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a b s t r a c t 

The exponential increase in the use of technology in road management systems has led to real-time vi- 

sual information in thousands of locations on road networks. A previous step in preventing or detecting 

accidents involves identifying vehicles on the road. The application of convolutional neural networks in 

object detection has significantly improved this field, enhancing classical computer vision techniques. Al- 

though, there are deficiencies due to the low detection rate provided by the available pre-trained models, 

especially for small objects. The main drawback is that they require manual labeling of the vehicles that 

appear in the images from each IP camera located on the road network to retrain the model. This task is 

not feasible if we have thousands of cameras distributed across the extensive road network of each nation 

or state. Our proposal presented a new automatic procedure for detecting small-scale objects in traffic 

sequences. In the first stage, vehicle patterns detected from a set of frames are generated automatically 

through an offline process, using super-resolution techniques and pre-trained object detection networks. 

Subsequently, the object detection model is retrained with the previously obtained data, adapting it to 

the analyzed scene. Finally, already online and in real-time, the retrained model is used in the rest of 

the traffic sequence or the video stream generated by the camera. This framework has been successfully 

tested on the NGSIM and the GRAM datasets. 

© 2023 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

In this new era where big data is not the future but the present,

ny essential area, such as agriculture, transportation, or indus- 

ry, is driven by data. Therefore, analyzing it can help to improve 

nd optimize each discipline’s internal processes. In the field of 

ransportation, the road network of each nation or state has in- 

talled thousands of IP cameras in many locations to monitor the 

ondition of the roads and prevent traffic jams and accidents or 

ount traffic density at different times of the day. This informa- 

ion provided by these video surveillance cameras can be helpful 

or detecting anomalous events or accidents on the roads. But for 

his, it is critical to detect correctly the vehicles that circulate in 

hem, a task that has had a significant impact on the irruption 
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f deep learning-based object detection algorithms [1] . Intelligent 

ideo surveillance applied to traffic analysis has been a recurring 

esearch topic in recent years, with a multitude of works related 

o the detection of vehicles [2,3] , tracking of objects along with 

he scene [4] or the modeling of their behavior [5] . Deep learning 

echniques have rekindled the interest and development of new 

roposals in the area. 

The change from recognizing which object an image shows (a 

roblem known as image classification) [6–9] to detecting several 

bjects within the image, their classes, and their positions (a prob- 

em known as object detection), is a qualitative leap that has led to 

 revolution in the Computer Vision field. Many proposals can ben- 

fit from identifying objects, including these methods as a key part 

10,11] . Both problems (image classification and object detection) 

erformances have dramatically improved as Deep Convolutional 

eural Networks (DCNN) use has become widespread. Therefore, 

CNN-based object detection methods have been a field of intense 

xploration in recent years [12,13] . Their main challenges are the 

lasses to be detected, processing time, computational power, and 

eliability when applied under non-ideal conditions. 
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The detectable classes set with reasonable performance are 

ypically conditioned on the existence of a labeled dataset large 

nough to perform the supervised training requiring the previ- 

us labeling by human intervention. Training the network success- 

ully demands time and computing power, so obtaining a network 

rained from scratch to a specific domain is not trivial. Those rea- 

ons motivate to work from a pre-trained network trained with 

ome of the most common datasets (e.g. Common Objects in Con- 

ext, also known as COCO [14] ) and perform fine-tuning with a 

omain-specific smaller dataset to adapt the network to the do- 

ain of application. 

Although the computational power required for inference is less 

han for training, using dedicated graphics processing units (GPUs) 

s often essential to apply the method reasonably. Some meth- 

ds propose detection algorithms focused on minimizing comput- 

ng time and thus speeding up detection [15,16] . However, their 

se in applications that require high response speed (at least 15 

rames per second) still requires a considerable amount of comput- 

ng power. Although there is an intense line of research in adapting 

his kind of method to work using lower power and cost hardware 

17,18] , there is currently no general solution to trivialize the com- 

utation time required to apply object detection to an image. 

