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a b s t r a c t 

As the number of security and privacy attacks continue to grow around the world, there is an ever in- 

creasing need to protect our personal devices. As a matter of fact, more and more manufactures are 

relying on Trusted Execution Environments (TEEs) to shield their devices. In particular, ARM TrustZone 

(TZ) is being widely used in numerous embedded devices, especially smartphones, and this technology is 

the basis for secure solutions both in industry and academia. However, as shown in this paper, TEE is not 

bullet-proof and it has been successfully attacked numerous times and in very different ways. To raise 

awareness among potential stakeholders interested in this technology, this paper provides an extensive 

analysis and categorization of existing vulnerabilities in TEEs and highlights the design flaws that led to 

them. The presented vulnerabilities, which are not only extracted from existing literature but also from 

publicly available exploits and databases, are accompanied by some effective countermeasures to reduce 

the likelihood of new attacks. The paper ends with some appealing challenges and open issues. 

© 2023 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Nowadays, a wide range of mechanisms are emerging to miti- 

ate current and future security threats associated with the devel- 

pment of an ever increasing number of heterogeneous computing 

evices. Computing platforms are continuously evolving, running 

ophisticated operating systems and hosting countless applications 

rom possibly untrustworthy vendors. In these highly complex 

nvironments, the risk of a security breach is extremely high and 

ence the need for execution environments capable of isolating 

ecurity-sensitive applications. The inclusion of secure execution 

nvironments enables them hosting a wide variety of applications 

nd protecting the integrity of their own internal state. 

Among these mechanisms, a relevant choice is the use of 

rusted Execution Environments (TEE), which are hardware- 

solated areas in microprocessors that enable the secure execution 

f applications thereby assuring the confidentiality and integrity 

f data and code. In fact, in the definition of the TEE stan- 

ard ( Ekberg et al., 2012 ) it appears as an isolated environment 

hat coexists and cooperates with the operating system. The main 

urpose of this isolation is to provide security to the whole sys- 

em. TEE technology is certainly a trend in modern platforms, due 
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n part to the adoption of smartphones as our primary platform of 

nteraction with other devices. 

ARM’s TrustZone design stands out among the various system- 

n-chip (SoC) isolation solutions. TrustZone (TZ) is the collection 

f hardware mechanisms that enable TEEs to implement the re- 

uired isolation from the main operating environment. TEEs have 

een considered as secure elements and as such have been used 

or protecting sensitive applications in a number of verticals, such 

s cyber-physical systems (CPS) ( Pinto et al., 2017 ) or embedded 

ystems ( Janjua et al., 2019 ). Nevertheless, some recently found 

ulnerabilities and attacks on different TEE implementations, 

hould make us re-examine existing assumptions on the security 

rovisions of TEEs. 

There are various works, such as ( Komaromy, 2018; Lipp et al., 

016; Machiry et al., 2017; Rosenberg, 2014; Tang et al., 2017 ), 

hat provide a nice perspective on the situation of security in 

EE. In addition, other works provide additional analyses on 

his subject. For example, Sabt et al. (2015) describe the fun- 

amental properties of TEE and provide a comparative study of 

ifferent TEEs based on ARM TZ, but this work does not analyze 

heir impact nor discuss the main reasons that may lead to 

ttacks. Other examples, such as Arfaoui et al. (2014) , provide a 

erspective according to GlobalPlatform (GlobalPlatform) stan- 

ards, in terms of security, with various TEE technologies, and 

sokan et al. (2014) present a comprehensive review of the cur- 

ent role of trusted computing technology in the field of mobile 

evices. 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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2 https://globalplatform.org/ . 
3 Some authors refers to realms instead of worlds, both terms are the same con- 

cept along this paper. 
Our approach differs from the aforementioned papers in the 

ense that our study focuses on classifying existing vulnerabili- 

ies and identifying their impact on the different TZ-based TEE 

mplementations. For this purpose, various devices in the market 

ave been taken as a reference. Note that there have been other 

apers that analyze such issues, but only partially. For exam- 

le, Santos et al. (2014) provide a taxonomy of vulnerabilities 

n commercial TEE, but without delving into the particularities 

f the attacks. Another example is Cerdeira et al. (2020) , which 

rovide an analysis of the security vulnerabilities found, until then, 

n those commercial TEE implementations based on TrustZone. 

heir paper was limited to the analysis of Qualcomm 

1 , Trustonic, 

uawei, Nvidia ( Corporation, 2015 ) and Linaro OP-TEE Brand TEE 

ystems. Finally, other works, such as Busch et al. (2020) and 

eng et al. (2018) also provide a thorough critical review, although 

imited to Huawei’s TEE and Android vulnerabilities, respectively. 

This paper includes an exhaustive analysis of the security 

imitations and associated countermeasures of TrustZone-based 

EEs. More specifically, the main contributions of this paper are as 

ollows: 

1. An extensive review and analysis of the state of the art of TZ se- 

curity extensions, including TEE implementations and their fea- 

tures. 

2. A comprehensive categorization of existing vulnerabilities and 

attacks against TEE implementations. 

3. A detailed analysis of existing countermeasures for the de- 

scribed attacks and vulnerabilities. 

4. A discussion on open challenges and recommendations for fu- 

ture implementations of secure TEEs. 

The rest of the paper is organized as follows: Section 2 provides 

 relevant background on TEE including the evolution of the stan- 

ardization, a description of its main capabilities and applications, 

nd some implementation details. Section 3 presents a novel tax- 

nomy of TEE attacks that will guide the exposition throughout the 

est of the paper. Software-based attacks are detailed in Section 4 , 

rchitectural attacks in Section 5 . Side-channel attacks are ana- 

yzed separately in Section 6 and micro-architectural attacks in 7 . 

n Section 8 a series of existing countermeasures are compiled and 

nalyzed. Finally, open challenges are discussed in Section 9 , and 

onclusions and future works are presented in Section 10 . 

. Background 

.1. The evolution of trusted execution environments 

Software security mechanisms are not sufficient to counter ad- 

anced attacks in many real-world situations. In such cases, build- 

ng secure solutions requires the involvement of secure hardware 

lements. Doubtlessly, the need for secure elements boosted the 

evelopment of the TPM ( Trusted Platform Module ), whose first ver- 

ion dates from 2003 and was followed by TPM 2.0 ( TCG, 2013 ),

hich appeared several years later, in 2012. However, both of these 

tandards have been considered unsuitable for mobile computing 

evices for various reasons, such as limitations derived from the 

se of batteries, the computational restrictions imposed by mo- 

ile devices or the increased price implied by the integration of 

 TPM chip, which in some cases can represent a high percentage 

f the device’s hardware budget. In this line, the Trusted Comput- 

ng Group (TCG) ( TCG, 2013 ) defined in 2007 the specifications of 

he Mobile Trusted Module (MTM) ( Ekberg et al., 2007 ), which ap- 

ears as an branch of TPM v1.2 with changes to adapt it to mobile
1 Qualcomm Product Security. Available: https://www.qualcomm.com/company/ 

roductsecurity/securityadvisories . 

t

p

2

latforms. Nevertheless, as a consequence of the physical resource 

imitation of mobile devices, but MTM implementation was never 

idely adopted. Later TPM Mobile ( McGill, 2013 ) was proposed as 

n attempt to adapt the TPM 2.0 specification to mobile devices. 

lthough that specification was designed to cover implementation 

n a wide range of mobile devices, TPM Mobile was only imple- 

ented in a small number of devices due to the lack of trust in a

oftware-based solution. There have been alternative implementa- 

ions of a mobile TPM, such as simTPM ( Chakraborty et al., 2019 ),

hich relies on the SIM card available in mobile platforms to avoid 

ost of mobile TPM and MTM issues without the need for addi- 

ional hardware. Notwithstanding, the main disadvantage with this 

olution was that the SIMs were not tamper-proof resistant, unlike 

he TPM chip, and therefore cannot be considered as a reliable se- 

ure element. 

As a consequence of these issues, GlobalPlatform 

2 , a non-profit 

ssociation, defined specifications for secure chip technologies, 

athering the fundamental security requirements of mobile de- 

ices and describing the ideal security guard for mobile devices. 

his specification, known as Trusted Execution Environment (TEE), 

uickly gained traction on the market – to the point that a num- 

er of companies that were initially reluctant to the initiative fi- 

ally joined. TEE architecture proposed by GlobalPlatform high- 

ighting the separation of worlds 3 as the most relevant design nov- 

lty. Nokia and Trusted Logic were the first in the long list of 

ompanies that joined, followed by other companies such as ARM, 

VIDIA ( Corporation, 2015 ), AMD, ST, Qualcom, Ericsson and Sam- 

ung, which are now fully involved in the development of the TEE 

pecifications. As of today, TEE is a well-defined security element, 

hose technical specifications not only define the architecture but 

lso the services available for the applications running on top of 

t 4 . GlobalPlatform initially focused on TEE standardization (System 

rchitecture specifications and client API interface). Later, Glob- 

lPlatform released a specification for the Secure OS, including the 

nternal API and TEE applications. 

The main goal of the TEE is to guarantee the secure execution of 

rograms 5 For this purpose, TEE isolation capability enables a se- 

ure area for handling sensitive data, thus eliminating the need to 

rust the software running in the device. In particular, ARM Trust- 

one ( Pinto and Santos, 2019 ), which is the most extended trusted 

ardware TEE systems rely on, defines two protection domains or 

ealms: the Secure World (SW) and the Normal World (NW). 

.2. TEE capabilities and applications 

The TEE design enables to implement security-sensitive services 

y taking advantage of its assurance and secure storage functional- 

ties necessary to preserve both the confidentiality and integrity of 

ata and code. In current implementations, the decision to deny or 

llow the installation of a new service in the TEE is made by the 

EE developer playing the role of a central authority. 

Among the different capabilities offered by the TEE, we high- 

ight the following: 

• Isolated execution: This functionality allows the separated exe- 

cution of applications, some of them in a secure environment 

and others in a normal environment. It is highly recommended 

that isolation is achieved by means of hardware mechanisms 

in order to prevent this mechanism from being controlled from 
4 http://globalplatform.org/specificationsdevice.asp . 
5 Henceforth, we use indistinguishably the terms trustlets and trusted applica- 

ions (TAs) to software executed in the TEE as secure programs, applications or 

rocesses. 

https://www.qualcomm.com/company/productsecurity/securityadvisories
https://globalplatform.org/
http://globalplatform.org/specificationsdevice.asp
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Fig. 1. Relationship between the Secure World and the Normal World. 
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Fig. 2. TEE Worlds in Qualcomm TEE. Communication between wolds is mediated 

by a priviledged OS daemon by SMC calls. 
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6 ARM Trusted Firmware. (n.d.). (ARM & Linaro) Retrieved from https://www. 

trustedfirmware.org/ . 
the non-secure world. Isolated execution can be considered as 

the primary purpose of a TEE. 

• Secure Storage: The TEE provides Trusted Storage of data and 

keys. Trusted storage is tied to a particular TEE and device. This 

prevents any attacker from accessing and modifying the stored 

data unless they have the appropriate permissions. 

• Platform Integrity: Secure boot ensures both the integrity and 

authenticity of the platform. It allows the trusted OS execution 

environment to be instantiated from a trusted root within the 

TEE. The process uses assets linked to the TEE and isolated from 

the normal OS. Besides, according to the TEE description, the 

TEE is protected against some physical attacks. However, note 

that attacks breaking the IC package are beyond the scope of 

TEE protection. 

Based on the above core capabilities, existing TEEs, such 

s TrustZone, can build a large variety of functionalities and 

pplications. Some examples are secure credentials generation 

 Elenkov, 2013 ), secure key storage (Android Keystore, dmver- 

ty) ( Cooijmans et al., 2014 ), secure boot ( Dietrich and Winter, 

009; Ge et al., 2014 ), kernel integrity verification, (e.g., Samsung’s 

IMA Azab et al. (2014) ), trusted peripherals and sensors ( Liu et al.,

012 ), mobile payments using emulation of secure elements ( Pirker 

nd Slamanig, 2012; Pirker et al., 2012 ), digital content protection 

ystems ( Ahmad et al., 2013; Tögl et al., 2013 ), services to manage

nd issue online tickets ( Hussin et al., 20 05; 20 06; Tamrakar et al.,

011 ), cloud storage access authentication mechanisms ( Ekberg 

t al., 2012; Shin et al., 2012 ), security of IoT devices ( González

nd Bonnet, 2013; Guan et al., 2017 ), and many more. 

.3. Trusted execution environment & ARM TrustZone architecture 

As mentioned above, ARM TrustZone is a particular implemen- 

ation of TEE that enables the isolation of CPU state, memory, I/O 

ata, etc. It is built around the concept of protection domains, 

amely the SW and NW, as aforementioned. This system-wide ap- 

roach assign two virtual cores (in the SW and NW respectively) to 

ach physical processor, together with the mechanism to securely 

witch between both realms (cf. Qualcomm TEE in Fig. 2 ). In most 

ases, a security-oriented OS is deployed on the TEE, which oper- 

tes and hosts a number of trusted applications (TAs). 

The separation between worlds is articulated by different inter- 

upts, I/O hardware, memory views, etc. while prioritizing requests 

rom the SW. This process is orchestrated by means of the monitor 

ode mechanism , which plays the role of the gatekeeper by switch- 

ng between realms ( Sabt et al., 2015 ). 
3

The secure monitor call (SMC) is the component in charge of ac- 

ually implementing the monitor mode mechanism. SMC requests 

witching between worlds (secure and normal). Besides, the SMC 

rovides an API within system calls (syscalls) for inter-realms com- 

unications. For example, whenever a process running in the NW 

eeds any service provided by a TA, a run state transfer is re- 

uested from the NW to the SW kernel ( Holding, 2009 ). 

Memory sharing between realms is articulated with two func- 

ions SMC_T YPE_FAST and SMC_T YPE_YIELD 

6 . SMC_T YPE_YIELD is 

sed for the allocation of a memory area belonging to the NW to 

e shared with SW, which is particularly useful when high-volume 

ata transfers are involved and in the case of synchronous trusted 

pplications are needed (e.g., video streaming protection). On the 

ther hand, SMC_TYPE_FAST enables a mechanism for fast informa- 

ion exchange. It relies on the use of registers with up to a total of

our variables to perform data transfers between the two realms. 

In Fig. 2 , the Exception Level (EL) realms separation is depicted. 

n this line, N-EL1 means Exception level 1 in non-secure world 

hile S-EL0 is Exception level 0 in secure world. The grey shaded 

rea corresponds to the components that implement the secure 

orld execution. Whereas the blue boxes are components that be- 

ong to the non-secure world. 

