
Applied Soft Computing 130 (2022) 109699

J
a

b

c

d

t
s
t
d
t
t
o
b
t
f
a

C

(
(

h
1

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

Automatic frequency-based feature selection using discreteweighted
evolution strategy
Hossein Nematzadeh a,c,d,∗, José García-Nieto a,b,c, Ismael Navas-Delgado a,b,c,
osé F. Aldana-Montes a,b,c

ITIS Software, Universidad de Málaga, Arquitecto Francisco Peñalosa 18, Málaga, 29071, Spain
Biomedical Research Institute of Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
Departamento de Lenguajes y Ciencias de la Computación, Universidad de Málaga, Málaga, Spain
Department of Computer Engineering, Sari Branch, Islamic Azad University, Sari, Iran

a r t i c l e i n f o

Article history:
Received 31 January 2022
Received in revised form 5 September 2022
Accepted 2 October 2022
Available online 10 October 2022

Keywords:
Curse of dimensionality
Automatic hybrid feature selection
Filter
Wrapper
High dimensional medical datasets
Covid-19

a b s t r a c t

High dimensional datasets usually suffer from curse of dimensionality which may increase the
classification time and decrease the classification accuracy beyond a certain dimensionality. Thus,
feature selection is used to discard redundant features for improving classification. Nonetheless, there
is not a single feature selection method which could deal with all datasets. Thus, this paper proposes
an automatic hybrid feature selection incorporating both filter and wrapper methods called Extended
Mutual Congestion-Discrete Weighted Evolution Strategy (EMC-DWES). First, Extended Mutual Con-
gestion (EMC) is proposed as a frequency-based filter ranker to discard irrelevant and redundant
features using intrinsic statistics of features. Second, Discrete Weighted Evolution Strategy (DWES)
is applied on the remaining features selected by EMC to perform the final automatic feature selection
within a wrapper method. DWES clusters the features and applies mutation both to select the most
relevant feature in each cluster at a time and to avoid selecting redundant features simultaneously
through assigning greater weights to most informative clusters. The performance of EMC-DWES (in
maximizing classification accuracy and minimizing the selected subset length) is investigated using
benchmark high dimensional medical datasets including Covid-19. Likewise, the superiority of EMC-
DWES in comparison with state-of-the-art is also evaluated in all datasets. The implementation of
EMC-DWES is available on https://github.com/KhaosResearch/EMC-DWES.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Feature selection is an approach of selecting the most effec-
ive features (predict variables) within a dataset [1–3]. Feature
election methods limit the number of features to speed up model
raining and improve the accuracy specially in high dimensional
atasets through reducing redundant and less informative fea-
ures. High dimensional datasets refer to the datasets in which
he number of predict variables staggeringly exceeds the number
f observations (samples) such as microarray, gene expression,
iological, and most of the medical datasets [4]. Feature selec-
ion methods are categorized into five major groups, namely
ilter [5,6], wrapper [7,8], embedded [9,10], ensemble [11,12],
nd hybrid [13–15]. Filter methods utilize intrinsic properties of
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568-4946/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a
the predict variables (such as correlation) to develop heuristic
or metaheuristic methods. However, wrapper methods generally
evaluate all combination of features using a machine learning
algorithm. Wrappers use classification accuracy for evaluation
and thus usually have higher accuracies than filters. Unlike the
filter methods which might fail to recognize the best subset of
features in some situations, wrapper methods mostly have bet-
ter convergence. Nevertheless, the most important weakness of
wrapper methods is low performance (high execution time). Em-
bedded methods perform variable selection along with classifica-
tion simultaneously. Lasso (L1 regularization) [16] and Decision
Tree [17] are among the most famous embedded feature selection
methods. Ensemble methods combine the output of multiple fea-
ture rankers to find the final set of selected features instead [18].
Hybrid methods refer to any combination of wrapper, filter, em-
bedded and ensemble methods. Feature selection methods can
also be categorized into either manual or automatic. Unlike au-
tomatic methods, manual methods need a predefined threshold
to determine the length of the selected subset of features [11,13].
This paper is a direct improvement of the previous research [13]
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.asoc.2022.109699
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2022.109699&domain=pdf
https://github.com/KhaosResearch/EMC-DWES
http://creativecommons.org/licenses/by/4.0/
mailto:hnematzadeh@uma.es
mailto:jnieto@uma.es
mailto:ismael@uma.es
mailto:jfaldana@uma.es
https://doi.org/10.1016/j.asoc.2022.109699
http://creativecommons.org/licenses/by/4.0/


H. Nematzadeh, J. García-Nieto, I. Navas-Delgado et al. Applied Soft Computing 130 (2022) 109699

i
t
f
T
p
m
p
m

s
e
s
E
p
s
w

2

t
m
c
(
W
t
r
f
S
b
m
p
i
C
M
d
a
a
m
(
t
i
t
h
s
f
g
a

i
a
O
o
t
a
g
m
i
p
d
b
e
w
s
E
w
T
e
L
w
c
t
d
m
a
r
i
A
p
o
s
M

n which a novel automatic hybrid method is proposed so that
he largest number of features is discarded using the proposed
ilter method called Extended Mutual Congestion (EMC) firstly.
hen, (1 + 1) Discrete Weighted Evolution Strategy (DWES) is
roposed and used as a metaheuristic algorithm within a wrapper
ethod to select the final feature subset automatically. In fact, the
roposed method is a hybrid of filter (EMC) and wrapper (DWES)
ethods. Briefly the contribution of paper is as follows:

1- To improve Mutual Congestion (MC) via proposing Ex-
tended Mutual Congestion (EMC) as a filter ranker both to
enhance the accuracy of ranking and to deal with multi-
label datasets.

2- To propose (1 + 1) Discrete Weighted Evolution Strategy
(DWES) as a wrapper method to automatically select the
best subset of features.

2.1. To apply hierarchical clustering for feature selection
considering minimum redundancy.

2.2. To propose the concept of weight for clusters to im-
prove DWES to find the most optimal subset con-
taining informative non-redundant features automat-
ically.

3. To combine EMC with DWES to construct a hybrid feature
selection method.

The rest of this paper is organized as follows: Section 2 de-
cribes the related works and backgrounds. Section 3 briefly
xplains MC ranker, hierarchical clustering, and (1 + 1) evolution
trategy. Section 4 shows how MC-measure can be improved to
MC and further be combined with the proposed DWES. Section 5
resents the results and discussions on benchmark high dimen-
ional medical datasets. Finally, Section 6 concludes the paper
ith final remarks.