Creating and adapting DCNN-based object detection methods to 

eal with conditions far from ideal is also an intense research field. 

ne of the most typical challenges is to use object detection with 

 long distance between the camera and objects. This problem is 

nown as Small Object Detection. Its importance is demonstrated 

y the number of recent approaches applied to solve it: methods 

ased on Generative Adversarial networks [19] , methods that adapt 

he operation of existing techniques [20] , or studies about how the 

oss functions affect this issue [21] . Most approaches to increas- 

ng effectiveness when detecting small objects involve increasing 

rocessing time. Fatih et al. propose a library known as SAHI (Slic- 

ng Aided Hyper Inference) [22] . This generic solution is based on 

licing-aided inference, maintaining lower complexity and memory 

equirements improve. 

Our proposal uses a fine network adjustment (it does not in- 

rease the execution time) that allows it to adapt automatically to 

he traffic scene without human intervention. Firstly, we propose 

o apply a super-resolution algorithm to detect objects in the scene 

hat would otherwise go unnoticed by the DCNN object detection 

ethod. These detected objects or labeled data are used to gener- 

te a training dataset to tune the network. All this process is done 

ffline and only once per scene. The contributions provided by the 

roposed methodology are based on the automatic adaptation and 

raining of a sequence, avoiding a previously labeled dataset since 

t is generated automatically. Without modifying the network, it 

s possible to improve the average precision rate obtained by the 

odel significantly. 

The following sections are structured as follows: 

ection 2 shows the proposed methodology, Section 3 on 

age 4 explains the experiments supporting our proposal, and 

ection 4 on page 7 explains our conclusions. 

. Methodology 

The proposed methodology for improving the performance of 

bject detections by deep convolutional neural networks is de- 

ailed next. Our proposal is composed of two subsystems. First, the 

utput of an original deep convolutional neural network for object 

etection is refined by super-resolution to obtain high-quality de- 

ections, thus generating a labeled dataset automatically. This sub- 

ystem is described in Section 2.1 . Then, the high-quality detec- 

ions are employed to build a new training set for the object de- 

ection deep network to fine-tune the model, which improves its 

erformance, as explained in Section 2.2 . 
46 
.1. Super-resolution enhancement of object detection and 

e-inference 

This subsection describes our procedure to improve the quality 

f the object detection of a deep convolutional neural network. Our 

roposal begins with an unannotated video sequence, converted 

nto a set of frames that will be processed in the next step. 

 = { ( Y l ) | l ∈ { 1 , . . . , N } } (1) 

D is the unlabeled dataset, and Y l is each low-resolution frame 

xtracted. N stands for the total number of frames that compose 

he sequence. Our starting point is an original deep convolutional 

etwork G for object detection whose input is an image Y and 

ields a set of detections W : 

 = G ( Y ) (2) 

 = { ( αi , βi , γi , δi , λi , ρi ) | i ∈ { 1 , . . . , N } } (3) 

here N stands for the number of detections, the coordinates of 

he top left corner of the i th detection within Y are noted ( αi , βi ) ∈
 

2 , the coordinates of the bottom right corner of the i th detection

ithin Y are noted ( γi , δi ) ∈ R 

2 , λi stands for the detected class 

abel, and ρi ∈ R denotes the obtained class score. The larger ρi , 

he more confident that we are that there is actually an object of 

lass λi at that detection. The origin of coordinates is assumed to 

e at the center of the image in all cases. 

The second task to be performed in our procedure is to process 

he incoming low-resolution input image Y LR with the object de- 

ection deep network to produce a set of tentative detections W LR , 

s indicated in step two of workflow Fig. 1 : 

 LR = G ( Y LR ) (4) 

In step three, several tentative regions are defined to set the 

reas on which to re-infer subsequently. In the worst scenario, 

he object detection model would not detect any initial element. 

herefore, five fixed zones denoted as F r have been defined. These 

egions cover the top, bottom corners, and center. 

 r = { ( χi , ψ i ) | i ∈ { 1 , . . . , K } } (5) 

K stands for the number of fixed regions selected. χ and ψ are 

he x and y coordinates of the centroid. Thanks to these settled 

egions, we ensure that our proposal covers all areas of the input 

mage. 

