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Abstract
We show a property on the null cones in a Lorentzian manifold near a conjugate point,
which contributes to the understanding of the behaviour of the exponential map. We
also give an analogous property in the Riemannian case.
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1 Introduction

An important fact about the behaviour of the exponential map in a Riemannian man-
ifold is that it is never injective near a conjugate point. In fact, if expp0 is singular at
v ∈ Tp0M , then it is not injective on any neighbourhood of v, [23]. This result goes
back ninety years ago to the works of Morse and Littauer [18] and Savage [21]. It was
generalized to the Lorentzian setting in [22] in the case v is timelike or lightlike.

Recall that this is not a general behaviour of a map at a singular point. An easy
example, given also in [23], is the map ϕ : R

2 → R
2 defined by ϕ(x, y) = (x3, y),

which has a singular point at (0, 0) but it is injective.
In order to get similar properties on the behaviour of the exponential map in a

Lorentzian or Riemannian manifold, we deal with null hypersurfaces. Recall that a
null hypersurface of a Lorentzian manifold is a hypersurface such that the inherited
metric is degenerated. They constitute a distinguished family of hypersurfaces and they
are a key geometric structure in Physics.Null hypersurfaces have been extensively used
in the study of black hole and other topics in General Relativity.
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On the other hand, a null cone with vertex at a point p0 in a Lorentzian manifold is
the set formed by null geodesics emanating from p0 such that their initial velocities
are in the same timecone than a fixed timelike vector e0. It can be seen as the image by
the exponential map at p0 of a embedded hypersurface in Tp0M , namely, the lightlike
cone of e0. A null cone is a null hypersurface near the vertex, but we cannot ensure the
same in a neighbourhood of a null conjugate point since it is the image of a singular
point. However, a priori, we can not ensure the contrary either and there are not reasons
to think that the null cone is not an embedded null hypersurface, even if it contains a
null conjugate point. The following easy example can be useful to clarify the above
issue. Take ϕ : R

2 → R
3 given by ϕ(x, y) = (

x, y3, x3
)
. The point (0, 0) is a singular

point, but the image of ϕ is an embedded surface in R
3. Hence, we may wonder the

following.

Question 1 Can be a null cone, regarded as a subset of M, be considered as a smooth
(null) hypersurface despite the presence of null conjugate points?

The lack of the injectivity near a conjugate point proven in [22] seems to suggest
that the question posed above has a negative answer. However there are examples of
maps which are not injective around a singular point but their images are embedded
hypersurfaces. Indeed, take ϕ : R

2 → R
3 given by ϕ(x, y) = (x2 − y2, xy, 0). It has

an isolated singular point at (0, 0), it is not injective in any neighborhood of (0, 0) and
ϕ(R2) = {(x, y, 0) ∈ R

3 : x, y ∈ R} is an embedded surface in R
3. Moreover, we

can check that

ϕ
(
{(x, y) ∈ R

2 : x4 + y4 < R2}
)

= {(x, y, 0) ∈ R
3 : x2 + 2y2 < R2}

for all R > 0. Therefore, there are arbitrary small neighbourhoods of the singular
point (0, 0) such that its image is an embedded hypersurface in R

3.
Summarizing, Question (1) deserves a detailed study because it is more subtle that

it seems and its answer unveils a nice property of null cones.
In Corollary 1 we prove that the answer to Question (1) is actually negative. In other

words, the presence of a null conjugate point to the vertex destroys the hypersurface
structure of the null cone. Indeed, we prove in Theorem 1 a little more general fact.
We show that there is no neighbourhood of a singular point in the null cone of the
exponential map which image is contained in a null hypersurface. To prove this, we
use as a key tool the rigging technique introduced by the authors for null hypersurfaces
in [10] and for null submanifolds in [17] (see [14] for a review). It consists in defining
a Riemannian metric on the null hypersurface from an arbitrary chosen transverse
vector field called rigging. This allows us to use Riemannian techniques to study null
hypersurfaces, which opens up a wide range of possibilities. In the proof of Theorem
1, assuming the contrary of its statement, we construct a Riemann metric such that its
curvature diverges as we approach the conjugate point, which gives us a contradiction.

