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A B S T R A C T

Interpolation is a fundamental process in solar resource assessment that glues consecutive components of
the modeling chain. Most interpolation techniques assume that the interpolating function must go through
the interpolation points. However, this assumption does not fit with averaged datasets or variables that
must be conserved across interpolation. Here I present a mean-preserving splines method for interpolating
one-dimensional data that conserves the interpolated field and is appropriate for averaged datasets. It uses
second-order polynomial splines to minimize the fluctuations of the interpolated field, restricts the interpolation
results to user-provided limits to prevent unphysical values, deals with periodic boundary conditions in the
interpolated field, and can work with non-uniform averaging grids. The validity and performance of the method
are illustrated against regular second- and third-order splines using relevant case examples in the solar resource
assessment realm.
1. Introduction

The countless and disparate data streams available nowadays, di-
rectly observed or modeled, make data interpolation a critical step
to couple processes in earth system modeling (Warner et al., 2008),
hydrological modeling (Gupta and Tarboton, 2016) and landscape mod-
els (De Caceres et al., 2018), to name a few. The domain of solar models
for renewable energy is not an exception.

Evaluating solar irradiance at the ground surface requires ancillary
variables that are not necessarily available at the temporal resolution
needed for solar applications. An example is the evaluation of clear-
sky solar irradiance from clear-sky models (Ruiz-Arias and Gueymard,
2018a,b; Ruiz-Arias et al., 2019; Sun et al., 2019, 2021) that require
various atmospheric variables such as aerosol optical depth (AOD),
precipitable water, total column ozone content, and ground albedo,
among others. In most current applications, these variables are re-
trieved from numerical weather datasets (e.g., Gelaro et al., 2017;
Inness et al., 2019). In the best case, these datasets are available at
hourly time steps although clear-sky solar irradiance may be needed at
a different resolution (e.g., every 10-min to match the satellite imagery
retrieval times). In addition, the intrinsic uncertainty of these hourly
weather variables, possibly combined with a moderate impact on solar
irradiance, might bring with none or little benefit compared to coarser
scales, such as daily, as it is pointed out by Ruiz-Arias (2020) for
AOD predictions of current state-of-the-art weather models. Hence, in
some cases, even daily data would be a reasonable choice for weather
variables because daily data is easier to archive, retrieve and maintain.

∗ Correspondence to: Applied Physics I, University of Málaga, Málaga, Spain.
E-mail addresses: jararias@uma.es, jose.ruiz-arias@solargis.com.

Be that as it may, the weather data must be first interpolated to the
time grid at which solar radiation is needed. Only afterwards, they are
used in solar models to evaluate solar radiation.

Splines interpolation is a popular interpolation technique because of
its high adaptability to multiple problems and ease of use. It evaluates
the interpolated data from a continuous and differentiable piecewise
function. Generally, with 𝑛 + 1 interpolation nodes (i.e., the known
data samples to infer the interpolated values), the piecewise function
is made up of 𝑛 polynomials, known as splines, that collide at each
interpolation node. The polynomials’ coefficients are chosen such that
the interpolating piecewise function is continuous and the interpolation
exact, that is, it goes through all the interpolation nodes (Knott, 2000;
Beu, 2015). The exactness constraint is appropriate when the interpola-
tion nodes result directly from a sampling process. For instance, we can
gather global horizontal irradiance (GHI) measurements every second
but retain only the samples at multiples of 60 s. As they are actual
measurements drawn from the 1 s time series, splines interpolation as
defined above is appropriate to reconstruct the 1 s time series from
the 60 s samples. Alternatively, however, we might have retained 60 s
averages of GHI measurements. As they are not necessarily actual
values drawn from the 1 s time series, the exactness constraint in splines
interpolation will not be appropriate.

In addition to clear-sky solar irradiance models, many other ap-
plications use interpolated average datasets. For instance, those that
utilize monthly climatologies (e.g., temperature and humidity), daily
vailable online 17 November 2022
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averages (e.g., AOD and precipitable water), or even accumulated
variables, such as precipitation and solar irradiance predictions. In such
cases, using exact splines to interpolate these variables is inappropriate.
Being aware of this issue, Delhez (2003) replaced the usual third-order
splines with fourth-order splines and updated the splines’ constraints
to ensure that the average of the splines matches the interpolation
node values. However, the high order of the splines may yield large
fluctuations and non-physical values (e.g., negative precipitation rate).
Very recently, Lai and Kaplan (2022) have proposed a new method
based on cubic splines that preserves the mean and places bounds to
prevent non-physical interpolated values. Nevertheless, the code is not
readily usable into general purpose time series applications. Taking a
different approach, Rymes and Myers (2001) proposed a recursive algo-
rithm based on simplified Markov autoregressive processes. However,
it was specifically devised for solar irradiance data, but not for ancillary
variables.

