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Resumen

Introducción

Los rápidos avances en la tecnología de secuenciación de próxima generación (NGS del inglés
Next-generation Sequencing), y el consiguiente crecimiento y disponibilidad de datos biológicos [1,
2], han llevado a las organizaciones a enfrentarse a nuevos desafíos que le permitan analizar y
descubrir información relevante, más allá de los obtenidos por los métodos tradicionales. De este
modo, los profesionales clínicos pueden combinar los datos biológicos con otra información clínica
y específica del paciente, como las historias clínicas electrónicas, los hábitos, la ascendencia y los
factores ambientales, lo que les permite analizar y encontrar información pertinente más allá de lo
que puede obtenerse mediante enfoques convencionales.

El sector sanitario genera mucha información sobre evaluaciones médicas, declaraciones de
pacientes, tratamientos y prescripciones [3]. No obstante, el diagnóstico de las enfermedades es
una tarea difícil en la medicina moderna. Comprender el diagnóstico preciso de los pacientes
mediante el examen y la evaluación médica es la responsabilidad más crítica de estos profesionales.

Los datos clínicos proceden de numerosas fuentes de información, como los datos obtenidos
mediante diversas técnicas masivas de secuenciación paralela del ADN, datos fisiológicos como el
electrocardiograma, el encefalograma [4], repositorios biomédicos e incluso redes sociales públicas
y científicas [5]. Entre estas fuentes también se encuentran las imágenes médicas, que comprenden
la mayor parte de los datos de los pacientes (sobre todo en el caso de los pacientes oncológi-
cos), los factores de riesgo de la enfermedad, los datos multiómicos, los regímenes/procedimientos
terapéuticos y los datos de seguimiento.

Asimismo, se utilizan técnicas de recogida de datos a través de diversos sensores (tecnologías
del internet de las cosas (IoT del inglés Internet of Things)). Entre otros, la recogida de datos a
través de sensores de acelerometría, que permiten monitorizar la actividad de los pacientes [6, 7] e
incluso detectar una posible caída de los mismos [8].

Este rápido aumento de los datos clínicos ha puesto de manifiesto la necesidad de desarrol-
lar nuevas y sofisticadas herramientas para la gestión y el análisis de datos en la investigación
clínica y la medicina personalizada. Los sistemas de gestión de ensayos clínicos (CTMS del inglés
Clinical Trial Management System) se utilizan para recuperar datos significativos de los ensayos
clínicos, obtener una visibilidad temprana de las enfermedades y encontrar terapias alternativas.
Con la ayuda de estas herramientas informáticas de apoyo a la investigación clínica, es posible
adquirir nuevos conocimientos relacionados con la salud y descubrir nuevos medicamentos [9]. Es-
tas aportaciones también pueden consolidarse en bases de datos para contribuir a otros estudios
farmacológicos de carácter investigativo, para realizar minería e ingeniería de datos y para apoyar
a los expertos en el diagnóstico. En consecuencia, los CTMS se han convertido en una herramienta
de apoyo esencial para la investigación clínica [10]. Estas herramientas traen consigo la posibili-
dad de recopilar información clínica relevante y realizar diversas técnicas de análisis que ayudan a
comprender el mecanismo molecular y las posibles terapias de las enfermedades humanas e incluso
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proporcionan información biológica y médica que permite una atención médica individualizada.
Cabe destacar que la gestión de los datos clínicos que intervienen en los estudios de NGS es

una tarea difícil, dados los continuos obstáculos que se encuentran en el mantenimiento del sistema
durante la inscripción de los pacientes, el proceso de adquisición de muestras del estudio clínico y
los diferentes pasos para la preparación de los flujos de trabajo de procesamiento de datos clínicos.
La mayoría de estas dificultades se deben a la naturaleza dinámica y heterogénea de los datos
clínicos. Igualmente, existe una necesidad constante por parte de los investigadores en este campo
de ampliar las funcionalidades de estos CTMS e integrar los datos de las operaciones clínicas en
múltiples sistemas e incluso ser capaces de trasladarlos a diferentes tipos de muestras. Diversas
organizaciones que participan en ensayos clínicos, especialmente en centros médicos académicos,
tienen una gestión de datos y un control de calidad complejos [11, 12].

No obstante, la mayoría de las herramientas clínicas carecen de estas características, ya que son
exclusivamente competentes para cubrir casos específicos y están limitadas para adaptarse a los
continuos cambios en la práctica de los ensayos clínicos. A este respecto, el principal problema de
los CTMS de código abierto es que es difícil personalizar un flujo de trabajo que no sea propio de
una única solución [13, 14]. Por lo general, estos sistemas no permiten la integración de diferentes
fuentes heterogéneas de datos clínicos. Por lo tanto, es difícil que un CTMS de este tipo gestione
una variedad de ensayos clínicos, lo que suele ser necesario en la mayoría de centros médicos.
Resulta una tarea difícil comprender un fenómeno como una enfermedad con un solo tipo de
datos. Es por ello que la mayoría de estos sistemas tienen limitaciones de diseño debido a la
naturaleza heterogénea y dinámica de los datos clínicos, ya que actualmente no pueden satisfacer
las necesidades de adaptación a los continuos cambios en la práctica de los ensayos. En este
sentido, es un hecho que se necesita más investigación para mejorar el acceso y la integración de
datos sanitarios heterogéneos con el fin de mejorar las necesidades no cubiertas en la atención
médica de pacientes.

Por otro lado, los modelos de Inteligencia Artificial (IA) son cada vez más predominantes en
la investigación biomédica y la práctica clínica [15]. Estos modelos se han mostrado prometedores
en muchos campos, como la estratificación y el modelado de riesgos, la detección personalizada,
el diagnóstico de enfermedades moleculares, el pronóstico y la predicción de la respuesta a la
terapia [16, 17]. La IA puede ser impulsada por la convergencia de conjuntos de datos clínicos
anotados a gran escala, los avances en el aprendizaje automático (ML del inglés Machine Learning),
las herramientas de software de código abierto, el rápido aumento en la potencia de procesamiento,
y el almacenamiento en la nube. A tal efecto, la integración de los sistemas de IA en los CTMS
es esencial, ya que la IA puede lograr un éxito especializado en algunas tareas sanitarias en las
que puede ayudar a los médicos a determinar el pronóstico de enfermedades y los procedimientos
quirúrgicos. Por ello, los CTMS deben realizar análisis y predicciones exhaustivas de los datos para
obtener indicadores de calidad. La combinación de IA y CTMS se propone como un gran avance
en la práctica de la medicina en un futuro próximo.

A pesar de los tremendos avances llevados a cabo en la tecnología NGS y las herramientas
de software bioinformático, existen limitaciones para hacer frente a enfermedades complicadas y
genéticamente heterogéneas. En lo que a nosotros concierne, actualmente muy pocos sistemas
permiten analizar los datos clínicos de los pacientes para diagnosticar enfermedades, por consigu-
iente, estos sistemas no son capaces de cubrir el “gap” existente entre bioinformáticos, genetistas
moleculares y clínicos. En este respecto, la integración de múltiples flujos de datos clínicos podrían
tener un impacto en la práctica de los ensayos. Los algoritmos de ML pueden utilizar enfoques de
integración de datos de varios conjuntos de datos biomédicos para obtener resultados más precisos
y mejorar la comprensión de los sistemas biomédicos. Aun así, la mayoría de los CTMS no tienen
en cuenta la importancia de la integración de datos en biomedicina y sólo consideran la variación
de un único tipo de datos. En este sentido, pueden perderse muchos patrones esenciales que sólo
pueden observarse al considerar múltiples niveles de datos biomédicos.
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Por lo tanto, es necesario integrar distintas fuentes de datos para que los algoritmos puedan
hacer detección de enfermedades y predicciones aún mas precisas [18]. Todavía hay margen de
mejora de la tendencia actual hacia la medicina de precisión mediante el diseño de métodos per-
sonalizados con efectos significativos en las vías diagnósticas y terapéuticas [19].

Motivación

De acuerdo con el “Hype Cycle” de Gartner [20], hay un reto en el campo de la gestión y adminis-
tración de datos con respecto a la integración de los datos en las herramientas software actuales.
Gartner subraya la importancia de la integración de datos en las herramientas: “Las organiza-
ciones necesitan herramientas de integración de datos para apoyar la gestión de datos distribuidos
y proporcionar datos a través de diversos casos de uso. Esto incluye la integración de datos para
apoyar la analítica, la ciencia de datos, la integración de aplicaciones, la preparación de datos
de autoservicio, etc.”. En este sentido, ofrece flexibilidad, escalabilidad y extensibilidad en la in-
fraestructura para garantizar que los datos se puedan consumir en múltiples casos de uso en las
instalaciones, en varias nubes o en cualquier forma de híbrido. Asimismo, facilitará la integración
de estas herramientas con otros sistemas y habilitará la interconexión de algoritmos. En esta
Tesis hemos abordado este reto creando FIMED, una herramienta software de soporte al experto
clínico que permite la recolección de datos clínico de sistemas y fuentes de origen dispares para
convertirlos en información significativa y valiosa. Esta herramienta ayuda al investigador clínico al
proceso de integración de datos, contribuyendo al avance en la gestión de datos de ensayos clínicos.
Asimismo, incluye algoritmos de análisis para mejorar la investigación, aprovechando al máximo
la información clínica recopilada.

Como objetivo transversal de esta Tesis, se han investigado e intregado nuevas propuestas
algorítmicas que utilicen este tipo de datos, enfocadas al ML y optimización, por ser de especial
interés en los estudios de investigación clínica. En este sentido, el objetivo es simular la fisiología
de los sistemas vivos en los sistemas biológicos como un conjunto de componentes que interactúan,
más que como un conjunto de componentes físicos individuales. Este enfoque tiene la ventaja
práctica de proporcionar información sobre la regulación u optimización de elementos específicos
del sistema, teniendo en cuenta su impacto en el conjunto del mismo. Además, es esencial modelar
las interacciones entre los numerosos componentes que conforman un sistema biológico de este
tipo para comprender mejor el complicado comportamiento global observado y los procesos físicos
subyacentes. El empleo de enfoques computacionales modernos que puedan llevar a cabo un estudio
integrado de fuentes de datos tan dispares es crucial y desafiante al mismo tiempo para aprender
los respectivos modelos a gran escala.

Todas estas razones nos llevan a definir la principal hipótesis de esta Tesis, “La integración
automática de datos clínicos heterogéneos procedentes de múltiples fuentes dará lugar a análisis
avanzados y a la generación de nuevas propuestas algorítmicas que utilicen este tipo de datos. Los
datos biomédicos se combinarán como variables predictoras para permitir un modelo completo y
adquirir resultados más relevantes”

Tradicionalmente, la medicina general debe adaptar los tratamientos en función de las carac-
terísticas clínicas y biológicas del paciente para ofrecer una atención óptima. En los últimos años,
muchos estudios han puesto sus esfuerzos en el camino hacia la medicina de precisión [21, 22, 23,
24, 25]. Sin embargo, siguen existiendo muchas lagunas de investigación cuando se intenta abarcar
los problemas de un ecosistema de datos biomédicos. Varios cuellos de botella frenan la transición
de la medicina convencional a la personalizada. En este sentido, la investigación presentada en
esta Tesis se llevó a cabo para responder a las siguientes preguntas de investigación en la gestión
y el análisis de datos biomédicos hacia la medicina de precisión.
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Cuestiones de Investigación

• Q1: ¿Es suficiente una única fuente de información clínica para explicar enfermedades com-
plejas como el cáncer?

• Q2: ¿Cómo se puede mejorar la inferencia e interpretación de redes biológicas complejas
para extraer información útil que ayude al diagnóstico de enfermedades o al descubrimiento
de nuevos biomarcadores?

• Q3: ¿Es posible mejorar la calidad de los métodos de IA en el ecosistema de datos biomédicos
aprovechando grandes cantidades de datos sin etiquetar recogidos en entornos Big Data?

• Q4: ¿Se puede conceder al experto clínico la capacidad de interpretar los resultados de
modelos complejos de IA?

Asimismo, estas principales cuestiones de investigación se asocian a diversos retos que se llevan a
cabo en problemas del mundo real en un entorno de datos biomédicos.

Retos de Investigación

• Ch1: Disponibilidad y análisis de datos biomédicos. Es necesario diseñar nuevos métodos
y herramientas de software dedicados a mejorar la recopilación de datos, la gestión y el
análisis avanzado de datos biomédicos utilizando diferentes estrategias. Aprovechar las nuevas
herramientas de integración de datos clínicos y las estrategias de análisis puede impulsar
potencialmente un cambio real en las terapias personalizadas [24].

• Ch2: Se necesitan nuevos métodos computacionales y experimentales para inferir y explicar
las redes biológicas. Es un reto reconstruir las redes biológicas e interpretarlas para los
investigadores clínicos debido a la complejidad que presenta la alta dimensión de los datos
biomédicos [26].

• Ch3: Se necesitan nuevas estrategias de IA que sean capaces de proporcionar resultados
confiables mediante el entrenamiento de modelos con pequeños conjuntos de datos clínicos
etiquetados e incluso con conjunto de datos sin etiquetar. Un reto común es la escasez de
datos etiquetados. Es necesario diseñar nuevas estrategias que consideren casos de uso con
escasez de datos etiquetados [27].

• Ch4: La explicabilidad de la toma de decisiones automatizada en la medicina de precisión.
Las sofisticadas técnicas de aprendizaje automático han logrado recientemente un gran éxito
predictivo para muchas aplicaciones biomédicas. Sin embargo, es un reto explicar el resultado
clínico de este modelo de caja negra [28]. Esta explicabilidad es esencial para el ámbito clínico,
donde las decisiones afectarán a la vida de los pacientes.

Por lo tanto, la principal motivación de esta Tesis es indagar en los principales retos definidos
anteriormente con el objetivo de ayudar a mejorar el ecosistema de datos biomédicos existente
hacia una medicina de precisión.

Fases y objetivos

Esta Tesis se centra en contribuir con soluciones realistas a los sistemas de investigación clínica
a través del diseño y desarrollo de una herramienta de software de gestión de ensayos clínicos
junto con la aplicación de técnicas de IA y optimización para el análisis de datos. Por lo tanto, el
objetivo principal de este trabajo es hacer frente a los problemas del mundo real en un ecosistema
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de datos biomédicos. En el desarrollo de la presente Tesis se han abarcado problemas reales, entre
ellos: la detección de enfermedades y búsqueda de nuevos biomarcadores para predecir la eficacia
de ciertos tratamientos de cáncer, monitorización de pacientes mediante sensores y análisis de
imágenes cancerígenas. En este sentido, se ha trabajado con diferentes tipos de datos clínicos, como
pueden ser: datos de expresión génica, imágenes biomédicas, información clínica de pacientes, datos
provenientes de sensores, datos de series temporales, etc. Asimismo, se han desarrollado nuevas
herramientas y propuestas algorítmicas a modo de componentes software que permiten al experto
clínico realizar la integración y el análisis exhaustivo de los datos como una línea de productos de
software con elementos combinables, mediante estratégicas de IA y de optimización. Los diferentes
componentes pueden interactuar, facilitando la interconexión, reutilización y trazabilidad de la
cadena de valor de los datos. Finalmente, la XAI se lleva a cabo para ofrecer interpretabilidad de
los resultados al investigador clínico. En este sentido, se focaliza el estudio en la explicabilidad de
los algoritmos de aprendizaje profundo (DL del inglés Deep Learning), ya que estos algoritmos se
perciben como "cajas negras" complejas y poco interpretables.

En concreto, los principales objetivos de esta Tesis se detallan a continuación:

1. Objetivo 1: Diseñar y desarrollar una nueva solución de software para consoli-
dar grandes cantidades de datos clínicos heterogéneos e integrar los análisis en
múltiples ensayos.

(a) Diseñar la estructura de la base de datos de la herramienta con un motor de base de
datos NoSQL (MongoDB).

(b) Desarrollar la infraestructura software para crear flujos de trabajo de análisis de datos
biomédicos que puedan aprovechar la integración de datos de múltiples fuentes.

(c) Proporcionar herramientas para el análisis y la visualización de datos clínicos.

(d) Desarrollo de una interfaz de usuario (GUI) que permita al investigador utilizar las fun-
cionalidades de consolidación de datos, análisis y visualización de forma fácil e intuitiva.

2. Objetivo 2: Desarrollo de soluciones de optimización meta-heurísticas para la
inferencia de redes de regulación génica a partir de datos de expresión genética
de pacientes.

(a) Adaptar algoritmos de optimización multiobjetivo bien conocidos para hacer frente a la
inferencia de GRNs.

(b) Proponer nuevos emsemble de algoritmos de optimización para la inferencia de redes de
regulación génica.

(c) Proporcionar a los biólogos de sistemas técnicas de optimización para inferir GRNs
consistentes.

(d) Proporcionar a los biólogos de sistemas un conjunto de herramientas de visualización
para explorar la red construida.

3. Objetivo 3: Desarrollo de soluciones de ML para el análisis de datos clínicos
procedentes de sensores de monitorización de pacientes.

(a) Investigar el diseño de nuevas estrategias algorítmicas de ML adaptadas a casos de uso
específicos con datos de sensores.

(b) Investigar nuevos enfoques de integración de datos que combinen datos etiquetados y
no etiquetados procedentes de sensores.
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(c) Proporcionar nuevos análisis de datos y flujos de trabajo para un seguimiento eficiente
de los pacientes en tiempo real.

4. Objetivo 4: Explicabilidad de los algoritmos de ML en casos de uso biomédico.

(a) Estudio de la eficacia de los algoritmos actuales de explicabilidad en casos de uso
biomédicos.

(b) Proponer la explicabilidad de los algoritmos de ML a los casos de uso biomédicos.
(c) Estudio de nuevas métricas de evaluación para algoritmos de explicabilidad en casos de

uso biomédicos.

5. Objetivo 5: Abordar problemas del mundo real y académico en el contexto del
ecosistema de datos biomédicos.

(a) Análisis de datos de expresión génica en un caso de uso real para el descubrimiento de
biomarcadores de eficacia de tratamiento en la enfermedad del cáncer de piel Melanoma.

(b) Validación del uso de multi-objective swarm optimizers en la reconstrucción de GRNs
utilizando datos reales de pacientes con cáncer de melanoma.

(c) Análisis de los datos de un grupo de pacientes con obesidad y enfermedades cardiovas-
culares para el reconocimiento de la actividad humana (HAR del inglés Human Activity
Recognition) en el sistema sanitario de Andalucía (España).

(d) Aplicación de estrategias de explicabilidad para algoritmos de DL en el diagnóstico del
cáncer de Melanoma.

Contribuciones científicas

Las principales cuestiones y retos presentados en la motivación de esta Tesis pueden asociarse a
grandes rasgos con las contribuciones incluidas en este estudio.

• En el Capítulo 3 se presenta FIMED (Flexible Management of Biomedical Data), una nueva
herramienta software para dar solución al primer reto (Ch1) en el contexto de el ecosistema
de datos biomédicos. En este sentido, FIMED hace uso de base de datos NoSQL para aliviar
algunas de las limitaciones impuestas por las bases de datos relacionales. Esta solución de
software ha sido diseñada para apoyar a los expertos clínicos en la integración y el análisis de
datos clínicos heterogéneos procedentes de múltiples fuentes de información de una manera
sencilla, incremental y dinámica, evitando las limitaciones de las herramientas actuales.

• El segundo reto (Ch2) se trata en los trabajos descritos en los Capítulos 3 y 4. Estos
capítulos centran su investigación en aportar mejoras en la reconstrucción de las redes de
regulación génica (GRN). Estas GRN definen las interacciones entre los productos del ADN
y otras sustancias en las células, lo cual es muy relevante para la investigación clínica. En
consecuencia, una mayor comprensión de las GRN permite entender mejor los mecanismos
que causan diversos trastornos y enfermedades. De esta forma, la interpretación de estas
GRN sirve de ayuda a los profesionales clínicos para diagnosticar las enfermedades en sus
fases más tempranas, descubrir nuevos biomarcadores de la progresión de la enfermedad e
incluso en el diseño de nuevos tratamientos farmacológicos.

• El Capítulo 5 esta directamente relacionado con el tercer reto (Ch3) definido en esta Tesis.
Tradicionalmente los modelos avanzados de IA requieren una gran cantidad de datos etique-
tados para ofrecer resultados prometedores. Sin embargo, el etiquetado de datos es costoso
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y difícil de realizar en situaciones del mundo real. En concreto, muchos procedimientos de
recogida de datos clínicos en los sistemas sanitarios modernos se realizan a través de tec-
nologías IoT mediante sensores [29] colocados en el paciente. La recopilación de datos a
través de sensores da lugar a entornos de Big Data con cantidades masivas de datos. Por lo
tanto, es inviable el etiquetado de todos los datos en un entorno Big Data para entrenar los
modelos de ML. A este respecto, en el Capítulo 5 proponemos desarrollar nuevas estrategias
de ML que puedan utilizar la cantidad limitada de datos etiquetados y las enormes canti-
dades de datos sin etiquetar para ayudar a los algoritmos a aprender, mejorar su rendimiento
y generalizar su conocimiento. Además, este capítulo también se abarca el primer reto (Ch1),
ya que en este trabajo se diseñó una metodología para la integración datos procedentes de
sensores de acelerometría de distintas fuentes de información y en diversos formatos.

• En el Capítulo 6 se propone cubrir el cuarto reto (Ch4). En este trabajo se explora distintos
métodos para proporcionar explicabilidad a los resultados de los algoritmos complejos de
inteligencia artificial en el ámbito de la medicina. Las aplicaciones de la ciencia de los datos
y los métodos novedosos de aprendizaje automático todavía se perciben como las llamadas
cajas negras. Sin embargo, en el campo de la medicina, es crucial predecir el resultado clínico
del paciente y cuantificar el impacto del fármaco y, al mismo tiempo, tener en cuenta el sexo,
la edad y otras características de forma interpretable. Es esencial explicar los resultados
de estos algoritmos al experto clínico, mejorando así la interpretabilidad de los resultados.
En consecuencia, este trabajo se centra en la investigación y evaluación de estrategias para
la explicabilidad de algoritmos complejos de IA en problemas del mundo real en los que el
modelo debe tener un buen rendimiento y ser fácilmente interpretable.

Publicaciones de la Tesis

Para transmitir los resultados de la investigación, esta Tesis ha realizado tareas de divulgación
científica en revistas y congresos. En concreto, se han publicado tres artículos en revistas index-
adas en el Journal of Citation Report (JCR). Asimismo, dos artículos en un congreso internacional.
Para destacar la relevancia de esta Tesis, se muestra a continuación la relación de publicaciones
realizadas durante su desarrollo:

Artículos de revista (JCR)

1. Sandro Hurtado, José García-Nieto, Ismael Navas Delgado, José Francisco Aldana Montes,
FIMED: Flexible management of biomedical data [30].
Este artículo está dedicado a presentar FIMED, una herramienta de software que integra
datos de investigación clínica procedentes de diferentes fuentes de información y formatos de
forma dinámica, flexible y transparente para el experto clínico. Gracias a la integración de
estos datos, es posible desarrollar técnicas integrales en el análisis de datos clínicos mediante
estrategias de ML y optimización, en combinación con datos tabulares, datos de secuen-
ciación, datos de imagen biomédica, datos procedentes de sensores, etc., para romper las
barreras de acceso y aplicabilidad relacionadas con las técnicas de análisis en el ámbito de la
salud. Además, la herramienta ofrece una interfaz gráfica de usuario (GUI) para facilitar la
gestión de la información y los análisis de los ensayos clínicos.

2. Sandro Hurtado, José García-Nieto, Ismael Navas Delgado, Antonio J.Nebro, José Francisco
Aldana Montes, Reconstruction of gene regulatory networks with multi-objective
particle swarm optimisers [31].
En este artículo, se investiga el comportamiento de un conjunto de algoritmos de optimización
multiobjetivo basados en diferentes estrategias en el contexto de la inferencia de GRNs. El
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objetivo principal es proporcionar a los biólogos de sistemas pruebas experimentales sobre
qué técnica de optimización se comporta con mayor éxito para inferir GRNs consistentes.

3. Sandro Hurtado, José García-Nieto, Anton Popov, Ismael Navas Delgado, Human Activity
Recognition from sensorised Patient�s Data in Healthcare: A Streaming Deep
Learning-based Approach [32].
Este trabajo presenta una propuesta de análisis y monitorización de datos de pacientes en
tiempo real a partir de sistemas IoT. Para ello, se utiliza un enfoque de DL mediante una
estrategia de combinación de datos de sensores etiquetados y no etiquetados. En este sentido,
el modelo puede aprovechar una gran cantidad de datos sin etiquetar disponibles extrayendo
características relevantes de estos datos, lo que aumentará el conocimiento en las capas
más internas del modelo para mejorar las predicciones. Por lo tanto, el modelo entrenado
puede generalizar bien cuando se utiliza en casos de uso del mundo real. Además, se lleva
a cabo un proceso de streaming para clasificar patrones de movimiento de pacientes con
obesidad en condiciones de tiempo real, lo cual es crucial para la monitorización diaria de
pacientes a largo plazo. Este trabajo es el resultado de una colaboración internacional y una
estancia de investigación de cinco meses en el grupo de investigación del profesor Anton Popov
(Universidad Técnica Nacional de Ucrania "Instituto Politécnico Igor Sikorsky de Kiev").

Artículos de conferencia

1. Sandro Hurtado, José García-Nieto, Ismael Navas Delgado A Service for Flexible Man-
agement and Analysis of Heterogeneous Clinical Data [33].
En este trabajo, para mostrar la capacidad de integración y la flexibilidad para adaptarse
a las nuevas herramientas y funcionalidades que ofrece FIMED, se ha desarrollado FIMED
2.0. El objetivo es proporcionar a los usuarios nuevas funcionalidades para realizar análisis
más precisos. La motivación de este trabajo surgió a partir del trabajo propuesto ante-
riormente: Reconstruction of gene regulatory networks with multi-objective particle swarm
optimisers [31]. En este sentido, se investiga la inferencia de GRNs incorporando nuevos
algoritmos de GRNs. Además, se propone una estrategia emsemble de algoritmos de GRNs
basado en un sistema de votación para permitir a los usuarios clasificar las interacciones
génicas más críticas consensuadas entre las salidas similares de un conjunto de algoritmos
de GRNs. De esta manera, se pueden indicar los pares de genes más importantes en el pro-
ceso de regulación. Además, se añaden herramientas de visualización a esta nueva versión
de FIMED para proporcionar a los usuarios una visión profunda de las redes mediante una
mejor representación gráfica.

2. Sandro Hurtado, Hossein Nematzadeh, José García-Nieto, Miguel-Ángel Berciano-Guerrero,
Ismael Navas Delgado, On the Use of Explainable Artificial Intelligence for the
Differential Diagnosis of Pigmented Skin Lesions [34].
El objetivo de este artículo es que el resultado de las aplicaciones basadas en el ML sea
comprendido por los usuarios finales, principalmente cuando utilizan datos médicos y toman
decisiones críticas. Este artículo representa un primer intento de investigar empírica y téc-
nicamente la explicabilidad de los métodos modernos de XAI en un conjunto de datos de
clasificación de imágenes de melanoma.

Cabe destacar que otras contribuciones científicas se desarrollaron con anterioridad al inicio de
la Tesis como: Análisis de datos de acelerometría para la detección de tipos de actividades [35]. Se
realizó un estudio de viabilidad para clasificar los datos de actividad física de pacientes con proble-
mas cardiovasculares obtenidas mediante pulseras de acelerometría. En este estudio se propusieron
redes neuronales profundas, concretamente redes neuronales recurrentes como LSTM, en un caso



RESUMEN 9

de uso en el reconocimiento de la actividad humana. Nos remitimos a este artículo como un estu-
dio previo al trabajo Human Activity Recognition from sensorised Patient�s Data in Healthcare: A
Streaming Deep Learning-based Approach. Gracias a la estrategia semi-supervisada llevada a cabo
en este artículo, que propone la combinación de datos etiquetados y no etiquetados proveniente de
sensores, permite entrenar un modelo robusto para generalizar el conocimiento a más pacientes en
casos de uso reales.

Conclusiones

La investigación biomédica está en constante crecimiento, ya que se han realizado muchos avances
tecnológicos para ampliar las bases de datos, desde la secuenciación de próxima generación hasta
otros datos biomédicos disponibles, como las imágenes biomédicas, los metadatos de anotación, los
recursos de IoT, etc. Debido a la gran cantidad de datos clínicos generados a diferentes escalas
y en múltiples dimensiones, se pueden realizar análisis más completos para mejorar la calidad de
vida de los pacientes y prevenir o detectar enfermedades. Estos datos pueden combinarse con
otros conjuntos de datos relacionados con el problema. Esta integración de datos puede ser ben-
eficiosa, ya que el estudio de un conjunto de datos tan heterogéneo y procedente de diferentes
fuentes de información puede revelar patrones interesantes o información adicional que si los datos
se analizaran de forma independiente. Por consiguiente, la integración y la transmisión de datos
entre organizaciones clínicas son de suma importancia. Asimismo, en las últimas décadas, el desar-
rollo de algoritmos de Inteligencia Artificial ha desempeñado un papel esencial en la investigación
biomédica. Ha demostrado unas capacidades extraordinarias para interpretar y analizar grandes
escalas de datos clínicos y desarrollar modelos predictivos.

La presente tesis aborda un reto clave en la actualidad: la importancia de integrar, combinar
y analizar varias fuentes de datos clínicos heterogéneos para apoyar a los médicos en su toma de
decisiones. Este enfoque se refiere a la combinación de varios de estos análisis clínicos de forma
integrada. Esta integración de datos clínicos permite realizar análisis más complejos con un gran
potencial para dar lugar a avances relevantes en muchos campos de las ciencias de la vida. Algunos
ejemplos son el diagnóstico de enfermedades y la identificación de nuevos biomarcadores.

En concreto, esta Tesis indaga en las principales cuestiones y retos de investigación formulados
en la motivación de este trabajo relacionados con la implantación de la medicina de precisión o
la asistencia sanitaria asistida por IA. A este respecto, esta Tesis responde a la pregunta de lo
lejos que estamos (tecnológicamente hablando) de resolver estas cuestiones pendientes y también
intenta mejorar el ecosistema de datos existente hasta el punto de abordar estas cuestiones. En
resumen, las principales aportaciones de esta Tesis se muestran a continuación, respondiendo a las
cuestiones de investigación formuladas en la motivación de esta Tesis:

• Capítulo 3. Contribución a la gestión y el análisis flexible de datos biomédicos
heterogéneos. En el contexto de los sistemas de gestión de datos clínicos, existen continuas
limitaciones en el proceso de adquisición de datos debido a la naturaleza heterogénea de los
datos clínicos. La mayoría de los sistemas que se encuentran en el estado del arte no pueden
cubrir estas limitaciones. Además, pocas de estas herramientas permiten el análisis de los
datos clínicos para el diagnóstico de enfermedades. Respondiendo a la pregunta (Q1) ex-
puesta en la motivación de esta Tesis, la necesidad de alinear los datos clínicos con estrategias
innovadoras de análisis de IA ha estimulado el desarrollo de la integración de datos, la im-
plementación de herramientas de análisis y la representación del conocimiento en el análisis
de decisiones heterogéneas y predictivas. En este sentido, hemos diseñado e implementado
una nueva herramienta software para la gestión y el análisis flexible de datos biomédicos de
múltiples fuentes (FIMED) para cubrir el primer reto (Ch1) y las limitaciones mencionadas.
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FIMED implementa internamente un flujo de trabajo con varios componentes para la recogida
y gestión de datos con adaptabilidad a múltiples ensayos, análisis de datos y visualización
de los mismos. En este sentido, FIMED permite al investigador clínico realizar un flujo de
trabajo completo en la práctica de los ensayos clínicos. Esta herramienta posibilita el diseño
de formularios electrónicos personalizados y fácilmente modificables gracias a la flexibilidad
que proporciona su motor de base de datos NoSQL. De esta forma, FIMED permite realizar
el proceso de recogida de datos de forma incremental sin necesidad de redefinir el esquema.
Además, proporciona una rápida disponibilidad de los datos y permite el almacenamiento
de diferentes muestras asociadas al paciente para aportar información adicional, y de esta
manera realizar análisis más exhaustivos.

FIMED incluye varias herramientas de análisis para ayudar al experto clínico a detectar
enfermedades o buscar nuevos biomarcadores. Entre ellas se encuentran los algoritmos de
análisis de la expresión génica, algoritmos para la reconstrucción de redes biológicas y la
visualización de datos para anotar la funcionalidad de los genes e identificar los genes involu-
crados en una enfermedad. La implementación de estas herramientas de análisis fue nuestro
primer intento de responder a la pregunta de investigación (Q2) y cumplir con el segundo
reto (Ch2) propuesto en esta Tesis. La motivación era mejorar la inferencia e interpretación
de redes biológicas complejas para extraer información relevante para el diagnóstico de en-
fermedades. Además, FIMED ha sido validado en un caso de uso real con datos de expresión
génica de pacientes de Melanoma metastásico. Cabe destacar que FIMED ha sido actual-
izado en varias ocasiones y está en continuo mantenimiento. En su última versión (FIMED
2.0), se añadieron nuevas herramientas de análisis y de visualización enfocadas al problema
de la reconstrucción de redes de regulación génica con el fin de facilitar el diagnóstico de la
enfermedad al experto clínico, como se expone en (Ch2). Cabe destacar que FIMED ha sido
diseñado con capacidad de extender sus funcionalidades software de forma sencilla, convir-
tiendo a FIMED en una robusta herramienta de investigación clínica para la gestión, análisis
y visualización de datos en ensayos clínicos para diversas enfermedades en estudio. Además
de la instancia pública proporcionada1, el proyecto puede ser desplegado por el personal
clínico en cualquier sistema de información sanitaria, garantizando una mayor protección de
los datos.

• Capítulo 4. Contribución a la reconstrucción de redes de regulación génica me-
diante algoritmos de optimización multiobjetivo. En el contexto de la reconstrucción
de GRNs, los expertos clínicos pueden investigar las funcionalidades de las moléculas biológ-
icas, como los genes, las proteínas y el ARN, y su organización en los organismos vivos. Del
mismo modo, los profesionales pueden observar el comportamiento y la organización de los
componentes de las células vivas y ver la relación entre ellos en los procesos moleculares para
descifrar los mecanismos de múltiples enfermedades genéticas como el cáncer o la diabetes.
En este sentido, numerosos estudios recientes han intensificado el uso de optimizadores de
enjambre de partículas (PSO) para abordar la inferencia de los GRN. Sin embargo, todavía
faltan propuestas basadas en formulaciones multiobjetivo. Por ello, la motivación principal
de esta contribución es cubrir el reto (Ch3) propuesto en la motivación de esta Tesis, en
el que se requieren nuevas metodologías computacionales y experimentales para explicar las
redes biológicas debido a la complejidad de la alta dimensión de los datos biomédicos. En este
sentido, este trabajo propone aplicar y evaluar un conjunto representativo de optimizadores
de enjambre de partículas multiobjetivo (MOPSOs), que utilizan diferentes estrategias de
archivo (hipervolumen y agregación) y, en consecuencia, diferentes enfoques para la selec-
ción de líderes en el contexto de la inferencia de GRNs. Por lo tanto, este trabajo intenta

1https://khaos.uma.es/fimed/
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obtener conclusiones imparciales sobre cuál de ellos (y otros MOPSOs relacionados) podría
ser utilizado por los expertos en estudios in silico/in vivo para encontrar nuevas posibles
interacciones génicas que participen en las regulaciones genéticas.
El ajuste óptimo de los parámetros en S-Systems se aborda actualmente con metaheurísti-
cas de optimización continua. En este sentido, se han adaptado una serie de variantes de
MOPSO, OMOPSO [36], MOPSO [37], VEPSO [38], SMPSO [39], DMOPSO [40] y MOP-
SOHv [41], para abordar (por primera vez) la inferencia de GRNs. Estas técnicas han sido
seleccionadas por constituir un conjunto heterogéneo de optimizadores multiobjetivo, que
realizan diferentes procedimientos de aprendizaje e inducen diferentes comportamientos. En
este sentido, se ha realizado una exhaustiva comparación experimental sobre datos de ex-
presión génica con redes de referencia de los retos DREAM3 y DREAM4 [42] basados en
organismos reales (E.Coli y Levadura). Por último, se realizan experimentos significativos
para inferir redes a partir de muestras in vivo de IRMA y de muestras de cáncer de melanoma
de pacientes reales. La capacidad de reproducir el comportamiento biológico se evalúa en
términos de convergencia y diversidad algorítmica y en términos de precisión de las redes
inferidas respecto a los estándares de oro.

• Capítulo 5. Contribución al análisis de series temporales en tiempo real con
datos biomédicos procedentes de dispositivos IoT. En el contexto del análisis de se-
ries temporales biomédicas, las técnicas de aprendizaje profundo se consideran herramientas
potentes que permiten extraer las características más predictivas de conjuntos de datos al-
tamente complejos. Una característica clave que diferencia el aprendizaje profundo de otras
técnicas de aprendizaje automático es su capacidad para aprender representaciones directa-
mente de las estructuras de datos sin utilizar descriptores de estructura predefinidos. Esta
capacidad elimina la necesidad de procesos convencionales de selección y reducción de carac-
terísticas. Sin embargo, los enfoques de aprendizaje profundo requieren grandes cantidades
de datos y el etiquetado de estos datos es costoso y requiere mucho tiempo. El etiquetado
de datos es un reto cuando se trata de problemas del mundo real en entornos no controlados
y aún más cuando se trabaja en casos de uso de Big Data donde se considera una cantidad
mínima de datos etiquetados y una cantidad masiva de datos sin etiquetar. En este sentido,
la principal aportación de este trabajo es abordar el tercer reto de esta Tesis (Ch3), en el
que proponemos nuevas estrategias de IA para tratar con conjuntos de datos clínicos poco
etiquetados y no etiquetados. Una forma excelente de abordar estos problemas es adop-
tar un enfoque semi-supervisado, que puede emplear datos no etiquetados con un pequeño
número de ejemplos etiquetados. Por lo tanto, se ha propuesto una estrategia de HAR semi-
supervisada para la monitorización de pacientes con sobrepeso en un caso de uso real en el
sistema sanitario que implica una tarea de fusión de datos sensorizados por acelerómetro de
muestras etiquetadas/no etiquetadas. En concreto, este trabajo pretendía clasificar las ac-
tividades diarias de 300 pacientes, lo que equivale a 30 TB de datos privados de movimiento
en bruto. Sin embargo, no se disponía de datos etiquetados en nuestro conjunto de datos. Por
este motivo, se ha recopilado e integrado un conjunto de conjuntos de datos del estado del
arte en el entorno del problema HAR para utilizarlos como datos públicos etiquetados. Para
la integración de los datos, se ha utilizado una metodología exhaustiva basada en técnicas de
interpolación, normalización, muestreo de datos y desbalanceo de clases, ya que los datos se
han recogido de distintas fuentes y dispositivos, en otros formatos y con distintas frecuencias
de muestreo (Ch1).
Además, se ha realizado un estudio preliminar para observar qué conjuntos de datos tenían
una distribución similar a nuestro conjunto de datos sin etiquetar. A continuación, se ha
entrenado un modelo CNN-Encoder-Decoder semi-supervisado con datos públicos etiquetados
y privados no etiquetados. El modelo tiene la capacidad de aprender las características
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más relevantes de los datos no etiquetados y luego utilizarlas para clasificar las actividades.
En este sentido, la extracción de conocimiento de los datos no etiquetados a través de la
parte no supervisada del modelo (Encoder-Decoder) se almacena y se utiliza como punto de
partida para el entrenamiento del modelo en la parte supervisada. Se ha llevado a cabo una
experimentación exhaustiva para la selección y validación del modelo, en la que se ha evaluado
esta estrategia con distintas cantidades de datos sin etiquetar. El flujo de trabajo de análisis
resultante se despliega en un clúster de nodos Spark, por lo que se predice la clasificación
continua de 30 TBs de datos de sensores para un grupo de pacientes. El propuesto clasifica
adecuadamente los patrones de movimiento en condiciones de tiempo real, lo cual es crucial
para la monitorización diaria de pacientes a largo plazo. Representa un paso adelante para
cumplir con los desafíos identificados en [6], que consiste principalmente en la generación de
plataformas de reconocimiento de actividad en tiempo real y el desarrollo de un modelado
no supervisado más preciso para este problema. Por lo tanto, podemos concluir que nuestra
estrategia de recopilación e integración de datos, junto con el enfoque en streaming semi-
supervisado de aprendizaje profundo para la clasificación de actividades, es una solución en
esta dirección.

