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Abstract
We say that a Lorentzian metric and a semi-Riemannian metric on the same manifold
M are null-projectively related if every null geodesic of the Lorentzian metric is an
unparametrized geodesic of the semi-Riemannian one. This definition includes the
case of conformally related Lorentzian metrics and the case of projectively equivalent
metrics. We characterize the null-projectively relation by means of certain tensor and
provide some examples. Then, we focus on the special case inwhich bothmetrics share
parametrized null geodesics. In this case, it is said that they are null related. We show
how to construct projectively equivalent metrics via a conformal transformation from
null-related ones and conversely. The classical Levi-Civita theorem on projectively
equivalent metrics is adapted to the case of null-related metrics and some results
ensuring that two null-relatedmetric are affinely equivalent are proven under curvature
conditions.

Keywords Null-projectively related metrics · Null geodesics · Geodesically
equivalent metrics · Affinely equivalent metrics
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1 Introduction

Two semi-Riemannian metrics g and g∗ on an n−dimensional manifold M are
affinely equivalent if they share their parametrized geodesics or, in other words, their
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Levi-Civita connections coincide. More generally, two semi-Riemannian metrics are
geodesically equivalent (or projectively equivalent) if they share their unparametrized
geodesics. The study of geodesically equivalent metrics goes back to E. Beltrami. The
seminal work by Beltrami was motivated by cartography problems. He proved that
a metric which is geodesically equivalent to a metric of constant curvature also has
constant curvature, see [13] for a direct proof of this fact and [15] for a short history
about the topic. Several years later and under some technical conditions, Levi-Civita
obtained the local description of geodesically equivalent metrics [8], see also [12,
pg.169] and references therein. The global aspects of geodesically equivalent met-
rics have also arisen the interest. For example, several rigidity theorems have been
proven in [11, 15, 19]. These results led to sufficient conditions for two geodesically
equivalent metrics being in fact affinely equivalent.

In this paper, we are mainly interested in the case that g is a Lorentzian metric (our
convention is (−,+, . . . ,+) for the signature of g). In this setting, there are different
types of geodesics according with theirs causal characters. Namely, a geodesic γ is
called spacelike if g(γ ′, γ ′) > 0, timelike if g(γ ′, γ ′) < 0 and null if g(γ ′, γ ′) = 0
and γ is not constant. It is well known that two Lorentzian metrics on M which are
conformally related share their unparametrized null geodesics. This fact has leaded us
to introduce the notion of null-projectively related metrics as a generalization of the
conformal relation as follows. A Lorentzian metric g is said to be null-projectively
related to a semi-Riemannian metric g∗ if every null geodesic of g is (a non-necessary
null) unparametrized geodesics of g∗, Definition 2. Observe that, unlike the confor-
mally relation and the geodesic equivalence, the null-projectively relation is not a
equivalence relation. Finally, we say that a Lorentzian metric g is null related to a
semi-Riemannian metric g∗ if every null geodesic of g is a geodesic of g∗, Definition
3.

Besides of the mathematical interest, the null-projectively relation also arises from
a problem in geometrical optic. Roughly speaking, a nonimaging concentrator is a
surface in R3 which reflects all input light rays (or at least most of them) into the exit
aperture. We can think that it is essentially a funnel for light. The simplest example
of nonimaging concentrator is a truncated cone, [20, pg. 49]. The edge-ray or string
method is the classical one to design nonimaging concentrators. It basically consists in
forcing the light rays emitted by the source to reach the exit aperture. The set formed
by the reflection points of all light rays is the nonimaging concentrator, see details in
[20, pg. 47]. But there are alternative methods in the literature. For example, one of
them consists in finding a Lorentzian metric defined in an open set of R3 such that its
unparametrized null geodesics are straight lines, [6], [20, pg. 144]. In our terminology,
this Lorentzian metric is null-projectively related to the Euclidean metric of R3.

This paper deals with two main aims. Firstly, we find the characterization of
null-projectively related metrics g and g∗ by means of the difference tensor of the
corresponding Levi-Civita connections, Theorem 6. Secondly, we focus on the so-
called null-related metrics, which are a particular case of null-projectively related
metrics. We look for conditions which permit to assure that two null-related metrics
g and g∗ are in fact affinely equivalent.

We have organized this paper as follows. Section 2 fixes some terminology and nota-
tions.Wederive several formulaswhich involve the difference tensor of theLevi-Civita
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connections of two metrics g and g∗ on the same manifold and relationships between
the extrinsic geometry of a nondegenerate hypersurface L with respect to g and with
respect to g∗, Lemma4. It isworth pointing out that being aLorentzianmetric g affinely
equivalent to aRiemannianmetric g∗ has strong consequences.Namely, (M, g) locally
decomposes as

(
R × L,−dt2 + g0

)
and (M, g∗) as

(
R × L, c dt2 + g∗

0

)
, where g0

and g∗
0 are Riemannian metrics on L and c is a positive constant, Proposition 5.

Section 3 first deals with the above-mentioned Theorem 6 as follows. A Lorentzian
metric g is null-projectively related to a semi-Riemannian metric g∗ if and only if
there are a vector field N ∈ X(M) and a one form ω ∈ X∗(M) such that the difference
tensor D(X ,Y ) := ∇∗

XY − ∇XY is given by

D(X ,Y ) = ω(X)Y + ω(Y ) + g(X ,Y )N

for all X ,Y ∈ X(M). We call the vector field N ∈ X(M) the optical vector field and
ω the projective form. These names are inspired by the above-mentioned geometrical
optic problem and the classical projectively equivalent metrics theory. Namely, when
the optical vector field N identically vanishes, the above formula reduces to the well-
known relationship between the Levi-Civita connections of projectively equivalent
metrics. On the other hand, the projective form ω vanishes if and only if g is null
related to g∗. If M is orientable, the optical one form defined by (n + 1)ω + α is
exact, where α := g(N ,−). This allows us to prove that we can switch between null-
projectively related, geodesically equivalent and null-related metrics using a suitable
conformal change, see Proposition 11.

Section 4 is devoted to show a version of the Levi-Civita theorem [8] adapted to
the case of null-related metrics, Theorem 14. It provides us a method to construct
examples. For instance, there is a certain Lorentzian surface which is null related to
an open subset of the Poincaré upper half-plane, Example 4.

Finally, we focus our attention on curvature relationships between null-related met-
rics in Sect. 5. Under certain assumptions, these relationships lead to assert that g and
g∗ are affinely equivalent. For example, Theorem 19 states that if g is null related to g∗
and the optical vector field N satisfies g(N , N ) = 0 and Ric(N , N ) ≥ 0, where Ric
denotes the Ricci tensor of g, then they are affinely equivalent. The same conclusion
is obtained in Theorem 27 if the Ricci tensors of g and g∗ agree and in Theorem 29
when M is compact and g∗ is a semi-Riemannian Ricci-flat metric.

We also give some obstructions to the existence of null-relatedmetrics. For instance,
when a Lorentzian metric g is null related to a Riemannian metric, the Ricci tensor of
g must be diagonalizable, Corollary 22. Recall that in general, the Ricci tensor of a
Lorentzian metric is not diagonalizable. Other obstructions are given in Theorem 23
for a Riemannian or Lorentzian manifold with constant curvature and in Corollary 30
for a compact, simply connected and Ricci-flat Riemannian manifold.

