
SoftwareX 20 (2022) 101256

A

D
c
t
h
H
c
i
c
(

D
O

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

DPIVSoft-OpenCL: Amulticore CPU–GPU accelerated open-source
code for 2D Particle Image Velocimetry
Jorge Aguilar-Cabello, Luis Parras ∗, Carlos del Pino
ndalucía Tech., Universidad de Málaga, Escuela de Ingenierías Industriales, Ampliación Campus Teatinos, 29071, Málaga, Spain

a r t i c l e i n f o

Article history:
Received 28 March 2022
Received in revised form 6 September 2022
Accepted 3 November 2022

Keywords:
PIV
Fluid mechanics
Velocimetry
Open-CL
GPU
Python

a b s t r a c t

We present a translation of the original Matlab DPIVSoft code to a complete open source code
implemented in Python, to perform Particle Image Velocimetry (PIV) in two-dimensions, in parallel,
and with interrogation window shifting along with the double-pass window deformation approach
using multiple iterations for each pass. The added value of the code is the use of the Open Computing
Language (OpenCL) library to parallelize the original code on multiple Intel Central Processing Units
(CPUs) and/or Graphics Processing Units (GPUs), so it can be run on all commercially available GPUs.
Examples of flow application are included in the text using synthetic images generated from DNS data
from John Hopkins Turbulence Database (JHTD) (Perlman, 2007), showing about 90x speedup over the
previous Matlab implementation for a given test case.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version 0.2.2
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-22-00074
Permanent link to Reproducible Capsule
Legal Code License GNU General Public License v3 (GPLv3)
Code versioning system used git
Software code languages, tools, and services used python, OpenCL.
Compilation requirements, operating environments & dependencies Automatic install with pip https://pypi.org/project/dpivsoft/
If available Link to developer documentation/manual https://gitlab.com/jacabello/dpivsoft_python/-/tree/master/dpivsoft/Examples/
Support email for questions jacabello92@gmail.com

1. Introduction

There has been a rapid expansion of descriptive work on
igital Particle Image Velocimetry (DPIV) systems and their un-
ertainty quantification, along with a very noticeable increase in
he large amount of data coming from digital cameras that have a
igher spatial resolution [1,2] even using a mobile application [3].
owever, to the best of our knowledge, no DPIV open source
ode has been developed to run on any computing platform
ncluding both Central Processing Units (CPUs) and Graphics Pro-
essing Units (GPUs) making use of Open Computing Language
OpenCL) [4].

The use of OpenCL has been applied to Computational Fluid
ynamics [5], but as far as we are aware, there are not many
penCL developments for running DPIV [6,7]. Although there

∗ Corresponding author.
E-mail address: lparras@uma.es (Luis Parras).

is groundbreaking research work regarding an OpenCL code for
Tomographic PIV, there is no mention made of how to access the
code [6]. Other development of PIV using OpenCL is QuickLab PIV-
ng. This software consists of a Graphical User Interface (GUI), over
a PIV code based on OpenCL [7], but unfortunately this is a project
in progress.

There are other open source alternatives to perform DPIV
such as PIVlab [8], JPIV [9] or OpenPIV [10,11]. The OpenPIV
source code, also written in Python [10], has pioneered the use
of GPUs in its cross-correlation algorithm and is in active devel-
opment over the last few years. OpenPIV allows pre-processing
of images, velocity calculations and post-processing of PIV data.
This software architecture is based both on the rapid develop-
ment of Python itself, and on fast and efficient execution. The
GPU-accelerated PIV algorithm has been added as a module for
OpenPIV, and can be used with any NVIDIA GPU system. One can
use the PyCUDA API to interface the OpenPIV Python source code
with a GPU [12]. The same OpenPIV code has been successfully
ttps://doi.org/10.1016/j.softx.2022.101256
352-7110/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2022.101256
https://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2022.101256&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00074
https://pypi.org/project/dpivsoft/
https://gitlab.com/jacabello/dpivsoft_python/-/tree/master/dpivsoft/Examples/
mailto:jacabello92@gmail.com
mailto:lparras@uma.es
https://doi.org/10.1016/j.softx.2022.101256
http://creativecommons.org/licenses/by/4.0/


Jorge Aguilar-Cabello, Luis Parras and Carlos del Pino SoftwareX 20 (2022) 101256

a
m
t
t
P
r
D

&
g
i
r
d
s
H
t
a
d
i

Fig. 1. DPIVSoft algorithm scheme.