Other components, such as the TZASC and TZMA , are used for 

emory management SRAM and DRAM respectively – as depicted 

n Fig. 3 . These implement protection schemes for the static on- 

hip and for the dynamic off-chip memory. As such, they prevent 

ttempts to access memory within a memory controller by the TZ 

ernel from the normal global environment. In such a case, the 

PU aborts and reacts according to the configured specification, i.e. 

ebooting the device due to a violation ( Holding, 2009 ). 

We notice how TrustZone architecture does not define the way 

o implement TAs accesses with TrustZone services. Indeed, there 

re TZ-based implementations with different service definitions, 

ut all sharing the common architecture described. 

Access properties are another aspect related to memory man- 

gement articulated through memory page permissions. For exam- 

le, those memory regions with write capability are filled up at 

untime, and therefore must be located in a modifiable memory 

rea. On the other hand, as in the case with code pages, which 

https://www.trustedfirmware.org/
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Fig. 3. Architecture on TZ-assisted SoC. 
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nly have read and execute permissions, they may not be modi- 

ed in any way. The Domain Access Control Register (DACR) mech- 

nism is in charge of restricting the access of TEE applications to 

emory regions of other trusted applications. This is implemented 

n the Memory Management Unit , or MMU. Certain bits (linked to 

 given memory region) are checked by MMU in the DACR regis- 

er to specific access properties. In addition, the MMU is in charge 

f enabling read and write access to the memory allocated to that 

omain. 

Bus management connectivity is articulated using the APB and 

he AXI components. AXI is the bus interface implementation 

or the main system at the chip level. APB implements a low- 

andwidth single peripheral bus interface. This interconnection be- 

ween AXI and APB is implemented with a bridge. Among the dif- 

erent capabilities offered by the AXI interface is the separation of 

eripherals into realms, allowing both reliable and unreliable ones. 

or this purpose, it makes use of an extended signaling system 

ogether with a flag bit (NS-bit). There is no similar mechanism 

or the APB bus so the security is managed by the aforementioned 

XI-to-APB bridge ( Holding, 2009 ). 

We have so far focused on describing the most relevant compo- 

ents to facilitate the understanding of the attacks and flaws pre- 

ented in the following sections. A full description of the ARM ar- 

hitecture is beyond the scope of this paper, but interested readers 

an refer to ( Ngabonziza et al., 2016 ) for further details on it. 

.4. TEE implementations 

At present there are many different implementations of TEEs, 

nd in the literature it is possible to find different criteria to clas- 

ify them. The taxonomy presented in Fig. 4 focuses on how the 

EE is implemented. On the one hand, there are implementations 

n which the TEE is implemented with software, such as Over- 

hadow, OpenTEE, OPTEE, etc. On the other hand, there are various 

ardware implementations of TEE, including Intel SGX, Qualcomm, 

nd others. Another parameter that is used to classify the differ- 

nt implementations is the level of privilege with which they are 

xecuted, i.e. if we are dealing with a privileged or non-privileged 
4 
EE. Non-privileged TEEs support multiple deployments, allowing 

o include a new functionality by simply adding new instances 

ithout extending the system trusted computing base – which 

ould increase the attack surface of the system. Most of these 

EEs make use of a secure monitor from the design stage (which is 

sually software-based) or by taking direct advantage of hardware- 

upported secure enclaves (SGX, TPM, AMD-SEV, etc.). On the other 

and, priviledged TEEs, in most cases, have access to all system re- 

ources. 

Table 2 provides a classification of existing TEE implemen- 

ations according to the taxonomy introduced in the previous 

aragraph – that is, hardware vs software implementations and 

rivileged vs non-privileged implementations. Note, however, that 

here are two distinct groups of implementations among the 

rivileged TEE hardware-based implementations. Firstly, there 

re commercial solutions (Trusty (Google) , QSEE (Beniamini) , 

rustonic (Felton) , etc.) and secondly, academic or open source 

olutions (OPTEE (Brand) , Kinibi ( Lapid and Wool, 2018 ), 

afeG ( Takei et al., 2009 ), etc.). In addition, we propose TPM 

s an alternative for Trusted Execution Environments. 

.5. Implementation details of qualcomm’s secure execution 

nvironment 

It is common practice for NW applications to require interac- 

ion with others running in SW. KeyStore is the process in charge 

f managing cryptographic keys in Android, which requires direct 

ommunication with the KeyMaster . This is a trusted application 

hat provides key secure management using TrustZone capabilities 

e.g., secure storage, isolation, etc.). Yet we have to consider that, 

n the basis of QSEE, user-mode applications are not allowed to 

erform SMC calls to enter the SW. This limitation is due to the 

act that kernel-space privileges are required. In order to overcome 

his limitation, the Linux kernel driver QSEECOM – QSEE Commu- 

icator – allows user-space processes to access several TZ-based 

perations, such as those related to the communication with the 

oaded TAs or the actual loading of the TAs in the SW. 
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Fig. 4. TEE Implementation Classification. 

Table 1 

Definitions. 

Acronym Definition Acronym Definition 

AES Advanced Encryption Standard PXN Privileged execute never 

ALSR Address Space Layout Randomization QSEE Qualcomm Secure Execution Environment 

AMBA Advanced Microcontroller Bus Architecture QSEECOM QSEE Communicator 

APB Advanced Peripheral Bus REE Rich Execution Environment 

AXI Advanced Extensible Interface ROM Read Only Memory 

BTB Branch Target Buffer RO-IoT Reboot Oriented IoT 

CCNT Cycle Counter Register ROP Return Oriented Programming 

CLI Command Line Interface SC Stack Cookies 

CPS Cyberphysical Systems SCA Side Channel Attack 

CRT Chinese Remainder Theorem SCM Secure Channel Manager 

DACR Domain Access Control Register SCP Secure Channel Protocol 

DCISW Data Cache line Invalidate by Set/Way SCTRL System Control Register 

DDR Double Data Rate SGX Software Guard Extensions 

DFA Deterministic Finite Automata SHA Secure Hashing Algorithm 

DoS Denial of Service SMC Secure Monitor Call 

DVFS Dynamic Voltage and Frequency Scaling SMMU System Memory Management Unit 

EMFI Electromagnetic Fault Injection SoC System on a Chip 

FDE Full Disk Encryption SVC Service Message 

FIFO First In First Out SVE System Vulnerability & Effectiveness 

FIQ Fast Interrupt Query SW Secure World 

FPGA Field-Programmable Gate Array Syscall System Call 

GP Guard Page TA Trusted Application or Trustlet 

IoT Internet of Things TCB Trusted Computing Base 

I/O data Input/Output data TCG Trusted Computing Group 

IP Intellectual Property TCI Trustlet Connector Interface 

IRQ Interrupt request TEE Trusted Execution Environment 

L1 Level One TEEv TEE Virtualized 

L2 Level Two TLC Trustlet Connector 

MTM Mobile Trusted Module TLV Type Length Value 

NW Normal World TPM Trusted Platform Module 

MMU Memory Management Unit TZ TrustZone 

MPU Memory Protection Unit TZASC TZ Address Space Controller 

ObC On Board Credential TZMA TZ Memory Adapter 

OEM Original Equipment Manufacturer UART Universal Asynchronous Receiver/Transmitter 

OTA Over The Air UUID Universal Unique Identifier 

OP-TEE Open Portable TEE UXN Unprivileged Execute never 

OS Operating System VBAR Vector Base Address Register 

OU Organizational Unit XP Execution Protection 

PLL Phase-Locked Loop XPU External Protection Unit 

5



A. Muñoz, R. Ríos, R. Román et al. Computers & Security 129 (2023) 103180 

Table 2 

TEE Implementations. 

Non Privileged TEE Privileged TEE 

Commercial Open/Academic 

Hardware 

TEE 

SecureBlue + ( Boivie and Williams, 2012 ) Google Trusty Google Linaro OPTEE Brand 

Sanctum( Costan et al., 2016 ) Qualcomm QSEE( Qualcomm, 2018 ) ARMithril( Shah et al., 2012 ) 

AMD-SEV( AMD, 2021 ) Trustonic t-base Felton GenodeTEE( Feske, 2015 ) 

OSP( Cho et al., 2016 ) Samsung TZ-RKP( Azab et al., 2014 ) Microsoft TLR( Santos et al., 2014 ) 

TrustICE( Sun et al., 2015b ) Aurora Lammens Case( Zhang et al., 2016a ) 

Sanctuary( Brasser et al., 2019 ) Sierraware SierraWare TrustOPT( Sun et al., 2015a ) 

Intel SGX( Intel, 2014 ) Solacia SecuriTEE Solacia SafeG( Takei et al., 2009 ) 

Haven( Baumann et al., 2015 ) ∗ mTower( Drozdovskyi and Moliavko, 2019 ) VimoExpress( Oh et al., 2012 ) 

SCONE ∗( Arnautov et al., 2016 ) T6 TrustKernel Kinibi_M( Trustonic, 2017 ) 

Graphene-SGX ∗( Tsai et al., 2017 ) ObC ( Kostiainen et al., 2009 ) [deprecated] Andix OS( Fitzek et al., 2015 ) 

Panoply ∗( Shinde et al., 2017 ) 

Software 

TEE 

Overshadow( Chen et al., 2008 ) 

Virtual Ghost( Criswell et al., 2014 ) Nested Kernel( Dautenhahn et al., 2015 ) 

Inktag( Hofmann et al., 2013 ) OpenTEE( McGillion et al., 2015 ) 

Flicker( McCune et al., 2008 ) MicroTEE( Ji et al., 2019 ) 

TrustVisor( McCune et al., 2010 ) SoftTEE( Lee and Park, 2020 ) 

Multizone( Pinto and Garlati, 2020 ) Trustshadow( Guan et al., 2017 ) 

Utango( Oliveira et al., 2021 ) Kinibi( Lapid and Wool, 2018 ) 

Sego( Kwon et al., 2016 ) SKEE( Azab et al., 2016 ) 

SICE( Azab et al., 2011 ) 
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3

For the implementation of Secure Monitor calls from the ker- 

el space an interface was included in the driver. This interface 

etween QSEECOM and the SW is known as SCM , which is consid- 

red the widest attack surface of the TEE since is one of a small

umber of communication channels between the outside world 

nd the SW. Therefore, a limited number of processes are allowed 

ccess to QSEECOM for the sake of security. As such, Beniamini’s 

t al. Beniamini implementation limits the number of processes 

hich can access the QSEECON from the normal world to only 

our: 

• SurfaceFlinger (running with “system” user-ID): This is a sys- 

tem service in charge of the composition of the application and 

system surfaces, for which a shared buffer is enabled. 

• DrmServer (running with “drm” user-ID): This element is in 

charge of managing digital rights. 

• MediaServer (running with “media” user-ID): This element is in 

charge of handling multimedia services. 

• KeyStore (running with “keystore” user-ID): This element is in 

charge of creating, storing and managing cryptographic keys. 

Note that vulnerable processes should not have access to the 

EE because if the vulnerability is exploited by an attacker, the at- 

acker could gain access to any application running in the SW by- 

assing the Linux kernel filter on the process. A known weak point 

s the language in which trusted applications are written. Most ap- 

lications use the C language instead of safe languages that poten- 

ially decrease the possibility of vulnerabilities. 

The TrustZone fast and yield commands used for memory 

haring are implemented by Qualcomm 

7 using two functions: 

MC_T YPE_YIELD and SMC_T YPE_FAST . The first one allocates a 

ommon memory area for communications between worlds. When 

his function is called a memory record is populated. The record 

ncludes the maximum buffer size, the buffer headers, as well as 

ffsets of the data to be sent and received. The second is used to 

tart a short-term communication where the data to be exchanged 

re relatively small. Either function can be used to issue an SMC or 

o call a service. 

As previously mentioned, the first defense mechanism in this 

ituations is the DACR provided by ARM, which prohibits altering 
7 Qualcomm Product Security. Retrieved from: https://www.qualcomm.com/ 

ompany/product-security . 

o

i

o

6 
ny of the TZ kernel pages. Some recent TrustZone-enabled Qual- 

omm System on a Chip (SoC) integrate an additional mechanism 

or memory access control. This hardware-based Memory Protec- 

ion Unit (MPU) are pre-configured to mark as write-protected cer- 

ain memory regions predefined by the manufacturer. 

In Qualcomm these MPU units are called External Protection 

nits (XPUs). Among the tasks carried out by the XPUs is pre- 

ening access from the NW to the SW and to the memory areas 

estricted by the manufacturer. As an example, the XPU mecha- 

ism is used to allocate TrustZone kernel code into write-protected 

emory areas, which are checked during the secure boot of the 

ystem to ensure that it has not been altered. 

One sensitive aspect is how to load trusted applications and 

heir revocations when Qualcomm secure booting actually takes 

lace. In this line, regular Executable and Linking Format (ELF) files 

re signed by Qualcomm. These files attach a single hash table seg- 

ent, which is a signature blob with the hashes of each ELF seg- 

ent, along with the certificate chain. Verification of the signature 

ith the concatenated blob of hashes is performed with the public 

ey of the attestation certificate (the last one in the chain). Vali- 

ation is performed by comparing the hash of the root certificate 

nd the Root Key Hash stored on the device. It is stored in the ROM

f the device and integrated in the SoC. 

We now briefly describe how the chain of trust workflow is im- 

lemented. The procedure begins with the issuance of a hardware- 

ound key for the validation of the certificates. Later, these cer- 

ificates can be used to validate the binary signature. In addition, 

ualcomm includes additional Organizational Unit (OU) fields with 

nformation necessary for security enhancement in the binary sig- 

atures. 

Note that since TEEs are considered entities with high privileges 

he Normal World has no inherent mechanisms, not even DACR or 

PUs, to protect against unauthorized memory accesses and ma- 

ipulations from the Secure World. Therefore, it is trivial gaining 

ccess to the NW kernel for an attacker in case a TEE becomes 

ompromised, even if no vulnerabilities were present in it. 

. Taxonomy of attacks 

Although TEE has been designed to provide advanced means 

f secure code execution that traditional operating systems do not 

mplement, they can still be attacked. Here we describe the taxon- 

my of attacks that will be used throughout the rest of the article. 

https://www.qualcomm.com/company/product-security
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Fig. 5. Taxonomy of Attacks to TEE Implementations. 
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n addition, Fig. 5 provides a summary of every specific attack for 

ach category. 

• Software-based attacks ( Section 4 ) are dedicated to exploit dif- 

ferent elements of software stack, including operating system 

and the applications running on it. 

• Architectural attacks ( Section 5 ) exploit fundamental design 

flaws in the hardware architecture of the system, rather than 

software bugs. 

• Side-Channel attacks ( Section 6 ) are focused on the transmis- 

sion of data between the Normal and Secure Worlds by modu- 

lating the behaviour of some system elements, such as execu- 

tion times or power consumption. 

