Especialmente
importante es que este efecto depresivo se extendio mas alla del suelo cubierto por el dosel de la
especie. Los habitats densamente cubiertos por P. juliflora dieron como resultado una densidad,
frecuencia y diversidad significativamente mas bajas para la mayoria de las especies anuales
asociadas. De manera similar, el crecimiento de arbustos de P. juliflora y eucaliptos exéticos en
los bosques de los EAU también ha originado reducciones significativas en la diversidad y la
abundancia de especies del sotobosque en comparacion con las formaciones nativas de P. cineraria
y Acacia arabica.

Prosopis pallida es una especie adaptada a condiciones extremadamente secas y himedas.
Es una leguminosa tropical nativa de las zonas aridas y semiaridas de Ameérica del Sur (Peru,
Ecuador y Colombia) con una alta variabilidad intraespecifica que favorece su expansion
geogréfica. Esta especie es invasora en Australia y las Islas del Caribe. La revision global de la
distribucion de P. pallida indica que se ha introducido en Bolivia, Puerto Rico, las Islas Virgenes,
Papua Nueva Guinea, Colombia, Kenia, Polinesia Francesa, Senegal, Mauritania, Djibouti y
Botswana. Pocos paises del Medio y Lejano Oriente tienen ocurrencias de P. pallida, incluidos
Jordania, Israel e India. P. pallida tiene efectos perjudiciales en los hébitats locales, como el
agotamiento de las aguas subterraneas y el deterioro de la biodiversidad. Recientemente,
investigaciones basadas en estudios morfolégicas de plantas de P. juliflora en los EAU indicaron
la presencia de otra nueva especie de Prosopis. Segun las caracteristicas morfoldgicas y
moleculares, estas plantas son mas afines a P. pallida que a P. juliflora, formando monocultivos
alrededor de la ciudad de Sharjah.

A diferencia de las especies exoticas P. juliflora y P. pallida, la nativa P. cineraria puede
mejorar la abundancia y el crecimiento de la flora nativa asociada, tal y como consta en el
resultados de diferentes estudios comparativos. P. cineraria tiene importantes compuestos
estimulantes que interactdan con el entorno circundante y afectan positivamente a las plantas que
crecen en su vecindad. P. cineraria favorece la diversidad de especies bajo su dosel mas que la
exotica P. juliflora. Por ejemplo, no se encontraron diferencias significativas en la densidad de las
especies asociadas debajo y fuera del dosel de P. cineraria. Sin embargo, la densidad de plantas
nativas asociadas fue menor debajo que fuera del dosel de P. juliflora. La riqueza de las especies
asociadas no difirieron significativamente debajo y en el margen del dosel, pero fueron

significativamente mas bajas en comparacion con P. cineraria.
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Con respecto a los factores edaficos, las invasoras Prosopis influyen draméaticamente en la
calidad del suelo. Segun investigaciones recientes P. juliflora mejora en gran medida el pH del
suelo (1,5 %), reduce los cationes intercambiables (24,2 %), el porcentaje de sodio intercambiable
(21,6 %) y el porcentaje de calcio soluble y otros constituyentes (39,9%) en los suelos invadidos.
Curiosamente, las mejoras en las propiedades del suelo son mayores bajo los doseles de P. juliflora
que de P. cineraria. El suelo bajo P. juliflora tiene un pH mas bajo y mas alto en % de arcilla, de
limo, nitrogeno, magnesio y sddio que el suelo no invadiso y los que estaban ocupados con P.
cineraria. En relacién al consumo de agua asociado a la invasividad de P. juliflora, estudios en
Etiopia revelan que esta planta consume grandes cantidades de agua, alrededor de 3,1-3,3 mil
millones de m*/afio. Resultados similares se obtuvieron en Sudafrica con aproximadamente 1,5-
2,5 mil millones de m® de consumo por afio. Con respecto a los EAU, el requerimiento de agua
subterrdnea de P. juliflora en tres sitios fuertemente invadidos (aeropuerto de Sharjah, Umm
Fannan y Al Talla) mostr6 un aumento de aproximadamente 7372 % en el consumo de agua
subterranea desde 1990 hasta el 2019.

Se han propuesto varios mecanismos para comprender la mayor invasividad de las especies
exoticas de Prosopis. Especificamente, se propuso la alelopatia como estrategia utilizada por las
Prosopis invasoras para excluir a las especies nativas. La alelopatia se considera un fenémeno
natural por el cual la planta invasora libera compuestos quimicos conocidos como aleloquimicos
a través de la descomposicion, la lixiviacion, la vitalizacion y los exudados de las raices. Los
efectos de los aleloquimicos en la planta receptora pueden depender en gran medida del tipo de
compuestos liberados por la planta donante. Por lo tanto, los efectos alelopaticos podrian
considerarse beneficiosos o perjudiciales segun el organismo receptor. Se conoce que las Prosopis
exoticas presentan alelopatia perjudicial con mayor cantidad de compuestos bioactivos
inhibitorios. Por el contrario, se documenta que P. cineraria nativa tiene efectos alelopéaticos
beneficiosos en las especies nativas asociadas.

Como causa de invasion, la alelopatia ha sido estudiada en el contexto de tres enfoques:
tradicional, biogeografico y congénito. El enfoque tradicional se centra en el destino, la dosis, la
reposicion y el efecto de las sustancias quimicas producidas por las invasoras. Sin embargo, el
enfoque congenérico implica estudios comparativos de especies exoticas con nativas del mismo
género; se esperan mas efectos alelopaticos en el congénere introducido que en el nativo; ambos

congéneres no comparten una historia coevolutiva. El enfoque biogeogréafico estudia los caracteres
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y procesos ecoldgicos de las especies en su rango de distribucion nativo y no nativo. En ese
enfoque, las especies introducidas aportan sustancias quimicas novedosas para las comunidades
invadidas que tienen el potencial de exhibir efectos alelopaticos.

Los efectos adversos de los aleloquimicos en las plantas receptoras son fisiologica,
morfoldgica, anatdbmica y molecularmente negativos. El impacto de la alelopatia producida por P.
juliflora 'y P. cineraria y las propiedades del suelo en las plantas nativas en los desiertos aridos de
los EAU revel6 que los extractos acuosos de hojas frescas y maduras de P. juliflora en la flora
asociada eran inhibidores, pero el de las hojas de P. cineraria eran positivos para las especies
nativas. El efecto inhibitorio de P. juliflora fue mas fuerte en las especies anuales que en las
perennes. El enfoque biogeografico estudia las caracteristicas ecologicas de las especies y los
procesos ecoldgicos en rangos de distribucion nativo y no nativo. Las especies exdticas aportan
productos quimicos novedosos para las comunidades invadidas que tienen el potencial de exhibir
efectos alelopaticos debido como a la sensibilidad de las especies vecinas.

Las especies introducidas se enfrentan a condiciones ambientales diferentes del area de
distribucion nativa. La plasticidad fenotipica se considera una de las principales formas para hacer
frente a la variabilidad de los factores ambientales. Las especies invasoras exaticas parecen tener
una especial plasticidad evolutiva adaptativa que les permite colonizar lugares inalcanzables y
dominar en el area de distribucion introducida con unacapacidad mas competitiva que las plantas
nativas. La plasticidad fenotipica favorece una mayor tasa de crecimiento y un mayor esfuerzo
reproductivo que las especies nativas. Las especies invasoras tienen una plasticidad
significativamente mayor en la eficiencia del uso del agua que nativas. La plasticidad en la
eficiencia del uso del agua proporciona a las especies invasoras una ventaja cuando el agua
disponible es méas alta 0 mas baja que en condiciones promedio. Tal plasticidad mejora la
capacidad de invasividad. La comparacién de la eficiencia en el uso del agua de Prosopis exoética
y nativa podria ayudar a comprender las causas de la mayor capacidad invasiva de P. juliflora y
P. pallida en comparacién con P. cineraria.

La mayor tasa de crecimiento de las especies invasoras en comparacion con las nativas
puede atribuirse a su mayor eficiencia en el uso del agua y la fotosintesis. Cualquier cambio
asociado con el uso del agua podria ser un indicador ecoldgico importante cuando la planta esta
expuesta al estrés por sequia. Las plantas invasoras podrian aumentar su eficiencia en el uso del

agua mas que las nativas para dominar en los habitats invadidos. Las especies exoticas de Prosopis
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crecen mas rapido que la nativa P. cineraria y son mas tolerantes a la sequia. La eficiencia
intrinseca del uso del agua podria ser otra estrategia que utiliza Prosopis para hacer frente al estrés
por sequia en la invasion de habitats no nativos. Sin embargo, no hay suficientes estudios
cientificos que traten este tema en el género Prosopis, aunque si los hay para otras especies como
la invasora Berberis darwinii. La comparacién congenérica entre especies puede ofrecer la
oportunidad de identificar los caracteres evolutivos que ayudan a las invasoras exoticas a ser mas
fuertes que las especies autoctonas. Generalmente se han estudiado los efectos negativos asociados
con la invasividad de las plantas, enfatizando lo invasivo versus lo nativo, pero no en el enfoque
congenérico.

Las diferencias en la eficiencia fotosintética es fundamental para el éxito en la invasion.
Las invasoras P. juliflora y P. cineraria tienen tasas de crecimiento mas altas que su congénere
nativo P. cineraria. Ademas, las plantas invasoras tienen doseles mas densos, mas ramas y
densidad de hojas. Tales diferencias podrian explicar la mayor capacidad invasiva. El crecimiento
experimental de las poblaciones introducidas y nativas de la invasora Ageratina adenophora en un
jardin mostré una mayor cantidad de nitrogeno en los drganos fotosintéticos en la A. adenophora
introducida, lo que condujo a una tasa fotosintética méas alta que la de los congéneres nativos,
contribuyendo a su invasion. La comparacion de la eficiencia fotosintética de especies nativas y
exoticas ayudaria a comprender la capacidad invasiva de las especies.

Prosopis juliflora se encuentra entre las plantas invasoras mas temibles del mundo por su
adaptabilidad a una diferentes climas y a su capacidad invasora en comparacion con sus congéneres
indigenas. Estudios comparativos congénericos dentro de las especies de Prosopis pueden ofrecer
una mayor comprension de sus excepcionales caracteres adaptativos en los ambientes hiperaridos
calidos de los Emiratos Arabes Unidos. En consecuencia, la evaluacion de los caracteres evolutivos
considerados como claves para la invasividad dentro de las especies de Prosopis podria aclarar los
mecanismos responsables del potencial invasor.

Por lo tanto, los objetivos de esta tesis doctoral son (1) Realizar comparaciones
congenéricas de los impactos de P. juliflora y su congénere P. cineraria en la diversidad de plantas
consideradas como malezas agricolas y no malezas agricolas en los EAU (2) Esclarecer la
alelopatia como mecanismo del éxito de la invasién de P. juliflora en su rango de distribucion
como especie introducida ; evaluando el impacto de los aleloquimicose en la germinacion de las

plantas asociadas en condiciones controladas convencionales (es decir, en placas de Petri en
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camaras de crecimiento) y condiciones no controladas (es decir, tierra en macetas), (3) Evaluar el
uso intrinseco de la eficiencia del agua de los congéneres invasivos y nativos de Prosopis, y (4)
Evaluar la disipacion de energia térmica, la eficiencia fotosintética, la captura de carbono y la
particion de nitrégeno en los congéneres invasivos y nativos de Prosopis.

Comparaciones congenéricas de los impactos de Prosopis juliflora y su congénere P. cineraria

en la diversidad de especies consideradas como malezas y no malezas agricolas en los EAU

El primer capitulo de esta tesis explora las relaciones entre las especies asociadas al dosel
de los dos congéneres de Prosopis y las especies del sotobosque que se consideran malezas y no
malezas agricolas en los EAU. Las especies de plantas invasoras alteran los ecosistemas alterando
la estructura de las comunidades vegetates nativas. Los efectos positivos de la mayoria de las
invasoras sobre la fertilidad del suelo pueden promover las malezas. Pocos estudios se han
centrado en comparar el efecto de los doseles de los congéneres de Prosopis sobre las especies
asociadas a ellas. Se examinan los efectos de dos congéneres concurrentes, la nativa P. cineraria
y la invasora P. juliflora, en especies identificadas como "malezas agricolas"” y en especies que no
son malezas agricolas en los EAU. Se plantean las siguientes preguntas: (1) ¢La diversidad de no-
malezas es mas alta bajo el dosel de la P. cineraria nativa y mas baja bajo el dosel de la exética P.
juliflora? (2) ¢La exdtica P. juliflora aumenta la presencia de las malezas agricolas méas que la
nativa P. cineraria, creando asi potencialmente reservorios de estas especies? y (3) ¢El suelo bajo
el dosel de la exdtica P. juliflora tiene mayor fertilidad que la nativa P. cineraria? Se compara la
riqueza y la densidad de las malezas agricolas debajo de los doseles de P. cineraria y P. juliflora.
Se miden las propiedades del suelo, la profundidad de la hojarasca y la masa de raices finas debajo

del dosel de ambas especies.

Se registraron un total de 29 especies (23 no malezas, 6 malezas y las plantulas de P.
juliflora). Comparacion de parcelas fuera del dosel y bajo el dosel de P. juliflora mostraron mayor
densidad de malezas agricolas que fuera del dosel. Estos patrones asociados con los congéneres de
Prosopis y la composicion de la comunidad de plantas podrian deberse a la deposicion mucho mas
alta de hojarasca, si la hojarasca es inhibidora, y a la biomasa de raices poco profundas bajo P.
juliflora, o las diferentes propiedades del suelo bajo los dos doseles de Prosopis. En general, los
suelos contenian mas nitrogeno bajo P. juliflora que bajo P. cineraria, y bajo ambos doseles el
suelon mas fértiles que el suelo al aire libre. Nuestros resultados sugieren que la historia evolutiva

puede desempefiar un papel en como las especies invasoras exaéticas pueden seleccionar algunos

19



Abstract

caracteres sobre otros en las comunidades de plantas, con una invasora exotica que podria

favorecer los reservorios de malezas agricolas.

Alelopatia como mecanismo de éxito en la invasion de Prosopis juliflora en el area de

distribucion introducida: Prueba del enfoque congenérico

El segundo capitulo de esta tesis evalta el enfoque congenérico comparando el efecto
alelopético de la exdtica Prosopis invasora con los congéneres nativos en la germinacion de
semillas y en el crecimiento de plantulas de las especies asociadas a elllas. EI enfoque congenérico
o filogenético evalla el papel relativo de las plantas invasoras exoticas en comparacion con las
plantas nativas en las especies asociadas. Este enfoque se utilizd para evaluar el impacto
alelopético de las especies exdticas y su comparacion con los congéneres nativos. Se esperan
mayores efectos alelopaticos de la exdtica invasora sobre la flora nativa que de su congenere. Las
plantas nativas normalmente no comparten una historia coevolutiva con las especies exdticas
invasoras en el area de distribucion introducida. Las plantas invasoras producen aleloquimicos que
son nuevos para las comunidades de plantas nativas. Las especies de Prosopis producen varias
sustancias quimicas, como fenoles, siringina y (-)-lariciresinol, y triptéfano y juliflorina. Ademas,
la produccidn de aleloguimicos explica la reduccion en la abundancia de especies asociadas a P.
juliflora. Los lixiviados de la hojarasca y de los extractos acuosos de P. juliflora inhibieron o
redujeron significativamente la germinacion de semillas de muchas especies nativas, cultivadas y
malas hierbas asociadas. Sin embargo, los lixiviados de P. cineraria no inhibieron la germinacion
de semillas de cuatro especies nativas, especialmente en concentraciones bajas.