dapted to the use of multiple NVIDIA GPUs [13]. Recently, other
assively parallel optical flow methods have been developed

hat allow PIV processing which produce errors comparable to
he aforementioned programs [14]. As an example, the FOLKI-
IV developed on GPUs allows for a speedup of 50 times with
espect to the CPU version, and it provides very similar results to
PIVSoft [15,16].
The software DPIVSoft has been developed by Patrice Meunier
Thomas Leweke [17]. This program performs a double-pass al-
orithm with window shifting using image deformation, multiple
terations and sub-pixel accuracy that has proven to accurately
eproduce a wide variety of vortex flows with high velocity gra-
ients [18,19]. Hence, the velocity field obtained from the code
hould be of interest to detect vortices inside a fluid flow [20].
owever, we found two drawbacks in the original code DPIVSoft
hat could be improved. Firstly, it is written in Matlab, which is
proprietary software with a high price per license. Secondly,
espite the high calculation speed provided by this software,
t is not optimized for use both in parallel execution and on

GPUs. However, and given the nature of PIV algorithms and GPUs
accessible today, the performance increase can be overwhelming.
For both of the above reasons, we describe a (GPU)-accelerated
DPIV algorithm using DPIVSoft as the basis for this development
(DPIVSoft-OpenCL). Though the software could have been tested
with any image generator [21], we rigorously have validated
the algorithm using synthetically generated images of theoret-
ical data and velocity fields from Direct Numerical Simulations
(DNS) [22].

2. Software description

2.1. Particle image velocimetry with windows deformation

The algorithm consists of a multi-pass approach with window
shifting using image deformation, so that windows are deformed
according to the velocity gradients in an iterative process. We
perform cross-correlation on each pair of windows and the cross-
correlation peak is located with sub-pixel precision using a three-
points Gaussian fitting estimator [23]. Each of these interrogation
windows is normalized so that a noise-to-peak validation criteria
can be used on the correlation peaks to avoid spurious vectors.
Once the velocity field is obtained, we remove odd values by
means of a median filter. The image deformation is performed
using the gradients of the filtered velocity field making use of
a blur filter to smooth the results. The deformed interrogation
windows are used as new input for the cross-correlation. We
repeat this process to improve the final velocity field as shown
in the flowchart of Fig. 1.

The image deformation is done in a symmetric way, i.e. images
at instants t and t + dt are deformed respectively by displace-
ments –u/2 and +u/2, where u is the displacement found at the
previous iteration. This choice is equivalent to a second-order
discretization in time.

We use bi-linear interpolation to obtain the velocity field in a
finer grid, where the processing is repeated again to obtain the
final velocity field.

We have also applied a Gaussian blur filter to the images only
in the first iteration to increase the correlation peak of images
containing small particles [17]. We have also implemented a
mask tool in which the masked area of each correlation window
is filled with the mean intensity of the unmasked area of the same
correlation window to improve peak detection [24].

2.2. Multicore acceleration: OpenCL

This code has been developed using OpenCL, which is an
open language and allows parallelization on AMD and NVIDIA
GPUs [4], but the same code can even be run in parallel on CPUs
without any modification, as shown below. The hosting platform
used on the CPU is Python, which is an increasingly popular
language with extensive library support and, unlike the original
code platform written in Matlab, is open source. The first step is
to read the pair of images, using the library OpenCV in Python.
This step is the main bottleneck when loading large images for
computation on the GPU. This process can take up to a 40% of
the total processing time on the GPU. To increase performance
in the DPIVSoft-OpenCL code, the following pair of images are
loaded asynchronously during the processing time of the images,
except for the first pair. No further communication with the CPU
is required until the algorithm has finished.

The parallelism of the calculations implies that it is necessary
to hold all the interrogation windows and intermediate results
in memory at the same time. Each image pair is divided into k1
interrogation windows of Nx1×Ny1 pixels with the gray scale light
intensity value. This division is stored, in turn, in two matrices of
2

https://pypi.org/project/dpivsoft/


Jorge Aguilar-Cabello, Luis Parras and Carlos del Pino SoftwareX 20 (2022) 101256

d
l
F

w
p

v
p
a

ϵ

imension Nx1×Ny1×k1. Each pixel is written to its GPU memory
ocation by a different thread to increase the computing speed.
or the second pass, two new matrices of Nx2 ×Ny2 × k2 are used

to store the already deformed correlation windows. To optimize
the memory requirements of the code, these matrices, as well as
all intermediate variables needed for the second step, point to the
same real memory allocation as used in the first grid.

All the matrices used in the GPU are single precision so as
not to compromise the performance. Furthermore, the effect on
the accuracy of the results is almost negligible, when comparing
those obtained in single precision on the GPU with double pre-
cision settings, using both the Matlab and the Python versions of
DPIVSoft.

We have parallelized most of the operations presented in Fig. 1
at the correlation window level with three exceptions:

• Image pre-processing (masking, gaussian filtering and divi-
sion the original image into correlation windows) is paral-
lelized at the pixel level.

• In the process of window deformation, the code is paral-
lelized at the pixel level (each core deforms a pixel).