• Micro-architectural attacks ( Section 7 ) are a particular type of 

attack that focuses on micro architecture elements such as ex- 

ploiting the cache or Branch Target Buffer (BTB). 

. Software-based attacks 

Programming errors cause functional inconsistencies, which 

an lead to bugs in the memory protection mechanisms, in the 

ecurity mechanisms themselves, or in peripherals configuration. 

hese bugs can appear randomly during the system execution, 

ither during its validation with the trusted kernel, the secure 

onitor, the boot loader, or the applications themselves. Such 

ugs can be exploited through various means (e.g. parameter 

alidation, buffer overflows) for various purposes – from revealing 

ensitive information to exploiting the kernel. In this section, the 

ost representative TEE vulnerabilities caused by implementation 

ugs are described. Since each implementation has particularities 

n its architecture, which directly affect the way Trusted Applica- 

ions (TAs) interact, we describe some of the most relevant cases 

xemplified in concrete implementations. 

.1. Kernel attacks 

This section describes direct attacks on the system kernel. This 

ncludes privilege escalation attacks, kernel exploits and a new 

eneration of rootkits. 
7 
.1.1. Trustzone privilege escalation 

Qualcomm’s implementation, known as QSEE, is used in sev- 

ral smartphones – such as Pixel, LG, Xiaomi, Sony, HTC, One- 

lus, and Samsung, among other devices. Due to its importance, 

here are various software-based attacks that specifically targets 

he Qualcomm implementation. One of such attacks focuses on ac- 

essing the protected memory of QSEE through escalation of privi- 

eges ( Beniamini (2015b) , Beniamini,Beniamini , Beniamini (2016a) ). 

Fig. 6 shows the first three-stepped ( Beniamini, 2015b ) privilege 

scalation attack. Firstly, the attacker exploits a vulnerable imple- 

entation of the MediaServer Android application. This runs in the 

W with zero permissions. Still, MediaServer was granted privi- 

ege for accessing the QSEECOM driver for communications with 

he TEE and therefore with the WineDive TA. Subsequently, the 

ttacker could exploit a vulnerability in the QSEECOM driver and 

ain control of the kernel through the MediaServer. We highlight 

hat this driver runs in NW context. Henceforth, the attacker with 

ernel privileges in the NW can make direct SMC calls to the SW. 

s a consequence, the attacker can manage to execute the code of 

is choice in the context of a TA. Moreover, since by making use 

f the SMC syscalls the privileged kernel applications have direct 

ccess to the TEE, the attacker can now execute various privilege 

scalation attacks to run shellcode within the TrustZone kernel. 

Now, we will explain what additional steps need to be executed 

nce an attacker gains control of QSEECOM. At this point, the at- 

acker can execute SCM calls to write a zero DWORD in any spe- 

ific memory address, in an operation known as ‘zero-write primi- 

ive’. This can be used to disable the mechanism used for checking 

ounds on all memory addresses passed to the SW. Once this op- 

ration is disabled, the attacker can exploit other SCM calls creat- 

ng different primitives. For example, once the control mechanisms 

re invalidated, the attacker can use the SMC calls to transform 

hat was a ‘zero-w primitive’ to an arbitrary ‘w-r primitive’. Once 

he attacker has achieved write permissions, he still has to iden- 

ify those memory regions where to host his own shellcode, so as 

o bypass the TZ kernel pages protection mechanism. Since priv- 

leged kernel applications have direct TEE access, making use of 

MC syscalls enables an important attack vector that may result in 

rivilege escalation attacks. 
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Fig. 6. Three Stepped Privilege Escalation Attack. 
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8 Address space layout randomization (ASLR) is a computer security technique 

used for preventing memory corruption vulnerabilities exploitation. 
The Domain Access Control Register (DACR) register from ARM 

MU is responsible for protecting the TrustZone memory by 

ontrolling accesses to it. However, by making use of the arbi- 

rary write primitives already described, it is possible to mod- 

fy the value of the DACR and thus enable reading and writing 

he memory regions controlled by the mechanism. By doing so, 

he attacker can now insert his shellcode in memory areas re- 

erved for execution within the kernel. Moreover, since these ar- 

as are never used by the kernel, any modification in them goes 

nnoticed. 

.1.2. Kernel exploit in TrustZone 

This exploit describes how it is possible to take control of 

he operating system kernel through a series of chained exploits. 

his opens the door for the attacker to gain privileges to the 

rustZone kernel. An example of this exploit is provided by Be- 

iamini et al. ( Beniamini,Beniamini ), which describes how a series 

f chained exploits provide an alternative way to the previous at- 

ack. These chain of exploits take advantage of buffer overflows 

nd vulnerable syscalls to ultimately execute arbitrary code with 

rustZone kernel privileges. 

The attack starts once the attacker has gained control of the 

SEECOM driver, located in the NW. Now, the trusted Widevine 

pplication (located on the SW) can be exploited by causing buffer 

verflows, using a disused function called PRDiagVerifyProvision- 

ng() . Once the buffer overflow is achieved, any code within the 

ontext of the trusted application can be executed. Still, although 

he attacker can make use of a Return-Oriented Programming 

ROP) chain to execute his code, the application’s executable code 

ragments are inserted as read-only. For this reason, the code ex- 

cution must be split into two parts, where any part of code that 

oes not require QSEE privileges will have to be executed within 

he Normal World. 

At this point, access to the TEE is allowed indirectly through 

he use of certain (privileged) applications as intermediaries – and 

hese, in turn, can then establish communication with the TEE 

hrough the driver. Even so, the attacker is restricted to running 

ode in the QSEE user space, since he is not yet granted TZ ker- 

el privileges. However, the attacker can exploit vulnerabilities in 

yscalls API provided by the TZ kernel. 

The SVC instruction allows applications to call the syscalls of 

he TZ. This instruction is handled using the Vector Base Ad- 

ress Register (VBAR). Whenever a syscall is performed, control of 

he code and the execution flow passes to the NW kernel. How- 

ver, the TZ only performs very basic validity checks on the pro- 

ided input buffers: all arguments provided in legitimate appli- 

ation syscalls are accepted as valid. Therefore, once the attacker 

as identified a vulnerable syscall that allows him to overwrite any 

yscall handling function pointer, he can use the WideVine TAs to 

xploit the TZ kernel and modify the syscall handling functions. All 

hat remains to be done is to identify a suitable memory area for 

nserting the shellcode. Despite of TA code segments can be con- 

idered write-protected due to the DACR mechanism, but in fact 

hese segments are still susceptible to be overwritten with the de- 

cribed syscall bug. 
8 
Thereafter, as a consequence of disabling the DACR mechanism, 

he attacker can insert his shellcode anywhere in the application 

ode. Likewise, he may also use mutated syscall control functions 

o execute his shellcode within the context of the TZ kernel and 

xecute any arbitrary code. Note that classical security measures 

uch as ASLR 

8 could prevent common code execution and privilege 

scalation attacks, but they are not implemented in this context. 

Precisely, Project Zero ( Beniamini, 2017 ) provided an analysis on 

he implementation of such security measures in TEEs. They con- 

lude that Qualcomm and Kinibi, the leading exponents of TEE im- 

lementations, only implement very few security mechanisms. In 

he case of Kinibi, it does not offer any type of ASLR mechanisms, 

orcing all applications to be loaded at a fixed memory address. 

n the other hand, Qualcomm’s TEEs only offer a weak implemen- 

ation of ASLR. Therefore, the security boundary between the TZ 

ernel and applications is very fragile, at least in concrete imple- 

entations like QSEE. In fact, when the attacker manages to enter 

he Secure World and takes over an application, the communica- 

ion channel between TZ kernel and application is constructed in 

uch a way that no input validation mechanism is implemented, 

nd it is trivial for the attacker to compromise the kernel. 

.1.3. Next generation rootkits 

A series of rootkits considered to be new generation rootkits 

re included in this section, as they take advantage of several of 

he weaknesses already described and even others yet to be de- 

cribed related to architecture, side-channel or micro-architecture 

o explore weaknesses in the system. 

Roth (2013) shows weaknesses in TEE combined with a specific 

rchitecture. They also describe how these weaknesses allow the 

evelopment of rootkits such that they can control the system in a 

ay that goes unnoticed. Since the SW has privileged access to the 

emory, it also has the ability to modify the NW kernel structures. 

oreover, it can also block the NW from accessing its own mem- 

ry. In particular, what Roth provided was several mechanisms to 

ide the visibility of the code running in the SW, thus complicating 

etection. Some of these rootkits exploit flaws in the TEE architec- 

ure itself to exploit vulnerabilities as described in Section 5 , but 

hese rootkits are software and although they also make use of at- 

acks from other categories, they are eminently software for the 

ost part and are therefore included here. 

.2. Attacks using system calls 

This section includes attacks that make use of the set of system 

alls. Particular attacks such as TrustNone or hijacking attacks are 

ncluded. 

.2.1. Syscall hijacking 

Certain attacks focus on executing various syscall hijackings in 

he context of the TEE in order to gain access to protected informa- 

ion. Along these lines, Beniamini (2016a) describe an attack that 
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Fig. 7. Three attacks Overview. 
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an extract any key residing in TEE, as with the full disk encryp- 

ion (FDE) key. This allows the attacker who successfully perpe- 

rates the attack to decrypt any encrypted disk on the android de- 

ice. This attack makes use of the different exploits described in 

ections 4.1.1 and 4.1.2 . For the sake of clarity, an overview of such

ttacks, including a description of how they are chained together, 

s shown in Fig. 7 . 

It essentially chains the previously mentioned exploits up to 

he point where the attacker has gained control of the QSEECOM 

river and has exploited the vulnerable WideVine TA. However, 

ecause of the aforementioned XPU protection, QSEE applications 

o not have access to the memory of other QSEE applications. In 

articular, the Widevine TA cannot access the Keymaster mem- 

ry. Still, every QSEE application has access to TZ kernel code seg- 

ents as long as they are executed in the context of the kernel. 

he Widevine TA can execute the shellcode and thus access the 

eymaster memory once the shellcode is hosted in the TZ Kernel. 

herefore, the ultimate goal of the attacker is to insert the shell- 

ode within the TZ Kernel and execute it through the Widevine TA. 

he shellcode will then access the Keymaster memory and extract 

he FDE Key. 

In order to succeed in inserting the shellcode in the TZ kernel 

ode segments, it is necessary to bypass various security mecha- 

isms. The first mechanism to bypass is the DACR memory protec- 

ion mechanism. The MMU manages access to any memory region, 

sing bits of the DACR register. However, there is a piece of code 

nside the TZ core that can change the value of DACR, known as 

he DACR modifying gadget. If the attacker calls the DACR modify- 

ng gadget to set all bits to 1, then all memory regions are then en-

bled and available to perform read and write operations on them. 

he first goal of the attacker is to execute this DACR modifying 

adget. 

In order to execute this gadget, the attacker can take advan- 

age of the design of the system call table. System calls are used 

ndirectly using a system call table. Although this table cannot be 

hanged, as it is protected by the memory protection unit (XPU) 

ointers, the reference to this table is not protected: it must reside 

n a modifiable memory region, because it is only filled at runtime. 

ecause of this, the attacker can execute a sycall hijacking attack: 

he attacker stores in memory a fake system table with one system 
9 
all pointing to the DACR modifying gadget, and then modify the 

eference to the system call table so it points to the malicious one. 

his way, once the (modified) syscall is called, the DACR modifier 

adget will be invoked instead – modifying the DACR register to 

llow write and read access. 

The second security mechanism that needs to be bypassed is 

he memory protection unit (XPU), which prevents access to pro- 

ected areas from unprivileged code. The issue here is that the at- 

acker can execute code in the kernel context, yet the source of the 

ode is in the trusted WideVine application – and is therefore con- 

idered unprivileged. The attacker then must find a way to insert 

he malicious code in the TZ kernel and to invoke it. 

The attacker first needs to implements a script in order to iden- 

ify unprotected code regions in the TrustZone kernel. This allows 

nding a “cave” to host the final shellcode of the exploit, which 

ill be considered as priviledge code and will bypass the XPU pro- 

ection mechanism. Once the script successfully finds a “cave” and 

he shellcode that extracts the encryption key from the memory 

isk is inserted, a final step remains: how to execute such shell- 

ode. In order to do so, another system call hijacking is needed. 

or example, the attacker can overwrite the qsee-hmac() system 

all. As a result, when the qsee-hmac() is called from the malicious 

SEE application, instead of the intended function the shellcode 

ill be executed. This allows the FDE key to be extracted from the 

eyMaster application and then written to the shared buffer. 

The cause of this attack is that disk encryption is not imple- 

ented with a hardware-based key. The key is generated by soft- 

are and stored inside the TZ kernel memory. Since the key re- 

ides within the software, once the TZ kernel is exposed, it can 

e easily extracted. Therefore, the disk encryption system offered 

y Android becomes resistant to attacks of different kinds such as 

hose of the TZ kernel security or TA’s own keymaster. Any flaw in 

ither of them can potentially leak the FDE master key. 

In addition to the ability of applications to map physical mem- 

ry, there is another attack gap arising from TEE’s debugging 

echanisms. What privilege escalation attacks are and how they 

ork has already been described in Section 4.1.1 . Making use of 

his type of attack, Shen (2015) implements an attack on Huawei’s 

EE. It exploits a syscall that allows any application to perform a 

tack dump in a memory area belonging to the NW. This becomes 
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Fig. 8. Kinibi Architecture. 
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he attacker aware of the physical address space of the GlobalTask 

o have enough information to successfully implement the attack. 

.2.2. Trustnone 

Communication with the TZ kernel is facilitated through the 

MC instruction, as aforementioned. This allows the NW to use 

ystem calls that are exported by the TZ kernel, for which an API 

s provided in the Android/Linux kernel. 

XPU units protect those on-chip and off-chip memory regions 

hat contain the TZ kernel. These are configured by the first boot 

oaders. This allows only certain runtime environments to access 

ertain memory areas. 

Beaupre (2015) describes that a number of TZ vulnerabilities are 

elated to system calls. With special emphasis on those that do not 

mplement any validation, or do not do it properly. More specifi- 

ally, in the user input, at this point the attacker could safely write 

s many zeros as desired in a memory area, thus bypassing the 

mplemented security mechanisms obtaining read and write per- 

issions in the TZ kernel context. 

The attack is particularly relevant because it affects all devices 

sing the Snapdragon 805 SoC and thus the QSEE. In his experi- 

ent, Beaupre used the exploit to unlock the bootloader of a Mo- 

orola Snapdragon 805 9 

.2.3. Attacks on HTC QSEE extensions 

Beyond the vulnerabilities that can be found on QSEE, there are 

lso vulnerabilities that affect certain QSEE extensions from spe- 

ific manufacturers. For example, in Keltner and Holmes (2014) , 

eltner et al. describe the implementation of a new attack against 

 version of Qualcomm’s QSEE used and extended by HTC. To cre- 

te this attack, they reverse-engineered that specific implementa- 

ion/version of QSEE, which proved highly successful in finding a 

umber of vulnerabilities in the code added by the HTC extensions. 