In view of the limitations of the existing solutions, this work pro-
poses a general-purpose mean-preserving splines interpolation method,
hereafter referred to as mp-splines, in which the average of each spline

atches the value of the corresponding interpolation node. It uses
econd-order polynomial splines to minimize the fluctuations in the
nterpolated values and provides a means to prevent non-physical
esults. The method is implemented in the ubiquitous Python language,
nd is shared publicly in https://github.com/jararias/mpsplines.

. Mean-preserving splines interpolation

Let {𝑥𝑖, 𝑦𝑖}𝑖=1,2,…,𝑛 be 𝑛 known pairs of values (the interpolation
nodes) of an explanatory process 𝑥 and the unknown process 𝑦, respec-
tively. They verify that 𝑦𝑖 is the average of 𝑦 throughout the interval
[

𝑥𝑙,𝑖, 𝑥𝑢,𝑖
]

for arbitrary known values 𝑥𝑙,𝑖 and 𝑥𝑢,𝑖 such that 𝑥𝑖 ∈
[

𝑥𝑙,𝑖, 𝑥𝑢,𝑖
]

and 𝑥𝑢,𝑖 = 𝑥𝑙,𝑖+1. Note that, conversely to other methods, 𝑥𝑖 is not
necessarily ascribed to the center of the interval

[

𝑥𝑙,𝑖, 𝑥𝑢,𝑖
]

. In practice,
this fact generalizes the application of the algorithm to averaged series
with arbitrary non-uniform integration limits.

The interpolating piecewise function that reconstructs 𝑦 is made up
of 𝑛 second-order polynomials defined as:

𝑆𝑖(𝑥) = 𝑎𝑖(𝑥 − 𝑥𝑖)2 + 𝑏𝑖(𝑥 − 𝑥𝑖) + 𝑐𝑖, 𝑥𝑙,𝑖 ≤ 𝑥 ≤ 𝑥𝑢,𝑖, (1)

where 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 are arbitrary coefficients. The interpolating function
is subject to the following constraints:

∫

𝑥𝑢,𝑖

𝑥𝑙,𝑖
𝑆𝑖(𝑥) 𝑑𝑥 = 𝑦𝑖

(

𝑥𝑢,𝑖 − 𝑥𝑙,𝑖
)

, 𝑖 = 1, 2,… , 𝑛 (2a)

𝑆𝑖(𝑥𝑢,𝑖) = 𝑆𝑖+1(𝑥𝑙,𝑖+1), 𝑖 = 1, 2,… , 𝑛 − 1 (2b)

𝑆′
𝑖 (𝑥𝑢,𝑖) = 𝑆′

𝑖+1(𝑥𝑙,𝑖+1), 𝑖 = 1, 2,… , 𝑛 − 1 (2c)

where 𝑆′
𝑖 (𝑥) is the first derivative of 𝑆𝑖(𝑥).

The first constraint ensures that the average of the interpolating
function throughout the interval

[

𝑥𝑙,𝑖, 𝑥𝑢,𝑖
]

is 𝑦𝑖, and translates into the
following set of 𝑛 equations:
1
3

(

𝛥3
𝑢,𝑖 − 𝛥3

𝑙,𝑖

)

𝑎𝑖 + 1
2

(

𝛥2
𝑢,𝑖 − 𝛥2

𝑙,𝑖

)

𝑏𝑖 +
(

𝛥𝑢,𝑖 − 𝛥𝑙,𝑖
)

𝑐𝑖

−
(

𝛥𝑢,𝑖 − 𝛥𝑙,𝑖
)

𝑦𝑖 = 0, 𝑖 = 1, 2,… , 𝑛 (3)

here 𝛥𝑙,𝑖 = 𝑥𝑙,𝑖 − 𝑥𝑖 and 𝛥𝑢,𝑖 = 𝑥𝑢,𝑖 − 𝑥𝑖.
The second and third constraints ensure the continuity of the inter-

olating function, and translates, respectively, into the following sets
f equations:
2
𝑢,𝑖𝑎𝑖 + 𝛥𝑢,𝑖𝑏𝑖 + 𝑐𝑖 − 𝛥2