• Capítulo 6. Contribución a la Inteligencia Artificial eXplicable para la clasifi-
cación de imágenes biomédicas. En el contexto de la inteligencia artificial en medicina,
se han desarrollado numerosas técnicas de IA que han logrado recientemente un gran éxito
predictivo para muchas aplicaciones biomédicas. Sin embargo, en muchos casos, explicar el
resultado clínico de modelos muy complejos es un reto. Por ello, este trabajo propone estu-
diar y desarrollar técnicas adicionales que permitan clarificar los resultados de estos modelos
de caja negra, lo cual es esencial para el ámbito clínico en el que las decisiones afectarán a
la vida de los pacientes, como se expone en el cuarto reto de esta Tesis (Ch4). La princi-
pal contribución es proporcionar al experto clínico la capacidad de interpretar los resultados
obtenidos por los algoritmos. En este sentido, se ha desarrollado una metodología para eval-
uar la calidad de los algoritmos de explicabilidad mediante un conjunto de métricas en un
conjunto de datos de imágenes de Melanoma. En primer lugar, un algoritmo preentrenado
(Resnet) clasificó imágenes de cáncer de piel de melanoma para la detección temprana de
la enfermedad. En segundo lugar, se han aplicado dos de los algoritmos de explicabilidad
post-hoc más utilizados (LIME y SHAP) para explicar y validar los resultados obtenidos
por el clasificador. Estos algoritmos devolvieron, como resultado, las imágenes de Melanoma
con las características más críticas (super/pixeles) de la imagen para realizar la predicción.
Finalmente, en el núcleo de este trabajo, se propuso evaluar experimental y técnicamente los
resultados de estos algoritmos en términos de reproducibilidad y tiempo de ejecución. En
ambos casos, LIME se comporta mejor que SHAP para este caso de uso.

Durante este trabajo, hemos realizado numerosas contribuciones al contexto del Ecosistema
de Datos Biomédicos de varias maneras. Desde el punto de vista de la gestión de datos clínicos,
hemos diseñado FIMED, que permite la recogida, integración y gestión flexible de datos biomédicos
procedentes de múltiples fuentes. Además, hemos propuesto técnicas de IA y optimización y las
hemos analizado para proporcionar al investigador herramientas de análisis completas para la
detección de enfermedades o el desarrollo de nuevos fármacos. Además, desde el punto de vista de
las aplicaciones, hemos abordado varios problemas del mundo real en áreas de la salud, mostrando la
utilidad de nuestras propuestas para abordar problemas que podrían surgir en el ámbito académico
y en la industria.



RESUMEN 13

Trabajos futuros

Como líneas de investigación futuras en general, planeamos continuar esta propuesta de integración
y análisis de datos clínicos de diferentes ensayos con el objetivo principal de mejorar el acceso y la
integración de datos sanitarios heterogéneos. También pretendemos mejorar las técnicas de análisis
existentes considerando la integración de datos de diferentes fuentes. En este sentido, queremos
seguir trabajando en el diseño y desarrollo de estrategias que permitan abordar los problemas en un
ecosistema de datos biomédicos y así seguir mejorando en los retos que definimos en la motivación
de esta Tesis hacia la consecución de una medicina de precisión y personalizada.

Asimismo, se han identificado diferentes líneas de investigación para trabajos futuros. En este
apartado se presentan algunas de las más destacadas:

• Como futura línea de trabajo pretendemos seguir mejorando las limitaciones que implican el
primer reto (Ch1) de la Tesis. En este sentido, planeamos seguir actualizando FIMED para
asegurar la compatibilidad futura con más casos de uso. Así, consideraremos la adaptabilidad
a más formatos de muestras de expresión génica, otras enfermedades y la integración con otras
herramientas analíticas o algoritmos (algoritmos avanzados de GRNs, nuevos enfoques de ML
para el análisis de datos de sensores en tiempo real y análisis de imágenes clínicas, y nuevos
algoritmos de XAI). Además, tenemos previsto seguir investigando nuevas formas de integrar
los datos en la IA. La integración múltiple de datos permite realizar análisis más complejos con
el potencial de lograr avances adecuados en múltiples campos biomédicos. En este sentido,
planeamos desarrollar algoritmos que aborden explícitamente la diversidad de datos y los
combinen infiriendo un único modelo. Mediante esta estrategia podremos integrar las fuentes
de datos dentro de la construcción del modelo predictivo para combinar datos multi-ómicos,
imágenes biomédicas e información clínica del paciente en un único modelo robusto. Esta
línea de investigación aborda los límites planteados por el enfoque convencional de guiar el
análisis ML de forma independiente, combinando un conjunto de datos diversos y extrayendo
conclusiones significativas de los datos integrados.

• Enfocándonos en el segundo reto (Ch2), estamos interesados en trabajar en la adaptación
de diferentes optimizadores, como la Evolución Diferencial, con parámetros y operadores es-
pecíficos para la reconstrucción eficiente de GRNs. Para ello, el uso de modernas técnicas
de autoconfiguración ayudaría a encontrar una sintonía precisa para los GRNs. Además,
el diseño de nuevas estrategias de codificación y coevolución parece ser una línea optimista
para mejorar el poder predictivo de los algoritmos. En este sentido, el desarrollo de enfoques
paralelos distribuidos podría mejorar el rendimiento de las redes a gran escala. Desde la per-
spectiva de la modelización de redes, también tenemos previsto trabajar en nuevos enfoques
que requieran menos parámetros que S-System para ser ajustados. Además, queremos estu-
diar la integración de datos multiómicos heterogéneos para la inferencia de GRNs. Aunque
los datos de micromatrices de ADN se emplean habitualmente para la inferencia de redes, la
reconstrucción de GRNs utilizando únicamente datos de micromatrices es fundamentalmente
limitada, ya que el valor informativo de dichos datos está restringido por aspectos tecnológi-
cos y biológicos. En consecuencia, sugerimos que se investiguen técnicas más avanzadas para
reconstruir con mayor precisión la estructura y la dinámica de las GRNs mediante la combi-
nación de tipos adicionales de datos biológicos, como los datos de experimentos alternativos
y bases de datos diferentes.

• Como línea de investigación futura relacionada con el tercer reto (Ch3), en esta Tesis se ha
propuesto un enfoque semi-supervisado para ayudar a aprovechar los datos no etiquetados
de nuestro conjunto de datos junto con los datos etiquetados recogidos e integrados de la
literatura. Hay que reconocer que los resultados son prometedores, ya que hemos aprovechado
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el conocimiento de los datos no etiquetados para ayudar al aprendizaje del modelo. Sin
embargo, tenemos previsto seguir trabajando en nuevas estrategias para mejorar la calidad
de los resultados. Planeamos desarrollar una metodología más robusta basada en técnicas
de aprendizaje por transferencia para integrar datos de acelerometría de diferentes fuentes y
formatos. Pretendemos realizar un flujo automático que elija aquellos conjuntos de datos de
la literatura con la distribución de datos más similar a nuestro conjunto de datos privado y
los integre en un único conjunto de datos listo para ser utilizado (Ch1). También tenemos
previsto desarrollar estrategias de IA utilizando modelos de aprendizaje automático para
ayudar al etiquetado automático de datos.

• Como línea de investigación futura relacionada con el cuarto reto (Ch4), es necesario seguir
investigando para diagnosticar las técnicas de toma de decisiones de la IA aplicando los
métodos de la XAI. En este sentido, pretendemos investigar nuevas métricas para evaluar los
resultados obtenidos de los algoritmos XAI. Como primer paso, proponemos que los resulta-
dos de la XAI sean reproducibles y replicables. Por lo tanto, el modelo de entrenamiento debe
producir resultados consistentes, y también, el modelo debe funcionar consistentemente in-
cluso cuando se entrena con diferentes muestras de datos. Además, planeamos diseñar nuevas
técnicas de visualización de datos masivos para obtener interpretaciones precisas y compren-
sibles para el experto humano. Asimismo, desde el punto de vista algorítmico, un trabajo
futuro de XAI es abordar la explicabilidad del DL en el conjunto de datos de melanoma
mediante la mejora de LIME, así como abordar otro tipo de conjuntos de datos de imágenes
médicas.
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Chapter 1

Introduction

In the last few years, practitioners can perform deeper analyses thanks to current advancements
in next-generation sequencing (NGS) and the rapid growth and availability of biological data [1,
2]. They can combine biological data with other clinical and patient-specific information, such as
electronic health records (EHR), habits, ancestry, and environmental factors, which enable them
to analyze and find pertinent information beyond what can be obtained through conventional
approaches.

The diagnosis of illnesses is a challenging task in modern medicine. Understanding the precise
diagnosis of patients through medical examination and evaluation is the most critical responsibility
of practitioners. The healthcare industry generates much information about medical evaluations,
patient statements, treatments, prescriptions, and other topics [3].

Clinical data come from numerous sources of information such as data obtained through various
massive parallel DNA sequencing techniques, physiological data such as Electrocardiogram (ECG),
Encephalogram (EEG) [4], biomedical repositories and even public and scientific social networks [5].
These sources also include medical images, which comprise the bulk of patient data (particularly
for cancer patients), disease risk factors, multi-omics, therapy regimens/procedures, and follow-up
data.

Similarly, data collection techniques also include sensors (Internet of Things (IoT) technologies),
among them, the collection of data through accelerometer sensors, which allow for monitoring the
activity of patients [6, 7] and even detect a possible fall of them [8].

This rapid increase in clinical data has highlighted the need for developing new sophisticated
tools for data management and analysis in clinical research and personalized medicine. Clinical
Trial Management Systems (CTMS) are utilised to retrieve meaningful data from clinical trials,
gain early visibility into problems, and find alternative therapies. With the help of these clinical re-
search support software tools, it is possible to acquire new knowledge related to health and discover
new drugs [9]. These contributions can also be consolidated in databases to contribute to other
pharmacological studies with an investigative nature, to carry out data mining and engineering
and to support experts in diagnosis.

CTMS have become an essential support tool for clinical research [10]. These tools bring with
them the possibility of collecting relevant clinical information and performing various analysis tech-
niques that help understand the molecular mechanism and potential therapies for human diseases
and even provide biological and medical information to enable individualized medical care.

The management of clinical data involved in NGS studies is a challenging task, given the
continuous obstacles encountered in system maintenance during patient enrollment, the clinical
study sample acquisition process, and the different steps for preparing clinical data processing
pipelines. Most of these difficulties occur due to clinical data’s dynamic and heterogeneous nature.

17
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Moreover, there is a constant need for researchers in the field to extend the functionalities of these
CTMS and integrate data from clinical operations in multiple systems and even be able to deal
with different types of samples. Regardless, most clinical tools lack these features, as they are
exclusively competent to cover specific case studies and are limited in adapting to the continuous
changes in clinical trial practice. Many organizations participating in clinical trials, especially in
academic medical centres, have complex data management and quality control processes [11, 12].

The major problem with open source CTMS is that it is difficult to customize a fixed work-
flow [13, 14]. Therefore, it is difficult for such a CTMS to manage a variety of clinical trials,
which is often necessary at academic medical centres. However, most of these systems have design
limitations because the heterogeneous and dynamic nature of clinical data, as they are currently
unable to meet the needs of adapting to continuous changes in trial practice.

Moreover, clinical systems behave as highly complex systems. It is challenging to understand
a phenomenon such as a disease with a single type of data. Nevertheless, they do not allow the
integration of different sources of heterogeneous clinical data. In this sense, it is a fact that more
research is needed to improve the access and integration of heterogeneous health data to enhance
medical care in areas of high unmet public health needs.

In terms of data analytics, Artificial Intelligence (AI) models are becoming more predominant
in biomedical research and clinical practice [15]. These models have shown promising in many
fields, including risk stratification and modelling, personalized screening, diagnosis of molecular
disease, prognosis, and response prediction to therapy [16, 17]. AI can be fuelled by converging
large-scale annotated clinical datasets, deep learning breakthroughs, open-source software tools,
cheap and quickly rising processing power, and cloud storage. In this sense, integrating AI systems
into CTMS is essential since AI can achieve specialized success in some healthcare tasks where
they can support doctors in determining the prognosis of patients and surgical procedures. Hence,
CTMS must carry out exhaustive analyses and predictions of the data to obtain quality indicators.
The combination of AI and CTMS portends to alter the practice of medicine in the distant future.

However, to the best of our knowledge, few systems allow the analysis of patients’ clinical
data to diagnose clinical diseases, so they are limited in filling the gap among bioinformaticians,
molecular geneticists and clinicians. Even with the tremendous advancement in NGS technology
and bioinformatics software tools, more improvements are required to deal with complex and
genetically heterogeneous diseases.

In that respect, innovative developments could have a therapeutic impact by integrating mul-
tiple clinical data flows from diverse sources. These sources include medical images, disease risk
factors, data from multi-omic studies, therapy procedures and regimens, and follow-up informa-
tion. In this sense, there is still room for improvement of the current trend toward precision
medicine, producing personalized methods with significant effects on diagnostic and therapeutic
pathways [19].

With this motivation, machine learning algorithms use data integration approaches from various
biomedical datasets to obtain more accurate results and improve our understanding of biomedical
systems. Even so, in most of these software tools, CTMS do not consider the importance of data
integration in biomedicine and only considers the variation in a single type of data. In this regard,
many essential patterns that can only be observed when considering multiple levels of biomedical
data may be missed. Therefore, it is necessary to integrate many different types of data so that
the algorithms can make an accurate predictions [18].

1.1 Motivation

To emphasize the importance of Data Integration Tools in the Hype Cycle, Gartner says, “Organi-
zations need data integration tools to support distributed data management and provide data across
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diverse use cases. These include data integration to support analytics, data science, application in-
tegration, self-service data preparation, etc” [20]. Data integration offers flexibility, scalability and
extensibility in infrastructure to assure data are consumable across multiple use cases on-premises,
multi-cloud or any form of hybrid. As observed in Figure 1.1, Data Integration Tools and non-
relational databases (NoSQL), such as Wide-Column Database Management System (DBMS), are
progressing until they reach the final market since they are already in the process of the plateau
of productivity. For this reason, this Thesis aims to develop a proposal for a data integration tool
using a NoSQL database.

Figure 1.1: Gartner, Hype Cycle for Data Management, 2022.

As a transversal target of this Thesis, we are interested in investigating and integrating new
algorithmic proposals that use this type of data, focused on Machine Learning (ML) analysis and
optimization, because it is of special interest in some relevant clinical research studies. In this
sense, the aim is to simulate the physiology of living systems in biological systems as a set of inter-
acting components rather than as a set of individual physical components. This approach has the
practical advantage of providing information on the regulation or optimization of specific system
elements, considering the impact on the whole system. Furthermore, it is essential to model the in-
teractions between many components that make up such a biological system to comprehend better
the observed complicated global behavior and the underlying physical processes. The employment
of modern computational approaches that can conduct an integrated study of such disparate data
sources is crucial and challenging at the same time to learn respective large-scale models.
All these reasons lead us to define the hypothesis of this Thesis, “The automatic integration of het-
erogeneous clinical data from multiple sources will lead to advanced analysis and the generation of
new algorithmic proposals that use this type of data. Biomedical data will be combined as predictor
variables to allow a complete model and acquire more relevant results”.
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Traditionally, general medicine must tailor treatments based on the patient’s clinical and bio-
logical characteristics to provide optimal care. In the last few years, many studies have put their
efforts on the road to precision medicine [21, 22, 23, 24, 25]. However, many research gaps remain
when attempting to encompass problems in a biomedical data ecosystem. Several bottlenecks slow
the transition from conventional to personalized medicine. In this regard, the research presented
in this Thesis was carried out to answer the following research questions in the management and
analysis of biomedical data towards precision medicine.

Research Questions

• Q1: Is enough a single clinical data source of information to explain complex diseases such
as cancer?

• Q2: How can inference and interpretation of complex biological networks be improved to
extract helpful information within high-dimensional data to aid in disease diagnosis or the
discovery of novel biomarkers?

• Q3: Is it possible to improve the quality of AI methods in the biomedical data ecosystem by
leveraging large amounts of unlabeled data collected in Big Data environments?

• Q4: Can the clinical expert be granted the ability to interpret the results of complex AI
algorithms?

In addition, these main research questions can be associated with various challenges that are
carried out on real-world problems in a biomedical data environment.

Challenges

• Ch1: Biomedical data availability and analysis. There is a need to design new methods and
software tools dedicated to improving data collection, management and advanced analysis of
biomedical data using different strategies. Leveraging new clinical data integration tools and
analysis strategies can potentially drive real change in personalized therapies [24].

• Ch2: New computational and experimental methodologies are required to explain biological
networks. It is challenging to reconstruct biological networks and interpret them for clinical
researchers due to the complexity of the high-dimensional nature of biomedical data [26].

• Ch3: AI strategies to deal with small labeled clinical datasets or no labeled data. A common
challenge is the scarcity of labeled data. It is necessary to design new strategies that consider
use cases with a shortage of labeled data [27].

• Ch4: The explainability of automated decision-making in precision medicine. Sophisticated
machine learning techniques have recently achieved great predictive success for many biomed-
ical applications. However, it is challenging to explain the clinical outcome of this black-box
model [28]. This explicability is essential for the clinical domain where decisions will affect
patients’ lives.

Therefore, the primary motivation of this Thesis is to probe into the main challenges to the
implementation of Precision Medicine defined above. Besides, this Thesis checks how far (tech-
nologically speaking) we are from solving the pending issues and improving the existing data
ecosystem to the point that these issues are addressed.
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1.2 Objectives and phases

This Thesis focuses on contributing with realistic solutions to clinical research systems through the
design and development of a clinical trial management software tool together with the application of
AI and optimization techniques for data analysis. As the main target, we focus on the application
of advanced AI algorithms applied to use cases in a biomedical data ecosystem (such as gene
expression data analysis, patient monitoring with wearable sensors, detection of skin cancer in its
earliest stages, etc.), and optimization algorithms in the reconstruction of gene regulatory networks.
Moreover, eXplainability in Artificial Intelligence (XAI) is carried out to offer interpretability of
the results to the clinical researcher. In this respect, we focused our study on the explainability of
Deep Learning (DL) algorithms since these algorithms are perceived as complex "black boxes" and
not easily interpretable. In concrete, the main objectives of this Thesis are detailed as follows:

1. Objective 1: Design and develop a new software solution to consolidate large
amounts of heterogeneous clinical data and integrate analyses across multiple
assays.

(a) Design the database structure of the tool with a NoSQL database engine (MongoDB).
(b) Develop the software infrastructure to create biomedical data analysis workflows that

can take advantage of data integration from multiple sources.
(c) Provide tools for analysis and visualization of clinical data.
(d) Development of a user interface (GUI) that allows the researcher to use the data con-

solidation, analysis and visualization functionalities easily and intuitively.

2. Objective 2: Development of meta-heuristic optimization solutions to reconstruct
gene regulatory networks from patient gene expression.

(a) Adapt well-known multi-objective optimization algorithms to cope with the inference of
GRNs.

(b) Propose new ensembles as a gene regulatory network inference made from prior network
algorithms.

(c) Provide systems biologists with optimization techniques to infer consistent GRNs.
(d) Provide systems biologists with a rich set of visualization tools to explore the constructed

network.

3. Objective 3: Development of deep learning solutions for analyzing clinical data
from patient monitoring sensors.

(a) Investigate the design of new ML algorithmic strategies adapted to specific use cases
with sensor data.

(b) Investigate new data integration approaches combining labeled and unlabeled data from
sensors.

(c) Provide new data analysis and workflows for efficient real-time patient monitoring.

4. Objective 4: Explainability of deep learning algorithms in biomedical use cases

(a) Studying the effectiveness of current explainability algorithms in biomedical use cases
(b) Propose the explainability of ML algorithms to biomedical use cases
(c) Studying new evaluation metrics for explainability algorithms in biomedical use cases
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5. Objective 5: Tackle real-world and academic problems in the context of biomed-
ical data ecosystem

(a) Analysis of gene expression data in a real-world use case for the early detection of the
skin cancer disease Melanoma.

(b) Use of Multi-objective swarm optimizers in the reconstruction of GRNs is validated
using real patient data of Melanoma cancer.

(c) Analysis of real-time series data from a group of overweight patients with cardiovascular
disease is analyzed for Human Activity Recognition (HAR) in the healthcare system of
Andalusia (Spain).

(d) Application of explainability strategies for deep learning algorithms in the diagnosis of
Melanoma cancer.

1.3 Thesis contributions

The main questions and challenges presented in the motivation of this Thesis can be roughly
associated with the contributions included in this study.

• An approach to solve the first challenge (Ch1) is presented in Chapter 3. In this chapter,
we have described FIMED (Flexible Management of Biomedical Data) [30]. FIMED uses a
NoSQL database to alleviate some of the limitations imposed by relational databases. This
software solution has been designed to support clinical experts in integrating and analyzing
heterogeneous clinical data from multiple sources of information in a simple, incremental and
dynamic way, avoiding the limitations of the current tools.

• The second challenge (Ch2) is covered in the works described in Chapters 3 and 4. These
chapters investigate the Gene Regulatory Networks (GRNs) reconstruction issue. These gene
regulatory networks define the interactions between DNA products and other substances in
cells, which is highly relevant to clinical research. Consequently, a greater understanding of
GRNs would enable a better understanding of the mechanisms that cause various disorders.
To help clinical professionals create novel treatments to treat diseases at their earliest stages
or discover novel biomarkers of disease progression, we seek to provide enhancements to
GRNs reconstruction.

• Chapter 5 is directly related to the third challenge (Ch3). Traditional ML algorithms
require a large amount of labeled data to deliver promising results. However, labeling data is
costly and challenging to perform in real-world situations. In particular, many clinical data
collection procedures in modern healthcare systems are carried out through IoT technologies
with sensors [29]. Data collection through sensors requires Big Data environments with
massive amounts of data. Therefore, it is unfeasible to label the data to offer it to train
ML algorithms. Hence, in Chapter 5 we propose to develop new ML strategies that can
use the limited quantity of labeled data and the vast amounts of unlabeled data to help the
algorithms learn, improve their performance, and generalize their knowledge. Moreover this
chapter also covers the first challenge (Ch1) since, in this work, a methodology for integrating
accelerometry data from different sources of information in various formats was designed.

• In Chapter 6 we attempt to cover the fourth challenge (Ch4). We have explored different
methods to provide explainability when using complex artificial intelligence algorithms in
medicine. Data science and machine learning applications are still perceived as black boxes.
However, in the medical field, it is crucial to predict the patient’s clinical outcome and
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quantify the impact of the drug and, at the same time, take sex, age, and other features
into account in an interpretable way. It is essential to explain the results of these algorithms
to the clinical expert, thus enhancing the interpretability of the results. Consequently, this
work concentrates on investigating and evaluating strategies for the explainability of complex
AI algorithms in real-world problems where the model needs to perform well and be easily
interpretable.

Following the main hypothesis defined above, Figure 1.2 illustrates the conceptual structure of
this Thesis. It is worth noting that the main aim of this work is to cope with real-world problems
in a biomedical data ecosystem. In Chapter 3, we have developed FIMED as the core component
of this Thesis. As exposed above, FIMED can integrate clinical data from different sources and
analysis strategies. In this sense, the Yellow Components refer to the different types of clinical
data collected, analyzed and integrated in the context of this Thesis. Likewise, it has focused
on the strategic research of AI (Green Components) and optimization (Blue Components) that
have been applied to improve the current trend toward precision medicine significantly, resulting
in more reliable and personalized approaches with a high impact on diagnostic and therapeutic
pathways. Moreover, Big Data technologies have been used for real-time data processing with the
Apache Spark cluster computing system. The proposed approach implies a paradigm shift from
the definition of statistical and population perspectives to individual predictions, which allows
preventive actions and the planning of more effective therapies.

Figure 1.2: Conceptual block involving the components used into this Thesis.
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It is worth mentioning that the components that make up this Thesis can be combined. It aims
to allow the clinical expert to perform the integration and exhaustive analysis of the data as a
line of software products with combinable elements (AI and optimization strategies). The different
components can interact, facilitating the interconnection, reuse and traceability of the data value
chain.

In this sense, this Thesis covers a diversity of heterogeneous clinical data from different sources
of information and in various formats. They have been integrated in some way to later use them by
one or more algorithmic proposals of Artificial Intelligence by combinable analysis products. The
approach to integrating heterogeneous clinical data in this Thesis can be summarized in three main
categories depending on the modelling phase in which the integration occurs. Figure 1.3(A) repre-
sents the combination of diverse heterogeneous clinical data sources into a single data set, which
is later analyzed by AI strategies. In Figure 1.3(B), each data source generates an independent
model during prediction integration. Model weighting might combine these models’ predictions,
or the outcomes could be explored independently. Moreover, Figure 1.3(C) shows how algorithms
explicitly address the diversity of data and combine them by inferring a single model. This inte-
gration does not fuse the input data or produce individual models for each data source. Instead,
it integrates the data sources within the construction of the predictive model.

Figure 1.3: A general approach to the integration of heterogeneous clinical data depending on the
modeling phase in which the integration occurs.

An overview of how we could integrate the different components defined in this Thesis is shown
in Figure 1.4. A clear example is represented in a use case in detecting and diagnosing Melanoma
cancer. This use case has been one of the most predominant during the development of this Thesis
since we have worked from different points of view, with different types of samples and analysis
strategies that can be combined to ensure the effectiveness of the results. In Chapter 3 gene
expression samples from patients with melanoma cancer have been analyzed to observe how the
genes involved in this process are activated or inhibited over time and to be able to diagnose or
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monitor the disease or even compare samples from a set of patients. Likewise, in Chapter 4, gene
regulatory network reconstruction strategies have been carried out with this same type of samples
to observe how genes interact in transcription processes and discover new biomarkers involved in
the disease. In addition, in Chapter 6 melanoma images have been analyzed using various Deep
Learning techniques for detection at the earliest stages. Likewise, XAI techniques have been used
to explain and interpret the results so that the clinical expert can trust the results of the AI
predictions.

Figure 1.4: An overview of how the different components of this Thesis can combine and interact
from the point of view of a precision medicine approach.

1.3.1 Thesis Publications

To transmit the research results, this Thesis has carried out scientific dissemination tasks in jour-
nals and conferences. In concrete, three articles in journal indexed in the Journal of Citation
Report (JCR) have been published. Also, two articles in an international conference. To highlight
the relevance of this Thesis, the list of publications made during its development is shown below.

Journal Articles (JCR)

1. Sandro Hurtado, José García-Nieto, Ismael Navas Delgado, José Francisco Aldana Montes,
FIMED: Flexible management of biomedical data, in Journal Computer Methods and
Programs in Biomedicine (Q1, Category of Computer Science, Interdisciplinary Applica-
tions, Rank: 20/113, Impact Factor: 7.027, DOI: https://doi.org/10.1016/j.cmpb.2021.
106496).

This article is devoted to present FIMED, a software tool that integrates clinical research
data from different information sources and formats in a dynamic, flexible and transparent
way for the clinical expert. Thanks to the integration of these data, it is possible to develop
comprehensive techniques in the analysis of clinical data through machine learning and opti-
mization strategies, in combination with tabular data, sequencing data, biomedical imaging
data, data from sensors, etc., to break down the barriers of access and applicability related to

https://doi.org/10.1016/j.cmpb.2021.106496
https://doi.org/10.1016/j.cmpb.2021.106496
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analysis techniques in the field of health. Moreover, the tool provides a web Graphical User
Interface (GUI) for easing the management of the clinical trial information and analyses.

2. Sandro Hurtado, José García-Nieto, Ismael Navas Delgado, Antonio J.Nebro, José Francisco
Aldana Montes, Reconstruction of gene regulatory networks with multi-objective
particle swarm optimisers in Journal Applied Intelligence (Q2, Category of Computer
Science, Artificial Intelligence, Rank: 46/144, Impact Factor: 5.019, DOI: https://doi.
org/10.1007/s10489-020-01891-1).
In this article, we study the behavior of a set of multi-objective optimization algorithms
based on different archiving and leader selection strategies in the scope of the inference of
GRNs. The main objective is to provide systems biologists with experimental evidence on
which optimization technique performs most successfully to infer consistent GRNs.

3. Sandro Hurtado, José García-Nieto, Anton Popov, Ismael Navas Delgado, Human Activity
Recognition from sensorised Patient�s Data in Healthcare: A Streaming Deep
Learning-based Approach in Journal International Journal of Interactive Multimedia
and Artificial Intelligence - IJIMAI, (Q2, Category of Computer Science, Interdisciplinary
Applications, Rank: 36/113, Impact Factor: 4.936, DOI: http://dx.doi.org/10.9781/
ijimai.2022.05.004).
This work presents a proposal for analysis and real-time patient monitoring data from IoT
systems. For this purpose, we use a deep learning approach using a strategy of combining
publicly labeled and private unlabeled sensor data. In this sense, the model can take ad-
vantage of a large amount of available unlabeled data by extracting relevant features in this
data, which will increase the knowledge in the innermost layers. Therefore, the trained model
can generalize well when used in real-world use cases. In addition, a streaming process is
carried out of the proposed deep learning approach to classify movement patterns in real-time
conditions, which is crucial for long-term daily patient monitoring. This work results from
international collaboration and research stay for five months at the research group of Profes-
sor Anton Popov (National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic
Institute”).

Conference Articles

• Sandro Hurtado, José García-Nieto, Ismael Navas Delgado A Service for Flexible Man-
agement and Analysis of Heterogeneous Clinical Data, in Conference International
Work-Conference on Bioinformatics and Biomedical Engineering: IWBBIO 2022, part of
the Lecture Notes in Computer Science book series (LNBI,volume 13346, DOI: https:
//doi.org/10.1007/978-3-031-07704-3_19).
In this work, to exhibit the integration capabilities and flexibility to adapt to new tools and
functionalities offered by FIMED, we have developed FIMED2.0. Our goal is to provide users
with new functionalities to perform further and more accurate analyses. The motivation for
this work arose from the previous work Reconstruction of gene regulatory networks
with multi-objective particle swarm optimisers. In this sense, we place our interest in
studying GRNs inference incorporating new GRNs algorithms for a principled comparison
among GRNs gene network reconstructions. Also, an ensemble of GRNs is proposed based on
a voting system to allow users to rank the most critical gene interactions (top-k genes/edges)
between the similar outputs of a set of GRNs. So this can indicate the gene pairs most
important in the regulatory process. Moreover, visualization tools are added to this new
version of FIMED to provide users with a deep insight into the networks through better
graphic plotting.

https://doi.org/10.1007/s10489-020-01891-1
https://doi.org/10.1007/s10489-020-01891-1
http://dx.doi.org/10.9781/ijimai.2022.05.004
http://dx.doi.org/10.9781/ijimai.2022.05.004
https://doi.org/10.1007/978-3-031-07704-3_19
https://doi.org/10.1007/978-3-031-07704-3_19
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• Sandro Hurtado, Hossein Nematzadeh, José García-Nieto, Miguel-Ángel Berciano-Guerrero,
Ismael Navas Delgado, On the Use of Explainable Artificial Intelligence for the
Differential Diagnosis of Pigmented Skin Lesions, in Conference International Work-
Conference on Bioinformatics and Biomedical Engineering: IWBBIO 2022, part of the Lec-
ture Notes in Computer Science book series (LNBI,volume 13346, DOI: https://doi.org/
10.1007/978-3-031-07704-3_26).
The nutshell of this article is that the outcome of the machine learning-based applications
should be understood by end users, mainly when using medical data and making critical
decisions. This paper represents a first attempt to empirically and technically research the
explainability of modern XAI methods on a Melanoma image classification data set.

It should be noted that other conference papers were developed earlier at the beginning of
the Thesis such as Análisis de datos de acelerometría para la detección de tipos de
actividades [35]. A feasibility study was conducted to classify physical activities obtained by ac-
celerometry bracelets in patients with cardiovascular problems. This study proposed deep neural
networks, specifically recurrent neural networks such as LSTM, in a use case of Human Activity
Recognition. We refer to this article, a previous study of our paper Human Activity Recognition
from sensorised Patient�s Data in Healthcare: A Streaming Deep Learning-based Ap-
proach . Thanks to the semi-supervised strategy combining public labeled from other datasets and
our private unlabeled sensor data, this work can train a robust model to generalize the knowledge
to more patients in actual use cases.

1.4 Thesis organization

This Thesis is structured into three main parts. Part I contains the current chapter that consists
of an introduction to the work done, presenting the motivation to carry it out, the objectives that
have been sought, the phases that have been followed to achieve those objectives and the main con-
tributions of the Thesis. Chapter 2 focuses on describing the principles of all the concepts covered,
such as general concepts of Clinical Trial Management Systems, non-relational data management
systems, IoT systems, Big Data, Artificial Intelligence, Machine Learning, Deep Learning, Semi-
supervised learning, Autoencoders, gene regulatory networks, multi-objective optimization and
Particle Swarm Optimization (PSO).

Part II, describes three methodologies and associated tools in terms of technology and domain
to approach the Thesis goals. Chapter 3 presents FIMED as core or principal component. This
software tool supports the clinical expert in integrating and analyzing heterogeneous clinical data
from multiple sources. Chapter 4 presents a study based on multi-objective optimization algorithms
for the reconstruction of GRNs from gene expression data. Chapter 5 introduces a new semi-
supervised deep learning-based approach to the problem of human activity recognition for patient
monitoring from wearable devices. It empirically shows the generalizability of the method in a
real-world use case with a group of overweight patients in the healthcare system of Andalusia
(Spain). Chapter 6 introduces a methodological study to evaluate explainable artificial intelligence
algorithms in interpreting the results of complex machine learning models in applying medical
problems.

Finally, Part III includes Chapter 7, which presents the main conclusions and the future research
lines that are planned to be worked based on to the results of this PhD Thesis.

https://doi.org/10.1007/978-3-031-07704-3_26
https://doi.org/10.1007/978-3-031-07704-3_26
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Chapter 2

Context and fundamentals

This Chapter provides an overview of artificial intelligence, optimisation and big data in the context
of the acquisition, management and analysis of heterogeneous biomedical data. First, a general
context of the importance of the integration of heterogeneous biomedical data is presented. Then
some basic Big Data concepts in the domain of healthcare are described.

This Chapter also exposes the fundamentals of Artificial Intelligence, focusing on predictive
modelling for healthcare data analysis as the main area of research. Then, it describes the main
fundamentals of optimisation, focusing on Gene Regulatory Networks Multi-Objective optimisa-
tion, thus giving an insight into the kind of optimisation carried out in this Thesis.

Finally, the fundamentals of eXplainable Artificial Intelligence (XAI) are presented to contex-
tualise the importance of explainability of AI algorithms in medicine.

29
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2.1 Clinical data management environments

Electronic health records (EHRs) offer chances to improve patient care, incorporate performance
metrics into clinical practice, and allow clinical research [43]. Several issues have been raised,
including the difficulty of recruiting trial participants, the intrusive nature of data gathering, and
the generalizability of the findings. There is a lot of interest in using electronic health records
to buck these trends. Observational studies, embedded pragmatic or post-marketing registry-
based randomised studies, or comparative efficacy studies are anticipated to use electronic health
records as the primary data source [44]. EHRs may be utilised to evaluate research viability, ease
patient recruitment, and speed data collection at baseline and follow-up, advancing this strategy
for randomised clinical trials [45].

A clinical trial is an investigation of human subjects intended to discover or verify the clini-
cal, pharmacological, or pharmacodynamic effects. Therefore, the conduct of clinical trials is an
essential part of the development of new drugs. A Clinical Trial Management Systems (CTMS)
is a comprehensive system for managing clinical trials that can help effectively provide patient
oversight. This kind of systems do not need to be always integrated with the EHR of the health
care system, and so it can be managed in an isolated way to fulfill all the ethical criteria of the
clinical trial. A CTMS can include functions to recruit subjects, record case report forms (CRFs),
control the overall project schedules, enter the results data, conduct statistical analyses, and moni-
tor the conduct of the clinical trial [46]. Clinical Data Management Systems (CDMS) have become
essential in clinical trials to handle the increasing amount of data collected and analyzed [47]. The
main goal of CTMS processes is to deliver high-quality data by minimizing the number of mistakes
and missing data and gathering maximum data for analysis [48].

In the context of clinical data management systems, in Chapter 3 of this Thesis, we developed
a software tool (FIMED) that supports flexible and dynamic EHRs and integrates other possible
biomedical data sources related to the patient’s clinical trial. For example, this tool allows the
clinical expert to combine EHRs with additional patient information (e.g. reports, scanner images,
electrocardiograms, encephalograms, etc.). Thus, it will allow for more robust and comprehensive
analyses toward a deeper understanding of the molecular mechanisms in a particular disease.