La mayoria de los estudios sobre la germinacion de semillas se realizaron en placas de Petri
que no reflejan las condiciones naturales. Se comparan los efectos de diferentes extractos de P.
juliflora y P. pallida, y la nativa P. cineraria sobre la germinacion de semillas y el peso seco de
las plantulas de dos malezas (Amaranthus graecizans y Sisymbrium irio) y Senecio flavus en placas
de Petri y en tierra en macetas. Las tres especies crecieron alrededor y debajo de las tres especies
de Prosopis. Nuestra hipotesis es que el efecto alelopatico de las especies exdticas es mayor que
el de las nativas y que la tierra en macetas reduzca el efecto alelopatico de las plantas exoticas en
comparacion con las placas de Petri.

Los resultados indican que las semillas no tratadas de las tres especies alcanzaron mas del
95% de germinacion en las placas de Petri. EI aumento en las concentraciones de hojarasca de

ambas especies invasoras de Prosopis inhibié la germinacion de S. flavus y redujo
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significativamente la germinacion y el peso de las plantulas de A. graecizans y S. irio. La reduccién
significativa en su germinacion indica la capacidad de sus semillas para entrar en una etapa de
latencia en condiciones desfavorables. Los resultados también mostraron una germinacion
significativamente mayor de las tres especies en placas de Petri que en tierra en maceta; la
germinacion final alcanz6 mas del 90% en cajas Petri y debajo del 50% en tierra en maceta. Esto
indica que los resultados de la germinacion en placas de Petri estériles no pueden predecir lo que
sucederia en el campo. La falta de drenaje en las placas de Petri puede ayudar a acumular
aleloquimicos, pero el suelo drenado ayuda a eliminarlos. Ademas, la microflora del suelo como
las condiciones del sustrato pueden influir en el efecto de los aleloquimicos. A pesar del mayor
efecto de inhibicion de los extractos de hojarasca de las especies invasoras sobre la germinacion y
el crecimiento de las plantulas de las tres especies estudiadas, los extractos nativos de P. cineraria
tuvieron efectos depresores significativos sobre la germinacion de semillas y crecimiento de las
plantulas de S. flavus y efectos limitados sobre A. graecizans y S. irio.

Se concluye que es dificil comprender los resultados de germinacion y el efecto de la
alelopatia en placas de Petri. Los resultados apoyan el mayor impacto de los aleloquimicos de las
especies exoticas de Prosopis que los de la nativa P. cineraria en la germinacion y el crecimiento
de las plantulas de las plantas asociadas.

Eficiencia intrinseca en el uso del agua de los congéneres invasivos y nativos de Prosopis

El tercer capitulo evalla la eficiencia intrinseca del uso del agua (iIWUE) de los congéneres
invasivos y nativos de Prosopis. La eficiencia en el uso del agua se define como la fraccién de
agua utilizada en el metabolismo de las plantas hasta el agua perdida por la evapotranspiracion.
Cualquier cambio asociado con la eficiencia del uso del agua puede considerarse una respuesta de
adaptacion de la planta al estrés por sequia. Ademas, las proporciones de is6topos de carbono se
consideraron efectivas para detectar el estrés ambiental en plantas. Tomado en consideracion que
las especies exdticas de Prosopis crecen mas rapido y toleran méas la sequia que la nativa P.
cineraria, se espera que el IWUE pueda ser una estrategia utilizada por la invasora exotica
Prosopis para hacer frente al estrés por sequia en el area de distribucién no nativa. Este estudio
involucro las mediciones de la composicion de is6topos de carbono estables (613C) y la eficiencia
intrinseca del uso del agua (IWUE) de tres especies de Prosopis C3 (dos exoticas invasoras, P.
juliflora 'y P. pallida, y la nativa P. cineraria). El objetivo fue investigar el 613C y el iIWUE en las

hojas de las tres especies de Prosopis en diferentes posiciones del dosel (Este, Oeste) en habitats
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salinos y no salinos. También se comparo el alcance de la discriminacién de iso6topos de carbono
(A13C) entre los reservorios de carbono de hojas jovenes y maduras sobre la base de materia
orgénica y se evaluo la magnitud de los cambios para las predicciones de iWUE. Nuestra hipotesis
es que las plantas invasoras podrian aumentar su eficiencia en el uso del agua en comparacion con
las nativas para dominar en el area de distribucion introducida.

Los resultados mostraron que la especie nativa P. cineraria y las invasoras P. julifloray P.
pallida tiene respuestas fisiologicas e isotopicas contrastadas segun madurez de las hojas, posicion
del dosel y su interaccion. Los valores foliares de 513C de las tres especies de Prosopis estan
dentro del rango de 613C de las especies de leguminosas C3 (0+2%o). Los resultados también
revelaron que los patrones de 613C son similares para las tres especies de Prosopis. Ademas, la
diferencia en la discriminacion de isotopos de carbono (A13C) entre la posicion del dosel (oeste y
este) es relativamente consistente entre especies y sitios, oscilando entre 17,8 + 4,43 % para las
hojas jovenes en el oeste y 18,05 * 4,35 % para el este del dosel. Observamos un 613C mas alto
(menos negativo) desde el oeste que desde el este en P. pallida del habitat salino. Esto indica que
las plantas del hébitat salino pueden sufrir limitacion de agua y menos fotosintesis debido al cierre
de estomas y, por lo tanto, mas discriminacion de isétopos de carbono.

Los resultados indican que las hojas maduras poseen una mayor iWUE que las jovenes. El
IWUE de P. juliflora fue mayor en los héabitats no salinos que en los salinos. Ademas, la
concentracion de CO> intercelular del interior al aire ambiente (Ci/Ca) fue mayor en el lado oeste
que en el este en las hojas jovenes de P. juliflora y P. pallida. Pero se observo una tendencia
opuesta en Ci/Ca en hojas jovenes de P. cineraria. Este resultado indica que las hojas jovenes en
la posicion oeste del dosel de P. juliflora y P. pallida podrian no sufrir exceso de estrés por luz y
calor en comparacién con P. cineraria. Una relacién Ci/Ca mas baja en las hojas jovenes de P.
cineraria podria deberse al cierre de estomas inducido por el estrés hidrico o a tasas mas altas de

capacidad fotosintética.

Concluimos que P. juliflora y P. pallida tienen valores de iIWUE mas altos que P.
cineraria, lo que podria deberse al rapido desarrollo de las raices en los desiertos de los EAU. Esto
podria permitir que las especies exoticas accedan a suelos himedos mas profundos o a recursos

hidricos.

Disipacion de energia térmica, eficiencia fotosintética, obtencion de carbono y particion de

nitrégeno en congéneres invasivos y nativos de Prosopis
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Se analiza la eficiencia de la fotosintesis de las especies de Prosopis. En la fotosintesis,
parte de la luz se fija y se convierte en energia quimica. Sin embargo, parte de la luz solar no
utilizada por completo podria causar dafios a la planta. En los desiertos, la mayor radiacién solar
y el calor son los principales factores ecoldgicos limitantes para estas plantas. Bajo la alta
intensidad solar, parte de la luz capturada no se utiliza y puede causar un exceso de energia de
excitacion que provoca una caida en la fotosintesis restringiendo el crecimiento de las plantas. El
exceso de luz solar puede combinarse con el oxigeno y convertirse en especies reactivas de oxigeno
(ROS), lo que conduce a un estrés fotooxidativo que dafia el metabolismo de la planta. Para evitar
este dafio y laacumulacion de ROS, las plantas exhiben una serie de mecanismos de autoproteccion
que incluyen la utilizacién eficiente de la luz solar y la disipacidn del exceso mediante mecanismos
bioquimicos de defensa como los sistemas antioxidantes. En este studio se analizan los
mecanismos de supervivencia de las especies de Prosopis congénericas bajo diferentes
intensidades de luz en hojas expuestas y no expuestas a la luz y en diferentes direcciones del dosel.

Evaluamos el impacto de la posicion del dosel en los ajustes fotosintéticos y los atributos
de fluorescencia de la clorofila (fotoquimica del fotosistema Il, rendimiento cuéntico, extincion de
la fluorescencia y disipacién de energia de fotones), biomasa y contenido de nutrientes de las hojas
expuestas al sol en la posicion dosel sureste, y hojas no expuestas en la posicion noroeste en la
invasora P. juliflora y la nativa P. cineraria, en un ambiente extremo (desierto de EAU). El
objetivo fue estudiar el mecanismo de fotoproteccion en congéneres de Prosopis que contrarresta
la formacion de especies reactivas de oxigeno.

La eficiencia fotosintética maxima (Fv/Fm) de las hojas adaptadas a la oscuridad en P.
juliflora 'y P. cineraria fue mayor en la posicion del dosel noreste que en el sureste. Tal resultado
indica que las hojas en la posicion sureste estuvieron expuestas a intensidades de luz mas fuertes
y altas temperaturas que podrian reducir la eficiencia fotosintética. Los resultados también
demostraron que P. juliflora mantiene una eficiencia fotosintética ligeramente mas baja pero
estable (Fv/Fm) que P. cineraria. Este resultado indica que la fotosintesis no podria ser
responsable del éxito invasor de P. juliflora.

El rendimiento cuéntico (®PSII) fue menor tanto en P. juliflora como en P. cineraria en
el sureste que en la posicion del noreste del dosel. Tal reduccién en ®PSII podria coincidir con
una disminucion en la eficiencia de captura de energia de excitacion de los centros de reaccion de

PSII en el lado SE. ElI ®PSII se reduce en condiciones de agua limitada. La alta temperatura
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aumento la transpiracion debido al exceso de luz, lo que podria causar el estrés que redujo los
valores de ®PSII en la posicion sureste del dosel. Ademas, el valor de extincion de la fluorescencia
no fotoquimica (NPQ) también fue més alto en P. juliflora que en P. cineraria, lo que indica que
la primera estd mas adaptada a las condiciones climaticas locales y puede disipar el exceso de
energia en forma de calor. La capacidad protectora de NPQ disminuy6 en P. cineraria, lo que
condujo a la acumulacion de un exceso de energia de excitacion y al agravamiento de la
fotoinhibicion. Las hojas de Prosopis disiparon el exceso de energia luminosa en la posicion
sureste del dosel aumentando el NPQ.

Los resultados también explican el papel de diferentes atributos fisioldgicos que
contribuyen a la invasividad de P. juliflora y evaltan la relacion entre la plasticidad de estos

caracteres y la invasividad.
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INTRODUCTION
1. Biological invasion

Biological invasion can be defined as the movement of livings organisms from their native
ecosystem to new geographical areas where they expand their population spectacularly and exert
significant depressive impacts on the local diversity. The processes of moving species from place
to another around the globe can be done intentionally or accidentally. The distribution of species
on the earth is controlled by some natural barriers such as mountains, seas, and oceans. However,
removing these barriers, both species connection and exchange could be observable (Censky et al.,
1998; Vermeiji, 1991; Velde et al., 2006). In general, species dispersion throughout the globe
constitutes an important process that ensures the distribution and perpetuation of each species. To
date, anthropological activities significantly impact the movements of species around the globe.
Accordingly, the magnitude of moving organisms from point-to-point worldwide has increased.
For example, the European market, which is the largest market in the world, remarkably noticed
that there was a significant increase in trade associated with the large Dutch rose from 1990 to
2002 (World Bank Working Paper, 2005).

It is well-known that introducing alien species to new regions where they did not have any
previous existence can constitute a potential risk of invasiveness (Garcia-Espinosa and Villasenor,
2017; Pearson et al., 2017). Species invasiveness constitutes its potential capacity to overcome
natural barriers and conquer new geographical regions (Mcneely et al., 2001). The successful
establishment of alien species into new areas is completed in five sequential phases: transport,
arrival, establishment, spread, and impact (Mack et al., 2000; Hulme et al., 2008; Ricciardi, 2013).
Briefly, transport is the action of an organism to move from one location to another using
propagules, and the process is carried out by some vectors such as water, air, land, and human.
Arrival can be seen as the act of individual to being reaching the recipient region. Establishment
is the stable growth stage for the introdcuced species in the non-native range. Spread means
extending or increasing the existing area. Generally, the spread can be defined as a biological
process during which the introduced organisms expand over a large area within the native
ecosystem. The impact is considered as the last phase of the biological invasion. Traditionally,
impact means coming into forceful contact with another or having stronger effects on another. So,
biologically, the impact can be seen as a precise stage where the signs of disturbances appear in

the ecosystem due to the introduction of new organisms (Mack et al., 2000)
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Biological invasions cause many native habitat degradations. The ecological costs
associated with their invasiveness are importantly high regionally and globally. The problem posed
by biological invasions has been considered as a sort of nuclear threat, war, or biological explosion.
Species invasiveness is, at the moment, considered as an important component associated with
climate change and is argued to significantly alter the functioning of the ecosystem services
(Murphy and Romanuk, 2014; Chabrerie et al., 2019). Most species introductions depend on
human movements and activities, and this trend is even more emphasized when focusing on
invasive species (Bellard et al., 2016; Bonnaud, 2020).

To ensure their success in the new habitats and regions, the non-native invaders have
developed spectacular morphological, physiological, anatomical, and molecular adaptations to
resist and tolerate any environmental conditions (Ozaslan et al., 2016). In general, their present
exceptional metabolism compared to the non-invasive that has a higher capacity to change
depending on the adjustments occurring in the milieu (Riess et al., 2010).

2. The invasive species Prosopis juliflora

The genus Prosopis comprises 44 species out of which P. cineraria (L.) Druce is native to
India, Pakistan, Afghanistan and Iran (Burkart, 1976). In the arid and semiarid regions of India,
P. juliflora (Sw.) DC. (the common name Mesquite) is an exotic invasive species that is expanding
its range at an alarming rate and damaging native diversity and ecosystem health (Figure 1). P.
juliflora (native to Central America, the Caribbean and northern South America) was introduced
to southern India in 1877 due to its valuable benefits like drought tolerance, source of firewood,
timber, fencing, livestock feed (pods), gum for textile industries. It has now expanded its range
very fast throughout tropical India through the formation of impenetrable thickets. Cattle is the
main vector for seeds dispersal of P. juliflora and P. cineraria, and the two species are among few
large shrubs species growing in the arid deserts of the United Arab Emirates (UAE), and currently
they are co-occurring in some habitats. They constitute a major ecological feature in the Northern
Emirates of the UAE.

P. juliflora is a drought-resistant and evergreen species (Tewari et al., 2013). P. juliflora is
considered as a multipurpose shrub because of the high benefits associated with its utilization. For
example, many bioactive metabolites have been identified and isolated from P. juliflora, and those
are argued to have significant socio-economic importance (Le Maitre et al., 2002; Shackleton et
al., 2011; Ravhuhali et al., 2021). Therefore, due to the higher benefits associated to P. juliflora,
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it has been largely introduced in many countries worldwide (Pasiecznik et al., 2001; Shackleton et
al., 2014). However, regrettably, the species is considered today as one of the most problematic
invasive plants globally (Prasad and Tewari, 2016). According to this, P. juliflora was highlighted
in the world top 100 weed species as the worst (Lowe et al., 2000).