2 The Difference Tensor of Two Levi-Civita Connections

In this section, we suppose that g and g∗ are two arbitrary semi-Riemannian met-
rics (unless otherwise stated) on a connected (n ≥ 2)-dimensional manifold M with
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Levi-Civita connections ∇ and ∇∗, respectively. The difference tensor is defined
as

D(X ,Y ) = ∇∗
XY − ∇XY (1)

for every vector fields X ,Y ∈ X(M). The tensor D is symmetric, since ∇ and ∇∗ are
torsion free.

We consider the endomorphism fields ϕ∗, ϕ : T M → T M characterized by

g(X ,Y ) = g∗(ϕ∗(X),Y ), (2)

g∗(X ,Y ) = g(ϕ(X),Y ) (3)

for all X ,Y ∈ X(M). It is clear thatϕ∗ andϕ are isomorphismswithϕ∗ = ϕ−1 and they
are self-adjoint for both g and g∗. Therefore, if for example g∗ is Riemannian, then ϕ

andϕ∗ canbepointwisewritten in diagonal formwith respect to a g∗-orthonormal basis
at every point. The endomorphism fields ϕ and ϕ∗ are closely related to the so-called
Benenti tensor for projectively equivalent metrics. General facts and applications of
Benenti tensors can be found in [3, 4, 9] and references therein.

Remark 1 Regardless on the signature of g and g∗, when ϕ∗ can be written in diagonal
form respect to a g∗-orthonormal basis {e1, . . . , en} at x ∈ M with ϕ∗(ei ) = λi , we
get that

{
1√|λ1|e1, . . . ,

1√|λn|en
}

is also a g-orthogonal basis. Therefore, ϕ and ϕ∗ are written in diagonal form with
respect to the basis {e1, . . . , en}.

As the following lemma states, we can also ensure that ϕ and ϕ∗ are diagonalizable
if g and g∗ are Lorentzian and they hold a causality condition. Recall that a vector u
is called g-causal if it is g-timelike or g-null, i.e. g(u, u) ≤ 0 with u 
= 0.

Definition 1 We say that a Lorentzian metric g∗ has strictly wider null cones than
another Lorentzian metric g if any g-causal vector is a g∗-timelike vector. In this case,
we write g < g∗.

Lemma 1 Let g and g∗ be Lorentzian metrics with g < g∗ on a manifold M with
dim M ≥ 3. Then ϕ and ϕ∗ can be pointwise written in diagonal form respect to a
g-orthonormal and a g∗-orthonormal basis.

Proof If u is a g-null vector, then g(ϕ(u), u) = g∗(u, u) < 0, so from [7, p. 272]
we conclude that ϕ can be written in diagonal form respect to a g-orthonormal basis.
Since ϕ∗ = ϕ−1, it follows that ϕ∗ is also written in diagonal form respect to this
basis. From Remark 1, the same is true for a g∗-orthonormal basis. ��

123



Lorentzian Metrics Null-Projectively Related to Semi-Riemannian Metrics Page 5 of 25 71

We can easily check that

(∇X g
∗) (Y , Z) = g∗(D(X ,Y ), Z) + g∗(Y , D(X , Z))

= g(D(X ,Y ), ϕ(Z)) + g(ϕ(Y ), D(X , Z)). (4)

Using this, we can compute the covariant derivative of the tensors ϕ∗ and ϕ in terms
of the difference tensor as follows:

Lemma 2 Given X ,Y , Z ∈ X(M), we have

g((∇Xϕ)(Y ), Z) = g(D(X ,Y ), ϕ(Z)) + g(D(X , Z), ϕ(Y )), (5)

g((∇Xϕ∗)(Y ), Z) = −g(D(X , ϕ∗(Y )), Z) − g(D(X , ϕ∗(Z)),Y ). (6)

Proof If we take the covariant derivative respect to X ∈ X(M) in g(ϕ(Y ), Z) =
g∗(Y , Z) and we use Equation (4), then

g((∇Xϕ) (Y ), Z) = g(D(X ,Y ), ϕ(Z)) + g(ϕ(Y ), D(X , Z)),

but from ϕ∗ = ϕ−1, it is straightforward to check that

(∇Xϕ) (Y ) = −ϕ(
(∇Xϕ∗) (ϕ(Y ))),

and therefore,

−g(
(∇Xϕ∗) (ϕ(Y )), ϕ(Z)) = g(D(X ,Y ), ϕ(Z)) + g(D(X , Z), ϕ(Y )).

If we replace ϕ(Z)with Z and ϕ(Y )with Y in above equation, thenwe obtain Equation
(6). ��
Lemma 3 Suppose that M is oriented and call� and�∗ the volume form of g and g∗,
respectively. If � ∈ C∞(M) is the (necessarily positive) function such that �∗ = ��,
then

div∗X = divX + g(∇ ln �, X)

for all X ∈ X(M).

Proof A direct computation shows that

div∗X · �∗ = LX�∗ = LX (��) = X(�)� + �LX� = X(�)� + �divX · �.

Hence, we get the announced formula div∗X = X(ln �) + divX . ��
Let us recall that a hypersurface L of a semi-Riemannian manifold (M, g) is called

nondegenerate if L inherits a nondegeneratemetric tensor from the ambientmetric g. In
the particular case that (M, g) is a Lorentzian manifold, a nondegenerate hypersurface
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L is said to be spacelike when the induced metric on L is Riemannian and timelike
when it is Lorentzian.

We have the following relations.

Lemma 4 Let L be a hypersurface in M which is nondegenerate neither for (M, g)
nor for (M, g∗) and denote by I and I∗ the second fundamental forms of L in (M, g)
and (M, g∗), respectively.

1. If X ,Y , Z ∈ X(L), then

g∗(D(X ,Y ), Z) = g∗(DL(X ,Y ), Z) − g∗(I(X ,Y ), Z),

where DL is the difference tensor of the induced connections on L.
2. If E is g∗-orthogonal to L, then

g∗(I∗(X ,Y ) − I(X ,Y ), E) = g∗(D(X ,Y ), E).

Proof The first assertion is a straightforward computation. For the second one, if E
is a g∗-orthogonal vector field to L , then ϕ(E) is g-orthogonal to L . From Lemma 2,
we have

− g∗(I(X ,Y ), E) = g(∇Xϕ(E),Y ) = g((∇Xϕ) (E),Y ) + g(ϕ(∇X E),Y )

= g(D(X , E), ϕ(Y )) + g(D(X ,Y ), ϕ(E)) + g(∇∗
X E, ϕ(Y )) − g(D(X , E), ϕ(Y ))

= g∗(D(X ,Y ), E) − g∗(I∗(X ,Y ), E).

��
A classification result for Lorentzian metrics affinely equivalent was obtained in

[10]. It can be stated as follows. If g and g∗ are affinely equivalent Lorentzian metrics,
then we have one of the following three possibilities.

1. g and g∗ are proportional.
2. g and g∗ admit a local decomposition as a direct product.
3. There is a null vector field K such that g∗ = g + η ⊗ η, being η the g-metrically

equivalent one form to K .

Similarly, we have the following result for the case of a Riemannian metric g∗ and
a Lorentzian metric g which are affinely equivalent.

Proposition 5 Let (M, g) be a Lorentzianmanifold and g∗ a Riemannianmetric on M.
If they are affinely equivalent, then locally (M, g) decomposes as

(
R × L,−dt2 + g0

)

and (M, g∗) as
(
R × L, c dt2 + g∗

0

)
, where g0 and g∗

0 are Riemannian metrics on L
and c is a positive constant. In particular, if M is simply connected, then the above
decompositions are global.