Gene expression regulation is a fundamental molecular mechanism involved in almost every
aspect of life, from homeostasis to development, metabolism to behavior, reaction to stimuli to
disease progression [49]. Using gene expression data in clinical trials allows biologists to broadly
monitor the amount of gene expression, which comprises RNAseq and DNA microarray (Serial
analysis of gene expression) [50]. In this respect, FIMED has been used to store and analyze gene
expression data from Melanoma cancer patients. Furthermore, in Chapter 4, exhaustive algorithms
have been developed to infer gene regulatory networks from patient gene expression data.

Biomedical Signal processing is widely used in clinical trials to solve many problems in the
bioinformatics context. Biomedical signals come from electrical activity in the human body in
diverse forms, such as electrocardiography (ECG), electrocorticography (ECoG), electromyography
(EMG), and electrooculography (EOG) [51]. These biomedical signals have been used as raw input
data for algorithms in numerous studies to provide analytical tools to diagnose human diseases [52].
Specifically, in this Thesis (Chapter 5), we have used this type of biomedical data to analyze and
monitor obese patients with data collected through wearable sensors.

Biomedical Image processing is also commonly used in diverse clinical applications as an es-
sential part of the existing healthcare system for performing non-invasive diagnostic treatments.
It entails creating functional and illustrative models of the internal organs and systems of the hu-
man body for use in clinical analysis. It comes in various forms, including X-ray-based techniques
including traditional X-rays, molecular imaging, Computed Tomography (CT), mammography,
Magnetic Resonance Imaging (MRI), and ultrasonic imaging [53]. Clinical images are increasingly
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employed in addition to these medical imaging techniques to identify a variety of disorders, par-
ticularly those that pertain to the skin [54, 55]. In this sense, Melanoma skin cancer images have
been used in this Thesis (Chapter 6), as input data for training advanced algorithms that allow
diagnosing the disease in its earliest stages.

2.1.1 Non-relational data management systems

One of the most commonly adopted systems worldwide for clinical data storage is the Relational
Database Management System (RDBMS). The data in RDBMS is highly structured in the form of
tables with relations incorporated among them, where Structured Query Language (SQL) is used
to communicate with the stored data. While there is a possibility to store some of the clinical data
in the structured format, due to the sporadic nature of the new sources and their scalable needs,
the relational model is not practical when the requirement of fields is high. This is because it will
lead to empty fields resulting in insufficient storage [56]. However, it faces a drawback of rigidity
for which the data should always be in the form of tables. Since it is evident from the recent
searches and experiments that clinical data is heterogeneous in nature, a shift from the traditional
storage in a relational database to an advanced non-relational database format becomes a necessity.
Non-relational databases show true signs of usability in clinical applications where large volumes
of heterogeneous data are collected and generally unstructured [57].

Non-relational databases, also commonly known as NoSQL (Not Only SQL), are not built pri-
marily on tables, and generally do not use SQL for data manipulation. Indeed, NoSQL databases
came into existence due to the limitations of the traditional relational database systems [58]. Ad-
ditionally, classic relational database management systems are unable to handle the rapid growth
of the data with different (or without) structures of information. This technology cannot satisfy
agile and highly iterative application development approaches required by the existing processing
scenarios of Big Data [59]. For that reason, Non-relational databases are used by a health informa-
tion management system [60], when working with clinical data, either structured, semi-structured
or unstructured data.

In [61], an interesting table of advantages of No-SQL databases compared to RDBMS in an in-
clinical use case in COVID-19 data management is shown (see table 2.1 where the main differences
are highligthed).

RDBMS Non-RDBMS
Table-oriented with fixed, predeter-
mined, and restrictive schema

Document-oriented databases that are
schemaless

Can be only scaled vertically which is
limited by budget

Can be scaled horizontally to provide
more resilience and lower costs

A very rigid schema and making regular
changes is not feasible

It has no constraints and provides
adaptability

Can handle data coming in low velocity Can handle data coming in high veloc-
ity

Table 2.1: Difference between RDBMS and non-RDBMS

In [62], NoSQL databases are classified depending on how it is defined their data model, as
key-value store, column-oriented store, document-oriented store and graph databases:

• Key-value . These database store items as alpha-numeric identifiers (keys) and associate
values in simple. The values may be various from simple text strings to more complex like
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lists or sets. Examples of this type of database are: Redis [63], Tokyo Cabinet-Tokyo Tyrant
[64] or Scalaris [65].

• Column-oriented . The data model of this kind of database is defined as rows and columns,
although columnar manner is preferred over the traditional row manner. As Column-oriented
databases we could highlight the following: HBase [66], HadoopDB [67] or Apache Cassandra
[68].

• Document Oriented Store . These are extended key-value stores in which the value is
represented as a document encoded in standard semi-structured formats such as XML, JSON,
or BSON (Binary JSON). A document has a flexible schema through adding or removing
its attributes at runtime. Unlike the opaque content of values in key-value stores, document
stores know the format of documents and support indices and search functionalities based
on their attribute names and values. Some instances of document databases are: MongoDB
[69] or Apache CouchDB [70], Amazon DynamoDB [71] and Couchbase [72].

• Graph store database. The data model store the data in a graph structure to depict the
relationship between data by warehousing data in the form of nodes, edges, and properties.
Examples of this type of database are: Node4j [73], Virtuoso [74] and Stardog [75]

In Chapter 3, we propose the use of NoSQL databases as a solution for effective management of
clinical trial data, since the transformation of the data into a structured format for data analysis
are extremely challenging issues in electronic health records development [76]. In this sense, we
use MongoDB as core in our software tool for flexible management of biomedical data (FIMED)
for the following reasons:

1. Flexibility: MongoDB is beneficial in terms of flexibility to deal with the characteristics
of clinical data. The dynamic nature of clinical data allows to organise them without being
confined to a predefined structure. In this sense, MongoDB allows a schema-less database
design or, if required, to tackle semi-structured or structured data. Consequently, FIMED
has enormous flexibility when declaring the structure of dynamic form schemas. Database
schema does not require to be defined entirely beforehand, and the data structure can change
over time without needing to update previous database entries. Thus, it helps in decreasing
redundancy and, in turn, improving efficiency.

2. Scalability: MongoDB has been designed to operate using a cluster configuration, making
it a great choice if scalability and computational effort are required. In general, NoSQL
systems are the most suitable for query speed because their performance is efficient, and
they are more scalable.

3. Big Data compatibility: The emergence of Big Data technologies to handle gigantic vol-
umes of structured and unstructured data all at low cost has right suited it to take the position
of data archival solution. MongoDB is designed to establish long-term storage needs, an ef-
fective and prompt search of content with the help of keywords or full texts and cost-efficient
services. The challenges associated with the velocity, volume and variety of data can be
tracked down in a swift, elegant, and agile manner, thereby making MongoDB a scalable
back-end data archival solution to such clinical data.

4. Security: MongoDB provides some features to FIMED in terms of database security such as
authorization and authentication. In addition, it allows data encryption while it is in transit
over the network or at rest in storage and backups by the administrators
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5. High functionality and extensibility: FIMED has been designed to include clinical
data analysis tools as a decision-making support tool for clinical experts. In this sense, a
semi-structured schema has been designed in the MongoDB database, so that new analytics
capabilities can be added, and it can adapt to heterogeneous different data from various
sources.

2.1.2 Big Data

Big Data refers to large, complex datasets that are beyond the capabilities of traditional data
management systems of storing, managing, and processing in a timely and economical manner.
Big Data technologies handle vast amounts of structured, semi-structured, and unstructured data.
Compared with traditional datasets, Big Data typically includes masses of unstructured data that
need more real-time analysis [77].

Healthcare is one of the domains of application that can significantly benefit from the increasing
amounts of data and its availability [78]. Entities, including health care providers, pharmaceutical
companies, research institutions, and government agencies, have begun to compile massive amounts
of data from research, clinical trials, and public health and insurance programs. The consolidation
of data from various sources has significant potential [79]. Physicians are beginning to diagnose
and treat patients with a concept known as evidence-based medicine, which involves reviewing
large amounts of data aggregated from clinical trials and other treatment pathways on a large
scale and making decisions based on the best available information. With Big Data technologies,
a physician can look at nationwide trends on what course of treatment would work best for the
patient to prescribe the best medications. The aggregation of individual data sets that would
otherwise prove meaningless provides doctors with the information needed to make better, more
holistic medical decisions.

2.1.2.1 IoT in healthcare

Internet of things (IoT) has been generally defined as "dynamic global network infrastructure with
self-configuring capabilities based on standards and interoperable communication protocols; physical
and virtual things in an IoT have identities and attributes and are capable of using intelligent
interfaces and being integrated as an information network" [80, 81]. However, there is not an single
or universal definition. Also, IoT has been defined as things-connected network, where things are
wirelessly connected via smart sensors [82]. IoT is an inter-connected world-wide network based
on sensory, communication, networking, and information processing technologies.

IoT has improved the sanitary system by integrating numerous IoT devices to collect real-
time physiological data from patients, including blood glucose levels, temperature monitors, and
many other patient vital signs that can be obtained from wearable sensors [83]. Indeed, IoT
applications in healthcare have enabled innovative management of the healthcare processes, disease
management, assisted living, clinical monitoring remotely, self-caring, detection of some events
such as seizure detection, fall detection to help Parkinson’s gait disturbance, stroke rehabilitation,
neurologic monitoring, and cardiac to reduce medication and human errors [84]. Moreover, the
most common IoT applications in healthcare are in some areas such as home healthcare, mobile
healthcare or e-healthcare [85].

In this sense, Chapter 5 of this Thesis follows an architecture of IoT in healthcare systems in
a real-world case study of Human Activity Recognition (HAR) from sensorised patient data [32].
In this work, we proposed to discriminate basic posture change movements or activities of a group
of patients with obesity and cardiovascular problems. In this sense, we can provide tools to
practitioners to follow the daily routine of their patients and thus prevent a sedentary lifestyle.
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This work was an ongoing collaboration project in the context of a real-world healthcare system
(in Andalusia, Spain).

2.1.2.2 Apache Spark

Matei Zaharia initially developed Apache Spark at UC Berkeley’s AMPLab in 2009 [86]. Apache
Spark is an open-source cluster computing framework, consisting in an ultra-fast engine for storing,
processing and analyzing large volumes of data. It is open source and is managed by the Apache
Software Foundation [87]. It has emerged as the framework for Big Data analytics with libraries
for scalable machine learning, graph analysis, streaming, and structured data processing [88].
Its processing power speeds-up the detection of patterns in data, the organized classification of
information, the execution of intensive computation on data and parallel processing in clusters.
Moreover, it provides advanced application programming interfaces in Java, Scala, Python, and R.

Apache Spark is mainly composed of several components including Spark core [89]:

• Spark SQL: allows access to data in a structured way. It also facilitates Spark integration
with Hive, ODBC, JDBC and business intelligence tools [90].

• Spark Streaming: provides support for real-time data processing. It is done through a
small batch packaging system [91].

• MLlib - Machine Learning library: provides a library of powerful machine learning
algorithms [92].

• GraphX: provides a graph processing API for parallel graph computing [93].

Moreover, Spark internally uses Resilient Distributed Dataset (RDD) to create performant,
scalable data pipelines and algorithms. RDDs offer fault-tolerant, parallel data structures that en-
able users to deliberately store data on disc or in memory and control how it is partitioned. RDD
also perform a wide range of operations (e.g., map, filter, union, etc.) and actions (e.g., reduce,
collect, count, etc.). Hence, RDD allows the development of different workloads efficiently [89].
Furthermore, as an alternative to RDD, Spark supports Dataframe and Dataset, which are dis-
tributed data collection and better handling, from version Spark 1.6.

In Chapter 5, the Apache Spark framework has been used in the Big Data context to classify
the daily activity of 300 overweight patients, close to 30 TBs of accelerometer sensor-based data. In
this Thesis, we use Spark for parallel processing and analyzing streaming data. So, the presented
proposal can classify movement patterns in real-time conditions, which is crucial for long-term
daily patient monitoring.

2.2 Artificial Intelligence in biomedical environments

Artificial intelligence (AI) is defined as “a field of science and engineering concerned with the
computational understanding of what is commonly called intelligent behavior, and with the creation
of artifacts that exhibit such behavior” [15]. One of the pioneers of contemporary computer science
and artificial intelligence was the British mathematician Alan Turing (1950). He characterized
intelligent behavior in a computer as the capacity to complete cognitive tasks at a level comparable
to that of a human; this definition later became known as the “Turing test” [94]. AI served as the
impetus for a great deal of contemporary research, and early studies on the functioning of the mind
contributed to the development of modern logical thought. AI systems are programs that allow
computers to behave in ways that give the impression that a computer is intelligent [95]. AI can
also refer to circumstances in which machines can mimic human minds in learning and analysis
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and thus be used to solve problems. The term Machine Learning (ML) is another name for this
type of intelligence [96].

AI has advanced quickly in recent years in a vast number of areas such as the IoT [97], ma-
chine vision [98], autonomous driving [99], natural language processing [100], and robotics [101].
Especially, AI has been taking importance in biomedical fields in the last few years since modern
medicine is faced with the challenge of gathering, analyzing and applying a large amount of knowl-
edge necessary to solve complex clinical problems. Hence, researchers have been actively attempt-
ing to integrate AI into healthcare to enhance analysis and treatment outcomes and, consequently,
increase the efficacy of the overall healthcare and medicine [102, 103, 104]. The development of AI
systems aimed at assisting the clinician in formulating a diagnosis, making therapeutic decisions,
and predicting outcomes has been linked to the development of medical AI. They are made to help
healthcare professionals perform daily tasks that require data manipulation and knowledge [105,
106]. As shown in Figure 2.1, research interest in AI applications in biomedicine has gained im-
portance in the past years, especially in the last five years, and continued growth in future can be
forecast [107].

Figure 2.1: Research interest in AI applications in biomedicine [107]

2.2.1 Machine Learning

Machine Learning (ML) is a specific family of methods of artificial intelligence that gathers knowl-
edge from training data and enables computer systems to carry out complicated tasks deftly [108].
Traditional AI systems typically rely on hard-coded rules to define each step of how to solve a prob-
lem. In contrast, a machine learning model uses many data to identify features and complete a
predefined job. Then it discovers the best way to provide the desired result. Model construction is
automated by ML when it comes to creating models. Machine learning is an iterative process that
enables the computer to modify its strategies and results in response to new events and data [109].
There are three main categories of machine learning algorithms:

1. Supervised learning. In general, supervised machine learning refers to a framework that is
trained on labeled data [110]. The data labels are categorized at each data point into one or
more groups. The nature of these labeled data (training data) is exploited by the supervised
framework, which predicts new data categories (test data).

2. Unsupervised learning. It refers to learning without labeling. The goal is to identify
shared patterns between data points, such as cluster creation and data point allocation to
these clusters [111].
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3. Reinforcement learning. Reinforcement learning focuses on learning via experience. An
agent interacts with its environment and attempts to optimize a reward function in normal
reinforcement learning circumstances. During the training and learning process, the agent’s
goal is to comprehend the impact of its choices and identify the best methods for increasing
its rewards.

Additionally, hybrid approaches are also being developed, such as semi-supervised learning
(using partially labeled data) [112]. Semi-supervised learning is focused on performing specific
learning tasks using both labeled and unlabeled data. It takes advantage of the substantial amounts
of unlabeled data present in many use cases in addition to the more common smaller sets of labeled
data [113].

It is important to note that supervised learning requires a significant amount of training data,
which is both an inefficient and time-consuming operation. In contrast, unsupervised learning
does not require any labeled data and instead groups the data into clusters depending on how
similar the data points are using either a clustering or a maximum likelihood approach. This
method’s primary drawback is that it cannot accurately cluster anonymous data. Hence, other
paradigms are employed to address issues where most data are unlabeled, such as semi-supervised
learning. In this regard, semi-supervised is used to overcome the weaknesses of both supervised and
unsupervised learning since it can learn from small amounts of training data and label unknown or
test data [114]. These developments have pushed the limits of medical AI by improving already-
existing technology and expanding our understanding of illnesses. In particular, these methods
produce practical insights by allowing models to discover new patterns and categories rather than
being constrained by preexisting classifications, as in the supervised paradigm [115].

Semi-supervised learning models can be divided into semi-supervised learning for classification
and semi-supervised learning for clustering. In this PhD Thesis, we will focus on semi-supervised
classification algorithms. Many different semi-supervised classification algorithms have been pro-
posed during the past 20 years. These approaches vary concerning the semi-supervised learning
presumptions they are founded on, how they employ unlabeled data, and how they interact with
supervised algorithms [113]. One of the most predominant methods in semi-supervised learning
is the inductive method. The goal of inductive method is to build a classifier that can produce
predictions for any object in the input space [116]. Unlabeled data is used in inductive methods
to train this classifier. It can be divided into three main categories:

1. Wrapper methods: In wrapper methods, classifiers are trained on labeled data and then make
predictions on the unlabeled data to produce more labeled data. After that, classifiers can
then be retrained using both the existing labeled data and this pseudo-labeled data.

2. Intrinsically semi-supervised methods: Unlabeled data is incorporated into the learning
method’s objective function or optimization process in intrinsically semi-supervised meth-
ods. Like semi-supervised support vector machines, these techniques are straightforward
expansions of supervised learning techniques.

3. Unsupervised preprocessing : Unsupervised preprocessing methods utilize labeled and unla-
beled data at two distinct stages. The unsupervised step often consists of either the au-
tomated extraction or transformation of sample features from the unlabeled data (feature
extraction).

In Chapter 5 of this Thesis, we will use a hybrid approach based on an unsupervised prepro-
cessing method. In this use case, we have a massive amount of unlabeled data, so we will use an
unsupervised preprocessing method to do automatic feature extraction from the unlabeled data to
improve model learning.
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2.2.2 Deep Learning

Non-linear data models called Artificial Neural Networks (ANNs) are designed to mimic the cor-
tical biological neural network in the brain. In the 1940s, fundamental pattern recognition (PR)
gave rise to ANN [117]. A variety of artificial neural units make up the ANN. These networks
enable computers to mimic the cognitive and logical processes of the human brain by simulating
the learning process through different layers in the cortex. That allows for multiple processes
like identifying objects in images, processing languages or recognizing and translating voice com-
mands [118]. They have become especially desirable analytical tools in medicine because of their
ability to learn from experience, analyze non-linear data, deal with ambiguous information, and
generalize information. Thus, it allows the application of the model to other independent data.

If an artificial neural network includes more than three hidden layers, it is said to be a deep
neural network. Deep Learning (DL) is considered a new learning paradigm within machine learn-
ing. DL includes a collection of learning algorithms to train complex prediction models rather than
just one method [119].

Building an ML system required subject expertise and human engineering to create feature
extractors that converted data into usable representations in which a learning algorithm could
recognize patterns. Traditional ML models need to explore hand-crafted features. On the contrary,
DL is a type of representation learning that consists of numerous layers of representations. It
involves feeding data so it may create the representations required for pattern recognition. The
representation of one layer (starting with the data input) is fed into the next layer and changed
into a more abstract representation. These layers are often ordered consecutively and comprise
many primitive, nonlinear operations. The input space iteratively warps as data travels through
the system’s layers until data points can be distinguished [120].

One of the essential benefits of DL is that it automates the feature extraction process, reducing
the need for some manual human supervision. For example, in biomedical image classification, DL
models automatically extract image features to optimize the model’s performance. Hence, deep
neural networks can process the data directly and enable the creation of end-to-end predictive
models by carrying out all the processing steps typically associated with designing a conventional
ML model, such as feature extraction and learning (Figure 2.2).

Figure 2.2: Artificial Intelligence workflow for image classification, in which traditional ML work-
flow includes hand-crafted human features. In contrast, the DL workflow provides a deep feature
extraction to extract the most relevant features from images automatically.

Deep learning models usually outperform traditional ML methods because they scale to huge
datasets and improve with additional data. Also, DL algorithms can include multiple data types
as input, which is an especially relevant feature for heterogeneous healthcare data (Figure 2.3).
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Figure 2.3: Deep neural network develops a practical specialization in its low-level interactions
networks using biomedical images, raw time series, and other forms of data as input. Then,
combined data is passed to higher layers. Biomedical data interactions are becoming increasingly
crucial in the healthcare industry. Image modified from reference [121].

The system’s ability to learn from enormous volumes of data in an unsupervised or semi-
supervised fashion is one of the critical features of DL. Therefore, it may use a general-purpose
learning technique to learn from data on its own without the guidance of an expert. It has
become the de facto computing paradigm for ML experts, thanks to recent advances in medical
disciplines [107].

2.2.2.1 Convolutional Neural Networks

At the Large Scale Visual Recognition Challenge (ILSVRC2012) [122], the term Convolutional
Neural Network (CNN) was first introduced in 2012. For the first time, CNN outperformed con-
ventional pattern recognition techniques by halving the error rate on the image classification task.
Nowdays, CNN can be considered the most popular deep learning architecture, which has many
characteristics with traditional NN. A three-dimensional arrangement of neurons in a CNN differs
from a standard NN in that it connects with a portion of the previous layer rather than the full
layer when given an image as input, as observed in Figure 2.4.
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Figure 2.4: (a) Traditional full connected Artificial Neural Network (ANN), (b). Convolutional
Neural Network (CNN). Image modified from [123].

The convolutional layer is the initial layer in these neural networks. Each node in the con-
volutional layer processes only a small portion of the visual field. After the convolutional layers,
corrected layer units, or rectified linear unit layer (ReLU), are applied, allowing the CNN to handle
complex input. ReLU helps to improve non-linearity and the training speed, since it is a non-linear
function. The ReLU function returns 0 if very negative values are passed and remain the same
if these values are positive. When the output value is 0, its derivative is also 0, which results in
neurons’ death (Figure 2.5).

Figure 2.5: Rectified linear unit layer (ReLU). Figure taken from reference [124].

Additionally, CNN comprises others layers such as pooling layer or fully connected layer. Since
computations are based on neighboring pixels, the pooling layer down-samples the input values
to minimize the spatial dimensionality of the input to reduce computational cost and prevent
overfitting [98]. Only relevant data should be extracted, and unnecessary information should be
discarded via a perfect pooling process. Hence, down-sampling is applied to divide the input into
rectangular pooling regions, as shown in Figure 2.6.

The final layer of the architecture of CNN is often a fully connected layer, similar to the hidden
layers of a classic NN in that all of its neurons are coupled to those in the layer before it.

In CNN, each layer enhances the input characteristics that can be used to distinguish any
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Figure 2.6: Example of Max-Pooling operation. Figure taken from reference [125]

irrelevant variation from the lower layer. For example, in the case of image processing, the first layer
of representation often indicates the presence or absence of edges at specific places and orientations
in the image when the input is an array of pixel values. The next layer emphasizes specific edge
configurations while ignoring any minute differences within the edges to show the existence of
motifs. Subsequent layers would identify elements as combinations of these pieces, as this layer
can aggregate motifs into larger combinations that approximate parts of known objects. As the
number of layers increases, complex functions can be learned if enough of these transformations
are combined. For this reason, DL is driving AI research and is considered the industry standard
for sophisticated computational models [107].

2.2.2.2 Autoencoders

As commented above, most of the work to date is limited to using a low amount of labeled data
to train a supervised model. As a solution, deep neural networks can be used as semi-supervised
feature extraction (Unsupervised preprocessing) method to uncover latent representations of the
input data [126]. One of the most recognized feature extraction methods is the autoencoder, a
neural network containing one or more hidden layers [127]. Autoencoders are trained to learn
valuable representations by compressing and reconstructing unlabeled data to learn some patterns
from unlabeled data. Thus, the goal of recreating its input is the most well-known example. The
network is compelled to find a means to compactly represent its input data by incorporating a
hidden layer with a small number of nodes, commonly referred to as the representation layer. The
representation layer supplies features once the network has been trained [128]. Figure 2.7 offers a
schematic illustration of a typical autoencoder.

Autoencoders seek to reduce the input space’s size without significantly reducing its information
content. Thus, autoencoders operate by default, presumption that lower-dimensional substructures
in the input space represent the data. Additionally, they presume that two samples on the same
lower-dimensional substructure have the same label when used as a preprocessing step for classifi-
cation [129]. Many variants of AE have been developed, such as denoising AE [130], stack denoising
AE [119], marginalized denoising AE [131] and Variational AE [132].

In Chapter 5 of this Thesis, we work on a Human Activity Recognition (HAR) use case with
obese patients where we have a massive amount of unlabeled data, and the labeled data is minimal.
To cope with the limitation of labeled data, we propose to use a semi-supervised autoencoder
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Figure 2.7: Basic architecture of Autoencoder [113]. The basic architecture of an Autoencoder is
composed of three main layers: input layer x, hidden layer (h(x)) and output layer (g(h(x))). In
fact, the input layer and the hidden layer compose the enconder h, which compressed an input
vector x to its latent representation h(x). Also, the hidden layer and the output layer compose the
decoder g, which try to reconstruct the latent representation back to the original x. Hence, the
output its the difference between the input x and the corresponding reconstruction g(h(x)).

algorithm for classification to extract relevant features from the unlabeled data that help to improve
the prediction of the results and generalize the model knowledge.

2.3 Fundamentals of optimization

This section outlines the fundamentals of optimization, and essential concepts are formally defined.
We focus on multi-objective algorithms and metaheuristics for dealing with the problem of gene
regulatory network reconstruction.

Optimization is an intuitive concept for most of us; it is about finding the best solution to a
problem or a good solution, which is essential in real-world problems. The optimization problem
consists of maximizing or minimizing a function relative to a set of data, which may have a range
of possibilities in a given situation [133]. In this respect, a metaheuristic consists of stochastic algo-
rithms for solving complex optimization problems, which do not guarantee obtaining the optimal
solution of a given problem, but when properly tuned allow to obtain near-optimal solutions, often
the optimal one, with bounded computation effort. Some typical applications in optimization can
be to minimize the costs of a product, maximize the profits of a company, organize the tasks of
a company optimally or find the shortest route between two points. Traditionally, these problems
could be solved without the aid of computational assistance. However, nowadays, novel optimiza-
tion methods are used to deal with real-world problems. To define an optimization problem, we
have to take into account some concepts: objective function or fitness function, design variables,
and constraints. The objective function, f(x), is the output to be maximized or minimized. For
example, if we want to minimize the price of a product, the fitness function is the cost of the
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product. Design variables are the inputs (x1, x2, x3, ..., xn) that can be adjusted to change the
fitness function, and constraints are limits placed on the value of design variables. Finally, all
these variables or quantities are placed in the solution space or search space of the problem [134].

Without loss of generality, a formal definition of an optimization problem, assuming the mini-
mization case, is defined as follow:

Definition 1 (Optimization problem). An optimization problem is formalized as a pair (S, f),
where S 6= ; represents the search space of the problem, and f represents the fitness function, that
is defined as:

f : S ! R . (2.1)

Thus, solving an optimization problem consists in finding a solution, x
⇤
2 S, that gratifies the

following inequality:
f(x⇤)  f(x), 8 x 2 S . (2.2)

A problem where the fitness function is to be maximized (instead of minimized) does not restrict
the generality of the results. It can also be established with this standard problem statement since
maximization of a function f(x) is the same as minimizing the negative of f(x) as follows [135,
136]:

max{f(x)|x 2 S} ⌘ min{�f(x)|x 2 S} . (2.3)

Depending on the domain to which S belongs, we can define binary (S ✓ B⇤), integer (S ✓ N⇤),
continuous (S ✓ R⇤), or heterogeneous (S ✓ (B [ N [ R)⇤) optimization problems.

2.3.1 Multi-objective optimization

So far, we have talked about mono-objective problems; however, in real-world scenarios, two or
more objective functions must be optimized, all equally important for the task. To deal with these
problems, we need multi-objective optimization, where our goal is to optimize several objectives
simultaneously. In this sense, the formal formulation of a multi-objective optimization problem is
presented as follows:

minimize {f1(x), f2(x), ..., fk(x)}

subject to x 2 S ⇢ Rn
(2.4)

with k � 2 conflicting objective functions fi : S ! R and where x is a vector of decision variables
from the feasible set S. We can denote an objective vector by z = f(x) = (f1(x), f2(x), ..., fk(x))T .

Generally, in multi-objective optimization, there exists no single solution within the search
space where all the objectives reach their individual optima. It has many optimal solutions with
different trade-offs. These optimal solutions are called Pareto optimal solutions, which may contain
a set of optimal solutions, possibly infinite. Hence, the purpose may be to discover a representative
set of Pareto optimal solutions, quantify the trade-offs in satisfying the different objectives, and
find a single solution that meets the preferences of a Decision-Maker (DM), normally a human
being.

With the goal of being more specific, in (2.4), a design variable vector x
0
2 S and the corre-

sponding objective vector z are called Pareto optimal if there does not exist another x 2 S such
as fi(x)  fi(x

0
) for all i = 1, ..., k and fj(x) < fj(x

0
) for at least one index j.

In multi-objective optimization the concept of dominance is used to determine if one solution
is better than other solutions. As shown in Figure, a solution a dominate a solution b if a is no
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worse than b in all objectives and a is better than b in at least one objective. In the same way, a
is non-dominated by b. The solution of the multi-objective optimization problem is characterized
by the set of non-dominated solutions, known as Pareto set.

Figure 2.8: Example of a Pareto frontier for a multi-objective optimization problem with two
objective functions.

2.3.1.1 Multi-Objective optimization in Gene Regulatory Networks reconstruction

The network biology approach has demonstrated great promise in systems biology research [137].
In the recent decade, network biology has been a popular tool for representing, combining, and
revealing intracellular relationships and mechanisms [138, 139].

In biological networks, interactions between genes, proteins, and metabolites are coordinated as
part of cellular processes. The fundamental building blocks of network topologies that encode the
dynamics of physiological responses and various regulatory motifs are molecular interactions [140].
Biological networks attempt to present a complete cell or organism map, including their collec-
tive biological actions and co-expressed traits. They are undoubtedly the best tools for studying
complicated diseases like cancer [141].

The biology of a living organism can be explained by transcriptional information stored in DNA,
converted into RNA, and then translated into proteins to carry out diverse tasks in a cyclical process
that also involves the reproduction and propagation of the information itself [142].

The process of reading information from the genome to produce the set of proteins required for
the growth and operation of a living organism is known as gene expression [143]. More specifically,
we might characterize this idea as a sequence of cellular processes that strictly adhere to the funda-
mental principle of molecular biology. DNA’s nucleotide sequence eventually provides instructions
on which amino acids to combine and in what order to create different biological proteins [144].
Genes are DNA segments containing nucleotide sequences responsible for storing the knowledge
required to produce particular polypeptide chains or a particular set of proteins. Since DNA is
divided into genes, they can be thought of as nucleotide sequences. Although all cells share a
similar genome, each cell’s transcriptome is a product of its biological activity and, consequently,
the cellular tissue to which it belongs. Genes are selectively translated into RNA in each cell.
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Gene expression regulation is the process of gene activation and deactivation that enables cell
specialization. It is typically explained by interactions between gene products and transcription
factors [145]. This process is referred to as the regulation of gene expression. After RNA is
translated into proteins, making them unique in every cell assembly, proteins serve as the final
products that further specify the cell’s functionality [146].

In recent years, the concept of Gene Regulatory Networks (GRNs) has grown widespread as
an influential applied biology strategy for explaining the complex and highly dynamic set of tran-
scriptional interactions (gene to gene interactions) due to its easy-to-interpret features [147]. For
the reconstruction of Gene Regulatory Networks (GRNs), gene expression data is essential, which
provides information about gene expression by acting as the raw input data. In general, gene
expression data is represented by a matrix where aij represents the gene expression value of the
j � th gene (1  j  n) in the i� th experiment (1  i  p).

G =

2

6666664

a11 ... ai1 ... ap1
...

...
...

a1j ... aij ... apj

...
...

...
a1n ... ain ... apn

3

7777775
(2.5)

GRN can be represented as a directed graph compose of gene-to-gene interactions, where regu-
lators genes are connected to target genes by interaction edges based on the information provided
by gene expression data [148] (Figure 2.9). Transcription Factors (TF), which may function as both
activators and repressors, RNA-binding proteins, and regulatory RNAs are all regulators of gene
expression. Understanding biological processes such as cell growth and division, cell differentiation,
and development depends on identifying regulatory links between transcriptional regulators and
their targets [149].

Figure 2.9: Reconstruction of GRNs (B) from gene expression profiling data (A). Image taken from
reference [150].

The automatic reconstruction of GRNs is a complex problem found in computational biol-
ogy [151], which consists in tuning parameters of a model that quantitatively reproduces the
dynamics of a given biological system. Since, biologists still struggle to catalogue, predict, and
comprehend every GRN relationship across all species and cellular contexts, a variety of compu-
tational methods has been studied that are capable of inferring the topology of gene interactions
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to form networks [152]. In this regard, multiple optimization techniques such as evolutionary al-
gorithms [153, 154, 155], and especially particle swarm optimization [156, 157, 158, 159, 160],
have been applied to the inference of gene regulatory networks from gene expression time-series.
However, their precisions are strongly influenced by the quality of available datasets and the char-
acteristics of the learning model used for such predictions. In this sense, S-System [161] framework
can obtain a good trade-off between biological relevance and mathematical flexibility. It internally
uses an Ordinary Differential Equations (ODE) system, which is a helpful framework to fit con-
tinuous variations of genetic regulations over time. Nevertheless, ODE systems require additional
computational effort to tune parameters of kinetic orders and rate constants from a usually short
amount of gene expression data. Moreover, as usually observed in biological systems, a sparse
topology of the network should be accurately reproduced, so the early detection of significant node
connections constitutes a major challenge in this process. To cope with these issues, the inference of
GRNs has been traditionally tackled as a global optimization problem [162], which has demanded
the use of specialized optimization techniques [154, 157, 158] to deal with it.

With this motivation, in Chapter 4 of this Thesis, a study of different GRN reconstruction
techniques has been carried out, giving information to the expert biologist as to which method
provides the best results. It focuses on PSO due to the relative accurate behaviour and fast
convergence. It proposes a set of multi-objective particle swarm optimisers (MOPSOs) using
different archiving strategies (hypervolume and aggregation) and consequently different strategies
for the selection of leaders, in the context of the inference of GRNs.

2.4 Explainable artificial intelligence in biomedical environ-

ments

Thanks to the extraordinary progress in AI research, it has been possible to apply it to many
different fields and disciplines, including medicine and healthcare. With the advent of more com-
plex and comprehensive algorithms, such as ensemble algorithms and deep learning algorithms,
significant advances have been made in developing recommendation and support systems for the
clinical experts. However, due to the complexity of these algorithms, which behave like "black
boxes", we cannot obtain a clear interpretation of the results. Many of these algorithms’ decisions
are still poorly comprehended [163]. Neural networks typically consist of many layers connected
via many nonlinear intertwined relations, so it is unfeasible to comprehend how the neural network
came to its decision fully. The concern is mounting in various fields of application that these black
boxes may be biased in some way like "When do you succeed?.", "When do you fail?.". In this
regard, the medical sector requires a high level of responsibility and, therefore, transparency. The
clinical expert must know why the algorithm obtains such results, as shown in Figure 2.10. Hence,
failure is not an option in medical decisions [164]. In some situations, human lives depend on early
detection to stop a fatal disease by taking drugs in the earliest stages. Thus, despite the current
encouraging results in the performance of medical tasks shown by AI, they are far from flawless
and far from usable by the scientific community in real situations [165].

All of these indicate that the interpretation of ML models must provide knowledge of the model
operations and predictions or visualize the model’s discrimination rules on what could cause the
model to be perturbed [166].

In this sense, the term eXplainable Artificial Intelligence (XAI) was coined to cover all these
limitations in the effectiveness of current AI systems [167]. Conceptually, XAI proposes more
explainable models while maintaining a high level of learning performance. Thus, these models
can be understandable by humans with reliable predictions.
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Figure 2.10: Black-box problem in decision-making when using AI solutions.

2.4.1 Explainability vs Interpretability

Several terms are essential to understanding the characteristics of an XAI system, such as explain-
ability and interpretability.

When a model is interpretable, people may easily comprehend how it works and the reasons
behind its conclusions [168]. Several ML models are inherently interpretable, such as Logistic
Regression models. Humans may consult the weights and odds ratios to understand how the
model works and the coefficients to understand the reason behind specific predictions [169]. Also,
Decision Tree models can be considered interpretable, even though they become less interpretable
as their complexity increases, as in the case of ensemble and deep learning algorithms.

Explainability is the capacity to express how an AI decision has been made to a broader range of
end-users in language humans can comprehend [170]. It allows humans to essentially understand
how a model works and how decisions are made without accounting for all the details of their
computations [171]. In this sense, explainability refers to how predictions are interpreted in the
presence of novel cases. In contrast, interpretability refers to how the model is interpreted after
training on data [172]. Moreover, explainability is often applied to black-box models in which
this technique generate an interpretable model to explain the behavior of the complex model.
Consequently, explanations are reasonable approximations of a model’s structure and behavior
when interpretations directly account for those aspects [173].

2.4.2 Intrinsic vs Post-hoc methods

In general, there are two main categories of XAI methods: post hoc and intrinsic methods [174].
Besides, these methods can be classified into model-specific or model agnostic. Model-specific
explanations are specific solutions for a single model or group of models. In contrast, model
agnostic explanations can be used for any machine learning model. Usually, agnostic methods
analyze the relationship between input and output features. In addition, these methods can be
categorized into local or global methods. Local methods explain individuals’ predictions while
global explanations can explain the entire model behavior [175].

Intrinsic methods refer to models that are simple enough to comprehend but complex enough to
accurately match a relationship between input and output [176]. Frequently, these are the classic
machine learning models that are intrinsically explainable such as support vector machine, linear
regression, logistic regression, k-nearest neighbor, decision trees, and others such as rule-based
learners or general additive models. Intrinsic methods require a human to be able to reason about
the entire decision-making process of the model internally, or they mandate the usage of a small
number of features [176]. By employing this technique, we may determine what portion of the
input data contributes to the categorization choice made by any classifier.

Post-hoc explanation examines a trained model (a neural network in deep learning) to gain
knowledge of the acquired relationships. The main difference between intrinsic and post-hoc meth-
ods is that post-hoc explanation makes the neural network explainable. In contrast, intrinsic
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explanation trains a neural network before attempting to explain its behavior [177]. As depicted
in Figure 2.11, using the intrinsic XAI method allows the medical XAI application to examine
medical data and provide decisions and explanations to physicians. Alternatively, if the medical
application were to use post-hoc XAI, the black box methods would be applied to the medical data
for decision making, followed by post-hoc XAI that would explain those of the black box methods.

Figure 2.11: General workflow of XAI medical applications in which post-hoc or intrinsic methods
provide explanations of the outcome of the black-box method to the clinicians. Image taken from
reference [178].

