
J. Math. Anal. Appl. 526 (2023) 127287
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

journal homepage: www.elsevier.com/locate/jmaa

Regular Articles

Cesàro-type operators associated with Borel measures on the unit 

disc acting on some Hilbert spaces of analytic functions ✩

Petros Galanopoulos a, Daniel Girela b,∗, Noel Merchán c

a Department of Mathematics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
b Análisis Matemático, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain
c Departamento de Matemática Aplicada, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, 
Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 September 2022
Available online 3 April 2023
Submitted by D. Khavinson

Keywords:
Hardy spaces
Weighted Bergman spaces
Mean Lipschitz spaces
Cesàro-type operators
Hilbert-Schmidt operators

Given a complex Borel measure μ on the unit disc D = {z ∈ C : |z| < 1}, we 
consider the Cesàro-type operator Cμ defined on the space Hol(D) of all analytic 
functions in D as follows:
If f ∈ Hol(D), f(z) =

∑∞
n=0 anzn (z ∈ D), then Cμ(f)(z) =

∑∞
n=0 μn

(∑n
k=0 ak

)
zn, 

(z ∈ D), where, for n ≥ 0, μn denotes the n-th moment of the measure μ, that is, 
μn =

∫
D wn dμ(w).

We study the action of the operators Cμ on some Hilbert spaces of analytic function 
in D, namely, the Hardy space H2 and the weighted Bergman spaces A2

α (α > −1). 
Among other results, we prove that, if we set Fμ(z) =

∑∞
n=0 μnzn (z ∈ D), then Cμ

is bounded on H2 or on A2
α if and only if Fμ belongs to the mean Lipschitz space 

Λ2
1/2. We prove also that Cμ is a Hilbert-Schmidt operator on H2 if and only if Fμ

belongs to the Dirichlet space D, and that Cμ is a Hilbert-Schmidt operator on A2
α

if and only if Fμ belongs to the Dirichlet-type space D2
−1−α.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY-NC-ND license (http://

creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction and main results

Let D = {z ∈ C : |z| < 1} denote the open unit disc in the complex plane C and let Hol(D) be the space 
of all analytic functions in D. Also, dA will denote the area measure on D, normalized so that the area of 
D is 1. Thus dA(z) = 1

π dx dy = 1
π r dr dθ.

✩ This research is supported in part by a grant from “El Ministerio de Economía y Competitividad” Spain (PGC2018-096166-B-
I00) and by grants from la Junta de Andalucía (FQM-210 and UMA18-FEDERJA-002).
* Corresponding author.

E-mail addresses: petrosgala@math.auth.gr (P. Galanopoulos), girela@uma.es (D. Girela), noel@uma.es (N. Merchán).
https://doi.org/10.1016/j.jmaa.2023.127287
0022-247X/© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons .org /licenses /by -nc -nd /4 .0/).

https://doi.org/10.1016/j.jmaa.2023.127287
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2023.127287&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:petrosgala@math.auth.gr
mailto:girela@uma.es
mailto:noel@uma.es
https://doi.org/10.1016/j.jmaa.2023.127287
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 P. Galanopoulos et al. / J. Math. Anal. Appl. 526 (2023) 127287
For 0 ≤ r < 1 and f analytic in D we set

Mp(r, f) =

⎛
⎝ 1

2π

2π∫
0

∣∣f(reiθ)
∣∣p dθ

⎞
⎠

1/p

, 0 < p < ∞,

M∞(r, f) = max
|z|=r

|g(z)|.

For 0 < p ≤ ∞ the Hardy space Hp consists of those functions f , analytic in D, for which

||f ||Hp

def= sup
0<r<1

Mp(r, f) < ∞.

We refer to [8] for the theory of Hardy spaces.
For 0 < p < ∞ and α > −1 the weighted Bergman space Ap

α consists of those f ∈ Hol(D) such that

‖f‖Ap
α

def=

⎛
⎝(α + 1)

∫
D

(1 − |z|2)α|f(z)|p dA(z)

⎞
⎠

1/p

< ∞.

The unweighted Bergman space Ap
0 is simply denoted by Ap. We refer to [9,18,27] for the notation and 

results about Bergman spaces.
The space BMOA consists of those functions f ∈ H1 whose boundary values have bounded mean 

oscillation on ∂D. The Bloch space B is the space of those f ∈ Hol(D) such that

‖f‖B def= |f(0)| + sup
z∈D

(1 − |z|2)|f ′(z)| < ∞.