Proof Call gs = sg∗ + (1 − s)g for s ∈ R and

t0 = sup{t ∈ [0, 1] : gs is nondegenerate for each point of M and for all 0 ≤ s ≤ t}.
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Obviously, we have t0 < 1 because g0 is Lorentzian and g∗ is Riemannian. Since
∇ = ∇∗, we have that ∇gt0 = 0 and so it is not difficult to show that dim Rad(gt0) is
constant on M . Therefore, by continuity, we also have that 0 < t0.

If dim Rad(gt0) = 0, then gt0 is nondegenerate for each point of M . Using again
the continuity and that dim Rad(gt0) is constant, we can check that this contradicts the
fact t0 is the supremum. Therefore, gt0 is degenerate and dim Rad(gt0) > 0.Moreover,
we have that dim Rad(gt0) = 1 because for all v ∈ Rad(gt0) with v 
= 0 it holds
g(v, v) = − t0

1−t0
g∗(v, v) < 0.

Finally, taking into account that Rad(gt0) is g-parallel and applying the De
Rham-Wu decomposition theorem [21], we have that (M, g) locally decomposes as(
R × L,−dt2 + g0

)
and (M, g∗) as

(
R × L, c dt2 + g∗

0

)
, where c = 1−t0

t0
, L is a leaf

of Rad(gt0)
⊥ and g0 and g∗

0 are the restriction to L of g and g∗, respectively. ��

3 Null-Projectively RelatedMetrics

From now on, let (M, g) be a Lorentzian manifold and g∗ a semi-Riemannian metric
on M .

Definition 2 We say that g is null-projectively related to g∗ if every null geodesic of
g is a (non-necessarily null) unparametrized geodesic of g∗.

We can also define the following more restrictive notion.

Definition 3 We say that g is null related to g∗ if every null geodesic of g is a (non-
necessarily null) geodesic of g∗.

Obviously, if g is null related to g∗ or geodesically equivalent to g∗, then g is also
null-projectively related to g∗. On the other hand, recall that two Lorentzian metrics
which share their null cones are conformally related, [2].

It is a well known that g and g∗ are projectively equivalent if and only if there is a
one form ω ∈ X∗(M) such that

D(X ,Y ) = ω(X)Y + ω(Y )X

for all X ,Y ∈ X(M), see for instance [18, pg. 273]. The following result characterizes
null-projectively related metrics also in terms of the difference tensor.

Theorem 6 Let (M, g) be a Lorentzian manifold and g∗ a semi-Riemannian metric
on M.

1. g is null-projectively related to g∗ if and only if there are a vector field N ∈ X(M)

and a one form ω ∈ X∗(M) such that

D(X ,Y ) = g(X ,Y )N + ω(X)Y + ω(Y )X , (7)

for all X ,Y ∈ X(M).
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2. g is null related to g∗ if and only if there is a vector field N ∈ X(M) such that

D(X ,Y ) = g(X ,Y )N

for all X ,Y ∈ X(M).

Proof Assume g is null-projectively related to g∗. Then, for every g-null tangent vector
u ∈ T M , there exists a real number λ(u) such that D(u, u) = λ(u)u. Fix a point p and
take a g-orthonormal basis {e1, . . . , en} of TpM with en timelike. Since for each k < n,
we have that D(ek + en, ek + en) is proportional to ek + en and D(ek − en, ek − en)
to ek − en , then

D(ek, en) = λkek + μken,

D(ek, ek) + D(en, en) = 2μkek + 2λken

where λk = 1
4 (λ(ek + en) − λ(ek − en)) and μk = 1

4 (λ(ek + en) + λ(ek − en)).
Take a, b ∈ R with a2 + b2 = 1 and a 
= 0, b 
= 0 and consider the g-null vector
u = aei + be j + en for i 
= j < n. Then, we can compute

λ(u)u = D(u, u) = a2D(ei , ei ) + 2abD(ei , e j ) + b2D(e j , e j ) + D(en, en)

+ 2aD(ei , en) + 2bD(e j , en)

=
(
2a2μi + 2aλi

)
ei +

(
2b2μ j + 2bλ j

)
e j

+
(
2a2λi + 2b2λ j + 2aμi + 2bμ j

)
en + 2abD(ei , e j ).

Therefore, we get that D(ei , e j ) = Aei + Be j + Cen for some A, B,C ∈ R and so

λ(u) = 2aμi + 2λi + 2bA, (8)

λ(u) = 2bμ j + 2λ j + 2aB, (9)

λ(u) = 2a2λi + 2b2λ j + 2aμi + 2bμ j + 2abC . (10)

Subtracting Equation (8) from Equation (10), we get

λi + bA − a2λi − b2λ j − bμ j − abC = 0

and using that a2 + b2 = 1 we arrive to

b(λ j − λi ) + aC = A − μ j ,

for all a, b ∈ R with a2 + b2 = 1 and a 
= 0, b 
= 0. Thus, we necessarily obtain that
C = 0, A = μ j and λi = λ j for all i 
= j < n. Now, in a similar way, subtracting
Equation (9) from Equation (10), we get B = μi . Summarizing, we have

D(ei , en) = γ ei + μi en,
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D(ei , ei ) + D(en, en) = 2μi ei + 2γ en,

D(ei , e j ) = μ j ei + μi e j ,

for i 
= j < n, where γ = λi for all i < n.
Now, we define the one form ω such that ω(ei ) = μi for i < n and ω(en) = γ and

the vector

N = (2γ + g(D(en, en), en))en −
n−1∑

i=1

g(D(en, en), ei )ei .

It is a straightforward computation to check that D(X ,Y ) = g(X ,Y )N + ω(X)Y +
ω(Y )X for all X ,Y ∈ X(M).

Finally, if g is null related to g∗, then λ(u) = 0 for all g-null tangent vectors
u ∈ T M and, thus, ω = 0. ��
Definition 4 In Equation (7), ω is called the projective form and N the optical vector
field. The optical form is the g-metrically equivalent one form to N , and it is denoted
by α. That is, α = g(N ,−).

Observe that from Equations (2) and (3), we have α ◦ ϕ = α∗ and α∗ ◦ ϕ∗ = α, being
α∗ the one form g∗ metrically equivalent to N .

Example 1 It is well known that two conformally related Lorentzian metrics are also
null-projectively related. In fact, if g∗ = e2
g, then we have

∇∗
XY − ∇XY = d
(X)Y + d
(Y )X − g(X ,Y )∇
. (11)

So, in our terminology, the projective form is ω = d
 and the optical form is α =
−d
.

Corollary 7 Let g and g∗ two Lorentzian metrics on a manifold M. If g is null related
to g∗ and g∗ is null related to g, then g and g∗ are affinely equivalent.

Proof From Theorem 6 there are vector fields N , N∗ ∈ X(M) such that

∇∗
XY − ∇XY = g(X ,Y )N ,

∇XY − ∇∗
XY = g∗(X ,Y )N∗

for all X ,Y ∈ X(M). We will show that N is identically zero. Suppose on the contrary
that there is a point p ∈ M with Np 
= 0. In this case, there is a neighbourhoodU of p
where any g∗-null vector is also a g-null vector and so g∗ = e2
g for certain function

 defined inU . Using Equation (11) we have that d
(u) = 0 for all g-null vectors u
and so 
 is constant. This means that g and g∗ are homothetic in a neighbourhood of
p and, therefore, Np = 0, which is a contradiction. ��

The following corollary will provide us with some examples of null-relatedmetrics.
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Corollary 8 Let (M, g) be a Lorentzian manifold, U ∈ X(M) a vector field with
g(U ,U ) 
= − 1

c for some constant c 
= 0 and � its metrically equivalent one form.
If U is closed (i.e. � is closed) and conformal, then g is null related to the semi-
Riemannian metric g∗ = g + c� ⊗ �.