In the last section we prove an analogous result for a Riemannian manifold. In
this case, geodesic spheres (the image by the exponential map of a sphere in the
tangent space) are considered. We show in Theorem 2 that there is no neighbourhood
of a singular point of the exponential map such that it is injective and its image is
a hypersurface, always restricted to a sphere in the tangent space. In the proof, we
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suppose the existence of such neighbourhood and we construct a null hypersurface
which contains a piece of the null cone in the Lorentzian direct product formed by a
R factor and the Riemannian manifold. This allows us to apply Theorem 1 to get a
contradiction.

2 Null hypersurfaces

All hypersurface considered in this paper are embedded. A null hypersurface is a
hypersurface such that the induced metric tensor from the ambient space (M, g) is
degenerated at each point. Due to this degeneracy, the orthogonal complement of the
tangent space is contained in its tangent space itself, so this type of hypersurfaces can
not be handled as timelike or spacelike submanifols. The study of null hypersurfaces
needs the choice of some arbitrary geometric objects. The rigging technique intro-
duced in [10] tries to minimize this arbitrariness inducing all the needed geometric
objects from only one choice. It consists on fixing a vector field ζ defined on an open
set containing the null hypersurface L (alternatively, it can be defined only on L if
necessary) such that ζp /∈ TpL for all p ∈ L , which is called a rigging for L . If we
call α the metrically equivalent one-form to ζ and ω = i∗α, where i : L → M is the
canonical inclusion, then

g̃ = i∗g + ω ⊗ ω

is a Riemannian metric on L . It can be used as an auxiliary tool to study null hyper-
surfaces and their interactions with the ambient space, see for example [1–5, 7, 12,
13, 15, 19]. It have also been used to construct some geometrical structures such as
contact and Sasaki structures on a null hypersurface, [6].

The g̃-metrically equivalent vector field to ω, which we denote by ξ , is unitary and
it is called the rigged vector field induced by ζ . It is also characterized as the unique
null vector field ξ ∈ X(L) normalized by

g(ξ, ζ ) = 1. (1)

We define a screen distribution given by Sp = TpL ∩ ζ⊥
p for all p ∈ L , which is a

spacelike distribution such that TpL = Sp ⊕ span{ξp}.
Both the screen distribution as the null section ξ can be constructed in a local

and independent way without using a rigging, [9]. However, we can achieve a good
coupling if both come from a rigging. On the other hand, given a null hypersurface
maybe it does not exist a globally defined rigging for it, but it always exists at least
locally. In a spacetime, any timelike vector field is an example of a rigging for any
null hypersurface, showing that riggings are abundant.

The rigged vector field holds ∇ξ ξ = −τ(ξ)ξ , where τ is the one-form given by
τ(U ) = −g(∇U ξ, ζ ) for all U ∈ X(L), [9, 10]. Thus, ξ is a pre-geodesic vector field
and the null hypersurface is foliated by null geodesics. The rigged vector field is used
to define the null second fundamental form of L as B(u, v) = −g(∇uξ, v) for all
u, v ∈ TpL and p ∈ L .
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If ζ ′ is another rigging for L , then a simple calculation shows that its induced rigged
vector field and its null second fundamental form are related to those of ζ by

ξ ′ = 1

g(ξ, ζ ′)
ξ, (2)

B ′ = 1

g(ξ, ζ ′)
B. (3)

In particular, if we change the sign of the rigging, then the rigged vector field and
the null second fundamental form change their sign. We can also express the one-form
τ ′ in terms of τ under a simple rigging change. If f ∈ C∞(L) is a never vanishing
function and we consider ζ ′ = 1

f ζ , then

τ ′ = τ − d f

f
,

thus

τ ′(ξ ′) = f τ(ξ) − d f (ξ). (4)

In [17] it is shown how all geometric objects of a null hypersurface are affected
under a general change of the rigging.

A careful choice of the rigging provides us with simple relationships between the
null hypersurface and the Riemannian manifold (L, g̃). We say that the rigging ζ is
closed if its g-metrically equivalent one-form α is closed, dα = 0. In this case, the
screen distribution is integrable and the rigged vector field is g̃-geodesic. Moreover,
we have the following key result.

Lemma 1 ([10]) Let ζ be a closed rigging for a null hypersurface L.

1. The second fundamental form of the leaves of the screen distribution, as hypersur-
faces of (L, g̃), is Ĩ(X ,Y ) = B(X ,Y )ξ for all X ,Y ∈ S.