Many risks are involved while making medical decisions since deep learning’s black box aspect
represents state-of-the-art in medical image processing. XAI is being used more frequently by med-
ical imaging researchers to explain the outcomes of their algorithms. An explanation is adequate if
it clarifies the reasoning behind a neural network’s choice and helps it make sense. In this respect,
Chapter 6 of this Thesis is focused on the use of explainability in deep learning models. A deep
neural network often uses hundreds to millions of weights. This type of network is neither sparse
nor well suited for a human to replicate and rationalize a model’s whole decision-making process
internally. Therefore, we intend to explain the performance of these neural networks in diagnostic
biomedical imaging. In particular, we have focused on detecting melanoma skin cancer by image
processing. Thus, we will apply explainability strategies to deep learning models in the context of
biomedical imaging applying post-hoc methods.

Numerous post-hoc methods have been used for black-box explanation in diagnosing biomed-
ical imaging. In particular, surrogate methods allow explaining the outcome of complex deep
learning models by implementing an interpretable model, such as linear models, on the outputs
of the deep learning model [179]. In Chapter 6, two of the most well-known methods are used:
Local interpretable model-agnostic explanations (LIME) [180] and SHapley Additive exPlanations
(SHAP) [181]. When applying these methods to image classification models such as our convolu-
tional neural network for predicting deseases, they provide visual explanations, also called saliency
mapping. Visual explanation methods display the essential elements of a picture that influence
a choice. Although the majority of saliency mapping techniques use backpropagation-based tech-
niques, others employ perturbation-based or multiple instances learning-based techniques.

LIME is a method that aims to explain each individual prediction by approximating any black
box machine learning model with a local and interpretable model, such a linear model. LIME
employ perturbation-based techniques to perturbs the original data points, which feeds them into
the black box model and looks at the resulting outputs. The approach then adjusts the weights of
those additional data points based on how close they are to the original point. Ultimately, it uses
those sample weights to fit an interpretable model, such as a regression or decision tree model,
to the dataset with variations. The newly trained explanation model can then be used to explain
each original data point.
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SHAP is a model-agnostic method that uses traditional Shapley values from game theory [182]
to explain the output of any machine learning model. It provides local explanations by determining
the marginal contributions of each feature to the model‘s outcome.

2.5 Computational infrastructure

Almost all the experiments conducted in this Thesis have been performed in a virtualization envi-
ronment running on a private high-performance cluster computing platform. This infrastructure
is located at the Ada Byron Research Center at the University of Málaga (Spain), and comprises
a number of IBM hosting racks for storage, units of virtualization, server compounds and backup
services. The physical platform comprises an IBM Chassis BladeCenter H type and BULL server
with a high-performance VMX5300, unified CPU, memory and storage. It also contains a No-
vaScale Blade BL265 only for storage. The virtualization layer supports computing resources
through VMWare ESXi (and VMWare vCloud), storage through IBM SVC (SAN Volume Con-
troller), backup through Veem Backup and IBM Protectier (virtualization of tapes) and desktops
are managed with VMWare Horizon and Virtual Cable UDS. The general characteristics of this
virtualization installation are: a processor with 256 cores and 578.94 GHz, 2.75 TB RAM, 84.41
TB storage space, 10 Gbps LAN network, 1 Gbps internet network, iSCSI 10 Gbps and FC 8 Gbps
storage network.

Moreover, in others experiments with massive data processing, a super-computing platform
infrastructure is used, which hardware is managed by a Slurm middleware acting as the dis-
tributed task scheduler. It takes part in the Picasso Supercomputer (RES node) located in the
Bio-Innovation Building of the University of Málaga.
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Chapter 3

Contribution to flexible management
and analysis of heterogeneous
biomedical data

In the last decade, Clinical Trial Management Systems (CTMS) have become an essential support
tool for data management and analysis in clinical research. However, these clinical tools have
design limitations since they cannot cover the needs of adaptation to the continuous changes in the
practice of the trials due to the heterogeneous and dynamic nature of the clinical research data.
These systems are usually proprietary solutions provided by vendors for specific tasks.

In this chapter, is devoted to present FIMED, a software solution for the Flexible Management
of Biomedical Data from multiple trials, which can contribute positively by improving clinical re-
searchers’ quality and ease in clinical trials. This tool allows a dynamic and incremental design of
patients’ profiles in the context of clinical trials, providing a flexible user interface that hides the
complexity of using databases. Clinical researchers can define personalized data schema according
to their needs and clinical study specifications. Thus, FIMED allows the incorporation of separate
clinical data analysis from multiple trials. A real-world use case has demonstrated the efficiency
of the software for a clinical assay in Melanoma disease, which has been indeed anonymized to
provide a user demonstration. Moreover, FIMED is flexible enough to be used in the context of
any other illness where clinical data and assays are involved.

An instance of this tool is freely available on the web at https://khaos.uma.es/fimedV2. It
can be accessed with a demo user account, “researcher”, using the password “demo”.
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3.1 Introduction

Current advances in Next-Generation Sequencing (NGS), together with the consequent fast-growth
and availability of biological data [1, 2], enable practitioners to combine these data with other clin-
ical and personal information of patients, such as electronic health records, habits, inheritance
and environmental factors; and therefore perform deeper analyses [183]. It promotes the develop-
ment of sophisticated tools for data management and analysis in clinical research and personalized
medicine [184, 185, 186].

Managing clinical data involved in NGS studies is a challenging task [187], given the continuous
obstacles encountered in the system maintenance during patient enrollment, the acquisition process
of clinical study samples and the different steps for the preparation of processing pipelines of clinical
data. Most of these difficulties are indeed produced due to the dynamic and heterogeneous nature
of clinical data [188]. The variability of clinical data concerning the type of data requires special
attention in data management, systems since large volumes of heterogeneous data are integrated
from multiple sources with different structures and data formats.

There is a myriad of research efforts implementing software applications focused on managing
clinical information, which traditionally relied on the use of relational database management sys-
tems, such as MySQL, Oracle, or Microsoft SQL Server [189, 190]. Although the relational data
model is the most extended established approach to data management, it introduces certain limi-
tations when dealing with clinical data [186]. In this sense, since relational databases require the
schema design to be set up before introducing data, this demands that software engineers know the
structure of the data that will be stored and the characteristics they possess in advance [191]. Later
modifications in the schema, once the users are introducing data through an application, are com-
plex as they need to be done by engineers and can have consequences, such as data loss and data
inconsistencies [192]. However, data collection could produce cases where new clinical variables
need to be considered [193]. For this reason, using relational databases to store clinical research
data would cause dispersed tables with empty fields due to schema changes. In consequence, we
can identify several features that would be of interest in clinical research tools [13]:

• Dynamically storing the clinical data from multiple clinical trials;

• Allowing to expand their functionalities;

• Integrating data from different clinical operations in multiple systems;

• Transferring data to different types of samples to target different analysis;

• Being adequate to the special characteristics of clinical data;

• Using a database schema that grants sufficient adaptability to face the continuous changes
in the practice of clinical trials;

• Enabling ways to secure patients’ information.

As commented before, data management in clinical trials is a complex and multidimensional
process without information technology. In that respect, the main challenge presented in this
chapter is to give design and implementation details of FIMED, a more complete, usable, and
high quality data management system for clinical trials that meets the needs of the clinical expert
without programming skills and providing flexible management and analysis of clinical research
information.
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3.2 Related works

Different software platforms exist devoted to storing and processing large volumes of heterogeneous
data from multiple data sources, which are also focused on performing computation on encrypted
data in different application domains. Some prominent examples in this sense are TrajMesa [194],
a holistic distributed NoSQL trajectory storage engine. TrajMesa can manage many trajectories
and support plenty of query types efficiently; PERSIST [195], is a middleware architecture that
externalizes the complexity of a federated cloud, storage architecture and the complex storage
logic from the SaaS application to storage policies. This platform also allows tenants to enforce
different storage- and privacy-related requirements at a fine-grained level and supports the dynamic
(re)configurability of the underlying federated cloud storage architecture. PERSIST offers support
for run-time cross-provider polyglot persistence and the confidentiality of sensitive data through
encryption.

A third solution is CryptDICE [196], a distributed data protection system that provides built-
in support for several different data encryption schemes, supports making appropriate trade-offs
and execution of these encryption decisions at diverse levels of data granularity, and integrates a
lightweight service that performs dynamic deployment of User Defined Functions (UDF), without
performing any alteration directly in the database engine for heterogeneous NoSQL databases.
This leads to realizing low-latency aggregate queries and also avoiding expensive data shuffling.
Finally, SecureNoSQL [197] aims to cover data confidentiality and the integrity of the datasets
residing on a cloud server. In this last platform, a secure proxy does the required transformations,
and the cloud server is not modified. The construction applies to all NoSQL data models, especially
those oriented to a document-store data model.

Similarly, in the specific case of clinical data management, there are many software packages
already developed, some of them freely available to clinicians [198, 199, 200, 201, 202, 203, 204, 205].
In this regard, OpenClinica [200] is one of the most prominent tools designed to capture clinical trial
data. This web-based tool allows designing electronic Case Report Forms (eCRF), firstly building
them in any spreadsheet program and uploading them via the user interface. However, the forms
must be uploaded again in the tool if users want to modify or update them in OpenClinica. For
this reason, the users will be hindered as they will have to constantly load the forms into the tool
due to the heterogeneity of the clinical data and the changes that may occur in the different trials.
REDCap [202] is a research electronic data capture tool where clinical researchers declare the
fields in a spreadsheet using metadata and send it to the REDCap team. The computer scientists
design the tables in the database and deploy the web application for the specific case. However,
additional modifications in the data structure need to be approved by the REDCap team. Thus,
some changes are not allowed due to the database limitations, which limits the system’s flexibility.

There are many other software tools for the management of clinical data (such as [199, 201,
203, 204]), with more or less similar functionalities as described in some surveys [206, 207, 208].
In this regard, the survey presented in [209] indicates that most clinical data management systems
are web-based platforms based on the needs of a specific clinical trial in the shortest possible
time. Therefore, these systems do not fully support the clinical data management process and lack
flexibility and extensibility in terms of development. Similarly, as argued in [210], the systems
used to collect study data are often redundant to systems used in patient care. Consequently, the
data collection in studies is inefficient, and data quality may suffer from unsynchronized datasets,
non-normalized database scenarios and manually executed data transfers. A solution proposed
in [210] consists of OpenCampus Research, an open adoption software (OAS) that provides a
familiar environment for state-of-the-art research database management. However, practically
none of these tools include the possibility of analyzing the clinical data of patients in terms of
disease exploration.
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3.3 Proposed approach

As found in the literature, most of the clinical data management systems used in the research
centres are weak in supporting the data management process and managing clinical trial’s workflow
[209]. Most of the systems consist in web-based platform oriented to the needs of a specific clinical
trial in the shortest possible time. Moreover, most of these systems use relational databases.
They do not fully support the process of clinical data management since lacked flexibility and
extensibility for system development. Besides, these systems do not consider an entire clinical trial
workflow, since data collection/management is typically separated from data analytics.

With the motivation of approaching all these features, we designed and developed FIMED [30],
a tool for the flexible management and analysis of clinical research information. It is a “do-it-
yourself ” tool that allows users to build their forms in a simple, incremental and dynamic way to
facilitate multiple source data collection. FIMED offers an advance in the functionalities offered
by these tools providing users with an easy-to-use tool for the flexible design (including later
modifications on it) of eCRFs according to the clinician’s needs.

FIMED has been developed using MongoDB to alleviate some of the limitations imposed by
relational databases. As commented in Chapter 2, MongoDB is a non-relational database and
document-oriented database [211], where a schema does not require to be defined entirely before-
hand, and the data structure can change over time without needing to update previous database
entries. Thus, any new data entry can introduce schema changes without declaring them at the
schema level. This allows a flexible design of the databases at the data load phase. FIMED pro-
vides a web user interface in which users focus on inserting the data they collect in clinical trials.
As soon as they detect new fields to be added, they are just included in the latest data inserted
in the database, so the model is updated. MongoDB has been designed to operate using a cluster
configuration, making it a great choice when scalability is required.

FIMED also provides analysis tools for clinical trials in order to minimize bias. It also enables
functionalities for gene expression data analysis in a semi-automatic and straightforward way using
heat maps, cluster heat maps and gene regulatory networks inferred from inserted data. This
provides practitioners with early insights into the gene expression samples of a patient (discovering
changes in their gene expression levels) or sets of patients (discovering patient clusters with a
possible clinical correlation).

In this section, we describe the design issues of FIMED, focusing mainly on its internal ar-
chitecture, which has been changing and increasing over time, to offer an easy-to-use view of its
main features and add new analytics functionalities. Among the covered features, we describe the
main components that compose a general workflow in FIMED, including clinical data collection
and management, data mapping to provide adaptability to multiple trials, data analysis and data
visualization.

3.3.1 Architecture of FIMED

FIMED internally implements a workflow as depicted in Figure 3.1, which consists of several
phases: data collection, integration, analysis and visualization. Thanks to the web interface, the
user is guided through this workflow, so internal data mappings and adaptations are automatically
conducted.

3.3.1.1 Data collection

We have designed a core MongoDB schema to integrate clinical information and other related
information, such as gene expression data. This schema can be observed in the JSON Code
Snipped 3.1 as a single collection of users, each corresponding to a MongoDB document in the
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Figure 3.1: General clinical trial workflow in FIMED. This workflow contains several components
such as data collection, mapping data, data analysis and data visualization.

database. Each entry (user) in this collection contains the list of patients who have undergone
clinical trials with this user (clinician). The user can store clinical trial information of each patient
(e.g. name, gender, date of birth, medical records, medication, diagnosis date, disease’s progress,
etc.) and associated files obtained from, for example, gene expression assays in different formats.
Moreover, the user could attach files associated with the patient as additional information (e.g.
reports in PDF, scanner images, signed informed consent, etc.).

Code Snippet 3.1: Core JSON Schema. It constitutes the initial document structure from which
the database is incrementally adding new elements and updating existing ones.

{ "_id": <ObjectId()>,
"Name": <String>,
"Surname": <String>,
"Password": <String>,
"Patients": [{

"_id": <ObjectId()>,
"_patientInformation": <Object>,
"_files": [
{

"filename": <String>,
"metadata": <Object>,
"gridFS": <Object>

}],
"_clinicalSamples": [
{

"sample_name": <String>,
"metadata": <Object>,
"gridFS": <Object>

}]
}],

"Form": <Object>,
"Analysis_results": [

{
"name_analysis": <String>,
"results": <String>

}]
}
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This database is supported by a web-based front-end to facilitate the data collection, which
is dynamically adapting user needs along with the database scheme. The data insertion process
starts with an initial form with fields according to the core JSON schema. The user can add new
fields dynamically, just indicating the field name and inserting data for this field in the current
patient. The fields used in previous records are automatically shown when adding information for
a new patient. The system also learns from the fields introduced by any user, so when a new field
is created, its use is available to other users, which can fill it from now on (when required). The
system processes the data in real-time, so for each field in which the user introduces information,
it is automatically linked with the corresponding clinician records when applicable.

Patients’ information is secured in the whole database. For this proposal, FIMED uses the
Advanced Encryption Standard (AES). AES is an encryption algorithm [212], which employs the
same secret key to encrypt and decrypt the data. FIMED uses the 256-bit keys, the longest AES
allowed and recommended to achieve robust data security. Hence, the encryption key (secret key)
is a random combination of a suitable length of 256 bits that is generated on the server side during
the registration process each time a user is registered in FIMED.

This encryption key is used in the first instance to encrypt the user password. It is also used as
a secret key to encrypt patients’ information in the database and decrypt the data when retrieving
it by querying it. Thus, we avoid that the clinicians registered in the application can access
information that does not correspond to them. Hence, FIMED protects the sensitive information
of users and their patients.

The proper management of cryptographic keys is essential to the effective use of encryption
products. Loss or corruption of these keys can lead to loss of access to systems and data, as well
as making a system completely unusable unless it is reformatted and reinstalled. For this reason,
FIMED saved the cryptographic keys to a MinIO 1 cluster. This cluster is an internal network
only accessible from the server where the APIs are allocated. This enables a fine grain track on the
access to these keys, replication of the information to avoid losing keys and an additional security
level provided by MinIO.

3.3.1.2 Gene expression data mapping

A series of mapping processes have been developed to translate gene expression data into a suitable
format for processing and analysis. This enables the tool to import gene expression data in different
NGS file formats from different providers (Nanostring 2, Affymetrix 3, etc.). In this sense, we
first perform a gene expression data parsing process since different brands of machines for gene
expression profiling will produce different formats. The parsing process aims to extract the gene
names, class names and gene expression values to obtain a gene expression matrix. These data
provide us with the level of expression of each gene in the patient’s temporary samples to be later
pre-processed and analyzed by the tools offered by FIMED, as observed in Figure 3.2.

FIMED supports gene expression samples in RCC (Reporter Code Count) format. It has been
tested with RCC examples and real samples from the Immune Profiling Panel NanostringTM . Each
RCC file contains the count for each target mRNA molecule in a sample. From each RCC file,
we can extract Code Class, Gene Name, Accession and Count (see Figure 3.2 A), essential lane
attributes to carry out the normalization process and obtain the gene expression matrix. At the
end of this step, the system has uniform gene expression data, and additional transformations are
done to ensure high-quality results.

1https://min.io/
2https://nanostring.com/
3https://www.affymetrix.com/index.affx

https://nanostring.com/
https://www.affymetrix.com/index.affx


CHAPTER 3. CONTRIBUTION TO FLEXIBLE MANAGEMENT AND ANALYSIS OF
HETEROGENEOUS BIOMEDICAL DATA 57

Figure 3.2: FIMED provides functions for (A) loading, mapping, (B) pre-processing, (C) and
analyzing data from different profiling panels. It also offers data visualization through (D) gene
expression heatmap, (E) gene expression cluster heatmap, and (F) reconstruction of gene regulatory
network visualizations.

3.3.1.3 Gene expression pre-processing

In this step of the workflow, the gene expression files previously generated are pre-processed since
the variation of gene expression data is the aggregation of biological variations that could include
possible bias or noise produced during the gene sequencing process. FIMED focuses on normaliza-
tion in this stage.

A standard normalization process is carried out to reduce technical variations from experiments
within the different files so that the remaining variance can be attributed to the underlying biology
of the system under study. It is worth noting that the most common variations originated in the
sample or the platform. Thus, the normalization of this variability is essential since the precision
and accuracy of the analysis techniques in gene expression assays depend on it [213]. In this sense,
normalization allows users to compare gene expression samples directly.

Samples include quality control flags: positive and negative control genes. The positive control
linearity ensures that the samples maintain a certain linear relationship. Background correction is
achieved with the use of negative control samples. A certain threshold is calculated as two standard
deviations of the negative control values over the geometric mean of reference genes. A filtering
process is carried out to filter less expressed genes. Those most stable reference (housekeeping)
genes will be identified, using the algorithm geNorm 4 [213] .These genes will be used to calculate
the scale factors for the rest of the sample. This way, we can calculate the specific normalization
factors for each sample. As a result of this normalization and filtering process, the gene expression
matrix is obtained (as illustrated Figure 3.2 B), which will be used in the data analysis and
visualization processes.

4https://genorm.cmgg.be/

https://genorm.cmgg.be/
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3.3.1.4 Gene expression data analysis

After the pre-processing step, the use of a series of gene expression data enables the possibil-
ity of exploring how different genes are connected (through gene interactions). Analyzing these
interactions helps produce networks of interactions focused on Transcription Factors (TFs). In
order to infer possible interactions between them, two distinguished algorithms are provided in the
arboretum Python package 5, which are integrated into FIMED:

• GENIE3 is a generic and straightforward algorithm based on feature selection with tree-
based ensemble methods. It breaks down the prediction of a regulatory network involving
p genes into p separate regression problems. The expression pattern of one of the genes
(target gene) is predicted from the expression patterns of all the other genes (input genes) in
each regression problem. An input gene’s importance in predicting a target gene’s expression
pattern is interpreted as a possible regulatory connection. The network is then recreated
by aggregating putative regulatory relationships across all genes to generate a ranking of
interactions [214, 215].

• GRNBoost2 uses Gradient Boosting Machine regression with early-stopping regularization
to estimate regulatory networks. A tree-based regression model is trained for each gene in the
dataset to predict its expression profile using the expression values of a collection of putative
transcription factors (TFs). This algorithm is based on the GENIE3 architecture [216].

The gene inference analysis algorithms result in a collection of regulatory interactions between
transcription factors and their target genes. An example can be observed in Figure 3.2 C, where
the importance value is the strength of the interaction. The resulting links are then used to create
and visualize the gene regulatory network, which can be plotted as network graphs with different
layouts (see Figure 3.2 F).

3.3.1.5 Visualization

After the pre-processing, the most variable genes are used to perform a variety of visualizations
to provide users with a rich set of tools for validating targets through comparing different patient
samples or patients in the same disease stage. Hence, a set of analytic functionalities are used to
discover patterns in the change in the gene expression levels. In concrete, FIMED provides three
main visualizations, as represented in Figure 3.2 (D,E,F):

• Heatmaps. A heatmap is a graphical representation of a data matrix. The cell values
are represented with different colours depending on their values. This is useful to discover
relationships between elements visually.

• Cluster heatmaps. They follow the same principles as heatmaps but re-ordering the data
matrix to aggregate those sub-matrices with similar values.

• Gene interaction network. The interactions between different genes can be presented as a
graph where nodes represent genes and arc their interactions. The arcs can represent the
strength of the interaction employing the arc shape or length.

3.3.2 Performance evaluation

Additionally, we evaluated the performance of FIMED via locust 6, an open source Python-based
user load testing tool. We have used the locust tool to perform different data loads and operations,

5https://arboretum.readthedocs.io/en/latest/
6https://locust.io/

https://arboretum.readthedocs.io/en/latest/
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stressing the API of FIMED with a series of queries. The performance of the time response of
FIMED has been studied for data insertion, deletion and retrieval. For this purpose, we have
configured the locust API to simulate up to 5000 users interacting with the FIMED API with a
spawn rate of 50 users (users spawned/second = 50). We have defined the behavior of the users in
the locust API with Python code as follows: each user will make a POST request to create his/her
form, and then (s)he will fill in that form with his/her patient’s information, then (s)he will search
for the patient and finally (s)he will delete it.

FIMED performs appropriately as the number of simultaneous users increases, with an average
time response of 74 (ms), 81 (ms), 42 (ms) and 50 (ms), respectively, for each of the requests
presented before. When we reach approximately 4500 users, the FIMED API performs moderately
in some requests, and the time response grows speedily. Probably, this could be explained by the
fact that FIMED is served through a standard Tomcat 9 Web application service, and more simul-
taneous requests are received than can be handled by the currently available request processing
threads.

3.4 Use cases

In this section, a practical set of use cases are conducted with authentic expression data from
metastatic Melanoma patients used in VIGLA-M [217]. This use case replicates this work from
data acquisition to the integration and analysis based on advanced visualizations. In order to
enable users to explore FIMED functionalities, an instance has been deployed on servers of the
super-computing infrastructure of the Ada Byron Research building (University of Málaga). In
this instance, users can freely manage their patient data or test it with sample data using the
demo user provided7 that contains anonymised patient data. This sample data enables new users
to explore an example of how their databases could be developed. However, the user should create
a new free account to use the tool. Thus, users will have independent workspaces, where each one
can only access its own patients’ data. After logging in, users can use different options on the main
page (Figure 3.3).

Option Form design (Figure 3.3 A) allows the user to define new data fields to include any
patient’s clinical information. Thanks to the flexibility provided by MongoDB, the initial database
schema can then be increased in a personalized way. Users can create dynamically new fields of
any simple type String, Number, Date, Boolean. It is also possible to define compound fields with
nested sub-fields, constituting a hierarchical organization. Once the user has designed the form
(for inserting the patient’s data), the new fields will be stored in the database as Attributes (Keys
in JSON and MongoDB terminology), so the database scheme is incrementally designed. It is
worth noting that users could adapt the database schema to any case of study in handling data in
clinical trials.

At this point, the process of inserting a patient’s information into the application is performed
through option Add patient(s) (Figure 3.3 B), which enables a different kind of data to be stored
in the database. First, patients’ clinical information is introduced in the data fields previously
declared on the form. The user interface dynamically extracts the data insertion schema from
the database. This way, whenever a new field is added, it will automatically appear in the user
interface. In addition, new fields are recommended to other users for future forms. Second, files
containing gene expression assays associated with the patient can be loaded using the browse
functionality. Accordingly, new meta-data fields could be added to the gene expression files to
provide additional information to the samples. Depending on the file type, it could be used in
different analyses. Third, it is also possible to insert additional files to guarantee the complete

7Demo user grants: username “researcher” and password “demo”
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Figure 3.3: Main panel of the FIMED web application. The first main option is the (A) form design,
which enables the user to create its own fields with corresponding attributes in the database. Then,
(B) Add patient(s) option enables to store multiple sources of clinical data in the database. (C)
Search patient(s) helps users to enhance the search process. Finally, (D) Gene expression level
analysis option enables three principal analyses with gene expression levels: heatmaps, cluster
heatmaps and gene regulatory networks.
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patient information (e.g. doctor’s reports, test results, scanned images, signed informed consent,
etc.).

Similarly, FIMED provides the user with a search engine to help clinicians to retrieve their
patient’s information. The option Search patient(s) (Figure 3.3 C) offers a dynamic interface
to facilitate this functionality, as well as filter options according to existing data fields to enhance
the search process. The search tool provides access not only to view the data but also to modify
them. In this sense, the patient’s information can be updated anytime. In this operation, new
fields could also be created when required.

A last main option comprises the data analysis and visualization, which is offered by clicking
on Gene expression level analysis (Figure 3.3 D). As commented before, FIMED currently
enables three principal analyses with gene expression levels: heatmaps, cluster heatmaps and gene
regulatory networks. Depending on data availability, these analyses could be performed for one
single patient and for aggregated data from several patients, hence allowing comparisons among
different individuals, some of them acting as control samples.

Intending to show the potential of using FIMED, we have tested the tool in use cases conducted
with actual sequence data from metastatic Melanoma patients [217]. Thus, we have validated the
management and analytical functionalities generating indicative analysis and visualization in cancer
research.

In these use cases, we have inserted clinical information of three Melanoma patients through
the FIMED web service. Firstly, we designed the form for this clinical assay. Then we inserted the
clinical information of the patients into the tool. This clinical case has a set of 5 simple fields and
1 composed field, as seen in Code Snippet 3.2.

Code Snippet 3.2: Data Schema in Melanoma use cases
{ "Form":

{
"_id":<ObjectId()>,
"Attributes":
{

"Patient Code": <Number>,
"Sex": <String>,
"Birth Date": <Date>,
"Blood pressure": <String>,
"Observations": <String>,
"Hospital admission":
{

"Hospital name": <String>,
"Hospital address": <String>

}
}

}
}

Moreover, we have used gene expression data using the Immune Profiling Panel NanostringTM

(770 genes). This panel has been specifically designed for cancer projects studying the immune
aspects of the disease. The panel includes 24 different immune cell types, common checkpoint
inhibitors, CT antigens, and genes covering both the adaptive and innate immune responses. For
this case, the analysis component works with RCC files8, starting from the data normalization with
a housekeeping based method. This platform can analyze 12 samples in each cartridge, providing
12 RCC files with the gene counts for each gene panel. These files are stored in FIMED associated
with the patient’s code, the sample collection date and the experiment date. FIMED has been

8See https://khaos.uma.es/fimedRCC for examples copied from https://github.com/hbc/sen-Nanostring and
so licensed under MIT License.

https://khaos.uma.es/fimedRCC
https://github.com/hbc/sen-Nanostring
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shown to ease the process of flexible and dynamic collecting of patients’ clinical information without
needing a database re-engineering process.

3.4.1 Use case 1: Heatmap clustering

At this point, users can perform a first main analysis based on generating heatmaps and hierarchical
clusters with dendrograms. As illustrated in Figure 3.4, users can select gene expression samples
from one or more patients to constitute the gene expression dataset to be analyzed. In this
process, a sliding element is provided to set a parameter for extracting only those most variable
gene expression levels as a percentage of the total number of genes in the panel. Therefore, a
series of different analyses can be generated in a given session according to this parameter. Thus,
resulting clusters and heatmaps can be visually compared and inspected by a simple click-and-drag
feature to zoom in and a click-once feature to zoom out.

Figure 3.4: Selection panel of gene expression files and visualization of resulting Cluster heatmaps
according to different percentages of significantly altered gene expression levels. In this example is
observed the results for four samples (three from first patient and one from the second one) with
two filtering percentages. Thus, the result on the right-up side shows a case with only the 5% of
the most representative genes.

The long-term goal would be to identify unexpected relationships between genes expressed
in a similar way that would help identify new drug targets or new biomarkers of the patient’s
expected evolution in their treatment. This is an ongoing work in collaboration with the regional
hospital through the Biomedical Institute of Málaga (Hospitales Univesitarios Regional y Virgen
de la Victoria de Málaga, Instituto de Investigaciones Biomédicas - IBIMA) using FIMED.
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3.4.2 Use case 2: Reconstruction of gene regulatory networks

Another exciting analysis comprises the inference of gene regulatory networks, which can now be
extracted from the gene expression levels previously stored in FIMED. A gene regulatory network
consists of a set of genes (acting as transcription factors) that regulate (activate or inhibit) each
other’s expression. The nodes are the genes themselves, and their connections represent the regu-
latory mechanisms of their genetic expression. Two genes are connected if one regulates, positively
or negatively, the expression of the other.

Figure 3.5 shows the selection panel offered in FIMED to generate and visualize gene regulatory
networks. Similarly to the previous functionality, a sliding parameter is used to extract only those
most variable gene expression levels as a percentage of the total number of genes in the panel. In
addition, a statistical cutoff parameter is provided to limit the maximum number of links in the
network, which is useful to enhance visualization, as it just centres on the most important genes and
their relationships. Nonetheless, this interactive graph functionality allows the user to manually
move the network and explore the connectivity between the nodes and hence, clearly inspect the
network’s topology. In this regard, users can select different layouts for network representation:
Force-directed layout or Circular layout.

Figure 3.5: Selection panel of gene expression files and visualization of resulting gene regulatory
networks according to different percentages of of significantly altered gene expression levels.

An interesting experiment consists in inferring a set of different networks, which are obtained
using different random seeds, although using the same parameters of the percentage of the total
number of genes in the panel to 5%, and the maximum number of allowed links to 10. This way,
it is possible to discover those genes that, with a high frequency, are attractors of multiple links
(interactions) with other genes. These attractors are then considered as hubs in the transcriptional
regulatory network, which are usually identified to be used as diagnostic and prognostic markers and
possibly for targeted therapy. In the case of the sample Melanoma data stored in FIMED, inferred
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networks are frequently generated with hubs in genes: ARG1, IL18RAP, CD163, FCER1A, HLA-
DQA1 and IL3RA. These genes are usually identified to have an adaptive resistance to immune
regulatory factors in pathology [218], so this could support the clinician with new useful information
for adjusting the treatment process.

3.5 FIMED 2.0

To exhibit the integration capabilities and flexibility to adapt to new tools and functionalities
offered by FIMED, we have developed FIMED2.0 [33]. Our motivation for developing FIMED 2.0
stems from our experience with FIMED [30]. Our goal is to provide users with new functionalities
to perform further and more accurate analyses. In this new version, we are interested in studying
GRNs inference incorporating new algorithms for a principled comparison among gene network
reconstructions. Also, an ensemble of GRNs inference techniques has been proposed based on a
voting system to allow users to rank the most critical gene interactions (top-k genes/edges) between
the similar outputs of a set of networks, so it can indicate the gene pairs most important in the
regulatory process. Moreover, visualization tools have been added to this new version of FIMED
to provide users with a deep insight into the networks through better graphic plotting. As a result,
the primary goal would be to establish links between genes that are expressed similarly, which
would lead to the discovery of novel therapeutic targets or biomarkers for the patient’s expected
treatment progression.

3.5.1 Architecture of FIMED 2.0

As commented above, FIMED 2.0 is an extension of FIMED. Hence, FIMED 2.0 implements
the same workflow as FIMED (Figure 3.1), which consists of several phases: data collection,
integration, clinical data analysis and visualization. However, FIMED 2.0 includes further gene
regulatory network analysis and data visualization to annotate gene functionality and identify hub
genes. This version allows the practitioner to use four different network construction methods: data
assimilation, linear interpolation, tree-based ensemble or gradient boosting machine regression.
Figure 3.6 summarizes this tool’s architecture, emphasizing the new elements included in this
extension. Originally FIMED integrated two distinguished algorithms (GENIE3 and GRNBoost2)
as shown in 3.3.1.4, provided in the arboretum Python package 9. However, this version of the tool
includes two new gene inference algorithms that will provide the user with a broader comparison
of the results to improve their analysis capacity. Moreover, FIMED 2.0 provides an ensemble gene
regularity inference functionality that enables users to examine which algorithms produced similar
reconstructions.

3.5.1.1 Gene regulatory network inference analysis

To summarize, FIMED 2.0 includes the following new functionalities for GRNs reconstruction:

• PANDA (Passing Attributes between Networks for Data Assimilation) is a message-passing
model that integrates protein-protein interaction, gene expression, and sequence motif data to
reconstruct genome-wide, condition-specific regulatory networks as a model. In this regard,
the generated networks are more accurate than those constructed using individual data sets.
Gene regulatory network generating with PANDA can also capture information about specific
biological mechanisms and pathways that other methodologies had ignored [219].

9https://arboretum.readthedocs.io/en/latest/

https://arboretum.readthedocs.io/en/latest/
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Figure 3.6: General workflow of FIMED 2.0. In this new version of FIMED, algorithmic function-
alities for GRN reconstruction and new visualization tools have been added.

• LIONESS is a linear framework to relate a set of networks, each representing a different
biological sample. The average of individual component networks reflecting the contributions
of each member in the input sample set can be thought of as an “aggregate” network predicted
from a collection of N samples [220].

• Gene regulatory network ensemble. For further analysis, an ensemble approach has
been developed in this proposal as a gene regulatory network inference made from the four
prior networks (GENIE3, GRNBoost2, PANDA, LIONESS). The ensemble approach has
been designed since network inference algorithms are naturally noisy. It remains a challenge
to identify whether these changes represent actual cellular responses or whether they emerged
by random coincidence. In this sense, the ensemble internally develops a voting system to
rank the top-k edges composed of similar outputs of a set of GRNs. Thus users can examine
the top-k edges produced by similar reconstructions of the GRN algorithms.

3.5.1.2 Gene regulatory network inference visualization

One of the advantages of FIMED 2.0 is its power related to visualization features thanks to the
availability of better graphic plotting, where users can interactively explore the constructed net-
work. Many interactive visualizations allow users to actively move the network and examine the
connections between nodes, allowing users to see the network’s structure in detail. In this sense,
users can choose from different network representation layouts: Circular layout or Force-directed
layout, as shown in Figure 3.7. It is worth noting that FIMED 2.0 offers a new graph visualiza-
tion in which clicking on a given gene will highlight this gene and its related neighbors and the
information associated with them (Figure 3.7 C).

These rich visualization tools allow users to observe the most critical nodes representing genes
and arcs representing interactions between them. By changing the arc form or length, the arcs can
express the strength of the interaction. Users can compare different patient samples or patients at
the same sickness stage.

Additionally, as mentioned before, an ensemble powerful visualization tool has been developed
combining various GRNs models, where users can examine the top-k edges between gene interac-
tions. Each similar reconstruction is represented in different edge colours. In this way, users can
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Figure 3.7: Gene regulatory network representations with different layouts: Circular layout or
Force-directed, and dynamic plotting.

observe edges frequency in different colours to see the most important gene interaction in the en-
semble voting system as depicted in Figure 3.7 D, where grey edge colour represents the frequency
of 1, blue edge frequency of 2, green edge colour frequency of 3 and red edge colour frequency of 4.

3.5.2 Use case: Reconstruction of gene regulatory network

To show the potential of using the new functionalities of FIMED 2.0, the tool has been tested
with real-world scenarios involving patients with advanced Melanoma [217], as in the previous
version of FIMED. Thus, we have validated the new analytical functionalities and visualization
techniques producing appropriate analysis and visualization in cancer research. For this proposal,
we have used the FIMED 2.0 online interface to enter the clinical information of two Melanoma
patients. In this sense, for this clinical trial, we have used a customized eCRF already designed for
Melanoma use cases (Code Snippet 3.2). Then, the clinical information of the patients was entered
into the tool. Thanks to MongoDB’s flexibility, the primary database structure can be increased
in a customized manner.

In addition, other files providing gene expression assays related to the patient have been loaded
in FIMED 2.0. As a result, new meta-data fields in the gene expression files have been introduced
to offer more information to the samples.

FIMED 2.0 has been deployed on our servers to enable users to explore the new functionalities,
where users can manage their patient data or test it using sample data given by the demo user
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provided 10. This demo user includes anonymised patient data to allow new users to see an example
of how their databases may be built. Users can also establish a new free account in which each
user will have an independent workspace to design a particular database schema for their clinical
trial.

As exposed above, new functionalities in terms of GRNs algorithms have been added to the
tool, as well as new features in the visualization part that improves the ability of users to discover
important gene-to-gene interactions and to inspect the topology of the network thanks to the
availability of better graphic plotting.

Figure 3.8: Selection panel of FIMED 2.0 that allow users to perform gene regulatory network
analysis and visualizations from gene expression data.

In Figure 3.8, the selection panel of FIMED 2.0 allows users to perform gene regulatory network
analysis and visualizations. Five GRNs visualizations have been performed, corresponding to each
of the GRNs algorithms provided in FIMED 2.0. An experiment has been carried out, which
consists in inferring a set of different networks (GENIE3, GRNBoost2, PANDA, LIONESS) and
comparing the results of each of the networks. Besides, the ensemble algorithm based on a voting
system has been executed to provide users with an entirely deep insight into the most important
gene interactions coming from similar reconstructions of the GRNs algorithms.

Users will then be able to distinguish the frequency that each interaction between genes is
repeated through similar GRNs outputs since each frequency is represented with a different edge

10Demo user grants: username “iwbbio” and password “demo”
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colour (frequency 1: grey, frequency 2: blue, frequency 3: green, frequency 4: red). Therefore, the
most important gene interactions (highest frequency) are represented with a red edge colour.

Furthermore, only the most variable gene expression levels as a fraction of the total number of
genes in the panel can be extracted using a sliding parameter. A statistical cutoff parameter is also
supplied to limit the maximum number of linkages in the network, which improves visualization
because it focuses only on the most relevant genes and their interactions. It is worth mentioning
that these features might provide clinicians with new information for improving treatment outcomes
by allowing users to find genes and gene interactions that could be utilised as diagnostic and
prognostic indicators and focused therapy.