Proof We first show that g∗ is a metric tensor with index 0, 1 or 2. For each point
p ∈ M , we can split TpM = � ⊕ �⊥, where � is a timelike plane which contains
Up. Since g|�⊥ = g∗|�⊥ , the index of g∗ is equal to the index of g∗|�. If we write
� = span{v,Up} with v timelike and unitary, then the determinant of g∗|� is

(1 + cg(Up,Up))(−g(Up,Up) − g(v,Up)
2).

Taking into account that 0 < g(Up,Up) + g(v,Up)
2 because � is timelike, we have

that g∗ is Lorentzian when 0 < 1+ cg(U ,U ) and g∗ is Riemannian or it has index 2
when 1 + cg(U ,U ) < 0.

Now, we can show as in [17, Proposition 2.3] that for the difference tensor holds

g∗(D(X ,Y ), Z) = c

2

(
�(Z) (LUg) (X ,Y ) + �(X)d�(Y , Z) + �(Y )d�(X , Z)

)

for all X ,Y , Z ∈ X(M). SinceU is closed and conformal, i.e.d� = 0 and LU g = 2λg
for some λ ∈ C∞(M), the above formula reduces to

g∗(D(X ,Y ), Z) = cλg(X ,Y )g(U , Z) = cλg(X ,Y )g∗(ϕ∗(U ), Z),

and thus

D(X ,Y ) = cλg(X ,Y )ϕ∗(U ).

Using Theorem 6, g is null related to g∗ with optical vector field N = cλϕ∗(U ). ��
Remark 2 In a general setting, althoughU is neither closed nor conformal, for a metric
tensor g∗ = g + c� ⊗ �, we have that ϕ∗(U ) = cλg(X ,Y )

1+cg(U ,U )
U .

Example 2 Consider the generalized Robertson-Walker space

(
I × F,−dt2 + f (t)2g0

)
,

where I ⊂ R, f ∈ C∞(I ) is a positive function and (F, g0) is a Riemannian manifold
[1]. The vector fieldU = f ∂t is timelike, closed and conformal with conformal factor
λ = f ′

f . If we suppose that
1√
c

< f (t) for some constant c > 0 and for all t ∈ I , then
g is null related to the Riemannian metric

g∗ = g + c� ⊗ � =
(
c f (t)2 − 1

)
dt2 + f (t)2g0.
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If we particularize to the case of the De Sitter space

S
n
1 =

(
R × S

n−1, g = −dt2 + cosh2(t)g0
)

,

then we get that g is null related to the family of Riemannian metrics

g∗ =
(
c cosh2(t) − 1

)
dt2 + cosh2(t)g0

for all c > 1.

The following corollary permits to give more examples of null-related metrics. The
proof relies on Lemma 4 and Theorem 6. It can also be proven using the remarkable
property which states that a timelike hypersurface L is totally umbilical if and only if
every null geodesic of L is a (necessarily null) geodesic of the ambient metric.

Corollary 9 Let (M, g) be a Lorentzian manifold and L a timelike hypersurface. Sup-
pose that g∗ is a Riemannian metric such that g is null related to g∗.

1. If L is totally geodesic with respect to g∗, then L is totally umbilical with respect
g.

2. If L is totally umbilical with respect to g, then (L, g) is null related to (L, g∗).

Example 3 Let us consider theMinkowski spacetimeLn+1 = (Rn+1, g), which is null
related (in fact affinely equivalent) to the euclidean space E

n+1 = (Rn+1, g∗). The
De Sitter space S

n
1 = {x ∈ R

n+1 : g(x, x) = 1} is a timelike and totally umbilical
hypersurface in Ln+1. From the above corollary, (Sn1, g) is null related to (Sn1, g

∗), as
it is well known. In this way, we recover Example 2 with c = 2.

Lemma 10 Let (M, g) be a Lorentzian manifold and g∗ a semi-Riemannian metric on
M. If g is null-projectively related to g∗, then the one form (n + 1)ω + α is closed.
Moreover, if M is orientable, then (n + 1)ω + α is exact.

Proof We can locally take volume n-forms � and �∗ for g and g∗, respectively,
compatible with a fixed (local) orientation on M . By construction, it holds �∗ = ��

for some positive function �. For every p ∈ M , we take E1, . . . , En a local positive
g−orthonormal frame such that ∇vE = 0 for all v ∈ TpM . Since ∇∗�∗ = ∇� = 0,
we have

d�(v) = v
(
�∗(E1, . . . , En)

) = (∇∗
v�∗) (E1, . . . , En)

+
n∑

i=1

�∗(E1, . . . ,∇∗
v Ei , . . . , En)

=
n∑

i=1

�∗(E1, . . . , D(v, Ei ), . . . , En).
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From Formula (7), we get

d�(v) = n�ω(v) +
n∑

i=1

ω(Ei )�
∗(E1, . . . , v, . . . , En)

+ g(v, Ei )�
∗(E1, . . . , N , . . . , En)

= (n + 1)�ω(v) + �g(N , v).

Thus, we have d ln � = (n + 1)ω + α. ��
The null-projectively relation can be reduced to the null relation via a conformal

change as follows.

Proposition 11 Let (M, g) be a Lorentzianmanifold and g∗ a semi-Riemannianmetric
on M. Suppose that g is null-projectively related to g∗ with projective form ω and
optical form α.

1. If ω is exact, then there is a conformal metric to g which is null related to g∗. More
concretely, if ω = d
1, then g̃ = e2
1g is null related to g∗ with optical form
α + ω.

2. If α is exact, then there is a conformal metric to g which is geodesically equivalent
to g∗. More concretely, if α = d
2, then g̃ = e2
2g is geodesically equivalent to
g∗ with projective form α + ω.

Proof Suppose that ω = d
1. From Formulas (7) and (11), the Levi-Civita connec-
tions of g∗, g̃ = e2
1g and g are related by

∇∗
XY − ∇XY = ω(X)Y + ω(Y )X + g(X ,Y )N ,

∇̃XY − ∇XY = ω(X)Y + ω(Y )X − g(X ,Y )∇
1.

Therefore, we get

∇∗
XY − ∇̃XY = g(X ,Y )(N + ∇
1) = g̃(X ,Y )e−2
1(N + ∇
1)

and thus, g̃ is null related to g∗ with optical form α + ω. For α = d
2, we proceed in
a similar way. ��
Remark 3 Assume M is oriented. Then, from Lemma 10, the exactness of ω and α are
equivalent. On the other hand, if g and g∗ are geodesically equivalent, then α = 0 and
we get from Lemma 10 that ω = 1

n+1d ln �. On the contrary, if g is null related to g∗,
then ω = 0 and, thus, α = d ln � and N = ∇ ln �.

Using this remark, we can also link the null relation and the geodesic equivalence as
follows.

Proposition 12 Let (M, g) be an oriented Lorentzian manifod and g∗ a semi-
Riemannian metric on M.
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1. If g is null related to g∗ with optical form α, then there is a conformal metric to
g which is geodesically equivalent to g∗. More concretely, if α = d ln �, then g∗
and g̃ = 1

�2
g are geodesically equivalent with projective form α.

2. If g and g∗ are geodesically equivalent with projective form ω, then there is
a conformal metric to g which is null related to g∗. More concretely, if ω =
1

n+1d ln �, then g̃ = �
2

n+1 g is null related to g∗ with optical form ω.