. Related works

This section investigates the related works purposefully. First,
he work regarding MC ranker is introduced. Second, the recent
etaheuristic-based feature selection methods are explained. Re-
ently, Nematzadeh et al. [13] introduced Mutual Congestion
MC) as a frequency-based filter ranker and combined it with
hale Optimization Algorithm (WOA) to propose a hybrid fil-

er feature selection method (WOA-MC). The process started by
ecognizing the irrelevant features by WOA with a new defined
itness function so that half of the dimension was reduced firstly.
econd, MC ranked the rest of the features and selected the
est 10 features to construct the final feature subset. Finally,
ajority voting was applied using forward feature selection ap-
roach on the final feature subset. Measurement criteria (includ-
ng accuracy, specificity, sensitivity, and Matthews Correlation
oefficient (MCC)) showed that the combination of WOA and
C improved the prediction of high dimensional binary medical
atasets. Further analysis on WOA (including box plot analysis
nd convergence analysis) also justified the usage of WOA. In
nother parallel research, Alirezanejad et al. [19] proposed a filter
ethod for feature selection of medical datasets called Xvariance

It is read as cross variance) and showed that the combina-
ion of MC and Xvariance did not any improve the prediction
n comparison with individual MC or Xvariance. Furthermore,
he results on binary medical datasets indicated that Xvariance
ad better results on binary datasets in which the number of
amples exceeded the number of features. In contrast, MC outper-
ormed Xvariance when the number of features was considerably
reater than the number of samples. In addition, ROC analysis

lso confirmed both Xvariance and MC had acceptable results t

2

individually. Briefly explaining, Xvariance focused on calculat-
ing the distance between feature values of two distinguished
labels for each dataset feature using variance. The rest of this
section dedicates to study the current feature selection works
utilizing metaheuristic algorithms. Vafaee et al. [20] proposed
a two-phase approach to select the smallest subset of features
to have the best possible classifier performance called Cellular
Learning Automata-Ant Colony Optimization Feature Selection
(CLACOFS). First, features were ranked using a Fisher ratio and the
features with small Fisher ratio were discarded (filter method).
The paper experimentally proved and justified that Fisher ratio
had the highest performance among T test, Information Gain,
and Z score. Then, the hybrid of Cellular Learning Automata and
Ant Colony Optimization was used aligned with ROC curve to
select the final subset (wrapper method). Azadifar et al. [21]
proposed a hybrid method called MaPSOGS which used Fisher
ratio to discard irrelevant features. The remaining features were
then grouped into several clusters via graph clustering. Next,
Many-Objective PSO was used with a newly defined repair op-
erator to improve the solutions by selecting the genes from
different clusters automatically. Sadeghian et al. [14] proposed
a three-stage hybrid feature selection method called Ensemble
Information Theory-based binary Butterfly Optimization Algo-
rithm (EIT-bBOA) in which Minimal Redundancy-Maximal New
Classification Information (MR-MNCI) was used in the first phase
to discard the 80% of irrelevant features. Second, the best feature
subset was selected using Information Gain binary Butterfly Op-
timization Algorithm (IG-bBOA) which was a developed version
of S-shaped binary Butterfly Optimization Algorithm (S-bBOA)
that typically ignored the redundancy and relevancy of features.
Finally, a similarity based ranking method was used to select
the final feature subset manually with threshold τ = 30 us-
ng the ensemble of reliefF and Fisher Score. Likewise, further
nalysis revealed that Information Theory-based binary Butterfly
ptimization Algorithm (IT-bBOA) which was the combination
f MR-MNCI and IG-bBOA outperformed binary Whale Optimiza-
ion Algorithm (bWOA), binary Crow Search Algorithm (bCSA)
nd binary Gray Wolf Optimization (bGWO) in terms of conver-
ence within 100 iterations. Amini et al. [22] proposed a hybrid
ethod including two stages. First, Genetic Algorithm was used

n a wrapper way to reduce the dimensionality and number of
redictors. Then, Elastic Net (EN) was used as a famous embed-
ed method to increase the optimality of solutions generated
y GA. The proposed model with tuned hyper-parameters was
valuated through 3-fold cross validation and the performance
as compared in terms of relative RMSE with four different
cenarios. Abasabadi et al. [11] proposed a three-stage Automatic
nsemble Feature Selection method (ATFS). First, three rankers
ere applied to the input dataset to obtain multiple rankings.
hese rankers were MC which was proposed by Nematzadeh
t al. [13] along with a newly proposed filter ranker called Sorted
abel Interference (SLI), and existing reliefF recalling that SLI
as a frequency-based ranker inspired from MC. Then, the con-
ept of fast non-dominated sorting was used with automatic
hresholding capability to combine the output of rankers (non-
ominated sorting is basically used in the selection operator of
ulti-objective metaheuristic algorithms to sort the solutions
ccording to the Pareto dominance principle). Finally, the smaller
anked feature subsets obtained from fast non-dominated sort-
ng were used to generate final feature subsets. The ensemble
TFS was proposed for binary datasets and the feature selection
rocess was automatic. Abasabadi et al. [23] also proposed an-
ther hybrid method using genetic algorithm called GArank&rand
o that the newly proposed filter method SLI-γ (inspired from
C) was combined with genetic algorithm that exploited Ar-
ificial Neural Network (ANN) and K-Nearest Neighbors (KNN)
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Table 1
Summary of related works.