3.5.3 Current status and implementation details

FIMED has been developed in JAVA, JSP, and JavaScript languages and follows a Model-View-
Controller (MVC) software design pattern to manage the MongoDB database. The user interface
is served through a standard Tomcat 9 Web application service. FIMED provides a user-friendly
web application with all major browsers supported. The web interface has been designed to
guide the user in the tasks of clinical data collection and database organisation transparently and
straightforwardly. In addition, this tool provides gene expression data analysis by means of the
visualization of clusters, anomalies, changes in patterns, etc., with open source libraries (Plotly11

and Bokeh12). FIMED also provides an Open Source version for being installed on clinicians’
servers to secure patients’ information. This also enables the extension of FIMED by external
developers providing new functionalities. Additionally, the Model-View-Controller (MVC) software
design pattern has been implemented, employing an API connecting the web user interface with
MongoDB. FIMED has an MIT license. Consequently, anyone can contribute. In its current status,
it is entirely usable. However, it is certain that new features will be added in the near features,
and some changes in the architecture will be foreseeable from the experiences we gain when using
it and from the feedback of interested users.

FIMED is an active project that is in continuous development. In this sense, FIMED is now
in its second version FIMED 2.0. It is released freely on the web for the community at https://
khaos.uma.es/fimedV2/. The current version improves the previous version of FIMED regarding
Gene Regulatory analysis inference. New distinguished GRNs algorithms (PANDA and LIONESS)
have been integrated into the tool to provide users with better analysis capacities to increase their
understanding of GRNs. Besides, an ensemble has been designed based on a voting system of
a similar reconstructions network from a set of four GRNs algorithms (GENIE3, GRNBoost2,
PANDA and LIONESS). Moreover, new visualization features have been added, guaranteeing users
new ways of exploring gene networks to inspect the network’s topology, thanks to better graphic
plotting. All these new functionalities of the tool have also been tested in a use case conducted with
real-world gene expression data from Melanoma cancer to find new biomarkers for predicting the
patient evolution during the treatment, which results will be relevant for the medical community.
These data have been stored in FIMED 2.0 so that users can explore the tool with a demo user
“iwbbio” and password “demo”.

3.6 Discussion

Despite the availability of many eCRF tools designed to capture clinical trial data, most lack a
flexible integration of clinical information since the clinicians cannot design and modify the forms
according to their needs. Moreover, we have observed that most of these tools required a significant

11https://plot.ly/
12https://bokeh.pydata.org/en/latest/

https://khaos.uma.es/fimedV2/
https://khaos.uma.es/fimedV2/
https://plot.ly/
https://bokeh.pydata.org/en/latest/
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time investment to create CRFs and a thorough study, making their use complicated for small-scale
investigators.

Table 3.1: FIMED in comparison with other related systems according essential features shared in
almost all systems encountered in the literature.

OpenClinica[200] REDCap[202] TrialDB[199] Phoenix[203] Progmatic[201] Dados-P.[204] openCDMS[198] PhOsCo[205] FIMED [30]
1 X X X X X X X X X
2 X X X X X X X X X
3 X X X X X X X X X
4 X X X X X X X X X
5 X X X X X X X X X
6 X X - X X - X X X
7 X X X X X X X X X
8 7 7 - X - X X X X
9 7 7 - - 7 7 7 - X
10 X - - - X X 7 - X
11 X X - X - - X - 7
12 7 7 7 7 7 7 7 7 X
13 X 7 7 7 7 7 - 7 X
14 7 7 7 7 7 7 7 7 X
15 7 7 7 7 7 7 7 7 X
16 7 7 7 7 7 7 7 7 X

Before developing FIMED, we extensively studied general features in this kind of system. We
outlined several of these essential features shared in almost all systems. In order to alleviate some
of the limitations encountered in the literature, we present other features in the proposed tool that
we have not observed in the systems found in the scientific literature. However, they are crucial for
the collection, management and analysis of the clinical information of the study subjects. These
features are presented below:

1. Enabling ways to secure patient’s information.

2. Ensuring that retrieved data regarding each subject is only attributable to that subject.

3. Creating eCRF.

4. Providing support for several types of fields (such as dates, text, numerical values) and in
various formats/ support for all basic field data types).

5. Supporting Web-based interfaces.

6. Providing software to be hosted locally to protect sensitive data.

7. Being Open source.

8. Providing user-friendly interfaces so that users can create CRFs and enter data directly on
the interface.

9. CRFs should be easy to modify once created.

10. Should be able to contain non-traditional fields such clinical images, samples, etc.

11. Exporting to formats such as Excel, Pdf, Xml, Html, and CSV.

12. Dynamically storing the clinical data from multiple clinical trials.

13. Allowing to extend their functionalities.

14. Transferring data to different types of samples to target different analysis.
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15. Using a database schema that grants enough adaptability to face the continuous changes in
the practice of clinical trials.

16. Integration of analysis tools in order to examine the data to understand a disease.

Table 3.1 shows a comparison between FIMED and a set of related tools found in the literature,
according to the list criteria above. As can be observed, desirable features related to dynamism
in the integration phase, adaptability, scalability and advanced analytics are covered by FIMED,
which represents an advantage with regard to these compared tools.

3.7 Conclusions

In this Chapter, FIMED has been detailed as a software tool for clinical data collections allowing
clinicians without programming skills to manage clinical research information. It provides many
functionalities in order to facilitate data management by clinicians, such as (I) personalized form
design ("do-it-yourself") dynamically adapting to each of the patient’s entries in the application;
(II) browse functionality to store gene expression assays associated to the patient with metadata
to grant additional information to the samples; (III) the modification and the update of the data
over the time; and (IV) a search tool to provide direct access to the data with different filter
options. Additionally, FIMED integrates analysis tools for clinical trials to allow clinicians to
perform different types of analysis towards a deeper comprehension of the molecular mechanisms
in a particular disease through interpreting results. Moreover, FIMED offers mechanisms to extend
the software with new components to expand its functionalities.

FIMED incorporates gene expression analysis algorithms and offers visualization tools for ex-
ploring these data: Heatmaps, Cluster Heatmaps and Gene Regulatory Networks. FIMED has
taken the experience acquired with the development of VIGLA-M [217] in the analysis of gene
expression data and has been tested with use cases conducted with actual sequence data from
metastatic Melanoma patients. This previous work also provided relevant needs from the clinical
assay data management from the clinician point of view, as clinicians found limitations in improv-
ing or extending the data collected during the process. Its usability in this real scenario has been
validated since we obtained our first real clinical insights. In this sense, it has been evident how
this tool can be easily integrated into different use cases, making FIMED a robust clinical research
tool for data management, analysis and visualization in clinical assays in different studied diseases.
Apart from the public instance provided, the project can be deployed by IT administrators in any
health information system, ensuring higher protection of the clinical data.



Chapter 4

Contribution to the reconstruction of
gene regulatory networks with
multi-objective optimization

In this chapter, sophisticated search methods are studied in the computational reconstruction of
gene regulatory networks from gene expression data. Among these techniques, particle swarm
optimization-based algorithms stand out as prominent techniques with fast convergence and ac-
curate network inferences. A multi-objective approach for the inference of GRNs consists of op-
timizing a given network’s topology while tuning the kinetic order parameters in an S-System,
thus preventing unnecessary penalty weights and enabling the adoption of Pareto optimality based
algorithms. In this study, we empirically assess the behavior of multi-objective particle swarm
optimisers based on different archiving and leader selection strategies in the scope of the inference
of GRNs. The main goal is to provide system biologists with experimental evidence about which
optimization technique performs with higher success for the inference of consistent GRNs. The
experiments involve time-series datasets of gene expression taken from the DREAM3/4 standard
benchmarks and in vivo datasets from IRMA and Melanoma cancer samples. Our study shows that
multi-objective particle swarm optimizer OMOPSO obtains the best overall performance. Inferred
networks offer biological consistency under in vivo studies in the literature.

71
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4.1 Introduction

In the last years, multiple optimization techniques such as evolutionary algorithms [153, 154, 155],
and especially particle swarm optimization [156, 157, 158, 159, 160], have been applied to the
inference of gene regulatory networks (defined in Chapter 2 of fundamentals) from gene expres-
sion time-series. The automatic inference GRNs is a complex problem found in computational
biology [151], which consists in tuning parameters of a model that quantitatively reproduces the
dynamics of a given biological system. In this regard, advanced computational models exist that
are capable of inferring the topology of gene interactions to form networks. However, their pre-
cisions are strongly influenced by the quality of available datasets and the characteristics of the
learning model used for such predictions. In this sense, S-System [161] framework can obtain
a good trade-off between biological relevance and mathematical flexibility. It internally uses an
Ordinary Differential Equations (ODE) system, which is a helpful framework to fit continuous
variations of genetic regulations over time. Nevertheless, ODE systems require additional compu-
tational effort to tune parameters of kinetic orders and rate constants from a usually short amount
of gene expression data. Moreover, as usually observed in biological systems, a sparse topology of
the network should be accurately reproduced, so the early detection of significant node connections
constitutes a major challenge in this process. To cope with these issues, the inference of GRNs has
been traditionally tackled as a global optimization problem [162], which has demanded the use of
specialized optimization techniques [154, 157, 158] to deal with it. In this problem, for the evalu-
ation of the quality of solutions, a common strategy is to use aggregative fitness functions based
on Mean Squared Error (MSE) [221, 222, 159] between inferred and observed (from data) gene
expression values, which incorporate additional penalty terms based on sums of the magnitude of
kinetic orders. A different approach to avoid weighting penalty values is to use a multi-objective
formulation, which enables minimizing the MSE using S-System and a Topology Regularization
(TR) value at the same time [153]. This way, optimizing kinetic order and rate constant parameters
is possible while the topology of a given network is obtained.

Although some recent studies have intensified the use of particle swarm optimisers to deal with
the inference of GRNs [157, 158], there is still a lack of proposals based on multi-objective formula-
tions. Therefore, the primary motivation in this work is to apply and evaluate a representative set
of multi-objective particle swarm optimisers (MOPSOs), which use different archiving strategies
(hypervolume and aggregation) and, consequently, different strategies for the selection of leaders in
the context of the inference of GRNs. The main goal is to obtain unbiased conclusions concerning
which of them (and other related MOPSOs) could be used by experts in studies in silico/in vivo
to find new possible gene interactions taking part in genetic regulations.

The rest of this chapter is organized in the following sections: Next section reviews related
proposals in the literature. Mathematical models and methods are described in Section 4.3, where
the multi-objective approach for the inference of GRNs is also detailed. Section 4.4 describes the
algorithmic variants selected for evaluation. Section 4.5 reports the experimentation methodology
and Section 4.6 analyses the obtained results. Finally, Section 4.7 reports conclusions and future
lines of research.

4.2 Related works

The inference (or reconstruction) of GRNs has been traditionally dealt with different techniques,
from the basic Boolean networks [223], to the continuous and stochastic models [224]. Recent
studies have focused on adapted machine learning strategies such as non-parametric models based
on decision trees [225] and recurrent neural networks [226].

Among continuous models for GRN representation, S-System [161] based on coupled ODE
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provides mathematical flexibility enough to describe the reaction kinetics of the constituent parts
and capture the biological dynamics system. However, it requires a large set of parameters to be
tuned, which implies a certain limitation of this model when applied to large-size networks [154].
Even though S-System shows a remarkable ability to predict correct regulations, it finds difficulties
when inferring the topology of the networks. To cope with this issue, similar studies [221, 222]
have proposed using decoupled ODE frameworks to disaggregate internal equations that model
genes without strong explicit interactions.

The optimal tuning of parameters in S-Systems is currently dealing with metaheuristics for
continuous optimization such as: Genetic Algorithms (GAs) [162, 227, 155], Differential Evolution
(DE) [228] and especially Particle Swarm Optimization (PSO) [221, 222, 229], due to the relative
accurate behavior and fast convergence usually experimented by this last technique. In terms
of multi-objective formulations, there exist similar approaches in the literature that tackle the
inference of GRNs [227], [230], [231] and [232]. However, most of these proposals used single-
objective aggregation functions for solution evaluation [230, 231], and they did not consider S-
System models with mechanisms for topology regularization. Recently, in [153], a multi-objective
cellular genetic algorithm was proposed to optimize parameters in S-System at the same time the
topology of the network is regularized. This approach showed accurate performance for DREAM3
and small in silico networks. However, extensive comparisons and deeper experimentation with in
vivo samples are still pending for testing such a multi-objective approach.

In this regard, many representational MOPSO variants have been recently applied with success
to many different problems, such as: cost-based feature selection in biological classification [233];
variable-size cooperative co-evolutionary PSO for feature selection on high-dimensional data [234];
and bare-bones MOPSO environmental/economic dispatch [235], among others. However, the
application of multi-objective particle swarm optimisers to the inference of GRNs is still an open
issue. To the best of our knowledge, it has been partially approached in a past study [236] without
using the S-System model and for just one synthetic dataset. In the present chapter, a thorough
experimentation is conducted on a representative set of multi-objective PSO variants to evaluate
their actual performance and usefulness in the context of standard in silico benchmarks, as well as
for in vivo datasets.

4.3 Reconstruction of gene regulatory networks

The task of computationally reconstructing GRNs is aimed at offering mechanisms to capture the
dynamics of biological systems from gene expression time-series datasets. A practical mathematical
framework for modelling the dynamics of a network is the S-System [237], which consists of a set
of differential equations, as modeled next:
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with X being an n-dimensional vector of elements, so the m-dimensional independent variables
are expressed as Xn+j , j = 1, · · · ,m. In this biological model, Xi is the expression level of the i

th

gene, parameters ↵i,�i 2 RN

+ are rate constants (N = n + m), and gij , hij 2 RN⇥N are kinetic
orders that regulate the synthesis and degradation of gene Xi influenced by Xj (usually called
transcription factor).
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In this problem, S-System models are commonly evaluated with Runge-Kutta numerical meth-
ods [222], since they successfully fit the model with the time series obtained from the gene expression
values, which come from different experiments in separate periods. Nevertheless, using these meth-
ods entails updating n+m variables, which usually implies a high computational cost. Moreover,
optimization processes iteratively evaluate a set of candidate solutions, i. e., S-System parame-
ters, in a given population and computing the Runge-Kutta method requires to solve recursively
a set of equations in each solution evaluation. Therefore, in this approach, the computational cost
increases along with the number of genes implied in the network.

A strategy to alleviate this extra effort is proposed in [238], which uses decoupling ODE systems
based on data collocation. This way, it is possible to compute equations independently that refer to
genes without featured interactions, reducing the computational time spent at each evaluation. In
this method, dynamic variables X modeling genes (Equation 4.1) are calculated by a set of functions
X(t) =

P
N

j=0 x(j)�j(t), where x(j) is an expansion coefficient of X(t) and �j(t) represents a set
of polynomial shape functions. A linear Lagrange polynomial method is trained with time-series
data of each gene of the target network. In the resulting S-System, each new iteration is computed
as follows:

xn+1 = xn + 0.5⌘(f [xn+1,exp, ✓] + f [xn, ✓]) (4.2)

with xn+1,exp(t) indicating numerical values from (in vivo/in silico) experiments in gene expressions
dataset at time t; f [xn, ✓] computes Equation 4.1 for xn, and ✓ is the vector of tuning parameters
{gij , hij ,↵i,�i|i, j = 1 · · ·N} in the S-System. In this equation, ⌘ is a smoothness rate that controls
the approximation overshot.

Bi-objective problem formulation

In the proposed approach, each candidate solution comprises a vector of real-value variables cor-
responding to the parameters to be tuned: kinetic orders (gij , hij) and rate constants (↵i,�i), in
the S-System model. Figure 4.1 represents the structure of tuning parameters encoded within a
solution vector.

For the evaluation of solutions, a common practice is to calculate the difference between the
gene expression levels predicted with the S-System and the times-series of samples from the original
dataset, i. e., the Mean Squared Error (MSE). This error measure was standardized by [239] to be
used as fitness function for the optimal inference of GRNs.
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Equation 4.3 calculates the MSE, in which X
cal

k,i
(t) and X

exp

k,i
(t) are the expression levels of gene

i in the k
th set of time-series at time t in the calculated and experimental data, respectively. M

is the number of time-series taken into account, and T is the number of samples (gene expression
values) given in the experimental data (original dataset). The goal is to optimally tune parameters
✓ to minimize the error function f

MSE .
Although MSE has been shown to be a proper mechanism to evaluate the accuracy of S-System

model with fitting time-series of gene expressions, it presents certain limitations to obtain the
topology of those gene interactions that model the dynamics observed. It is worth noting that
parameters in S-System model present a high degree of freedom, which implies the existence of
numerous local minima in the solution search space that fit the time courses of gene expressions
with low MSEs. This was experimentally observed in [162], where an efficient method showed
overfitting when reproducing the time dynamics, although getting trapped on local minima and
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Figure 4.1: Graphical representation of solutions encoding/decoding withing the S-System setting
process and the computation of the two objectives. The Pareto front approximation is constituted
by using those non-dominated solutions obtained during the optimization process of MOPSOs.

failing to discover the true topology of the network. To deal with this issue, an additional pruning
term for the fitness function was proposed in [228], which aims at capturing the topology of the
network.

fi = f
MSE

i
+ c

2N�IX

j=1

(|Ki,j |) (4.4)

Equation 4.4 aggregates function f
MSE

i
(of Equation 4.3 for gene i) with the pruning term that

comprises kinetic orders Ki,j obtained from gij and hij . These values are joined and arranged in
ascending order of their absolute values (|Ki,1|  |Ki,2|  · · ·  |Ki,2N |), so I is the maximum
allowed cardinality degree of the network (i. e., maximum number of input/output edges of nodes).
This second term includes a penalty constant c for weighting the formula. This way, an excessive
cardinality in the network is penalized, which will provoke most of the gene interactions are removed
when their corresponding kinetic values are low. This pruning ideally decreases false connections
(false positives), while strengthening true interactions (true positives), hence promoting correct
topologies from an early stage of the inference process. This strategy has been adopted in past
studies where kinetic regulations are computed separately [240], although penalty term used in
the present work (in Equation 4.4) was shown to obtain close to correct topologies with a higher
success [228].
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Nonetheless, it is worth noting that this aggregative approach still requires the use of weighting
constants to provide a good balance between terms [222, 241]. This can be avoided with the use
of a bi-objective Pareto dominance strategy, which enables optimization algorithms to deal with
the two terms separately, even though guiding the search towards non-dominated solutions. These
two terms are now adapted to be used as optimization objectives:

• (Obj. 1) f
MSE , to measure the prediction error of curve fitting according to kinetic and

order parameters in the S-System (Equation 4.3);

• (Obj 2.) f
Topology =

NX

i=1

2N�IX

j=1

(|Ki,j |), to early detect the core topology commonly observed

in biological networks.

An additional advantage of this strategy is to enable the use of multi-objective metaheuris-
tics for the optimal reconstruction of GRNs, with the implicit benefits of having results in form
of sets of non-dominated solutions, e.g., allowing decision makers to select solutions according to
different values of time course estimations and network topologies, and promoting preference ar-
ticulation for guiding the search. The use of multi-objective metaheuristics, such as evolutionary
algorithms and particle swarm optimization, does not guarantee to find the optimal Pareto front,
but an approximation to it. To perform accurate learning models, these techniques are developed
with additional mechanisms and archiving strategies aimed at producing an accurate Pareto front
approximation [242].

4.4 Evaluated multi-objective particle swarm optimization

variants

The canonical Particle Swarm optimization [243] works by iteratively generating new particles
positions located in a given problem search space. Each one of these new particles positions are
calculated using the particle current position (solution), the particle previous velocity, and two
main informant terms: the particle best previous location, and the best previous location of any
of its neighbors.

Formally, in canonical PSO each particle’s position vector xi is updated each time step t by
means of the Equation 4.5.

xt+1
i

= xt

i
+ vt+1

i
(4.5)

where vt+1
i

is the velocity vector of the particle given by

vt+1
i

= !vt

i
+ U

t[0,'1] · (p
t

i
� xt

i
) + U

t[0,'2] · (b
t

i
� xt

i
) (4.6)

In this formula, pt

i
is the personal best position the particle i has ever stored, bt

i
is the position

found by the member of its neighborhood that has had the best performance so far. Acceleration
coefficients '1 and '2 control the relative effect of the personal and social best particles, and
U

t is a diagonal matrix with elements distributed in the interval [0,'i], uniformly at random.
Finally, ! 2 (0, 1) is called the inertia weight and influences the tradeoff between exploitation and
exploration.

To apply a PSO algorithm in multi-objective optimization, the previous scheme has to be
modified to cope with the fact that the solution of a problem with multiple objectives is not a
single one, but a set of non-dominated solutions. A pseudo-code of a general MOPSO is as shown
in Algorithm 4.1. After initializing the swarm (Line 1), the typical approach is to use an external
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archive to store the leaders, which are taken from the non-dominated particles in the swarm. After
initializing the leaders archive (Line 2), some quality measure has to be calculated (Line 3) for all
the leaders to select usually one leader for each particle of the swarm. In the main loop of the
algorithm, the movement of each particle is performed after a leader has been selected (Lines 7-8)
and, optionally, a perturbation operator can be applied (Line 9); then, the particle is evaluated
and its corresponding personal best p is updated (Lines 10-11). After each iteration, the set of
leaders is updated and the quality measure is calculated again (Lines 13-14). After the termination
condition, the archive is returned to form the resulting Pareto front approximation.

Algorithm 4.1 Pseudocode of a general MOPSO algorithm.
1: initialiseSwarm()
2: initialiseLeadersArchive()
3: determineLeadersQuality()
4: generation = 0
5: while generation < maxGenerations do
6: for each particle do
7: selectLeader()
8: updatePosition() // flight (Equations 4.5 and 4.6)
9: perturbation()

10: evaluation()
11: updateLocalBest()
12: end for
13: updateLeadersArchive()
14: determineLeadersQuality()
15: generation ++
16: end while
17: returnArchive()

Nevertheless, a number of issues have to be considered as discussed in [244] to design a MOPSO
variant, which are related to: the existence of an external archive of non-dominated solutions,
the selection strategy of non-dominated solutions as leaders for guiding the swarm, the velocity
calculation, the neighborhood topology of particles, and the usual existence or not of a mutation
(perturbation) operator. The way of dealing with these and other mechanisms lead into new
different algorithmic variants, some of the most representative ones are used in this study to
evaluate their performance on the inference of GRNs. A description of them is as follows:

• MOPSO [37]. It is one of the earliest multi-objective PSO algorithms that uses a secondary
(i.e., external) repository of particles, which is later used by other particles to guide their
own movements. The main aim of the external repository (or archive) in MOPSO is to keep a
historical record of the non-dominated solutions found along the search process. This external
repository consists of two main parts: the archive controller and the grid. The function of
the archive controller is to decide whether a certain solution should be added to the archive
or not, in accordance with an elitist decision procedure. The basic idea of the grid-based
archiving method is to store all the solutions that are non-dominated with respect to the
contents of the archive; the proposed strategy is that the objective function space is divided
into regions, so that if the individual inserted into the external population lies outside the
current bounds of the grid, then the grid has to be recalculated and each individual within it
has to be relocated. The adaptive grid is really a space formed by hypercubes, each one with
as many components as objective functions. Hypercubes can be interpreted as geographical
regions that contain a number of individuals. When the archive is full, a solution from
the most populated hypercube is removed, therefore promoting diversity in the Pareto front
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approximation. In addition, MOPSO incorporates a special mutation operator that enriches
its exploratory capabilities.

• OMOPSO [36]. It is an optimized version of the previous MOPSO that includes the use
of the crowding distance of NSGA-II [245] for discarding leader solutions from a bounded
external archive and two mutation mechanisms to promote a good convergence. The original
OMOPSO also uses an ✏�dominance strategy for bounding the amount of particles generated
at each iteration. Nevertheless, the OMOPSO variant considered in this study allocates
solutions dropped by the ✏ � dominance in an external archive of leaders. To compute a
new particle, a leader is selected from this archive to be used as the best particle term in
the velocity calculation. Binary tournament selection is performed in this operation based
on the crowding values of the members included in this archive of leaders, which is bounded
to the size of the swarm. At each iteration, this archive is updated, so those leader particles
with larger crowding distances are removed from the archive when it is full.

• SMPSO [39]. This algorithm is inspired by OMOPSO, and is characterized by two main
features: a velocity constraint mechanism and (similarly to MOPSO and OMOPSO) an
external bounded archive to store the non-dominated solutions found during the search. A
perturbation mechanism, implemented as a mutation operator, is also incorporated. The
archive contains the current Pareto front approximation found by the algorithm, and it
applies the crowding distance density estimator [245] to select particles to remove when it
exceeds the maximum allowable size. For velocity calculation, a leader is selected from the
archive by following binary tournament or random strategies. The solution located in the
less crowded region of the Pareto front composed by all archiving solutions is then selected.
The local best particle, to be used as the second term in the velocity calculation, is selected
from the entire swarm by employing a dominance test, so the current best particle is replaced
if it is dominated by the new one.

• MOPSOHv. In [41], a study of different leader selection mechanisms on SMPSO was con-
ducted. In that work, the most salient variant based on the degree of contributions of particles
in the hypervolume indicator IHV [246] to organize the external archive of leaders, instead
of using the crowding distance. The underpinning idea is to select a leader from those par-
ticles that contribute with high hypervolume to the Pareto front approximation. Therefore,
the external archive of leaders contains solutions with higher values of IHV indicator. The
archive is managed as done in OMOPSO, although following an update strategy centered
on low hypervolume values, instead of small crowding distance. In the velocity calculation
phase, two solutions are randomly selected from this archive, and the one contributing with
higher hypervolume is selected as the leader.

• DMOPSO [40]. It is an archive-less approach inspired by the MOEA/D [247] aggregative
model, according to which, a multi-objective optimization problem is decomposed into a
set of single-objective ones that are optimized at the same time. In this sense, it is worth
noting that this variant partially follows the general algorithmic scheme of the pseudocode
in Algorithm 4.1 (operations involving leaders’ archive are avoided), but it just performs
the core iteration scheme of particles movement. Therefore, in DMOPSO a set of vectors
uniformly distributed �1,�2, . . . ,�N are defined, with N being the swarm size. In this scheme,
each particle xi is associated with a vector �i and a neighborhood, which is defined as a
set of its nearest weight vectors in �1,�2, . . . ,�N . Then, following the Tchebycheff scheme
a scalarizing strategy is applied with the ideal reference point z

⇤ = (z⇤1 , . . . , z
⇤
k
)T , where

z
⇤
i
= minx2Sfi(x) for i = 1, . . . , k as Minimize f

Tch(x | �, z
⇤) = maxi=1,··· ,N{�i· | z

⇤
i
�
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fi(x) |}. Each element of the reference point (z⇤) is specified by the minimum1 value of
each objective fi(x) among the examined solutions throughout the optimization process of
DMOPSO. For velocity calculation, the local best particle term is obtained by following a
similar strategy to MOEA/D when updating a neighborhood. To update the leader, the best
solution in the neighborhood is selected by taking into account scalar values with regards to
their corresponding weight vectors.

• VEPSO [38]. Vector Evaluated Particle Swarm optimization is a multi–swarm variant of
PSO, which is inspired by the Vector Evaluated Genetic Algorithm (VEGA) [248]. VEPSO
uses two or more swarms in an island-based distributed topology to probe the search space
and information is exchanged among them. Each swarm is evaluated using only one of the
objective functions of the problem under consideration, and the information it possesses
for this objective function is communicated to the other swarms through the exchange of
their best experience. The best position attained by each particle (the particle’s memory)
separately, as well as the best among these positions are the main guidance mechanisms of
the swarm. Exchanging this information among swarms lead to Pareto approximation points.
We have used a variant of VEPSO which includes, as SMPSO and OMOPSO, an external
archive to store the non-dominated solutions found during the search.

In terms of computational complexity, archive-based variants (MOPSO, OMOPSO, SMPSO,
MOPSOHv, and VEPSO) follow similar algorithmic scheme to NSGA-II and canonical MOPSO,
which are shown to have O(M(N +n)2) in the worst case, as explained in [249]. According to this
work, M is the number of functions to be optimized, while N and n are the size of the archive
and swarm, respectively. In the case of archive-less variants, DMOPSO follows similar scheme
to MOEA/D, which shows complexity of O(MnT ), with T (the neighbour size) representing the
number of solutions that compute the scalarizing strategy each iteration.

In summary, from the initial MOPSO with external archive, different variants have been ap-
pearing with improvements consisting in: crowding based leader selection (OMOPSO), velocity
constraint (SMPSO), hypervolume contribution leader organization (MOPSOHv) and archive-
less based on an aggregative decomposition scheme (DMOPSO). Contemporary to MOPSO, the
VEPSO variant is also considered as it implements a totally different scheme based on distributed
swarm-islands and a common archive. For the integration of these versions, we have adapted the
implementation provided in the jMetal 5.1 [250] framework2 to deal with the inference of GRNs.

4.5 Experimentation

In order to assess the performance of the selected MOPSOs on the inference of GRNs, we have
followed a standard procedure that comprises both, in silico and in vivo time-series from gene
expression data of different organisms. In particular, we focus on the DREAM3 and DREAM4
challenges3 as the in silico data, and we use a cell cycle regulatory subnetwork in Saccharomyces
cerevisiae (IRMA) and Melanoma patiens’ samples as the in vivo biological datasets. Gene expres-
sion data from Melanoma patients can be found in FIMED 2.04 (Chapter 3), where GRNs have
also been performed.

DREAM3 in silico challenge [42] is nowadays a standard benchmark for GRNs reconstruction,
which consists of gene expression datasets from two organisms: E.coli (Escherichia coli) and Yeast

1Without loss of generality, we assume minimization for algorithmic definitions.
2Online Available at URL http://jmetal.sourceforge.net/
3Online Available at URL http://dreamchallenges.org
4Online Available at URL https://khaos.uma.es/fimedRCC for examples copied from https://github.com/hbc/

sen-Nanostring and so licensed under MIT License.

http://jmetal.sourceforge.net/
http://dreamchallenges.org
https://khaos.uma.es/fimedRCC
https://github.com/hbc/sen-Nanostring
https://github.com/hbc/sen-Nanostring
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(Saccharomyces cerevisiae), with two dimensions according to the number of genes taken into
account: 10 and 100, for each of them. 10 size networks involve 4 time-series with 21 samples
per gene, while 100 size networks comprise 46 time-series of 21 samples. The true topology of
the networks are obtained from in vivo GRNs of Escherichia coli and Saccharomyces cerevisiae,
which present different patterns of density and topology. Target graphs in DREAM3 Challenge
are directed and they do not distinguish between inhibitors or inductors. Similarly, DREAM4
in silico challenge consists of networks of sizes 10 and 100. The size 10 network data consists
of 5 simulated networks, each of which contains 21 time points and 5 replicates. DREAM4 also
provides 5 networks with size 100 genes with 21 time points and 10 replicates each one. Melanoma
samples have been taken from the Immune Profiling Panel NanostringTM (770 genes), which have
been specifically designed for cancer projects studying immune aspects of the disease. The panel
includes 24 different immune cell types, common checkpoint inhibitors, CT antigens, and genes
covering both, the adaptive and innate immune response. Moreover, this platform can analyze 12
samples in each cartridge, so it provides 12 RCC files with the gene counts for each of the gene
panels.

4.5.1 Methodology

The methodology followed in experiments consists in running each combination of algorithm and
GRN instance 25 independent times. To measure the performance of algorithms, we have con-
sidered the standard quality indicator Inverted Generational Distance Plus (IIGD+) [251], since it
measures convergence and diversity degrees of the resulting front approximations. This way, given
a set of non-dominated solutions R, used as a reference front, and another set of non-dominated
solutions A, the inverted generational distance of A, IGD(A), is the average Euclidean distance
form each point of R to the nearest solution in A. The modified IGD, IGD+, replaces the Eu-
clidean distance by Equation 4.7, where r = (r1, r2, ...rm) is a reference point, a = (a1, a2, ...am)
is a solution, and m is the number of objectives.

IIGD+(a, r) =

vuut
mX

i=1

(max(ri � ai, 0)2) (4.7)

Therefore, for all the distributions of results, we compute the median and interquartile range
of the IIGD+ values. In this sense, taking into account that the optimal reconstruction GRNs is a
real-world optimization problem for which true Pareto fronts (required to calculate the IIGD+) are
not available, a reference front is calculated for each instance. This reference front is computed by
joining all the non-dominated solutions obtained by all the MOPSO variants, thorough all their
executions.

To deploy all the experiments, a super-computing platform summing up 63 TFLOP/s is used,
which hardware is managed by a Slurm middleware acting as the distributed task scheduler. This
infrastructure takes part in the Picasso Supercomputer (RES node) located in the Bio-Innovation
Building of the University of Málaga, as mentioned in Chapter 2.5.

Table 4.1 contains the algorithmic configurations used in experiments, which comprise a similar
setting for common parameters. The size of the swarm is 100 and the stopping condition is reached
when 100,000 function evaluations are performed. The archive size, when applicable, is set to 100.
MOPSO, MOPSOHv and SMPSO use the polynomial mutation with distribution index ⌘m = 20,
which is applied with probability 1/L, where L is the number of problem variables. For OMOPSO
and DMOPSO, the acceleration coefficients C1 and C2 are randomly (uniformly) set in a range of
(1.5, 2.0) and the inertia weight is also randomly set in a range of (0.1, 0.5). In the case of SMPSO,
acceleration coefficients C1 and C2 are randomly (uniformly) set in a range of (1.5, 2.5). VEPSO



CHAPTER 4. CONTRIBUTION TO THE RECONSTRUCTION OF GENE REGULATORY
NETWORKS WITH MULTI-OBJECTIVE OPTIMIZATION 81

algorithm use constriction factor � of Clerc [252] instead of inertia weight, which was analytically
set to 0.729.

It is worth noting that a systematic parameter tuning of algorithms is needed before performing
empirical comparisons, although it requires time extra effort and appropriate background knowl-
edge of the problem to be properly conducted. There exists a variety of methods developed for this
purpose, which offer significant performance [253, 254, 255, 256]. In the present study, a partial
grid-search tuning of the specific algorithm parameters have been conducted to this end on smaller
DREAM 3/4 instances; for the common parameters, they have been set to common values to make
a fair comparison as shown in Table 4.1.

Table 4.1: Parameter settings.

Common parameters
Swarm size 100 Particles
Maximum number of evaluations 100,000

MOPSO [37] & MOPSOHv
Archive Size 100
C1, C2 1.5
! 0.4
Mutation Polynomial
Mutation probability 1/L
Mutation distribution index ⌘m 20
Selection method Rounds
Archive selection ratio for g 0.2
Archive selection ratio for p 0.98

OMOPSO [36]
Archive size 100
C1, C2 rand(1.5, 2.0)
! rand(0.1, 0.5)
Mutation uniform+non-uniform
Mutation probability 1/3 of the swarm

Common parameters
Swarm size 100 Particles
Maximum number of evaluations 100,000

SMPSO [257]
Archive Size 100
C1, C2 rand(1.5, 2.5)
! 0.1
Mutation Polynomial mutation
Mutation probability 1/L
Mutation distribution index ⌘m 20
Selection method Rounds

DMOPSO [40]
Scalarizing function Tchebycheff
C1, C2 rand(1.5, 2.0)
! rand(0.1, 0.5)

VEPSO [38]
Archive Size 100
Number of swarm-islands 2
C1, C2 2.05
Constriction factor � 0.729

4.6 Results and analysis

In this section, results and analysis are presented from three different perspectives: first, a perfor-
mance comparison of the evaluated algorithms is conducted; second, the capacity of the algorithms
to obtain high quality solutions in terms of the inferred in silico and in vivo networks is analyzed,
with regards to current results in the specialized literature; finally, an analysis of results with a
real-world gene expression dataset of Melanoma cancer is carried out, for which significant networks
are inferred and assessed in terms of biological validation.

4.6.1 Algorithmic performance

As aforementioned, the Inverted Generational Distance plus (IIDG+) is used as indicator to com-
pare the performance of the multi-objective algorithms we have selected. This metric measures the
dominance-based distance from each reference point to its nearest solution in the objective space,
so low values of IIDG+ mean good performance in terms of diversity and convergence.

The first set of results are shown in Table 4.2 that contains the median and interquartile range
of the distributions of IIDG+ values (out of 25 independent runs), for the DREAM3 and DREAM4
instances with size 10 and the six compared algorithms. As we can observe, SMPSO obtains the
best median values (with dark grey background) for five network instances and the second-best
median for 4 instances (with light grey background). OMOPSO shows the best median values for
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three instances, followed by MOPSO with two best median values. These three algorithms use
similar multi-objective strategies with external archives, although with different selection mech-
anisms of non-dominated solutions to act as leader particles. This last probably determines the
different performances of these algorithms from DREAM3/4 instances with 10 genes network size.

Table 4.2: Median and interquartile range of IIDG+ for each algorithm and instance with 10 genes
size. Best and second best median results have dark and light gray backgrounds, respectively.

MOPSO MOPSOHv SMPSO OMOPSO DMOPSO VEPSO
10-Ecoli1 6.08e � 025.6e�02 1.65e � 018.4e+01 7.59e � 026.4e�02 7.13e � 026.3e�02 2.04e � 014.4e�02 2.39e + 012.6e+01

10-Ecoli2 1.61e � 011.7e�01 3.65e � 014.1e�01 1.53e � 011.6e�01 1.54e � 011.4e�01 4.95e � 011.1e�01 3.18e + 002.4e+00

10-Yeast1 2.44e � 011.7e�01 3.20e � 013.4e�01 2.39e � 011.4e�01 2.05e � 011.4e�01 4.53e � 011.2e�01 2.98e + 014.1e+01

10-Yeast2 4.83e � 012.8e�01 9.66e � 012.7e+02 4.42e � 014.3e�01 5.33e � 013.2e�01 1.13e + 007.3e�01 1.66e + 021.6e+02

10-Yeast3 2.62e � 018.1e�01 6.94e � 015.0e+01 2.56e � 012.8e�01 2.21e � 011.7e�01 2.12e + 001.2e+00 7.79e + 011.4e+02

10-Net-1 3.71e � 014.9e�01 7.15e � 011.0e+00 5.67e � 013.8e�01 5.73e � 015.3e�01 1.75e + 014.6e+01 2.21e + 021.8e+02

10-Net-2 4.62e � 011.4e+00 1.37e + 001.8e+01 3.02e � 012.4e�01 5.88e � 017.4e�01 1.73e + 013.0e+01 5.00e + 024.9e+02

10-Net-3 2.16e � 021.2e�02 2.98e � 022.8e�02 2.04e � 026.1e�03 2.08e � 022.0e�02 2.40e � 018.3e�02 5.94e + 008.7e+00

10-Net-4 2.25e � 025.7e�02 2.03e � 016.7e�01 2.22e � 022.7e�02 4.33e � 027.0e�02 1.85e + 003.0e+00 5.47e + 013.8e+01

10-Net-5 5.36e � 014.5e�01 7.54e � 011.2e+00 4.04e � 013.9e�01 3.12e � 014.0e�01 6.23e � 011.1e�01 3.90e + 001.3e+01

Table 4.3 shows the results of compared algorithms in terms of IIDG+ for large-size networks
with 100 genes of DREAM3 and DREAM4 benchmarks. In this case, a different behavior is
observed so that OMOPSO obtains the best median values for almost all the instances, while
DMOPSO shows the best results in just one network of DREAM4 (Net-5) and presents the higher
number of second-best results. The remaining variants show moderate performance.