Proof 1. FromTheorem6 andEquation (11), we have for the Levi-Civita connections
∇̃ and ∇∗ that

∇∗
XY − ∇XY = g(X ,Y )∇ ln �,

∇̃XY − ∇XY = −α(X)Y − α(Y )X + g(X ,Y )∇ ln �.

Therefore, ∇∗
XY − ∇̃XY = α(X)Y + α(Y )X , and thus, g∗ and g̃ are geodesically

equivalent with projective form α.

2. In a similar way, for the Levi-Civita connection of g̃ = �
2

n+1 g, we have

∇∗
XY − ∇XY = ω(X)Y + ω(Y )X ,

∇̃XY − ∇XY = ω(X)Y + ω(Y )X − 1

n + 1
g(X ,Y )∇ ln �.

Therefore,

∇∗
XY − ∇̃XY = 1

n + 1
g(X ,Y )∇ ln � = �− 2

n+1

n + 1
g̃(X ,Y )∇ ln �

and, thus, g̃ is null related to g∗ with optical form ω.
��

4 On a Classical Levi-Civita Theorem

Levi-Civita characterized certain family of geodesically equivalent Riemannian met-
rics in [8]. A modern formulation can be found in [14], where the author generalizes
this classical result to a wider family of geodesically equivalent Riemannian metrics.
Moreover, in [12], the author points out that the Levi-Civita theorem remains true for
two geodesically equivalent semi-Riemannian metrics provided that at least one of the
metrics is Riemannian.

We can prove a similar result for null-related metrics. First, we recall the following
statement of the classical Levi-Civita theorem adapted to the case of a Lorentzian
metric g geodesically equivalent to a Riemannian metric g∗. Observe that in this case
the field of endomorphisms ϕ and ϕ∗ given in (2) and (3) have exactly one negative
eigenvalue.
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Theorem 13 (Levi-Civita) Let (M, g∗) be aRiemannianmanifold and g a geodesically
equivalent Lorentzian metric to g∗. Suppose that at a point x ∈ M, the eigenvalues
of ϕ∗ are different and equal to ρ1(x) < 0 and 0 < ρn(x) < . . . < ρ2(x). Then,
there are smooth functions φ1 < 0 and 0 < φ2 < . . . < φn and a coordinate system
(x1, . . . , xn) around x ∈ M such that

• φi only depends on xi .
• ρi = −1

φ1·...·φ2
i ·...·φn .

• g∗ = ∑n
i=1 �i dx2i , where �i = (φi − φ1) · . . . · (φi − φi−1) · (φi+1 − φi ) · . . . ·

(φn − φi ).
• g = ∑n

i=1 ρi�i dx2i .

Conversely, given a family of non-vanishing smooth functions φi as above, the corre-
sponding metrics g and g∗ are geodesically equivalent.

Note that our assumption on the Lorentzian signature (we are supposing that the
timelike direction is always at the first place) yields to write a minus sign in the
expression of ρi . Since −g and g∗ are also geodesically equivalent, this sign change
is irrelevant.

If�∗ and� are the locally defined volume forms around x of g∗ and g, respectively,
then �∗ = �� where � = 1√|ρ1·...·ρn | . Hence, from Remark 3, the projective form is
given by

ω = 1

n + 1
d ln � = 1

2

n∑

i=1

φ′
i

φi
dxi ,

where φ′
i = ∂φi

∂xi
.

From the Levi-Civita theorem and Proposition 12, we have the following.

Theorem 14 Let (M, g∗) be a Riemannian manifold and g a null-related Lorentzian
metric to g∗. Suppose that at a point x ∈ M, the eigenvalues of ϕ∗ are different and
equal to λ1(x) < 0 and 0 < λn(x) < . . . < λ2(x). Then, there is a coordinate system
(x1, . . . , xn) such that

• λi only depends on xi .
• g∗ = ∑n

i=1 �i dx2i , where�i = ( 1
λi

− 1
λ1

)·. . .·( 1
λi

− 1
λi−1

)·( 1
λi+1

− 1
λi

)·. . .·( 1
λn

− 1
λi

).

• g = ∑n
i=1 λi�i dx2i .

• The optical form is α = 1
2

∑n
i=1

λ′
i

λi
dxi .

Conversely, given never vanishing smooth functions λi as above, the metric g is null
related to g∗.

Proof Without lost of generality, we can assume that M is oriented. Let us consider
g̃ = 1

�2
g, where, as always, � is the positive function such that �∗ = �� and �∗,

� are the volume forms of g∗ and g, respectively. From Proposition 12, g∗ and g̃ are
geodesically equivalent. Now, taking into account that g̃(X ,Y ) = g∗(�2ϕ∗(X),Y )

for all X ,Y ∈ X(M), the functions ρi in the Levi-Civita theorem hold

123



Lorentzian Metrics Null-Projectively Related to Semi-Riemannian Metrics Page 15 of 25 71

λi = �2ρi . (12)

Therefore, the assumptions of the Levi-Civita theorem are satisfied and then locally

g∗ =
n∑

i=1

�i dx
2
i , g = �2 g̃ =

n∑

i=1

�2ρi�i dx
2
i ,

where �i = (φi − φ1) · . . . · (φi − φi−1) · (φi+1 − φi ) · . . . · (φn − φi ) and

ρi = −1

φ1 · . . . · φ2
i · . . . · φn

, (13)

for certain functions φi such that every φi only depends on xi with φ1 < 0 and
0 < φ2 < . . . < φn . If we call �̃ the volume form of g̃, then �∗ = �n+1�̃ and, thus,

�n+1 = 1√|ρ1 · . . . · ρn| =
(√|φ1 · . . . · φn|

)n+1
.

Using the above equation and Equations (12) and (13), we get λi = 1

i

and the
announced result. ��
Example 4 Consider the Lorentzian surface (M, g) where M = {(x, y) : 0 < y < 1}
and

g = − 1

y2
dx2 + 1

1 − y2
dy2.

The Lorentzian metric g is null related to the Riemannian metric of constant negative
curvature:

g∗ = 1

y2
(dx2 + dy2).

This assertion is a direct consequence of Theorem 14 taking λ1(x) = −1 and λ2(y) =
y2

1−y2
.

5 Curvature and Null-RelatedMetrics

In this section, we give some curvature conditions which prevent that a Lorentzian
metric g is null related to a semi-Riemannian metric g∗ or ensure that they are affinely
equivalent. For the following lemma, we need the definition of the divergence of a
symmetric (0, 2)-tensor, [16, pg. 86]. Concretely, the divergence of g∗ with respect to
g is

(divg∗)(V ) =
∑

i

εi
(∇Ei g

∗)(Ei , V
)
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for all V ∈ X(M), where E1, · · · , En is a local g−orthonormal basis and εi =
g(Ei , Ei ).

Lemma 15 Let (M, g) be a Lorentzian manifold and g∗ a semi-Riemannian metric. If
g is null related to g∗, then

1. g((∇Xϕ)(Y ), Z) = g(X ,Y )α∗(Z) + g(X , Z)α∗(Y ). (14)

2.
(∇Xα∗) (Y ) = g(X ,Y )α∗(N ) + α(X)α∗(Y ) + g(∇X N , ϕ(Y )). (15)

3. α∗ = 1

2
d trϕ = 1

n + 1
divg∗.