Method Evolutionary concept Type Selection procedure Problem domain Response variable Year

WOA-MC [13] Whale Optimization Algorithm Hybrid
Filter + Filter

Manual Classification Binary 2019

ATFS [11] Non-dominated sorting Ensemble of three filters Automatic Classification Binary 2021

GArank&rand [23] Genetic algorithm Hybrid filter + Wrapper Automatic Classification Binary 2022

EIT-bBOA [14] Butterfly Optimization Algorithm Hybrid
Filter + Wrapper +

Filter

Manual Classification Multi-label 2021

MPSONC [5] Multi-Objective PSO Filter Automatic Classification Multi-label 2020

CLACOFS [20] Ant Colony Optimization Algorithm Hybrid
Filter + Wrapper +

Filter

Automatic Classification Multi-label 2016

GA-EN [22] Genetic algorithm Hybrid
Wrapper + Embedded

Automatic Regression Continuous 2021

MaPSOGS [21] Many-Objective PSO Hybrid
Filter + Wrapper

Automatic Classification Multi-label 2021

Xvariance [19] Not Applicable Filter Manual Classification Binary 2020
t
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in fitness function. GArank&rand only used 1% of the best features
dentified by SLI-γ for initial population generation in genetic
lgorithm. GArank&rand achieved good accuracy on binary medical
atasets but the computation time was very expensive particu-
arly when the fitness function was ANN. In another recent work,
ostami et al. [5] proposed an automatic filter feature selection
alled Multi-objective Particle Swarm Optimization algorithm and
ode Centrality (MPSONC) through integrating of node central-
ty (calculated from graph representation) and multi-objective
SO search algorithm. The proposed method was targeted for
edical datasets with minimum redundancy and highest rel-
vance of selected features. Table 1 demonstrates the related
orks in a tabular format. Generally, metaheuristic algorithms
re time consuming and increasing the number of iterations
ven lead to larger execution time and sometimes makes the
etaheuristic algorithm non-practical. This usually happens be-
ause metaheuristics algorithms have too many operations to
et up. In contrast, the proposed DWES is very fast because it
nly uses mutation and it provides more explorations within a
easonable time. All in all, this paper proposes a new filter ranker
or multi-label datasets called Extended Mutual Congestion (EMC)
nd combines it with a wrapper (1 + 1) Discrete Weighted Evo-
ution Strategy (DWES) to construct a hybrid automatic feature
election method (EMC-DWES). The reason for selecting evolution
trategy is that it only uses one operation (mutation) which is
ufficient for convergence theoretically. The EMC ranker in the
roposed hybrid method discards the large number of irrelevant
eatures and minimizes the dimensionality of datasets consider-
bly. The small dataset constructed using EMC ranker increases
he overall performance when combining by DWES.

. Preliminaries

This section introduces MC ranker, hierarchical clustering, and
1 + 1) continuous evolution strategy. MC ranker is then en-
anced in Section 4 to construct Extended Mutual Congestion
EMC). Likewise, (1 + 1) continuous evolution strategy is further
mproved in Section 4 to construct Discrete Weighted Evolution
trategy (DWES) using hierarchical clustering with weights for
lusters. EMC and DWES are finally combined to construct the
roposed method (EMC-DWES).

.1. Mutual congestion

According to Nematzadeh et al. [13] the values of each feature
ithin a binary dataset should be sorted ascendingly in Mutual
3

Congestion (MC) firstly. Then, the response variable (labels) also
should be sorted according to each ascendingly sorted feature.
Next, the algorithm proceeds by calculating the frequency in
which two class labels interfere for each feature so that MC
∈ [0, 1]. The less the MC measure is, the better that feature
is for classification. MC measure is calculated as in Eq. (1) so
that n+2 and n−3 are the number of positive and negative labels
within interference region respectively. Likewise, n+1 and n−4 are
he number of positive and negative labels out of the interference
egion respectively. Fig. 1 illustrates the best, general, and worst
ases for a dataset of size n×m so that the purple line shows the
nterference region of two class labels. Fig. 1 also shows if the
alues of an arbitrary feature are sorted ascendingly in a binary
ataset and then the labels are sorted accordingly, three possible
ortings are generated in which the most common sorting is the
eneral case. Assuming L+1 , L+2 , . . . , L+s are the sorted positive la-
els with the size of s (showed by red in Fig. 1) and L−1 , L−2 , . . . , L−p
re the sorted negative labels with the size of p (showed by
lue in Fig. 1) so that s + p = n. As such, the general case in
ig. 1 shows that the list of sorted labels (including positive and
egative labels) starts with consecutive positive labels (red color)
nd continues by the mixture of positive and negative labels
purple color) and finally ends with consecutive negative labels
blue color). Therefore, n+2 and n−3 are the number of positive
nd negative labels in purple zone. Likewise, n+1 and n−4 are the
umber of positive and negative labels in red and blue zones
espectively. Based on Eq. (1) and Fig. 1, the MC values of 0
nd 1 show that the feature is completely separable (best case)
r totally non-separable (worst case) respectively. However, in
ractice most of the features within a dataset have a degree of
eparability in [0,1] (general case) according to the calculated MC
easure. Regarding time complexity of MC, the initial sorting
an be done using quicksort algorithm to save time which has
he time complexity of O (n log n) in the best and average case
nd O (n2) in the worst case. All these steps are repeated for all
features; thus, Mutual Congestion has O (mn2) computation

omplexity in the worst case recalling that identifying samples
ith their respective positive or negative labels and interference
alculation between labels is done in O (n).

C =
n+2 + n−3

n+1 + n+2 + n−3 + n−4
(1)

3.2. Hierarchical clustering

Hierarchical clustering [24] is an agglomerative bottom-up
approach that starts with n clusters (n is the number of obser-
vations). At each step, the closest pair of clusters is merged until
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Fig. 1. MC-measure in three cases.
eaching only one cluster finally. Thus, cluster merging is done
ased on Eq. (2) where K is the entire number of clusters.

erge Ci and Cj if d
(
Ci, Cj

)
= min

i,j

[
d
(
Ci, Cj

)
: i ∈ K , j ∈ K

]
(2)

Hierarchical clustering has three main methods for calculation
of distance between two clusters called, single-linkage Eq. (3),
average-linkage Eq. (4), and complete-linkage Eq. (5) so that s and
t are cluster members inside Ci and Cj respectively.

d
(
Ci, Cj

)
= mins,t

[
d (s, t) : s ∈ Ci, t ∈ Cj

]
(3)

d
(
Ci, Cj

)
=

∑
t ∈ Cj

∑
s ∈ Cid(s, t)

ninj
;

ni : number of members in Ci (4)

d
(
Ci, Cj

)
= maxs,t

[
d (s, t) : s ∈ Ci, t ∈ Cj

]
(5)

Single linkage results in clusters with different densities. Com-
plete linkage tends to have clusters with same densities like
Kmeans clustering algorithm. However, complete linkage is ro-
bust to noise unlike Kmeans which is noise sensitive. Average
linkage comes between single linkage and complete linkage.