Table 4.3: Median and interquartile range of IIDG+ for each algorithm and instance of DREAM3
and DREAM4 with 100 genes size. Best and second best median results have dark and light gray
backgrounds, respectively.

MOPSO MOPSOHv SMPSO OMOPSO DMOPSO VEPSO
100-Ecoli1 3.17e + 034.5e+02 7.48e + 021.1e+03 1.03e + 037.2e+02 8.84e � 012.3e+00 3.11e + 001.6e+00 5.94e + 008.0e+00

100-Ecoli2 2.65e + 014.6e+00 4.59e + 002.5e+00 8.34e + 004.9e+00 2.57e � 036.6e�03 1.05e � 023.6e�03 2.06e � 023.3e�02

100-Yeast1 4.86e + 026.5e+01 1.27e + 027.0e+01 1.91e + 021.4e+02 1.21e � 014.3e�01 8.06e � 019.7e�01 1.56e + 004.0e+00

100-Yeast2 1.31e + 032.1e+02 2.29e + 021.6e+02 5.34e + 023.9e+02 1.14e + 003.0e+00 5.92e + 003.8e+00 1.70e + 021.7e+02

100-Yeast3 4.69e + 024.4e+01 9.60e + 015.4e+01 1.65e + 029.0e+01 3.21e � 029.4e�02 1.06e � 012.0e�02 8.54e � 019.6e�01

100-Net-1 2.77e + 021.7e+02 1.80e + 018.4e+00 4.14e + 013.0e+01 1.40e � 012.9e�01 4.24e � 013.2e�01 1.39e + 011.7e+01

100-Net-2 3.69e + 031.2e+03 4.17e + 013.2e+01 1.45e + 031.2e+03 3.04e � 014.9e�01 5.19e + 002.1e+00 6.29e + 011.4e+03

100-Net-3 2.77e + 021.7e+02 1.80e + 018.4e+00 4.14e + 013.0e+01 1.40e � 012.9e�01 4.24e � 013.2e�01 1.39e + 011.7e+01

100-Net-4 2.39e + 032.1e+03 4.67e + 016.3e+02 8.70e + 023.8e+02 3.15e � 014.5e�01 7.91e � 016.3e�01 2.07e + 028.3e+02

100-Net-5 1.80e + 022.9e+01 4.11e + 011.6e+01 8.63e + 014.1e+01 2.16e � 021.3e�01 6.99e � 031.6e�02 4.31e + 015.6e+01

In order to provide these results with statistical confidence (in this study p-value = 0.05), we
have assessed the entire distributions of the indicator used in this in study with non-parametric
statistical tests, because in several cases the distributions of results did not follow the conditions
of normality and homoscedasticity [258] required for parametric tests. In particular, Friedman’s
ranking and Holm’s post-hoc tests have been applied to distinguish those algorithms statistically
worse than the control one (the best-ranked according to Friedman).

This way, as shown in Table 4.4 and focusing on for small size instances with 10 genes, SMPSO is
the best-ranked variant according to Friedman test and it is followed by OMOPSO and MOPSO.
Therefore, SMPSO is established as the control algorithm in the post-hoc Holm tests, which is
compared with the rest of algorithms. The adjusted p-values (indicated as Holm

0
sAdj�p in Ta-

ble 4.4) resulting from these comparisons are, for algorithms OMOPSO and MOPSO, higher than
the confidence level (0.05), so this means that no statistical difference can be observed with regards
to SMPSO. Conversely, for the remaining variants MOPSOHv and VEPSO and DMOPSO, the
adjusted p-values are lower than the confidence level, meaning that SMPSO performs statistically
better than these algorithms in the context of DREAM3/4 with 10 genes size. OMOPSO and
MOPSO obtained similar overall performances, although showing OMOPSO better ranking than
MOPSO in terms of IIDG+.
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IIDG+ Size 10 genes
Algorithm Friedman

0
sRank Holm

0
sAdj�p

*SMPSO 1.60 -
OMOPSO 2.10 8.06e-01
MOPSO 2.30 8.05e-01
MOPSOHv 4.10 8.40e-03
DMOPSO 4.91 3.20e-04
VEPSO 5.98 7.24e-07

IIDG+ Size 100 genes
Algorithm Friedman

0
sRank Holm

0
sAdj�p

*OMOPSO 1.09 -
DMOPSO 1.90 3.38e-01
VEPSO 3.30 1.71e-02
MOPSOHv 3.69 5.65e-03
SMPSO 5.00 1.19e-05
MOPSO 5.98 2.24e-08

Table 4.4: Average Friedman’s rankings with Holm’s Adjusted p-values (0.05) of compared algo-
rithms for the test set of DREAM3 and DREAM4 instances with 10 and 100 genes size. Symbol *
indicates the control algorithm and column at right contains the overall ranking of positions with
regards to IIDG+.

When focusing on large-size instances with 100 genes in Table 4.4 (right), the Friedman
0
sRank

values indicate that OMOPSO is the best-ranked algorithm (control variant), but without statis-
tical differences with regards to DMOPSO according to the Holm’s adjusted p-values. However,
VEPSO, MOPSOHv, MOPSO and SMPSO perform statistically worse than the control variant
(OMOPSO), as they obtained adjusted p-values lower than the confidence level (0.05).

In this regard, an interesting observation can be pointed out in terms of problem scalability,
since for two algorithmic variants, SMPSO and MOPSO, they show prominent behavior for small
size networks, although with poor ranking values when facing large-size networks with 100 genes.
Conversely, DMOPSO performs properly in 100 genes size instances, but with moderate results on
size 10. The use of a search strategy based on problem decomposition without external archive
(of non-dominated solutions) could delay the convergence in DMOPSO in comparison with the
other variants when facing small networks. Nevertheless, this seems to be in turn beneficial in
the context of large scale solution vectors, which leads this algorithm to obtain a high ranking
in terms of IIDG+. In the case of OMOPSO, it shows accurate results not only on small size
networks but also for large-size ones. This prominent behavior has also been experimented in a
previous study [259], where several different multi-objective techniques were assessed in terms of
scalability on benchmarking problems. Apart from using a similar archiving strategy to SMPSO
and MOPSO, the use of restriction factors and grid selection mechanism in these to last variants
seem to be responsible for a good performance in small size networks but limiting their search
procedure in the context of large-size ones. This is avoided when working with OMOPSO, which
leads us to suggest the use of this variant in the context of essays where the number of genes can
variate from tens to hundreds.

From a graphical point of view, Figures 4.3 and 4.2 plot the reference fronts computed from
all executions (in a continuous line) according to the contribution of each technique, for 10 genes
size networks of DREAM3 and DREAM4 challenges, respectively. In general, SMPSO contributes
with non-dominated solutions to the reference front in all the network instances, although its
contribution is especially high in the specific case of Yeast3 network of DREAM3 and Net1, Net3
and Net4 of DREAM4. Other reference fronts in DREAM3 are better covered with solutions
of MOPSO and OMOPSO, which ideally behave especially adapted to these specific instances.
Probably, the archiving and replacement mechanism in SMPSO and OMOPSO of non-dominated
solutions based on crowding distance density estimator makes these variants keep solutions in these
reference fronts, whereas other methods like DMOPSO and MOPSOHv discard them prematurely.

Another interesting observation in these fronts (Figures 4.3 and 4.2) lies in the number of non-
dominated solutions with different values of topology regularization terms (TR), which also show
low mean errors (MSEs) with regards to the gene expression time-series. This would support human
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Figure 4.2: Reference Fronts with best IHV values on DREAM 4 datasets.

experts in the decision-making process to select alternative networks with different topologies, but
low errors, i.e., with a high ability to reproduce gene expression data.

In this sense, it can be checked the particular ability of SMPSO to obtain non-dominated
solutions in the region of the reference front with low error values in Ecoli2, Yeast3, Net1, Net3,
and Net4. In contrast with the other compared algorithms, OMOPSO can cover this area for
Ecoli1, Yeast1 and Net5, while MOPSO performs successfully for Ecoli1 and Yeast2.

In summary, OMOPSO shows the overall best behavior for DREAM3/4 challenges. SMPSO
obtains good results on small size networks, whereas DMOPSO performs accurately on large-size
ones. These results are reported in terms of multi-objective standard indicator IIDG+ with regards
to pre-computed reference fronts. Nevertheless, a more in-depth analysis is also required from
the point of view of the quality of the inferred networks concerning gold-standard solutions and
specialized literature. A thorough analysis in this sense is conducted next.

4.6.2 Quality of inferred (in silico) networks

To measure the quality of the networks inferred from the resulting solutions, we have followed two
standard metrics as suggested in DREAM3 and DREAM4 challenges: the area under the Receiver
Operating Characteristic (ROC) curve (AUROC), as well as the area under the precision-recall
curve (AUPR). These values are computed with regards to gold-standard networks from Ecoli and
Yeast [42]. According to this, to compute the ROC curve, the true positive rate is plotted against
the false positive rate, TPR and FPR in Equations 4.8 and 4.9, respectively.
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Figure 4.3: Reference Fronts with best IHV values on DREAM 3 Challenge datasets.

TPR =
TP

TP + FN
(4.8)

FPR =
FP

FP + TN
(4.9)

PPV =
TP

TP + FP
(4.10)

In these equations, TP are True Positives, FN False Negatives, FP False Positives, and TN
True Negatives. The predictive performance of a network predictor is then quantified in terms of
the area under the ROC curve (AUROC), which is in the range [0, 1]. In the case of precision-
recall curve (AUPR), it plots the positive predictive value (PPV) against the true positive rate
(TPR), which are computed with Equations 4.10 and 4.8, respectively. Therefore, an ideal network
predictor will obtain an AUPR of 1.

The results obtained from inferred networks by all the MOPSO variants for DREAM3 and
DREAM4 with size 10 are given in Tables 4.5 and 4.6, respectively. Similarly, the results for
networks size 100 genes are computed in Table 4.7 (DREAM3) and Table 4.8 (DREAM4). The
corresponding solutions are given from those resulting fronts with the best hypervolume, for each
algorithm and instance.

In these tables, a base-line linear least squares regression method (LASSO) and those teams
in DREAM3 Challenge that used the same datasets, Teams 236 and 190, are also incorporated
for comparisons. This same challenge was also used to evaluate MONET [153], which performs a
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Table 4.5: AUROC and AUPR for LASSO, Team 236, Team 190 (DREAM3 challenge) and
MOPSO variants on DREAM3 size-10 networks.

Ecoli1 Ecoli2 Yeast1 Yeast2 Yeast3
AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

LASSO 0.500 0.119 0.547 0.531 0.528 0.244 0.527 0.305 0.582 0.255
Team 236 0.621 0.197 0.650 0.378 0.646 0.194 0.438 0.236 0.488 0.239
Team 190 0.573 0.152 0.515 0.181 0.631 0.167 0.577 0.371 0.603 0.373
MONET 0.647 0.182 0.513 0.200 0.801 0.469 0.522 0.354 0.612 0.321
MOPSO 0.582 0.252 0.523 0.212 0.811 0.471 0.512 0.332 0.623 0.324
MOPSOHv 0.578 0.345 0.604 0.277 0.633 0.177 0.454 0.241 0.554 0.289
SMPSO 0.668 0.181 0.552 0.207 0.686 0.227 0.591 0.375 0.541 0.373
OMOPSO 0.525 0.150 0.572 0.275 0.605 0.313 0.513 0.320 0.524 0.304
DMOPSO 0.623 0.337 0.456 0.204 0.613 0.223 0.603 0.418 0.558 0.321
VEPSO 0.453 0.134 0.530 0.236 0.426 0.094 0.599 0.438 0.403 0.208

Table 4.6: AUROC and AUPR for LASSO, (DREAM4 challenge) and MOPSO variants on
DREAM4 size-10 networks.

Net1 Net2 Net3 Net4 Net5
AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

LASSO 0.601 0.260 0.543 0.331 0.553 0.274 0.569 0.285 0.522 0.215
MOPSO 0.645 0.262 0.506 0.175 0.518 0.184 0.627 0.275 0.541 0.149
MOPSOHv 0.471 0.153 0.596 0.298 0.588 0.220 0.642 0.206 0.581 0.160
SMPSO 0.609 0.376 0.460 0.155 0.455 0.147 0.525 0.236 0.535 0.230
OMOPSO 0.735 0.505 0.538 0.213 0.536 0.276 0.595 0.271 0.513 0.157
DMOPSO 0.537 0.208 0.554 0.367 0.547 0.353 0.653 0.281 0.448 0.116
VEPSO 0.712 0.489 0.614 0.281 0.617 0.220 0.521 0.143 0.578 0.175

similar multi-objective strategy as used in this study, so their available results are also incorporated
in Tables 4.5 and 4.7.

Table 4.7: AUROC and AUPR for LASSO, Team 236 (DREAM3 challenge) and MOPSO variants
on DREAM3 size-100 networks.

Ecoli1 Ecoli2 Yeast1 Yeast2 Yeast3
AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

LASSO 0.519 0.016 0.512 0.057 0.507 0.016 0.530 0.044 0.506 0.044
Team 236 0.527 0.019 0.546 0.042 0.532 0.035 0.508 0.046 0.508 0.065
MONET 0.525 0.014 0.533 0.012 0.522 0.018 0.485 0.038 0.517 0.058
MOPSO 0.502 0.018 0.501 0.015 0.525 0.018 0.492 0.038 0.516 0.061
MOPSOHv 0.486 0.018 0.487 0.014 0.534 0.019 0.499 0.041 0.486 0.059
SMPSO 0.529 0.015 0.495 0.019 0.496 0.017 0.513 0.049 0.488 0.058
OMOPSO 0.504 0.051 0.512 0.014 0.518 0.017 0.506 0.054 0.519 0.070
DMOPSO 0.485 0.012 0.513 0.017 0.514 0.017 0.510 0.040 0.503 0.055
VEPSO 0.452 0.013 0.487 0.017 0.497 0.016 0.546 0.051 0.502 0.061

The AUROC and AUPR metrics in Tables 4.5 and 4.6 indicate that MOPSO variants are
in general competitive in comparison with the other techniques for 10 genes size networks. In
particular, the evaluated algorithms obtained solutions with higher precision-recall (AUPR) for
all the instances except for Ecoli2 and Yeast3, although with similar results to the best ones.
It is worthy to note that current proposals in the literature use ad hoc operators based on a
priori knowledge about the structure of the target network, then performing efficiently for these
specific instances. An example of this strategy can be adopted for Ecoli2 network, which induces
a star topological structure with central nodes acting as hubs for many linking edges coming from
regulated genes [42]. This feature can be used to set thresholds and clusters in algorithmic operators
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Table 4.8: AUROC and AUPR for LASSO (DREAM4 challenge) and MOPSO variants on
DREAM4 size-100 networks.

Net1 Net2 Net3 Net4 Net5
AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

LASSO 0.510 0.016 0.482 0.027 0.507 0.016 0.430 0.024 0.486 0.023
MOPSO 0.518 0.018 0.478 0.022 0.508 0.021 0.500 0.022 0.478 0.024
MOPSOHv 0.480 0.017 0.512 0.025 0.514 0.021 0.526 0.023 0.511 0.023
SMPSO 0.510 0.023 0.526 0.029 0.508 0.021 0.517 0.021 0.488 0.019
OMOPSO 0.499 0.018 0.493 0.024 0.502 0.023 0.510 0.022 0.492 0.018
DMOPSO 0.490 0.018 0.503 0.025 0.536 0.022 0.503 0.021 0.493 0.018
VEPSO 0.520 0.020 0.507 0.025 0.526 0.021 0.476 0.020 0.523 0.022

to improve the inference power of such techniques for the specific target network, although with
poor behavior when facing a different one.

In the case of MOPSO variants, network topology and strength of interaction edges are obtained
from solutions encoding parameters of S-System, so implicit knowledge about GRN reconstruction
is directly modeled in objectives as black-box functions. This allows researchers to use these kinds
of multi-objective optimisers with generic operators, which is an advantage, since actual in vivo
experiments are featured with no a priori information about the structure of the network. In this
sense, there exist other related approaches in the literature like [155], which proposed a genetic
algorithm hybridized with random forest using fuzzy cognitive maps for the reconstruction of GRN.
This hybrid proposal was evaluated on DREAM3 instances obtaining AUROC of 0.509 and AUPR
of 0.352 for Yeast2 10-size, which are in the range of MOPSO results and they are overtaken by
those of SMPSO, DMOPSO and VEPSO.

Another interesting observation can be made on some variants with moderate results in terms
of IIDG+ for 10 size networks, e. g., VEPSO and DMOSO, but with high quality solutions for
some instances, especially from DREAM4 (Table 4.6). This can be explained by the fact that
AUROC and AUPR are calculated from the best solutions in each experiment, although indicators
are computed from the entire distribution of results and the median values are highlighted in these
cases. In the specific case of VEPSO, a high value of AUROC is observed for some instances, but
with low AUPR. This can be due by the existence of numerous false positives in the networks
inferred by VEPSO, so the final score in this variant is limited. This is avoided in the other
MOPSO variants, which show in general a good trade-off between AUROC and AUPR.

In large instances with 100 genes size, results are in general similar to those computed for size
10 and practically all the MOPSO variants obtain competitive solutions with regards to the base-
line methods. Concretely, Table 4.7 shows that certain variants such as OMOPSO and SMPSO
obtain outperforming networks in comparison with those of Team 236 (Team 190 was not able to
submit predictions for DREAM3 size 100). In this table, for all the algorithms, AUROC results still
show high precision for size-100 networks, although AUPR values deteriorate with recall in general
lower than 7% (see OMOPSO in Yeast3). This last issue may be due by the low density usually
observed on 100 size networks (DREAM3), for which the amount of disconnected nodes (genes with
no interactions) is higher than the number of inferred edges. Additional comparisons involve the
hybrid technique proposed in [155] which obtained AUROC of 0.508 and AUPR of 0.044 for specific
instance Yeas2 with 100 genes (only these results were reported). For this network, multi-objective
particle swarm optimisers SMPSO, DMOPSO and VEPSO obtained solutions with better AUROC
and AUPR values than this compared approach. In the light of all these and previous results, we
can suggest that MOPSO variants evaluated in this study show competitive behavior with regards
to base-line solutions of DREAM3/4, as well as to current related algorithmic proposals in the
state of the art.
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4.6.3 Results on the IRMA (in vivo) network

To further test MOPSO variants, we have also used gene expression datasets from the In vivo
Reverse Engineering and Modeling Assessment (IRMA) network [260]. In this network, the gene
expression levels were measured using quantitative RT-PCR at different time points with the
yeast Saccharomyces cerevisiae. IRMA instance comprises 5 genes (CBF1, GAL4, SWI5, GAL80,
and ASH1) and 6 regulatory interactions among them. In addition, it can be switched on/off
by culturing cells in galactose or glucose, respectively. This network is broadly used in many
studies [153, 151, 155, 261] and constitutes a current gold-standard on experiments oriented to the
reconstruction of GRNs.

Table 4.9 shows the AUPR values of the GRNs inferred by a set of prominent algorithmic
proposals that were experimentally assessed with the IRMA network (AUROC values are not
available). Among these algorithms, results of BGRMI and Jump3 are given from [151], and
results of KFLR, CMI2NI, TIGRESS and GENIRF are given from [261]. In this comparison,
BGRMI reports the best AUPR value for the Switch-On instance, yet with a close recall to that of
SMPSO. Conversely, in the case of Switch-Off dataset, OMOPSO variant obtains the best AUPR
values, followed by DMOPSO, SMPSO, MOPSOHv and LASSO. These results suggest MOPSO
variants are highly competitive, not only for in silico datasets, but also for in vivo sample networks.

Table 4.9: AUPR performances on IRMA network.

Algorithm Switch-On Switch-Off
LASSO 0.520 0.734
Jump3 0.685 0.682
BGRMI 0.904 0.574
KFLR 0.896 0.721
CMI2NI 0.721 0.456
TIGRESS 0.714 0.452
GENIRF 0.672 0.327
MONET 0.827 0.734
MOPSO 0.502 0.533
MOPSOHv 0.702 0.746
SMPSO 0.838 0.756
OMOPSO 0.702 0.953
DMOPSO 0.502 0.783
VEPSO 0.625 0.688

4.6.4 Biological validation

Finally, a series of experiments are conducted to evaluate the MOPSO variants studied here in
terms of biomedical validation, with regards to real-world gene expression datasets. In concrete,
we focus on a dataset previously collected in FIMED [30] from actual clinical information of
Melanoma cancer patients, including gene expression levels obtained from the NanoString5 platform
comprising the Immune Profiling Panel. This panel was curated and subjected to specific filtering
techniques as commented in Chapter 3 (Gene Expression Pre-processing 3.3.1.3), so that a subset
of 35 least stable genes, i.e., the ones that display most variation, was isolated to be worked in
further analyses.

In a first analysis, the MOPSO variants have been run (using the parameter setting of Table 4.1)
using the instance dataset of Melanoma cancer, so a series of different networks are inferred (for the

5Online Available in URL https://www.nanostring.com/

https://www.nanostring.com/
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first time) that curiously share a similar structure. In this sense, we executed a Heatmap Clustering
analysis in FIMED (Figure 4.4) to illustrates the frequency of repeated edges between interacting
genes in the resulting networks. In this graphic, transcription factors (origins) are located in rows
and target genes (destinations) in columns. As can be observed, there is a number of interaction
edges with frequencies from 3 to 17 repetitions in overlapping networks. Therefore, using these
edges as recurrent patterns in most of the inferences from the MOPSO variants it is possible to
construct a reference network, which comprises strong interactions of genes. This reference network
is plotted in Figure 4.5, which shows certain edges in green to represent frequencies higher than
10 and edges in red to represent more than 17 repetitions.

Figure 4.4: Melanoma heatmap histogram of overlapping edges in networks inferred by MOPSO
variants. Target factors are located in rows and target genes in columns.

It is worth noting that practically all of the edges in this reference network are also obtained
by the different algorithmic proposals used in Chapter 3 in our FIMED [30] tool for the inference
of GRN, namely: GRNBoost2 and GENIE3. This is an indicative result for the validation of
the inferred network, as different techniques in the literature implementing heterogeneous learning
models obtain overlapping networks, but with simple variations in edges. Concretely, edges “HLA-
DQA1 ! IL3RA”, “IDO1 ! IFT1” and “ARG1 ! IFIT2” are repeatedly obtained by all the
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Figure 4.5: Reference network inferred by MOPSO variants studied here. Edges in green represent
those with frequencies higher than 10 and edges in red are used for frequencies higher than 17.

MOPSO variants, GRNBoost2 and GENIE3, which lead us to suggest these edges would correspond
to significant transcriptions of genes in the actual interaction network of Melanoma cancer.

Moreover, when checking these genes in GO (the Gene Ontology6) and specialized literature we
are able to collect the biological terms that are related to the genes of our sample in the search of
biological pathways in common. For this, Gene Set Enrichment Analysis (GSEA) for interpreting
gene expression data in Melanoma cancer will be carried out. It is a validation technique based on a
previous biological knowledge [262]. To bring about the analysis, GOOATOOLS (a python library
for Gene Ontology analysis [263]) has been used. To observe significant pathway terms involved
in the Gene Ontology for our gene samples, Fisher’s exact test, as well as multiple corrections
has been used as a statistical method. We select Bonferroni, Sidak, Holm and Fdr methods, since
deliver rigorous results indicated in the literature [264], and p-value 0.05, to find the enriched
terms in the Gene Ontology.

As a result, there have been 26 GO terms in total that found significant p-value 0.05 (en-
riched) in this analysis. Most of the GO terms related in biological processes are associated
with antigen processing and presentation of peptide or polysaccharide antigen via MHC class II
(GO:0002504), antigen processing and presentation of peptide antigen (GO:0048002), antigen pro-
cessing and presentation of peptide antigen via MHC class II (GO:0002495), etc. These biological

6Online Available in URL http://geneontology.org/

http://geneontology.org/
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pathways provide us a lot of information, since we know that the constitutive expression of major
histocompatibility complex (MHC) class II molecules frequently occurs in Melanoma disease [265].
This biological process is connected largely with HLA-DQB1, HLA-DQA1, HLA-DRB4 genes that
are directly related to melanoma as discussed in [266].

4.7 Conclusions

In this Chapter, an empirical evaluation is conducted on a set of representative multi-objective
particle swarm optimisers, based on different movement, leader selection, and archiving strategies,
when optimizing the inference of gene regulatory networks. To this end, we use a multi-objective
problem formulation by optimizing the topology of a given network, while tuning the kinetic orders
of an S-System model, yet avoiding the weight of additional penalty terms. The experiments
conducted involve time-series datasets of gene expression taken from the DREAM3/4 standard
benchmarks, as well as in vivo datasets from IRMA and Melanoma cancer samples. After thorough
experimentation, a series of conclusions are obtained as follows:

• The study reveals that OMOPSO shows in general the best performance for in silico and in
vivo instances. SMPSO behaves properly in small size networks, so the velocity restriction
mechanism implemented in this variant seems to be responsible of a low IIGD+ for a number
of instances. Conversely, DMOPSO is more adapted to large instances. Probably, the archive-
less decomposition strategy in this last variant enhances the time-series fitting for large scale
parameter vectors in solutions. All this leads us to suggest the use of OMOPSO in the
context of essays where the number of genes can variate from tens to hundreds.

• MOPSO, MOPSOHv and VEPSO show limited behavior in terms of algorithmic performance.
Nevertheless, they usually obtain high quality inferred networks, so for several instances:
Ecoli1, Yeast1, Yeast3, Net1, Net4 and Net5, these algorithms obtained accurate AUROC
and AUPR values.

• When facing the in vivo network IRMA, SMPSO is able to perform accurate predictions for
the Switch-On dataset, and close to BGRMI. In the case of Switch-Off, OMOPSO generates
networks with the best AUPR, followed by DMOPSO, SMPSO, MOPSOHv and LASSO.

• As a matter of biological validation, it is worth mentioning that practically all of the edges
in a reference network computed by the MOPSO variants are also obtained by other popular
algorithmic proposals used in [267], namely: GRNBoost2 and GENIE3. This is a clear
insight in terms of validation for the inferred network, as different techniques in the literature
implementing heterogeneous learning models obtain overlapping networks, but with simple
variations in edges. This reference network also show consistent features with regards to
standard procedures in the Gene Ontology, as well as in the specialized literature.
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Chapter 5

Contribution to time series
streaming data analysis with
biomedical data from sensors devices

This chapter focuses on the complex annotation process of a large amount of sensor-based data
that can be challenging in some situations. Specifically, we focus on the problem of Human Activity
Recognition (HAR), where HAR systems rely on large amounts of labelled training sensor data.
However, annotating data can be challenging in some situations, especially when the granularity
of the activities is great, or the user is unable or unwilling to help with the gathering process. In
this sense, we propose a semi-supervised deep-learning approach in which these unlabelled data
can still be used to train a recognition model. Likewise, a streaming classification process is
proposed, since it is crucial for human activity recognition because getting the results in real-time
is a compulsion in many situations. The proposed approach has been validated in a real-world
use case with a group of overweight patients in the healthcare system of Andalusia (Spain) by
classifying movement patterns in real-time conditions, which is crucial for long-term daily obese
patient monitoring.
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5.1 Introduction

Physical inactivity is one of the main risk factors for chronic diseases such as cardiovascular, cancer
and diabetes [268, 269]. Knowing the habits and types of activity carried out by people and their
relationship with these diseases is a crucial task in designing treatment strategies and prevention
recommendations. Numerous advances have been crucial to deepening high-level knowledge about
people’s daily life [6]. One of the main objectives of HAR is to provide long-term monitoring of
people’s daily activities to allow medical doctors to get additional information about their patients
to design care plans that may prevent or help against chronic diseases.

HAR has gained much attention in healthcare due to its wide range of applications, such
as monitoring of geriatric patients, especially focused on fall detection [8, 270, 271], as well as
many other studies related to chronic diseases such as Parkinson’s, obesity, cardiovascular and
neurodegenerative diseases [272, 273, 274, 275]. These research activities have shown that HAR
can effectively improve the quality of health care for some groups of people suffering from some
pathologies or chronic diseases.

HAR mainly focus on two types of methods: video-based and sensor-based. Video-based meth-
ods provide a dense feature space to allow fine-grained analysis in HAR. However, it is exposed
to a highly complex background of images since an environment with very strict conditions, such
as well-positioned cameras and individuals, is required for the data collection process with a high
cost at the level of computing resources and energy consumption and price. Therefore, video-based
methods remain limited in epidemiological studies where the evaluation of daily physical activity
requires a reliable, accurate, and low-cost methodology. Sensor-based methods are widely used in
scientific physical activity studies since they provide better adaptability in variable environments,
high recognition accuracy and low power consumption. Furthermore, in [6] the use of accelerome-
ters is exposed as the most used sensor in the literature since most wearable devices are equipped
with them and have easy access. Additionally, an accelerometer is considered a reasonably intelli-
gent sensor for recognizing many types of activities since most are simple body movements.

The work presented in this chapter is motivated by an ongoing collaboration project in a real-
world healthcare system (in Andalusia, Spain). We focus on a sensor-based approach, with the
primary purpose of discriminating basic posture change movements or activities of a group of pa-
tients with obesity and cardiovascular problems. The project aims to provide tools to practitioners
to follow the daily routine of their patients and thus prevent a sedentary lifestyle. In this sense,
many related studies in the literature have reported high classification accuracy [276, 277, 278, 279].
However, most of them have been tested in academic datasets on young, healthy subjects that can
hardly resemble the conditions of a real patient’s environment. Besides, most of these experiments
have been carried out under controlled environments and restricted activity conditions.

However, as observed in actual healthcare scenarios, a series of critical issues arise related to the
limited amount of available labeled data to build a classification model regarding the total volume
and velocity of sensorised data. In addition, the discrimination ability of features is often difficult
to capture for different classes since the variety of movement patterns in a certain group of patients,
e.g. obesity and/or geriatric patients, is bounded and maintained over time. Another issue is the
usual class imbalance of data registered in this kind of sensor data stream. Samples representing
specific constant postures, such as sleeping, sitting, active, inactive, etc., are perceptually abundant
compared to others (running, upstairs, etc.). Therefore, these challenges demand the design and
development of hybrid data-driven approaches, where semi-supervised models can act at the core
of data processing workflows, usually involving modern Big Data technologies.

In this chapter, a streaming classification model for HAR in healthcare systems is proposed
for patient monitoring in real-time. This proposal is based on a combination strategy of public
labeled/private unlabeled raw data integration, semi-supervised classification with Convolutional
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Neural Networks (CNNs) and Spark streaming processing.
Guided by practical requirements, accelerometer sensor-based data have been considered in

this work since low power consumption and use of resources are mandatory through long-term
daily patient monitoring in uncontrolled environments. In this sense, as sensorised samples are
mostly unlabeled, a data fusion task is conducted with commonly used datasets in the literature
(WISDM [280], PAMAP2 [281], HUGADB [282] and USC-HAD [283]). These datasets have been
previously labeled according to systematic procedures and share common attributes. This way,
labeled and unlabeled samples are integrated for feeding the semi-supervised models to classify
new incoming data flows, through the Spark streaming processing engine, by following a sliding
window strategy.

In this approach, semi-supervised models are generated with Encoder-Decoder CNNs [284],
which allow data augmentation by considering unlabeled samples and statistical features, hence
embracing the global properties of the accelerometer time series. For testing purposes, a real-world
case study is conducted with a group of more than 300 overweight patients in the healthcare system
of Andalusia (Spain), classifying close to 30 TBs of accelerometer sensor-based data.

The remainder of this Chapter is structured as follows. Section 5.2 presents a review of related
studies in the current state of the art. In Section 5.3, the proposed approach is described. The
experimental procedure is explained, and the results are analyzed in Section 5.4. Finally, Section 5.6
contains concluding remarks and future work.

5.2 Related works

The discovery of patterns of human activity has led to several studies on analyzing the data
collected through activity bracelets, smartwatches and smartphones [285]. Many classification
methods have been used in previous studies, especially conventional approaches using Machine
Learning algorithms [286] such as Extra Trees, AdaBoost, Random Forest (RF), Naive Bayes,
k-nearest Neighbours (kNN), or Support Vector Machines (SVM). To name some representative
studies of them, in [287] SVM was used to carry out the classification problem of HAR, collecting
inertial sensor data through a smartphone mounted on the waist of the individuals. C4.5 Decision
Tree and Naive Bayes classifiers were used to recognise 20 daily activities in [288]. In [289] kNN
was declared the best classifier compared with C4.5 (J48) Decision Tree, Multilayer Perceptron
Neural Network, Naive Bayes, logistic regression, and ensembles based on boosting and bagging.
However, they still showed classification failures in similar activities.

Even when conventional approaches have obtained promising results with high-level classifica-
tion accuracies in different controlled environments, these methods rely on feature-based classifi-
cation guided by human domain knowledge, which supposes a heavily effort in the pre-processing
data stage. Besides, the discrimination of very similar activities for these methods is still a difficult
task. Deep Learning (DL) algorithms seem to be a good solution to overcome these problems
since they conduct layer-by-layer structural modelling for specific feature extraction and allow the
classification process after the segment pre-processing raw data. One of the first approaches can be
found in [290], where HAR classification is carried out with CNNs by extracting features without
domain-specific knowledge about raw data. Also, in [276], CNN is proposed to perform efficient
and effective HAR using smartphone sensors by exploiting the inherent characteristics of activities
and 1D time series signals, at the same time providing a way to automatically and adaptively
extract robust features from raw data. Various state-of-the-art classification techniques under dif-
ferent scenarios are compared in [277], showing how deep neural networks perform with the best
accuracy when the training data volume is drastically reduced.

Many other HAR studies have been implemented with deep learning methods, such as convo-
lutional and recurrent approaches [274, 278, 279, 291]. In this sense, a thorough survey is reported
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in [6] where new challenges and trends are identified for this area. In concrete, two of these main
challenges are related to the online/streaming processing or sensorised data and the requirement
of dealing with unlabeled data. These are, in fact, the direct consequence of working in real-world
environments, requiring the management of high volumes of continuously sensorised data. Recent
proposals [284, 292] are based on suitable semi-supervised frameworks to cope with these issues.
However, they are still limited when tackling scalable data processing.

The proposed approach is conceived to cope with these limitations by combining semi-supervised
Encoder-Decoder CNN dynamic models with Spark streaming processing in real-world healthcare
environments.

5.3 Proposed approach

The basic methodology in the human activity recognition process consists of four phases [293] as
shown in Figure 5.1. These phases are: i) selection and deployment of sensors, ii) collection of data
from these sensors, iii) pre-processing and feature selection from the data and iv) use of machine
learning algorithm to infer or recognize activities.

Figure 5.1: General process of human activity recognition. Figure taken from reference [294].

Our proposed approach follows the methodology presented in Figure 5.1. Additionally, it
partially follows the basic methodology presented in the so-called activity recognition chain (ARC),
extensively studied in [295] as a general-purpose framework for processing time series sensorised
data, training and evaluating HAR workflows. A general overview of the proposed workflow in our
study is illustrated in Figure 5.2, where all the elements are organized, from data acquisition to
model evaluation and human activity prediction.

The main purpose of this strategy is to generate an enriched dataset that, after a feature
engineering process for data fusion, is suitable for feeding semi-supervised models, avoiding bias
and overfitting problems, as much as possible.

5.3.1 Sensor selection & deployment

In the sensor selection phase, a sensor-based method has been considered since they provide better
adaptability in variable environments, high recognition accuracy and low power consumption [6].
Specifically, an accelerometer sensor is used for measuring acceleration. It can sense acceleration
in multiple directions. In this sense, the multi-axis accelerometer can measure acceleration in x, y,
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Figure 5.2: General overview of the proposed approach that is presented as a HAR workflow. This
workflow is composed of several steps: (1) Data acquisition: the data is acquire combining un-
labeled data sensors (private dataset) and from public datasets. (2) Data pre-processing: these
data is pre-process, which involves interpolation for missing data imputation, re-sampling, class
imbalance processing and normalization. Also labeled dataset is then split into two subsets with
80% of selected samples for training and 20% of remaining ones for testing. (3) Data segmenta-
tion: a temporal sliding window with size of 400, corresponding to roughly 4 seconds of physical
activity data, and overlap of 100 (1 second) is performed to labeled and unlabeled data. (4) Fea-
ture extraction and model training: a CNN Encoder-Decoder model is trained with labeled
and unlabeled, capturing the most relevant characteristics of the training data in order to provide
activity inference of the 30TB of unlabeled data. (5) Model evaluation: the model is evaluated
with the test sets where confusion matrix and deviated metrics are obtained (Precision, Recall,
F1-score) (6) Streaming processing and activity recognition: once the model is evaluated
and provide us promising results an Spark Streaming classification process is carry out. The whole
process is repeated with a certain frequency to rebuild models with updated data. Therefore, the
framework to monitor patient’s movements will consider new individuals in a transparent way to
the learning model, since new sensor data will be in the same Spark streaming source.
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and z directions at the same time. The accelerometer is widely used in solutions for activities of
daily living in the literature.

5.3.2 Data collection from sensors

In this phase, data is collected from a wearable device (GENEActiv1), which incorporates a MEMS
triaxial accelerometer placed on the non-dominant wrist of the study subjects (Figure 5.3). Each
measurement of this bracelet contains three real values on each of the sensor axes (x-y-z) with
a sampling rate at 100Hz, range of +/- 8g and resolution of 12 bits. This way, after a weekly
observation period, 30 TBs of raw movement data is collected from 300 patients’ daily activities.
This final time series dataset is a set of observations X = (x1

t
, x

2
t
...x

L

t
) where each one is recorded

at a specific time T and L as a length of time-step.

Figure 5.3: GENEActiv is a lightweight raw data accelerometer that allows for objectively contin-
uous physical activity monitoring within clinical trials. Image taken and modified from [296].