We mention [12] and [2] for the theory these spaces.
Given 1 ≤ p ≤ ∞ and 0 < α ≤ 1, the mean Lipschitz space Λp

α consists of those functions f analytic 
in D having a non-tangential limit almost everywhere for which ωp(δ, f) = O(δα), as δ → 0. Here, ωp(·, f)
denotes the modulus of continuity of order p of the boundary values f(eiθ) of f . We write Λα instead of 
Λ∞
α . This is the usual Lipschitz space of order α.
A classical result of Hardy and Littlewood [16] (see also Chapter 5 of [8]) asserts that for 1 ≤ p ≤ ∞ and 

0 < α ≤ 1, we have that Λp
α ⊂ Hp and

Λp
α = {f analytic in D: Mp(r, f ′) = O

(
1

(1 − r)1−α

)
, as r → 1}.

Of special interest are the spaces Λp
1/p since they lie in the border of continuity. If 1 < p < ∞ and 

1/p < α ≤ 1, then Λp
α is contained in the disc algebra. On the other hand, the function f given by 

f(z) = log 1
1−z (z ∈ D) is an unbounded function which lies in Λp

1/p for any p ∈ (1, ∞). We have [5,4]

Λp
1/p ⊂ BMOA, 1 < p < ∞.

The space of those f ∈ Hol(D) such that

Mp(r, f ′) = o
(

1
(1 − r)1−α

)
, as r → 1,

is denoted by λp
α.
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The Cesàro operator C is defined over the space of all complex sequences as follows: If (a) = {ak}∞k=0 is 
a sequence of complex numbers then

C ((a)) =
{

1
n + 1

n∑
k=0

ak

}∞

n=0

.

The operator C is known to be bounded from 	p to 	p for 1 < p ≤ ∞. This was proved by Hardy [14] and 
Landau [20] (see also [17, Theorem 326, p. 239]).

Identifying any given function f ∈ Hol(D) with the sequence {ak}∞k=0 of its Taylor coefficients, the Cesàro 
operator C becomes a linear operator from Hol(D) into itself as follows:

If f ∈ Hol(D), f(z) =
∑∞

k=0 akz
k (z ∈ D), then

C(f)(z) =
∞∑

n=0

(
1

n + 1

n∑
k=0

ak

)
zn, z ∈ D.

The Cesàro operator is bounded on Hp for 0 < p < ∞. For 1 < p < ∞, this follows from a result of Hardy 
on Fourier series [15] together with the M. Riesz’s theorem on the conjugate function [8, Theorem 4.1]. 
Siskakis [23] used semigroups of composition operators to give an alternative proof of this result and to 
extend it to p = 1. A direct proof of the boundedness on H1 was given by Siskakis in [24]. Miao [22] dealt 
with the case 0 < p < 1. Stempak [25] gave a proof valid for 0 < p ≤ 2 and Andersen [1] provided another 
proof valid for all p < ∞.

Blasco [3] has recently obtained a number of interesting new results on the Cesàro operator acting on 
Hardy spaces and on some other related spaces such as BMOA, the Bloch space, and the spaces Λp

1/p
(1 < p < ∞).

Recently, the authors have considered in [11] a natural generalization of the Cesàro operator acting on 
spaces of analytic functions in D. For a positive and finite Borel measure μ on the radius [0, 1) the operator 
Cμ is defined on the space Hol(D) as follows:

If f ∈ Hol(D), f(z) =
∑∞

n=0 anz
n (z ∈ D), Cμ(f) is defined by

Cμ(f)(z) =
∞∑

n=0
μn

(
n∑

k=0

ak

)
zn =

∫
[0,1)

f(tz)
1 − tz

dμ(t), z ∈ D,

where, for n = 0, 1, 2, . . . , μn denotes the n-th moment of μ, μn =
∫
[0,1) t

n dμ(t). When μ is the Lebesgue 
measure on [0, 1), the operator Cμ reduces to the classical Cesàro operator C. Among other results, it is 
proved in [11] that the following conditions are equivalent:

(i) μ is a Carleson measure, that is, μ(t) ≤ C(1 − t) (0 < t < 1).
(ii) μn = O

( 1
n

)
.