Examples of such vulnerabilities include i) flaws in the zero- 

rite primitive in certain address range allowing to circum- 

ent all memory operations security checks, and ii) flaws in the 

tzbsp_oem_memcpy” function, which give the attacker full con- 

rol of all the memory. As a consequence of all the weaknesses, it 

s easier for the attacker to securely extract data and modify vali- 

ation mechanisms in memory regions. 

.2.4. Implementation bugs 

The previous sections have focused on the QSEE TEE by Qual- 

omm. Yet this is not the only vulnerable implementation of the 

tandard: other vulnerabilties have also appeared in other imple- 

entations of the TrustZone technology, such as Kinibi ( Lapid and 

ool, 2018 ) from Trustonic. 

One important work in this area is proposed by 

omaromy (2018) that described certain important vulnerabilities 

ffecting the Trustonic implementation. These six vulnerabilities 

ere caused by software bugs, and most of them are located in 

omponents that manage inter-realms communications. 

Before describing these vulnerabilities, it is important to pro- 

ide a very brief introduction on the Trustonic architecture. 

rustonic (cf. Fig. 8 )includes an application connector or gate- 
9 https://www.qualcomm.com/products/snapdragon- processors- 805 . 

i

i

10 
eeper known as TLC (trustlet connector) that enables communi- 

ation to pass through to the Kinibi device. An interface is offered 

o NW by TLC that can be accessed through UNIX domain sockets. 

hese domain sockets make use of MAC/DACs schemes for access 

ontrol and only certain applications, such as tlc_server , have access 

o them. In addition, sanity checks are performed on TEE requests, 

nd are further protected through SELinux. 

Komaromy (2018) found a way to circumvent this access con- 

rol by disassembling the tlc_driver binary. It was found that al- 

hough almost all commands implemented a process for checking 

he caller’s permissions, there was one command that, for some 

eason, did not have this security check implemented. This vulner- 

bility, Vuln 0 , allowed an arbitrary user-space application to make 

se of the handler and initiate a session to a TA and subsequently 

end any commands at will to it. 

One of such trusted applications (TA or trustlet) is ESECOMM, 

hich is used for secure payment transactions. ESECOMM imple- 

ents the “SCP03 Global Platform Secure Channel Protocol”, where 

essages are sent encoded in TLV (Type-Length-Value) format via 

PDUs (Application Protocol Data Units). The trusted application 

erforms certain parsing ckecks on the TLV-enconded messages 

ut does not control whether the maximum number of TLVs to 

tore for each structure is exceeded. This may result in overflow 

 Vuln 1 ) attacks, which opens up the range of possible attacks since 

hese structures are allocated on both the heap and the stack. In 

ddition, the TLV parser does not properly check the input buffer 

allocating TLVs) length – the only check performed is whether the 

ffset remains unchanged until the end of the buffer, it does not 

heck that it is less than it. Therefore, this allows an attacker to 

rivially read out of bounds ( Vuln 2 ). 

However, these are not the only vulnerabilities that affect the 

SECOMM trustlet. There is another stack buffer overflow in the 

parse_ca_cert() ” function. Again, no check is made on the length 

f the TLV input value, so it is possible that another buffer over- 

ow may occur. Although the size of TLVs is restricted to 0x400 

ytes, since the size of the input buffer is limited to 32 bytes, the 

roposed restriction is not sufficient to prevent the attack ( Vuln 3 ). 

There is another function, “parse_scp_param() ”, with a sim- 

lar vulnerability. This function is used to parse the Diffie- 

ellman Diffie and Hellman (1976) parameters used for establish- 

ng a secure channel between Kinibi and the secure element. As in 

he previous case, the function parses and checks most of the pa- 

ameters but there is one parameter that is not fully checked, thus 

nabling another overflow ( Vuln 4 ) attack. 

Finally, the fifth vulnerability ( Vuln 5 ) is a memory corrup- 

ion vulnerability that requires the user to have root privileges. 

he main problem lies in the common buffer shared by that both 

orlds, NW and SW. In this buffer, known as TCI, there is a flaw 

n the way memory offsets are specified. In particular, within the 

uffer there is a file ( envelope_len ) with the offset where the re- 

ponse begins. The tlc_driver is in charge of setting this field, but 

ny other trusted application can also do it. As a result, if an at- 

acker is able to become root, he would be able to arbitrarily mod- 

fy this field and thus specify whatever write offset he wishes, even 

eyond the buffer bounds. 

While we have focused on vulnerabilities that affect the Kib- 

ni implementation, that does not mean that there are no flaws 

n other TrustZone implementations. For example, in Keltner and 

https://www.qualcomm.com/products/snapdragon-processors-805
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olmes (2014) , the authors describe the procedure to read 

nd write operations on arbitrary memory locations within the 

W using the failed memory validation mechanism. Similarly, 

osenberg (2014) observed a faulty SMC memory check mecha- 

ism. This flaw enables an attacker with kernel privileges to write 

nto the SW. 

.2.5. Unlocking bootloader attacks 

There are other TrustZone attacks that target the bootloader of 

martphones, such as the attacks described by Rosenberg (2013, 

014) . In the first paper, Rosenberg describes a write vulnerabil- 

ty in Motorola smartphones. This vulnerability affected a specific 

MC call whose role was to allow the kernel in the NW to obtain

alues stored on the memory side of the safe world. However, an 

ttacker can abuse this SMC call to overwrite the memory in the 

ecure region – in particular, the flag responsible for granting the 

rustZone kernel permission to blow Qfuses. As a result, the at- 

acker can blow Qfuses through another SMC call, in order to indi- 

ate that the bootloader is unlocked. This way, an unsigned image 

e.g. a tampered Android firmware) can be loaded. 

In the second paper, Rosenberg (2014) identifies a new vulner- 

ble SMC function. The function, known as qsee_is_ns_memory() , 

hecks whether a certain memory range belongs to the SW. This 

unction involves an uncontrolled primitive write based on an 

verflow. This vulnerability enables a chain of attacks that gives 

he attacker the possibility of circumventing all validation checks 

nd execute any code in safe memory region, unlocking the boot- 

oader in the process. 

.2.6. ROM Extraction attack 

There are other attacks, such as Basse (2016) by Basse et al., 

hose goal is to bypass the TrustZone authentication mechanisms 

o extract the boot image (BootROM) from a device. In ARM de- 

ices, an UART interface is available in the device to give access 

o a root shell and a high-level debug message interface. Still, the 

ootROM image is stored in a secure memory area within the SoC 

o prevent unauthorised access or changes. To bypass the security 

easure two conditions must be met: i) the MMU tables must be 

xtended to include the BootROM address (thus allowing access to 

his partition), and ii) the user needs kernel privileges. 

Although an attacker can exploit existing overflow errors in the 

MC interface to gain kernel privileges, the access to the memory 

s limited due to the authentication routine that protects the MMU 

mages. However, in some cases, this authentication routine is a 

ere hash function. Therefore, an attacker can update the MMU 

able to include the BootROM, recalculate the hash of the MMU 

able, and write both values in the device. A custom SMC can then 

e executed, which will access the BootROM partition through the 

ampered MMU table. 

. Architectural attacks 

This section presents the main security issues arising from the 

rchitecture of today’s TEE systems. We distinguish between at- 

acks made possible by the elements of the architecture dedicated 

o the isolation between worlds (SW vs NW) and attacks on mem- 

ry protection mechanisms. 

.1. Isolation focused attacks 

Attacks on inter-world isolation include (a) memory exposure 

ue to physical memory mapping in the NW by applications, and 

b) information leakage due to TEE debugging mechanisms. 
11 
.1.1. Memory exposure 

Certain TAs require an efficient shared memory mechanism 

ith the ability to exchange large volumes of data between worlds, 

hich has led to security holes in some TEE implementations. 

Beniamini Beniamini (2016b) describes how an attacker, start- 

ng with only TA privileges running in the NW, can get full control 

f the kernel, which is due to the fact that Qualcomm’s TEE imple- 

entation allows an arbitrary application to allocate an arbitrary 

rea of the Normal World. For this, it is only necessary to use a 

all to the SW, which in turn allows the attacker to take control of 

he operating system. This would enable him to sweep through all 

he physical addresses of the kernel, manipulate it and introduce 

ackdoors. 

Fortunately this is not the case for all implementations. In the 

ase of Trustonic TEE, TAs cannot read from or write to physical 

emory. 

.1.2. BOOMERANG attack 

Boomerang attacks Wagner (1999) exploit flaws that appear in 

he design of the communication between realms. This type of at- 

ack is made possible by the fact that the trusted OS has no re- 

trictions on the memory addresses it can access and the normal 

S has no way of checking if the entity performing this action is 

ntitled to do so. The attack starts with an application or user in 

he NW passing an unauthorized memory address to a SW call. If 

he address is not filtered out due to the lack of standard memory 

anitation mechanisms, the attacker could read and/or write that 

emory, as detailed in Section 7.1 . 

Fig. 9 shows an overview of the attack. The attacker’s goal is 

o send a privileged address to the application (4). For this pur- 

ose, and in order to circumvent the sanitation process, a filled 

ata structure is transferred – which among other things contains 

n address pointer without annotating it. There are three possi- 

le ways to transfer the data to the existing mode: (1a) by using 

he Daemon TEE in charge of pointer sanitation with background 

xecution, (1b) by taking advantage of an API that is used by the 

pplication, and (1c) by using a library for the aforementioned API. 

he NW OS kernel makes a call to the SMC with the purpose of 

witching worlds and transferring the filled data structure to the 

W (2). Once the data structure is in the SW OS, a check is made to

ee if the pointers actually point to memory areas from the SW. As 

he pointer comes from the NW, it passes the test and the trusted 

S passes the structure to the TA (3) without any further checks. 

Based on how an attacker bypasses pointer sanitation, 

achiry et al. (2017) successfully attacked a wide variety of TEE 

rchitectures. Using a static analysis tool, they were able to per- 

orm analysis of several TEE implementations (QSEE, Kinibi, OP- 

EE (Brand) , SierraTEE (SierraWare) , and Huawei) and applications 

n them, searching for BOOMERANG vulnerabilities. The results 

f the study revealed several vulnerabilities in the analyzed plat- 

orms, which affected a very high number of mobile devices. This 

ork has enabled TEE vendors to implement specific fixes in their 

nvironments. 

.2. TEE Wide attack surface 

Attacks to memory protection mechanisms include certain bugs 

ppearing in software drivers (executed in kernel space), others ap- 

earing in the interfaces shared among different TEE components 

nd broad interfaces. 

.2.1. Kernel contains driver execution 

Most systems require software drivers to communicate with 

pecific hardware. Some TEE drivers are meant to interact with de- 

ices that handle sensitive (e.g. a biometric sensor) and for that 

eason they are executed in the TEE kernel. Therefore, an attacker 
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Fig. 9. An attacker bypasses pointer sanitation by hiding it inside the structure to send to applications. 
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ould exploit any error in these drivers in order to access the priv- 

leged area of the system. In fact, some implementations like OP- 

EE Brand and Snapdragon ( Rosenberg, 2014 ) allow the execution 

f all the code labelled as privileged within the kernel. 

.2.2. Downgrade attack 

Trusted applications are signed using the TEE trusted public 

ey. If the application passes the verification, the system will ac- 

ept it and execute it. This is exploited by downgrade attacks, 

hich consist of loading old buggy binaries to take control of the 

ystem. Chen et al. (2017) demonstrated the effectiveness of this 

ind of attack. 

Nowadays, in order to prevent such attacks, the majority of 

EEs implementations include some kind of mechanism to control 

he application versioning. However, Beniamini (2017) analysed a 

umber of applications and their respective updates and realized 

hat all shared the same version number. 

Application developers are therefore urged to make use of the 

ersion control mechanisms provided by the TEE vendors. This 

hows that even when protection mechanisms are in place it is 

mportant to make use of them or they are rendered useless thus 

pening the door to attacks. 

.2.3. Broad interfaces to attack 

Opening secure system has always been tricky and danger- 

us. In order to extend functionalities the number of interfaces 

ffered by TEE is growing and this has led to the development 

f several exploits. For example, the exploit on the TZ linux 

river ( Beniamini, 2015a ) in Android. Trusted applications are also 

eing provided with more functionality, which is also sensitive 

rom a security point of view. 

TEEs should allow developers to minimise the Trusted Com- 

uting Base (TCB) of their applications to maintain a proper se- 

urity/efficiency balance: the larger the size of the TCB, the more 

rror-prone implementations are ( Cerdeira et al., 2020 ). It is worth 

oting that the size of the TCB varies considerably for TEE each 

mplementation, ranging from 97KB for Tegra’s TEE to 1.62MB for 

ualcomm’s. 
12 
. Side-Channel Attacks 

As mentioned above, memory protection mechanisms in TEE 

mplementations are rather weak or lacking. In this section we 

how how exploiting these mechanisms lead to side-channel at- 

acks (SCA). An SCA is an attack that exploits certain types of infor- 

ation such as power consumption data to leak information about 

ryptographic material and operations. 

Fault-injection is a particular kind of side-channel attack con- 

isting on inducing physical- or software-based faults (also referred 

o as glitches) in a computation to expose secret information. Due 

o their relevance, we focus on this type of attacks. This type of 

ttacks include the application of high voltages, temperatures or 

lectromagnetic (EM) pulses in order to expose electronic com- 

onents to unexpected conditions. Electromagnetic fault injection 

EMFI) attacks Maistri et al. (2014) are probably the most relevant 

nd difficult to protect from. These attacks have provided very suc- 

essful results when implemented on a huge number of commer- 

ially available integrated circuits. 

Some of the most relevant fault-injection attacks are known 

s Dynamic Voltage and Frequency Scaling (DVFS), which al- 

ow the software to regulate device voltage and frequency based 

f each CPU execution thread. This makes it possible to mod- 

fy and monitor the power consumed since this value is di- 

ectly related to both factors (frequency and operating voltage). 

ome of them, namely CLKscrew Tang et al. (2017) , Plunder- 

olt Murdock et al. (2020b) , Platypus attack Lipp et al. (2021) and 

oltJockey Qiu et al. (2019a) are based on producing dynamic volt- 

ge and frequency scaling, where power traces can be collected by 

oftware and there is no need to physically access the device itself. 

dditionally, Rowhammer Lipp (2016) and BADFET Cui and Hous- 

ey (2017) are attacks based on the application of electromagnetic 

ulses. 