Prosopis was introduced intentionally in the semi-arid and arid regions, including UAE, to
stabilize the soil against natural erosion (Hussain et al., 2019). However, many of those exotics
Prosopis have escaped plantations and invaded several pastoral lands (El-Keblawy and Al-Rawai,
2007; Maundu et al., 2009; Borokini and Babalola, 2012; Tewari et al., 2013; Al-Assaf et al.,
2020). Many comparative studies dealing with the congeneric approach demonstrated that P.
juliflora is far the recalcitrant one with huge adverse impacts in the introduced range (Kaur et al.,
2012; El-Keblawy and Mahmoud, 2014; Slate et al., 2020; Tsombou et al., 2021). P. juliflora is a
fast-growing shrub, nitrogen-fixing and extremely adapted to harsh environmental conditions such
as very poor soils, drought, and saline soils. Therefore, P. juliflora is considered as one of the most
invasive plants globally (Brown and Sax, 2004; Luque et al., 2014; Dakhil et al., 2021).

Prosopis species have many features which enable them to exploit, invade, and alter
ecosystems services. These include high growth rate, deep taproots and long lateral roots, long-
lived seeds, high germination rates over a wide range of temperature and moisture conditions,
ability to withstand high negative water potentials, high water use efficiency, and the ability to
regenerate from dormant underground buds following injury (Hennessy et al., 1983). P. juliflora
has similar characters that enable it to invade large areas around the world, especially tropical and
arid subtropical regions (Pasiecznik et al., 2001)

Prosopis juliflora can be considered as a species with unspecific environmental adaptation.
In fact, it grows well and expands in the regions with extreme conditions, such as poor soils, and
dry lands with very low scant of precipitation (Pasiecznik et al., 2001). Morphologically, P.
juliflora can reach 12 m in height with persistent and evergreen leaves and, thorny branches. Its
tap root can go up to 50 m underground, the lateral roots grow up to 10 m. The seeds are oval and
brown (Mwangi and swallow, 2005). In addition, seeds produced by mesquite plant could reach
about 980,000 per year, and they have greater germinability capacity to emerge, where seeds of
many other species could not (Pasiecznik et al., 2001). Besides, in most cases, mesquite seeds do

not require any pre-treatment to germinate (El-Keblawy and Al-Rawai, 2005, 2007).
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In general, mesquite plants seem to have distinguishable adaptive traits compared to the
local flora, which might explain their higher superiority over the indigenous species. Similar
invasiveness characters were addressed in many other exotic invaders. For example, comparable
characters were observed in Lantana camara (Day and Zaluki, 2009), Chromolaena odorata
(Zachariades et al., 2009), Eichhornia crassipes (Albano et al., 2011), Ageratum conyzoides
(Kanissery et al., 2019), P. pallida (Pasiecznik et al., 2001). Furthermore, earlier studies have
shown that polyploidy, which is considered as a whole genome duplication, positively affects plant
invasiveness (Beest et al., 2012). Genetically, genome duplication has been seen as a key for plant
evolutional traits that can potentially facilitate plant invasiveness processes. The polyploidy of P.
juliflora was highly differentiated from the rest of the (diploid) species within the genus.
Polyploidy explains the successful invasion of P. juliflora in Eastern Africa (Castillo et al., 2021).

Prosopis juliflora has adapted to both sexual and vegetative propagation to ensure its
success in colonizing new geographical areas (Patnaik et al., 2017). Plant reproduction by
vegetative ways contributes to the fast establishment of plant population that is homogeneous in
terms of resistance against pests and disease (Christopher, 2015). Similar statements were
addressed in Imperata cylindrica, which is considered by the Global Invasive Species Database
(GISD) (2021) as a very aggressive perennial grass. I. cylindrica is native to Southeast Asia,
Australia, China, Philippines and East Africa (McDonald and Chandler, 1994). However, to date,
it is highlighted as the most noxious weed in 73 countries and constitutes a significant threat to
global biodiversity and sustainable agriculture (Burrell et al., 2015). An estimated 500 million
hectares have been invaded worldwide by I. cylindrica with 100 000 ha of lands allocated to
Florida (Dozier et al., 1998; Estradas and Flory, 2015), about 35 million ha in Asia (Garrity et al.,
1996; Rusdy, 2020).

The depressive impacts associated with the invasiveness of P. juliflora can be noticeable
on the ecosystem functioning in addition to human activities. Today, semi-arid and arid regions,
including other parts of the world, have been infested (Pasiecznik et al., 2001; Ravhuhali et al.,
2021). For example, GIS (Geographical Information System) revealed that P. juliflora is a
redoubtable plant weed in UAE (Issa and Dohai, 2008; Dakhil et al., 2021), which has a higher
potential to alter the local ecosystem. Issa and Dohai (2008) showed that P. juliflora stands
interestingly increased between 1986 to 2005 from 1.19 to 39.43 percent in the study site in UAE.

Consistent data obtained by Tadros et al. (2020) showed that water surface areas, urban and bare
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soil decreased by 3, 6 and 11 percent respectively in Jordan valley from 1999-2017. Similar
findings were reported by AlMaazmi and Al-Ruzouq (2021) in the UAE. In fact, their results
revealed that the area covered by the infestation of P. juliflora has not stopped or slowed down.
Furthermore, Howari et al. (2022) showed that the P. juliflora invasion in a certain area around
Sharjah and Ajman cities, UAE, expanded to 16 Km in 2019 compared to 0.2 km in 1990.
Moreover, Dakhil et al. (2021). Indicated that the potential invasion risk of P. juliflora increases
globally with increases in mean temperature of the driest quarter, soil alkalinity and clay fractions.
Arid and semi-arid lands are at the highest risk of invasion than other moist biomes (Dakhil et al.,
2021).

Several comparative and congener studies carried out on Prosopis species have shown the
greatest depressive impacts associated with the invasiveness of the species under Prosopis genus
on the related native species. In this respect, species richness in India is expected to reduce by 63%
under the canopies of mesquite compared to the open places (Kaur et al., 2012; Sivakumar et al.,
2018). Additionally, Aditi et al. (2017) showed through spatial comparison of species dominancy
that mesquite stands greatly increased between 1985 to 2015, displacing the most dominant local
plants such as Ziziphus mauritiana, Salvadora persica, S. oleides, Mitragyna parvifolia, Acacia
nilotica and Prosopis cineraria. Analogical statements were addressed by El-Keblawy and Al-
Rawai (2007) in UAE. In South Africa, 1.8 million hectares of the land are covered by P. juliflora
(Zachariades at al., 2011; Ravhuhali et al., 2021). In Somalia, P. juliflora invasion covered about
550, 000 hectares of land. In Ethiopia, 1.18 million lands were covered by P. juliflora plants
(Shiferaw et al., 2021).

In general, mesquite trees not only affect the different services of ecosystem, but the
negative impacts associated with their spread have important adverse effects on human health. The
findings of the earlier studies in this regard reported by Muller (2017) showed that, mesquite trees
negatively alter human health. In fact, the results of their work demonstrated that P. juliflora
significantly increases the risk of malaria transmission in the study site. Furthermore, the leaves of
mesquite tree were reported by Almeida et al. (2017) to contain important secondary metabolites
which are highly toxic to the ruminants. Several studies have reported allergenic effects for pollen
grains of Prosopis species that cause respiratory problems. In some parts of Kingdom of Saudi
Arabia, P. juliflora has been introduced by millions as roadside ornamentation (Al-Frayh et al.,

1999). There, it has four flowering seasons during which pollen grains float in all directions and
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large amounts of pollen debris are deposited underneath the trees. Prosopis pollens were detected
in the air of Gizan, KSA, and exceeded 90 grains m® of air. A total of 473 allergic patients suffering
from bronchial asthma in four different geographical regions of Saudi Arabia (Abha, Qassim,
Hofuf and Gizan), and attending allergy clinics and chest disease centers of university and Ministry
of Health hospitals in the region were tested for immediate hypersensitivity reaction to P. juliflora
allergens. Their results showed that 76.1% of patients in Qassim, 37.5% in Gizan, 29% in Abha
and 11% in Hofuf reacted positively to Prosopis antigen (Al-Frayh et al., 1999). Extracts from
Prosopis pollen grains had 16 allergenic components; nine were recognized as major allergens
(Hussain et al., 2020).

Masters and Norgrove (2010) argued that the negative impacts of plant invasiveness could
constitute an important result of climate change. Even climate change can further facilitate the
allergenic effects of Prosopis species (Hussain et al., 2020). For example, in arid and semiarid
lands, the demand for water currently exceeds the renewable freshwater supply (Oki and Kanae,
2006). Ground water levels in arid environments are dropping worldwide due to human extraction,
and precipitation events are predicted to become rarer and more intense in many arid areas with
global climate change (Dudley et al., 2014). In arid-land countries, groundwater resources are
heavily used for agriculture and domestic use. Additionally, water consumption in excess of
recharge rates has resulted in region-wide reductions in groundwater tables (Stromberg et al., 1992;
Postel, 1993; Shah and Danishwar, 2003; Yang et al., 2003; Scanlon et al., 2006; Rodell et al.,
2009). Howari et al. (2022) stated that the amount of groundwater consumed by P. juliflora through
evapotranspiration was 22.22 million m® of groundwater in 2019, which is 7372% increase above

that consumed in the same area in 2019.
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Figure 1. Global distribution of Prosopis juliflora (European and Mediterranean Plant Protection
Organization, 2020)

3. Possible Mechanisms explaining the Invasive ability of Prosopis juliflora

Three approaches (traditional, congeneric, and bio-geographical) have examined the
mechanisms the success of P. juliflora invasion (Inderjit et al., 2008). The traditional approach
focuses on the fate, dose, replenishment, and effect of chemicals produced by invaders in the soil
environment (El-Keblawy and Abdelfatah, 2015; Hierro and Callaway, 2003). In the congeneric
approach (also called phylogenetic), the allelopathic effects of exotic and native congeners are
studied. Native plants have not evolutionary evolved with the exotic invasive species. Therefore,
greater allelopathic effects of the exotic invasive plant are expected than of the native congeners
in the introduced range. The allelochemicals produced by the exotic invasive plants are new to the
native plants; the allelochemicals produced by the exotic in their introduced range are called novel
weapons (Callaway and Ridenour, 2004). For example, El-Keblawy and Abdelfatah (2015)
assessed the impact of allelopathy produced by P. juliflora and its native congener P. cineraria,
and soil properties on understory native plants in the arid deserts of the UAE. They found that the
aqueous extracts of fresh and old leaves of P. juliflora on the associated flora were inhibitory, but
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P. cineraria leaves and litter positively affected other native species. The inhibitory effect of P.
juliflora was stronger on annual species than perennials. Similarly, Kaur et al. (2012, 2014) found
that more allelochemicals, e.g., phenolics and tryptophan, are produced in P. juliflora leaves in
India than in P. cineraria. The L-tryptophan was recorded in leaf leachates of both P. juliflora and
P. cineraria, but the amounts were greater in the leaf leachate of P. juliflora (73%) than that in P.
cineraria (Kaur et al., 2012)

The biogeographic approach studies species-ecological traits and processes in native and
non-native ranges. Exotic species bring chemicals novel for invaded communities that has the
potential to exhibit allelopathic effects due to naive soil communities and sensitive neighbors
(Callaway and Ridenour, 2004). The ‘novel weapons hypothesis’ was posed by Callaway and
Aschehoug (2000) to study the role of allelochemicals in ecological processes and evolutionary
context. Several chemicals, such as phenolics, tryptophan and juliflorine, that are produced in P.
juliflora foliage (Nakano et al., 2003). Kaur et al. (2012, 2014) found that the amounts of phenolics
and tryptophan produced by P. juliflora have no obvious effects on the naive plants in the native
range but have inhibitory effects in the introduced range. Besides, P. juliflora appears to coexist
with large numbers of other native species in its native range (Kaur et al., 2012). The canopies of
mesquite have much stronger facilitative effects on neighbors than other leguminous tree species
(Larrea-Alcazar and Soriano, 2008). In its introduced range, however, P. juliflora strongly
suppresses species native to those regions (Pasiecznik et al., 2001). P. juliflora usually grows in
non-saline soils in most of its native and introduced range, but it has been recorded to occur in
saline habitats in Hawaii USA (Kaur et al., 2012) and Nevada, Arizona, USA. In the UAE, P.
juliflora grows in many habitats, including salt marshes, non-saline sand dunes, abandoned fields,
and even inside the cities.

4. Successful traits of invasiveness of Prosopis juliflora
4.1. Allelopathy

It has been suggested that allelopathy is a mechanism driving invaders to become more
abundant and competitively dominant in their introduced range than native range. In fact, some
plant species might metabolite and then release toxic or harmful bioactive substances in their
vicinity to enhance their competitive ability for water and nutrients uptake (Figure 2). However,
other plants might liberate simulative compounds that beneficially improve the neighboring

species growth. Allelopathy is considered as a natural phenomenon with higher ecological
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importance that involves the synthesizing and releasing of some secondary metabolites in the plant
environment to enhance its chances of survival (Rice, 1984; Seigler, 1996; Mondal et al., 2015;
El-Shabasy, 2017; Tsombou et al., 2021). There are two concepts about the effects of allelopathy
on the surrounding environment. Allelopathy could be beneficial or detrimental depending on its
resultant observable effects on the recipient species.

Regarding the Prosopis species, the allelopathy effects of the exotics invaders were
declared to be detrimental in the exotic species, such as P. juliflora and P. pallida. However, the
beneficial allelopathy effects were reported in P. cineraria (Kaur et al., 2012; Tsombou et al.,
2021). Allelopathy should involve the production of the chemical compounds by the living plants
or the chemical resulting from the plants' tissue decomposition, which affects the behaviors of the
neighboring plants (Willis, 2007).

Donor plant Recipient plant

Exudate (P3) \ of

Figure 2. Different pathways and the effects of allelochemicals from the donor to the recipient
plant (Zhang et al., 2020).

In the last decades, the effect of allelopathy has been greatly explored with most of the
works done in the Petri dishes. However, assessing the impact of allelochemical extracts on seed
germination in Petri-dishes does not mimic that in the natural soil conditions. However, fewer
attempts have been made in potting soil that reflects the natural conditions. Several researchers
have indicated difficulties in assessing the allelopathic effects on seed germination and seedling
growth in sterile Petri dishes (Hershey, 1996: Hershey and Latto, 1996; Qasem, 2012; Bali¢evié¢
et al., 2015). Those researchers pointed out the difficulties of relying on assessing allelopathic

effects on seed germination in sterile Petri dishes compared to potting soils and natural ecosystems.
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In allelochemical studies, Petri dishes experiments cannot predict what would happen in the field
(Qasem, 2010). For example, the lack of drainage in Petri-dishes can help accumulate
allelochemicals, but drained soil helps them wash away from the seedbed (Puig et al., 2014).
Besides, both soil microflora and substrate conditions can determine the fate of allelochemicals
(Inderjit, 2005). Soil microflora decomposes allelochemical faster in the soils than in Petri-dishes,
which reduces the toxicity of allelochemical molecules in soils (Inderjit. 2005). Moreover,
Balicevi¢ et al. (2015) attributed the higher phytotoxic effect for extracts of aromatic and medicinal
plants on germination of Tripleurospermum inodorum in Petri-dishes to the direct contact of seeds
with extracts on filter paper. It has been concluded that the strong inhibitory extract effects of
certain invasive plants on germination and seedling establishment of native plants could not be
interpreted in light of controlled conditions in Petri-dishes and growth chambers (Qasem, 2010;
Balicevi¢ et al., 2015). It was also concluded that this leads to overestimated false results of
suppressive activity of allelochemicals in the dishes (Puig et al., 2014).