(iii) 1 ≤ p < ∞ and Cμ is bounded from Hp into itself.
(iv) 1 < p < ∞, α > −1, and Cμ is bounded from Ap

α into itself.

Blasco [3] has generalized the definition of the operators Cμ by dealing with complex Borel measures on 
[0, 1) and he has extended results of [11] to this more general setting.

In this paper we shall deal with complex Borel measures on D, not necessarily supported on [0, 1). Just 
as above, if μ is a complex Borel measure on D and n ≥ 0, we set

μn =
∫

wn dμ(w)

D
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and we define the operator Cμ : Hol(D) →Hol(D) as follows:
If f ∈ Hol(D), f(z) =

∑∞
n=0 anz

n (z ∈ D), Cμ(f) is defined by

Cμ(f)(z) =
∞∑

n=0
μn

(
n∑

k=0

ak

)
zn =

∫
D

f(wz)
1 − wz

dμ(w), z ∈ D.

It is natural to look for a characterization of those complex Borel measures μ on D for which the operator 
Cμ is bounded on the Hardy space Hp or on the weighted Bergman space Ap

α. In this paper we solve this 
question in the case p = 2, that is, in the case when we are dealing with Hilbert spaces. Our main results 
are included in the following theorem.

Theorem 1. Suppose that α > −1 and let μ be a complex Borel measure on D. Set

μn =
∫
D

wn dμ(w), n ≥ 0,

and

Fμ(z) =
∞∑

n=0
μnz

n, z ∈ D.

The following conditions are equivalent:

(i) The operator Cμ is bounded from A2
α into itself.

(ii) The operator Cμ is bounded from H2 into itself.
(iii) Fμ ∈ Λ2

1/2.

In Section 3 we characterize the measures μ for which Cμ is a compact operator from H2 into itself and, 
also, those for which Cμ is Hilbert-Schmidt on H2 and on the Bergman space A2

α.

2. Proofs and some further results

Before embarking into the proofs of our results, let us remark that if μ is a finite positive Borel measure 
on [0, 1) then the sequence {μn} is a decreasing sequence of non-negative numbers and then it is known 
that Fμ ∈ Λ2

1/2 if and only if μn = O
( 1
n

)
(see, e.g. [13, Lemma 3.1] or [21, Lemma 2]). Hence our results 

here are consistent with those in [11].
Let us start with the results involving the Bergman spaces A2

α. The implication (iii) ⇒ (i) in Theorem 1
is a particular case of the following result.

Proposition 2. Suppose that α > −1 and 1 < p < ∞. If Fμ ∈ Λp
1/p then Cμ is bounded from Ap

α into itself.

Before we get into the proof, let us recall that if f and g are two analytic functions in the unit disc,

f(z) =
∞∑

n=0
anz

n, g(z) =
∞∑

n=0
bnz

n, z ∈ D,

the convolution f 
 g of f and g is defined by

f 
 g(z) =
∞∑

anbnz
n, z ∈ D.
n=0
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Proof of Proposition 2. Suppose Fμ ∈ Λp
1/p.

Arguing as in [11, p. 21-22] we see that Theorem 4 of [10] implies that

Fμ is a coefficient multiplier from Ap/(p+1)
α into Ap

α. (2.1)

Take f ∈ Ap
α. We have to show that Cμ(f) ∈ Ap

α.
Let g be defined by

g(z) = f(z)
1 − z

, z ∈ D.

Just as in [11, p. 6], we have that Cμ(f) is the convolution of Fμ and g,

Cμ(f) = Fμ 
 g.

Since 1/(1 − z) ∈ A1
α, using Theorem C of [26] (see also Theorem C of [11]), we see that g ∈ A

p/(p+1)
α . Then 

(2.1) yields Cμ(f) = Fμ 
 g ∈ Ap
α. �

Proof of the implication (i) ⇒ (iii). Suppose Cμ is a bounded operator from A2
α into itself.

For 0 < b < 1, set

fb(z) = (1 − b)1/2

(1 − bz)1+α+1
2

=
∞∑
k=0

ak,bz
k, z ∈ D.

Using [27, Lemma 3.10], we see that fb ∈ A2
α and

‖fb‖2
A2

α

 1.

Then we have that

1 � ‖Cμ(fb)‖2
A2

α
. (2.2)

Also,

ak,b 
 (1 − b)1/2k(α+1)/2bk. (2.3)

For every N ∈ N, we have

Cμ(fb)(z) =
∞∑

n=0
μn

(
n∑

k=0

ak,b

)
zn, z ∈ D.