.1. CLKscrew 

CLKscrew takes advantage of a feature available in mod- 

rn devices that enables software control of both CPU voltage 

nd frequency for the primary purpose of power administration. 
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Fig. 10. CLKscrew fault injection Attack. 

T

o

c

l

i

u

b

C

c

i

t

b

d

o

a

I

l

a

c

b

(

i

e

w

w

i

t

l

s

t

g

v

r

k

i

c

l

f

t

t

g

f

C

c

o

i

u

i

v

fi

h

t

p

C

g

6

c

g

t

o

i

t

t

o

t

c

i

t

U

fl

ang et al. (2017) show a successful implementation of the attack 

n an ARM device, namely the Nexus 6 smartphone. This attack 

onsists of inducing failures in certain operations by causing calcu- 

ation errors in the CPU, allowing the attacker to obtain essential 

nformation to deduce secret keys from an ARM TrustZone. 

To cause erroneous behaviour, the attacker can overclock and 

ndervolt the CPU, thereby exceeding the CPU fault induction 

oundaries. There are no protection mechanisms to prevent the 

PU from being able to operate at faulty frequency and voltage 

ombinations. Also, since hardware regulators 10 have their operat- 

ng range precisely at the TEE separation, this opens the possibility 

hat the attack can occur even in the same SW execution. 

Once frequency-voltage combinations of faulty behaviour have 

een identified, the attacker makes use of a manipulated kernel 

river that manages to link the victim’s thread to a particular kind 

f kernel, leaving the rest of kernels to other applications. This 

voids the threat of possible collateral damage during the attack. 

n addition, interrupts are disabled during fault injection, which al- 

ows circumventing any possible context switching. 

A representation of the attack is depicted in Figure 10 . The 

ttack requires some preparation: it starts with clearing out any 

ache residue, since in the following phases of the attack a cache- 

ased profile is used to signal the start of the victim’s execution 

step 1). Then, the attacker monitors the victim’s code execution by 

nspecting certain execution points, called “Timing Anchor” point, 

specially in the instant prior to the execution of the target code 

here the fault is to be injected (steps 2-3). There are some cases 

here the accuracy of the Timing Anchor is not good enough, thus 

t is necessary to achieve a more precise synchronization of the at- 

ack. To fine-tune the accuracy, the attacking thread remains in a 

oop for a period of time, after which it will proceed to the next 

tep of the process (step 4). Note that a distinguishing feature of 

his attack is that the frequency of the victim’s CPU kernel under- 

oes changes while the attack is taking place, raising the frequency 

alue to a specified one and over a specified period – and then 

estoring normal conditions (steps 5-6). 

Using this attack technique, it was possible to unveil the secret 

ey of a previously manipulated implementation of AES executed 

n the Secure World. The implementation consisted of a simple de- 

ryption tool that received encrypted messages as input and re- 
10 Hardware can include voltage/frequency regulators, which contain a phase- 

ocked loop (PLL) circuit that generates a synchronous and adjustable clock signal 

or the digital components. 

d

c

s

c

c

13 
urned the plaintext, decrypted with a stored secret key. The at- 

acker was able to unveil the AES secret key by inducing various 

litches during the AES decryption phase and applying differential 

ault analysis (DFA) attack. 

The authors also showed a second type of attacks on TZ with 

LKscrew, which they call self-signed application loading . In this 

ase, CLKscrew can be used to modify the RSA signature chain 

f firmware images in TZ, which is the method used for verify- 

ng their authenticity. Firmware images to be updated contain the 

pdated code, a signature of the firmware’s hash to maintain its 

ntegrity, and a certificate chain. During the upgrade process, a 

erification of the signature is performed on the hash of the new 

rmware to be uploaded, together with a secret key linked to the 

ardware (this key is stored in the Secure World). Using CLKscrew, 

he authors are able to crack the signature process to force it to 

roduce a hash that is identical to the hash of a different firmware. 

onsequently, the verification mechanism accepts to install an ille- 

itimate firmware as if it were correctly signed by a trusted entity. 

.2. PlunderVolt 

Plundervolt Murdock et al. (2020b) relies on the inducing 

hanges to the voltage received by the processor, causing the pro- 

ram to change its intended execution path. Pundervolt exploits 

he lack of a stable power supply voltage. 

Plundervolt circumvents the protection limits of the TEE mem- 

ry encryption engine by abusing an undocumented voltage scal- 

ng interface, which allows privileged software adversaries to lower 

he tension and cause predictable failures in the SW. With this 

echnique, the theft of secrets is achieved, even in the presence 

f memory encryption technology. 

For instance, Plundervolt can break the integrity and (indirectly) 

he confidentiality of Intel SGX Murdock et al. (2020a) . Indeed, as a 

onsequence of Plundervolt it is possible to break the processorüs 

nstruction set specification, making it possible to successfully at- 

ack bug-free code, tested code and even formally verified code. 

nlike other Intel SGX attacks, which abused architectural design 

aws to break the confidentiality of enclave secrets, the authors 

emonstrated that even the integrity of seemingly secure enclave 

omputations can no longer be trusted. The authors in addition to 

ucceeding in breaking cryptographic code show how Plundervolt 

an be used to induce memory safety vulnerabilities into bug-free 

ode. 
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.3. Platypus Attack 

Platypus Lipp et al. (2021) is based on exploiting the mecha- 

ism of accessing the interface of Intel’s RAPL - Running Average 

ower Limit, which reveals information about power consumption. 

he weakness lies in that any user of the system can access this 

nterface. 

Platypus shows that by performing a statistical study with a 

ertain number of evaluated data, it is possible to appreciate and 

dentify variations in energy consumption. By assigning different 

amming weights to what is loaded into memory, different code 

nstructions can be identified. This makes it possible to monitor 

he control flow of applications, which is very valuable to a poten- 

ial attacker. 

Using Platypus, an attacker has also the ability to deduce sensi- 

ive information such as secret keys. The authors show how a po- 

ential attacker, who starts from an unprivileged state, is capable of 

btaining AES new instructions (AES-NI) keys from Intel SGX and 

he Linux kernel, infer secret instruction streams, break the ran- 

omisation of the kernel address space layout (KASLR) and finally 

chieve the establishment of a time-independent covert channel. 

.4. VoltJockey 

VoltJockey Qiu et al. (2019a) is an attack based on dynamic 

oltage and frequency scaling (DVFS). This attack differs from oth- 

rs (e.g. CLKscrew) in that it performs manipulations on voltages 

nstead of frequencies. This allows the generation of failures in 

he target hardware. VoltJockey is notable for being more stealthy 

nd therefore more difficult to avoid than similar attacks such as 

LKscrew. Some authors Qiu et al. (2019a) ; Qui et al. (2020) have 

hown how TrustZone’s AES key and RSA-based authentication can 

e cracked on an Android smartphone using VoltJockey. This is one 

f the most effective attacks for obtaining protected TrustZone cre- 

entials. 

VoltJockey is an attack on TrustZone based on hardware flaws 

sing software-controlled voltage manipulation. It exploits the 

VFS voltage management vulnerability. In Qiu et al. (2019a) ; 

ui et al. (2020) the authors implement VoltJockey on an ARM- 

ased Krait multicore processor, whose core frequencies can be 

ifferent but the processor voltage is controlled by a shared hard- 

are regulator. The Trust-Zone protected AES key is achieved and 

hus guide the RSA-based signature verification to obtain the target 

laintexts. An implementation of VoltJockey was used to break In- 

el SGX in Qiu et al. (2019b) and in an advance scaling based fault

njection Qiu et al. (2020) . 

.5. Rowhammer 

The Rowhammer attack Lipp (2016) exploits the particular de- 

ign of some modern DRAM memory in which memory cells are 

etting closer and closer. This complicates isolation and makes 

RAM cell capacitors sensitive to electrical interference thus po- 

entially leading to memory corruption. As such, the repeated ac- 

ess to a row of memory can cause bit flipping (shifts from 0 to 1

nd vice versa) in adjacent rows. 

Consequently, Rowhammer takes advantage of this isolation 

roblem to affect the RAM rows storing TrustZone data, even by- 

assing the NS bit protection mechanism. The authors of the at- 

ack, from Carnegie Mellon University and Intel, tested this phe- 

omenon on Intel and AMD systems using a program that gener- 

tes multiple accesses to DRAM memory. They managed to cause 

rrors in most of the DRAM modules tested (110 out of 129) from 

hree major manufacturers. 
14 
.6. BADFET 

In recent years, electromagnetic fault injection (EMFI) attacks 

re becoming a major threat. This is as a consequence of the mas- 

ive increase in CPU speed and the reduction of the size of the 

omponents, which hinders other types of injection attacks. 

BADFET Cui and Housley (2017) is based on second-order EMFI 

ttacks, which do not target the CPU but other components of the 

ystem. In fact, this attack can be applied to any arbitrary compo- 

ent (such as memory, buses, controllers, etc.) that the processor 

akes use of during sensitive operations. This approach can signif- 

cantly reduce the temporal and spatial resolution requirements of 

he hardware needed for EMFI injection. 

The attack consists of two steps. During startup, BADFET ap- 

lies electromagnetic radiation on the system’s RAM memory. 

hese memory-induced failures trigger a condition that exposes 

he uBoot’s debugging Command Line Interface (CLI) to attackers, 

hich enables to switch between the Normal and Secure worlds. 

nce the CLI is available, during the second step, a buffer overflow- 

ased vulnerability is exploited in the SW. This allows attackers 

o obtain write, execute and read privileges and, as a result, the 

ttacker achieves a new CLI that is capable to fully execute com- 

ands in the SW. 

. Micro-architectural attacks 

The last category of this taxonomy include attacks targeting 

icro-architectural elements. This section summarizes the attacks 

onsidered as micro-architectural as they have been applied to 

EEs. These attacks focus on micro-architectural details as caches, 

ranch Target Buffer (BTB) unit, etc. 

.1. Cache timing attacks 

As previously mentioned when the architecture of the TZ was 

escribed, cache memory is shared between SW/NW. Since the se- 

ure parts of the cache are not accessible from the NW, bidding for 

he use of the cache lines does not take place, and therefore a sub- 

tantial improvement in system performance is achieved. However, 

nformation leakage through caches is an open avenue for attack- 

rs. These attacks are usually performed by extracting hardware in- 

ormation such as timing computations, cache access attempts and 

ven the sound released while the computation is taking place. 

In a cache timing attack , an adversary is capable of inferring 

ecrets from the secure world by monitoring accesses made by 

he victim in a shared memory. Generally speaking, a cache tim- 

ng attack has two phases – timing and correlation, and is typi- 

ally used for leaking cryptographic keys or another sensitive in- 

ormation. During the timing phase, the attacker sends raw data to 

 specific (cryptographic) function to measure the time spent on 

ach encryption. The total execution time can be highly affected 

y the number of cache hits and misses produced during the exe- 

ution. Once the attacker gathers enough measurements, he is able 

o match the entries with the execution times, and thus infer the 

ey. These methods rely on active cache manipulation designed to 

roduce data with a higher level of entropy, which in turn results 

n a fairly smaller data set to perform the attack. 

Next, we elaborate on how this type of attack affects TZ with 

n specific example. The ARM chip is built in such a way that a 

hared CPU cache is used to improve the performance of data and 

nstructions processing in the SW and NW. This cache integrates a 

echanism, known as the TZ NS-bit, dedicated to ensuring sepa- 

ation between the two worlds. Included in this separation are the 

ccess rights for the resources available in each world. The opera- 

ion of this mechanism is simple: the bit is used to tag each cache 

ntry, such that if any NW process attempts to access a SW entry a 
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iss occurs ( Kim et al., 2012 ). Although this cache tagging mech- 

nism may appear to be secure, recent works have revealed that 

ts design present several flaws that can be exploited using differ- 

nt strategies ( Gras et al., 2017; Irazoqui et al., 2015; 2016 ). Still, a

uccessful implementation of this attack is not trivial among other 

easons because the attacker must be able to manipulate the cache 

n order to monitor the victim’s process. 

Götzfried et al. (2017) showed a cache-timing attack affecting 

ntel SGX enclave ( Intel, 2014 ). The authors demonstrated that, in 

ractice, SGX cannot resist its designated attacker model (i.e. at- 

ackers gaining root access to the system) when dealing with side- 

hannels. In fact, during the experiments the authors realized that 

he side-channel attack surface increases significantly in the SGX 

cenario. This is because without SGX some capabilities are re- 

tricted to the kernel. In the presence of Intel SGX the attacker ac- 

uire new capabilities, such as the possibility to operate the power 

anagement control (PMC). 

This type of attacks have also been tested against ARM based 

PUs. Weiß et al. (2012) present the implementation of an at- 

ack against a virtualized ARM system. Based on the conclu- 

ions of this work, Spreitzer and Plos (2013) studied the appli- 

ation of this timing attack on different Android smartphones. 

ater, these authors Spreitzer and Gérard (2014) achieved sub- 

tantial improvements in the results by reducing the key space. 

ogdanov et al. (2010) presented another attack against AES table 

mplementations based on the exploitation of collisions. They used 

n ARM9 microprocessor for this purpose. 

The use of branch predictor is another way to implement cache- 

iming attacks on TrustZone. In the latest processor designs, a com- 

onent called the branch target buffer unit (BTB) is included. This 

llows the storage of target addresses obtained from the compu- 

ation of the forking instructions performed, with subsequent re- 

rieval when the instructions are predicted ( Takahashi et al., 2018 ). 

s a consequence of BTB being shared between both worlds, it is 

ossible to perform attacks such as Prime+Probe (explained be- 

ow) to reveal data. The process starts with a priming of the BTB. 

he victim process is then allowed to start, which will be evict 

he attacker’s BTB entries. Once the attacker acquires control of 

he execution, he initiates the associated branches in order to de- 

ect prediction errors. A relevant aspect in the internal operation 

f the BTB is related to byte granularity rather than cache line 

ranularity. This enables a new attack vector by significantly in- 

reasing the spatial resolution of the probing mechanisms. Using 

his approach, it is possible to retrieve a private key directly from 

ertain hardware-backed keystores Ryan (2019b) . Some examples 

f memory-based attacks using different techniques are briefly de- 

cribed below. 

.1.1. Prime+Probe 

The Prime+Probe attack ( Osvik et al., 2006 ) begins with the at- 

acker filling the cache with data. Subsequently, the attacker mon- 

tors how the cache changes while the victim process is running. 

rom the changes detected in the cache, the attacker infers infor- 

ation about the victim’s operation and behavior. 

From the attacker’s perspective, the main advantage of this 

echnique is that there is no need to carry a shared memory map 

etween attacker and victim. This results in a very suitable mech- 

nism for attacking the SW with very few additional resources re- 

uired. 