3.3. (1 + 1) Evolution strategy

(1+ 1) continuous evolution strategy is the simplest evolution
strategy which only uses mutation so that one parent generates
one offspring by applying normally distributed mutation [25,26].
Algorithm 1 shows the steps for continuous (1 + 1) evolution
trategy in which P and the respective feasible ranges are de-
ermined in line 1 initially. Second, the parent is constructed by
electing random values (from respective feasible ranges) for each
arameter and the related fitness is also calculated in lines 2 and
. Then, the parent is mutated by adding a normally distributed
andom variable α with mean of 0 and deviation of δ to construct
he offspring and the related fitness is calculated as well in lines
–7. Algorithm 1 continues by comparing the fitness of offspring
nd parent to select the better solution. Finally, the process of
utation and creating new offspring continues within a loop
ntil stopping criterion is considered and the final solution is
eturned. The proposed method in this paper will introduce a new
1 + 1) Discrete Weighted Evolution Strategy using hierarchical
lustering to determine P in step 1 of Algorithm 1.

4. Proposed method

The proposed method, Extended Mutual Congestion-Discrete
Weighted Evolution Strategy (EMC-DWES), is initiated by dis-
carding significant number of features of the input dataset using
EMC as a filter ranker firstly. Then, feature scaling is done as a
standardization step so that the values of independent features
are normalized. Next, the newly constructed dataset with a re-
duced dimensionality is used within a wrapper feature selection

using a Discrete Weighted Evolution Strategy (DWES). The idea is

4

maximum feature reduction by EMC to get the most functionality
from DWES. Fig. 2 clearly shows the general phases of the EMC-
DWES so that the size of the input dataset considerably decreases
after applying EMC (k≪ m) and DWES (p≪ k).

4.1. Extended mutual congestion

The basic idea of Extended Mutual Congestion (EMC) is finding
the most informative features with best classification power.
Assuming a three-label dataset with two features (F1, F2) in Fig. 3,
the image of samples on F1 axis confirms that F1 has a bet-
ter classification functionality in comparison with F2. However,
if the response variable (label) is ascendingly sorted based on
the individual feature values, a typical array in Fig. 3 may be
achieved for an arbitrary feature in practice. This happens because
the real labeling is not done basically by using just one feature
specially in a high dimensional dataset. Thus, EMC tries to find
the frequency of irrelevant labels based on an individual label for
each ascendingly sorted feature. Irrelevant labels refer to those
which are non-separable based on a certain label. As such, the
labels specified by red and dashed brace are assumed as separable
and non-separable labels respectively based on the red label.
EMC calculates this frequency for each label and finally generates
EMC ∈ [0,1] for each feature so that the smallest EMCs analogize
the best features.

Assuming X is a high dimensional dataset of size n×m (n≪
m) as illustrated in Table 2 and Eq. (6) with labels in Eq. (7). Thus,
any instance of X can be defined based on feature values as shown
in Eq. (8). Likewise, each feature vector is defined accordingly in
Eq. (9).

X = (x1, x2, . . . , xn)t (6)

L = (l1, l2, . . . , lk) (7)

x = f , f , . . . , f i = 1, 2, . . . , n (8)
i ( i1 i2 im)
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Fig. 2. EMC-DWES in abstract view.
Fig. 3. A three-labeled dataset with two features (F1,F2) and an array of response variable based on an ascending sorted values of an arbitrary feature.
Table 2
A sample high dimensional dataset X of size n × m.

F1 F2 . . . Fm Label

f11 f12 . . . f1m L
f21 f22 . . . f2m L
. . . . . . . . . . . . . . .

fn1 fn2 . . . fnm L

Fj =
(
f1j, f2j, . . . , fnj

)t j = 1, 2, . . . ,m (9)

Assuming L is the set of response variables (labels) in Eq. (7),
then ylp is the set of instances with similar labels (lp) in Eq. (10)
subsequently.

ylp =
(
xlp1 , xlp2 , . . . , xlpnp

)
=

{
xlpj

}np

j=1
p = 1, 2, . . . , k (10)

where

∪
k
p=1y

lp = X,

k∑
p=1

np = n

The definition of ylp in terms of features is also shown in
Eq. (11)

ylp ≡
(
f lp1 , f lp2 , . . . , f lpnp

)t
(11)

In this phase, each feature Fj is sorted ascendingly and the
respective vector of labels will be sorted accordingly. Thus, for
each ascendingly sorted Fj, there exists a sorted vector of labels.
As a result, ylp corresponds to Eq. (12) which is a permutation of
ylp in Eq. (11). However, the response variable is generally sorted
as shown in Fig. 3 in practice in accordance with its respective
sorted feature values. Fig. 4 is a subset of sorted response variable
for label ri. The more the length of the blue section is in Fig. 4, the

less that feature is good for classifying label ri. The blue section

5

in Fig. 4 is a region with non-separable labels.

ylp ≡
(
g lp
1 , g lp

2 , . . . , g lp
np

)t
(12)

Finally, the separability of each feature is calculated using
Eq. (13) so that the less EMC is, the better classifier that feature
is. mri is the number of instances with non-separable labels for ri
(blue section in Fig. 4). θri is the sum of the number of instances
with separable labels (red sections in Fig. 4) and number of
instances with non-separable labels (blue section in Fig. 4) for
label ri.

EMC(j) =

{∑k
i=1 mri∑k
i=1 θri

}m

j=1

(13)

In order to understand how EMC is calculated for each feature,
the array in Fig. 3 is used in which the number of instances
with non-separable labels for red, blue, and yellow labels are 12,
18, and 15 respectively. Likewise, the number of instances with
separable labels for red, blue, and yellow labels are 7, 5, and 14
respectively. Thus, EMC = 12+18+15

12+18+15+7+5+14 =
45
71 = 63%. The

proposed method starts by applying EMC as a filter method to
the high dimensional datasets initially. Next, features are ranked
based on their respective EMC measures ascendingly and 95% of
the least informative features are discarded. Finally, the features
with the best EMC measures are retained to construct the new
dataset X ′ as shown in Table 3 based on Fig. 2 and Eq. (14) (Recall
that m is the dimensionality of the input dataset).

m′ = 0.95×m (14)

4.2. Discrete weighted evolution strategy

Prior to propose and apply Discrete Weighted Evolution Strat-
egy (DWES) feature scaling should be done on X ′ which helps
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Fig. 4. Non-separable labels (blue) and separable labels (red) for label ri .
Table 3
Dimensionality reduced dataset X ′ with size n × m′ .