In step four, a high-resolution version Y HR of the low resolution 

riginal image Y LR with upscaling factor Z is obtained by a suitable 

uper-resolution deep network. 

 HR = F ( Y LR ) (6) 

F is the applied super-resolution model, which receives as in- 

ut Y LR , a low-resolution image and processes it to obtain Y LR , an

mage with a higher number of pixels, thus increasing its quality. 

ased on our proposal, we have selected the Fast Super-Resolution 

onvolutional Neural Network model (FSRCNN) [23] as one of the 

astest models to apply Super-resolution. This model has several 

ersions available for use. Each determines a particular Z upscaling 

actor ( X 2, X 3, X 4). Since the selected upscaling factor represented

y the variable Z is X2, the low-resolution image Y LR will be pro- 

essed, obtaining a new one denoted as Y HR with the double of 

ixels. The proposal submitted can be executed by modifying Z. 

owever, it is necessary to identify the context of the scene. With 

ery high Z upscaling factors, the object detection model could in- 

orrectly infer the class due to the increased size of the element. 

Next, the list of candidate regions C is set according to the cen- 

roid of each detected element initially W LR , denoted as C LR , to- 

ether with the previously determined fixed regions F r . Based on 
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Fig. 1. Workflow of the proposed technique. The Offline part is composed of the SR application and the generation of the dataset for Fine-Tuning. The Online part is 

composed of the detection performed by the retrained model. 
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hese regions, sub-images are generated to re-infer from the super- 

esolved image Y HR . 

 LR = { ( χi , ψ i ) | i ∈ { 1 , . . . , N } } (7) 

 

χi , ψ i ) = 

(
αi + γi 

2 

, 
βi + δi 

2 

)
(8) 

here χi and ψ i represent the x and y coordinates of the centroid 

btained for each of the initially detected elements of W LR . 

 = C LR ∪ F r (9) 

The center of each generated sub-image Y i matches each pair of 

ranslated coordinates denoted as ˆ C i . The center of Y i expressed in 

oordinates of Y LR is noted as C i , while the center of Y i expressed

n coordinates of Y HR is denoted 

ˆ C i according to the upscaling fac- 

or Z applied when generating the super-resolved image. 

ˆ 
 i = Z · C i (10) 

In step five, we extract from Y HR an image window Y i of the 

ame size as Y LR for each pair denoted as ˆ C i . The next step is to

pply the object detection network to set a new list of detections, 

eading to step six of the workflow: 

 HR = G ( Y ) (11) 
i 

47 
The next step is to translate the locations of each element in 

 HR from the coordinate system of Y i to the coordinate system of 

 LR . The equation that translates a point ˆ C i expressed in the coordi- 

ate system of Y i to the same point C i expressed in the coordinate 

ystem of Y LR is the following: 

 i = (χi , ψ i ) + 

1 

Z 
· ˆ C i (12) 

The list of elements with the translated coordinates is denoted 

s W HRT . 

 HRT = 

{(
αk,l , βk,l , γk,l , δk,l , λk,l , ρk,l 

) | l ∈ { 1 , . . . , N k } 
}

(13) 

αk,l , βk,l 

)
= y k + 

1 

Z 

(
ˆ αk,l , 

ˆ βk,l 

) (
γk,l , δk,l 

)
= y k + 

1 

Z 

(
ˆ γk,l , ̂

 δk,l 

)
(14) 

k,l = 

ˆ λk,l ρk,l = ˆ ρk,l (15) 

Next, in step seven, the detections comprised in the lists of de- 

ections W HRT are evaluated to determine whether they are associ- 

ted with previously undetected objects or already correspond to a 

nown detection in W . This evaluation is done by computing the 
LR 
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Fig. 2. An example applied to frame 91 of the first video, denoted as sb-camera1-0820am-0835am. The left side shows the results of the Fine Tune with the raw model, 

while the right side shows the detections after applying the Fine Tune with the outputs of the described technique using sequence one and the EfficientDet D4 model. 