.1.2. Evict+Time 

This attack ( Osvik et al., 2006 ) is based on the execution time

f the victim process. The process is run and then all cache entries 

hat have been used by it are deleted (evicted), in such a way that 

he execution time is modified in the next execution. The differ- 

nces between execution times are then analyzed and correlated 
15 
ith all cache changes so as to extract useful information. For ex- 

mple, this type of attack can be launched against a cryptographic 

lgorithm, say AES, to expose the cryptographic material. 

.1.3. Flush(Evict)+Reload 

Yarom and Falkner (2014) describe the Flush(Evict)+Reload 

echnique. Flush + Reload works based on an abuse of shared 

ode/data by making use of the clflush cache flush instruction. It 

s necessary that victim and attacker physically share at least one 

age of data. This is possible since shared libraries are normally 

nly loaded once physically into memory. Instead, different ap- 

lications access the same data (physically) since the page tables 

oint to the same physical address. The process is as follows, when 

he attacker uses the clflush command with an address pointing to 

his shared data, it is completely flushed from the cache hierarchy. 

s the data is shared, the attacker can hit on this data in the cache.

epeatedly the attacker empties the shared data with the victims 

s Fig. 11 depicts, then the attacker remains on standby until the 

ictim executes, at which time it performs the reload of the data. 

rom this moment on, if the attacker gets a cache miss, i.e. the 

ictim has not accessed the data, and therefore has not returned 

t to the cache. On the other hand, if he gets a cache hit, that is,

he victim did. In this way, the attacker can distinguish hits from 

isses because the memory access time is very different. 

The potential of this attack lies in the fact that the attacker can 

each a very high level of knowledge of the cached data. As mem- 

ry is slower than the processor, this fact produces bottlenecks. Re- 

ently used lines are stored in the cache, which improves the per- 

ormance. Since Multi-processors Systems-on-Chip (MPSoCs) com- 

onents can directly access the hardware information, like com- 

unication infrastructure or physical addresses, the Flush+Reload 

echnique on MPSoCs is prone to be implemented in these settings. 

.1.4. Flush+Flush 

The Flush+Flush mechanism ( Gruss et al., 2016b ) could be seen 

s a variation of the Flush+Reload attack implemented in reverse. It 

egins in a similar way to the one described above: by emptying 

he cache lines that are shared. Immediately afterwards, the vic- 

im program can be executed. The attacker then performs another 

ache flush while calculating the time taken to perform this flush. 

The idea behind this attack is that the time spent in flushing 

he cache can change depending on the cache lines that have been 

oaded while the victim was running. This allows the attacker to 

nfer certain information from the victim’s process. Although this 

ttack is more complex, this technique has the advantage of going 

nnoticed more often than previously described ones. The reason 

s that many attack detection mechanisms rely on the presence of 

ache misses to identify possible attacks. 

.1.5. Wei ́ Attack 

Weiß et al. (2012) demonstrate that cache timing attacks can 

ypass virtualization barriers. The experiment made use of replay- 

esistant authentication by performing all encryption operations in 

he secure world. The attack targets the authentication scheme, 

nd for this purpose a reduction in the key space is pursued until 

t can be effectively implemented by brute force. 

This attack is structured in two phases: offline and online. Dur- 

ng the offline stage, the attacker gathers multiple encryption op- 

rations using a known, all-zero key. In the other phase, the at- 

acker’s goal is to capture the key that is unknown to him. Once 

nough synchronization data has been collected, the correlation 

etween the two sets is established, thus obtaining the possible 

alues of each byte of the key. To find the values, a calculation 

s performed based on a probability threshold. The mechanism is 

nitiated by inserting a value in the list, which contains those pos- 
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Fig. 11. Flush+Reload attack workflow. 
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ible values of the key, just at the instant when a byte of the key

ppears with a probability higher than the established threshold. 

This work was developed in 2012 when the TEEs were just 

eginning to get standardized by GlobalPlatform and deployed in 

onsumer devices. For this reason, rather than on a TEE, Weiß

t al. (2012) present an implementation of the attack on virtualized 

ystems. Although this attack was not implemented in TEE, the au- 

hors showed that cross-isolation attacks are effective, given both 

orlds share CPU and cache. This particular implementation was 

erformed on a Beagleboard 

11 , which is basically an ARM-based 

evelopment board that integrates an L4 microkernel – which is 

he virtualization layer. During the experiment, they took measure- 

ents of the time spent on each encryption operation using the 

RM CCNT register, as well as the total count of CPU clock cycles 

ince the last restart. They took different im plementations of the 

ES to study the weaknesses that appear in general computation 

nd concluded that, to a greater or lesser extent, they were all vul- 

erable. Two years later, Weiß et al. (2014) reproduced the experi- 

ent – but this time in a multi-core environment on a development 

oard. 

.1.6. ARMageddon 

Lipp et al. (2016) describe the implementation of a cache- 

iming attack, called ARMageddon, that uses only unprivileged ap- 

lications and target Android devices based on ARM architectures. 

o understand the attack we first need to be aware that ARM level 

 caches are not inclusive for the most part. This implies that it 

s not possible to guarantee that there are entries in lower-level 

ache shared by the CPU cores thus hindering cross-core attacks . 

his is because the last shared cache level is the only way for an

ttacker to access and modify data from other cores. 

The attack is implemented on modern devices employing multi- 

PU based designs, namely ARM devices with non-inclusive L2 
11 http://beagleboard.org/ . 

i

T

16
aches (the last-level ones). A new exploitation of cache co- 

erency protocols and transfers between L1 and L2 is presented, 

chieving an workaround to the difficulty of last-level cache non- 

nclusiveness. As mentioned above, devices with multiple CPUs do 

ot share a common cache between them. However, the protocols 

sed to retrieve line cache entries coming from different CPUs fol- 

ow coherence rules that allow exploiting certain attacks more ef- 

ectively. Among the different policies, we find LRU (least-recently 

sed) implemented by Intel or a pseudo-LRU variant by ARM pro- 

essors. 

As ARM CPUs make use of a pseudo-random cache replacement 

olicy, this makes it difficult for the attacker to predict which line 

o replace. This technique lowers overall attack performance be- 

ause it reduces the effects of erroneous prediction of replaced 

ines. In this work, the authors present results of the implemen- 

ation of ARMageddon on three different devices, each one with 

articular strategies for accurate unprivileged cache timing in the 

ttacks. 

.2. Separation barrier 

These are focused on exploiting the separation barrier and since 

t is a micro-architectural element, they belong to this category. 

.2.1. Prime and count 

The Prime and Count technique Cho et al. (2018) aims to re- 

uce the noise caused by TZ’s own inter-world switching mech- 

nism and the pseudo-random cache replacement policies. On its 

wn it cannot be used to snoop into the secure world, however, it 

rovides a proof of the existence of a side channel that can be es- 

ablished between both NW and SW. This attack has been used as 

 precursor of more complex attacks such as privilege escalation. 

The technique is implemented with a sender in charge of writ- 

ng data to the cache to signal a message to a receiver process. 

here are two strategies for implementing this attack depending 

http://beagleboard.org/
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n whether they are applied to single-core or multi-core architec- 

ures. The difference lies mainly in the cache level to which it is 

pplied, as the L1 cache is available to each CPU core, without be- 

ng shared by other cores. Unlike the L2 cache which, being larger, 

an be shared among all the cores. 

In the first phase of the single-core attack , the receiver primes 

he L1 cache filling it entirely. Then, the sender application, which 

s running in the SW, then takes control and writes new data to 

he L1 cache for signaling the message. Finally, control is switched 

ack to the NW which can learn how many cache lines have been 

odified by the sender. After each sender - receiver interactions a 

iece of the message is covertly transmitted. 

In the case of a multi-core attack , the difference is that during 

he first stage both L1 and L2 caches are primed and therefore 

nvalidated. Meanwhile, the sender only writes to the L2 cache. 

learly, this attack is more difficult to implement because the L2 

s a global cache that can be accessed by applications executed in 

arallel by other cores. Nevertheless, messages can be encoded tak- 

ng into account the accesses made by other process and eliminate 

oise that may appear in the channel by introducing error correc- 

ion codes. 

.2.2. TruSpy 

The TruSpy technique Zhang et al. (2016b) could be considered 

he first proof-of-concept of “cross world” attacks. A cross-world at- 

ack can be defined as one capable of breaking the isolation be- 

ween the normal and secure worlds. The authors present two 

ypes cross-world attacks, one of which requires kernel privileges 

nd is easier to implement, and the other one which can be suc- 

essful even with user-space privileges alone, but is more difficult 

o execute. 

In the privileged attack, the adversary has access to both the 

irtual-to-physical memory mapping and the Performance Moni- 

or Unit (PMU), which offers statistics on the operations of the 

rocessor and memory. This allows him to perform cache priming 

nd cache probing with ease. The other attack only requires user- 

pace privileges, but is more difficult to execute because it lacks 

ccess to the previously mentioned resources. Memory sharing be- 

ween the attacker and victim processes is not a requirement for 

he implementation of either attack, since they are based on the 

rime+Probe technique. 

The attack has five stages, as it is shown in Fig. 12 . In step 1,

he attacker finds memory addresses for cache priming, if the vir- 

ual address space is mapped to the cache sets. Once identified, 

he attacker performs the priming of the cache (step 2). The vic- 

im process then takes control and changes the state of the cache 

uring its execution (step 3). Finally, the attacker probes the cache 

or cache misses (step 4) thereby identifying the lines that have 

een modified by the victim. The difference between both states 

s stored, and returns to the second step to keep iterating – until 

 sufficient amount of data is recorded. Finally, in step 5, the col- 

ected data is analyzed in order to reveal secret information from 

he victim running in the secure world. 

.3. Speculative execution attacks 

Speculative attacks exploit a feature present in most modern 

rocessors, called speculative execution, to leak confidential infor- 

ation. In speculative execution, the CPU attempts to anticipate 

he processing of certain future instructions, which may or may 

ot be necessary, to optimize code execution. In case these in- 

tructions are eventually not necessary, the changes are reversed 

nd the results ignored. However, not all changes are reverted (e.g. 

ache changes) and leave traces that can reveal sensitive data to 

ttackers. Since speculative attacks are mainly focused on fault in- 
17
ection and cache timing techniques, they have been included in 

ection 7 . 

This category of attacks has become increasingly prevalent 

ately and they can hinder the isolation guarantees of TEEs in 

ifferent im plementations. Some im portant exam ples are Melt- 

own ( Lipp et al., 2018 ) and Spectre ( Kocher et al., 2019 ). The basic

dea behind Spectre and its different variants is to trick the pro- 

essor into speculatively executing sequences of instructions that 

hould not have been executed under normal circumstances. By 

nfluencing which instructions are speculatively executed, sensi- 

ive information is leaked from the victim’s memory address space. 

ocher et al. (2019) demonstrate the feasibility of Spectre attacks 

cross security domains from both unprivileged native code and 

ortable JavaScript code. 

A variant of Spectre for Intel SGX is known as Sgxpec- 

re Chen et al. (2019a) . Sgxpectre bases its attack on misusing the 

ranch prediction unit (BPU) to cause the victim to run certain 

ecret leakage instructions. BPU are certain hardware components 

hat collaborate in the prediction of conditional branches, indirect 

umps and calls, and function returns. To do so, the attacker must 

e able to induce speculative access of unwanted data by deviat- 

ng the execution branch (within the same kernel) beforehand. This 

nables the possible execution of malicious code on another thread 

rom the main domain – it could even be the same thread – if the 

xecution of the domain itself can be interrupted and the BPU con- 

aminated. 

Meltdown Lipp et al. (2020) is a software-based attack that can 

e considered the precursor to the attacks included in Section 7.4 . 

t exploits out-of-order execution (a type of speculative execution) 

o allow an unprivileged adversary to read the memory of other 

rocesses or virtual machines, which may include personal data 

nd passwords. Meltdown does not require the adversary to exploit 

ny existing vulnerability in the software and is operating system 

ndependent. 

Meltdown consists of three steps. In the first step, the attack 

oads the contents of a memory location (inaccessible to the at- 

acker) into a CPU register. This will eventually cause an unautho- 

ized access exception rolling back the execution. In the second 

tep, the attacker defines a sequence of instructions, by taking ad- 

antage of out of order execution, that are capable of accessing the 

ecret data loaded into the register. Before the register is cleared 

ue to the exception, this transient instruction sequence will en- 

ode the secret into the micro-architectural cache state using the 

lush+Reload technique, although it would also be possible to use 

ther similar techniques. In the last step, the attacker recovers the 

ecret data from the cache state. By repeatedly performing these 

hree steps over different memory locations, the attacker can re- 

rieve the entire physical memory. 

These attacks have been successfully implemented in the most 

idespread TEE implementations such as Intel SGX ( Brasser et al., 

017; Götzfried et al., 2017; Intel, 2014; Moghimi et al., 2017; 

chwarz et al., 2017 ) and ARM TZ ( Lipp et al., 2016; Zhang et al.,

016b ). 

In addition to Meltdown and Spectre there are other attacks 

hat can be considered speculative. These include the exploita- 

ion of the lack of prediction of conditional forks, the poisoning 

f direct forks, as well as other combinations. Instruction timing 

an also be exploited, since instructions whose timing depends on 

perand values can leak information about operands without nec- 

ssarily involving caches. The efficacy of this type of attacks to in- 

er private information (data, operations) has been proven, as well 

s the ability to circumvent the barriers imposed by address space 

ayout randomization (ASLR) ( Gras et al., 2017; Gruss et al., 2016a ). 

Finally, another interesting attack vector is due to the in- 

erent leakage caused by latency differences between cache in- 

uts and outputs. This allows to infer keystroke behavior ( Gruss 
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Fig. 12. TruSpy attack workflow. Based on Zhang et al. (2016b) . 
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12 The paper primarily focuses on (Line) Fill Buffers, but other buffers can be used 

such as load ports and store buffers. 
t al., 2016b; 2015 ), and even both symmetric AES ( Bonneau and 

ironov, 2006; Irazoqui et al., 2015 ) and asymmetric RSA ( Liu 

t al., 2015; Zhang et al., 2012 ) keys. 

.4. Out-of-order execution attacks 

Out-of-order execution is a subtype of speculative execution 

hat allows instructions to be executed as long as the necessary re- 

ources to do so are available, even if they do not follow the nor- 

al sequence of code execution. Out-of-order attacks exploit the 

act that the memory used for the execution of these transient in- 

tructions can be accessed by other processes before being freed. 

Foreshadow ( Weisse et al., 2018 ), Micro-architectural Data Sam- 

ling ( Minkin et al., 2019; Schwarz et al., 2019; Van Schaik et al., 

019 ) and Load Value Injection (LVI) ( Van Bulck et al., 2020 ) are

ttacks that belong to this category. 