F ′1 F ′2 . . . F ′m′ Label

f11 f12 . . . f1m′ L
f21 f22 . . . f2m′ L
. . . . . . . . . . . . . . .

fn1 fn2 . . . fnm′ L

in speeding up the calculations as well as better convergence of
classifiers. Assuming Fi is a feature vector to be scaled and µi and
i are the mean and standard deviation of Fi, data standardization
s shown in Eq. (15). The entire features in the dataset X ′ should
be scaled accordingly.

Fi =
Fi − µi

σi
i = 1, 2, . . . ,m′ (15)

The Discrete Weighted Evolution Strategy (DWES) should be
ormulated to cluster the features of X ′. Thus, the dataset X ′
should be transposed firstly. The steps of DWES are introduced
as follows:

Step 1: First, q and the respective discrete feasible ranges in
the proposed DWES are determined using hierarchical cluster-
ing as shown in Eq. (16). Hierarchical clustering exploits ag-
glomerative clustering using single linkage, average linkage, and
complete linkage. As a result, the features of Table 3 (F ′ =
F ′1, F ′2, . . . , F ′m′}) are divided into q number of clusters in Cq

nd can be further expanded in Eq. (17). The algorithm is tuned
o that each cluster ci has an initial selection weight of Wci as
hown in Eq. (18).
q
= Hierarchical clustering

(
F ′, q

)
(16)

q
= {c1, c2, . . . , cq} (17)

here

i =

{
F
′ i
1, F

′ i
2, . . . , F

′ i
si

}
si = |ci| , ∪

q
i=1ci = F ′

Ci = 0.5 i = 1, 2, . . . , q (18)

tep 2: To construct the parent, a feature from each cluster
hould be selected considering Wci so that ci is selected with its
espective Wci (which initially equals 0.5 in Eq. (18)) in Eq. (19).

arent = W c1

(
F
′1
jc1

)
,W c2

(
F
′2
jc2

)
, . . . ,W cq

(
F
′q
jcq

)
(19)

tep 3: The fitness of parent in Eq. (20) (which is the accuracy
f classifier) shows how close the given subset of features is to
he optimum solution. The proposed DWES uses Support Vector
achine (SVM) with linear kernel and C = 50 and Decision Tree

DT) regarding two-labeled and multi-label datasets respectively,
hough DWES is flexible to use any classifier.

1 = accuracy (Parent) (20)

tep 4: The offspring is generated through exploring each cluster
o select a new feature as shown in Eq. (21). In fact, a feature
6

within a certain cluster is selected randomly if that cluster is se-
lected based on its associated weight. As a result, each member of
ci is mutated within its range specified by hierarchical clustering.

Offspring = W c1

(
F
′1
gc1

)
,W c2

(
F
′2
gc2

)
, . . . ,W cq

(
F
′q
gcq

)
(21)

Step 5: To evaluate the goodness of the offspring, the fitness of
the offspring should be calculated. Like Eq. (20) the fitness of the
offspring is calculated as in Eq. (22).

Z2 = accuracy (Offspring) (22)

Step 6: If (Z2 > Z1), then parent should be substituted by offspring
for next generation. In addition, by selecting the offspring the se-
lection weight of the respective clusters (Wci ) should be updated
according to Eq. (23) considering that Wcis do not exceed 1. The
initial value of WCi = 0.5 gives equal chance to clusters for being
selected at the beginning of DWES under the assumption that the
weight of each cluster does not exceed 1. If (Z2 < Z1), the parent
subset as well as selection weight of clusters remain unchanged.
The parameter α in Eq. (23) is experimentally set to 0.1.

WCi ← WCi + α
(
1−WCi

)
(23)

Step 7: Go to Step 4 until specified number of generations is
considered.

Algorithm 2 clearly shows the steps of EMC-DWES in which
lines 1–4 initialize the algorithm, lines 11–23 generate an off-
spring for each iteration, lines 25–34 updates the cluster weights
in case of fitness improvement. It is noteworthy mentioning that
DWES also considers the substitution of parent by the offspring
with same accuracy, but shorter length in implementation as
well. The stopping condition in DWES is the maximum iteration
which is set to 200 iterations.

5. Experimental results

This section introduces the datasets firstly. Second, the used
classifiers are introduced following the respective experimental
setups. Finally, the measurement criteria are introduced.

5.1. Datasets

The benchmark high dimensional gene expression datasets
are introduced in Table 4 including 5 binary and 4 multi-label
datasets. A brief description of each used dataset is given in
the following. Colon is a binary dataset of colon cancer patients
with negative and positive predictions. CNS is a central nervous
system embryonal tumor binary dataset containing two classes of
survivors and failures. Survivors are patients who are alive after
treatment, but the failures are those who succumbed to their dis-
ease. GLI is a dataset with transcriptional profiling of gliomas. The
aim is to predict whether an initial tumor is diagnosed as Grade
III or IV glioma of any histologic type on initial surgical treatment.
SMK is a binary dataset with gene expression data from smokers
with and without lung cancer. Leukemia is a binary dataset con-
sists of bone marrow samples to distinguish Acute Lymphoblas-
tic Leukemia (ALL) and Acute Myeloid Leukemia (AML) classes.
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eukemia-II is a multi-label dataset which distinguishes three
lasses of AML, T-cell and B-Cell. Covid-19 is a gene expression
ataset of three disease states including observations with no
irus, observations infected with virus but this virus is not Covid,
nd observations infected with Covid virus. SRBCT contains 4 dif-
erent childhood tumors namely Ewing’s family of tumors (EWS),
euroblastoma, Non-Hodgkin lymphoma (Burkitt’s lymphoma,
L) and Rhabdomyosarcoma (RMS). MLL is a multi-label leukemia
ataset including three types of leukemias namely ALL, AML, and
ixed-Lineage Leukemia (MLL).

5.2. Measurement criteria

The following measurement criteria [11,13,14,27] are used
o investigate the strength and success of EMC-DWES in feature
election recalling that True Positive (TP) and True Negative (TN)
efer to correctly prediction of positive and negative classes re-
pectively. Likewise, False Positive (FP) and False Negative (FN)
efer to incorrectly prediction of positive and negative classes.
• Accuracy: Accuracy is calculated for both binary and multi-

abel datasets based on Eqs. (24) and (25) respectively so that TS
tands for the Test Set, Ci and Li are the classifier’s prediction and
he real label for ith element of the TS respectively, and |TS| is
the number of all observations in the Test Set. The numerator of
Eq. (25) can be considered as a dummy variable that has the value
of 0 or 1 so that if the condition (C = L ) meets, 1(C = L ) in the
i i i i

7

Table 4
Specification of datasets.