Proof From Equation (5), Theorem 6 and the fact that α∗ = α ◦ ϕ, we get Equation
(14). On the other hand, using Equation (4), we have

(∇Xα∗) (Y ) = (∇X g
∗) (Y , N ) + g∗(∇X N ,Y )

= g(X ,Y )g(N , ϕ(N )) + g(X , N )g(ϕ(Y ), N ) + g(∇X N , ϕ(Y ))

= g(X ,Y )α∗(N ) + α(X)α∗(Y ) + g(∇X N , ϕ(Y )),

which is Formula (15).
For the last point, given p ∈ M , we take a local g-orthonormal frame field

{E1, . . . , En} such that∇vEi = 0 for all v ∈ TpM . Then, from Equation (14) we have

v(trϕ) = v

(
n∑

i=1

εi g(ϕ(Ei ), Ei )

)

=
n∑

i=1

εi g ((∇vϕ) (Ei ), Ei ) = 2α∗(v).

Finally, a straightforward computation from Equation (4) gives us

(divg∗)(v) =
∑

i

εi
(∇Ei g

∗) (Ei , v) = (n + 1)α∗(v).

��
Note that Equation (14) is similar to thewell-known Sinjukov formula for geodesically
equivalent metrics, see for instance [11].

Proposition 16 Let (M, g) be a Lorentzianmanifold and g∗ a semi-Riemannianmetric
on M. Suppose that g is null related to g∗ and the optical vector field N is complete. If
g∗(N , N ) is constant, then g(N , N ) = 0 and N is both g-geodesic and g∗-geodesic.
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Proof We know from Lemma 15 that α∗ is closed, so we have that

0 = dα∗(N , X) = g∗(∇∗
N N , X) − g∗(∇∗

X N , N ) = g∗(∇∗
N N , X)

for all X ∈ X(M). Therefore, N is g∗-geodesic. Now, take γ an integral curve of N
and call y(t) = g(N , N )γ (t). We have from Theorem 6 that

y′(t) = 2g(∇N N , N )γ (t) = −2y(t)2.

Since N is complete, y(t) is a solution of the differential equation y′+2y2 = 0 defined
on all R. A classical argument shows that y(t) = 0 and then g(N , N ) = 0. But α is
closed from Lemma 10, so as before we can conclude that N is also g-geodesic. ��
Observe that if we only suppose that g(N , N ) is constant, then the same proof does
not work to show that N is g∗-geodesic.

Let us recall that the Hessian of a function f ∈ C∞(M) with respect to the metric
g is the symmetric tensor field given by Hess f (X ,Y ) = g(∇X∇ f ,Y ) for all X ,Y ∈
X(M).

Lemma 17 Let (M, g) be an orientable Lorentzian manifold and g∗ a semi-
Riemannian metric. Suppose that g is null related to g∗ with optical vector field
N = ∇ ln �. Then, the following relation holds:

Hess�(X , ϕ(Y )) = Hess�(ϕ(X),Y )

for all X ,Y ∈ X(M).

Proof A direct computation shows

Hessln �(X ,Y ) = −α(X)α(Y ) + 1

�
Hess�(X ,Y ).

In particular, we have

1

�
Hess�(X , ϕ(Y )) = α(X)α(ϕ(Y )) + Hessln �(X , ϕ(Y ))

= α(X)α∗(Y ) + Hessln �(X , ϕ(Y )).

On the other hand, from Equation (15), we get

1

�
Hess�(ϕ(X),Y ) = (∇Xα∗) (Y ) − g(X ,Y )α∗(N ).

Since α∗ = 1
2dtrgϕ, we have that (∇Xα∗) (Y ) is symmetric. Therefore, the result is

a direct consequence of the above formula. ��
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We say that a symmetric (0, 2)-tensor T is diagonalizable with respect to g, if at
every point x ∈ M , there is a g-orthonormal basis {e1, . . . , en} of TxM such that
T (ei , e j ) = 0 for i 
= j . This is equivalent to say that the g-metrically equivalent
endomorphism to T is diagonalizable respect to an orthonormal g-basis. Obviously,
any symmetric (0, 2)-tensor is diagonalizable in the Riemannian case, but the same is
not true in general in the Lorentzian setting.

Corollary 18 Let (M, g) be an orientable Lorentzian manifold and g∗ a Riemannian
metric. If g is null related to g∗ with optical vector field N = ∇ ln �, then Hess� is
diagonalizable.

Proof Since g∗ is Riemannian, ϕ is diagonalizable and so there is a g∗-orthonormal
basis {e1, . . . , en} with ϕ(ei ) = λi ei for all i = 1 . . . n. We can suppose that e1 is
g-timelike, λ1 < 0 and λi > 0 for i > 1. Using Lemma 17, we get

Hess�(ϕ(e1), ei ) = Hess�(e1, ϕ(ei )),

(λ1 − λi )Hess�(e1, ei ) = 0

for i > 1 and, therefore, Hess�(e1, ei ) = 0 for all i > 1. Since e1 is g-timelike, Hess�
is diagonalizable. ��

Next, we give a first curvature condition to ensure that two null related metrics are
affinely equivalent.

Theorem 19 Let (M, g) be an orientable null geodesically complete Lorentzian man-
ifold and g∗ a Riemannian metric. Suppose that g is null related to g∗ with optical
vector field N. If g(N , N ) = 0 and Ric(N , N ) ≥ 0, then g and g∗ are affinely
equivalent.

Proof We know that N = ∇ ln � for a certain never vanishing function �. We use the
general formula:

Ric(∇�,∇�) = div∇∇�∇� − ∇�(��) − ||Hess�||2,

where ||Hess�||2 = ∑n
i=1 εi g(∇ei∇�,∇ei ∇�) and {e1, . . . , en} is a g-orthonormal

basis. Since N is closed and g(N , N ) = 0 we have that N and ∇� are g-geodesic so

0 ≤ −∇�(��) − ||Hess�||2. (16)

We know from Corollary 18 that Hess� is diagonalizable; thus, it holds the inequality
1
n (��)2 ≤ ||Hess�||2, and we get

0 ≤ −∇�(��) − 1

n
(��)2.

Taking into account that∇� is a complete vector field, a similar argument as in Proposi-
tion 16 shows that necessarily�� = 0. Then Inequality (16) reduces to ||Hess�||2 ≤ 0.
Being Hess� diagonalizable, this ensures that Hess� = 0, that is, ∇� is g-parallel.
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Suppose that there is p ∈ M with (∇�)p 
= 0. Take γ : R → M a null g-geodesic
such that g((∇�)p, γ

′(0)) 
= 0. Since ∇� is parallel, then �(γ (t)) = at + b for some
a 
= 0, but this is a contradiction because � never vanishes. Hence, the vector field N
identically vanishes. ��

We say that a Lorentzian manifold (M, g) holds the null convergence condition if
Ric(u, u) ≥ 0 for all null vector u ∈ T M . This is a mild physical condition frequently
used in the literature. As a corollary of the above theorem, we can get the following.

Corollary 20 Let (M, g) be an orientable Lorentzian manifold which obeys the null
convergence condition and g∗ a Riemannian metric. Assume (M, g) is null geodesi-
cally complete and g is null related to g∗ with optical vector field N. If N is both
g-geodesic and g∗-geodesic, then g and g∗ are affinely equivalent.

We can show that the endomorphism ϕ also commutes with the Ricci tensor, as in
the case of geodesically equivalent metrics, [11]. For this, recall the formula

(∇X∇Y L) (Z) − (∇Y∇X L) (Z) = RXY L(Z) − L(RXY Z), (17)

which holds for any (1, 1)-tensor L .

Proposition 21 Let (M, g) be a Lorentzian manifold and g∗ a semi-Riemannian met-
ric. If g is null related to g∗, then

Ric(ϕ(X),Y ) = Ric(X , ϕ(Y ))

for all X ,Y ∈ X(M).