𝑙,𝑖+1𝑎𝑖+1 − 𝛥𝑙,𝑖+1𝑏𝑖+1 − 𝑐𝑖+1 = 0, (4a)

2𝛥𝑢,𝑖𝑎𝑖 + 𝑏𝑖 − 2𝛥𝑙,𝑖+1𝑎𝑖+1 − 𝑏𝑖+1 = 0 (4b)

with 𝑖 = 1, 2,… , 𝑛 − 1.
In total, the constraints make up a system of 3𝑛 − 2 linear and

ndependent equations, but the interpolating function is defined by 3𝑛
oefficients. Hence, two more equations are needed.
122
If the process 𝑦 is periodic, such as it may be the case for long-term
onthly climatologies, the first and last splines should be continuous.
o that aim, two additional constraints are 𝑆1(𝑥𝑙,1) = 𝑆𝑛(𝑥𝑢,𝑛) and
′
1(𝑥𝑙,1) = 𝑆′

𝑛(𝑥𝑢,𝑛), which translates respectively into:

2
𝑢,𝑛𝑎𝑛 + 𝛥𝑢,𝑛𝑏𝑛 + 𝑐𝑛 − 𝛥2

𝑙,1𝑎1 − 𝛥𝑙,1𝑏1 − 𝑐1 = 0 (5a)

2𝛥𝑢,𝑛𝑎𝑛 + 𝑏𝑛 − 2𝛥𝑙,1𝑎1 − 𝑏1 = 0. (5b)

If the process 𝑦 is not periodic, the two additional constraints are
efined by imposing continuity of the second derivative of the interpo-
ating function in the upper edge of the first spline and the lower edge
f the last spline, that is, 𝑆′′

1 (𝑥𝑢,1) = 𝑆′′
2 (𝑥𝑙,2) and 𝑆′′

𝑛−1(𝑥𝑢,𝑛−1) = 𝑆′′
𝑛 (𝑥𝑙,𝑛).

hey turn into the following equations:

𝑎1 − 𝑎2 = 0 (6a)

𝑛−1 − 𝑎𝑛 = 0. (6b)

The choice of these constraints is not unique, and others might have
een implemented. However, these translate into simple equations that
ead to reasonable results.

All together, Eq. (3) and (4) combined, plus Eq. (5) for periodic
oundary conditions, or Eq. (6) for free boundary conditions, make a
inear system of 3𝑛 independent equations with 3𝑛 unknowns that can
e solved using conventional methods. The solution of the system fully
efines the interpolating function.

Fig. 1 illustrates the working principles of mp-splines interpolation.
nlike regular splines, the interpolated curve does not necessarily
ass through the interpolation nodes. The preservation of the average
mplies that the red and orange areas under and over each spline are
qual.

. Constrained interpolation

The mean-preserving splines algorithm imposes constraints for
moothness, mean state, and continuity. However, none of them pre-
ents the interpolated values to take non-physical results. A typical
ase is that of monthly precipitation rates interpolated to daily steps.
ince the precipitation rate may be quite low during the dry season,
he interpolation algorithm may fall into negative values. This issue is
ommon to other splines interpolation algorithms. Nonetheless, the risk
f falling into non-physical values is higher with mp-splines precisely
ecause of the averaging constraint enforced by Eq. (3).

As a countermeasure, the mp-splines algorithm detects departures
f the interpolated values into the non-permitted domain and relaxes
he constraints in a neighborhood of the culprit spline. In particular, the
nfringing spline and its neighbors (by default, four on each side) are re-
laced by third-order polynomials. The additional degree of freedom in
ach spline allows for a readjustment of the data while still respecting
he averaging constraint. The domain of permitted values is delimited
y a minimum threshold that can be set by the user. In the precipitation
ate example, the user would set this threshold to 0. A maximum
hreshold is not explicitly considered because it rarely happens in
ractical solar applications. However, in such a situation, the sign of the
nterpolated variable can be switched so that the maximum threshold
ecomes a minimum. The current implementation of mp-splines does
ot allow for minimum and maximum thresholds simultaneously.