Allelopathic plants might affects the surrounding environments differently, and the
amplitude and the frequency of their effects could associate with biotic and abiotic factors (Schafer
and Wink, 2009; Madiha et al., 2018). The synthesized secondary metabolites released in the
milieu may depend on the plant organ producing them at the allelopathic plant level. Besides, the
amounts and the specificity of those metabolites released in the plant environment would depend
on the types of interactions the plant would need to establish, or the effects that plant would need
to generate. Therefore, those compounds might have stimulatory, regulating, or inhibitory effects.
It is reported that secondary metabolites help plants as antifungal and antibacterial. (Prusakova et
al., 2008; Babenko et al., 2019). Furthermore, they are documented to have indirect functions in
the plants' reproduction (Cheng and Cheng, 2015).

Various products derived from the plant secondary metabolism classified according to their
respective function for the plant. In general, higher plants produce many identifiable compounds
to cope with unfavorable environmental factors, and various metabolites are still increasing
(Lattanzio, 2013). The phenolic compounds are among the secondary metabolism products. They
constitute the major group in the plant allelopathy interactions and were largely noticed in the
natural and managed ecosystems associated with significant negative economic impacts (Li et al.,
2010). Phenolic compounds are considered as the more predominant allelochemicals in plant

allelopathic processes. Three major groups of phenolic compounds are well-known to play crucial

35



Introduction

functions in plant allelopathic interactions, and they are as follows: flavonoids, phenolic acids, and
tannin. Prosopis species produce several phenolic chemicals such as, syringin, and (-)-lariciresino
(Nakano et al., 2002), and tryptophan and juliflorine (Nakano et al., 2001, 2003).

Succinctly, the different groups forming the phenolic acids give them important roles in
helping plants fight against oxidative alteration (Lisete-Torres et al., 2012; Kiokias et al., 2020).
Furthermore, plants phenolic acids have been associated with many vital functions such as
photosynthesis, structural components, enzyme activity, protein synthesis, allelopathy, and
nutrient uptake (Luy et al., 2010; Goleniowski et al., 2013). Concerning flavonoids, they greatly
impact the plant photosynthesis processes, preventing this latter from light stress and having an
important role in plant reproduction (Khoddami et al., 2013; Cosme et al., 2020). Tannins,
commonly considered tannic acids, constitute a major group of phenolic compounds that help
plants interact with their environment. In general, tannic acids are involved in plant defense and
act against herbivores and microbial attacks, and they have an important function in litter
decomposition and metal complexation (Fraga-Corral et al., 2020).

Environmental stresses can induce the production of allelopathic substances (Figure 3)
allelochemicals could be released from plants into the environment as root exudation, leaching,
and decomposition of plant residues in the soil. Allelochemicals could be used as herbicides for
weed management. Selective pressure of environmental stress can induce the production and
release of allelochemicals (Chuihua et al., 2000). Besides, indicated that natural and anthropogenic
biotic and abiotic stresses are important external signals that induce the production of
allelochemicals (Pedrol et al., 2006).

36



Introduction

Induction of allelochemicals
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Figure 3. Induction of allelochemicals by environmental stresses (Kim and Shin, 2003).

In the context of Prosopis species, phenolic compounds have been identified and isolated,
and the types of those compounds might strongly depend on the isolable plant part and the
invasiveness ability. For example, the allelochemicals of P. juliflora were declared to be
detrimental to the surrounding organisms, while that of P. cineraria was argued to positively affect
the associated diversity (Kaur et al., 2012; Tsombou et al., 2021). P. juliflora is considered one of
the species in the genus Prosopis with significant depressive effects on the biodiversity and other
components of the ecosystem. Therefore, the findings of phytochemicals related to P. juliflora
revealed different types of allelochemicals, and the more predominant were alkaloid, tannin,
flavonoids and phenolic compounds (Almaraz-Abarcaa et al., 2007; Kaur et al., 2012; Prabha et
al., 2014; Henciya et al., 2017; Prabha et al., 2018). Specifically, in the leaves, juliflorine and
juliprosinene were reported by Ahmad et al. (1989) as the main alkaloids, and their negative effects
were documented by Ahmad et al. (1992) in Listeria homlysin. Corroborating data were published
by Choudhary et al. (2005) in acetylcholinesterase enzyme.

Seed germination of many species has been inhibited when treated with a water-soluble
extract from different parts of P. juliflora, including litter and rhizosphere soil. For example,
germination and early seedling growth of various cultivars of Zea mays, Triticum aestivum and
Albizia lebbeck was inhibited by aqueous extracts from soil under the canopy and from different
parts of P. juliflora (Noor et al., 1995). Similarly, water-soluble chemicals in P. juliflora leaves
inhibited seed germination level and speed and reduced the rate of seedling growth of Cynodon
dactylon (Al-Humaid and Warrag, 1998). In addition, the allelopathic effects of leaf litter of P.
juliflora, was significantly decreased the germination of Vigna mungo and Sorghum bicolor
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(Chellamuthu et al., 1997). In UAE, El-Keblawy and Abdelfatah (2015) showed that seed
germination of five native plants associated with Prosopis species was significantly inhibited with
the aqueous extracts of P. juliflora, compared with control (non-treated) seeds and seeds treated
with different concentrations of P. cineraria extracts. Conversely, seeds of four native species
germinated to significant proportions in the extract of both fresh and old leaves of P. cineraria,
especially in the lower concentrations (EI-Keblawy and Abdelfatah, 2015).

4.2. Shade effect

Prosopis juliflora exerts negative impacts on neighbors through shade and competition for
water and nutrients. The growth of P. juliflora has shown to improve soil physical and chemical
properties in the UAE, which might have a positive effect on the associated species (El-Keblawy
and Abdelfatah, 2015). Litterfall from P. juliflora throughout the year increases organic matter,
macro-nutrients, potassium, nitrogen and phosphorous in the soil below its canopies. Increasing
organic content could improve water holding capacity, positively affect soil texture and increase
soil moisture (EI-Keblawy and Abdelfatah, 2015).

4.3. Competition

The theme competition has been intensively used in many disciplines with similitudes. In
ecological sciences, competition is considered as the interactions between individuals sharing
similar environmental requirement supply at limited levels, which could significantly affect the
species survival capacity (Longstaff, 1998). Most interactions in plants occur below the soil
surface compared to that observed in the above parts (Brenda et al., 1997). In general, below-
ground competition importantly affects plant performance compared to that of aboveground
interactions (Wilson, 1988; Brenda et al., 1997), and it is considered the main type of competition
occurring in regions with harsh conditions such as arid systems and other inhospitable places of
the world (Fowler, 1986; Brenda et al., 1997). Many environmental factors affect the structure of
plants community (Martorell et Freckleton, 2014), but competition has been pointed out as the
major key that shapes the structural organization of plant associations (Tilman, 1985; Golberg and
Barton, 1992; Chesson, 2000; Baron et al., 2015).

In plant communities, water, light, and nutrients are considered the major elements that
reduce plant performance and are those for which plants compete (Craine and Dybzinski, 2013).

Water deficiency is the main factor limiting plant physiology in desert systems. Therefore, desert
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soils are extremely poor in biological activities responsible for the soil quality, and only selective
plants could establish in these hostile milieus. Some plants are considered opportunistic because
they have a greater ability to thrive in areas where soil moisture, nutrient availability, and other
ecological factors constitute the major limiting environmental conditions for plant growth
(Behzadi et al., 2010). Among those types of plants, exotic invaders present exceptional
evolutionary adaptive features that allow them to colonize unreachable places and, therefore, could
quickly expand in these fragile environments competing with the local species. The depressive
impacts resulting from the competition between the exotic invaders and the local species might be
disastrous in the desert systems due to the less diversification in plant species observable in these
milieus. Their higher competitiveness capacity might quickly force some sensitive species of those
environments to extinction.

Globally, invasive species have strategically evolved depending on the providing
environmental factors. In most cases, they have exceptional traits that give them a chance to
colonize a broad range of climates and out-compete with the native diversity. In most cases, studies
dealing with comparisons between invaders species and native diversity demonstrated that
invasive species have a greater capacity to compete and to exclude the non-invasive (Vila and
Weiner, 2004; Dangremond et al., 2010; Brueno et al., 2019). The negative impacts associated
with species invasiveness are considered the main factors affecting global change (Vitousek et al.,
1996; Gioria and Osborne, 2014).

Competition is another mechanism that would enable P. juliflora to replace native flora.
The morphological, physiological, and genetic traits and the reproductive rate related to P. juliflora
significantly enhance its competitive behavior. For example, root density of P. juliflora was 3 cm
of root/cm? of soil in the upper 15 cm of the soil profile, dropping to less than 0.5 cm root/cm? of
soil at below 45 cm depth and less than 0.2 cm root/cm? of soil at 1.8 m depth (Jones et al., 1998).
Hoshino et al. (2011) indicated that P. juliflora could detect very tiny soil moisture and grow under
various conditions. Some of the many adaptive abilities that allow P. juliflora to thrive under such
conditions include the ability of roots to adapt to a wide variety of soil conditions (Hoshino et al.,
2011). Roots can grow upwards towards the soil surface to capitalize on little rainfall but can also
grow to depths of 80 m and extend laterally more than 30 m (Hoshino et al., 2012). This root length
allows the invader to regulate and tolerate extreme drought conditions (Desta et al., 2021). Besides,

the high density of shallow roots could enhance the competitive ability of P. juliflora to extract
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the arid deserts limited nutrients and water resources (El-Keblawy and Abdelfatah, 2015). This
could explain the high aggressive ability and how it could crowd out native vegetation in most
invaded sites. It has been noticed that farmers in many places in the UAE just ruin their farms once
they are invaded by this species.

In comparison with the root length of P. juliflora, the tap and the lateral of the native P.
cineraria were estimated at 20 m and 1.5 m only, and its growth is relatively slow (Sandison et al.,
1991; Kumar et al., 2011). Recently, Slates et al. (2020) estimated the lateral root length of P.
juliflora at around 3.5 m from the tree trunk to the canopy edge in UAE, whereas the lateral length
of the native P. cineraria could not be observed at the same distance. The lateral root of the P.
cineraria could be less than 1 m. Furthermore, the fine root mass collected under the canopy of P.
juliflora was 57 times greater under the canopy of the invader P. juliflora than that of the P.
cineraria canopy. Moreover, litter depth was six to nine times more important under the canopies
of the exotic P. juliflora compared to the native P. cineraria. On the other hand, Hussain et al.
(2019) demonstrated that mesquite plants are both water use and photosynthetically efficient
compared to P. cineraria. Therefore, such plant attributes associated with the P. juliflora tree can
explain its higher dominance in the non-native range. Figures 4 and 5 show the greater competitive

ability of the exotic P. juliflora that negatively affected the native P. cineraria.

[——

Figure 4. The exotic Prosopis juliflora (dense green) is growing in great numbers under the canopy

of the native P. cineraria
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Figure 5. The dense thicket of the exotic Prosopis juliflora killed the native P. cineraria in many
places of the UAE

Both intraspecific and interspecific competitions were reported in the Prosopis species.
However, their ability to compete and to have adverse effects on the neighboring plants might
depend on the type of interaction and the competing plants groups. The negative effects might be
less when the competition occurs between the invader and the tree, and it may be more pronounced
when the invader competes with the herbaceous species. Furthermore, the invader plant growth
stage might strongly influence its veracity when competing with other species. Ansley et al. (1998)
observed that P. glandulosa growth was limited while increasing the densities of associated plants
under less environmental resources such as water. Contrary, Auken Van and Bush (1987) observed
that the growth of P. glandulosa was greater than that of Diospyros texana when growing together
in lower soil fertility. Besides, P. glandulosa was reported by Simmonsa et al. (2008) to have
greater depressive impacts on the grass Nassella leucotricha. Corroborating findings were
obtained by Chen et al. (1995) with Heterodera glycines and Chenopodium album. Similar
statements were reported by Agami and Reddy (1990) in the Eichhornia crassipes and Pistia
stratiotes.

Regrettably, the literature review seems to do not have sufficient experimental works on
the competitiveness ability within the Prosopis species emphasizing the phylogenetic approach.
Furthermore, very few publications assessed the intra- and inter-specific competition associated
with the invader P. juliflora and other plants. Most of the observations were done in the field works
where P. juliflora excludes the associated native species. The native P. cineraria is considered one
of the highly valued trees in many arid and dry areas in the world (Kumar and Singh, 2009;
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Gallacher and El-Keblawy, 2016; Al Ghais et al., 2020). Therefore, the competitive ability of P.
cineraria and Tecomella undulata on Vigna radiata based on agroforestry systems in degraded
lands of the Indian desert (Singh, 2009) showed that P. cineraria has significant positive effects
on the growth and the yield of Vigna radiata.

4.4. Water use and photosynthesis efficiency of Prosopis species

Hydric stress is the predominant ecological condition that significantly impacts the desert
plant physiology. Therefore, to overcome it, many desert plants, especially the true xerophytes,
have adjusted their metabolism. Water stress has direct effects on the photosynthesis processes.
Therefore, the combination of both water and heat stresses would significantly impact the plant
performance. In fact, as the hottest places of the world receive more radiation than the other parts,
therefore, heat stress can be considered another ecological issue that considerably influences the
physiology of desert plants. Hence, many plants in these environments have strategically evolved
to cope with heat and water stresses without damaging their photosynthetic apparatus.
Accordingly, there are a variety of ways that plants survive in arid environments (Mulroy and
Rundel, 1977). Among these, water use and photosynthesis efficiencies are considered major
mechanisms involved in the adaptations of desert plants (Cui et al., 2017; Avila-Lovera et al.,
2019; Hussain et al., 2019). Water use efficiency is referred to the fraction of carbon assimilation
to water loss (Baldocchi, 1994; Malone et al., 2016; Zhu et al., 2020). Besides, photosynthesis
efficiency refers to the amount of light energy plants convert into chemical energy through
photosynthesis (Hussain et al., 2019). Light is considered one of the main factors affecting the
photochemical reactions of photosynthesis in plants. In general, light intensities depend strongly
on the periods of the days and the seasons. Therefore, in the natural environment, light intensity
varies greatly and can exceed the tolerable range of plant physiology (Eppel et al., 2013).
Accordingly, plants exposed to excessive light can be greatly damaged.