Proof From Equation (14), we get

g((∇X∇Yϕ) (Z), T ) = (∇Xα∗) (T )g(Y , Z) + (∇Xα∗) (Z)g(Y , T )

for all X ,Y , Z , T ∈ X(M). Using Equation (17), we have

g(RXY ϕ(Z), T ) − g(RXY Z , ϕ(T )) = (∇Xα∗)
(T )g(Y , Z) + (∇Xα∗)

(Z)g(Y , T )

− (∇Y α∗)
(T )g(X , Z) − (∇Y α∗)

(Z)g(X , T ). (18)

Now, we take {e1, . . . , en} a g-orthonormal frame, set X = T = ei in Equation (18)
and sum over i . We obtain that

Ric(Y , ϕ(Z)) −
∑

i

εi g(ReiY Z , ϕ(ei )) = −n (∇Yα) (Z) + divα∗ · g(Y , Z). (19)

Since α∗ is closed, the right-hand-side term of Equation (19) defines a symmetric
tensor. So we only have to check that

∑
i εi g(ReiY Z , ϕ(ei )) is also symmetric. If we

take Z = T = ei in Equation (18) and sum over i , we obtain

∑

i

εi g(RXYϕ(ei ), ei ) =
∑

i

εi g(RXY ei , ϕ(ei )).
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Applying the first Bianchi identity, the above equation reads

∑

i

εi g(RYϕ(ei )X , ei ) + εi g(Rϕ(ei )XY , ei )

=
∑

i

εi g(RYei X , ϕ(ei )) + εi g(Rei XY , ϕ(ei ))

and using the symmetries of R, we get

∑

i

εi g(Rei XY , ϕ(ei )) =
∑

i

εi g(ReiY X , ϕ(ei )). ��

As a direct consequence of Proposition 21, we can prove as in Corollary 18 that
Ric is also diagonalizable.

Corollary 22 Let (M, g) be a Lorentzian manifold and g∗ a Riemannian metric. If g
is null related to g∗, then Ric is diagonalizable.

Example 5 Consider the Lorentzian manifold (M, g) where M = R
2 × R

n−2 and

g = 2dudv + Hdu2 +
n−2∑

i=1

dx2i ,

where H depends on (u, x1, . . . , xn−2). This Lorentzian manifold is called a pp-wave,
and its Ricci curvature is given by

Ric = −1

2
�x Hdu ⊗ du,

where �x H is the Laplacian of H respect to (x1, . . . , xn−2), [5]. If we take 
 the
metrically equivalent (1, 1)-tensor to Ric, then we have


(∂xi ) = 0,


(∂u) = −1

2
�Hx∂v,


(∂v) = 0.

If �pH 
= 0 at some point p, then 
 is not diagonalizable at p, and thus, it cannot
exist a Riemannian metric g∗ such that g is null related to g∗.

If∇ and∇∗ are two arbitrary connections on a manifold, then the curvature tensors
are related by

R∗
XY Z − RXY Z = (∇X D) (Y , Z) − (∇Y D) (X , Z)

+ D(X , D(Y , Z)) − D(Y , D(X , Z))
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for all X ,Y , Z ∈ X(M). If g is null-projectively related to g∗, then from Theorem 6,
we get

(∇X D) (Y , Z) = g(Y , Z)∇X N + (∇Xω) (Y )Z + (∇Xω) (Z)Y

and we can check that

R∗
XY Y − RXY Y

= g(Y ,Y )∇X N − g(X ,Y )∇Y N + dω(X ,Y )

+ (∇Xω) (Y )Y − (∇Yω) (Y )X + (g(Y ,Y )g(X , N ) − g(X ,Y )g(Y , N )) N

+
(
g(Y ,Y )ω(N ) + ω(Y )2

)
X − (g(X ,Y )ω(N ) + ω(X)ω(Y )) Y . (20)

Theorem 23 Let (M, g) be an orientable geodesically null complete Lorentzian man-
ifold, then

• g is not null related to any Riemannian metric g∗ with positive constant sectional
curvature.

• g is not null related to any Lorentzian metric g∗ with positive constant sectional
curvature and g∗ < g.

• g is not null related to any Lorentzian metric g∗ with negative constant sectional
curvature and g < g∗.

Proof By contradiction, suppose that g is null related to a (Riemannian or Lorentzian
) metric g∗ of constant sectional curvature c 
= 0. In this case, we have that R∗

XY Z =
c (g∗(Y , Z)X − g∗(X , Z)Y ) for all X ,Y ∈ X(M). Take a g-null vector u ∈ TpM
and a g-spacelike vector v ∈ TpM with g(u, v) = 0. Using Equation (20), we have

0 = g(Ruvv, u) + g(v, v)g(∇uN , u) + g(v, v)g(u, N )2

and

cg∗(u, u)g(v, v) = g(Rvuu, v).

Therefore, we get

−cg∗(u, u)g(v, v) = g(v, v)g(∇uN , u) + g(v, v)g(u, N )2

and taking into account that N = ∇ ln �, we also have

Hess�(u, u) = −cg∗(u, u)�

for all g-null vector u.
Therefore, for every g−null geodesic γ , the function cg∗(γ ′(t), γ ′(t)) is a positive

constant whenever g∗ is Riemannian and c > 0 or g∗ is Lorentzian with g∗ < g
and c > 0 or g∗ is Lorentzian with g < g∗ and c < 0. Therefore, the function
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y(t) = �(γ (t)) holds the differential equation y′′ = −ky with k > 0. Since (M, g)
is geodesically null complete, the function y vanishes somewhere, which is a contra-
diction. ��
Remark 4 In [11], the authors proved that when a complete Einstein Riemannian met-
ric g∗ is geodesically equivalent to a complete Lorentzian metric g, then g∗ and g
are in fact affinely equivalent. In the situation of the first point of Theorem 23, the
Riemannian metric g∗ is Einstein and from Proposition 12, it is geodesically equiv-
alent to the Lorentzian metric g̃ = 1

�2
g, but we cannot apply [11] because of the

lack of completeness of g̃, in general. The completeness of the metrics is an essential
hypothesis, as pointed out in [11].

Taking trace in Equation (20), we can also obtain a relation between the Ricci
curvatures as follows.

Lemma 24 Let (M, g) be a Lorentzian manifold and g∗ a semi-Riemannian metric. If
they are null-projectively related with optical form α and projective form ω, then

Ric∗(v, v) = Ric(v, v) + g(v, v) (divα + α(N ) + (n − 1)ω(N )) − (∇vα) (v)

− (n − 1) (∇vω) (v) − α(v)2 + (n − 1)ω(v)2. (21)

In particular, if g is null related to g∗ with optical vector field N = ∇ ln �, then

Ric∗(v, v) = Ric(v, v) + g(v, v)
��

�
− 1

�
Hess�(v, v) (22)

Remark 5 If g∗ = e2
g, then we know that g∗ and g are null-projectively related with
ω = d
 and α = −d
. Formula (21) reduces in this case to the well-known formula
for the Ricci curvature under a conformal change

Ric∗(v, v) = Ric(v, v) − g(v, v)
(
�
 + (n − 2)||∇
||2

)

− (n − 2)
(
Hess
(v, v) − d
(v)2

)
.

Using Lemma 17, Proposition 21 and the above lemma, we immediately get the
following.

Proposition 25 Let (M, g) be a Lorentzian manifold and g∗ a semi-Riemannian met-
ric. If g is null related to g∗, then

Ric∗(ϕ(X),Y ) = Ric∗(X , ϕ(Y ))

for all X ,Y ∈ X(M).