Fig. 3. An example applied to frame 401 of the M30-HD sequence [27] . The left side shows the results of the Fine Tune with the raw model, while the right side shows the 

detections after applying the Fine Tune with the outputs of the described technique using sequence three and the EfficientDet D4 model. 
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1 https://github.com/IvanGarcia7/ALAF 
ntersection over union metric for each pair of detections W HRT _ j 

nd W HRT _ k : 

OU = 

Area 
(
W HRT _ j ∩ W HRT _ k 

)
Area 

(
W HRT _ j ∪ W HRT _ k 

) (16) 

A pair of detections W HRT _ j and W HRT _ k are associated with the 

ame object if and only if IOU > θ , where the threshold θ must 

e adjusted. After that, the final set of detections W 

′ 
HRT is obtained 

y collecting the remaining after removing duplicates. The cluster 

forms a list with the detections obtained for each element. The 

etection with the highest score for each is selected. 

.2. Fine-tuning by automatically labeled training data 

Subsequently, as detailed in step eight of the workflow, an au- 

omated procedure to generate a labeled training dataset for fine- 

uning an object detection network is proposed. Once a set of high- 

uality detections W 

′ 
HRT 

is obtained from the subsystem described 

n Section 2.1 , it is employed as the training set. 

 

′ 
HRT = { ( αi , βi , γi , δi , λi , ρi ) | i ∈ { 1 , . . . , N } } (17) 

Finally, the detections are converted to the required format to 

enerate the files for Fine-Tuning the model. The motivation be- 

ind this is that the set of high-quality detections contains more 

etections with higher confidence than the set of detections ob- 

ained by the original object detection network W LR . Therefore, 

ne-tuning the network with W 

′ 
HRT 

is expected to result in a higher 

ccuracy of the fine-tuned object detection network, as seen in 

he image given as output by the model after being retrained; see 

igs. 2 and 3 for more details, in which the qualitative results ob- 
48 
ained with our proposal increases the number of elements de- 

ected and the average class score. A quantitative comparison of 

ur approach has been performed; see Tables 1 and 2 . The official 

mplementation is publicly available in the repository. 1 

. Experiments 

Our objective is to determine the effectiveness based on the 

umber of detections and the class score of the detected elements. 

or this purpose, sequences captured by video surveillance systems 

ave been selected to apply our proposal. A comparison has been 

ade between the following methods: 

• Original Model: The direct application of the unmodified raw 

object detection model. 
• Original Model + Fine-Tuning: Re-training the model with the 

outputs previously provided by the RAW model. 
• SR Enhancement Only: Our previously proposed meta-method 

[24] . 
• Proposed: The proposed technique is based on re-training the 

model, using the automatically labeled dataset provided by the 

enhancement using Super-resolution, see Fig. 1 for more details. 
• SAHI: Slicing Aided Hyper Inference [22] . This proposal is de- 

signed for the Yolo and FRCNN Convolutional Neural Network. 

In this section, a comparative analysis is performed according 

o the accuracy obtained between the direct application of the 

odel and our methodology presented. The main difference be- 

ween the Original Model + Fine Tuning and our proposal is mainly 

https://github.com/IvanGarcia7/ALAF
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Table 1 

The total number of elements in the sequence, average detections, normalized average class score, population standard deviation, and average sub-images are pro- 

cessed per frame by the different techniques proposed using the EfficientDet D4 model. The best results are marked in bold . 