• The Fourier transform necessary for cross-correlation is per-
formed using Reikna library, which has different parallel
algorithms depending on the size of the input.

3. Validation

3.1. Synthetic images from both theory and DNS and PIV errors

We compare the exact velocity field averaged at each inter-
rogation window with the results obtained from the PIV code
applied to synthetic images. The images are generated by an
in-house code that creates 8-bit images using a random distribu-
tion of points. The particles were created using a Gaussian light
intensity distribution following Eq. (1) as recommended in [2],

I (x, y) = Io exp
[
−

(x − xo)2 + (y − yo)2

d2τ/8

]
, (1)

here dτ is the diameter of the particle located at (xo, yo) with a
eak intensity of Io. The intensity I0 and particle diameter dτ are

random variables of average and standard deviation of (200, 80)
and (2, 0.5), respectively. The tracers are placed randomly along
the image with a density of 0.05 particles/pixel.

The error ϵPIV of one single 2D PIV result at a given point n,
= (un, vn), compared to that exact (theoretical or DNS) vector
rovided at the same point ve = (ue,n, ve,n), is defined in pixels
s

PIV =

√
(un − ue,n)2 + (vn − ve,n)2 . (2)

To calculate the exact velocity field from both theoretical or DNS
velocity results, the velocity field of all points inside the interro-
gation windows is averaged to obtain a mean of the velocities in
the x and y axes directly in the center of the box. This process
is equivalent to performing a box-averaged velocity field which
would be the expected result of a perfect PIV processing.

3.2. Fundamental flows

The first test case will be the (theoretical) spatial wavelength
response of the method as originally introduced by Scarano and
Riethmuller [25] and later used by other authors as a bench-
mark [13]. This test allows to evaluate the frequency response of
the DPIVSoft-OpenCL code. Synthetic images are generated using
a sinusoidal displacement field

u = A sin
(
2π

y )
ex, (3)

where y is the vertical coordinate, A is the amplitude of the
displacement, λ is the spatial wavelength, and the displacement
only affects the x direction (ex). The amplitude A is fixed to 2
pixels and the wavelengths are chosen to be λ ∈ [32, 1024].

The synthetic images are created with the analytic velocity
field and then processed with DPIVSoft-OpenCL using double-
pass window deformation approach, with window sizes of 64 × 64
pixels2 and 32 × 32 pixels2 for the first and second pass, respec-
tively, each having a 50% of overlap. The results are shown in
Fig. 2: the velocity profile calculated with DPIVSoft-OpenCL code
compared to that given by the real velocity (a) and the frequency
response of DPIVSoft-OpenCL code (b).

It can be observed in Fig. 2(a) that the maximum displacement
and the maximum shear is well calculated by the DPIVSoft-
OpenCL code for a wavelength of λ = 1024. Fig. 2(b) shows
the transfer function of the algorithm that is a characterization
of foremost importance related to spatial filtering. In this last fig-
ure we present the ratio of the average maximum displacement
obtained by DPIVSoft with respect to the real maximum imposed
in the synthetic images (A = 2 pixels) for different ratios of the
interrogation window size with respect to the wavelength. The
results in squares are compared with the theoretical correlation
operator that can be approximated by a simple moving average
whose value can be calculated as the cardinal sine curve [25].

3.3. Homogeneous buoyancy driven turbulence

The results shown in this section come from the data from
DNS of homogeneous buoyancy driven turbulence on a cubic
domain of size 2π × 2π × 2π using 10243 points in a 3D
periodic grid. The equations solved are the miscible two-fluid in-
compressible Navier–Stokes equations, which are obtained from
the fully compressible Navier–Stokes equations with two species
with different molar masses in the limit of infinite speed of sound,
so that the individual densities of the two fluids remain constant.
The code used to solve the DNS problem is described in [26]
and it is initialized with random blobs. The Reynolds number of
the simulation is 12500 and the typical evolution of the flow
is starting from rest, then there is a generation of turbulence
due to the differential movement created by buoyancy and after
that, there is a decay of energy due to turbulence dissipation.
For the example taken here, an intermediate solution has been
chosen so the flow has multiple low scale vortices, which are
very complicated to characterize by PIV measurements due to the
resolution. For this case, we use synthetic images of 2048 × 2048
pixels2. The simulation results for the velocity in the 10242 grid
are mapped by interpolation onto a 20482 pixels of the generated
image. Then, we created a normal distribution of particles with an
optimal density, each one with the velocity corresponding to the
pixel in which is plotted, obtained from interpolation from the
CFD data. For the next picture, each particle has been displaced
v · ∆t . There are no changes in illumination or movements out
of the plane so the only source of error in this case is the PIV
algorithm itself. The vorticity is shown in Fig. 3(a) to illustrate
the complexity of the flow patterns. The error in pixels, ϵPIV , is
depicted in (b), while we present the results from DNS (c) and
DPIVSoft-OpenCL using synthetic images (d).