2. The sectional curvature of a plane � = span{v, ξ} in (L, g̃) is given by

K̃ (�) = Kξ (�) − τ(ξ)
B(v, v)

g(v, v)
,

where Kξ denotes the null sectional curvature respect to ξ .

Recall thatKξ (�) = g(Rvξ ξ,v)

g(v,v)
, which does not depend on the chosen spacelike vector

v ∈ �.
Wecan always ensure locally the existenceof a closed rigging for a null hypersurface

but, for example, its global existence is not possible for compact hypersurfaces in
simply connected Lorentzian manifolds, [10, 17].
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3 Non-regularity of a null cone at null conjugate points

Let p0 ∈ M be a point and e0 ∈ Tp0M a fixed timelike vector. We call

Ĉe0 = {u ∈ Tp0M : g(u, u) = 0, g(u, e0) < 0}

the tangent null cone of e0. The null cone of e0 with vertex at p0 is

Ce0 = expp0
(
	̂ ∩ Ĉe0

)
,

where 	̂ is the maximal definition domain of expp0 . In other words, it is the set of
points that can be reached by a null geodesic from p0 such that its initial velocity is
a null vector with the same time orientation as e0. Another non-equivalent definition
frequently used in the literature for a (future) null cone in a time-orientable Lorentzian
manifold is ∂ I+(p0), i.e. the border of the chronological future of p0. If M is globally
hyperbolic and e0 is future pointing, then ∂ I+(p) ⊂ Ce0 , [11].

On the other hand, if θ = expp0(θ̂) is a normal neighborhood of p0, where 0 ∈
θ̂ ⊂ Tp0M , then a local null cone of e0 with vertex at p0 is

Cl
e0 = expp0

(
θ̂ ∩ Ĉe0

)
.

It is well-known that the existence of a conjugate point is equivalent to the existence
of a singular point of the exponential map expp0 : 	̂ → M . The same is true if we
restrict to the null cone.

Proposition 1 Takeu ∈ 	̂∩Ĉe0 and thenull geodesicγ (t) = expp0(tu). The following
are equivalent.

1. γ (1) is a conjugate point to p0 along γ (t).
2. The point u is a singular point of expp0 : 	̂ ∩ Ĉe0 → M.
3. The point u is a singular point of expp0 : 	̂ → M.

Proof We only sketch 1 ⇒ 2. The rest is well-known.
Take J (t) a Jacobi vector field along γ with J (0) = J (1) = 0 and express it as

J (t) = d
ds expp0(t(u+sv))|s=0 for a certain v ∈ Tp0M . We have that

(
expp0

)
∗u (v) =

J (1) = 0, where here v is considered in TuTp0M . Since γ ′(1) = (
expp0

)
∗u (u), using

the Gauss Lemma we get

0 = g(J (1), γ ′(1)) = g(
(
expp0

)
∗u (v),

(
expp0

)
∗u (u)) = gp(v, u),

which means that v is tangent to Ĉe0 at u. Therefore, u is a singular point of expp0 :
	̂ ∩ Ĉe0 → M . ��

If p = expp0(u) ∈ Ce0 is not a conjugate point along the null geodesic expp0(tu),
then there are open sets Û ,U with u ∈ Û ⊂ 	̂ and p ∈ U ⊂ M such that expp0 :
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Û → U is a diffeomorphism. In this situation, we call

CR
e0(p) = expp0

(
Û ∩ Ĉe0

) ⊂ Ce0

a regular part of the null cone through p. Observe that it can exist different regular
parts through a point due to the existence of null crossing points, [11]. Locally it looks
like two or more leaves crossing transversely through a point. It is clear that local null
cones and regular parts of null cones are null hypersurfaces.

Suppose that expp0 : Û → U is a diffeomorphism, where Û ⊂ Tp0M andU ⊂ M
are open sets. We can consider the function h : U → R and a vector field P ∈ X(U )

given by

h(expp0(v)) = −g(e0, v),

Pexpp0 (v) = (
expp0

)
∗v

(v),

for all v ∈ Û . They are called height function and position vector field respectively.
If we restrict them to a regular part of the null cone CR

e0(p), with p ∈ Ce0 , then P is a
null vector field tangent to CR

e0(p) and h is positive.