Datasets Sample Feature Number of Year of
size size classes publication

Colon [13] 62 2000 2 1999
CNS [11] 60 7129 2 2002
GLI [11] 85 22,283 2 2004
SMK [11] 187 19,993 2 2007

Leukemia [28] 72 7129 2 1999
Leukemia-II [29] 72 7129 3 1999
Covid-19 [30] 234 15979 3 2020

MLL [31] 72 12,582 3 2002
SRBCT [29] 83 2308 4 2001

numerator will be 1 and otherwise 0.

Accuracybinary =
TP + TN

TP + TN + FP + FN
(24)

ccuracymulti−label =

∑
xi ∈ TS 1(Ci = Li)
|TS|

(25)

• Precision: Precision in Eq. (26) is solely calculated for binary
atasets and denotes the fraction of relevant instances among the
etrieved instances.

recision =
TP

TP + FP
(26)

• Recall: Recall in Eq. (27) is solely calculated for binary
atasets and denotes the fraction of relevant instances that are
etrieved.

ecall =
TP

TP + FN
(27)

• Fscore: F-score in Eq. (28) is solely calculated for binary
datasets and denotes the harmonic mean of precision and recall.

Fscore = 2×
Precision× Recall
Precision+ Recall

(28)

• Subset length: subset length is the length of automatically
selected features by the proposed method.

It is noteworthy mentioning that all the above criteria are
calculated based on the average of 10 times running the program.

5.3. Experimental setup

The evaluation of EMC-DWES and calculation of the measure-
ment criteria in Section 5.2 can be investigated via any classifier.
Nonetheless, Support Vector Machine (SVM) and Decision Tree
(DT) are selected for investigation of the results in binary and
multi-label datasets respectively to avoid having multiple figures
and tables with semantically same results [27].
• SVM looks for a hyperplane with the most possible distance

from classes using support vectors. The hyperplane is located ex-
actly at the middle of support vectors. The perpendicular distance
of support vectors to the hyperplane is called margin. SVM uses
a constraint (C) to avoid having too many points in the margin.
The linearity or non-linearity of SVM is specified by the kernel as
well. The SVM classifier in this research uses a linear kernel with a
cross validated C for each dataset. Experiments also revealed that
C does not have a considerable impact in classification accuracy.
• DT selects the most informative features with respective cut

oints. Cut points are the points that divide the data space of
certain feature into binary regions and are defined for each

eature. The region can be a terminal node (leaf of a tree). There
xists a split quality measure that examines the cut points and
oth recognizes the best cut point of each feature and the best
eatures periodically within a recursive binary splitting algorithm.
inally, the best features and their respective cut points constitute
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Table 5
Average accuracy of EMC-DWES on benchmark datasets.

Dataset Linkage type Number of clusters in DWES Average subset length Average accuracy of EMC-DWES Average initial accuracy

Colon
S-link 10 6 0.93

0.81A-link 10 6 0.93
C-link 10 6 0.93

CNS
S-link 40 34 0.88

0.64A-link 50 26 0.87
C-link 40 28 0.90

GLI
S-link 20 14 0.91

0.91A-link 50 33 0.96
C-link 50 29 0.98

SMK
S-link 20 13 0.78

0.73A-link 20 13 0.78
C-link 20 14 0.78

Leukemia
S-link 20 12 1

0.97A-link 30 16 1
C-link 30 16 1

Leukemia-II
S-link 40 23 0.86

0.84A-link 40 20 0.95
C-link 30 20 0.97

Covid-19
S-link 40 24 0.73

0.63A-link 40 25 0.74
C-link 40 25 0.75

MLL
S-link 40 22 0.91

0.85A-link 10 6 0.94
C-link 10 6 0.96

SRBCT
S-link 20 13 0.92

0.79A-link 20 10 0.93
C-link 20 12 0.94
the DT. DT algorithm stops when the tree achieves complete
purity either when it cannot proceed anymore (from each branch
it reached to the intrinsic terminal nodes) or forces to stop by the
analyst. When DT algorithm stops, the recognized region (termi-
nal nodes) should be labeled. The labeling in each region is done
based on majority voting of existing labels in that region. The
decision tree in this research uses Gini index impurity measure.
The nodes in the tree are expanded until all leaves are pure or
contain less than 2 samples. The parameters random_state and
class_weight are None and ccp_alpha is the default 0.

This research is implemented using Python 3.8 platform on
a computer with Core i5 processor (1.60 GHz–2.30 GHz), 12 GB
RAM, 720 GB HDD, and 64-bit Windows 10 operating system.

5.4. Performance analysis

Table 5 shows the average accuracy of EMC-DWES (recalling
that SVM and DT are used for binary and multi-label datasets re-
spectively to calculate measurement criteria). Number of clusters
in DWES and Linkage type are two hyper-parameters need to be
cross validated by the analyst. Table 5 indicates that the average
accuracy of EMC-DWES exceeds initial accuracy in all datasets
(Initial accuracy is the accuracy without feature selection while
the results are the average of 10 times running the program).
Moreover, accuracy of EMC-DWES often increases from single
linkage to complete linkage except in CNS in which single link-
age has competitively better accuracy than average linkage and
similarly, the average accuracies do not differ in Colon, SMK, and
Leukemia using any linkage type. Likewise, the average subset
length is acceptable with respect to the number of clusters (max-
imum possible subset length) in DWES. Fig. 5 shows precision,
recall, and Fscore of EMC-DWES calculated for binary datasets
and its comparison with initial state in which no features have
been selected. The parameters of EMC-DWES (number of clusters
in DWES and retaining rate of EMC) are set as in Table 5. The
proposed method increased the precision of all datasets. How-
ever, it could not successfully increase the recall of GLI and SMK.
8

Nonetheless, EMC-DWES could successfully increase the Fscore of
all binary datasets. Fig. 6 shows the average accuracies achieved
with respect to the number of clusters in DWES. The accuracy
mostly becomes stable or decreasing while reaching 50 number of
clusters. Moreover, the overall target of EMC-DWES is to increase
the accuracy while finding the optimal subset length. Thus, the
investigation of accuracy in terms of number of clusters in Table 5
is restricted in [10, 50] with step size of 10. Fig. 6 also reveals
that average linkage and complete linkage are more reliable than
single linkage in achieving higher accuracies. This unreliability of
single linkage is completely evident in Leukemia-II and slightly
obvious in GLI, Covid-19 as well as MLL. Nonetheless, in some mi-
nority of cases (like Leukemia) single linkage outperforms other
linkages to achieve higher accuracies sooner with less subset
length in Fig. 7. This means that cross validation could be used
to select the best linkage for each dataset individually. Fig. 7
confirms that by increasing the number of clusters the average
subset length is not increased strongly which is a positive aspect
of EMC-DWES.