Table 1 shows the error in pixels (mean, max and standard
deviation) for different parameters regarding box size and itera-
tions.

Although we carry out the calculation of the overall velocity
field in the whole spatial domain accurately, compare Figs. 3 (c)
and (d), it is observed that there are very small areas that have
large errors in pixels as can be seen in Fig. 3(b) or maximum er-
rors in pixels in Table 1. These large values of ϵPIV depend strongly
on the spatial resolution and also on the synthetic images, but
λ

3

https://pypi.org/project/dpivsoft/
https://pypi.org/project/dpivsoft/
https://pypi.org/project/dpivsoft/
https://pypi.org/project/dpivsoft/
https://pypi.org/project/dpivsoft/
https://pypi.org/project/dpivsoft/
https://pypi.org/project/dpivsoft/


Jorge Aguilar-Cabello, Luis Parras and Carlos del Pino SoftwareX 20 (2022) 101256

c
i

w
i
f
t
w
o

4

u
c
P
f

Fig. 2. (a) Example of ux velocity profile calculated with DPIVSoft-OpenCL
ompared to that given by the real velocity. The frequency of this velocity field
s 1024 pixels. (b) Frequency response of the DPIVSoft-OpenCL code.

Table 1
PIV errors in pixels, ϵPIV , for buoyancy induced turbulence and
different box sizes and passes.
Boxes size (pixels2) Iter Error in pixels

Mean Max Std (σ )

128–64 1 0.16 1.9 0.20
2 0.15 1.8 0.20

64–32 1 0.11 2.31 0.12
2 0.10 2.30 0.11

32–16 1 0.11 1.45 0.09
2 0.10 1.82 0.08

they appear in small areas. We have found that ϵPIV is correlated
ith a measure of the maximum velocity difference within the

nterrogation box. The coefficient of determination is R2
= 0.33

or this strongly mixing-dominated flow. It would be interesting
o determine the sources of error in PIV algorithms with iterative
indow deformation in future studies as it is beyond the scope
f this work.

. Performance

We have tested the performance increase that is achieved
sing parallel DPIVSoft-OpenCL acceleration. As stated below, this
ode was initially developed in Matlab, but it has been ported to
ython and OpenCL. Hence, we can make use of multiple cores
or a given CPU or several GPUs simultaneously. We used two

GPU Workstations for the test. The first one (WP1) is an Intel
i7-4770 (4 cores and 8 threads) and a NVIDIA GeForce GTX 780
with 3 GB of RAM and 2304 CUDA cores. The second workstation
(WP2) is an AMD-Ryzen 9 3950X (16 cores and 32 threads) and
a NVIDIA Geforce GTX 3070 with 8 GB of RAM and 5888 cores).
The computations have been executed in OpenCL 1.2 which is the
most modern version that supports both GPUs.

Once we have described the main characteristics of both GPUs
and CPUs, we will characterize the improvement of computing
time obtained using DPIVSoft-OpenCL. To that end, we mea-
sured the averaged computation time of each image pair for a
different total number of correlation boxes in the second pass
using all the available techniques allowed by the code: Python,
Matlab, Python+OpenCL (CPU) and Python-OpenCL (GPU), for the
two different workstations, being the Python implementation the
slowest one. The average time is obtained from the computation
of 50 images for each case. In all cases, the sizes of the correlation
boxes are 32x32 pixels2 and 16x16 pixels2 for the first and second
pass, respectively, and we increase the number of windows by
increasing the size of the image. In Fig. 4 we show the speedup
of the different implementations of DPIVSoft-OpenCL on the two
different workstations. In WS1 (solid lines), we have compared
the average time of calculation for Intel Python, Intel OpenCL and
NVIDIA GPU with OpenCL with the average time of executing the
original code in Matlab. It can be seen as for small images, the
speedup is almost negligible, reaching a plateau for the case of
Intel CPU with Python indicating that Matlab is around 6 times
quicker than the Python code. We have performed the same
calculation using the total number of cores of the Intel i7 CPU, and
the behavior is very similar to the results using Python, reaching
a plateau for the biggest image, so the speedup is roughly 4.8
times the Matlab processing time for the same image. On the
other hand, the speedup by using GPUs keeps increasing as we
increase the size of the image until we reach a speedup about
45 for images greater than 5 Mpx with respect to the original
implementation in Matlab. Finally, and due to the reduced size
of the RAM of the NVIDIA card, the last point could not be cal-
culated. We repeat the process with the second workstation WS2
(dashed lines in Fig. 4). The results AMD CPU with Python reach a
plateau for images greater than 2 Mpx of around 4.5 times slower
than the Matlab version of the code. We have not been able to
measure the DPIVSoft-OpenCL speedup in this 16 threads AMD
CPU because AMD is not supporting the OpenCL libraries for their
processors. In this last workstation, the NVIDIA card with OpenCL
is able to produce a speedup around 90. To complete the compar-
ison with other open-source codes, we have included the results
of the processing time in the first workstation, WS1, for PIVLab,
which, using parallelization in Matlab, achieves between 2 and 5
times speed-up with respect to DPIVSoft-Matlab, depending on
the size of the image. On the other hand, the Python version of
OpenPIV-Python produces a speedup of 1.65 with respect to the
DPIVSoft-Python version.