Nevertheless, this huge amount of sensorised data still lacks class labeled features, which are
required for model training. Therefore, we propose to follow a combined data acquisition strategy
that merges our self-data collection from sensors (unlabeled data) with academic datasets (labeled
data). The former source comprises data streams of unlabeled attributes (patients’ movements)
that must be classified. The latter considers a series of labeled datasets from related human
activity recognition time series studies in the literature. Therefore, the proposed approach has
considered a series of widely used datasets in the literature, each contributing with labeled samples
for different, sometimes overlapping, activities. These datasets are: WISDM (Actitracker) [297],
PAMAP2 [298], USC-HAD [299] and HuGaDB [300]. These datasets were previously labeled
according to systematic procedures and shared common attributes. The time series recorded in
these datasets have been collected from heterogeneous devices (smartphones and bracelets) located
in different parts of the body, considering a different number of individuals and with a different
sampling frequency (e.g. WISDM at 20Hz, HUGADB at 50Hz, USC-HAD and PAMAP2 at 100Hz)
in the study. Moreover, they have been modeled to consider different sets of daily activities, which
are recorded through different time intervals. In this respect, these activities are sometimes far
from the habits observed in our patients (with obesity), so a preliminary exploration phase has been
conducted to select that public dataset containing distributions more similar to our self-collected
(private) data.

1https://www.activinsights.com/products/geneactiv/

https://www.activinsights.com/products/geneactiv/
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Figure 5.4: Boxplot distributions of the three accelerometer axis corresponding to WISDM,
PAMAP2, USC-HAD and HUGADB, taking into account the 6 activities which have in com-
mon these datasets (walking, running, sitting, standing, downstairs, upstairs). Also our private
dataset was included in the bloxplot distribution.

In this regard, Figure 5.4 shows the boxplot distributions of the three accelerometer axis (x,y,z)
for each of the four considered public datasets (WISDM, PAMAP2, USC-HAD and HuGaDB),
taking into account six activities which have in common these datasets (walking, running, sitting,
standing, downstairs, upstairs), as well as for our private data. After this process, the WISDM
dataset is selected to provide our model with labeled samples since it contains the closest axis
distributions to the sensorised data of our patients. Therefore, we prevent the model from under-
fitting with excessive data variation. When the instances are augmented using the WISDM dataset,
the model becomes more stable with a lower standard deviation. On the contrary, using all the
datasets to train the model adds additional variation and significantly deteriorates the model. In
concrete, WISDM (Actitracker) dataset considers six activities registered in a controlled environ-
ment: jogging, walking, ascending stairs, descending stairs, sitting and standing. A number of 36
individuals have taken part in these measures.

Public datasets were produced using different devices and under various human circumstances.
Differences in the feature-space representation can be thought of in terms of the sensor modalities
and sampling rates. Also, discrepancies in the marginal probability distribution can be considered
in terms of distinct people performing the same activity or having the movement performed in
other physical spaces. Hence a complete pre-processing procedure is carried out to homogenise all
of these data sources, including those commonly detected activities among all the individuals in
observation. In concrete, these shared activities are: running, walking, sitting, standing, upstairs
and downstairs, which are used as labeled categories for the semi-supervised models in this proposal.

5.3.3 Data pre-processing

The success of any inference technique is highly dependent on the quality of the data fed into the
model. Real-world data is often dirty and noisy and contains outliers, irrelevant or unnecessary
features, and null or non-standardised values. When erroneous or raw data is often used, the
resulting model tends to be biased or not perform correctly. For this reason, the transformation of
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the original data in the preprocessing phase is essential. In this sense, data processing is performed
on labeled and unlabeled data, which involves interpolation for missing data imputation, Data
re-sampling, class imbalance processing, data normalization and data segmentation (Figure 5.2).

5.3.3.1 Data normalization

Applying data normalization techniques is critical in this study because the devices used for data
collection are different in each of the selected datasets. Therefore, the input signal amplitude will
vary significantly from one to another.

Raw data have been normalized through Z-score normalization. Feature standardization makes
the values of each feature in the raw data have zero-mean and unit variance. This normalization
is formulated in Equation 5.1, where x is the original feature vector, x

0
is the normalized value,

x̃ = average(x) is the mean of that feature vector, and � is its standard deviation.

x
0
=

x� x̃

�
(5.1)

5.3.3.2 Missing value imputation in sensor raw data

Data collection processes are performed in a real-world scenario where data dropout may occur due
to wireless sensors or possible hardware problems. It will generate raw data containing noise or
missing values. Therefore, linear interpolation is conducted to tackle missing values and to fill gaps
in raw data time series. This method is commonly used for time series missing value imputation. It
helps estimate the missing data point using the two surrounding known data points. It searches for
a straight line that passes through the endpoints xA and xB , as formulated in Equation 5.2, where
xi are observed data, Xi are the interpolated value(s) of missing data, and ↵ is the interpolation
factor that varies from 0 to 1.

Xi = (1� ↵)xB + ↵xA (5.2)

5.3.3.3 Data re-sampling

Data re-sampling has been carried out to homogenize the frequency of the datasets since each
one is arranged at a different frequency. For this purpose, down-sampling and up-sampling tech-
niques have been applied. It is worth noting that when dealing with “waves” in time series, it is
observed that low sampling frequencies tend to lose information in specific movements, where a
high frequency is required to identify them correctly. For this reason, we must determine the wave
frequency according to the type of recognition faced. Figure 5.5 shows an example of raw data of a
patient’s activities (“walking” and “cycling”) collected by an accelerometer sensor on a wrist. After
re-sampling, data are transformed for each activity at frequencies of 100Hz (top), 50Hz (middle)
and 20Hz (bottom). The effect of data re-sampling is illustrated, and it is possible to identify some
losses in the data information as long as the frequency decreases. It can be observed in Figure 5.5
a), where different wave peaks “disappear”, provoking inconsistent data representations at different
sampling frequencies. Therefore, a high re-sampling (100Hz) is performed to keep the informative
level in samples while making data homogeneous for all the sources.

For this reason, we resampled all datasets to put them at the same frequency as our private
dataset (100Hz) to keep data information. Hence, we up-sampled the WISDM dataset from 20Hz
to 100Hz and HUGADB from 50Hz to 100Hz, since USC-HAD and PAMAP2 are already at 100Hz.
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Figure 5.5: Raw data from accelerometer sensor of different activities: Walking (a) and cycling
(b) at 100 Hz (top) and re-sampled data at 50 Hz (middle) and 20 Hz (bottom). It can be noticed
that as the sampling rate decreases, aspects at high frequency are removed from the wave.

5.3.3.4 Class imbalance

Another quite common yet important issue registered in HAR datasets is the class imbalance.
Even more in real-world sensor data from the particular case of obese patients, where the balance
between classes is not guaranteed and biased to sedentary activities. For example, the “sitting”
activity is more frequent in the case of overweight patients than the “running” activity, producing
an important class imbalance that could lead learning models to behave with a bias towards the
majority classes. As a consequence, algorithms will fail in the classification of the underrepresented
minority classes, which provokes a severe decrease in the overall accuracy of the results [301].

In order to cope with class imbalance, several approaches have been used, such as oversampling
and under-sampling methods at the data level [302, 303] and many other solutions at the algo-
rithmic level trying to trade-off the class imbalance in modelling time [304, 305]. In the context
of HAR, Synthetic Minority Oversampling Technique (SMOTE) [302] is a standard over-sampling
method used to generate new synthetic data of the minority classes. It has shown great success
in several applications where SMOTE helps to enhance the classification accuracy for imbalanced
datasets. For example, in [306] data balancing was used through SMOTE oversampling approach,
leading the worked model to reach high accuracy results.

By default, SMOTE re-samples all classes except the majority class; that is, the minority classes
are increased to reach the total number of the majority class. However, the study in [302] suggested
combining SMOTE with random under-sampling of the majority class since a high over-sampling
could provoke model over-fitting. For this purpose, our methodology addresses class imbalance
at the training stage by balancing classes in two separate steps: firstly, SMOTE oversampling
technique is used to over-sample those minority classes to have 50% of the number of examples of
the majority class. Then, under-sampling using random elimination is performed on the majority
classes to have 20% more than the minority class. Then a difference of 20% between classes of
samples is obtained, which helps the model to avoid problematic class imbalance, preventing the
generation of synthetic data in a high percentage.
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5.3.4 Data segmentation

As the last step of the data processing phase, we will segment the data into time windows. At this
step, data samples are still structured in the time domain since all the axis points are collected
from sensors at a certain time instant. Therefore, a segmentation stage is required to transform
these input data into the frequency domain, more suitable for training deep learning models as
signal processing prediction tasks. The data segmentation stage, also known as activity detection,
determines which sections of the preprocessed data streams are most likely to contain information
about activities. A report on activity segments is essential for activity recognition.

In our approach to data segmentation, a window is dragged over the time series data using a
sliding windows approach to extract a data segment for use in later stages of the workflow. The
window size has a direct impact on the recognition system’s delay. Additionally, the ideal window
size is not apparent a priori and can affect recognition performance [307]. In our case of patients
with obesity, various time window sizes were tested. Finally, a temporal sliding window with a
length of 400, corresponding to roughly 4 seconds of physical activity data, and an overlap of 100
(1 second), is performed for each axis attribute in the dataset. This overlapping among windows
guarantees high numerosity of training and testing samples to train the model.

To fit the input shape of the CNN-Encoder-Decoder, it is necessary to reshape the sample
obtained in the previous step. Therefore, each window comes in the shape of a matrix of values of
shape N x 400 x 3, where N is the number of samples resulting from the segmentation, 400 is the
time window, and 3 is the number of features to train the model (x-axis, y-axis, z-axis). In this
segmentation, sliding windows are checked to contain samples from just one human activity.

5.3.5 Feature extraction and model building

One of the main challenges arising in this study is the possibility of taking advantage of dealing with
labeled and unlabeled data. In this sense, using semi-supervised learning techniques constitutes
a suitable option for performing predictive analysis since they allow to train models with labeled
and unlabeled samples, which mainly improve generalization and avoid overfitting [284]. So, this
step entails the semi-supervised learning task, which merges the labeled segments in training set
with those unlabeled from sensors.

In particular, the use of CNN-based approaches has been shown to perform successfully for HAR
since they provide hidden data representations and identify patterns in activity time series [290,
292]. Therefore, considering a dataset with N pairs (x1, t1), (x2, t2), · · · , (xN , tN ), being xi a
sliding window input with length T and ti the label representing a given activity, we adopt a semi-
supervised strategy CNN Encoder-Decoder in our approach. In this, labeled samples {(xi, ti)|1 

i  N} are used together with unlabeled ones {xi|N+1  i  N+M} in training, to fit the model
with both data sources (sensorised and academic). As argued in [292], using this semi-supervised
CNN Encoder-Decoder, it is possible to learn the network and features simultaneously from the
data.

In general, the encoder network maps a given input signal x 2 X ⇢ Rd0 to a feature space z

2 Z ⇢ Rdk , whereas the decoder takes this feature map as an input, process it and produce an
output y 2 Y ⇢ RdL

The rationale behind the CNN Encoder-Decoder for semi-supervised classification is to include
noise in all the layers of the network, so it works to minimize the distance between the clean input
and the reconstructed decoder. In this way, the learning procedure can be summarized in the
following steps:

1. Labeled and unlabeled data are processed by the clean encoder to compute hidden variables
in the middle layers z

k

i
;
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2. Both labeled and unlabeled data are corrupted with Gaussian noise and transformed to an
abstract representation z̃k

i
, by the noisy encoder;

3. Labeled data (x̃i, 1  i  N) are used to perform the prediction task on a softmax based on
cross entropy cost. The predicted classes are denoted with ỹi;

4. The decoder works to reconstruct unlabeled samples (x̃i, N + 1  i  N + M) which are
denoted with x̂i, so they should be as close as possible to the corresponding input (xi). To
measure this similarity, square error is computed.

The cost function is formulated in Equation 5.3 as an aggregation of the supervised cross
entropy of the noisy output ỹi predicting the class activity ti for the input xi (first term in this
equation), whereas the unsupervised cost (second term in this equation) is the denoising square
error between clean input xi and their noisy reconstruction output x̂i.

Cost = �
1

N

NX

i=1

logP (ỹi = ti|xi) +
�

N

N+MX

i=N+1

||x̂i � xi||
2
2 (5.3)

The full structure of our CNN-Encoder-Decoder model is shown in Figure 5.6.

Figure 5.6: The proposed model contains an encoder part composed of three down-sampling blocks
in the following structure [Conv1D + BatchNorm + MaxPooling1D + Dropout]. Moreover, each
encoder layer has a corresponding decoder layer of three up-sampling blocks [Conv1D + Batch-
Norm + UpSampling1D + Dropout]. Finally, the Softmax output layer is added for multi-class
classification.

• Encoder: The encoder network consists of three down-sampling blocks. Each down sampling
block is composed of 1D convolutional layers with kernel size of 3, followed by a max-pooling



104 5.4. EXPERIMENTAL RESULTS AND ANALYSIS

layer. Additionally, for each block a batch normalization is added to reduce internal co-variate
shift [308], accelerating the training process of the model, and a dropout layer was added
to improve generalization performance and avoid over fitting. It then follows an structure
[Conv1D + BatchNorm + MaxPooling1D + Dropout]

• Decoder: Each encoder layer has a corresponding decoder layer. Thus, the decoder network
consists of three up-sampling blocks composed of 1D convolutional layers with a kernel size
of 3, followed by an up-sampling layer. As for the encoder, for each up-sampling block, batch
normalization and dropout layers were added, with a structure [Conv1D + BatchNorm +
UpSampling1D + Dropout].

• Softmax: The model is turned to a classifier by adding a Softmax output layer for multi-class
classification.

Therefore, the semi-supervised CNN Encoder-decoder allows unlabeled samples from sensor
streaming sources to take part in the learning model during training time, so it will avoid bias in
certain classes and promote generality.

5.3.5.1 Model evaluation

Once the model is built, an evaluation step is carried out regarding the test set, where confusion
matrix and deviated metrics are obtained (Precision, Recall, F1-score, etc.). It is worth noting
that this test set is wholly obtained from the public dataset, in this case, WISDM. However, the
model has been trained with public and private data, so final predictions are expected to show
certain model generalization with moderate accuracy. The final goal is to get a prediction model
suitable for a dynamic data flow environment but not for a specific dataset in a certain period.

5.3.6 Streaming processing and activity recognition

Finally, a streaming processing task is deployed through an Apache Spark environment, in which
new sensorised data are pre-processed to be predicted according to the model previously built.
An internal segmentation step is carried out with streaming data using a similar sliding window
size used in the model training phase. This is then a continuous process of human activity la-
bel assignation of new samples regarding patient’s movements, which can now be monitored by
practitioners.

5.4 Experimental results and analysis

In this section, we investigate the effects of training a semi-supervised CNN Encoder-Decoder using
labeled data from one public dataset (WISDM) and unlabeled data from our private dataset.

The goal is to be able to classify the 30 TB of unlabeled data. The Convolutional Encoder will
compress the input signal x into a space of latent variables (h = f(x)), then learn how to reconstruct
the data back from the reduced encoded representation. Meanwhile, the Convolutional Decoder
works to reconstruct the input signal based on the information previously collected (r = g(h)),
as observed in Figure 5.7. Therefore, the latent variable space h will capture the most relevant
characteristics of the training data.

In this regard, the algorithm learns how to reconstruct the input using the Adam optimizer [309]
and using the mean square error as a loss function. Therefore, the model can extract more signifi-
cant characteristics from the unlabeled data that will help us make predictions.

Bayesian optimization has been used for efficient hyper-parameter tuning [310]. The hyper-
parameters were tuned by performing 10-fold Stratified Shuffle Split cross-validation on the training
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Figure 5.7: CNN Encoder-Decoder model. It contains a clean convolutional Encoder, noisy convo-
lutional encoder, and a convolutional decoder. labeled and unlabeled data are processed by clean
convolutional encoder and then corrupted with Gaussian noise. Then the convolutional decoder
works to reconstruct the clean input(x) from high-level representation r = g(h).

set using Bayesian optimization, obtaining a filter size of 64 for each of the 1D convolutional layers,
which is activated by the ReLU function. Moreover, each of the max-pooling and up-sampling layers
contains a pooling size of 2 and the dropout was set to 0.1 for each one. The Bayesian optimization
was executed with a batch size of 50, 500 and 1000, obtaining the best results with 50.

In order to assess the performance of our classification methodology system, we split the avail-
able dataset into 80% train data and 20% test data. This was done based on the subjects rather
than on the segmented windows. In this regard, train data contain subjects 1 to 32 of WISDM
dataset and test data include the rest of the subjects (32 to 36). Thus, four subjects out of 36 are
always kept isolated for each experiment to evaluate the model. This prevents over-fitting of the
subjects and helps to achieve better generalization results.

To comprehensively evaluate the model, we used several evaluation metrics to evaluate the
classification results: accuracy, precision, recall, F1-score, loss function, receiver operating char-
acteristic (ROC) and normalized discounted cumulative gain (NDCG), as shown in Table 5.1. It
should be noted that we opted to estimate the mean F1-score (Fm-score), that is, the mean F1-
score across all the classes. It is shown in Equation 5.4 and Equation 5.5, where TP is the number
of true positives in prediction, FP is the false positives, and FN is the number of false negatives.

precision =
TP

TP + FP
recall =

TP

TP + FN
(5.4)
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Fm� score =
2 ⇤ precision ⇤ recall

precision+ recall
(5.5)

The CNN Encoder-Decoder has been implemented in TensorFlow using Keras. The experiments
to evaluate the model have been executed on a machine with 16 CPUs (Intel(R) Xeon ® Gold 6130
CPU 2.10GHz). After each training epoch, we evaluate the model’s performance on the validation
set. Each model is trained for at least 50 epochs. The training stop condition is configured if
there is no increase in validation performance for 10 subsequent epochs. We select the epoch that
showed the best validation-set performance and applies the corresponding model to the test set.

5.4.1 Sensitivity to unlabeled sample size

In this section, we study the performance of our semi-supervised CNN Encoder-Decoder model
trained with varying amounts of unlabeled data. The amount of the unlabeled data will be pro-
portional to the percentage of samples of the labeled data used for training. Therefore, we evaluate
the metrics of our model trained using unlabeled data of 10%, 20%, 30%, 50%, 80%, 100%, 150%
proportion of labeled data used for training, as shown in Table 5.1. The number of unlabeled
samples varies from 97,814 (10% of train labeled data) to 1,467,222 (150% of train labeled data).

Table 5.1: Metrics obtained with varying number of unlabeled examples in training set. The
amount of unlabeled data is taken as a percentage of the training set of the labeled data (WISDM
Dataset). The number of unlabeled samples varies from 97,814 (10% of train data) to 1,467,222
(150% of train data).

Metrics: Public data (labeled) + Private data (Unlabeled)
% acc loss recall Fm-score roc ndcg
0 0.981 0.069 0.981 0.981 0.998 0.998
10 0.976 0.075 0.977 0.967 0.995 0.997
20 0.971 0.076 0.949 0.949 0.992 0.993
30 0.951 0.148 0.940 0.938 0.991 0.990
50 0.947 0.151 0.925 0.926 0.990 0.988
80 0.905 0.292 0.905 0.903 0.987 0.985
100 0.875 0.319 0.872 0.871 0.983 0.984
150 0.685 0.601 0.685 0.655 0.941 0.981

Figure 5.8 shows how the Fm-score evolves when varying the number of unlabeled examples
in the experimental results. Fm-score generally decreases when there are more unlabeled samples
as expected. This is explained by unlabeled data coming from a different dataset than including
variation. However, it can be observed in Figure 5.8 that for percentages of unlabeled data less
than 100%, we obtain a high Fm-score in the result.

Thus, our approach can potentially learn the network and features simultaneously from the
data using unlabeled data in our CNN Encoder-Decoder model. Therefore, it is possible to use
this model as the core predictor. To do so, we have chosen the amount of 80% of unlabeled
data to classify the 30 TB from sensors since at this point, the model is still getting good results
(Fm� score = 0.90).

More in-depth, Figure 5.9 shows the resulting confusion matrices when varying the amount of
unlabeled data with 10%, 50% and 80% in the model training. It can be observed that the model
achieves promising predictions for activities walking, running, sitting, standing and upstairs, even
when increasing the number of unlabeled samples. In contrast, the model start to show limited
predictions in detecting downstairs since, if we see the patterns between walking and downstairs,
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Figure 5.8: Fm-scores obtained with varying number of unlabeled examples in training set.

(a) 10% of unlabeled data (b) 50% of unlabeled data (c) 80% of unlabeled data

Figure 5.9: Illustration of confusion matrices showing the sensitivity of the networks for each indi-
vidual class when varying 10%, 50% and 80% of unlabeled data when training the semi-supervised
CNN-Encoder-Decoder.

they are characterized with very close signal shapes in movements, as mentioned in [280]. This is
generally an acceptable precision since even for 80% unlabeled data, it still gets good predictions
for all classes.

As we know, it is hard to assess performance in unlabeled data, but we still need to know if it
passes "the eye test". For this purpose, we classify a randomly chosen sample of unlabeled data
to demonstrate that the distributions of the predictions are reasonable. It is shown in Figure 5.10
(format date is a month-day hour) how the main activity is resting (sitting and standing) as we
expected. It is normal since this unlabeled data correspond to one of the 300 overweight patients
in the healthcare system of Andalusia. In the same way, during the night (from 00:00 to 08:30
approximately), the patient is resting (sitting). Later, the patient is standing and starts to be
more active. Then around 12:00, the patient starts to do moderate physical activity (running and
upstairs). It can be seen that on both days, at 12:00 (06-05 12:00 and 06-06 12:00), the patient is
physically active. This could be explained by the fact that patients follow the doctors’ instructions
doing daily exercise to avoid sedentary life. Afterwards, the patient does some short movements,
and finally, after 00:00, resting is the main activity.

It should be noted that the classification has been carried out according to the labels that
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Figure 5.10: Snapshot of the Human Activity Recognition for a randomly anonymous patient. It
is shown how during the night sitting (resting) is the main activity, later around 8:30, the patient
starts to be more active and does short movements. Then, at 12:00 the patient seems to start some
moderate activity and finally, after 00:00 resting is the main activity.

we have from the WISDM dataset. However, our private dataset provides us with long-term
monitoring of patients’ daily activities where we can find more activities and transitions between
activities. Even so, the results obtained in Figure 5.10 seem quite reasonable to us for this first
approach in which we try to address the problem of HAR in a real-world case without previously
labeled activities in our dataset.

5.4.2 Additional experiments

Additional experiments have been implemented to demonstrate the feasibility of the proposed semi-
supervised methodology. A first experiment was conducted to see whether the model could pass
"the eye test" without taking into account the semi-supervised approach. Consequently, the model
was trained only with raw data from the WISDM dataset. After that, a classification task was
performed from a randomly chosen sample from our 30TB private unlabeled dataset. As expected,
the model did not pass "the eye test" without using unlabeled private data in the training phase
(Figure 5.11)

Moreover, the proposed methodology has been synthetically evaluated using another public
dataset to simulate the unsupervised portion. In this sense, the HUGADB dataset has been con-
sidered as "unlabeled dataset" and WISDM as a labeled dataset. HUGADB dataset was classified
with and without considering our proposed semi-supervised methodology. Finally, the model was
evaluated if it could predict the activities in the HUGADB dataset. In this experiment, we con-
cluded that using the semi-supervised approach gives us better predictions, as observed in Table 5.2.
The same experiment was carried out with PAMAP2 as "unlabeled dataset".

5.4.2.1 First experiment: without semi-supervision

In this first experiment, we wanted to see whether the model could pass "the eye test" without
taking into account the semi-supervised approach. For this proposal, the model was trained only
with labeled data from the WISDM dataset without considering our private unlabeled data in the
training phase. Afterwards, the prediction of a randomly chosen sample (five days prediction) from
our 30TB private unlabeled data set was performed, as shown in Figure 5.11. It can be observed
that the model predicts running and walking downstairs as the main activities of the patient even
during the nights and rarely predicts the activities of standing and sitting, even though these are
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the most prevalent behaviors among obese patients. Overall, it may be said that the model cannot
make reasonable predictions if the unsupervised task is not used in the training regime.

Figure 5.11: Activity classification of a randomly chosen sample (five days prediction) from our
30TB private unlabeled data set. For these predictions, the model has been trained only with
labeled data from WISDM dataset without considering our semi-supervised strategy with private
unlabeled data in the training phase.

5.4.2.2 Second experiment: with semi-supervision

In a second experiment, the proposed semi-supervised methodology was synthetically evaluated us-
ing another public dataset as a simulation of the unsupervised portion. In this sense, the HUGADB
dataset has been considered as "unlabeled dataset" since it contains in overall the closest axis dis-
tributions to the sensorised data of the WISDM dataset and the lowest standard deviation in
the data as shown in Figure 5.4. Hence, we study the performance of our semi-supervised CNN
Encoder-Decoder model trained with a combination of WISDM as public annotated data WISDM
and 70% of the HUGADB dataset as a simulation of the unsupervised portion to classify the
activities in HUGADB, as observed in Figure 5.12. First, the model has been trained only with
labeled data from WISDM without considering unlabeled data in the training phase. Afterwards,
the model was validated in the remaining 30% of the HUGADB dataset, as shown in Figure 5.12a.
Subsequently, to demonstrate the feasibility of our semi-supervised approach, the model has been
trained again, but this time 70% of HUGADB has been taken into account as a simulation of the
unsupervised portion in the training phase. As previously mentioned, the model has been validated
in the remaining 30% of the HUGADB dataset, as shown in Figure 5.12b. It can be appreciated
that our semi-supervised approach improves the prediction results from 0.414 to 0.704 in terms of
Fm-score, as shown in Table 5.2.

This second experiment has been repeated with another public dataset as a simulation of the
unsupervised portion to verify the quality of the semi-supervised approach. PAMAP2 has been
selected in this case since it contains different axis distributions to the sensorised data of the
WISDM dataset and the highest standard deviation in the data, as shown in Figure 5.4. It is
shown in Table 5.2 how the semi-supervised methodology increases the prediction results from
0.129 to 0.667 in terms of Fm-score. Also, in Figure 5.13 the semi-supervised strategy increases
the accuracy in all the classes.
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Table 5.2: Metrics evaluation with varying number of unlabeled examples in training set.
HUGADB and PAMAP2 datasets have been taken as a simulation of the unsupervised portion
to synthetically evaluate the proposed semi-supervised methodology.

Metrics: Public data (labeled) + Public data (Unlabeled)
labeled/Unlabeled % acc recall Fm-score
WISDM/HUGADB 0% 0.461 0.461 0.414
WISDM/HUGADB 70% 0.722 0.722 0.704
WISDM/PAMAP2 0% 0.173 0.173 0.129
WISDM/PAMAP2 70% 0.667 0.667 0.667

(a) 0% of unlabeled data (b) 70% of unlabeled data (c) 70% of unlabeled data

Figure 5.12: Illustration of confusion matrices showing the sensitivity of the networks for each
individual when varying the percentage of unlabeled data in the training regime from 0% to 70%
(HUGADB as a simulation of the unsupervised portion). In addition, the dimensionality of HAR
classification problem has been reduced into three basic classes in Figure(c): Non Activity (sitting
and standing), Moderate Activity (walking, walking downstairs and walking upstairs) and Intense
Activity (running).

(a) 0% of unlabeled data (b) 70% of unlabeled data (c) 70% of unlabeled data

Figure 5.13: Illustration of confusion matrices showing the sensitivity of the networks for each
individual when varying the percentage of unlabeled data in the training regime from 0% to 70%
(PAMAP2 as a simulation of the unsupervised portion). In addition, the dimensionality of HAR
classification problem has been reduced into three basic classes in Figure (c): Non Activity (sitting
and standing), Moderate Activity (walking, walking downstairs and walking upstairs) and Intense
Activity (running).
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Despite improving the quality of results with our semi-supervised approach, the model shows
limited predictions in detecting some activities. For example, for the model, it is challenging
to predict downstairs and to walk since, if we see the patterns between walking and downstairs,
they are characterised by very close signal shapes in movements, as commented before in the
paper. Furthermore, static activities can be recognised more easily than regular activities (running,
walking, etc.). However, similar postures (sitting and standing) create significant complexities in
case of separation due to considerable overlapping in feature space, as observed in Figure 5.13b. In
general, the dimensionality of HAR classification problem can be reduced by classifying it into three
basic types: Non Activity (sitting and standing), Moderate Activity (walking, walking downstairs
and walking upstairs) and Intense Activity (running) as shown in Figure 5.12c and Figure 5.13c. We
can obtain promising results that will allow us to provide patient activity information to doctors,
which is essential to preventing obesity.

In conclusion, it can be said that the semi-supervised approach improves results when trying to
predict activities from a dataset that the model has never seen before. With the semi-supervised
strategy, the model can extract important features from the unlabeled data that help us to make
better predictions.

5.4.3 Computational performance

To carry out the streaming classification process, the complete approach has been deployed on a
virtualization environment operating on an on-premise high-performance cluster computing plat-
form, as mentioned in Chapter 2 Section 2.5. It comprises several virtualization units that allow
visualizing the cluster’s performance. Concretely, this platform has 10 virtual machines, each with
16 cores (CPU 16 x 2.10 GHz), 128 GB RAM and 1 TB of virtual storage (up to 176 cores, 1408
GBs of memory and 10 TB HD storage). These virtual machines have been used with the role of
Worker node (Apache Spark) to make the activity predictions. The Master node, which runs the
Keras CNN Encoder-Decoder, is hosted in a different machine with 16 cores at 2.10 GHz, 128 GB
RAM and 5,000 TB of virtual storage space. All these nodes use Linux 4.15.0-118-generic 64-bit
distribution. The whole cluster uses Spark 3.0.1.

Additionally, an NFS distributed file system has been configured to be able to access the
sensorised data from all the machines. The Master node will physically store the data (server). In
contrast, the Worker nodes will behave as clients to access the data remotely. In this way, it is
possible to perform the activity prediction in parallel from the different machines connected to the
same network to access remote files as if they were local ones.

The classification of activities accessing a directory at the NFS distributed system for the
parallelisation of Spark streaming processes. The data is passed in streaming from the repository.
Each CSV file included in the directory will behave as a Spark streaming batch that will go through
a segmentation process by time windows (400 rows corresponding to 4 seconds of monitoring
activity) as observed in Figure 5.2. Finally, the CNN Encoder-Decoder model trained will predict
the activity of each batch in streaming. The results are saved in text files using the same name as
the original CSV files (See Code Snippet 5.1).

[H]

Code Snippet 5.1: Spark streaming segmentation and classification by batch
//Read csv in Streaming with Spark from directory
df = spark.readStream(directory)
//Load the CNN-Encoder-Decoder model
model = keras.load(model)

classify(batch, batch_id, model):
// we set time window to 400 (4 seconds of activity)
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time_window = 400
// raw data segmentation by time Window
batch.map(lambda x,y: [raw_data],time_window)
// group by time_window
batch.reducebyKey(lambda x,y: x+y)
// activity prediction of raw data
batch.map(lambda r: model.predict(r))
// save the result
batch.saveAsTextFile(batch_id+ .txt)

// Streaming classification for each batch
df.foreachBatch(classify(batch, batch_id, model))

The performance of the proposed streaming solution has been evaluated through a series of
experiments to measure the performance in terms of Speedup (SN) and the Efficiency (EN). Thus
we analyse the computational effort and the data management process. The standard formula of
the Speedup calculates the ratio of T1 over TN, where T1 is the running time of the analysed
algorithm in 1 processor and TN is the running time of the parallelised algorithm on N processing
units (processors or cores), while the Efficiency (EN) is calculated as shown in Equation 5.6.

SN =
T1

TN
EN =

SN

TN
⇤ 100 (5.6)

Table 5.3 shows the running time in seconds used by the Spark streaming classification approach
running on 40, 80 and 160 cores with different batch sizes of raw data. This way, we have centred
on file sizes of 64 MB, 128 MB, 256 MB, 512 MB and 1 GB since they are the average size of CSV
files in the 30 TB data. In this sense, we measure the computational influence of using a different
number of cores with different batch sizes. This table also contains the corresponding Speedup
and Efficiency values to the resulting times. As mentioned, the running time is reduced concerning
the increase in the number of cores used in the parallel model. The highest reduction in time is
obtained when our approach is configured with 40 cores in parallel, for which the running time is
reduced from 28.10 s to 6.29 s in the case of the smallest batch size (64 MB), and from 462.75 s
to 8.18 s with the biggest batch size (1 GB) used in the experiments. Also, in terms of efficiency,
the highest percentage, 141.48%, is reached with 40 cores with a batch size of 1 GB, reaching the
best efficiency. In contrast, it decreases as the number of resources gets larger. This behaviour
was somewhat expected as the particular cluster configuration involves computing overheads due
to virtualisation and network communications, so a trade-off setting is reached with fewer nodes
but stabilising from 80 nodes in advance. Considering the results, it is worth mentioning that
both cluster configurations (80 and 160 cores) yield similar speedup and efficiency values, which
indicates that the bottleneck is due to the parallel infrastructure, so increasing the number of cores
does not compensate for the synchronisation and communication costs.

Table 5.3: Experimental results Spark Streaming computational performance.

Running Time (seconds) Speedup Efficiency
Batch Size T1 T40 T80 T160 S40 S80 S160 E40 E80 E160

64 MB 28.10 6.29 7.15 7.08 4.46 3.93 3.96 11.16% 4.91% 2.47%
128 MB 69.17 4.71 4.03 4.22 14.68 17.16 16.39 36.71% 21.45% 10.24%
256 MB 124.65 5.74 10.44 10.94 21.72 11.92 11.39 54.29% 14.92% 7.12%
512 MB 244.28 5.85 34.34 34.05 41.76 7.11 7.17 104.39% 8.89% 4.48%
1 GB 462.75 8.18 124.56 115.21 56.57 3.72 4.02 141.48% 4.64% 2.51%
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Therefore, according to the results, the best configuration to obtain the maximum performance
in the streaming classification process with Spark is observed when using the cluster resources
with 40 cores and a batch size of 1 GB (Figure 5.14). In this regard, we can consider our Spark
streaming classification methodology as a real-time classification since we can classify 1 GB in
8.18s, that is approximately 12,000,000 samples rows, which is equivalent to almost one week of
daily patient activities monitoring (30 TBs in 2 days and 8 hours).

Figure 5.14: Running time in seconds (logarithmic scale) of the Spark Streaming process classifi-
cation executed on 40, 80 and 160 cores in the cluster computing platform.

Figure 5.15: Load_one. Number of threads per node (40 cores configuration). Plot captured from
Ganglia cluster monitoring system for the master node (server-30tb) and 10 worker nodes.
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In terms of computational effort, we have plotted the Load one measure of the entire cluster
while running experiments with 40 and 160 cores with a batch size of 1 GB in Figure 5.15 and
Figure 5.16 respectively, to check the overall CPU load. In particular, the Load one computes the
number of threads at kernel level that is running and being queued while waiting for CPU resources,
averaged over the last minute. We could interpret this number with the number of hardware threads
available on the machine and the time it takes to drain the run queue. Figure 5.15 captures a short
time (close to minute 8:00) in which the Master node (Spark driver) delivers tasks to the worker
nodes. They start to undertake data processing jobs when we run the experiment with 40 cores and
1 GB of batch size. The Load one measure in Figure 5.16 shows an increasing activity in minute
9:20 approximately, even more than in the previous experiment when increasing the number of
cores to 160.

Figure 5.16: Load_one. Number of threads per node (160 cores configuration). Plot captured
from Ganglia cluster monitoring system for the master node (server-30tb) and 10 worker nodes.

5.5 Discussion

In this section, to alleviate some of the drawbacks encountered in the literature, we have made an
exhaustive study of general features in the existing methods, as exposed in [6, 285, 311, 312, 294,
313]. We have distinguished four main challenges in human activity recognition. These features
are presented below:

• Design issues:

1. Cost : Cost is a key factor for any technique. If accuracy of a solution is good but
cost is too high, then it is of no practical use. Accelerometers are inexpensive, require
relatively low power, and are embedded in most of today’s cellular phones [314].

2. Obtrusiveness: To be successful in practice, HAR systems should not require the user to
wear many sensors nor interact too often with the application. There are systems which
require the user to wear four or more accelerometers or carry a heavy rucksack with
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recording devices. These configurations may be uncomfortable, invasive, expensive, and
hence not suitable for activity recognition.

3. Energy consumption: extending the battery life is a desirable feature, especially for
medical applications that are compelled to deliver critical information (Long term mon-
itoring).

4. Sampling rate (frequency): low sampling frequencies tend to lose information in specific
movements.

• Data collection protocol drawbacks:

5. Real-world environments (No controlled environment): The procedure followed by the
individuals while collecting data is critical in any HAR. In [315] demonstrated 95.6% of
accuracy for ambulation activities in a controlled data collection experiment, but in a
natural environment (i.e., outside of the laboratory), the accuracy dropped to 66%!

6. Large volume of data: A comprehensive study should consider a large number of indi-
viduals.

7. Long term patient monitoring : most studies do not offer patient monitoring over time,
which is essential to improve the problem of HAR.

8. Data collection Flexibility : people perform activities in a different manner which means
that an acceptable number of subjects is needed for the study, so that the trained model
is flexible enough to work with other subjects.

• Model selection drawbacks:

9. Semi-supervised learning : Typically, HAR systems rely on large amount of labeled train-
ing data. However, annotating data can be challenging in some situations, especially
when the granularity of the activities is great or the user is unwilling to help with the
gathering process. Using semi-supervised learning, these unlabeled data can still be
used to train a recognition model.

10. Deep learning : Deep learning algorithms attempt to learn high-level features from data
in an incremental manner. Nevertheless, in classical machine learning, domain experts
must extract features from raw sensor data in order to make the patterns more visible
for the learning algorithm.

• Model evaluation drawbacks:

11. Model generalisation: People certainly perform activities in a different manner due to
particular physical characteristics. We have proposed to evaluate activity recognition
systems based on the subjects rather than of the segmented windows. This prevents
over-fitting on the subjects and helps to achieve better generalisation results.

12. Latency : Latency is a critical factor. If a solution is accurate but takes long time to
provide the results, it is not practical.

13. Real time classification/real-time decision making : This is important for human activity
recognition because getting the results in real time is a compulsion in many situations.

Table 5.4 shows a comparison between our approach and a set of related works found in the
literature of HAR in this section, according to the list criteria exposed above. Desirable features
related to real-world environments such as real-time processing of the sensorised data, dealing
with unlabeled data and managing high volumes of continuously sensorised data are covered by
our approach, which represents an advantage with regards to these compared works.
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Table 5.4: Comparison of related works found in the literature on Human activity recognition. The
comparison has been made according to four main challenges encountered in state of the art on
human activity recognition. Additionally, our Streaming Semi-Supervised Deep-Learning Approach
is presented in this table as Proposal. It is worth noting that our approach represents an advantage
regarding these compared works in terms of real-time classification in real-world environments.