5.4.1. EMC vs. MC
EMC outperforms MC in two ways. First, EMC can deal with

multi-label datasets unlike MC. Second, EMC assigns more accu-
rate weights to features than MC. Assuming Fig. 8 is an ordered
response variable based on an arbitrary ascending sorted feature
in a binary dataset (blue and red labels) with 20 observations.
MC finds this feature 40% bad

( 1+7
2+1+7+10 = 0.4

)
. However, EMC

calculates the bad ratio of ( 1+7
1+7+9+10 = 0.3) for the same feature.

The observation specified with an arrow in Fig. 8 is the reason for
two different calculations. This feature is indeed a good feature in
terms of separability of blue and red labels. Since EMC calculates
more accurate weights, it could more possibly retain the feature
and pass to DWES for final feature selection. In contrast, MC is
more likely to discard this informative feature. To achieve such
a superiority, EMC executes more time in comparison with MC.
Time complexity of EMC for a dataset of size n×m is calculated
as follows. Ascending sorting of each feature can be done using
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Fig. 5. Precision, recall, and Fscore of binary datasets using EMC-DWES.
Fig. 6. Average accuracy of EMC-DWES with respect to number of clusters in DWES.
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uicksort algorithm which has the time complexity O(n2) in the
orst case. Thus, the overall time complexity of sorting is O(mn2),
ince sorting is done for all m features. Moreover, calculating both
he number instances with non-separable and separable labels
ased on a certain label has the complexity of O(n) which then
s multiplied by number of labels (l) and number of features
m). Thus, the overall complexity of EMC is O

(
mn2

)
+ O(mln)

n the worst case. Comparing to time complexity of MC which is(
mn2

)
, EMC increases the execution time by O(mln). It is evident
 o

9

hat execution time of EMC directly depends on the number
f instances, features, and labels (with more concentration on
nstances). According to the acceptable time complexity of EMC,
olon and Covid-19 have the fastest and slowest execution time
espectively.

.4.2. DWES analysis
Evolution Strategy (ES) is a fast metaheuristic algorithm which

nly uses mutation within evolutionary process. The proposed
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Fig. 7. Average subset length of EMC-DWES with respect to number of clusters in DWES.
Fig. 8. Sorted response variable based on an arbitrary ascending sorted feature.
WES in this research uses hierarchical clustering to cluster
emaining features calculated by EMC. Hierarchical clustering has
arious types of clustering with different levels of noise sensi-
ivity in comparison with Kmeans. Thus, DWES in this research
s aimed to test different formats of clusterings that hierarchical
lustering offers through its linkages rather than just one format
f clustering by Kmeans which is also accessible by complete
inkage basically (recalling that complete linkage is more robust
o noise compared with Kmeans). In addition, although Kmeans
s more efficient than hierarchical clustering generally, but 95%
f the dimensionality of the input dataset is reduced by EMC. As
uch, DWES specifies the final feature subset with its embedded
ierarchical clustering on the drastically shrinked dataset gener-
ted by EMC. Hence, hierarchical clustering does not have any
ime burden in comparison with Kmeans since quadratic time
omplexity of hierarchical clustering is not tangible for small
atasets. Thus, hierarchical clustering is preferred for clustering
nstead of Kmeans in DWES this research. Second, the proposed
WES does not select redundant features via clustering the best
eatures recognized by EMC using hierarchical clustering. This
appens because those features in the same cluster have similar
haracteristics and DWES selects one feature within a cluster
t a time. Moreover, the proposed DWES even intelligently se-
ect more informative clusters by using the concept of weight

ssociated to each cluster so that some clusters would not be

10
selected for feature selection at all. In fact, the concept of cluster
weights helps automatic feature selection as well. In addition, not
only DWES supports minimum redundancy, but it also applies
maximum relevance using classifiers’ (SVM and DT) accuracy. It
is noteworthy mentioning that further investigation was done
on associating dynamic weights to cluster members (features)
so that features that increased the accuracy had greater weights
accordingly which was not any better than current DWES. Fig. 9
compares the average accuracies of EMC-DWES using complete
linkage with EMC-Random selection. Unlike EMC-DWES, EMC-
Random selection does not cluster input features. It randomly
selects and mutates features generated from EMC as shown in
Algorithm 3. Even though EMC-Random selection selects features
with maximum relevance (according to the respective accuracy)
but does not include minimum redundancy nor supports auto-
matic feature selection. Fig. 9 clearly illustrates that the accuracy
achieved by EMC-Random selection with 50 features is consid-
erably less than the accuracy of EMC-DWES with 10 number
of clusters (except in Leukemia in which the initial accuracy is
very high) which confirms the effectiveness of DWES against
random selection. Fig. 9 also shows that EMC-Random selection
could successfully increase the initial accuracy in majority of
datasets (except in GLI, SMK, Colon with 10 and 20 dimen-
sionality, and Leukemia with 10 dimensionality). This happens

because EMC-Random selection randomly selects features from
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hose recognized by EMC. This also confirms the effectiveness of
MC in distinction of informative features.

5.4.3. Comparison
In the following five recent works are selected from Table 1

or comparison with EMC-DWES in Table 6 so that three of them
ave frequency-based rankers (MC in WOA-MC, SLI in ATFS, and
LI-γ in GArank&rand ) exactly like EMC-DWES that exploits EMC
requency-based ranker. Likewise, all the state-of-the-art works
n Table 6 utilize the concept of metaheuristic algorithms same
s EMC-DWES. SL in Table 6 stands for average Subset Length and
cc denotes average accuracy while NA means Not Applicable.
EMC-DWES Vs WOA-MC: Whale Optimization Algorithm-

utual Congestion (WOA-MC) is the base paper in which the
urrent research is inspired from. WOA-MC is a hybrid feature
election for binary datasets consists of two filter methods in
hich the final subset was determined manually. According to
able 6 the accuracy of EMC-DWES is greater than WOA-MC in
inary datasets. This superiority is expectable since EMC-DWES
11
contains a wrapper section and the proposed EMC is the extended
version of MC.