.4.1. Foreshadow attack 

Until the publication of Foreshadow ( Van Bulck et al., 2018 ), In- 

el SGX was thought to be resistant to speculative execution at- 

acks. However, Foreshadow demonstrated it was possible to read 

he memory protected by SGX and even extract the machine’s pri- 

ate attestation key. 

Intel analyzed Foreshadow in an attempt to prevent the cause 

f the attack and they realized that two additional attacks were 

ossible. These attacks, which are referred to as Foreshadow-NG 

next generation) Weisse et al. (2018) , allow an adversary to read 

ny information contained in the L1 cache. This includes informa- 

ion from other virtual machines running on cloud infrastructures. 

Moreover, Foreshadow-NG might be able to bypass some of the 

ountermeasures that were created to prevent other types of spec- 

lative attacks, such as Meltdown and Spectre. 

.4.2. Micro-architectural data sampling attack 

Micro-architectural Data Sampling (MDS) vulnerabilities allow 

dversaries to exfiltrate data from different CPU internal buffers, 

uch as the Store Buffer and the (Line) Fill Buffer. They are called 

ampling attacks because the adversary retrieves data being used 

y another process but has no control over the memory positions 

he victim is accessing. This is similar to sniffing CPU buffers. 
18
Using this type of attacks, various researchers were able to 

ccess the memory of Intel SGX ( Minkin et al., 2019; Schwarz 

t al., 2019; Van Schaik et al., 2019 ). In addition, some au- 

hors ( Ragab et al., 2021 ) showed that, despite existing mitiga- 

ions against speculative execution attacks, existing CPUs are in- 

dequately protected and sensitive data can still be leaked. 

Notable attacks within this category are the Rogue In-Flight 

ata Load (RIDL) ( Van Schaik et al., 2019 ), Fallout ( Canella et al.,

019a ) and ZombieLoad ( Schwarz et al., 2019 ), which are described 

n more detail below. 

Rogue In-Flight Data Load RIDL ( Van Schaik et al., 2019 ) can leak

ata from a victim process even if that process is not speculat- 

ng (e.g., due to Spectre mitigations) and requires no control over 

ddress translation data structures. Attackers running arbitrary un- 

rivileged code manage to leak information across arbitrary secu- 

ity boundaries (JavaScript sandbox, process, kernel, VM, SGX, etc.). 

n short, RIDL allows the attacker to listen in on all communication 

etween CPU components. 

As with other attacks in this category, it originates from op- 

imizations that cause the CPU to serve speculative loads. In this 

aper, authors present several exploits that allow data leakage 

y the following steps. First, the victim code loads/stores data, 

he CPU performs the load/store through internal buffers 12 . Next, 

he attacker performs a load and the processor uses data from 

he buffers speculatively. Finally, it makes use of the speculatively 

oaded data in the buffer to extract the secret value. 

Fallout Fallout ( Canella et al., 2019a ) takes advantage of the in- 

ernal Store Buffer, which is used to track pending store operations. 

his attack allows programs with no special privileges to read data 

ecently written by the kernel, as well as to de-randomize the Ker- 

el Address Space Layout Randomization (KASLR). 

When a code writes a value to memory, before getting ex- 

lusive access to the address, the processor maps the virtual ad- 

ress of the destination to a physical address. However, instead 

f waiting for the computation to finish, the processor inserts the 

alue and the address into the Store buffer and continues the 
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xecution of the program. The Store buffer then resolves the ad- 

ress and stores the data. The processor must control that obsolete 

alues are not loaded, which is the purpose of the Write Transient 

orwarding (W TF) instruction optimization. W TF marks the load 

s faulty and forwards the partially matched store value, which 

hould not be forwarded. This behavior is exploited by Fallout to 

btain the value that WTF sends. As in other cases, it uses a side

hannel (Flush+Reload) to exfilter the value. 

ZombieLoad ZombieLoad ( Schwarz et al., 2019 ) is a transient ex- 

cution attack that takes advantage of the Fill Buffer present in In- 

el CPUs. This buffer, which is used during load instructions, retain 

ata from memory load requests until new ones overwrite them. 

oreover, it is shared among the logical cores of a physical CPU. 

herefore, a malicious thread running on a logical core could ac- 

ess the data of another thread running on a different logical core 

ithin the same physical CPU, even if the threads belong to com- 

letely different applications. 

Under certain conditions, typically a faulty load operation due 

o erroneous data, speculative execution allows to obtain other 

ata not related to the load memory address from the Fill Buffer. 

hese data can be finally extracted by some sort of side channel, 

uch as those provided by the cache subsystem. 

.4.3. Load value injection attack 

Bulck et al. ( Van Bulck et al., 2020 ) present the Load Value In-

ection (LVI) attack, which is based on the injection of erroneous 

ata into the memory of a victim’s program. Once the application 

etects in-memory data is incorrect, the execution is rolled back. 

efore the mistake is detected, during this short period of time, an 

ttacker can access the data from the victim, which may include 

ensitive information from Intel SGX. A limitation of LVI attacks is 

hat the adversary cannot always control certain conditions, such 

s when a failure occurs, as they take place in the victim’s envi- 

onment. 

Unfortunately, LVI is much more difficult to mitigate than pre- 

ious attacks as it requires compilation patches that insert instruc- 

ions to limit speculative execution after every potentially vulner- 

ble instruction. This impedes the processor to optimize its exe- 

ution (i.e., the pipeline is serialized) resulting in a significant de- 

rease of Intel SGX computation performance – up to nearly 20 

imes slower. 

Although the proof-of-concept implementation of the attack 

argets Intel SGX, the authors argue that LVI attacks are not unique 

o this enclave but the necessary conditions are harder to be met. 

. Countermeasures 

A number of attacks for different TEE implementations have 

een described so far. To complete the picture, we also review dif- 

erent countermeasures that have appeared in recent years. Since 

hese countermeasures have appeared as a response to attacks, we 

resent them following the proposed taxonomy. 

.1. Countermeasures to software-based attacks 

First, we describe the most relevant countermeasures against 

oftware-based attacks to mitigate or reduce certain security issues 

f TEE components and applications. 

TEE master key extraction is possible because the disk encryp- 

ion is based on a software key derived from information stored 

nside the TrustZone kernel memory. Since the key is inside the 

oftware, attackers can extract this key. A countermeasure for this 

s the use of a secure element with hardware-bound key function- 

lity, such as TPM. 

Regarding validation failures, most commercial TEE systems 

re written in C, which does not provide memory protection 
19
echanisms. As a result, developers introduce memory violation 

rrors, which in turn cause validation failures. As a solution to this, 

n certain TEE systems such as TLR ( Santos et al., 2011 ) applications

re interpreted with.NET managed code – similar to a Java Virtual 

achine (JVM). Even if this introduces an extra overhead in the ex- 

cution of the applications, this approach can be of great help, as 

t provides certain tools (e.g. run-time memory checks and rubbish 

ollection) that reduce the risk of validation failures. 

Other approaches follow the idea of using secure pro- 

ramming languages for developing sensitive components that 

ill be deployed in TrustZone ecosystems. Among them, Rust- 

one ( Evenchick, 2018 ) can be highlighted. RustZone provides an 

xtension of OP-TEE that enables developing applications using the 

ust programming language. This language provides memory and 

hread safety, which help to avoid validation errors and some con- 

urrency errors responsible for application software crashes. 

Implementation errors caused by a lack of consistency be- 

ween the expected requirements of a software component and 

ts actual implementation are often encountered. Techniques such 

s model checking, symbolic execution and formal methods can 

e very useful to avoid these mismatches, and are very effec- 

ive in ensuring that an implementation meets the proposed re- 

uirements. Although the application of these methodologies is 

enerally not trivial, significant progress has been made in the 

se of formal verification techniques to analyze the robustness of 

EE components. There are very interesting proposals such as Ko- 

odo ( Ferraiuolo et al., 2017 ), which consists of a monitor that 

mplements the Intel SGX enclaves specification, and the memory 

anager known as MIPE ( Chang et al., 2017 ). 

On the other hand, there are different tools for malware 

etection . This is important to consider, as many attacks that 

arget TEEs are deployed as malware. Among such tools, Andru- 

is ( Weichselbaum et al., 2014 ) combines static and dynamic 

nalysis techniques using unsupervised learning (with clustering). 

ools like DroidClone ( Alam et al., 2016; Alam and Sogukpinar, 

020 ) exposes similar code segments (“code clones”) in a very 

ccurate manner for the detection of malware variants, while other 

pproaches, such as DIFT ( Andriatsimandefitra and Tong, 2015 ), 

ocus on monitoring the information flow for malware detection 

y tracking selected data during the application execution. There 

re other lighter alternatives such as ThinAV ( Jarabek et al., 2012 ), 

hich combines a low footprint on an Android device with the 

bility to leverage various anti-malware services in the cloud. 

There are other software-based countermeasures that focuses 

n recognition and detection using machine learning techniques. 

or example, in ( Soviany et al., 2018 ) the authors describe a whole

rypto-mining detection and recognition methodology based on 

achine learning. Another approach, based on a structured het- 

rogeneous information network (HIN), known as Hindroid, is 

resented by Hou et al. (2017) . Authors integrate several machine 

earning-based tasks with some optimisations that are performed 

t various processing stages, including the multi-core approach. 

n addition, techniques such as DroidDream ( Kim et al., 2016 ) 

an be used for malware family identification, based on malware 

etection work with dynamic analysis on real devices. 

Finally, there are other solutions that pursue to empower the 

pplications themselves such as PrOS ( Kwon et al., 2019 ) and 

EEv ( Li et al., 2019 ), which provide a minimalist hypervisor 

mplementation on the SW. This allows applications to work on 

ultiple guest OSs in a secure and isolated way. 

.2. Architecture-based countermeasures 

In this section some of the countermeasures already proposed 

n the literature against architecture-based or micro-architectural 
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ttacks are presented. These countermeasures are presented to- 

ether, because in many cases they are shared. 

Isolation between worlds is a source of different security 

hreats. Several mechanisms have emerged that aim to overcome 

he existing limitations in the main TEE. Examples of such limi- 

ations are the absence or weakness in authentication when ac- 

essing TEE resources from the NW and shared memory which as 

e have argued is potentially insecure for data exchange within 

he channel. A technique commonly used to reduce the attack 

urface is known as multi-isolated environments . They are differ- 

nt from traditional sandboxes and are particularly useful for pro- 

ecting TEE systems from a wide variety of attacks. They make 

t possible to contain the scope of damage that can be caused 

y a security breach by increasing the granularity of isolation 

etween different TEE components. They also allow limiting the 

ode that can be executed, which directly reduces the possibil- 

ty of privilege escalation attacks. This technique has been imple- 

ented in different ways. Some focus on the creation of compart- 

ents of the NW itself, with a strong isolation, in which appli- 

ations would be assigned. Others focus on protecting the appli- 

ations, with approaches such as Sanctuary ( Brasser et al., 2019 ) 

nd TrustICE ( Sun et al., 2015b ) leveraging different features of 

ZASC. There are mechanisms that explore the implementation 

f environment isolation with hardware virtualization extensions 

vailable in NW (NS-EL2) such as PrivateZone ( Jang et al., 2016 ), 

SP ( Cho et al., 2016 ), and vTZ ( Hua et al., 2017 ). 

As seen in this paper, some architectural attacks occur because 

As in Trustonic TEE cannot physically read/write to physical mem- 

ry – this task is performed by specific driver TAs . If an applica- 

ion needs to make use of shared memory, it will have to issue 

 request to the controller. Samsung’s TZ, known as TIMA, uses a 

imilar approach, where only the application controller can allo- 

ate physical memory – thus mitigating risk. TIMA makes use of a 

hitelist that limits the applications that can query the application 

ontroller. Although this mechanism provides additional security 

uarantees, it is still not sufficient: the attacker could target the 

hitelisted applications to successfully compromise the system. 

Some implementations aim to mitigate this potential source of 

ulnerabilities using an architectural design based on microkernel , 

hich restricts the execution of drivers to the SW user space only. 

his approach is being integrated into NVIDIA and Trustonic imple- 

entations. Other companies, such as Huawei, focus on introduc- 

ng a new task to control the TEE lifecycle. To do this, it creates 

 TEE with certain privileges, which it calls GlobalTask. Another 

easure is the inclusion of a single non-secure port to perform 

he centralized connection of all memory-mapped non-sensitive IP 

ores. This allows their operation to be controlled by memory pro- 

ection mechanisms such as SMMU ( Marchand et al., 2017 ). Other 

easures focus on preventing the misuse of hardware voltage reg- 

lators, which is solved by applying specific hardware and software 

erformance limiters via drivers Tang et al. (2017) . 

SeCReT ( Jang et al., 2015 ) provides a session key for applications 

unning in the NW to encrypt messages. In more detail, SeCReT 

roposes a number of input and output mode changes to the ker- 

el, including the elimination of the memory key during kernel 

ode execution, pursuing the protection of the NW kernel ses- 

ion key – which is untrusted. In the case of TFence ( Jang and 

ang, 2018 ), a non-fully privileged process (a shielded part of the 

W application process) communicates directly with the TEE, fur- 

her eradicating this kernel dependency. There are alternatives that 

mplement exclusive shared memory such as TTEEv, Sanctuary and 

rivateZone. The latter allows communication, but without mem- 

ry sharing, since it implements it by means of data copies. There 

re other alternatives that avoid BOOMERAN attacks by sanitizing 

he Machiry et al. pointers. In fact, Machiry et al. were in contact 

hroughout the process with the TEE suppliers themselves, with 
20 
he ultimate goal of being able to develop the relevant corrections 

or their environments. 

COLONY ( Xia et al., 2021 ) proposes a new architecture in which 

ach instance of the design (“COLONY”) has grants to access only 

he necessary system-level semantics . This approach relies on a se- 

ure monitor to implement isolation and capability management. 

espite the advantages provided by this approach, which assumes 

hat hardware components are completely reliable, the protec- 

ion provided is not sufficient – as demonstrated in Section 6 . In 

act, a compromised “COLONY” can attack the caller by return- 

ng a malicious value ( Checkoway and Shacham, 2013 ). Further- 

ore, COLONY does not take into account side-channel attacks, 

ardware-based attacks and DoS attacks. 

Other solutions use particular techniques such as Key- 

tone ( Lee et al., 2020 ), which aims at isolating memory with a 

rogrammable layer below untrusted components. Keystone pro- 

ides protection to the TEE against some attacks (Mapping, Syscall 

ampering and Side-channel), as well as protection to the host OS 

gainst TEE attacks. It also provides protection to the secure mon- 

tor, since the entire memory of the secure monitor is isolated and 

herefore not reachable for all TEEs. In fact, it is not even accesi- 

le for OS hosts. EnclaveDom ( Melara et al., 2019 ), implemented in 

ntel SGX, is a system that provides a separation of privileges for 

arger TEE applications. The enclave is divided by memory regions 

hich are labeled, and establishes a set of access rules per region 

ith some granularity of the individual functions in the enclave. 