5. Impact

The main focus of this study is the adaptation of the original
DPIVSoft Matlab code [17] to a full open-source software, using
Python and OpenCL in such a way that it can be run in parallel on
Intel CPUs or GPUs of any brand. This original software has been
successfully used to characterize trailing vortices [19,27] in two-
dimensions, among other applications using rotating flows [28].
The effectiveness of our open source code is demonstrated by
the following milestones: it can be run using GPUs of different
brands (NVIDIA, AMD or even the future Intel Xe product) or
multiple Intel CPUs. Furthermore, the relevance of the code is
demonstrated by a drastic decrease of the computational time
4

https://pypi.org/project/dpivsoft/
https://pypi.org/project/dpivsoft/
https://pypi.org/project/dpivsoft/
https://pypi.org/project/dpivsoft/
https://pypi.org/project/dpivsoft/
https://pypi.org/project/dpivsoft/


Jorge Aguilar-Cabello, Luis Parras and Carlos del Pino SoftwareX 20 (2022) 101256
Fig. 3. Vorticity from the DNS data (a), and error ϵPIV (in pixels) in the estimation of the 2D velocity field (b), ux velocity field for the DNS data of the homogeneous
buoyancy driven turbulence (from JHTD) (c), and results obtained from synthetic images with DPIVSoft-OpenCL (d).

Fig. 4. Comparison on performance of the different implementations of
DPIVSoft-OpenCL.

to achieve the same results using two complex problems. This
performance improvement, together with the aforementioned

ability to be run on different platforms, makes the application of
this program an excellent tool for measuring the velocity field
in any experimental setup in Fluid Mechanics or for real-time
velocity measurement applications, as computation times of 0.12
s are achieved for 2048 px2 images. Unfortunately, the real-time
capability could not be tested as the program is implemented
for offline processing, i.e. the images are captured by an external
program and then processed by the DPIVSoft-OpenCL software.
It is worth mentioning that other recent optical flows software,
i.e. FOLKI-PIV, produce similar results with a time of 0.04 s in a
different Workstation and with a different setup. This fact implies
that an implementation of the Optical Flow correlation technique
could further improve the efficiency of the current version of the
code DPIVSoft-OpenCL. As a final result, we present in Table 2 a
performance summary of the code along with other open-source
PIV processing programs for the same settings: image size of
2048 × 2048 px2, two passes, the first with 32 × 32 and the
second with 16 × 16 px2 interrogation windows, and with 50%
overlapping.

6. Conclusions

We have ported the widely used Matlab code DPIVSoft to
a full open-source alternative in Python that makes use of the

library OpenCL to accelerate the processing in CPUs and GPUs.

5

https://pypi.org/project/dpivsoft/
https://pypi.org/project/dpivsoft/


Jorge Aguilar-Cabello, Luis Parras and Carlos del Pino SoftwareX 20 (2022) 101256

r
i
v
G
L
s

D

A

M
D
0
P
v
f
c

A

o

Table 2
Summary table of the performance of the code presented together with other open-source PIV processing programs
for a 2048 × 2048 px2 image, two passes, the first with 32 and the second with 16 interrogation windows, with
50% overlapping.
Code Language CPU GPU RMS error (px) Runtime (s) Reference

DPIVSoft-Matlab Matlab X 0.08 9.91 [17]
DPIVSoft-python Python X 0.06 63.77 Current
DPIVSoft-OpenCL Python-OpenCL X 0.10 1.49 Current
DPIVSoft-OpenCL Python-OpenCL X 0.10 0.18 Current
PIVLab Matlab X 0.06 3.35 [8]
OpenPIV Python X 0.13 38.61 [10]

This implementation has multiple advantages: it can be installed
in any workstation or cluster, the code can be accelerated by
using Intel CPUs or any available GPUs (AMD, NVIDIA or Intel
cards). We tested the algorithm using synthetic images in two
flows: (i) one dimensional sinusoidal displacement to check the
frequency response of the PIV code, and (ii) bidimensional DNS
code from JHTD; a mixing buoyant flow, with a very complicated
vorticity field. We have checked that the GPU implementation
demonstrates the same accuracy than the original code. On the
other hand, a huge increase in performance is achieved when
using GPUs, which typically increases with the size of the images.
The drawback of this implementation is the large amount of RAM
needed to run all calculations on GPU without communicating
with the host. In any case, with the present implementation, the
code is able to accelerate up to 48 times the original Matlab
code in some old NVIDIA card (Geforce GTX 780), and up to
94 times in a more recent NVIDIA Geforce GTX 3070 card. This
result is very useful because in the last years there has been an
increase of the size of the images for PIV as well as an increase of
computing power with the new GPU cards. The DPIVSoft-OpenCL
implementation works much better for larger size of images, so
we are expecting much better results in future GPU cards. This
first version of DPIVSoft-OpenCL could be updated including both
a filter of the predictor displacement field [29] and other types of
image masking as well as the expansion to a third dimension for
stereoscopic PIV applications.