EfficientDet D4 - class car - score > 40 % 

Total number 

elements Average detections 

Normalized average 

class score 

Average sub-images 

Processed per frame 

Seq. 1 - NGSIM 

sb-camera1- 

0820am-0835am 

Ground Truth 6292 – – –

Original Model 398 2.503 ± 1.466 3.142 ± 1.975 1 

SR Enhancement Only 4087 23.090 ± 5.214 35.829 ± 6.855 35 

Original Model + Fine-Tuning 4947 27.949 ± 3.107 51.406 ± 4.498 1 

Proposed 6011 33 . 960 ± 3 . 496 66 . 310 ± 3 . 321 1 

YOLOv5 [28] + SAHI [29] 1453 8.256 ± 3.359 12.125 ± 5.207 9 

FRCNN [30] + SAHI [29] 2325 13.136 ± 4.625 23.232 ± 8.095 9 

Seq. 2 - NGSIM 

sb-camera2- 

0820am-0835am 

Ground Truth 4438 – – –

Original Model 632 4.104 ± 2.184 7.075 ± 4.480 1 

SR Enhancement Only 2968 19.026 ± 4.891 40.826 ± 8.400 28 

Original Model + Fine-Tuning 2833 18.160 ± 4.209 39.517 ± 6.844 1 

Proposed 4142 26 . 551 ± 4 . 799 71 . 051 ± 5 . 030 1 

YOLOv5 [28] + SAHI [29] 887 5.836 ± 2.905 11.030 ± 6.075 9 

FRCNN [30] + SAHI [29] 1129 7.237 ± 2.867 16.624 ± 6.118 9 

Seq. 3 - NGSIM 

sb-camera3- 

0750am-0805am 

Ground Truth 3810 – – –

Original Model 614 4.234 ± 2.216 7.613 ± 4.305 1 

SR Enhancement Only 1808 12.053 ± 4.161 25.817 ± 8.546 25 

Original Model + Fine-Tuning 1787 11.913 ± 3.192 25.697 ± 7.193 1 

Proposed 2944 19 . 627 ± 3 . 509 48 . 510 ± 5 . 649 1 

YOLOv5 [28] + SAHI [29] 610 4.357 ± 2.364 8.638 ± 4.688 9 

FRCNN [30] + SAHI [29] 2017 13.447 ± 4.647 32.454 ± 10.925 9 

Seq. 4 - NGSIM 

sb-camera4- 

0820am-0835am 

Ground Truth 4803 – – –

Original Model 203 1.990 ± 1.080 2.886 ± 1.819 1 

SR Enhancement Only 1632 10.953 ± 4.007 19.426 ± 6.984 20 

Original Model + Fine-Tuning 1077 7.086 ± 2.409 11.443 ± 4.151 1 

Proposed 2558 16 . 829 ± 3 . 572 30 . 940 ± 6 . 066 1 

YOLOv5 [28] + SAHI [29] 147 1.564 ± 0.929 2.558 ± 1.383 9 

FRCNN [30] + SAHI [29] 1869 12.296 ± 4.256 25.042 ± 7.374 9 

GRAM-M30HD Ground Truth 3892 – – –

Original Model 540 5.870 ± 2.983 9.640 ± 5.317 1 

SR Enhancement Only 1262 13.570 ± 4.519 22.662 ± 7.235 21 

Original Model + Fine-Tuning 1163 12.505 ± 3.996 25.744 ± 8.400 1 

Proposed 2272 24 . 430 ± 5 . 260 43 . 243 ± 8 . 933 1 

YOLOv5 [28] + SAHI [29] 1711 18.398 ± 4.192 31.228 ± 7.038 24 

FRCNN [30] + SAHI [29] 2592 27.871 ± 5.571 56.874 ± 9.600 24 
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2 https://github.com/tensorflow/models/blob/master/research/object _ detection/ 

g3doc/tf2 _ detection _ zoo.md 
3 https://www.fhwa.dot.gov/publications/research/operations/07030/index.cfm 
ased on the dataset used to perform the fine-tuning of the model. 