Sanctuary ( Brasser et al., 2019 ) proposes an extension of TZ 

ith the use of user-space enclaves . This approach is designed 

o provide hardware-enforced bidirectional isolation, without the 

eed to trust or veto the code of authors called Sanctuary Appli- 

ations (SAs), since a malicious SA should not be more privileged 

han normal user space applications. Through bus identity filtering 

nd some additional architectural changes, Sanctuary achieves par- 

llel isolation of individual CPU cores. This allows sensitive code to 

un without affecting the user experience and with fairly negligible 

atency in benchmarks. 

Many of the existing weaknesses in memory protection of TEEs 

an be addressed by mechanisms in major operating systems. Still, 

ote that some commercial TEEs provide stronger security mech- 

nisms, either by implementing measures against specific attacks 

uch as cold boot attacks , or by integrating tools to provide addi- 

ional protection such as memory encryption (e.g. Intel SGX pro- 

ides memory encryption , yet TrustZone does not provide inte- 

rated support for it on the chip itself). Other solutions, such as 

aSE ( Zhang et al., 2016b ), allow applications to run from the 

ache, thus ensuring that their state remains properly encrypted 

hen writing back to main memory. Also, Ginseng ( Yun and 

hong, 2019 ) performs variable protection by tagging the applica- 

ion programmer as “sensitive”. Therefore, its information is en- 

rypted at runtime while stored at the CPU registers, thus no un- 

ncrypted data will be stored in memory. 

Regarding the integrity of the TEE, commercial TEEs have at- 

empted to address this weakness by making use of a secure boot 

onfidence to preserve TEE image integrity. Nevertheless, we high- 

ight that only with this mechanism it is not possible for an ap- 

lication client to verify the identity and integrity of both the 

pplication binaries and the TEE. For this reason, some of the 

ommercial implementations of TEEs provide certain extra trust 

rimitives. The use of techniques such as remote attestation and 

ealed storage can be useful in providing such assurances. Thus, 

LR ( Santos et al., 2011 ) includes a sealed storage mechanism to 

rotect data from each other by linking them to specific hash val- 

es in the TEE-App software stack. Komodo ( Ferraiuolo et al., 2017 ) 

escribes the implementations of the sealed key storage and re- 

ote attestation security protocols, as it appeared in the original 

GX enclave specification. 
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Other strategies include pre-venting the cache side channels 

erformed by implementing cryptographic algorithms in soft- 

are ( Guanciale et al., 2016; Lipp et al., 2016; Ryan, 2019a; Zhang 

t al., 2016b ) or in specific hardware (e.g., as is the case with

pecific instructions in ARM such as AESD and AESE) ( Lipp et al., 

016 ) to prevent information leaks in operations. Besides, im- 

lementing a reduction of the attack surface by seeking the re- 

uction of the Trusted Computing Base (TCB) ( Ying et al., 2019 ). 

ruz et al. present as a novelty a proposal based on the use of 

hat they call the delegation model. This model is based on the 

euse of almost the entire OS user interface stack in the NW. 

n this way, they manage to protect the user interface only as a 

wo-dimensional surface, and manage to reduce the size of the 

CB considerably. 

.3. Memory protection mechanisms 

.3.1. Lack of address space layout randomisation 

Whether due to the lack of Address space layout randomisa- 

ion (ALSR) implementations, or the poor implementation of exist- 

ng ones, the fact is that this is an architectural flaw shared by the 

ast majority of existing TEEs. 

Implementations such as OP-TEE Brand , NVIDIA and Huawei do 

ot provide any ALSR mechanism. In Qualcomm’s case, an ASLR is 

rovided for all applications, but only makes use of a small physi- 

al memory area where the application code is loaded, so that in a 

mall space (about 100MB) all applications are sequentially hosted. 

t is desirable to achieve high entropy to avoid failures, although in 

he case of Qualcomm TEE its ALSR is 9 bits, a number that is not

nough to provide high entropy. 

Despite ASLR, the attacker can be able to figure out where to 

ead and where to write, so other mechanisms are needed. In 

ection 7.1.6 , the insertion of noise while taking measurements of 

he cache during the attack is described. Other strategies, such 

s ( Lipp et al., 2020 ), focus on disabling the path predictor if an

ttempt to exploit the path predictor occurs, and compare the la- 

els of all routes again. Still, so far there is no documented ev- 

dence that AMD processors support such advanced strategies in 

ardware, or even that there is any OS interface for this purpose. 

.3.2. Other memory protection mechanisms 

Current OSs integrate memory protection mechanisms such as 

uard pages (GP), Stack Cookies (SC) or Execution protection (XP). 

Ps are used to define the boundaries of the mutable data seg- 

ents for each process. In other words, it defines the stack, heap 

nd global data in order to avoid a potential attacker from trying 

o perform an attack based on an overflow of one segment with 

he aim of corrupting another and resulting in a failure. SC are 

nique values used for stack smashing detection to allow abort- 

ng a running program. Finally, XP delimits certain memory areas 

n which programs cannot execute. However, this type of mecha- 

ism has repeatedly proven to be insufficient. In fact, not all OS 

ntegrate these mechanisms. In the case of Trustonic TEE, it has no 

C, and it allocates memory to both the global and the stack from 

he application data segment without putting GP between them. 

ualcomm implements SC with random pointer size, yet GP pro- 

ection mechanisms are not integrated. The ARM implementation 

f XP makes use of a bit (WXN) of the SCTLR register. This is used

o mark write-capable memory regions as “Execute Never” (XN). 

ther approaches make use of the GP XN attribute (in those im- 

lementations that have it) in order to allocate unpriviledge (UXN) 

nd priviledge (PXN) XN, such as NVIDIA ( Corporation, 2015 ) and 

inaro Brand implementations that provide both kernel space and 

ser space. 
21 
.3.3. Speculative attacks protection 

We consider the case of Spectre ( Koruyeh et al., 2020 ) to be of

articular relevance. Firstly, because of the impact it has had. Sec- 

ndly because, unlike the attacks that have been carried out based 

n side channels, Spectre highlights the relevance of covert chan- 

els, which have often been forgotten. There are two countermeas- 

ures to prevent exploitation of Spectre-PHT: memory fences after 

ranches ( Canella et al., 2019b ), or constraining the index to a valid

ange using a bitmask ( Canella et al., 2019b; Zhang et al., 2022 ). 

The countermeasure KAISER ( Lipp et al., 2020 ), developed ini- 

ially to prevent side-channel attacks targeting KASLR, inadver- 

ently protects against Meltdown. KAISER prevents Meltdown to a 

arge extent, thus it is highly recommended to deploy KAISER. In- 

el ( Canella et al., 2019a ) has proposed certain hardware counter- 

easures it built into its latest processors Coffee Lake Refresh i9 

PUs to prevent Meltdown. While they certainly make it difficult 

o implement these attacks they open the door for other attacks 

uch as Fallout. 

Still, there are certain countermeasures that manage to mitigate 

he impact of the attack to a certain extent. These are focused on 

artitioning, as proposed Lych et al. in 1992 Lynch et al. (1992) , 

 Liedtke et al., 1997 ) in 1997 and Shi et al. (2011) 2011.

thers are based on flushing, as Osvik et al. (2006) and 

uanciale et al. (2016) proposed in 2016 and 2013 respectively. 

owever, we should be aware that state partitioning in the ker- 

el will only be possible with additional hardware support as 

aña and Muñoz described in 2006 ( Maña and Muñoz, 2006 ) and 

ominster et al. in 2012 ( Domnitser et al., 2012 ). 

Hyperrace ( Chen et al., 2019b ) is an alternative designed to de- 

ect speculative execution attacks. The authors of this paper pro- 

ose a mitigation scheme that requires the support of an untrusted 

perating system. In fact, this alternative design is certainly capa- 

le of verifying the behaviour of the operating system. 

. Open challenges 

This section outlines some research challenges and open ques- 

ions that have to be resolved in order to reach an overall improve- 

ent of the security of TEE architectures and specific implementa- 

ions. 

One major challenge in the development of secure TEE-based 

olutions is the protection of shared resources between the nor- 

al and the secure world. Although some mechanisms have been 

evised to protect shared resources (e.g., the NS bit), these are not 

fficient against some attacks. A particularly serious threat is the 

xploitation of side channels, which could be applied to transfer 

ata between worlds, or to leak sensitive TA data. Therefore, it is 

aramount to investigate novel mechanisms capable of diminishing 

his threat while allowing third-party applications to make use of 

he security mechanisms included and offered by TEE. In fact, side- 

hannel attacks, especially speculative attacks, are currently a hot 

opic of research due to the drastic consequences of recent attacks. 

The use of dedicated hardware is also important for solving 

ome of the limitations or complementing the functionalities of 

EEs. Dedicated hardware can be used to improve the levels of en- 

ropy achieved by current implementations (e.g., QSEE has a 9-bit 

SLR with low entropy) but it can also help to preserve the in- 

egrity and confidentiality of sensitive data, such as cryptographic 

eys from side-channel attacks. However, the integration of TPM- 

ype secure elements has some limitations. Not only the addition 

f new hardware implies increased cost but also applications need 

o be prepared to use it correctly. A possible alternative to secure 

ardware in the protection of side-channels is to restrict the num- 

er of applications that are allowed to access to the secure world 

imultaneously but this would limit the performance of the sys- 

em. Therefore, an important challenge to solve is to find a technol- 
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gy with the security of TPM but with the functionality and cost 

f TEE. 

In the absence of any message protection mechanism in TZ, any 

ttacker with privileges to make direct use of the kernel could is- 

ue any custom SMC and fuzz the form. This would allow him to 

uccessfully implement a man-in-the-middle (MitM) attack with 

he aim of discovering flaws in the TEE and then exploiting them. 

n addition, other sorts of attacks, for example denial-of-service 

ttacks, can also be successfully implemented. In fact, at least in 

one of the existing TEE implementations, there is no message val- 

dation mechanism. In fact, even the Universal Unique Identifier 

UUID) is susceptible to replication and could be overridden as a 

ecurity measure. This implies that the TEE has no choice but to 

ct without certainty, making use of information from the unveri- 

ed message. For all these reasons, we consider that it is essential 

o elaborate more in-depth studies on the possible integration of 

alidation mechanisms. 

The lack of sufficient validation mechanisms in exiting TEE im- 

lementations is another open problem that needs to be tackled. 

n the one hand, no TEE solution implements message validation 

n terms of authentication and integrity. This implies that the TEE 

as no choice but to act without certainty with information from 

nverified messages. This would allow, for example, to successfully 

mplement a denial of service attack or a man-in-the-middle at- 

ack. It could be argued that the UUID of the message could be 

sed to verify the legitimacy of function calls but since the UUID 

s part of the SMC it is susceptible to replication and/or imper- 

onation. On the other hand, there is an insufficient validation of 

he parameters passed to functions. In fact, this is one of the main 

auses of several of the software-based attacks presented in previ- 

us sections. To prevent them, it is necessary to devise more robust 

anitation mechanisms to the parameters received by functions be- 

ore they are used. 

A typical problem of many security systems that also affects 

ost TEE implementations is that they are obscured systems. Most 

xisting implementation designs are closed and the result is ar- 

hitectures that are not analyzed by security experts prior to 

heir widespread adoption. This security-by-obscurity approach has 

roven to be wrong on many occasions. Although this trend may 

e changing with the recent release of the specification of the 

ualcomm TEE secure boot procedure, as well as the TA authen- 

ication, we are still far from open designs and architectures. 

As the IoT matures and the number of interconnected de- 

ices continue to grow it is vitally important to protect these 

evices, which may be part of critical systems. We envision 

hat some of the IoT devices in these systems will incorporate 

ome kind of TEE technology for improved security at a cost 

ot as high as that imposed by other hardware solutions. In- 

eed, some manufactures already provide solutions that can be 

tted into some IoT devices such as Infineon’s OPTIGA Trust X 

nfineon , Microchip Technology’s ATECC608A Inc , Maxim Inte- 

rated’s MAXQ106 Integrated , Trusted Objects’ TO136 Objects , 

XP Semiconductors’ proposals SE050 ( Semiconductors, 2021 ) and 

71CH ( Semiconductors, 2018 ). Therefore, the research commu- 

ity should investigate how to take advantage of these solutions 

o establish trust relationships between devices, how these are af- 

ected by the integration of different TEE implementations, and so 

n. 

In general, there is an urgent need for security frameworks 

hat allow security experts to assess TEE implementations and the 

ode running in them. In fact, the code to be executed inside 

he TEE is prone to contain vulnerabilities, which can be used to 

ompose attack vectors to corrupt the TEE, compromising the en- 

ire system. Security frameworks should help to analyze and ver- 

fy the security of the code, the appropriateness of the protection 

echanisms among trusted environments, in addition to providing 
22 
ethods for monitoring and detecting compromised TEEs and 

echanisms for recovering from attacks. 

Recall that any application has access to all the resources that 

 trusted application has. Therefore, an attacker could modify the 

egitimate OS kernel of a device by exploiting the memory map- 

ing and writing capabilities of the SW and, as a result, the ker- 

el would be infected even if there is no vulnerability in the NW 

ernel itself. For example, neither QSEE or TrustonIC provide a se- 

urity mechanism that enables the separation of different memory 

egments and controls possible heap overflows between different 

egments. 

0. Conclusion 

TEE development have been a very prolific field of research 

nd innovation in the last few years. Undoubtedly, this technology 

rovides an improved level of protection during the execution of 

hird-party applications. However, evidence has shown that it has 

any shortcomings in terms of security. 

Throughout this paper, we have presented and analyzed 

 vast myriad of attacks that can be launched against TEE. 

hese include software-based attacks, side-channel attacks and 

micro-)architectural attacks. Although some of these attacks are 

heoretical, many of them can be realized and have been exploited 

n practice. What is worse, countermeasures have only been 

eveloped for some of them. 

In general, we can state that despite the widespread adoption 

f these technologies, especially in the mobile sector, this is still 

n immature technology yet with much potential. Much of their 

roblems are due to the fact that their architecture is software- 

ased, resulting in faulty implementations and poor protection 

gainst hardware-based attacks. Combining this technology with 

edicated secure hardware to complement its security features 

ay be the way forward. 

TrustZone, and the various implementations of TEEs that uti- 

ize it, are seen as the optimal security providing mechanism in 

obile devices, and it is used to provide a vast array of integrity 

nd confidentiality functionalities to the platform. Nevertheless, 

ryptographic primitives capable of providing the appropriate root 

f trust to the persistent sealing and attestation mechanisms are 

ot included. 
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