Declaration of competing interest

The authors declare the following financial interests/personal
elationships which may be considered as potential competing
nterests: Jorge Aguilar-Cabello reports financial support was pro-
ided by the Ministerio de Economía y Competitividad of the
overnment of Spain through the project DPI2016-76151-C2-1-R.
uis Parras reports financial support was provided by the Univer-
ity of Malaga through the project B4-2019-11, 0837002010.

ata availability

Data will be made available on request.

cknowledgments

This research has been supported by one grant from the
inisterio de Economía y Competitividad of Spain (Grant No.
PI2016-76151-C2-1-R) and partially by the project B4-2019-11,
837002010 from the Universidad de Málaga and the project
ID2021-124692OA-I00 from the Ministerio de Ciencia e Inno-
ación. The authors would like to thank Patrice Meunier for his
ruitful discussions on the original DPIVSoft algorithm and his
omments on the final version of the manuscript.

ppendix A. Supplementary data

Supplementary material related to this article can be found

References

[1] Adrian RJ. Twenty years of particle image velocimetry. Exp Fluids
2005;39:159–69. http://dx.doi.org/10.1007/s00348-005-0991-7.

[2] Raffel M, Willert CE, Scarano F, Kähler CJ, Wereley ST, Kompenhans J.
Particle image velocimetry: a practical guide. Springer; 2018, http://dx.
doi.org/10.1007/978-3-319-68852-7.

[3] Minichiello A, Armijo D, Mukherjee S, Caldwell L, Kulyukin V, Truscott T, et
al. Developing a mobile application-based particle image velocimetry tool
for enhanced teaching and learning in fluid mechanics: A design-based
research approach. Comput Appl Eng Educ 2020;1–21. http://dx.doi.org/
10.1002/cae.22290.

[4] Stone JE, Gohara D, Shi G. OpenCL: A parallel programming standard
for heterogeneous computing systems. Comput Sci Eng 2010;12(3):66–73.
http://dx.doi.org/10.1109/MCSE.2010.69.

[5] Mossaiby F, Rossi R, Dadvand P, Idelsohn S. OpenCL-based implementation
of an unstructured edge-based finite element convection-diffusion solver
on graphics hardware. Internat J Numer Methods Engrg 2012;89:1635–51.
http://dx.doi.org/10.1002/nme.3302.

[6] Lozhkin VA, Lozhkin YA, Tokarev MP. Application of high performance
computing platforms to tomographic particle image velocimetry. Numer
Methods Program 2012;13(1):20–7.

[7] Mendes L, Ricardo A, Ferreira RML. A customizable open-source software
platform. In: Hydrosensoft, international symposium and exhibition on
hydro-environment sensors and software. 2019, p. 1–8.

[8] Thielicke W, Stamhuis E. PIVlab – towards user-friendly, affordable and
accurate digital particle image velocimetry in MATLAB. J Open Res Softw
2014;2(1):pe30. http://dx.doi.org/10.5334/jors.bl.

[9] Okamoto K, Nishio S, Saga T, Kobayashi T. Standard images for particle-
image velocimetry. Meas Sci Technol 2000;11(6):685–91. http://dx.doi.org/
10.1088/0957-0233/11/6/311.

[10] Taylor ZJ, Gurka R, Kopp GA, Liberzon A. Long-duration time-
resolved PIV to study unsteady aerodynamics. IEEE Trans Instrum Meas
2010;59(12):3262–9. http://dx.doi.org/10.1109/TIM.2010.2047149.

[11] Ben-Gida H, Gurka R, Liberzon A. OpenPIV-MATLAB—An open-source
software for particle image velocimetry; test case: Birds’ aerodynamics.
Softw X 2020;12:100585. http://dx.doi.org/10.1016/j.softx.2020.100585.

[12] Klöckner A, Pinto N, Lee Y, Catanzaro B, Ivanov P, Fasih A. PyCUDA and
PyOpenCL: A scripting-based approach to GPU run-time code generation.
Parallel Comput 2012;38(3):157–74. http://dx.doi.org/10.1016/j.parco.2011.
09.001.