ince our proposal considers re-training, to be fair, when perform- 

ng the comparison, we have exclusively applied the automatic re- 

raining part described in Section 2.2 to the original model. Orig- 

nal Model + Fine Tuning uses the outputs provided by the direct 

pplication of the model (Raw) without implementing any addi- 

ional technique. According to our proposal, it is first used in an 

ffline phase to improve the number of elements detected and the 

uality of the detections. Therefore, a dataset will be generated 

ully automatically with a more significant number of elements 

hat the model will learn about and that, at first, were not ini- 

ially detected. See Fig. 1 for more details about the framework. In 

ddition, a comparison is made between the first version, García- 

guilar et al. [24] and the present proposal. There are several dif- 

erences, highlighting mainly the implementation of fixed regions 

o re-infer along the entire image, the inclusion and improvement 

f the clustering algorithm for coincident grouping elements, and 

he new phase of labeled data generation and re-training included 

n the methodology presented in Section 2 . During experiments, 

n SGD optimizer with a learning rate between 0.002 and 0.005, a 

omentum of 0.9, and a linear warmup of 500 iterations are used. 

dditionally, the competitor known as SAHI is considered. 

.1. Pre-trained model 

Even though our proposal can be applied using any neural 

CNN-based object detection model to carry out our experiments, 

fficientDet D4 [25] was selected as a pre-trained model. It is the 

ost suitable one according to the size of the images given as 
49 
nput and its accuracy in detecting initial elements of the road 

n which the vehicles circulate. This pre-trained model has been 

btained from the Tensorflow Model Zoo repository. 2 These mod- 

ls have been trained with the COCO dataset (Common Objects in 

ontext) [26] . The COCO dataset comprises a wide range of chal- 

enging realistic images, consisting of various disorganized scenes. 

hese scenes highlight mainly for having a high diversity, show- 

ng objects of diverse scale and overlapping on certain occasions. 

hese facts allow training object detection models in realistic en- 

ironments. It is widely used in several machine learning projects, 

laying an essential task in Deep Learning applications, such as ob- 

ect detection. 

Based on the selected video sequences ( Section 3.2 ), when per- 

orming the fine-tuning of the pre-trained model, the number of 

lasses has been restricted from the initial 90 classes in the COCO 

ataset [26] to 4 (car, truck, motorcycle, and bus) since they are 

he most probable classes in traffic scenes. The car class was se- 

ected for the experimentation phase since the number of vehicles 

elonging to this class was higher in the selected video sequences. 

.2. Video sequences 

Four video sequences from US Highway 101 (NGSIM) Dataset 3 

nd an additional sequence named M30-HD from the GRAM 

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://www.fhwa.dot.gov/publications/research/operations/07030/index.cfm
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Table 2 

Mean average precision (mAP) for the five tested sequences (higher is better). The best results are marked in bold . Fine-Tuning has been performed using the outputs 

provided by the EfficientDet D4 model. 