Alien invasive species have been presented to out-compete native plants (De Rouw, 1991;
El-Keblawy and Al-Rawai, 2007; McAlpine et al., 2008; Aguilera et al., 2010; Kaur et al., 2012;
Lucardi et al., 2014; VonBank et al., 2018; Ruwanza, 2020; Tsombou et al., 2021). Therefore,
water use and photosynthesis efficiencies of invasive species could be significant than that of the
native species. With this regard, the findings of comparative water use efficiency between invasive
and native species at multiple scales reported by Molly et al. (2010), corroborated these

observations. Additive findings of the work argued that water use of invasive plants is greater in
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the hottest places than the other regions of the world. Similar findings were highlighted by
McAlpine et al. (2008) in the invasive species Berberis darwinii and the co-occurring native plants.
In addition, it was pointed out by Stratton and Goldstein (2001) that both water use and
photosynthesis efficiencies of the non-native Schinus terebinthifolius were greater than that of the
native species.

Congeneric comparison between species can allow identifying the evolutionary traits that
may help the non-native species to out-compete the native species. The earlier few studies done in
this regard mostly concentrated on comparing the morphological attributes of the experimental
plants with little focus on plant physiological attributes. Mesquite trees and the native Prosopis
cineraria are present in UAE habitats. So, their occurrence in UAE regions could be a good
opportunity to study their competitiveness capacity with the ascent of plant physiological
attributes. In this respect, Hussain et al. (2019) assessed the water use efficiency in a native and
two exotic Prosopis species. They showed that exotic P. juliflora and P. pallida plants water use
efficiency was greater than that of the native P. cineraria. Hussain et al. (2020a) also pointed out
that the photosynthesis efficiency of the exotic Prosopis invaders was better than that of the native
P. cineraria. Furthermore, their findings revealed that the maximum photosynthetic efficiency and
other physiological attributes were correlated with the canopy position. Similar trends were
obtained by Chen et al. (2013) in the Alternanthera genus without taking into account the canopy

position.
4.5. Root system of Prosopis species

The root system of each plant species has evolved depending on the environmental
conditions. Therefore, the root system length and density can be key to understanding the changes
associated with the plant environment. There is a proper correlation between root and shoot growth
when the plant is exposed to normal conditions. In general, the ratio of roots to shoots is considered
as the fraction of the weight of the roots to the weight of the above plant parts (Harris, 1992).
Therefore, any significant changes occurring in the environment would strongly affect this ratio.
With this scenario, the ratio of roots to shoots can constitute an important ecological indicator to
understand and predict the changes that could occur in the environment. Plants found in the regions
with extreme environmental conditions have considerably adjusted their ratio of the roots to shoots
(Aphalo et al., 1999; Qi et al., 2019). It was reported by Qi et al. (2019) that plants usually allocate
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more biomass to the root than the shoot when exposed to environmental stresses such as soil poor
in nutrients and dry soils.

The hottest places in the world are dry most of the year, and desert soil does not retain
sufficient humidity even when the rains come. Consequently, desert plants have adapted to have
deeper roots. Therefore, the length of the root and especially the tap root for the perennial desert
plants should be correlated with the level of drought. Besides, competitive interactions in the desert
ecosystem might positively affect this length. For example, the tap and the lateral roots of the
exotic P. juliflora are estimated at 80 and 30 m, respectively (Canadell et al., 1996, Hoshino et al.,
2012). However, the tap and the lateral roots of the native P. cineraria were reported to be around
20 mand 1.5 m only (Sandison et al., 1991; Kumar et al., 2011). Recent studies were done by Slate
et al. (2020) in UAE reported that the lateral root of the invader P. juliflora was estimated at 3 m;
these assessments were done from the trunk to the canopy edge. However, they did not find any
lateral root at this length with P. cineraria, the native species. Furthermore, their studies also
revealed that the fine root biomass under the canopies of P. juliflora was 57 times greater than the
edge. However, the tap root length could not explain the competitive superiority of invasive plants
over non-invasive ones. In this regard, Acacia erioloba and Boscia albitrunca are greater drought-
resistant plants, and their tap root lengths were estimated at 60 and 68 m, respectively (Canadell
et al., 1996). Nevertheless, they are not documented to be invasive plants, and according to
Tshisikhawe and Malunga (2017), these two species are found in the protected areas of South
Africa. Furthermore, Comparative studies done by Schachtschneider and February (2013) between
the invasive Prosopis glandulosa and P. velutina, and native Acacia erioloba showed that native
had shorter tap roots and are more water stressed than the exotic invasive Prosopis species.

4.6. Litter of Prosopis species

The different stages of plant growth are greatly impacted by the surrounding milieu.
Among those factors, litter quality is considered as the main ecological element which directly and
indirectly influences plant behavior and the neighboring environment. Since nutrients availability,
soil moisture, soil temperature and light depend on the litter quality, therefore, this latter is
considered as a vital component for the environment health (Facelli and Pickett, 1991; Muturi et
al., 2017; Racheal and Olliff-Yang, 2019). Plant species can be characterized by its growth rate
and therefore by its litter input. Plant growth rate depends strongly on its direct environment, so

plant growing in the poorest milieus may have less production than those growing in the enriched
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habitats. Yet, plants growing in the poorest habitats may show less litter biomass than those
growing in the favorable environment (Leon and Osorio, 2014; Bohara et al., 2019). Therefore,
any expected or noticeable increasing in litter accumulation can significantly alter the dynamic of
plants growing in those habitats.

Nowadays, alien invasive species are considered as the main cause of habitats degradation,
and the costs associated to their management are importantly higher regionally and globally.
Exotics invaders are mainly characterized by their faster growth, and such growth rate may be
linked to the increase of resources acquisition from the environment (Montesinos, 2021).
Therefore, alien invasive plants are documented to have very high water and nutrients use
efficiencies than the non-invasive (Matzek, 2011; Hussain et al., 2020a) so, their growth rates are
significantly higher (Chen et al., 2017) and may importantly impact on the produced biomass (Liu
et al., 2019). Predictably, faster growth associated with species invasiveness would be led to
important litter biomasses. It was reported by Slate et al. (2020) that litter accumulation under the
canopies of mesquite tree was greater than that of the non-invasive Prosopis cineraria. This
important amount of litter noticeable under the canopies of the invader P. juliflora can be
considered as one of the key strategy used by mesquite trees to exclude the native species. Besides,
litter deposition under the canopy of mesquite trees may contain important amount of secondary
metabolites which could have depressive effects on the surrounding environment. In this context,
Kaur et al. (2012) demonstrated that, litter of mesquite contained significantly amount of phenolic
compounds than that of the non-invasive Prosopis. It was also pointed out by Tsombou et al.
(2021) that, litters of mesquite trees had greater impacts on the both seeds germination and
seedlings dry weight of Amaranthus graecizans, Sisymbrium and Senecio flavus. Analogical data
were reported by Kim and Lee (2011) in the invasive species Eupatorium rugosum.

Congeneric studies within different genus of invasive plants have been done considering
some important aspects and concepts associated with plants invasiveness (Kun et al., 2009).
However, the literature review is relatively poor regarding the studies on invasive plants versus
native plants addressing their litter biomasses and the different factors influencing the set-up
process in the arid systems globally.

5. Mechanisms of allelochemicals

Allelochemicals are secondary metabolites produced by many living organisms, including

algae, bacteria, coral, fungi, and certain plants (Bachheti et al., 2019). Regarding plants,
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allelochemicals mainly help plants interact with their surrounding environment. The secretion and
of allelochemicals depend strongly on the types of interactions that plants would need to establish.
Those chemicals may be secreted and released into the environment for cooperation, plant defense,
or reproduction. Therefore, various groups of allelochemicals are synthesized within the plants
and released in the plant environment depending on the plant-environment requirements.

In general, allelochemicals may have beneficial or detrimental effects on the surrounding
environment. Globally, their effects range from stimulation to regulation and inhibition. Despite
their high ecological importance, allelochemicals can cause significant damage to the surrounding
organisms. At the plant level, many fundamental processes associated with plant growth and
development may be importantly affected. Cheng and Cheng (2015) described different
mechanisms underlying allelopathy (Table 1). At the cellular level, allelochemicals can negatively
affect root cells, cell shape, and structure. They may induce nuclear abnormalities and significantly
affect cell vacuolization processes. Besides, monoterpenoid allelochemicals significantly alter cell
proliferation and DNA synthesis in plant meristem. Furthermore, allelochemicals can cause an
imbalance in the antioxidant system, affect the permeability of cell membranes, negatively affect
nucleic acid and protein metabolisms processes, and affect the balance of plant growth regulators.
Moreover, allelochemicals can change soil properties, which in turn alter the soil microbial
activities and quality (Table 1, Cheng and Cheng, 2015).
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Table 1. Mechanisms underlying allelopathy (Cheng and Cheng, 2015)

Some allelochemicals alter root cells and cell shape and structure. They
may induce nuclear abnormalities and significantly affect cell

vacuolization processes.

Monoterpenoid allelochemicals significantly alter cell proliferation and

DNA synthesis in plant meristem.

Allelochemicals induce the production of reactive oxygen species in the
plant.

The inhibition of antioxidant enzymes activities may alter the permeability

of the cell membrane.

Allelochemicals impact the DNA cleavage temperature. Some of them
may alter the enzyme DNA polymerase, disrupting the different steps

associated with DNA function.

Allelochemicals may affect the balance of plant growth regulations, such

as phytohormones.

Changes in soil properties, which in turn alter the soil's microbial activities

and quality.

6. Impacts of Prosopis juliflora invasion
6.1. On local floral or vegetation

Vegetation is considered as plant assemblage for a given area (Box and Kazue, 2013).
Therefore, it integrates the different species and their population for the local flora, which differ
genetically and historically (Maarel et al., 2014). Local climate plays a crucial role in the plant
assembling and the types of vegetation. Locally, vegetation is strongly impacted by the
topography, the seasons, and the edaphic properties. In addition to the local climate which shapes
the vegetation, recently, invasive were reported as the key component of local habitats degradation.

Today, many local habitats have been invaded and infested by invasive species.
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In this regard, the introduction of P. juliflora in UAE and other arid parts of the world has
led to the degradation of native diversity (Mwangi and Swallow, 2005; EI-Keblawy and Al-Rawali,
2005; Kaur et al., 2012; Slate et al., 2020). According to the European and Mediterranean Plant
Protection Organization (2018), P. juliflora was introduced into the Middle East in the 1950s and
was probably introduced in UAE around the 1970s. Today, P. juliflora has been declared as an
invasive species in UAE including many other regions of the world (Mwangi and Swallow, 2005;
El-Keblawy and Al-Rawai, 2005). Its higher invasiveness capability is derived from its growth
rate, reproduction rate, and lack of natural enemies (Van den Berg et al., 2013). At present, serval
millions of land have been covered by the infestation of mesquite. For instance, one million
hectares have been covered in Ethiopia (Zeray et al., 2017); 1.8 million in South Africa (Shackleton
et al., 2015). Similarly, Kenya noticed an increment of land covered from 882 to 18.792 hectares
between 1988-2016 (Mbaabu et al., 2019). Statically, there is no clear documentation about the
total land cover by P. juliflora in UAE. However, the data on the invasion of P. juliflora using GIS
(Geographic information System Mapping) addressed by (Isaa and Dohai, 2008) in two different
sites in UAE (Filayah and Khut) confirmed the infestation of this species. Their findings showed
that P. juliflora land coverage increased from 1.19 to 32.48 % for the Khut site during 19 years
and 10.48 to 16.17 % for the Filayah site during 19 years (Figure 6).

a (1986) b (1996) ¢ (2005)

Filayah (top) and Khut (bottom) (Isaa and Doahi, 2008).
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Furthermore, El-Keblawy and Al-Rawai (2007) reported the depressive impacts of P. juliflora
trees on the local species. Their findings showed that the depressive effects depended of the plant
life forms. Additionally, the findings of congeneric studies obtained by EIl-Keblawy and
Abdelfatah (2015) showed that P. juliflora plants have significant depressive effects on the native
plant compared to the native P. cineraria, which positively affects the surrounding environment.
According to the same authors, the depressive effect of P. juliflora was more prominent on the
seed germination and annual species compared to the perennial. Moreover, recent work done by
Slates et al. (2020) in UAE, showed a positive correlation between mesquite plants and agricultural
weeds compared to non-agricultural weeds. Besides, low plant richness and densities for the non-
weed were noticeably lower under the canopies of P. cineraria compared to the open places, but

with no effect on the agricultural weed.
6.2. On the water table

Water table refers to underground water stored between soil spaces, or between soil fissures
(Adams, 2016). Ecologically, underground water can be as considered a major factor influencing
plant distribution on the terrestrial globe. The depth and the amount of such water may vary from
point-to-point throughout the globe. Many local and external factors can significantly affect the
quality and the amount of water table. Among those, droughts, seasonal rainfall, salts
accumulation, fertilizers, and pesticides are the main factors affecting underground water
(Moorhead, 2003). The effects of both drought and salts on the water table were reported by El-
Mageed et al. (2018). Today, the depressive effects associated with plant invasiveness not only
alter the different services of the ecosystem, but those effects can also be fully integrated into
global warming processes. Phenotypic plasticity can be cited as one of the major key that enhances
plants invasiveness potentialities. In fact, invasive plants have a high potential to adjust their
metabolism as fast as possible, depending on the changes occurring in their habitats.

In general, plant morphology can be correlated with the plant capacity to use underground
water and cope with stressful environmental conditions. Therefore, the volume of soil exploited
by the roots of a tree will depend on the species, the size and age of the tree, and the soil type
(Knight, 1999). In this regard, alien invasive plants have an important ratio of root to shoot
compared to non-invasive plants; therefore, those plants attributes can allow them to alter the water
table significantly. To illustrate this, the tap and the lateral roots of P. juliflora are estimated at 80

m (Canadell et al., 1996, Hoshino et al., 2012). Therefore, this greatly allows the invasive P.
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juliflora plants to access underground (Desta et al., 2021). However, compared to the exotic
Prosopis, the tap roots of the native P. cineraria are reported at around 20 m (Sandison et al.,
1991; Kumar et al., 2011). Consequently, such root length associated with the native Prosopis may
not allow it to have any negative impact on the water table. In Ethiopia Shiferaw et al. (2021)
calculated water consumption associated with the invasiveness of P. juliflora using the Eddy
covariance method, and estimated it at around 3.1 to 3.3 billion m® per year. Furthermore, water
consumption of the same plant species in Northern Cape (South Africa) was estimated at 70
m3/month, using the Penman—Monteith methodology. Corroborating findings were reported by
Dzikiti et al. (2018) in South Africa, where the water consumption of P. juliflora plants was about
1.5 to 2.5 billion m® per year. Recently, Howari et al. (2022) calculated the water consumption of
P. juliflora through remote sensing technology. They estimated the amount of water lost through
evapotranspiration lose to about 22.22 million m3/year in the three studied region (near Sharjah
Airport, Umm Fannan, and Al Talla). However, the studied that was conducted on the native P.
cineraria indicated that, its water consumption is very low. For example, Al Yamani et al. (2018)
calculated the water consumption of two native trees (P. cineraria and Ziziphus spina-christi) in
Abu Dhabi, UAE, and found very low water consumption (0.043 m3/day) for the two species. The
overall results of Howari et al (2022) indicated that the groundwater depletion by P. juliflora,
especially on sand dunes, will threaten the xerophytic scarce vegetation with the main focused on
the native keystone P. cineraria. The high water consumption of P. juliflora necessitates more
research about water use efficiency and photosynthetic rate. A comparison between the exotic
invasive P. juliflora and the native P. cineraria in these important physiological functions is
important to understand the causes of the successful invasion of the P. juliflora.