EMC-DWES Vs ATFS: Automatic Thresholding Feature Selec-
tion (ATFS) is an ensemble automatic feature selection method.
The method is based on ensembling three rankers (Relief F, Mu-
tual Congestion (MC), and Sorted Label Interference (SLI)) using
the concept of fast non-dominated sorting. SLI is another ex-
tension of MC. The results in Table 6 shows that EMC-DWES
outperforms ATFS as well in all binary datasets except in SMK
in which both achieved same accuracies.

EMC-DWES Vs GArank&rand: GArank&rand is a hybrid method which
ombined SLI-γ (also inspired from MC) as a filter method with
enetic algorithm as wrapper method. SLI-γ is a filter ranker that
nly passes the best 1% of the features to genetic algorithm to
enerate initial population from. GArank&rand also uses some ran-
om features besides those best ranked by SLI-γ for generating
nitial population as well. The results calculated in Table 6 for
Arank&rand are based on a K-Nearest Neighbors fitness function
ith k= 1. The best solution found from GArank&rand is then passed
o SVM with linear kernel for accuracy calculation. The results
n Table 6 reveal that EMC-DWES outperforms GArank&rand in all
inary datasets both in subset length and accuracy so that this
uperiority is completely obvious in accuracy of Colon and subset
ength of GLI and SMK.

EMC-DWES Vs EIT-bBOA: Ensemble Information Theory-based
inary Butterfly Optimization Algorithm (EIT-bBOA) is a hybrid
ethod for both binary and multi-label datasets including the

ilter Minimal Redundancy-Maximal New Classification Informa-
ion (MR-MNCI) and a wrapper Information Gain binary Butterfly
ptimization Algorithm (IG-bBOA). The results in Table 6 shows
hat EIT-bBOA achieves greater accuracies only in SMK and Covid-
9 (this probably happens because EMC was not as distinctive
n SMK and Covid-19 as it was for rest of the datasets). How-
ver, EMC-DWES automatically detects smaller effective feature
ubsets in comparison with EIT-bBOA in which the length of the
eature subset is manually limited to 30.
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Table 6
Comparison with state-of-the-art works.

Dataset WOA-MC [13] ATFS [11] GArank&rand [23] EIT-bBOA [14] MPSONC [5] EMC-DWES

SL Acc SL Acc SL Acc SL Acc SL Acc SL Acc

Colon

10

0.90 14 0.85 11 0.82

30

0.86 18 0.85 6 0.93
CNS 0.80 29 0.80 29 0.88 0.84 23 0.71 28 0.90
GLI 0.92 52 0.94 98 0.97 0.84 28 0.95 29 0.98
SMK 0.71 38 0.78 106 0.76 0.82 35 0.75 14 0.78

Leukemia 0.98 37 0.98 29 0.99 0.89 45 0.98 16 1
Leukemia-II 0.96 53 0.89 20 0.97
Covid-19 0.93 42 0.86 25 0.75

MLL NA NA NA 0.92 45 0.90 6 0.96
SRBCT 0.94 16 0.83 12 0.94
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EMC-DWES Vs MPSONC: Multi-objective PSO algorithm and
ode Centrality (MPSONC) is a three-phase filter model in which
he features are represented by an undirected weighted graph
o calculate the feature popularity using node centrality. The
ode centrality is then used to generate the initial population
f multi-objective PSO. The multi-objective PSO uses statistical
roperties of data instead of a learning model. Table 6 shows
hat EMC-DWES outperforms MPSONC (except in Covid-19). The
uperiority of EMC-DWES against MPSONC in accuracy achieve-
ent is considerable in Colon, CNS, Leukemia-II, MLL and SRBCT.
ikewise, the accuracy of EMC-DWES is competitively better than
PSONC in GLI, Leukemia. It should be noted that EMC-DWES
chieves the smaller subset length in all datasets except in CNS
nd GLI. In addition, EMC-DWES has less parameters need to
e cross validated by the user and thus is more applicable in
ituations where the construction of the learning model has a
igh computational complexity.
It can be concluded that the combination of EMC and DWES

mproves the accuracy while retains the small feature length
n majority of datasets. The EMC ranker is a reliable filter in
ecognizing informative features which can be confirmed by its
reat discarding rate. DWES is then fed with the features selected
y EMC to find final feature subset through minimum redun-
ancy (hierarchical clustering) and maximum relevance (learning
odels).

. Conclusion

This paper proposes an automatic hybrid feature selection
ethod containing a filter EMC as a frequency-based method and
WES as an efficient wrapper method. EMC sorts the features
nd then discards most of the features to feed DWES with the
ost informative features. Then, DWES automatically selects the

eature subset by applying minimum redundancy and maximum
elevance. In brief, EMC-DWES has three main advantages. First,
t has fewer hyper-parameters to be tunned compared with many
f the same research. EMC-DWES has two hyper-parameters that
hould be determined by the user which can be investigated
sing cross validation namely, linkage type and number of clus-
ers in DWES. Second, EMS-DWES is computationally efficient.
ased on the time complexity of EMC, the proposed method
EMC-DWES) has an acceptable performance when the number
f features excessively exceeds the number of observations as
n high dimensional datasets. Increasing the number of labels
in multi-label datasets) and observations slow the EMC calcu-
ation though. Likewise, DWES is fast since it only uses mutation
perator. Third, EMC-DWES generally records higher accuracies
accuracy, precision, recall, and Fscore) on benchmark datasets
ith satisfactorily small subset length in comparison with state-
f-the-art. Furthermore, two investigations are conducted on the
elation between the accuracy achieved by EMC-DWES and num-
er of clusters as well as the subset length of EMC-DWES and
umber of clusters. In addition, the superiority of DWES is also
12
argued by comparing the accuracy of EMC-DWES against EMC-
Random selection. The results reveal the superiority of proposed
method against state-of-the-art works. All in all, this research
generally concludes that satisfying feature selection results can
be achieved by EMC-DWES on high dimensional medical datasets.
However, the main limitation of EMC-DWES is the high com-
putational time of EMC on multi-label datasets with too many
labels or observations. Thus, future research will look into how to
propose new frequency-based rankers to recognize best features
more efficiently and achieve more accuracies.
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