[13] Dallas C, Wu M, Chou V, Liberzon A, Sullivan PE. Graphical processing
unit-accelerated open-source particle image velocimetry software for high
performance computing systems. ASME J Fluids Eng 2019;141(11):111401.
http://dx.doi.org/10.1115/1.4043422.

[14] Plyer A, Le Besnerais G, Champagnat F. Massively parallel Lucas Kanade
optical flow for real-time video processing applications. J Real Time Image
Process 2016;11:713–30. http://dx.doi.org/10.1007/s11554-014-0423-0.

[15] Champagnat F, Plyer A, Besnerais GL, Leclaire B, Davoust S, Le Sant Y. Fast
and accurate PIV computation using highly parallel iterative correlation
maximization. J Real Time Image Process 2011;50(1169). http://dx.doi.org/
10.1007/s00348-011-1054-x.

[16] Giannopoulos A, Passaggia P, Mazellier N, Aider J. On the optimal window
size in optical flow and cross-correlation in particle image velocimetry:
application to turbulent flows. Exp Fluids 2022;63(57). http://dx.doi.org/
10.1007/s00348-022-03410-z.

[17] Meunier P, Leweke T. Analysis and treatment of errors due to high velocity
gradients in particle image velocimetry. Exp Fluids 2003;35:408–21. http:
//dx.doi.org/10.1007/s00348-003-0673-2.

[18] Albrecht T, Blackburn HM, Lopez JM, Manasseh R, Meunier P. Triadic
resonances in precessing rapidly rotating cylinder flows. J Fluid Mech
2015;778:R1–12. http://dx.doi.org/10.1017/jfm.2015.377.

[19] García-Ortiz JH, Domínguez-Vázquez A, Serrano-Aguilera JJ, Parras L, del
Pino C. A complementary numerical and experimental study of the in-
fluence of Reynolds number on theoretical models for wingtip vortices.
Comput & Fluids 2019;180:176–89. http://dx.doi.org/10.1016/j.compfluid.
2018.12.009.
nline at https://doi.org/10.1016/j.softx.2022.101256.

6

https://pypi.org/project/dpivsoft/
https://pypi.org/project/dpivsoft/
https://doi.org/10.1016/j.softx.2022.101256
http://dx.doi.org/10.1007/s00348-005-0991-7
http://dx.doi.org/10.1007/978-3-319-68852-7
http://dx.doi.org/10.1007/978-3-319-68852-7
http://dx.doi.org/10.1007/978-3-319-68852-7
http://dx.doi.org/10.1002/cae.22290
http://dx.doi.org/10.1002/cae.22290
http://dx.doi.org/10.1002/cae.22290
http://dx.doi.org/10.1109/MCSE.2010.69
http://dx.doi.org/10.1002/nme.3302
http://refhub.elsevier.com/S2352-7110(22)00174-1/sb6
http://refhub.elsevier.com/S2352-7110(22)00174-1/sb6
http://refhub.elsevier.com/S2352-7110(22)00174-1/sb6
http://refhub.elsevier.com/S2352-7110(22)00174-1/sb6
http://refhub.elsevier.com/S2352-7110(22)00174-1/sb6
http://refhub.elsevier.com/S2352-7110(22)00174-1/sb7
http://refhub.elsevier.com/S2352-7110(22)00174-1/sb7
http://refhub.elsevier.com/S2352-7110(22)00174-1/sb7
http://refhub.elsevier.com/S2352-7110(22)00174-1/sb7
http://refhub.elsevier.com/S2352-7110(22)00174-1/sb7
http://dx.doi.org/10.5334/jors.bl
http://dx.doi.org/10.1088/0957-0233/11/6/311
http://dx.doi.org/10.1088/0957-0233/11/6/311
http://dx.doi.org/10.1088/0957-0233/11/6/311
http://dx.doi.org/10.1109/TIM.2010.2047149
http://dx.doi.org/10.1016/j.softx.2020.100585
http://dx.doi.org/10.1016/j.parco.2011.09.001
http://dx.doi.org/10.1016/j.parco.2011.09.001
http://dx.doi.org/10.1016/j.parco.2011.09.001
http://dx.doi.org/10.1115/1.4043422
http://dx.doi.org/10.1007/s11554-014-0423-0
http://dx.doi.org/10.1007/s00348-011-1054-x
http://dx.doi.org/10.1007/s00348-011-1054-x
http://dx.doi.org/10.1007/s00348-011-1054-x
http://dx.doi.org/10.1007/s00348-022-03410-z
http://dx.doi.org/10.1007/s00348-022-03410-z
http://dx.doi.org/10.1007/s00348-022-03410-z
http://dx.doi.org/10.1007/s00348-003-0673-2
http://dx.doi.org/10.1007/s00348-003-0673-2
http://dx.doi.org/10.1007/s00348-003-0673-2
http://dx.doi.org/10.1017/jfm.2015.377
http://dx.doi.org/10.1016/j.compfluid.2018.12.009
http://dx.doi.org/10.1016/j.compfluid.2018.12.009
http://dx.doi.org/10.1016/j.compfluid.2018.12.009


Jorge Aguilar-Cabello, Luis Parras and Carlos del Pino SoftwareX 20 (2022) 101256
[20] Lindner G, Devaux Y, Miskovic S. VortexFitting: A post-processing fluid
mechanics tool for vortex identification. Softw X 2020;12:100604. http:
//dx.doi.org/10.1016/j.softx.2020.100604.