6.3. On soil quality

Biotic and abiotic components interact together to maintain the balance of ecosystem
structure and functioning. Therefore, any noticeable alteration occurring in these two components
of the soil ecosystem would strongly affect the expectable function of that ecosystem. For example,
acidophiles microorganisms are efficient in the pH ranging from 3 to 4 (Sharma et al., 2016), while
neutrophils show better growth in the pH 6 to 8, or neutral pH, and the alkaliphiles are more
adapted in the pH values exceeding 9 (Preiss et al., 2015). Therefore, any change associated with

the pH would significantly affect the ecology of these microorganisms that inhabit these
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environments. The change in the soil microbial community would affect the nutrient content and
decomposition, affecting the types and abundance of the aboveground flora.

Globally, the historical taxonomy of soils greatly depends on the environmental factors
that play an important function in their formation. United Arab Emirates (UAE) presents an
alternation of the seasons, with the hottest in summer and the coolest in winter. Drought and salt
content are the two main environmental factors controlling any fundamental processes in UAE,
from soil-to-plants. Accordingly, Emirates soils are broadly diversified. Shahid and Abdelfatttah
(2008) categorized the soils of UAE as sandy, sandy calcareous, saline, hardpan, etc. These soils
structure, texture, and chemical properties strongly reflect local weathering processes. Both Higher
drought and salt significantly alter the quality of soils. Effects of extreme climate on soil quality
were reported by Anjali and Dhananjaya (2019). In addition to the effects of drought and salt on
the soil quality, anthropological activities may considerably impact the soil ecosystem. To protect
soil degradation and control desertification processes, several exotics plants were transported and
introduced in many countries throughout the world and especially in arid systems. However,
regrettably, some of those plants species have become a serious problem in their introduced range.
In most cases, alien invasive plants have important growth rate with monoculture stands. Impacts
of alien invasive plants on the soil quality were documented by Dassonville et al. (2008).

Invasive Prosopis species are well-known today to be an important cause of many habitats
degradation globally (Shackleton et al., 2015; Wakie et al., 2016; Tadros et al., 2020; Slate et al.,
2020). The infestation of mesquite plants has led to the alteration of the soils properties locally.
Earlier studies assessed the impact of the invasive and native Prosopis species on the
physiochemical properties of the soil of UAE (El-Keblawy and Al-Rawai. 2007; EI-Keblawy and
Abdelfatah, 2015). Analogical data were obtained by Oludare and Muoghahalu (2014) in Tithonia
diversifolia (Hemlsy). Recent findings reported by Gemeda et al. (2021) demonstrated that the
invasion associated with mesquite palnts increased the soil pH. According to the same authors,
exchangeable cations, exchangeable sodium and water-soluble Ca, and other elements percentages
decreased in the areas infested by P. juliflora compared to the non-infested places. Moreover, clay
content in the stands of exotics Prosopis was importantly higher than the non-invaded lands. On
other hand, Saadoun et al. (2014) reported the depressive effects of mesquite plants on the soil
microbial activities in UAE. Consistent and analogical findings were addressed by Wang et al.

(2015) in Lantana camara.
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The growth of P. juliflora has been shown to improve soil physical and chemical properties
in the UAE, which might positively affect the associated species (El-Keblawy and Abdelfatah,
2015). The canopies of P. juliflora increased the most important macro-nutrients, such as
potassium, nitrogen and phosphorous, and the organic matter contents. The increase in organic
content could increase the water holding capacity, improving soil texture and moisture (El-
Keblawy and Abdelfatah, 2015). As the harmful and beneficial mechanisms of plant-plant
interactions do not act in isolation from each other in nature, the relative importance of these two
processes determines the structure of the plant community under and around the native and exotic
trees (Callaway and Walker, 1997). In the case of P. juliflora, it seems that the allelopathic effect
may override its facilitative effect and consequently result in an overall depressive effect on the
associated flora. Phenolic compounds have been reported to present in high concentrations in P.
juliflora (Inderjit et al. et al., 2008; Goel et al., 1989; Nakano et al., 2003), could reduce the water
and nutrients uptake of the associated plants. For example, the net uptake of phosphorous,
potassium, and water by cucumber seedlings was reduced by 57, 75, and 29%, respectively, when
the whole root system was exposed to ferulic acid, an allelopathic phenolic acid. In addition, plant
transpiration was reduced in a linear manner as the fraction of the cucumber roots in contact with
ferulic acid increased (Lyu and Blum, 1990).

7. Prosopis species description

The genus Prosopis belongs to the Fabaceae family, including 44 species native to the

Americas and Asia (Landeras et al., 2006).

7.1. Prosopis juliflora (Sw.) DC.
a b c

e

Figure 7: Adult plant (a), flowers (b), pods (c), and seeds (d) of Prosopis juliflora.
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P. juliflora is well adapted to tolerate extreme environmental conditions. This species is native to
the Americas and is habitually known as Mesquite (Tewari et al., 2013). It grows fast, can fix
atmospheric nitrogen, and is an evergreen species. There are higher morphological, anatomical,
and molecular variabilities observed in this species compared to the other species of the same
genus. Both tap and lateral roots extremely differ from the other species of the same genus, and
the species of other plant taxa. In most cases, the length is significantly higher than the other
species of the same genus, and the surrounding plant species.

Burkart (1976) described P. juliflora to grow to about 15 m in height with many thorns
observed in the above plant part; the thorn length is around 3 to 5 cm. Tree bark is a particularly
thick and rough. In most cases, the tree of P. juliflora presents several stems with significant leaf
organization variations. Mesquite shrubs has compound and paripinnate leaves with important
variability in the number of pairs per compound leaf. Flowers are particularly attractive to the
surrounding environment, ranging from 5 to 10 cm. Important variabilities also exist in the fruits
of mesquite. Different fruit shapes were observed; fruits may be slightly straight or curved, and
their color depends on their physiological maturity. The leaves are fully green at the early stage
but turn yellowish when they mature. Fruit length varies significantly; it may range from 10 to 20
cm. Variability is also noticed in mesquite seeds; every fruit contains approximately 10 to 20 seeds
with different shapes, and the seed length is about 2.5 to 7 mm (Figure 7).

7.2. Prosopis cineraria (L.) Druce

P. cineraria is native to the UAE region and other parts of Asia, and it is locally known as
“Ghaf tree”. Recently, P. cineraria was declared locally as a national tree in the UAE due to its
higher cultural significance for the Emirati population. Compared to mesquite tree, this latter has
a slower growth rate. Both tap and lateral roots lengths are relatively less compared to that of
mesquite. It also has the ability to fix atmospheric nitrogen as its exotic congener, but its
environmental conditions’ tolerance is more than the invasive Prosopis species. This plant species
grows to about 6.5 m height only. Contrary to P. juliflora tree, P. cineraria does not have several
stems; it has a main trunk of about 30 cm. The crown is open from the lower part to the first
branches with around 2 m height. Branches and sub-branches are thorny with around 5 mm thorn
length. Its tree bark is thick with many fissures. The leaves are also compound and paripinnate.

Each pod contains about 10 to 25 seeds with brownish color (Pasiecznik et al., 2004) (Figure 8).
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Figure 8: Plaht' (A), rowers(B), pods ), and seeds (D) of Prc;opis cineraria
8. Hypothesis

Exotics Prosopis species are a key factor with adverse impacts on the United Arab Emirates
(UAE) biodiversity, water table, and human health. The main objective of introducing this species
in UAE was to control the desertification process and stabilize the soil against natural erosion.
Regrettably, they escaped the cultivation areas and invaded many natural habitats, displacing the
native diversity. The exotics Prosopis invasion affects biodiversity and significantly impacts on
the water table. Recently, it was associated with climate change. In addition to P. juliflora, P.
pallida was also identified in UAE. So, invaders P. juliflora, P. pallida, and the native P. cineraria
are co-occurring in the different habitats of UAE. However, the different Prosopis species affect
the native flora, soils, and water table differently. Overall, P. juliflora is documented to be the
worst one with greater depressive effects associated with its invasion. However, the other exotic
invasive P. pallida has lower depressive impacts than P. juliflora. A harmonious association is
observed between P. cineraria and the native diversity. Therefore, the occurrence of the three
Prosopis species in UAE gives a chance to study and to understand how exotics Prosopis have
evolved over the native P. cineraria.

Exotics Prosopis species are opportunist and strategic since they present exceptional
adaptive evolutionary features that allow them to invade wide ranges of climates and soils.
Furthermore, the exotic species have greater competitive ability than the native P. cineraria. So,
we hypothesized that native plants growth and abundance under and around the canopies of the
three Prosopis species depend on the competitive ability of each of the three species. Furthermore,
it hypothesized that allelochemicals of the invasive Prosopis have higher detrimental effects on
the associated flora, whereas the native P. cineraria has more facilitative or neutral effects.
Moreover, the exotic Prosopis species are both heat and drought resistant than the native P.

cineraria. Therefore, we hypothesize that the exotic Prosopis species have more water use and
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photosynthesis efficiencies than the native P. cineraria. These hypotheses are linked to the study
overall objective.

In addition, the associated plants with Prosopis species are natives and non-natives
(referred to as agricultural weeds). We hypothesized that exotic invasive P. juliflora encourages
and accommodates more agricultural weeds, but the native P. cineraria facilitate the growth of the
native flora. Besides, we also hypothesized that soil fertility under the canopies of the Prosopis
species depends on the chemical composition of the leaves and shallow later roots under the
canopy of the different species. Furthermore, we hypothesized that lateral root length, fine root
biomass, and litter accumulated under the canopy are greater under the exotic Prosopis than in the
native one. These hypotheses are linked to the first objective presented in the first chapter of this
PhD Memory.

Allelopathy is a major key to the exotic Prosopis species success (El-Keblawy and
Mahmoud, 2014; Tsombou et al., 2021). Allelopathic plants metabolize and release substances
(i.e., allelochemicals) that might be beneficial or detrimental to their surrounding environment.
Allelochemicals affect both soil quality, plant growth, and development, and their impacts might
be correlated with the recipient plant stage. In most published allelopathic studies, the depressive
effects of the allelochemicals were more pronounced on the seed germination than the plant
growth. To test the congeneric approaches in explaining the role of allelopathy in the invasive
process, we also hypothesized that the allelochemicals released from the exotic Prosopis species
litters have more detrimental effects on the germination of associated species than litters of the
native P. cineraria species. Besides, as most previous studies tested the allelopathy effects in Petri-
dishes, we hypothesized that using potting soils would give more realistic results on the role of
allelopathy in the invasion process than using Petri dishes. These hypotheses are linked to the
second objective presented in the second chapter of this PhD Memory.

Water deficit, temperature, and light are the major environmental factors that limit desert
plants growth and development. Therefore, many desert plants have strategically evolved to cope
with these stressful environmental conditions. Invasive plants developed important evolutionary
adaptive traits that enable them to tolerate high temperatures and drought in the hot arid
environment of the UAE. Exotic Prosopis species are drought, heat and light resistant. So, we also
hypothesized that alien Prosopis are more water use efficient than the native P. cineraria. This

hypothesis is linked with the third objective presented in chapter three of this PhD Memory.
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Plants convert the sunlight into chemical energy during the photosynthetic process, and some of
the light energy is fixed and converted into chemical energy during photosynthesis. However, still,
some cannot be fully utilized and might cause potential damage. This situation is more serious
when plants grow under extreme environments, such as hyper-arid desert conditions. Therefore,
plants have evolved photoprotective mechanisms to counteract the damaging effects of excess light
in hyper-arid desert environments. We hypothesized that the invasive fast-growing Prosopis
species utilize light more efficiently, i.e., reduce the damaging effect of high light radiation in hot
deserts than the slow-growing native P. cineraria. This hypothesis is linked with the fourth

objective presented in chapter four of this PhD Memory.
9. Objectives

An invasive plant is a species that is both non-native and able to establish in a wide range
of environmental conditions, grow faster, and spread to the point of altering plant communities
and ecosystems. The exotic P. juliflora is considered as the most dangerous invasive plant in UAE
and other places worldwide. Its invasion affects the local diversity in addition to underground
water, and more recently, P. juliflora invasion was considered as a key component of climate
change. Invasive P. juliflora, P. pallida, and the native P. cineraria are co-occurring in UAE. The
depressive impacts of the exotic P. juliflora are more pronounced than the other species of the
same genus, especially the native P. cineraria. Therefore, the occurrence of exotic and native P.
cineraria provides a good chance to evaluate the congeneric approach for understanding
mechanisms for the higher detrimental effect of the exotic than native plants. This is especially
important as none of the previous studies tested the impact of the exotic and native species on the
associated native and non-native plants. Also, none of the previous studies assessed the impact of
the allelochemicals of the exotic and native Prosopis in potting soils, which reflects the challenge
facing seeds in natural environments. Furthermore, few studies assessed functional traits, such as
water use and photosynthesis efficiency, of native and exotic plants under the hot hyper-arid
deserts. Therefore, the overall aim of the current study was to quantify the impacts of native and
exotic Prosopis species on native and non-native flora and soil properties, in addition, to assessing
some functional traits of Prosopis species that help understand the invasive ability of Prosopis

species in the hyper-arid desert of UAE.

The specific objectives of the study are to:
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1. Make congeneric comparisons of the impacts of P. juliflora and its congener P. cineraria

on aboveground diversity of weedy and non-weedy plants in the UAE

2. Elucidate allelopathy as a mechanism of invasion success of P. juliflora in its introduced
ranges. This will be through assessing the impact of allelochemicals from the litters on
germination of associated plants in conventional controlled conditions (i.e., in Petri-dishes

in growth chambers) and challenging conditions (i.e., potting soils)
3. Assess the intrinsic water use efficiency of invasive and native Prosopis congeners

4. Assess the thermal energy dissipation, photosynthetic efficiency, carbon gain, and nitrogen

partitioning in invasive and native Prosopis congeners
10. Importance of This Study for the United Arab Emirates (UAE)

UAE is commonly known to be among the hottest places in the world. UAE climate is
mostly dry, with less than 100 mm overall average precipitation per year, and temperatures vary
between very hot in summer and warm in winter. Therefore, species diversity and abundance are
low in these environments. Besides the harsh climatic conditions in the UAE, the invasive P.
juliflora adversely affects the native biodiversity of the UAE. It produces allelochemicals that
significantly reduce diversity and abundance. The invasive P. juliflora has currently formed dense
monocultures in some UAE areas. These dense plantations of P. juliflora resulted in deterioration
of the biodiversity; most native plants under and around the canopy of the P. juliflora are killed.
Among those affected plants is the native P. cineraria. Therefore, understanding the mechanisms
of P. juliflora invasion would help control this invasive species. Besides, defining some native
plants that might be adapted to grow in the allelochemicals produced by P. juliflora would help in

using plants of this species in the reclamation of lands ruined by this species.