A downside of the local relaxation is that it requires a numerical it-
ration, in this case using Sequential Least Squares Programming (Kraft,
988; Virtanen et al., 2020), that increases the interpolation time,
specially when many interpolation violations occur. Fortunately, the
atter is not usual. In the uncommon case when the iterative process
oes not reach a solution, the interpolated values are clipped on the
inimum permitted value.

Fig. 2 shows the interpolation of a monthly rainfall climatology
o daily steps using multiple splines interpolation approaches. Both
egular 2nd- and 3rd-order splines interpolation, and even the regular

https://github.com/jararias/mpsplines
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Fig. 1. Illustration example of the mp-splines interpolation working principles for three interpolation nodes (markers) with periodic boundary conditions. The color shaded areas
below and above each mean-preserving spline have equal size to preserve the mean.
Fig. 2. Mean-preserving splines interpolation with local relaxation compared against regular splines interpolation and regular mp-splines. Data is a monthly climatology of rainfall at
the Airport of Almería (Spain) retrieved from the Spanish Weather Agency website (http://www.aemet.es). The upper panel shows the actual data (bars) and the daily interpolated
values with the various interpolation methods. The lower panel shows the differences between the source and the interpolated data in each case. Note the logarithmic scale in
y-axis.
mp-splines interpolation, yield negative results for July and August.
This situation is reversed using the local relaxation with mp-splines by
setting a minimum allowed value of zero. In this particular example,
the relaxation is enabled only for two neighboring splines (i.e., May
through Oct) because there are only 12 interpolation nodes. Both
123
mp-splines with and without local relaxation differ within the relaxed
period but coincide beyond. The bottom panel shows the differences
between the original monthly data and the ones averaged from the in-
terpolated curves. The deviations with the regular splines interpolations
are much greater than with mp-splines (note the logarithmic scale).

http://www.aemet.es
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Indeed, the deviations with mp-splines are negligible, as expected from
the mean preservation, less than 1 % in the worst case (August), while
it is up to 100 % in the worst case for regular splines (August).

4. Python code

The mp-splines algorithm has been implemented in Python
and is publicly available at https://github.com/jararias/mpsplines/.
The library’s interface follows a similar approach to that of
scipy.interpolate (https://docs.scipy.org/doc/scipy/reference/
interpolate.html). Particularly, first, an interpolation instance is created
from the interpolation nodes and additional optional inputs (e.g.,
whether boundary conditions are periodic or not). Then, the instance
is used as a regular function to perform the interpolations.

For illustration purposes, the code for the constrained interpolation
of the monthly rainfall data shown in Fig. 2 is as follows:

# import required libraries and
classes

import numpy as np
from mpsplines import (

MeanPreservingInterpolation
as MPI

)

# interpolation nodes data
xi = np.array(
[1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12])

yi = np.array(
[24, 25, 16, 17, 12, 5,
1, 1, 14, 27, 28, 30])

# create the mp-splines
interpolation instance

mpi = MPI(xi, yi, periodic=True,
min_val=0.)

# load the interpolation targets
x = np.linspace(0.5, 12.5, 365)

# perform interpolation
y = mpi(x)

For detailed usage information and installation directions, see infor-
ation at https://github.com/jararias/mpsplines. A brief performance

nalysis of mp-splines, including a comparison against other splines
methods available in Python, is presented in Appendix.

5. Example use cases

This section illustrates the application and performance of
mp-splines interpolation with three example use cases: sub-daily inter-
polation of clear-sky solar irradiance data (Section 5.1), daily-to-hourly
interpolation of aerosol optical depth and precipitable water (Sec-
tion 5.2), and daily interpolation of long-term monthly average ground
albedo data (Section 5.3).

5.1. Interpolation of sub-daily clear-sky solar irradiance data

Global horizontal irradiance is available at hourly and coarser sub-
daily time steps from multiple sources, such as observational net-
works (e.g., SIAR, 2022; MRCC, 2022; WRDC, 2022) and numerical
weather datasets (e.g., Hersbach et al., 2018; MERRA-2 GHI, 2015),
but they must be interpolated when solar applications require data at a
finer time step. Depending on the intended application, the general case
of sub-daily interpolations in cloudy or patchy-cloudy days, for which
solar irradiance is expected highly variable, might require a method
that not only preserves the mean, but also accounts for the fine-scale
124
Table 1
Interpolation root mean squared difference (in Wm−2) for various interpolation ap-
proaches (SP2: 2nd-order splines; SP3: 3rd-order splines; KT: KT-based linear; MPI:
mp-splines) using averages of the 1-min GHI data shown in Fig. 3 for multiple time
steps. The performance is evaluated against the source 1-min GHI data.