Mean average precision (mAP) - EfficientDet D4 - score > 35 % 

IoU = 0.50:0.95 | 
area = all 

IoU > 0.50 | 
area = all 

IoU > 0.75 | 
area = all 

IoU = 0.50:0.95 | 
area = Small 

IoU > 0 . 50 | 
area = Medium 

Seq. 1 - NGSIM 

sb-camera1- 

0820am-0835am 

Original Model 0.145 0.188 0.187 0.137 0.218 

SR Enhancement Only 0.470 0.697 0.588 0.468 0.484 

Original Model + Fine-Tuning 0.555 0.821 0.732 0.562 0.490 

Proposed 0.643 0.944 0.879 0.647 0.608 

YOLOv5 [28] + SAHI [29] 0.181 0.247 0.232 0.180 0.229 

FRCNN [30] + SAHI [29] 0.155 0.237 0.188 0.158 0.176 

Seq. 2 - NGSIM 

sb-camera2- 

0820am-0835am 

Original Model 0.214 0.277 0.275 0.189 0.288 

SR Enhancement Only 0.519 0.721 0.669 0.510 0.541 

Original Model + Fine-Tuning 0.476 0.683 0.622 0.451 0.546 

Proposed 0.647 0.926 0.875 0.637 0.682 

YOLOv5 [28] + SAHI [29] 0.171 0.237 0.221 0.172 0.168 

FRCNN [30] + SAHI [29] 0.139 0.211 0.176 0.146 0.126 

Seq. 3 - NGSIM 

sb-camera3- 

0750am-0805am 

Original Model 0.196 0.305 0.239 0.199 0.139 

SR Enhancement Only 0.333 0.546 0.384 0.342 0.199 

Original Model + Fine-Tuning 0.326 0.554 0.360 0.335 0.204 

Proposed 0.524 0.818 0.679 0.535 0.406 

YOLOv5 [28] + SAHI [29] 0.109 0.177 0.124 0.111 0.050 

FRCNN [30] + SAHI [29] 0.125 0.219 0.134 0.131 0.032 

Seq. 4 - NGSIM 

sb-camera4- 

0820am-0835am 

Original Model 0.072 0.109 0.092 0.079 0.033 

SR Enhancement Only 0.251 0.395 0.301 0.264 0.149 

Original Model + Fine-Tuning 0.169 0.297 0.181 0.172 0.136 

Proposed 0.382 0.592 0.501 0.401 0.241 

YOLOv5 [28] + SAHI [29] 0.025 0.039 0.028 0.026 0.000 

FRCNN [30] + SAHI [29] 0.057 0.086 0.069 0.063 0.024 

GRAM-M30HD Original Model 0.125 0.168 0.146 0.049 0.724 

SR Enhancement Only 0.218 0.355 0.229 0.152 0.744 

Original Model + Fine-Tuning 0.186 0.305 0.197 0.112 0.756 

Proposed 0.260 0.510 0.241 0.191 0.746 

YOLOv5 [28] + SAHI [29] 0.230 0.416 0.228 0.169 0.685 

FRCNN [30] + SAHI [29] 0.240 0.503 0.208 0.185 0.664 
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ataset [27] have been selected to test our proposal. NGSIM videos 

ave been captured by highway video surveillance systems from a 

igh perspective and belong to the U.S. Department of Transporta- 

ion. These systems collect a series of sequences with many small 

ehicles. It has a total duration of about 15 min. Images for val- 

dation have been annotated (632 manually labeled images with 

 total of 19,343 vehicles) 4 to evaluate our proposal by obtaining 

he Mean Average Precision ( mAP ) once the fine-tuning has been 

pplied. An appropriate time margin has been allowed to ensure 

he same vehicle from the evaluation set does not appear in the 

raining set. The training dataset is generated from the following 

rames by applying our proposal. In addition, 3892 elements have 

een manually labeled for the GRAM sequence M30-HD to perform 

he evaluation. 

.3. Evaluation 

To compare the effectiveness of the presented proposal from a 

uantitative point of view, the number of elements that compose 

he selected sequences has been determined, as well as the aver- 

ge number of detections per frame and the normalized class score 

btained for them. This process has been performed for the five 

hosen video sequences in Table 1 . 

The evaluation of COCO 

5 has been considered. This evaluator is 

idely used to evaluate the performance obtained by the selected 

odel. The metric studied in this section is the mean average pre- 

ision (mAP). It is complex because it is calculated in several steps. 
4 https://github.com/IvanGarcia7/NGSIM- Dataset- Annotations 
5 https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/ 

ocoeval.py 

c

p

G

m

50
irst, the coincidence of the detections obtained is matched to the 

round Truth (GT) according to the degree of IoU. After calculat- 

ng the true positives, as well as false positives and negatives, a 

recision-recall curve is generated. Finally, the accuracy of each 

lass is calculated, and it’s mean is computed. This evaluator per- 

orms a much more complex analysis since it calculates the mAP 

or 10 IoU thresholds, covering a range from 0.5 to 0.95 with a step 

ize of 0.05. In evaluating a model, generating metrics for several 

hresholds is more accurate because calculating only one of them 

akes it possible to induce a bias in the evaluation metric, becom- 

ng indulgent with it. Table 2 on page 6 shows a comparison of 

he mean average precision (mAP) obtained for sequences 1, 2, 3, 

, and M30-HD. The results obtained by each proposal are shown. 

he tests have been performed using an Nvidia Geforce RTX 3080 

i. 