Among the other serious impacts of the invasion of P. juliflora are great amounts of pollen
grains that cause allergies to sensitive people. Prosopis juliflora flowers in two periods: from
November to January and March to June. The length of the flowering period and the amount of
pollen generated per reproduction time associated with this invasive plant are higher than that of
the local species. Therefore, the reproduction rate and the sizable pollen mass can greatly increase
the risk of some sickness or allergies. It has been reported that the airborne pollens of this species

can be inhaled through the nose and/or mouth, resulting in sensitization of susceptible people and
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subsequent elicitation of symptoms of respiratory allergic diseases. For example, it was estimated
that 45% of the test patients in the UAE were sensitive to the pollens of Prosopis (Bener et al.,
2002). Therefore, understanding the biology and ecology of the invasive Prosopis species could
help control this species, reducing the risk associated with animal and human health.

In addition, many farms have been invaded by P. juliflora and already ruined. Furthermore,
the very deep roots system of P. juliflora extracts the precious limited water resources in the UAE.
Therefore, it is very important to understand the possible mechanisms enabling P. juliflora to
invade different habitats in the UAE. This would help propose a proper management plan for P.
juliflora populations in the UAE.

The study would help us to understand why some exotic invasive species form mono-
dominant communities in introduced ranges and disproportionately suppress local plant species.
We will gain knowledge on drivers of the invasion success of exotic species. The results would
also allow us to evaluate the future probabilistic competitiveness of P. juliflora and its success or
failure under altered hydrologic regimes due to over withdrawal of groundwater and climate
change and to evaluate P. juliflora future projections. More specifically, results will allow us to
establish a relationship between P. juliflora and hydrological variables to determine.

11. Structure of PhD Memory

This PhD Memory is structured in four chapters which correspond to the four articles
published in scientific journals included in the ISI web knowledge. Below are the names of
the co-authors, the titles of the publication, the reference of the journal, the DOI and a brief

summary in English and Spanish.

Chapter 1: Slate, M., Tsombou, F. M., Callaway, R. M., Inderjit, EI-Keblawy, A. A., 2020. Exotic
Prosopis juliflora suppresses understory diversity and promotes agricultural weeds more than a
native congener. Plant Ecology 221, 659-669. https://doi.org./10.1007/s11258-020-01040-1

Exotic invasive plant species alter ecosystems and locally extirpate native species, and by
doing so alter community structure. Changes in community structure may be particularly important
if invaders promote species with certain traits. For example, the positive effects of most invaders
on soil fertility may promote species with weedy traits, whether native or not. We examined the

effects of two co-occurring Prosopis congeners, the native P. cineraria and the exotic P. juliflora,
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on species identified as “agricultural weeds” and species that were not agricultural weeds in the
United Arab Emirates. When compared to plots in the open, P. cineraria canopies were associated
with lower richness and density of non-weeds while having no impact on agricultural weed species.
In contrast, there was lower richness and densities of non-weeds under canopies of P. juliflora, but
higher densities of agricultural weeds than in the open surrounding the canopies. These patterns
associated with Prosopis congeners and understory plant community composition might be due to
the much higher litter decomposition, if litter is inhibitory, and shallow root biomass under P.
juliflora, or the different soil properties that corresponded with the two Prosopis canopies. In
general, soils contained more nitrogen under P. juliflora than P. cineraria, and both understories
were more fertile than soil in the open. Our results suggest that evolutionary history may play a
role in how exotic invasive species may select for some traits over others in plant communities,

with an exotic invader potentially creating reservoirs of agricultural weeds.

Las especies exdticas de plantas invasoras alteran los ecosistemas y desplazan las especies
nativas locales y, al hacerlo, alteran la estructura de la comunidad evegetal. Los cambios en la
estructura de la comunidad pueden ser particularmente importantes si las especies invasoras
promueven especies con ciertos caracteres espcificos. Por ejemplo, los efectos positivos de la
mayoria de los invasores sobre la fertilidad del suelo pueden promover especies de malezas, ya
sean nativas o no. Examinamos los efectos de dos congéneres de Prosopis concurrentes, la nativa
P. cinerariay la exotica P. juliflora, en especies identificadas como "malezas agricolas" y especies
que no son malezas agricolas en los Emiratos Arabes Unidos. En comparacion con las parcelas
sin cobertura de ambas especies, el dosel de los arboles de P. cineraria se asocia con una menor
riqueza y densidad de no malezas sin afectar a las especies de malezas agricolas. En contraste,
hubo menor riqueza y densidad de no malezas debajo del dosel de P. juliflora, pero mayores
densidades de malezas agricolas que en parcelas sin cobertura. Estos patrones asociados con los
congéneres de Prosopis y la composicion de la comunidad de plantas bajo sus doseles podrian
deberse a la una mayor descomposicion de la hojarasca, si la hojarasca es inhibidora, y a la
biomasa de raices poco profundas bajo P. juliflora, o a las diferentes propiedades del suelo bajo
los dos doseles de Prosopis. En general, los suelos contenian mas nitrégeno bajo P. juliflora que
bajo P. cineraria, y ambos suelos eran mas fértiles que el suelo de las parcelas sin cobertura.
Nuestros resultados sugieren que la historia evolutiva puede desempefiar un papel en como las

especies invasoras exoticas pueden seleccionar algunos caracteres sobre otros en las
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comunidades de plantas y con una invasora exotica podria promover reservorios de malezas

agricolas.

Chapter 2: Tsombou, F. M., El-Keblawy, A. A., Elsheikh, E. A., AbuQamar, S. F., El-Tarabily,
K. A., 2022. Allelopathic effects of native and exotic Prosopis congeners in Petri dishes and
potting soils: assessment of the congeneric approach. Botany 100 (3), 329-339.
https://doi.org/10.1139/cjb-2021-0064

The congeneric approach assesses the relative role of exotic invasive plants compared to
native plants on associated species. However, most studies on seed germination have been
conducted in Petri dishes that do not reflect natural soil conditions. Here, we compared the effects
of different litter extracts of the exotics Prosopis juliflora (Sw.) DC. and P. pallida (Willd.) Kunth,
as well as native P. cineraria (L.) Druce, on seed germination and seedling dry weight of two
weedy plants (Amaranthus graecizans L. and Sisymbrium irio L.) and the native Senecio flavus
(Decne.) Sch.Bip. in both Petri dishes and potted soil experiments. The results indicate that non-
treated seeds (control) of the three species attained more than 95% germination in the Petri dishes
(in vitro). The increase in the litter concentrations of both invasive Prosopis species inhibited the
native Senecio flavus germination and significantly reduced germination and seedling weight of
the weedy A. graecizans and S. irio. Nevertheless, the native P. cineraria extracts had significant
depressive effects on seed germination and seedling growth of the native Senecio flavus but limited
effects on the weedy A. graecizans and S. irio. The results support a greater impact of exotic than
native congener on native plants. To better assess allelopathic effects, it is recommended to not

rely on germination in Petri dishes.

El enfoque congenérico evalia la funcién de las plantas invasoras exoticas en
comparacion con las plantas nativas en las especies asociadas a ellas. La mayoria de los estudios
sobre la germinacion de semillas se han realizado en placas de Petri las cuales no reflejan las
condiciones naturales del suelo. En este estudio, comparamos los efectos de diferentes extractos
de hojarasca de las especies exoticas Prosopis juliflora (Sw.) DC. y P. pallida (Willd.) Kunth, asi
como la nativa P. cineraria (L.) Druce, sobre la germinacion de semillas y el peso seco de las
plantulas de dos malezas (Amaranthus graecizans L. y Sisymbrium irio L.) y la nativa Senecio
flavus (Decne.) Sch. Bip. tanto en placas de Petri como en experimentos con tierra en macetas.

Los resultados indican que las semillas no tratadas (control) de las tres especies alcanzaron mas
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del 95% de germinacion en las cajas de Petri (in vitro). El aumento en las concentraciones de
hojarasca de ambas especies invasoras de Prosopis inhibié la germinacion de la nativa S. flavus
y redujo significativamente la germinacion y el peso de las plantulas de las malas hierbas A.
graecizans y S. irio. Sin embargo, los extractos de la nativa P. cineraria tuvieron efectos
depresores significativos sobre la germinacion de semillas y el crecimiento de plantulas de S.
flavus, pero efectos limitados sobre las malezas A. graecizans y S. irio. Los resultados respaldan
un mayor impacto de los congéneres exéticos respect a los nativos en las plantas nativas. Para
evaluar mejor los efectos alelopaticos, se recomienda no depender de la germinacion en placas
de Petri.

Chapter_3: Hussain, M. I., El-Keblawy, A. A. and Tsombou, F. M., 2019. Leaf age, canopy
position, and habitat affect the carbon isotope discrimination and water-use efficiency in three Cs
leguminous Prosopis species from a hyper-arid climate. Plant 8 (10), 1-11.
https://doi.org/10.3390/plants8100402

The present study involved measurements of the stable carbon isotope composition (§*3C)
and intrinsic water-use efficiency (IWUE) of three Csleguminous (Prospis juliflora, P. cineraria,
and P. pallida) foliage at different canopy positions (east and west) from saline (SLH) and non-
saline habitats (NSH). Integrated measurements of the stable carbon isotope composition (513C)
of plant tissue were broadly used to study iWUE, taking into consideration the effect of leaf age
and canopy position on C isotope discrimination. Mature foliage of P. pallida from an SLH with
a west canopy position had significantly higher *3C (less negative) than that from NSH. On the
west side, AYC values ranged from 17.8% (P. pallida) to 22.31% (P. juliflora) for a west canopy
position, while they varied from 18.05% (P. pallida) to 22.4% (P. cineraria) on the east canopy
side. Because the patterns are similar for the three Prosopis species, the difference in carbon
isotope discrimination (A*C) between the canopy position (west and east) is relatively consistent
among species and sites, ranging between 17.8 + 4.43% for the young foliage in the west and 18.05
+ 4.35% for the east canopy position. The IWUE of P. pallida was twice that of P. cineraria. The
IWUE of P. juliflora was higher from NSH than SLH. Mature leaves possessed a higher iWUE
than the young leaves. We concluded that exotic P. juliflora and P. pallida have higher iWUE
values than the native P. cineraria, which might be due to the rapid below-ground development
of plant roots in the Arabian deserts of the United Arab Emirates (UAE). This could enable the

alien species access to deeper humid soil layers or water resources.
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El presente estudio se basa en mediciones de la composicion de iso6topos de carbono
estables (613C) y la eficiencia intrinseca del uso del agua (iWUE) de tres leguminosas C3
(Prosopis juliflora, P. cinerariay P. pallida) hojas en diferentes posiciones del dosel (este y oeste)
de hébitats salinos (SLH) y no salinos (NSH). Las mediciones integradas de la composicién de
isdtopos de carbono estables (613C) del tejido vegetal se utilizaron ampliamente para estudiar
IWUE, teniendo en cuenta el efecto de la edad de la hoja y la posicion del dosel en la
discriminacion de isdtopos de C. Las hojas maduras de P. pallida de un SLH con una posicién de
dosel occidental tienen un §13C significativamente mayor (menos negativo) que el de NSH. En el
lado oeste, los valores de A13C oscilaron entre 17,8 % (P. pallida) y 22,31 % (P. juliflora) para
una posicion de dosel occidental, mientras que variaron entre 18,05 % (P. pallida) y 22,4 % (P.
cineraria) en el lado este del dosel. Debido a que los patrones son similares para las tres especies
de Prosopis, la diferencia en la discriminacion de isotopos de carbono (A13C) entre la posicion
del dosel (oeste y este) es relativamente consistente entre especies y sitios, variando entre 17.8 £
4.43% para las hojas jovenes en el oeste y 18,05 + 4,35% para la posicion este del dosel. La iWUE
de P. pallida fue el doble que la de P. cineraria. El iWUE de P. juliflora fue mayor en NSH que
en SLH. Las hojas maduras poseen una mayor iWUE que las hojas jovenes. Concluimos que las
exaticas P. juliflora y P. pallida tienen valores de iIWUE mas altos que la nativa P. cineraria, lo
que podria deberse al rapido desarrollo subterraneo de las raices de las plantas en los desiertos
arabes de los Emiratos Arabes Unidos (EAU). Esto podria permitir que las especies exoticas

accedan a capas de suelo himedo mas profundas o0 a mas recursos hidricos.

Chapter 4: Hussain, M. I., Tsombou, F. M. and El-Keblawy, A. A., 2020. Surface canopy position
determines the photosystem Il photochemistry in invasive and native Prosopis congeners at
Sharjah desert, UAE. Forests 11 (7), 1.20. https://doi.org/10.3390/f11070740

Plants have evolved photoprotective mechanisms in order to counteract the damaging
effects of excess light in hyper-arid desert environments. We evaluated the impact of surface
canopy positions on the photosynthetic adjustments and chlorophyll fluorescence attributes
(photosystem 11 photochemistry, quantum vyield, fluorescence quenching, and photon energy
dissipation), leaf biomass and nutrient content of sun-exposed leaves at the south east (SE canopy
position) and shaded-leaves at the north west (NW canopy position) in the invasive Prosopis
juliflora and native P. cineraria in the extreme environment (hyper-arid desert area, United Arab

Emirates (UAE)). The main aim of this research was to study the photoprotection mechanism in
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invasive and native Prosopis congeners via the safe removal—as thermal energy—of excess solar
energy absorbed by the light collecting system, which counteracts the formation of reactive oxygen
species. Maximum photosynthetic efficiency (Fv/Fm) from dark-adapted leaves in P. juliflora and
P. cineraria was higher on NW than SE canopy position while insignificant difference was
observed within the two Prosopis congeners. Greater quantum yield was observed in P. juliflora
than P. cineraria on the NW canopy position than SE. With the change of canopy positions from
NW to SE, the reduction of the PSII reaction center activity in the leaves of both Prosopis
congeners was accelerated. On the SE canopy position, a significant decline in the electron
transport rate (ETR) of in the leaves of both Prosopis congeners occurred, which might be due to
the blockage of electron transfer from QA to QB on the PSII acceptor side. On the SE canopy
position; Prosopis leaves dissipated excess light energy by increasing non-photochemical
quenching (NPQ). However, in P. cineraria, the protective ability of NPQ decreased, which led
to the accumulation of excess excitation energy (1 — qP)/NPQ and the aggravation of
photoinhibition. The results also explain the role of different physiological attributes contributing
to invasiveness of P. juliflora and to evaluate its liaison between plasticity of these characters and

invasiveness.