Time step SP2 SP3 KT MPI

1 h 3.6 3.5 2.1 2.0
2 h 11.8 11.5 6.6 4.3
3 h 31.6 32.1 11.6 20.8
4 h 40.3 32.8 17.6 19.2

variability. However, simple interpolation methods, such as mp-splines,
re suitable for overcast and cloudless days.

This section benchmarks mp-splines against other methods by in-
erpolating a 2-hr average GHI time series into 1-min time steps, as
hown in Fig. 3. The regular 2nd-order splines interpolation is simple
ut results in deviations from the actual 1-min data at sunrise, noon and
unset. The linear interpolation of clearness index (that is, the ratio of
HI to extraterrestrial horizontal irradiance, KT), which is a customary
pproach in forecasting applications (Sengupta et al., 2021), improves
he regular splines results, but it requires a transformation of GHI to KT,
hen a linear interpolation of KT into the 1-min time grid, and then
ransforming KT back to GHI. The mp-splines interpolation provides
imilar results, but slightly better at noon.

Table 1 shows the root mean squared difference of the previous
nterpolation approaches, plus regular 3rd-order splines, when they are
sed to interpolate the clear-sky GHI data shown in Fig. 3 averaged over
ultiple time steps, from 1 h to 4 h. The results reveal that the KT-based

nd mp-splines interpolation methods outperform regular splines for all
ime resolutions. The mp-splines interpolation even improves the results
f the linear interpolation of KT for 1- and 2-hr time steps, but the latter
s better for coarser time resolutions.

.2. Daily-to-hourly interpolation of weather data

The simulation of clear-sky solar irradiance requires ancillary vari-
bles that are not necessarily available at the temporal resolution that
s needed for solar irradiance. When these variables are defined as
veraged amounts over a time period (e.g., hourly or daily), mp-splines
rises as a logical interpolation approach to accommodate the input
ata to the time resolution required by the specific solar application.
ig. 4 shows interpolation results of hourly AOD data (MERRA-2 AOD,
015) and hourly precipitable water data (MERRA-2 P.W., 2015) that
ave been first averaged to daily scale and then interpolated back
o hourly time steps. The time series are taken from a Modern-Era
etrospective analysis for Research and Applications v2, (MERRA-2;
elaro et al., 2017) grid-cell near the Penn State University SURFRAD

ite (SURFRAD, 2022), and span the entire year 2014. Two inter-
olation approaches are considered, regular 2nd-order splines and
p-splines. As a reference, Fig. 4 also shows the original data at
ourly resolution. The results with the two interpolation approaches
re barely distinguishable to the naked eye, at least at the zoom level
hown in Fig. 4. As expected, the comparison of the interpolated hourly
alues against the original hourly data reveals no bias, and similar
oot mean squared deviations for the two methods, although slightly
ower for mp-splines, particularly for precipitable water. Interestingly,
hese results also show evidence that none of the interpolation methods
s able to reproduce the full sub-daily variability of the interpolated
ariables. This limitation is remarkable for daily maxima of AOD, that
re not captured in the interpolated data at their full extent. This issue
ight be alleviated with a specialized approach that considered not

nly the average during the day, but maybe also a measure of the
ata spread (e.g., standard deviation). A more detailed analysis, not
hown here, reveals that mp-splines is consistently better than regular
nd-order splines for the 10 % of days with higher turbidity (0.99
MSD for 2nd-order splines and 0.94 RMSD for mp-splines), while they
ehave alike for the rest. With precipitable water, mp-splines is always
onsistently better.