.4. Results 

According to Table 1 , we can affirm that our proposal de- 

ects a more significant number of elements. As can be seen, 

he number of average detections identified for each frame is 

igher. For example, we have obtained an average of ≈ 34 ve- 

icles for sequence one, compared to the ≈ 3 detected by the 

riginal model. The dataset used to apply our proposal con- 

ains elements that a priori were not identified. This is why, 

hen fine-tuning the model, it learns from them and can iden- 

ify them later. Using sequence number two as an example, we 

an determine that the number of elements detected by our 

roposal is close to the number of elements defined by the 

T. 

Under the established proposal, the normalized class score is 

uch higher, obtaining average reliability of 66.31% in the de- 

https://github.com/IvanGarcia7/NGSIM-Dataset-Annotations
https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/cocoeval.py
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ected elements for sequence one with our proposal compared to 

.142% obtained by the original model. This is also the case for the 

ther sequences in which the experimentation phase has been per- 

ormed. 

Another aspect to consider is the inference time required by 

ach compared technique. In Table 1 , SR enhancement only based 

n the exclusive application of super-resolution is not valid in sce- 

arios where real-time element detection is required because it 

eeds to re-infer on the several sub-images generated. For this rea- 

on, this considerably increases the time required when process- 

ng a single frame. For example, sequence one, shown in Table 1 , 

nown as SR Enhancement Only , requires re-infer on 35 sub-images 

reated from the input frame. Therefore, it is possible to affirm that 

pplying our proposal once the offline process has been performed 

oes not increase the time required to process a frame since higher 

ccuracy precision rates are achieved by inferring only once on the 

nput image. 

Applying the COCO evaluator, Table 2 is obtained. We can de- 

ermine that the metrics obtained by our proposal outperform the 

est. Using sequence number two as an example, we go from an 

verage mAP of 27.7% by the raw model to 92.6% obtained after 

pplying our proposal. This happens in the rest of the sequences. 

t should be highlighted that the application of our proposal not 

nly improves the detections in small objects since the rest of the 

elds also increase the accuracy obtained. 

Qualitative examples of one of the frames of sequences 1, 3, 

nd M30-HD are used to perform the experimental phase and are 

hown in Figs. 2 and 3 . The number of elements detected in the

mage is higher. In addition, the normalized class inference estab- 

ished for each element also increases. 

. Conclusions 

This work proposes a methodology to automatically adapt any 

bject detection model, without modifying its architecture, to a 

pecific scene with small objects with no human intervention. An 

ffline super-resolution strategy is first applied to find detection 

xamples from the scene, even if the object detection method can- 

ot detect them from the original image. The new examples are 

hen used as training data to perform a fine-tuning process from 

 general-purpose pre-trained object detection method. In the on- 

ine phase, the model only needs to infer once on the input im- 

ge compared to other techniques. It is recommended in sequences 

aptured by video-surveillance systems. 

To test the proposal, experiments with five video sequences 

ave been done to test each method section’s utility. The results 

upport our proposal by showing an outstanding improvement in 

ean Average Precision (mAP) values when applied with no asso- 

iated processing time increase since, after being re-trained, it only 

equires inferring on the frame once. 

Studies with other CNN-based object detection methods could 

e performed in future work. Since the initial data collection 

ethod based on SR enhancement is offline, an ensemble of ob- 

ect detection methods could be used to get a better fine-tuning 

raining dataset. 
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