Corollary 26 Let (M, g∗) be a complete orientable Riemannian manifold and g a
Lorentzian metric. Suppose that g is null related to g∗ with optical vector field N. If
N is a complete vector field, g∗(N , N ) is constant and Ric∗(N , N ) ≥ 0, then g and
g∗ are affinely equivalent.
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Proof From Propostion 16, we know that N is g-geodesic and g(N , N ) = 0. From
Lemma 24, we have that 0 ≤ Ric∗(N , N ) = Ric(N , N ) and then, Theorem 19
ensures that g and g∗ are affinely equivalent. ��
Theorem 27 Let (M, g) be a null geodesically complete orientable Lorentzian man-
ifold and g∗ a semi-Riemannian metric. If g is null related to g∗ and Ric = Ric∗,
then g and g∗ are affinely equivalent.

Proof Taking trace in Equation (22), we get �� = 0 and therefore ∇� is g-parallel.
We can conclude as in the proof of Theorem 19 to show that � is constant. ��

The following lemma is a straightforward computation.

Lemma 28 If f ∈ C∞(M), then for all v ∈ T M, it holds

divHess f (v) = Ric(∇ f , v) + d(� f )(v).

Theorem 29 Let (M, g) be an orientable Lorentzian manifold and g∗ a semi-
Riemannian metric. Suppose that g is null related to g∗.
1. If g∗ is Ricci-flat, then g has constant scalar curvature.
2. If g∗ is Einsteinwith nonzero scalar curvature and g has constant scalar curvature,

then g and g∗ are affinely equivalent.
3. If M is compact and g∗ is Ricci-flat, then g and g∗ are affinely equivalent.

Proof Assume Ric∗ = Ag∗ for A ∈ R. Then from Equation (22), we have

A�g∗ = �Ric + ��g − Hess�

and taking divergence with respect to g, we get

Ag∗(∇�, v) + A�(divg∗)(v) = Ric(∇�, v) + �(divRic)(v) + g(∇��, v)

− divHess�(v)

for all v ∈ T M . From Lemmas 28 and 15, we have

Ag∗(∇�, v) + (n + 1)A�α∗(v) = Ric(∇�, v) + �(divRic)(v) + g(∇��, v)

− Ric(∇�, v) − d(��)(v).

Since g∗(∇�, v) = �g∗(N , v) = �α∗(v), the above formula reduces to

2A�(n + 2)α∗(v) = �dS(v),

where S is the scalar curvature of g
Now, if A = 0, then S is constant. If A 
= 0 and S is constant, then α∗ = 0 and,

thus, ∇ = ∇∗. Finally, if M is compact and A = 0, then taking trace in Equation (22),
we get

0 = �S + (n − 1)��.
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Since S is constant from the first assertion, we have S
∫
M �dg = 0, but � never

vanishes so S = 0 and �� = 0. Therefore, � is constant and ∇∗ = ∇. ��
Observe that, as in the Remark 4, we cannot use Proposition 12 and [11] to prove
the third point of Theorem 29. Indeed, the metrics g̃ = 1

�2
g and g∗ are geodesically

equivalent and g∗ is Einstein, but they are not necessarily complete although M is
compact.

If we combine Proposition 5 and Theorem 29, we get the following.

Corollary 30 If (M, g∗) is a compact, simply connected, and Ricci-flat Riemannian
manifold, then there is no Lorentzian metric g which is null related to g∗.

Acknowledgements We are very grateful to the referee for the careful reading of the paper. Both authors
have been partially supported by the Ministry of Sciences and Innovation (MICINN) I+D+I grant number
PID2020-118452GB-I00. The first author has also been supported by Junta de Andalucía-FEDER research
project UMA18-FEDERJA-183 and the second one by Junta de Andalucía-DEFER research project A-
CTS-463-UGR18.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
Funding for open access charge: Universidad de Málaga / CBUA.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Alías, L.J., Romero, A., Sánchez, M.: Uniqueness of complete spacelike hypersurfaces of constant
mean curvature in Generalized Robertson-Walker space-times. Gen. Relat. Gravitat. 27, 71–84 (1995)

2. Beem, J.K., Ehrhlich, P.E., Easley, K.L.: Global Lorentzian Geometry. Marcel Dekker, New York
(1996)

3. Bolsinov, A.V., Matveev, V.S.: Splitting and gluing lemmas for geodesically equivalent pseudo-
Riemannian metrics. Trans. Am. Math. Soc. 363, 4081–4107 (2011)

4. Bolsinov, A.V., Matveev, V.S.: Local normal forms for geodesically equivalent pseudo-Riemannian
metrics. Trans. Am. Math. Soc. 367, 6719–6749 (2015)

5. Candela, A.M., Flores, J.L., Sanchez, M.: On general plane fronted waves. Geod. Gen. Relat. Gravit.
35(4), 631–649 (2003)

6. Gutiérrez, M., Miñano, J.C., Vega, C., Benítez, P.: Application of Lorentz geometry to nonimaging
optics: new three-dimensional ideal concentrators. J. Opt. Soc. Am. A 13, 532–540 (1996)

7. Greub, W.H.: Linear Algebra. Springer, New York (1967)
8. Levi-Civita, T.: Sulle trasformazioni delle equazioni dinamiche. Ann. Mat. 24, 255–300 (1896)
9. Manno, G., Vollmer, A.: 3−dimensional Levi-Civita metrics with projective vector fields. J. Math.

Pures Appl. 163, 473–517 (2022)
10. Martin, G.K., Thompson, G.: Non-uniqueness of the metric in Lorentzian manifolds. Pac. J. Math.

158, 177–187 (1993)
11. Kiosak, V., Matveev, V.S.: Complete Einstein metrics are geodesically rigid. Commun. Math. Phys.

289, 383–400 (2009)
12. Matveev, V.S.: Geodesically equivalent metrics in General Relativity. J. Geom. Phys. 62, 675–691

(2012)

123

http://creativecommons.org/licenses/by/4.0/


Lorentzian Metrics Null-Projectively Related to Semi-Riemannian Metrics Page 25 of 25 71

13. Matveev, V.S.: Geometric explanation of Beltrami theorem. Int. J. Geom. Meth. Mod. Phys. 3(3),
623–629 (2006)

14. Matveev, V.S., Topalov, P.J.: Integrability in the theory of geodesically equivalent metrics. J. Phys. A
34, 2415–2433 (2001)

15. Matveev, V.S.: Hyperbolic manifolds are geodesically rigid. Invent. Math. 151, 579–609 (2003)
16. O’Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York

(1983)
17. Olea, B.: Canonical variation of a Lorentzian metric. J. Math. Anal. Appl. 419, 156–171 (2014)
18. Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. 2. Publish or Perish, Boston

(1977)
19. Taber, W.: Projectively equivalent metrics subject to constraints. Trans. Am. Math. Soc. 282, 711–737

(1984)
20. Winston, R., Miñano, J.C., Benítez, P.: Nonimaging Optics. Academic Press, New York (2004)
21. Wu, H.: On the De Rham decomposition theorem. Illionois J. Math. 8, 291–31 (1964)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Lorentzian Metrics Null-Projectively Related  to Semi-Riemannian Metrics
	Abstract
	1 Introduction
	2 The Difference Tensor of Two Levi-Civita Connections
	3 Null-Projectively Related Metrics
	4 On a Classical Levi-Civita Theorem
	5 Curvature and Null-Related Metrics
	Acknowledgements
	References