Las plantas han desarrollado mecanismos fotoprotectores para contrarrestar los efectos
dafiinos del exceso de luz en ambientes desérticos hiperaridos. Evaluamos el impacto de las
posiciones de la superficie del dosel sobre los ajustes fotosintéticos y los atributos de fluorescencia
de la clorofila (fotoquimica del fotosistema 11, rendimiento cuéntico, extincion de la fluorescencia
y disipacion de energia fotonica), la biomasa de las hojas y el contenido de nutrientes de las hojas
expuestas al sol en el sureste (dosel SE) y hojas sombreadas en el noroeste (dosel NW) en la
invasora Prosopis juliflora y la nativa P. cineraria en el ambiente extremo (area desertica
hiperarida, Emiratos Arabes Unidos (EAU)). El objetivo principal de esta investigacion fue
estudiar el mecanismo de fotoproteccion en congéneres de Prosopis invasoras y nativas a través
de la eliminacién segura, como energia térmica, del exceso de energia solar absorbida por el
sistema de obtencion de luz, que contrarresta la formacion de especies reactivas de oxigeno. La
eficiencia fotosintética maxima (Fv/Fm) de las hojas adaptadas a la oscuridad en P. julifloray P.
cineraria fue mayor en la posicion del dosel NW que en la SE, mientras que se observé una
diferencia insignificante dentro de los dos congéneres de Prosopis. Se observdé un mayor

rendimiento cuantico en P. juliflora que en P. cineraria en la posicion de dosel NW que en SE.
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Con el cambio de posicion del dosel de NW a SE, se aceler0 la reduccion de la actividad del centro
de reaccion PSII en las hojas de ambos congéneres de Prosopis. En la posicion del dosel SE,
ocurrié una disminucién significativa en la tasa de transporte de electrones (ETR) en las hojas de
ambos congéneres, lo que podria deberse al bloqueo de la transferencia de electrones de QA a
QB en el lado del aceptor de PSII. En la posicion SE; Las hojas de Prosopis disiparon el exceso
de energia luminosa al aumentar el enfriamiento no fotoquimico (NPQ). Sin embargo, en P.
cineraria, la capacidad protectora de NPQ disminuyo, lo que condujo a la acumulacion de un
exceso de energia de excitacion (I — qP)/NPQ y al agravamiento de la fotoinhibicion. Los
resultados también explican el papel de diferentes atributos fisioldgicos que contribuyen a la
invasividad de P. juliflora y evaltan el vinculo entre la plasticidad de estos caracteres y la

invasividad.
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CONCLUSIONS

1. Congeneric studies comparing the effects of the invasive Prosopis juliflora and the
native P. cineraria on (1) richness and density of the agricultural and non-agricultural
weeds and on (2) soil properties under their canopies shown that:

(1) P. juliflora promotes agricultural weeds and strongly suppresses the non-
agriculturals. The opposite trends were found under the canopies of the native

P. cineraria.

(2) The densityand richness of the non-agricultural weeds were greater at the

margins of P. cineraria, but not underneath the canopies.

(3) These effects might be due to the inhibitory of the decompose litter and the

higher density of root biomass under P. juliflora compared with P. cineraria.

(4) Soil fertility beneath the two species was higher compared to the open areas.
In general, soils contained more nitrogen under P. juliflora than under P.

cineraria.

1. Estudios congenéricos que compararon los efectos de la invasora Prosopis juliflora y la
nativa P. cineraria en (1) la riqueza y densidad de las malas hierbas agricolas y no

agricolas y en (2) las propiedades del suelo debajo de sus copas demostraron que:

(1) P. juliflora promueve las malas hierbas agricolas y suprime fuertemente las no
agricolas. Las tendencias opuestas se encontraron bajo las copas de los arboles

nativos de P. cineraria.

(2) Ladensidad y riqueza de malas hierbas no agricolas fue mayor en los margenes

de las copas de P. cineraria.

(3) Estos efectos podrian deberse a la inhibicion ejercida por la descomposicion
de la hojarasca y a la mayor densidad de biomasa de raices bajo P. juliflora en

comparacion con P. cineraria.

(4) La fertilidad del suelo debajo de las dos especies fue mayor en comparacion con areas
abiertas. En general, los suelos contenian mas nitroégeno bajo P. juliflora que bajo P.

cineraria.
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2. Congeneric studies used to asses the allelochemical effects of the invasive P. juliflora and P.
pallida and the native P. cineraria on seed germination and seedling of weedy Amaranthus

graecizans and Sisymbrium irio and the native Senecio flavus shows that:

(1) The invasive Prosopis reduce seed germination and seedling growth on the weedy and

native species.

(2) The native P. cineraria had significant depressive effects in native species and limited

in the weedy.

2. Estudios congenéricos utilizados para evaluar los efectos aleloquimicos de las invasoras P.
juliflora y P. pallida y la nativa P. cineraria en la germinacion de semillas y plantulas de las
hierbas Amaranthus graecizans y Sisymbrium irio y la especie nativa Senecio flavus muestran

que:

(1) Las especies invasoras de Prosopis reducen la germinacion de las semillas y el

crecimiento de las plantulas en las hierbas y en las especies nativas.

(2) La P. cineraria nativa tuvo efectos depresivos significativos en las especies nativas y

limitados en las hierbas.

3. Congeneric studies comparing the intrinsic water use (IWUE) and the photosynthesis efficiency

of the invasive P. juliflora and P. pallida and the native P. cinerari indicated that:

(1) Invasive Prosopis have higher iWUE values than the native P. cineraria,
possibly due to the rapid below-ground development of invasive species roots
in dry deserts. This could enable the invasive species to access deeper humid

soil or water resources.

(2) The invasive P. juliflora maintains a slight lower but stable photosynthetic
efficiency than the native P. cineraria, indicating that trait could not be held

responsible for driving the inavasive success of P. juliflora.

(3) The non-photochemical fluorescence quenching value was higher in P. juliflora
than in P. cineraria, indicating that the high accumulation of excess excitation

energy in P. cineraria exacerbates the photoinhibition effects.
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2. Estudios congenéricos que compararon el uso intrinseco del agua (iIWUE) y la eficiencia
de la fotosintesis de las invasoras P. julifloray P. pallida y la nativa P. cinerari indicaron

que:

(1) Las especies invasoras de Prosopis tienen valores de iWUE més elevados que
la nativa P. cineraria, posiblemente debido al rapido desarrollo subterraneo de las
raices de las especies invasoras en los desiertos secos. Esto podria permitir que las

especies invasoras accedan a suelos himedos més profundos o a recursos hidricos.

(2) La invasora P. juliflora mantiene una eficiencia fotosintética ligeramente més
baja, pero estable que la nativa P. cineraria, lo que indica que este caracter no

puede ser considerado responsable de impulsar el éxito invasivo de P. juliflora.

(3) El valor de extincion de la fluorescencia no fotoquimica fue mayor en P.
juliflora que en P. cineraria, lo que indica que la alta acumulacién del exceso de

energia de excitacion en P. cineraria exacerba los efectos de fotoinhibicion.
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Abstract Exotic invasive plant species alter ecosys-
tems and locally extirpate native plant species, and by
doing so alter community structure. Changes in
community structure may be particularly important
if invaders promote species with certain traits. For
example, the positive effects of most invaders on soil
fertility may promote species with weedy traits,
whether native or not. We examined the effects of
two co-occurring Prosopis congeners, the native P.
cineraria and the exotic invader P. juliflora, on species
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identified as “agricultural weeds” and species that
were not agricultural weeds in the United Arab
Emirates. When compared to plots in the open, P.
cineraria canopies were associated with lower rich-
ness and density of non-weeds while having no impact
on agricultural weed species. In contrast, there was
lower richness and densities of non-weeds under
canopies of P. juliflora, but higher densities of
agricultural weeds than in the open surrounding the
canopies. These patterns associated with Prosopis
congeners and understory plant community composi-
tion might be due to the much higher litter deposition,
if litter is inhibitory, and shallow root biomass under
P. juliflora, or the different soil properties that
corresponded with the two Prosopis canopies. In
general, soils contained more nitrogen under F.
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Abstract: The congeneric approach assesses the relative role of exotic invasive plants compared to native
plants on associated species. However, most studies on seed germination have been conducted in Petri dishes
that do not reflect natural soil conditions. Here, we compared the effects of different litter extracts of the
exotics Prosopis juliflora (Sw.) DC. and Prosopis pallida (Willd.) Kunth, as well as native Prosopis cineraria (L.) Druce,
on seed germination and seedling dry weight of two weedy plants (Amaranthus graecizans L. and Sisymbrium irio
L.) and the native Senecio flavus (Decne.) Sch.Bip. in both Petri dishes and potted soil experiments. The results
indicate that non-treated seeds (control) of the three species attained more than 95% germination in the Petri
dishes (in vitro). The increase in the litter concentrations of both invasive Prosopis species inhibited the native
Senecio flavus germination and significantly reduced germination and seedling weight of the weedy A. graecizans
and Sisymbrium irio. Nevertheless, the native P. cineraria extracts had significant depressive effects on seed
germination and seedling growth of the native Senecio flavus but limited effects on the weedy A. graecizans and
Sisymbrium irio. The results support a greater impact of exotic than native congener on native plants. To better
assess allelopathic effects, it is recommended to not rely on germination in Petri dishes.

Key words: allelopathy, congeneric approach, exotic plants, germination, invasive species, Prosopis species.

Résumé : L'approche congénérique évalue le réle relatif des plantes exotiques envahissantes comparative-
ment aux plantes indigénes sur les espéces associées. Cependant, la plupart des études sur la germination des
graines ont ¢té réalisées dans des boites de Petri qui ne refletent pas les conditions naturelles du sol. Ici, les
auteurs ont comparé les effets de différents extraits de litiere des espéces exotiques Prosopis juliflora (Sw.) DC.
et Prosopis pallida (Willd.) Kunth et de 'espéce indigéne Prosopis cineraria (L) Druce sur la germination des
graines et le poids sec des semis de deux espéces adventices (Amaranthus graecizans L. et Sisymbrium irio L.) et de
Pespéce indigéne Senecio flavus (Decne.) Sch.Bip. lors d’expériences en boites de Petri et de sol en pot. Les résul-
tats indiquent que les graines non traitées (controle) des trois espéces atteignaient plus de 95 % de germina-
tion dans les boites de Petri (in vitro). L'augmentation des concentrations de litiére des deux espéces
envahissantes de Prosopis inhibait la germination de Senecio flavus indigéne et réduisait de maniére significa-
tive la germination et le poids des semis des espéces adventices A. graecizans et Sisymbrium irio. Néanmoins, les
extraits de P. cineraria indigéne exercaient des effets dépressifs significatifs sur la germination des graines et
la croissance des semis de Senecio flavus indigéne, mais des effets limités sur les espéces adventices A. graecizans
et Sisymbrium irio. Les résultats confirment un impact plus important des congéneéres exotiques que des congé-
néres indigénes sur les plantes indigenes. Il est recommandé de ne pas se fier principalement a la germination
dans des boites de Petri pour évaluer les effets allélopathiques. [Traduit par la Rédaction)]
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Abstract: The present study involved measurements of the stable carbon isotope composition (613QC)
and intrinsic water-use efficiency (iWUE) of three C3 leguminous Prosopis spp. (P. juliflora, P. cineraria,
and P. pallida) foliage at different canopy positions (east and west) from saline (SLH) and non-saline
habitats (NSH). Integrated measurements of the stable carbon isotope composition (513C) of plant
tissue were broadly used to study iWUE, taking into consideration the effect of leaf age and canopy
position on C isotope discrimination. Mature foliage of P. pallida from an SLH with a west canopy
position had significantly higher 513C (less negative) than that from NSH. On the west side, AI3C
values ranged from 17.8%.o (P. pallida) to 22.31%. (P. juliflora) for a west canopy position, while they
varied from 18.05%0 (F. pallida) to 22.4%. (P. cineraria) on the east canopy side. Because the patterns are
similar for the three Prosopis species, the difference in carbon isotope discrimination (A13C) between
the canopy position (west and east) is relatively consistent among species and sites, ranging between
17.8 + 4.43%0 for the young foliage in the west and 18.05 + 4.35%. for the east canopy position.
The iWUE of P. pallida was twice that of P. cineraria. The iWUE of P, juliflora was higher from NSH
than SLH. Mature leaves possessed a higher iWUE than the young leaves. We concluded that exotic
P. juliflora and P. pallida have higher iWUE values than the native P. cineraria, which might be due to the
rapid below-ground development of plant roots in the Arabian deserts of the United Arab Emirates
(UAE). This could enable the alien species access to deeper humid soil layers or water resources.

Keywords: carbon isotope composition; leaf C; leaf N; intrinsic water-use efficiency; canopy position;
leaf age

1. Introduction

The element carbon possesses three naturally occurring isotopes: 12C, 13C, and ™C. Usually,
the focus is on the first two carbon forms, which are stable isotopes (12C and 13C), because they
are differently fractionated by photosynthetic pathways. A difference in isotope assimilation into
the plant structure is mainly attributed to a difference in the diffusion rates of 12C0O, and 13CO,
during the photosynthetic assimilation of CO5, in conjunction with carboxylation enzyme preference
for one isotopic form of carbon dioxide over another [1]. Photosynthetic assimilations of CO; and
carboxylation enzyme preference are dependent upon the photosynthetic mechanisms that each
plant uses—either C3 or C4 in this case. In regards to C3 plants, Rubisco enzymes demonstrate

Plants 2019, 8, 402; doi:10.3390/plants8100402 www.mdpi.comfjournal/plants
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Abstract: Plants have evolved photoprotective mechanisms in order to counteract the damaging
effects of excess light in hyper-arid desert environments. We evaluated the impact of surface canopy
positions on the photosynthetic adjustments and chlorophyll fluorescence attributes (photosystem II
photochemistry, quantum yield, fluorescence quenching, and photon energy dissipation), leaf biomass
and nutrient content of sun-exposed leaves at the south east (SE canopy position) and shaded-leaves
at the north west (NW canopy position) in the invasive Prosopis juliflora and native Prosopis cineraria
in the extreme environment (hyper-arid desert area, United Arab Emirates (UAE)). The main aim of
this research was to study the photoprotection mechanism in invasive and native Prosopis congeners via
the safe removal—as thermal energy—of excess solar energy absorbed by the light collecting system,
which counteracts the formation of reactive oxygen species. Maximum photosynthetic efficiency
(Fy/Fy) from dark-adapted leaves in P. juliflora and P. cineraria was higher on NW than SE canopy
position while insignificant difference was observed within the two Prosopis congeners. Greater
quantum yield was observed in P. juliflora than P. cineraria on the NW canopy position than SE. With
the change of canopy positions from NW to SE, the reduction of the PSII reaction center activity
in the leaves of both Prosopis congeners was accelerated. On the SE canopy position, a significant
decline in the electron transport rate (ETR) of in the leaves of both Prosopis congeners occurred, which
might be due to the blockage of electron transfer from QA to QB on the PSII acceptor side. On the SE
canopy position; Prosopis leaves dissipated excess light energy by increasing non-photochemical
quenching (NPQ). However, in P. cineraria, the protective ability of NPQ decreased, which led to
the accumulation of excess excitation energy (1 — qP)/INPQ and the aggravation of photoinhibition.
The results also explain the role of different physiological attributes contributing to invasiveness of
P. juliflora and to evaluate its liaison between plasticity of these characters and invasiveness.

Keywords: chlorophyll a fluorescence; leaf C; leaf IN; thermal energy dissipation; CO; assimilation
rate; Prosopis species; photosynthetic efficiency

1. Introduction

The plants convert the sunlight into chemical energy during the photosynthetic process and some
of the light energy is fixed and converted into chemical energy during the photosynthesis, but still some
cannot be fully utilized and might cause potential damage [1-3]. Whenever the light energy can be
converted into chemical energy safely, there will be no hazard to plant metabolism. However, if sunlight
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