Features/HAR refs [287] [288] [289] [290] [276] [274] [278] [279] [291] [284] [292] Proposal
1. Cost X X X X X X X X X X X X
2. Obtrusiveness X 7 X 7 X X X X X 7 X X
3. Energy X X X X X X X X X X X X
4. Sampling-rate 7 7 - X 7 7 7 7 X X ⇡X X
5. Real-environment 7 ⇡X 7 X - ⇡X 7 X 7 7 X X
6. Large data-volume 7 7 7 X 7 7 7 - 7 7 7 X
7. Long-monitoring 7 7 7 ⇡X 7 7 7 7 7 7 7 X
8. Data-flexibility 7 7 7 X 7 7 7 ⇡X 7 - 7 X
9. Semi-supervised 7 7 7 7 7 ⇡X 7 7 7 X X X
10. Deep-Learning 7 7 7 X X X 7 X X X X X
11. Model-generalization 7 X 7 7 X X 7 7 7 7 7 X
12. Latency - X - - 7 ⇡X 7 7 7 - 7 X
13. Real-time classify - X 7 ⇡7 7 ⇡X 7 7 7 7 7 X

5.6 Conclusions

This chapter presents a novel approach for obesity patient monitoring in healthcare systems. It
comprises a combination of public (labeled) and private (unlabeled) raw data integration, semi-
supervised classification with CNN Encoder-Decoder and Spark streaming processing with a sliding
window to allow continuous activity recognition. This work has been validated in the context of a
real-world case study with a group of 300 overweight patients in the healthcare system of Andalusia
(Spain), classifying close to 30 TBs of accelerometer sensor-based data in real-time conditions,
which is crucial for long-term daily patient monitoring.

The experimental results demonstrate that our proposed method can achieve significant Fm-
scores training the model even with 100% of unlabeled data (proportion of data labeled used for the
train) since, from this point, the results decrease below to 0.8 of Fm-score. Finally, we choose the
amount of 80% of unlabeled data since, at this percentage, the model reaches a trade-off result (Fm-
score = 0.90) between Fm-score and the amount of unlabeled data added to the model. Moreover,
to demonstrate our model’s performance, we observe that the distributions of the predictions in
unlabeled data are reasonable, as shown in Figure 5.10.

In addition, we implement a Spark streaming process for the activity classification in a cluster
computing platform to be able to classify the raw data sensor in real-time. For this proposal, we
found the best configuration to minimize the running computation time of the streaming classi-
fication, using the cluster with 40 cores and predicting with streaming batch size of 1 GB, being
able to classify one week of daily patient monitoring in approximately 8 seconds.



Chapter 6

Contribution to explainable artificial
intelligence for biomedical image
classification

In the last few years, eXplainable Artificial Intelligence (XAI) has attracted attention in data
analytics. It shows excellent potential in interpreting the results of complex machine learning
models in applying medical problems. In a nutshell, the outcome of the machine learning-based
applications should be understood by end users, especially in the medical data context, where
decisions must be carefully taken. Many efforts have been carried out to explain the outcome of a
deep learning complex model in processes where image recognition and classification are involved,
as in the case of skin lesions and Melanoma cancer. This chapter represents a first attempt (to the
best of our knowledge) to experimentally and technically investigate the explainability of modern
XAI methods, such as, Local Interpretable Model-Agnostic Explanations (LIME) and Shapley
Additive exPlanations (SHAP), in terms of reproducibility of results and execution time on a
Melanoma image classification dataset. This chapter shows that XAI methods provide advantages
in model result interpretation in Melanoma image classification. Concretely, LIME performs better
than SHAP gradient explainer regarding reproducibility and execution time.
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6.1 Introduction

Explainable AI is an artificial intelligence approach oriented to explain the results of complex
machine learning algorithms [316]. Generally, it is believed that as the complexity of a machine
learning algorithm increases, the understandability of the results become harder [317]. Previously,
the robustness of a classification algorithm was evaluated using well-known criteria such as accu-
racy, precision, recall, F-score, and etc. However, in real-world scenarios, human experts usually
prefer the use of understandable algorithms, even though they usually have moderate, sometimes
limited, performance that other complex black-box techniques, such as deep learners. The search
for explainability can lead to a loss of algorithm performance. Therefore, explainability aims to
extract information from models that may have millions of parameters and present it in a form
that is understandable to the human mind [318].

In fact, explainability besides accuracy are two important factors to assess the output of any
machine learning algorithms [319]. One of the main categories of explainers are post-hoc model-
agnostic. Post-hoc refers to those methods that are applied after training the model and not at
the middle of the model training process. Model-agnostic refers to the group of explainers that are
not specifically designed for a certain machine learning algorithm. XAI specifically well-adapted
to provide explanation ability to deep learning output on medical datasets [320], where Melanoma
cancer is not an exception.

Melanoma is the most aggressive skin tumour, with a 5-year survival rate of 93% if diagnosed
in early stages, but only 27% if diagnosed at an advanced stage with the presence of metastatic
disease1. In Spain, 6,108 cases of melanoma were estimated in 2021 (2,480 men and 3,678 women),
being the fifth most frequent cancer in men and women 2. Diagnosis in the early stages allows for
better survival rates. However, it entails the difficulty of differentiating it from other pigmented
skin lesions (nevus and seborrheic keratosis, mainly), which are followed up. Including artificial
intelligence in the diagnosis would allow a more accurate diagnosis. In concrete, there are many
efforts to melanoma diagnosis using deep learning [321, 322]. To realize trustworthy AI, XAI can be
used as a technical method to ensure transparency of deep learning by helping better understand
the neural network’s underlying mechanisms and explaining system behaviors to users (in our case,
clinicians).

This chapter is intended to be, to the best of our knowledge, a first attempt to evaluate two
well-known post-hoc model-agnostic methods in XAI, namely: Local Interpretable Model-Agnostic
Explanations (LIME) [323] and SHapley Additive ex-Planations (SHAP) [324], on explaining the
deep learning prediction on skin lesion and Melanoma image dataset technically. Reproducibility
and execution time are two major criteria for comparing LIME and SHAP.

This chapter finally concludes on which of the aforementioned method is most suitable for the
explanation of Melanoma detection from an engineering point of view. The rest of this chapter
is organized as follows: Section 6.3 provides related information for LIME and SHAP. Section 6.4
demonstrates the methodology and the results achieved. Finally, Section 6.5 concludes the chapter
by summarizing the findings.

6.2 Related works

In the recent past, clinical researchers are increasingly using XAI methods for medical image
classification to explain the output of their black-box models. A deep learning-based approach
based on CNN is often used for medical image analysis. Thus, the main objective is to give a good

1Melanoma Cancer statistics approved by the Cancer.Net Editorial Board, 01/2021 https://www.cancer.net/
cancer-types/melanoma/statistics

2https://seom.org/images/Cifras_del_cancer_en_Espnaha_2021.pdf

https://www.cancer.net/cancer-types/melanoma/statistics
https://www.cancer.net/cancer-types/melanoma/statistics
https://seom.org/images/Cifras_del_cancer_en_Espnaha_2021.pdf
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explanation of how the model came to its decision and/or can make the decision understandable.
In this regard, decision-making systems should provide straightforward and explainable decisions
to foster transparency and trust to the clinicians to make the in making the correct diagnosis [325].

Many XAI methods have been used in previous studies, specifically post-hoc approaches to
improve the comprehensibility of deep learning models decisions. In this sense, [326] implements
two post-hoc methods (LIME and SHAP), and other alternative XAI method called Contextual
Importance and Utility (CIU) [327] to provide explainable decision support for in vivo gastral
images. LIME is used in [328] to explain specific predictions of heart disease. Moreover, this
paper uses Grad-CAM to apply local explanations to image classification models, such as CNN
for predicting retinopathy. Also, XAI has been applied in the context of medicine for time series
analysis, as mentioned in the survey [329], where numerous post-hoc methods aim to explain CNNs.

In [330], the authors present many XAI techniques used in medical image analysis [331, 331, 332,
333, 334, 335], paying particular attention to visual explanation, also called saliency mapping, as it
is the most common form of XAI in medical image analysis. Moreover, in [336], a systematic review
was conducted to investigate XAI in skin cancer screening, in which 37 publications were found.
However, most of these studies were limited to applying current XAI methods to their classifier
to interpret their decision-making. In concrete, more than half of the articles only used XAI
algorithms superficially to depict that the models concentrated on relevant image areas. Moreover,
fourteen articles evaluated the outcomes of XAI methods with the help of human supervision. For
example, in [337, 338], non-medical graduate students were trained with a short tutorial on skin
conditions in order to evaluate the XAI methods decision. In [339, 340], the method was evaluated
by pathologists, while in [341] was evaluated by many dermatologists, and in [342] by the authors.

Therefore, these articles investigate the effect on diagnostic accuracy and dermatologists’ accep-
tance by evaluating the results of the algorithms with human supervision. However, these research
studies do not lend themselves to statistical evaluation, even though new statistical methods or
validation metrics are required for XAI methods. In this sense, since classification tasks and study
objectives are very heterogeneous, we propose to numerically evaluate the decision-making of the
XAI methods in terms of reproducibility and execution time and compare the performance of the
algorithms.

6.3 Preliminaries

This research focuses on the model-agnostic AI explainers, which provide post-hoc interpretability
i.e. why the prediction model predicted its output through providing after-the-fact evidence for
the outputs. These explainers are probably the most popular ones in the current literature, which
consist in Local Interpretable Model-Agnnostic Explanations (LIME) [323] and SHapley Additive
exPlanations (SHAP), both comprising a group of techniques that help humans visualize what an
already-trained model thinks is important.

LIME uses Equation 6.1 to minimize ⇠(x) so that f is the prediction model which is assumed as
black box, g is a model in G as a class of potentially interpretable models that tries to approximate
f, ⇧x is used to define the locality around the sample to be explained (perturbations from x ), and
⌦(g) represents the complexity of explanation that should be minimized as well as L(f, g,⇧x).

⇠(x) = argming2G L(f, g,⇧x) + ⌦(g) (6.1)

SHAP values are concepts coming from game theory [324]. Shapely quantifies to what extent
each player (features) contributes to the game (output of prediction model). Shapely creates a
power set of features firstly. The cardinality of power set is 2n where n is the total number of
features. Likewise, SHAP also requires to train 2n models with different set of features according
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Figure 6.1: General workflow of SHAP and LIME.

to the power set. It is obvious that as the number of features is higher the number of models
to be trained increases exponentially, which is treated by Lundberg et al.[324] through some ap-
proximations and samplings. Basically, calculating SHAP values has two steps, namely calculating
marginal contributions of each feature and weighing the marginal contributions which can be shown
in general in Equation 6.2, so that F is the entire number of (f) features and set = 1, ..., F .

SHAPf (x) =
X

f2set

[|set|⇥

✓
F

|set|

◆
]�1[Predictset(x)� Predictset/f (x)] (6.2)

Figure 6.1 illustrates the difference between SHAP and LIME in general. According to this
figure, LIME initially perturbs the sample to explain x to create the set Z = z1, z2, ..., zm. Next,
it selects an interpretable model (such as linear regression) to calculate the importance of features
(calculating the coefficients related to each feature) via g(Z). LIME finally selects the most effective
features (through sorting coefficients if g is linear regression). However, SHAP builds SHAP values
by calculating the marginal contribution of features and weighing them. Effective features are
those with greater SHAP values. Moreover, summing the SHAP values gives exactly the difference
between the output of full model and null model, which shows the additive explanations of SHAP.

While SHAP explainers are model agnostic, there exists two variations that could be used
for deep learning, namely deep explainer and gradient explainer. Deep explainer approximates
the conditional expectations of SHAP values using a selection of background samples, while gra-
dient explainer explains a model using expected gradients which reformulates the integral as an
expectation and combines that expectation with sampling reference values from the background
dataset.

6.4 Proposed methodology

The methodology of this chapter is illustrated using a pipeline in Figure 6.2. The image dataset is
online available in Kaggle Skin Lesion Images for Melanoma Classification (ISIC2019) repository3.
It comprises more than 25,000 images with imbalanced classes (the majority of training data
is nevus) which could cause an erroneous accuracy and incorrect predictions. There are many
methods to balance training data including undersampling the majority class, oversampling the
minority classes, applying SMOTE, and etc depending on the dataset. However, our experiments
reveal that the best technique for image datasets like Melanoma is the combination of random
oversampling the minority classes following by applying data augmentation.

3In URL https://www.kaggle.com/andrewmvd/isic-2019

https://www.kaggle.com/andrewmvd/isic-2019
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Figure 6.2: In the proposed methodology, as a first step, we propose to deal with the data imbalance
problem through an oversampling strategy in the minority classes. After that, we apply data
augmentation creating variations of the images that can improve the ability of the fit models to
generalize what they have learned to new images. We have used a pre-trained mode (ResNet)
to perform the image classification. Once the model is trained, its weights are saved for later
classifications in new images. At this point, we will apply explainability algorithms (LIME and
SHAP) to find the most critical features taken by the model to make predictions. Finally, we will
evaluate and compare the algorithms according to their results’ reproducibility and execution time.

Table 6.1: Melanoma dataset description after oversampling class imbalance.

Data #Observations Distribution of observations
Train 2,000 374/Melanoma, 1372/Nevus, 254/Seborrheic-keratosis
Validation 150 30/Melanoma, 78/Nevus, 42/Seborrheic-keratosis
Test 600 117/Melanoma, 393/Nevus, 90/Seborrheic-keratosis

Thus, in the preprocessing step, the distribution of classes were equalized using random over-
sampling initially. Oversampling solely can lead to overoptimism in prediction. Assuming the
training data is split into train and validation sets. It is expected that some images in the training
data appear in the validation set, since there exist multiple replicated images as a result of random
oversampling the minority classes. As such overfitting could happen where the model prediction
will be high in training data, but very low in unseen data. Here data augmentation could alleviate
overfitting. The data augmentation in this study is done through rescaling, rotating, width-shift,
height-shift, and horizontal-flip augmentation. The pipeline in Figure 6.2 follows by applying
pre-trained ResNet [343] convolutional Deep Learning model and saving the best weights. Then,
model agnostic post-hoc explainers (SHAP with Deep and Gradient explainers, LIME with three
well-known segmentation algorithms) are used to evaluate the results based on reproducibility of
the results and execution time.

Reproducibility means the ability of the method to successfully reproduce same explanations
in multiple runs. Likewise, execution time refers to the elapsed time starting from creating the
explainer until calculating the explanation and generating the pictorial results. Table 6.1 also
shows the main characteristics of the Melanoma dataset prior to oversampling and augmentation.
After oversampling the distribution of each class in training set is equal to 1,372 so that the the
entire training set contains 4,116 observations.

6.4.1 Evaluation

This section provides related information for calculated metrics. All the experiments have been
conducted in a virtualization environment running on a private high-performance cluster computing
platform. Our virtualization platform is hosted in the computational environment mentioned in
Chapter 2 Section 2.5. Concretely, this platform is made up of a CPU with Intel(R) Xeon(R)
Gold 6130 @ 2.10GHz, maximum 2 TB of HDD, maximum 64 GB of RAM, and Ubuntu 20.04.3
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Table 6.2: Description of four selected samples for experimentation.

Test observation Real label Melanoma Nevus Seborrheic-keratosis
Sample 1 Nevus 0.31 0.57 0.12
Sample 2 Melanoma 1.00 0.00 0.00
Sample 3 Nevus 0.00 1.00 0.00
Sample 4 Seborrheic-keratosis 0.00 0.00 1.00

LTS(GNU/Linux 5.4.0-1049-kvm x86_64).
Since it is impossible to illustrate the entire test samples four test samples were selected to

investigate the reproducibility and execution time analysis as explained in Table 6.2, so that for
each sample the real labeling and the prediction of deep learning are shown.

6.4.2 Evaluation of LIME

Figure 6.3 illustrates the reproducibility of LIME using three well-known segmentation algorithm
namely, quick shift, Simple Linear Iterative Clustering (SLIC) and felzenswalb. Quick shift uses ap-
proximation of kernelized mean-shift and it belongs to the family of local mode-seeking algorithms.
SLIC uses k-means which is a simpler clustering method in comparison with the clustering method
in quick shift. In contrast, felzenswalb uses a graph-based approach for image segmentation.

Figure 6.3: Strict analysis of LIME reproducibility by increasing number of perturbations.

Figure 6.3 is the result of 5 multiple runs of LIME algorithm for 5 top features with different
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number of perturbations regarding each of the four images in Table 6.2. Figure 6.3 illustrate
original segmentation for each image, so that the segmentation algorithms are tuned to contain
roughly same number of segments for each algorithm, to have a fair comparison between them.
Under each image is a fraction that shows how many times LIME is able to generate exactly same
5 top features in 5 multiple runs using each segmentation algorithm. For example, 4/5 for sample
1 with quick shift algorithm and 5,000 perturbations means the result of LIME in 4 runs from
5 runs are exactly same. As such, sample 1 achieves 1/5 for 100 perturbations using quick shift
algorithm, which means that there are five unique results so that one of them is selected randomly.

It is noteworthy that quick shift and SLIC have relatively the same segmentation trend com-
pared with felzenswalb, so this last sometimes results in segments with sizes that vary greatly, as
in sample 2 and sample 3. This may affect the reproducibility of LIME either positively in sample
3 or negatively in sample 2.

Figure 6.4: Gentle analysis of LIME reproducibility by increasing number of perturbations.

While Figure 6.3 analyzes reproducibility strictly, Figure 6.4 checks the reproducibility of LIME
more gently by calculating the number of features in each perturbation (100, 500, and 1,000) that
have also been observed when the perturbation is 5,000. Figure 6.4 shows that as the number
of perturbation increases from 100 to 1,000, more features from that perturbation are observed
within 5,000 perturbation. If two superpixels are equally good at explaining, LIME may pick an
arbitrary one which sometimes result in not reproducible explanations. Figure 6.4 shows that by
increasing the number of perturbation, LIME converges to reproducibility.

Recalling that good segmentation often depends on the application, illustrations in Figure 6.3
and 6.4 show that the reproducibility in LIME mostly increases while the number of perturbation
increases from 500 to 5,000 using any segmentation algorithm (the default number of perturbation
in LIME is 1,000). While increasing number of perturbations has a positive effect in reproducibility
of LIME, another approach is to fix the random seed to initialize the random number generator.
This way, using any number of perturbations the explainability results are same. Nonetheless,
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Figure 6.5: Reproducibility analysis of LIME using fixed random seed and variable number of
perturbations.

greater number of perturbations together with fixed random seed result in better accuracy as well.
Figure 6.5 shows how successfully LIME recognizes regions contributed to target label by increasing
the number of perturbations and using fixed random seed. This last figure also reveals that LIME
intelligently did not recognize mm scale and hair as effective features, but considers the stain in
sample 3 within 5 most important superpixels.

6.4.3 Evaluation of SHAP

As commented before, there exists two variations of SHAP optimized for deep learning, namely
gradient explainer and deep explainer. The SHAP kernel explainer could also be used because
it works for all models, but is slower than the other model type-specific algorithms, as it makes
no assumptions about the model type. Thus, to avoid redundancy of figures with same results
and for the sake of hardware limitation (passing more than 100 background data was unreasonably
expensive), the reproducibility of SHAP has been tested using solely with gradient explainer, shown
in Figure 6.6. Generally, pink pixels contribute to the model output and blue pixels contribute not
being of that class. The intensity of color shows the intensity of contribution. Since gradient and
deep explainer explains the prediction using pixels and not superpixels, it is difficult to trace the
reproducibility numerically as it was done for LIME.

The nsamples parameter in gradient explainer (by default = 200) indicates the number of
samples are taken to compute the expectation and shows accuracy of explanation. This gives
better estimates of SHAP values as the nsamples increases, which leads to low variate estimation
of the SHAP values, however the execution time increases. Figure 6.6 shows that as the nsamples
increases from 100 to 5,000 the explainability becomes a bit more reproducible, which is less obvious
in sample 1 because the deep learning model is not completely sure about its prediction. Figure 6.6
also shows that gradient explainer considers the stain in sample 3 same as LIME in Figure 6.5.
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Figure 6.6: Visual reproducibility analysis of SHAP gradient explainer.

The gradient explainer in Figure 6.6 uses the entire 4,116 images in train set as a background data
(the random seed in calculation of SHAP values is set to 42).

6.4.4 Computational effort

From the point of view of the computational effort, Figure 6.7 compares LIME (using quick shift)
and SHAP gradient explainer in terms of execution time, so that N is the number of perturbation
and nsamples for LIME and SHAP, respectively.

It is clear that LIME spends less amount of time for explainability as N increases, while SHAP
gradient explainer is almost three times slower than LIME. It is noteworthy mentioning that
changing the segmentation algorithm does not have a considerable difference in execution time of
LIME. SLIC is very competitively faster than quick shift and also quick shift is very closely faster
than felzenswalb. Thus, Figure 6.7 the better performance in terms of execution time of LIME
using quick shift as a moderate segmentation algorithm. Technically speaking, LIME has more
reproducibility power and is almost much faster than SHAP gradient on Melanoma dataset. Thus,
there are sufficient engineering justifications to use LIME for explainability of deep learning on
melanoma dataset for a single prediction rather than SHAP gradient explainer.

6.5 Conclusion

This chapter is devoted to investigate the explainability of Local Interpretable Model-Agnostic Ex-
planations (LIME) and SHapley Additive exPlanations (SHAP) in order to help in the differential
diagnosis of pigmented skin lesions. The evaluation criteria focuses on the reproducibility of the
results, as well as the execution time. Three variations of LIME (using three well-known segmenta-
tion algorithms) are used and gradient explainer is selected for SHAP. From the engineering point
of view, and in the context of the experiments conducted in this study, LIME performs faster than
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Figure 6.7: Efficiency of LIME Vs SHAP. Execution time versus N , where N represents the number
perturbations in the case of LIME, and the number of samples for SHAP. Should be noted that
LIME performs better than SHAP in terms of computational effort.

SHAP. The idea is that while acceptable results are achieved by LIME in the case of differential
diagnosis of pigmented skin lesions, there is no need to use SHAP because of its expensive effi-
ciency. LIME works with super pixels and the reproducibility of results were more controllable
than SHAP gradient explainer. Thus, it can be concluded that XAI methods show potentials in
providing interpretable results for the specific case of pigmented skin lesions classification, in the
context of Melanoma cancer diagnosis. Specifically, LIME shows better performance than SHAP
gradient explainer in terms of reproducibility and execution time.



Part III
Final observations

This chapter collects the final ideas of this PhD Thesis dissertation. Section 7.1 includes the
conclusions from all the experiments and discussions conducted in supporting publications. Then,
in Section 7.2, we present the future lines of investigation that we plan to research from the latter
works.
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Chapter 7

Conclusions and future works

7.1 Conclusions

Biomedical research is constantly growing, as many technological advances have been made to
expand databases, from next-generation sequencing to other biomedical data available, such as
biomedical imaging, annotation metadata, IoT resources, etc. Due to the large amount of clinical
data generated at different scales and in multiple dimensions, more comprehensive analyses can
be performed to improve patients’ quality of life and prevent or detect diseases. These data can
be combined with other problem-related data sets. Such data integration can be beneficial since
studying such a diverse heterogeneous data set from different sources of information can reveal
interesting patterns or additional information than if the data were analyzed independently.

In a nutshell, and as far as the subject matter of this work is concerned, the integration and
transmission of data among clinical organizations are of the utmost importance. Moreover, in the
last decades, the development of Artificial Intelligence algorithms has played an essential role in
biomedical research. It has demonstrated outstanding abilities for interpreting and analyzing large
scales of clinical data and developing predictive models.

The present Thesis addresses a key challenge nowadays: the importance of integrating, com-
bining and analyzing several sources of heterogeneous clinical data to support physicians in their
decision-making. This approach refers to the combination of several of these clinical analyses in an
integrated way. This clinical data integration allows more complex analyses with great potential
to result in relevant breakthroughs in many life science fields. Some examples include identifying
novel prognostic or diagnostic disease biomarkers.

In concrete, this Thesis probes into the main research questions and challenges formulated in
the motivation of this work related to the implementation of precision medicine or AI-supported
healthcare. Thus, this Thesis answers the question of how far we are (technologically speaking)
from resolving these outstanding issues and also attempts to improve the existing data ecosystem
to the point where these issues are addressed. In summary, the main contributions of this Thesis
are shown as follows1:

• Chapter 3. Contribution to flexible management and analysis of heterogeneous
biomedical data. In the context of clinical data management systems, there are continuing
limitations in the data acquisition process due to the heterogeneous nature of clinical data.
Most systems found in the state-of-the-art can not cover these limitations. Also, few of these

1The relationship between the conclusions and the research questions formulated in the motivation of this Thesis
(Chapter 1) is quite self-explanatory. However, these relationships are highlighted with the corresponding references
in parenthesis, e.g. (Q1), (Ch1), etc.
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tools allow the analysis of clinical data for disease diagnosis. Answering the question Q1
exposed in the motivation of this Thesis, the necessity to align clinical data to innovative
AI analysis strategies has stimulated developments in data integration, analytics tools im-
plementation and knowledge representation in heterogeneous and predictive decision-making
analysis. In this regard, we have designed and implemented a new software tool for flexible
management and analysis of biomedical data from multiple sources (FIMED) to cover the
first challenge (Ch1) and the abovementioned limitations. It allows the integration of clin-
ical trials in different formats for their subsequent analysis. FIMED internally implements
a workflow with several components for data collection and management with adaptability
to multiple trials, data analysis and data visualization. In this sense, FIMED allows the
clinical researcher to perform a complete clinical assay workflow since it allows the design
of customized and easily modifiable electronic forms thanks to the flexibility provided by
its NoSQL database engine. This way, FIMED allows the data collection process to be car-
ried out incrementally without redefining the schema. It also provides fast data availability
and allows the storage of different samples associated with the patient to provide additional
information and even to perform more exhaustive analyses.

FIMED includes several analysis tools to assist the clinical expert in detecting diseases or
searching for new biomarkers. These include gene expression analysis algorithms, gene reg-
ulatory network analysis, and data visualization to annotate gene functionality and identify
core genes. Implementing these analysis tools was our first attempt to answer the research
question (Q2) and meet the second challenge (Ch2) proposed in this Thesis. The motivation
was to improve the inference and interpretation of complex biological networks to extract
relevant information for disease diagnosis. Besides, FIMED has been validated in a real-world
use case with authentic expression data from metastatic Melanoma patients. It is worth not-
ing that FIMED has been updated several times and is under continuous maintenance. In its
latest version (FIMED 2.0), new optimization analysis and visualization tools were added to
reconstruct gene regulatory networks to facilitate disease diagnosis for the clinical expert, as
exposed in (Ch2). This new version allows the practitioner to use four network construction
methods: data assimilation, linear interpolation, tree-based ensemble or Gradient Boosting
Machine regression. In addition, research has been done to perform an ensemble of these
algorithms for reconstructing gene regulatory networks to obtain more stable and reliable
results. It is worth noting that FIMED has been designed to offer mechanisms to extend
the software with new components to broaden its functionalities. It has been evident how
this tool can be easily integrated into different use cases, making FIMED a robust clinical
research tool for data management, analysis and visualization in clinical assays in other stud-
ied diseases. Apart from the public instance provided2, the project can be deployed by IT
administrators in any health information system, ensuring higher protection of the clinical
data.

• Chapter 4. Contribution to the reconstruction of gene regulatory networks with
multi-objective optimization. In the context of GRNs reconstruction, clinical experts can
investigate the functionalities of biological molecules such as genes, proteins, and RNA and
their organization in living organisms. In the same way, practitioners can observe the behavior
and organization of the components of living cells and see the relationship between them in
molecular processes to decipher the mechanisms of multiple genetic diseases such as cancer or
diabetes. In this regard, numerous recent studies have intensified the use of particle swarm
optimisers to deal with the inference of GRNs. However, there is still a lack of proposals
based on multi-objective formulations. Hence, the primary motivation of this contribution

2https://khaos.uma.es/fimed/
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is to cover the challenge (Ch3) proposed in Chapter 1, in which new computational and
experimental methodologies are required to explain biological networks due to the complexity
of the high-dimensional nature of biomedical data. In this sense, this work proposes to apply
and evaluate a representative set of multi-objective particle swarm optimisers (MOPSOs),
which use different archiving strategies (hyper-volume and aggregation) and, consequently,
different approaches for the selection of leaders in the context of the inference of GRNs.
Therefore, this work attempt to obtain unbiased conclusions concerning which of them (and
other related MOPSOs) could be used by experts in studies in silico/in vivo to find new
possible gene interactions taking part in genetic regulations.
The optimal tuning of parameters in S-Systems is currently dealt with metaheuristics for
continuous optimization. In this regard, a series of MOPSO variants, namely OMOPSO [36],
MOPSO [37], VEPSO [38], SMPSO [39], DMOPSO [40] and MOPSOHv [41], have been
adapted to deal (for the first time) with the inference of GRNs. These techniques have been
selected as they constitute a heterogeneous set of multi-objective optimizers, performing
different learning procedures and inducing different behaviors. In this sense, a thorough
experimental comparison has been carried out on gene expression data from benchmarking
networks of the DREAM3 and DREAM4 challenges [42] based on real organisms (E.Coli and
Yeast). Finally, meaningful experiments are conducted to infer networks from IRMA in vivo
samples and from Melanoma cancer samples of actual patients. The ability to reproduce
biological behavior is assessed in terms of algorithmic convergence and diversity and in terms
of precision of inferred networks regarding gold standards.

• Chapter 5. Contribution to time series streaming data analysis with biomedical
data from sensors devices. In biomedical time series analysis, Deep Learning techniques
are considered powerful tools and enable extracting the most predictive features from complex
datasets. A key feature that differentiates Deep Learning from other Machine Learning tech-
niques is its ability to learn representations directly from structures without using predefined
structure descriptors. This ability eliminates the need for conventional feature selection and
reduction processes. However, Deep Learning approaches require large amounts of data and
labeling these data is costly and time-consuming. Data labeling is challenging when dealing
with real-world problems in uncontrolled environments and even more so when working on
Big Data use cases where a minimal amount of labeled data and a massive amount of unla-
beled data are considered. In this sense, the main contribution of this work is to address the
third challenge of this Thesis (Ch3), in which we propose new AI strategies to deal with small
labeled and no labeled clinical datasets. An excellent way to address these problems is to
adopt a semi-supervised approach, which can employ unlabeled data with a small number of
labeled examples. Therefore, a streaming semi-supervised HAR strategy has been proposed
for monitoring overweight patients in a real-world healthcare system involving a data fusion
task of accelerometer-sensorised data from labeled/unlabeled samples. Specifically, this work
aimed to classify the daily activities of 300 patients, equivalent to 30 TBs of private raw
movement data. However, no labeled data were available in our dataset. For this reason,
a set of state-of-the-art datasets in the HAR problem environment has been collected and
integrated to use as publicly labeled data. For the data integration, a thorough methodol-
ogy based on interpolation, normalization, data resampling, and class imbalance techniques
have been used since the data have been collected from different sources or devices, in other
formats and at distinct sampling frequencies (related to the first challenge, Ch1).
In addition, a preliminary study has been performed to observe which datasets had a similar
distribution to our unlabeled dataset. Then a semi-supervised CNN-Encoder-Decoder model
was trained with public labeled and private unlabeled data, which can learn the most relevant
features of the unlabeled data and then use it to classify the activities. In this regard,
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the knowledge extraction from the unlabeled data through the unsupervised part of the
model (Encoder-Decoder) is stored and used as a starting point for the model training in the
supervised part. A thorough experimentation has been conducted for model selection and
validation, where this strategy has been evaluated with varying amounts of unlabeled data.
The resulting analysis workflow is deployed on a cluster of Spark nodes, so the continuous
classification of 30 TBs sensor data is predicted for a group of patients. The proposed
HAR streaming deep-learning approach properly classifies movement patterns in real-time
conditions, which is crucial for long-term daily patient monitoring. It represents a step
forward to meet the challenges identified in a recent survey [6], which mainly consists of the
generation of real-time activity recognition platforms and the development of more accurate
unsupervised modelling for this problem. Therefore, we can conclude that our data collection
and integration strategy, together with our semi-supervised deep learning on Spark stream
processing, is a solution in this direction.

• Chapter 6. Contribution to explainable artificial intelligence for biomedical im-
age classification. In the context of AI in medicine, numerous AI techniques have recently
achieved great predictive success for many biomedical applications. However, in many cases,
explaining the clinical outcome of highly complex models is challenging. For this reason,
this work proposes to study and develop additional techniques that allow us to clarify the
results of these black-box models, which is essential for the clinical domain where decisions
will affect patients’ lives, as discussed in the fourth challenge of this Thesis (Ch4). The main
contribution is to provide the clinical expert with the ability to interpret the results obtained
by the algorithms. In this regard, we have developed a methodology to assess the quality of
explainability algorithms against a set of metrics in the case of a Melanoma image classifica-
tion dataset. First, a pre-trained algorithm (Resnet) classified melanoma skin cancer images
for early disease detection. Second, two of the most widely used post-hoc explainability al-
gorithms (LIME and SHAP) were applied to explain and validate the results obtained by
the classifier. These algorithms returned, as a result, the Melanoma images with the most
critical features (super/pixels) of the image to perform the prediction. Finally, at the core
of this work, we set out to experimentally and technically evaluate these algorithms in terms
of reproducibility and runtime results. In both cases, LIME performs better than SHAP for
this use case.

In summary, the publications related to this research have introduced solutions based on new
algorithmic strategies and software tools that contribute to the development and improvement of
precision medicine. In this respect, the present Thesis provides new software solutions and AI
strategies that allow the clinical researcher to collect and integrate patients’ clinical information
and perform comprehensive analyses. Each of the scientific contributions outlined in this Thesis
address some of the outstanding issues in the biomedical data ecosystem raised in this work’s
motivation. In this sense, Table 7.1 shows the relationships between published articles and the
main challenges presented in this Thesis in a biomedical data ecosystem. From the clinical data
management point of view, we have designed FIMED, which allows flexible collection, integration
and management of biomedical data from multiple sources.

Moreover, we have proposed AI and optimization techniques and further analyzed them to
provide the researcher with comprehensive analysis tools for disease detection or new drug devel-
opment. From the point of view of applications, we have addressed several real-world problems
in healthcare areas (such as gene expression data analysis for cancer detection, reconstruction of
GRNs with multi-objective particle swarm optimizers, real-time patient monitoring through a deep
learning approach with sensor-collected information, biomedical images classification using CNN
and interpretability of the result employing XAI algorithms). Finally, these proposals provide
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quality results and are intended to be more flexible and robust than solutions addressing the same
kind of problem in the literature, showing the usefulness of our proposals to address issues that
could arise in academia and industry.

Table 7.1: Summary of the relationships between the published papers and the main challenges in
a biomedical data ecosystem.

Reference Challenge (s)
FIMED [30] Ch1, Ch2
MOPSOs GRNs [31] Ch2
DL HAR [32] Ch1, Ch3
FIMEDV2 [33] Ch1, Ch2
XAI Melanoma [34] Ch4

7.2 Future work

As future research lines in general, we plan to continue this proposal of integration and analysis
of clinical data from different trials with the primary objective of improving the access and inte-
gration of heterogeneous health data. We also aim to enhance the existing analysis techniques by
considering integrating data from different sources. In this sense, we want to continue working on
the design and development of strategies that allow us to address the problems in a biomedical
data ecosystem and thus continue to improve on the challenges that we defined in the motivation
of this Thesis towards achieving precision and personalized medicine.

Furthermore, considering different areas of knowledge related to the contributions proposed in
these studies, different lines of research have been identified for future work. This section presents
some of the most outstanding ones:

• As future work for the first challenge (Ch1), we plan to continue upgrading FIMED to
ensure future compatibility with more use cases. Thus, we will consider the adaptability to
more gene expression file formats, other diseases and the integration with other analytical
tools or algorithms (advanced GRNs algorithms, new ML approaches for real-time sensor
data analysis and clinical image analysis, and new XAI algorithms). Moreover, we plan to
continue researching new ways of integrating data into AI. Multi-modal integration allows
more complex analyses with the potential for suitable breakthroughs in multiple biomedical
fields. In this sense, we plan to develop algorithms that explicitly address the diversity of data
and combine them by inferring a single model, as mentioned in the Figure in the motivation
of this Thesis. This strategy attempts to integrate the data sources within the construction
of the predictive model to combine multi-omics data, biomedical images and clinical patient
information into a single robust model. This research line addresses the boundaries posed
by the conventional approach of guiding ML analysis independently by combining a diverse
data set and extracting significant conclusions from the integrated data.

• As future activities for the second challenge (Ch2), we are interested in adapting different
optimizers, such as Differential Evolution, with specific parameters and operators for the
efficient reconstruction of GRNs. To this end, modern auto-configuration techniques would
aid in finding accurate tuning for GRNs. Besides, the design of new encoding and co-
evolutionary strategies seems to be an optimistic line to enhance the predictive power of
algorithms. In this regard, developing distributed parallel approaches could improve large-
scale networks’ performance. From the perspective of network modelling, we also plan to
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work on new approaches requiring fewer parameters than S-System to be tuned. In addition,
we want to study the integration of heterogeneous multi-omics data for the inference of
GRNs. Although DNA micro-array data are commonly employed for network inference,
the reconstruction of GRNs using only micro-array data is fundamentally limited since the
information value of such data is constrained by technological and biological aspects. We
consequently suggest researching more advanced techniques to more accurately reconstruct
the structure and dynamics of GRNs by combining additional types of biological data, such
as data from alternative experiments in a different format and databases.

• As a future research line related to the third challenge (Ch3), a semi-supervised approach
has been proposed in this Thesis to help leverage unlabeled data from our dataset along
with labeled data collected and integrated from the literature. Admittedly, the results are
promising, as we have leveraged the knowledge from the unlabeled data to aid model learning.
However, we plan to continue working on new strategies to improve the quality of the results.
We plan to develop a more robust methodology based on transfer learning techniques for
integrating accelerometry data from different sources and formats. We intend to make an
automatic flow that chooses those datasets from state-of-the-art with the most similar data
distribution to our private dataset and integrates them into a single dataset ready to be used
(Ch1). We also plan to develop AI strategies using machine learning models to assist in
automatic data labeling.

• As a future research line to cover the fourth challenge (Ch4), further research is required to
support AI decision-making techniques by applying XAI methods. In this sense, we intend
to investigate new metrics to evaluate the results obtained from XAI algorithms. As a first
step, we propose that XAI results should be reproducible and replicable. Hence, the training
model should produce consistent results, and also, the model should perform consistently even
when trained with different samples of data. In addition, we plan to design novel techniques
for the visualization of massive data to obtain accurate and comprehensible interpretations
for the human expert. Moreover, from an algorithmic point of view, XAI’s future work is
to approach the explainability of deep learning on Melanoma data set through improving
LIME, as well as to tacking with other different kind of medical image datasets.
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