Then, using (2.2) and (2.3), we obtain

1 � ‖Cμ(fb)‖2
A2

α



∞∑

n=0

1
(n + 1)α+1 |μn|2

∣∣∣∣∣
n∑

k=0

ak,b

∣∣∣∣∣
2


(1 − b)
∞∑ |μn|2

(n + 1)α+1

(
n∑

k(α+1)/2bk

)2
n=0 k=0
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≥(1 − b)
N∑

n=0

|μn|2
(n + 1)α+1

(
n∑

k=0

k(α+1)/2bk

)2

.

Taking b = 1 − 1
N , we obtain

1 � 1
N

N∑
n=0

|μn|2
(n + 1)α+1

(
n

α+1
2 +1

)2

 1

N

N∑
n=0

n2|μn|2.

Consequently, we have that 
∑N

n=0 n
2|μn|2 = O(N). Now a standard argument using summation by parts 

shows that this is equivalent to saying that Fμ ∈ Λ2
1/2. �

Let us turn now to prove our results regarding the Hardy space H2.

Proof of the implication (iii) ⇒ (ii). Suppose that Fμ ∈ Λ2
1/2. It is well known (see e.g. [4, Theorem 3.1]) 

that this is equivalent to

2n+1−2∑
k=2n−1

(k + 1)2|μk|2 = O(2n). (2.4)

Take f ∈ H2, f(z) =
∑∞

n=0 anz
n (z ∈ D). Set

f1(z) =
∞∑

n=0
|an|zn, z ∈ D.

We have that f1 ∈ H2 and ‖f1‖H2 = ‖f‖H2 .
Now,

‖Cμ(f)‖2
H2 ≤

∞∑
k=0

|μk|2
⎛
⎝ k∑

j=0
|aj |

⎞
⎠

2

=
∞∑
k=0

|μk|2
⎛
⎝ k∑

j=0

|aj |
j + k + 1(j + k + 1)

⎞
⎠

2

≤
∞∑
k=0

(2k + 1)2|μk|2
⎛
⎝ k∑

j=0

|aj |
j + k + 1

⎞
⎠

2

≤ 4
∞∑
k=0

(k + 1)2|μk|2
⎛
⎝ ∞∑

j=0

|aj |
j + k + 1

⎞
⎠

2

≤ 4
∞∑

n=0

⎛
⎜⎝2n+1−2∑

k=2n−1

(k + 1)2|μk|2
⎛
⎝ ∞∑

j=0

|aj |
j + 2n

⎞
⎠

2
⎞
⎟⎠

≤ 4
∞∑

n=0

⎛
⎝ ∞∑

j=0

|aj |
j + 2n

⎞
⎠

2 ⎛
⎝2n+1−2∑

k=2n−1

(k + 1)2|μk|2
⎞
⎠ .

Using (2.4) we obtain
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‖Cμ(f)‖2
H2 �

∞∑
n=0

2n
⎛
⎝ ∞∑

j=0

|aj |
j + 2n

⎞
⎠

2

. (2.5)

Now,

∞∑
n=0

2n
⎛
⎝ ∞∑

j=0

|aj |
j + 2n

⎞
⎠

2

�
∞∑

n=0

2n+1−2∑
k=2n−1

⎛
⎝ ∞∑

j=0

|aj |
k + j + 1

⎞
⎠

2

(2.6)

=
∞∑

n=0

⎛
⎝ ∞∑

j=0

|aj |
n + j + 1

⎞
⎠

2

.

Recall now that the Hilbert operator H is formally defined on the space Hol(D) as follows: If ϕ ∈ Hol(D), 
ϕ(z) =

∑∞
n=0 αnz

n (z ∈ D), then

H(f)(z) =
∞∑

n=0

⎛
⎝ ∞∑

j=0

αj

n + j + 1

⎞
⎠ zn,

whenever the right hand side makes sense and defines and analytic function in D.
Hardy’s inequality [8, p. 48] guarantees that the operator H is well defined in H1 and Hilbert’s inequality 

(see also [8, p. 48]) implies that H is bounded from H2 into itself and that

‖H(ϕ)‖H2 ≤ π‖ϕ‖H2 , ϕ ∈ H2. (2.7)

Actually, the Hilbert operator is bounded from Hp into itself for all p ∈ (1, ∞) [6] and the norm of H as an 
operator from Hp into itself was computed in [7].