Lemma 2 Let γ : [0, a] → M be the null geodesic given by γ (t) = expp0(tu), where

u ∈ Ĉe0 with g(e0, u) = −1. If p = γ (t0) ∈ Ce0 , with 0 < t0 < a, is not a null
conjugate point to p0 along γ , then ζ 0 = ∇h is a rigging for the regular part of the
null cone CR

e0(p) and its rigged vector field is ξ0 = 1
h P, which is g-geodesic and it

holds ξ0γ (t) = γ ′(t).
Moreover, if J : [0, a] → T M is a Jacobi vector field along γ with J (0) = 0 and

J (t0) ⊥ γ ′(t0), then the null second fundamental form B0 associated to ξ0 holds

B0(J (t0), J (t0)) = −g(J ′(t0), J (t0)).

Proof Let Û ⊂ Tp0M be an open set such that expp0 : Û → U is a diffeomorphism
with t0u ∈ Û . If we take an arbitrary v ∈ Û ∩ Ĉe0 with g(e0, v) = −1 and the null
geodesic α(t) = expp0(tv), then h(α(t)) = t . Since α′(t) = 1

t Pα(t), then the above
means that g(ζ 0, Pα(t)) = t and so ζ 0 is a rigging in CR

eo(p) with rigged vector field

ξ0 = 1
h P . Finally, α

′(t) = ξ0, showing that ξ0 is g-geodesic.
For the second part, call w = J (t0). If w = 0, then the formula holds trivially, so

we suppose w �= 0. Consider the geodesic variation

X : [0, a] × (−ε, ε) → M

given by X(t, s) = expp0(t(u + sŵ)), where ŵ ∈ Tp0M is such that Xs(t0, 0) =(
expp0

)
∗t0u

(t0ŵ) = w. Since Xs(t, 0) is a Jacobi vector field along γ (t) with

Xs(0, 0) = 0, a uniqueness argument implies J (t) = Xs(t, 0) for all t ∈ [0, a],
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[20]. Now, we have that

Xt (t, s) = (
expp0

)
∗t(u+sŵ)

(u + sŵ) = 1

t
PX(t,s).

Therefore, evaluating at (t0, 0), (for the two parameter map formalism see [20,
Chapter 4]), we have

g(∇wP, w) = t0g(Xts(t0, 0), Xs(t0, 0)) = t0g(Xst (t0, 0), Xs(t0, 0))

= t0g(J
′(t0), J (t0)),

thus B0(J (t0), J (t0)) = −g(J ′(t0), J (t0)). ��
Lemma 3 Let γ : [0, a] → M be the null geodesic given by γ (t) = expp0(tu),

where u ∈ Ĉe0 , and suppose that γ (a) is a null conjugate point to p0 along it. If
J : [0, a] → T M is a nonzero Jacobi vector field along γ with J (0) = J (a) = 0 then
J ′(a) is spacelike and there is ε > 0 such that g(J (t), J ′(t)) < 0 for all t ∈ (a−ε, a).

Proof Since J (0) = J (a) = 0, a well-known property on Jacoby fields implies that
both J (t), J ′(t) ⊥ γ ′(t), so J ′(t) is zero, spacelike or null for each t ∈ [0, a]. Since
J is not identically zero, J ′(a) �= 0. If it were null, then J ′(a) = λγ ′(a) for some
constant λ �= 0, but this jointly with the condition J (a) = 0 implies J (t) = λ(t −
a)γ ′(t) in contradictionwith J (0) = 0. Thus, the only possibility is g(J ′(a), J ′(a)) >

0.
On the other hand, if we call r(t) = g(J (t), J ′(t)) then r(a) = 0 and r ′(a) > 0,

so there is ε > 0 such that g(J (t), J ′(t)) < 0 for all t ∈ (a − ε, a). ��
Lemma 4 Let L be a null hypersurface and fix a rigging for it. Suppose that γ :
[0, a] → L is a null geodesic and J : [0, a] → T L is a vector field along γ such that
J (a) = 0, J ′(a) �= 0 and J ′(a) ∦ γ ′(a). Then there exists ε > 0 such that J (t) ∦ γ ′(t)
for all t ∈ (a − ε, a) and

lim
t→a− K̃ (span{γ ′(t), J (t)}) = K̃ (span{γ ′(a), J ′(a)}),

lim
t→a− Kγ ′(t)(span{γ ′(t), J (t)}) = Kγ ′(a)(span{γ ′(a), J ′(a)}),

where K̃ is the sectional curvature of the riggedmetric g̃ andKγ ′(t) is the null sectional
curvature associated to γ ′(t).