https://github.com/jararias/mpsplines/
https://docs.scipy.org/doc/scipy/reference/interpolate.html
https://docs.scipy.org/doc/scipy/reference/interpolate.html
https://docs.scipy.org/doc/scipy/reference/interpolate.html
https://github.com/jararias/mpsplines
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Fig. 3. Interpolation of 2-hr clear-sky average GHI data (markers) using three different interpolation methods: regular 2nd-order splines (blue), linear interpolation of KT (orange),
and mp-splines (red). The reference 1-min data (black) from which the 2-hr averages are calculated is also shown. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
Fig. 4. Interpolation of daily averages of MERRA-2 AOD at 550 nm (top panel) and precipitable water (bottom panel) data to hourly time steps. The daily averages (markers)
are calculated from hourly values, which are also shown for visual reference (black solid line). Two interpolation methods are considered, 2nd-order splines (blue solid line) and
mp-splines (red solid line). The mean bias difference (MBD) and root mean squared difference (RMSD) of the interpolated data compared to the original hourly values are shown
on the panels (blue for 2nd-order splines; red for mp-splines). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
5.3. Interpolation of long-term monthly average ground albedo

Sometimes weather variables are available only as a long-term
average (LTA), maybe because they change only at long time scales, or
because there is limited knowledge that prevents a finer representation.
Some examples that are relevant to solar irradiance assessment are
total-column ozone content and ground albedo. Long-term average
databases are frequently represented at monthly scale, which naturally
highlights their periodic boundary conditions.
125
Fig. 5 shows the interpolation of a monthly LTA version of the
MERRA-2 ground albedo (MERRA-2 GHI, 2015) at daily steps through-
out three consecutive years using both regular 2nd-order splines and
mp-splines. The central year is highlighted in color to show the dif-
ferential treatment of boundary conditions in the two interpolation
methods, since mp-splines is provisioned with a specific mode for
periodic boundary conditions, but regular splines is not. The library
mpsplines has special functionalities for the interpolation of LTA data.
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Fig. 5. Interpolation of MERRA-2 LTA monthly ground albedo data to daily time steps using regular 2nd-order splines and mp-splines. The LTA monthly time series is drawn from
the MERRA-2 grid dataset at the Gobabeb BSRN site’s location (−23.56140◦N, 15.04198◦E).
6. Conclusions

A general-purpose 1-D mean-preserving splines interpolation ap-
proach (mp-splines) has been presented. Unlike regular splines, it is
suitable for averaged datasets and processes that require ensuring the
conservation of mass or energy budgets during interpolation, that is a
typical situation in the processes usually involved in solar modeling.
However, as with regular splines, it can result in unphysical values
(e.g., negative precipitation rates). To prevent it, mp-splines implements
a local relaxation of the splines that yield unphysical values to readjust
the interpolation and keep the values within the permitted domain.
In addition, the algorithm can deal with data with periodic boundary
conditions, for instance, with monthly climatologies.

The performance of the new interpolation method has been bench-
marked against regular splines in three use cases. First, for the inter-
polation of sub-daily GHI averages during a cloudless day, where it
proved superior to regular second- and third-order splines, and like
linear interpolation in the KT space, for 1-hr and 2-hr average GHI.
Second, for hourly interpolation of daily AOD and precipitable water
data from an atmospheric reanalysis. The new interpolation approach
proved better than regular second-order splines for precipitable water,
and similar for AOD, except for the days with the highest turbidity,
when mp-splines consistently improved regular second-order splines.
Third, for long-term monthly average ground albedo, which is a dataset
with periodic boundary conditions and thus, suitable for mp-splines.
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Appendix. Comparative performance analysis

Although the current implementation of mp-splines is not aimed
at meeting stringent performance criteria, this section shows a brief
comparative performance analysis against splines interpolation meth-
ods implemented in Scipy (https://docs.scipy.org/doc/scipy/reference/
interpolate.html). To that aim, the AOD dataset shown in Fig. 4 is used.
The results are summarized in Table 2.

mp-splines is much slower than the splines implementation in Scipy
and scales up less efficiently. This is expected because Scipy runs a
wrapper over a Fortran implementation to optimize the performance.
This is not the case with mp-splines, but it could be done in the future
if foreseen applications require faster execution times. So far, the speed
of the current implementation is deemed sufficient for most intended
applications. Indeed, ten years of daily values are interpolated to hourly
time steps in less than 1 s. This is equivalent to interpolate about 150
days of hourly values into 2.5 s time steps.

When mp-splines finds splines that yield values beyond the physical
limits, the execution time blows up proportionally to the number of
violating splines. Among the variables tested in this work, only AOD
incurs routinely in un-physical values, but for very few splines. In the
example shown in Table 2, only 2 splines per year yield un-physical
values.
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