[21] Mendes L, Bernardino A, Ferreira R. Piv-image-generator: An image gen-
erating software package for planar PIV and optical flow benchmarking.
Softw X 2020;12:100537. http://dx.doi.org/10.1016/j.softx.2020.100537.

[22] Perlman E, Burns R, Li Y, Meneveau C. Data exploration of turbulence
simulations using a database cluster. In: SC ’07: proceedings of the 2007
ACM/IEEE conference on supercomputing. 2007, p. 1–11. http://dx.doi.org/
10.1145/1362622.1362654.

[23] Westerweel J. Digital particle image velocimetry: theory and application.
Delft University Press; 1995.

[24] Theunissen R, Scarano F, Riethmuller M. On improvement of PIV image
interrogation near stationary interfaces. Exp Fluids 2008;45(4):557–72.
http://dx.doi.org/10.1007/s00348-008-0481-9.

[25] Scarano F, Riethmuller ML. Advances in iterative multigrid PIV im-
age processing. Exp Fluids 2000;29:S051–60. http://dx.doi.org/10.1007/
s003480070007.

[26] Livescu D, Mohd-Yusof J, Petersen MR, Grove JW. CFDNS: a computer code
for direct numerical simulation of turbulent flows. Technical report, Los
Alamos National Laboratory; 2009, LA-CC-09-100.

[27] García-Ortiz JH, Blanco-Rodríguez FJ, Parras L, del Pino C. Experimental
observations of the effects of spanwise blowing on the wingtip vortex
evolution at low Reynolds numbers. Eur J Mech B/Fluids 2020;80:133–45.
http://dx.doi.org/10.1016/j.euromechflu.2019.12.007.

[28] Serrano-Aguilera JJ, Parras L, del Pino C, Rubio-Hernandez FJ. Rheo-PIV

of Aerosil
®

R816/Polypropylene Glycol suspensions. J Non-Newton Fluid
Mech 2016;232:22–32. http://dx.doi.org/10.1016/j.jnnfm.2016.03.015.

[29] Schrijer F, Scarano F. Effect of predictor–corrector filtering on the sta-
bility and spatial resolution of iterative PIV interrogation. Exp Fluids
2008;45:927–41. http://dx.doi.org/10.1007/s00348-008-0511-7.
7

http://dx.doi.org/10.1016/j.softx.2020.100604
http://dx.doi.org/10.1016/j.softx.2020.100604
http://dx.doi.org/10.1016/j.softx.2020.100604
http://dx.doi.org/10.1016/j.softx.2020.100537
http://dx.doi.org/10.1145/1362622.1362654
http://dx.doi.org/10.1145/1362622.1362654
http://dx.doi.org/10.1145/1362622.1362654
http://refhub.elsevier.com/S2352-7110(22)00174-1/sb23
http://refhub.elsevier.com/S2352-7110(22)00174-1/sb23
http://refhub.elsevier.com/S2352-7110(22)00174-1/sb23
http://dx.doi.org/10.1007/s00348-008-0481-9
http://dx.doi.org/10.1007/s003480070007
http://dx.doi.org/10.1007/s003480070007
http://dx.doi.org/10.1007/s003480070007
http://refhub.elsevier.com/S2352-7110(22)00174-1/sb26
http://refhub.elsevier.com/S2352-7110(22)00174-1/sb26
http://refhub.elsevier.com/S2352-7110(22)00174-1/sb26
http://refhub.elsevier.com/S2352-7110(22)00174-1/sb26
http://refhub.elsevier.com/S2352-7110(22)00174-1/sb26
http://dx.doi.org/10.1016/j.euromechflu.2019.12.007
http://dx.doi.org/10.1016/j.jnnfm.2016.03.015
http://dx.doi.org/10.1007/s00348-008-0511-7

	DPIVSoft-OpenCL: A multicore CPU–GPU accelerated open-source code for 2D Particle Image Velocimetry
	Introduction
	Software description
	Particle Image Velocimetry with windows deformation
	Multicore acceleration: OpenCL

	Validation
	Synthetic images from both theory and DNS and PIV errors
	Fundamental Flows
	Homogeneous buoyancy driven turbulence

	Performance
	Impact
	Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix A. Supplementary data
	References