Proof Take a g-parallel translated orthonormal basis E1, . . . , En : [0, a] → T M
along γ and write J (t) = ∑n

i=1 λi (t)Ei (t) for all t ∈ [0, a] and some func-
tions λi : [0, a] → R. The lemma easily follows because the vector field V (t) =∑n

i=1 hi (t)Ei (t), where hi (t) = ∫ 1
0 λ′

i (a + s(t − a))ds, yields J (t) = (t − a)V (t)
and V (a) = J ′(a). ��
Lemma 5 Givenanull hypersurface L andapoint q ∈ L, there exists a neighbourhood
U of q in M and a closed timelike rigging ζ ∈ X(U ) such that τ(ξq) �= 0.
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Proof We can take a function f ∈ C∞(U ) defined in some open neighbourhoodU of
q with ∇ f timelike, so ζ = ∇ f is a closed rigging for L . Moreover, we can suppose
that f is positive in U . If τ(ξq) �= 0 we are done. If τ(ξq) = 0, using Equations (1)
and (4), the rigging ζ ′ = ∇ ln f = 1

f ζ has the required properties. ��
Now we are ready to prove the main result of this paper.

Theorem 1 Let p0 ∈ M and q = expp0(au) ∈ Ce0 a conjugate point to p0 along

the null geodesic γ (t) = expp0(tu), where u ∈ Ĉe0 with g(e0, u) = −1. It does not
exist any open set Û ⊂ Tp0M with au ∈ Û and a null hypersurface L such that

expp0(Û ∩ Ĉe0) ⊂ L.

Proof Suppose on the contrary that there is an open set Û ⊂ Tp0M and a null hyper-
surface L such that expp0(Û∩Ĉe0) ⊂ L . Using Lemma 5 and shrinking it if necessary,
we can take a closed rigging ζ for L with associated rigged vector field ξ such that
τ(ξq) �= 0.

We consider a nonzero Jacobi vector field J : [0, a] → T M along γ with J (0) =
J (a) = 0. We have that J (t) ⊥ γ ′(t) and J (t) ∦ γ ′(t) for all t ∈ (0, a). Moreover,
since conjugate points are isolated along γ [8, Theorem 10.77], there is ε > 0 such
that J (t) �= 0 for all t ∈ (a − ε, a). By hypothesis γ (t) ∈ L for t with tu ∈ Û , so we
can suppose that γ (t) ∈ L for all t ∈ (a − ε, a).

Take a regular part of the null cone CR
e0(γ (t0)) ⊂ L for a fixed t0 ∈ (a − ε, a).

Since CR
e0(γ (t0)) is a null hypersurface, it is an open subset of L and so it contains a

geodesic segment γ|(t0−δ,t0+δ)
. Consider the rigging ζ 0 for CR

e0(γ (t0)) given by Lemma

2 with its associated rigged vector field ξ0. In CR
e0(γ (t0)) we have two rigged vector

fields, ξ0 and ξ . Thus, for t ∈ (t0 − δ, t0 + δ) we have from Eqs. (2) and (3) that
ξγ (t) = f (t)ξ0γ (t) and Bγ (t) = f (t)B0

γ (t), where

f (t) = 1

g(ξ0γ (t), ζγ (t))
= 1

g(γ ′(t), ζγ (t))
. (5)

Observe that f is defined for all t ∈ (t0, a) and

lim
t→a− f (t) = 1

g(γ ′(a), ζq)
�= 0.

Now, from Lemma 2 we have

Bγ (t0)(J (t0), J (t0)) = − f (t0)g(J
′(t0), J (t0)).

If we consider the rigged metric induced from ζ in L , then applying Lemma 1 we
have that the sectional curvature of the plane �t0 = span{γ ′(t0), J (t0)} is

K̃ (�t0) = f (t0)
2Kγ ′(t0)(�t0) + f (t0)τ (ξγ (t0))

g(J ′(t0), J (t0))

g(J (t0), J (t0))
. (6)
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Using L’Hôpital’s rule and Lemma 3, we get

lim
t→a−

g(J ′(t), J (t))

g(J (t), J (t))
= lim

t→a−
g(J ′(t), J ′(t))
2g(J ′(t), J (t))

= −∞,

so if we let t0 tend to a in Eq. (6) and we take into account Lemma 4, we get a
contradiction. ��

As a collorary, we get that if there are conjugate points, then the null cone, regarded
as a subset of M , can not be considered a null hypersurface.

Corollary 1 Let p0 ∈ M and q = expp0(au) ∈ Ce0 a conjugate point to p0 along the

null geodesic γ (t) = expp0(tu), where u ∈ Ĉe0 with g(e0, u) = −1. It does not exist
any open set Û ⊂ Tp0M with au ∈ Û such that expp0(Û ∩ Ĉe0), regarded as a subset
of M, is a null hypersurface.

Observe that this corollary is not equivalent to the preceding theorem because the
exponential map contains a singular point, so it is not necessarily open.

4 Riemannian geodesic spheres

We can adapt Theorem 1 to the Riemann case using a standard trick. First we need
some preliminaries.

Consider a Riemannian manifold (N , g0) and a point x0 ∈ N . We call 	̂ the
maximal definition domain of expx0 and Ŝa = {u ∈ Tx0N : g0(u, u) = a2}. The
geodesic sphere of radius a is

Sa = expx0
(
Ŝa ∩ 	̂

)
,

provided it is not empty. We use the classical notation γv for the unique geodesic with
initial condition γ ′

v(0) = v.

Lemma 6 Suppose there is an open subset Û ⊂ Tx0N such that expx0 restricted

to Û ∩ Ŝa is injective and K = expx0(Û ∩ Ŝa), regarded as a subset of N , is a
hypersurface. Let E be a unitary vector field normal to K . Given z = expx0(v) ∈ K,
where v ∈ Û ∩ Ŝa , we have, up to sign,

Ez = γ ′
v
a
(a).

In particular,

γ v
a
(t) = expz((t − a)Ez) (7)

for all t with tv
a ∈ 	̂.



30 Page 10 of 13 M. Gutiérrez, B. Olea

Proof If z = expx0(v) is not conjugate to x0 along the geodesic expx0(tv), then the
claim is clear because expx0 is a diffeomorphism in a neighbourhood of v and we can
use Gauss’ Lemma.

Suppose that z is a conjugate point to x0 along the geodesic expx0(tv). Using Sard’s
Theorem, the set of critical values of the map expx0 : Û ∩ Ŝa → K has zero measure.
Therefore, there is a sequence zn ∈ K such that zn converges to z, zn = expx0(vn)
for some vector vn ∈ Û ∩ Ŝa and zn is not a conjugate point to x0 along the geodesic
expx0(tvn).

Moreover, we can assume that the sequence vn converges to some vector w ∈
Û ∩ Ŝa with expx0(w) = z, but being expx0 |

Û∩Ŝa
injective, we have w = v. Taking

limit in Ezn = γ vn
a

(a) we get the result. ��
Lemma 7 Let K be a hypersurface in N with normal unitary vector field E. Given
a ∈ R and x ∈ K there is a neighbourhood θ ⊂ K of x and ε > 0 such that the image
of

� : (a − ε, a + ε) × θ → R × N

given by �(t, z) = (t, expz((t − a)Ez) is a null hypersurface in the Lorentzian direct
product

(
R × N ,−dt2 + g0

)
which passes through (a, x).

Proof Given a ∈ R and a point x ∈ K there are ε > 0 and neighbourhoods θ ⊂ K and
W ⊂ N of x such that� : (a−ε, a+ε)×θ → W given by�(t, z) = expz((t−a)Ez)

is a diffeomorphism. Therefore, the image of �(t, z) = (t, �(t, z)) is a hypersurface
of R × W . By construction, Im(�) is foliated by null geodesics. We have to prove
that it is achronal in R × W in order to apply [16, Theorem 1] to ensure that it is in
fact a null hypersurface.

First we need to show that �∗(g0) = dt2 + ht , where ht is a metric tensor in θ

which depends on t . Fix z ∈ θ and v ∈ TzK . Take a curve α : I → θ with α′(0) = v

and consider the geodesic variation X(t, s) = �(t, α(s)). Take the Jacobi vector field
J (t) = Xs(t, 0) along the geodesic γ (t) = X(t, 0) with a − ε < t < a + ε. It holds
J (a) = v and J ′(a) = Xst (a, 0) = Xts(a, 0) = ∇vE , whereas γ ′(a) = Ez . Thus,

g0(J (a), γ ′(a)) = 0 and g0(J ′(a), γ ′(a)) = g0(∇vE, E) = 0 since E is unitary.
So g(J (t), γ ′(t)) = 0 for all t ∈ (a − ε, a + ε).

In other words, γ ′(t) = �∗(t,z) (∂t) is orthogonal to J (t) = �∗(t,z) (v) and thismeans
that �∗(g0) = dt2 + ht , where ht is a metric tensor in θ for each t ∈ (a − ε, a + ε).

Now, we show the achronality of Im(�). Take α : [0, 1] → R × W a timelike
curve in R × W with α(0), α(1) ∈ Im(�). If we write α(s) = (m(s), x(s)), then
−m′(s)2 + g0(x ′(s), x ′(s)) < 0 and we can suppose that m′(s) > 0 for all s ∈ [0, 1].
Write x(s) = �(t(s), z(s)) for some t : [0, 1] → R and z : [0, 1] → θ . Since
α(0), α(1) ∈ Im(�) we have that t(0) = m(0) and t(1) = m(1), but

t ′(s)2 ≤ t ′(s)2 + ht(s)(z
′(s), z′(s)) = g0(x

′(s), x ′(s)) < m′(s)2

and integrating the inequality |t ′(s)| < m′(s) we get a contradiction. ��
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Observe that although a hypersurface was foliated by null geodesics, it is not neces-
sarily a null hypersurface. A simple counterexample is a timelike plane in Minkowski
space.

Theorem 2 Fix a point x0 in a Riemannian manifold (N , g0). If x = expx0(u), where
u ∈ Ŝa , is a conjugate point to x0 along the geodesic expx0(tu), then it does not exist

any neighbourhood Û of u in Tx0N such that expx0 restricted to Û ∩ Ŝa is injective
and expx0(Û ∩ Ŝa), regarded as a subset of N , is a hypersurface.

Proof Suppose on the contrary that there does exist a neighbourhood Û with u ∈ Û ⊂
Tx0N such that expx0 restricted to Û ∩ Ŝa is injective and K = expx0(Û ∩ Ŝa) is a
hypersurface.

Let E be a normal and unitary vector field to K with the appropriate sign such that
Lemma 6 holds.We construct the null hypersurface L in the Lorentzian direct product

(
R × N ,−dt2 + g0

)

which passes through (a, x) as in Lemma 7. We want to see L as the image by
the exponential map expR×N

(0,x0)
of a piece of the lightlike cone of e0 = ∂t |(0,x0)

in
T(0,x0)(R × N ). Observe that

Ĉe0 = {(λ, v) : g0(v, v) = λ2, λ > 0}.

If we take an open neighbourhood θ̂ ⊂ Û ∩ Ŝa with expx0(θ̂) ⊂ θ , where θ is the
open neighbourhood of x in K provided in Lemma 7, then

Ŵ =
{(

λ, λ
v

a

)
: λ ∈ (a − ε, a + ε), v ∈ θ̂

}

is an open subset of T(0,x0)(R × N ). Moreover,

Ŵ ∩ Ĉe0 =
{(

λ, λ
v

a

)
: λ ∈ (a − ε, a + ε), v ∈ θ̂ ∩ Ŝa

}
.

Therefore, a point of expR×N
(0,x0)

(
Ŵ ∩ Ĉe0

)
is of the form

(
λ, expx0

(
λv
a

)) =
(
λ, γ v

a
(λ)

)
. Using equation (7), the above belongs to L . Summarizing, we have that

expR×N
(0,x0)

(
Ŵ ∩ Ĉe0

) ⊂ L.

Since (a, x) is a conjugate point to (0, x0) along the null geodesic
(
t, expx0

(
t ua

))
,

Theorem 1 gives us a contradiction. ��
Observe that expx0 restricted to Û can not be injective, [23]. Nevertheless, expx0

restricted to Û ∩ Ŝa could be injective.
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