Notice that

H(f1)(z) =
∞∑

n=0

⎛
⎝ ∞∑

j=0

|aj |
n + j + 1

⎞
⎠ zn, z ∈ D.

Hence,

∞∑
n=0

⎛
⎝ ∞∑

j=0

|aj |
n + j + 1

⎞
⎠

2

= ‖H(f1)‖2
H2 .

Using this, (2.7), (2.6), and (2.5), we see that

‖Cμ(f)‖2
H2 � ‖f1‖2

H2 = ‖f‖2
H2 . �

Proof of the implication (ii) ⇒ (iii). Suppose that Cμ is a bounded operator on H2. For 0 < a < 1, set

fa(z) = (1 − a2)1/2

1 − az
= (1 − a2)1/2

∞∑
n=0

anzn, z ∈ D.

We have that, for all a ∈ (0, 1), fa ∈ H2 and ‖fa‖H2 = 1. Consequently, there exists A > 0 such that

‖Cμ(fa)‖2
H2 ≤ A, 0 < a < 1. (2.8)
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Since

Cμ(fa)(z) = (1 − a2)1/2
∞∑

n=0
μn

(
n∑

k=0

ak

)
zn, z ∈ D,

(2.8) implies that, for N ∈ N,

A ≥ ‖Cμ(fa)‖2
H2 = (1 − a2)

∞∑
n=0

|μn|2
(

n∑
k=0

ak

)2

≥ (1 − a)
N∑

n=0
|μn|2

(
n∑

k=0

ak

)2

.

Taking a = 1 − 1
N , we obtain

1
N

N∑
n=0

n2|μn|2 = O(1)

or, equivalently,

N∑
n=0

n2|μn|2 = O(N).

As mentioned above, this is equivalent to saying that Fμ ∈ Λ2
1/2. �

It is possible to give a direct proof of the implication (ii) ⇒ (i). Indeed, this implication follows trivially 
from Proposition 3.

Proposition 3. Let μ be a complex Borel measure on D and suppose that Cμ is a bounded operator from H2

into itself. Then there exists C > 0 such that

M2 (r, Cμ(f)) ≤ CM2(r, f), 0 < r < 1,

for every f ∈ Hol(D).

Proof. Say that ‖Cμ(g)‖H2 ≤ C‖g‖H2 , for all g ∈ H2.
Take f ∈ Hol(D), f(z) =

∑∞
n=0 anz

n (z ∈ D). Set

ϕ(z) =
∞∑

n=0
|an|zn, z ∈ D,

and, for 0 < r < 1,

ϕr(z) = ϕ(rz) =
∞∑

n=0
|an|rnzn, z ∈ D.

We have

M2 (r, Cμ(f))2 ≤ M2 (r, Cμ(ϕ))2 =
∞∑

|μn|2
(

n∑
|ak|

)2

r2n
n=0 k=0
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≤
∞∑

n=0
|μn|2

(
n∑

k=0

|ak|rk
)2

= ‖Cμ(ϕr)‖2
H2

≤ C2‖ϕr‖2
H2 = C2M2(r, f)2. �

3. Compactness

Theorem 4. Let μ be a complex Borel measure on D and α > −1. Set

μn =
∫
D

wn dμ(w), n ≥ 0,

and

Fμ(z) =
∞∑

n=0
μnz

n, z ∈ D.

The following conditions are equivalent:

(i) Fμ ∈ λ2
1/2.

(ii) The operator Cμ is a compact operator from H2 into itself.

Proof of the implication (i) ⇒ (ii). Suppose that Fμ ∈ λ2
1/2. Then

2n+1−2∑
k=2n−1

(k + 1)2|μk|2 = o(2n), as n → ∞. (3.1)

Take a sequence {fm}∞m=1 ⊂ H2 such that

sup ‖fm‖H2 < ∞ and {fm} −−−−→
m→∞

0, uniformly in compact subsets of D.

We have to prove that ‖Cμ(fm)‖H2 −−−−→
m→∞

0.
Say that

fm(z) =
∞∑
j=0

a
(m)
j zj , z ∈ D, j = 1, 2, 3, . . . .

Set

gm(z) =
∞∑
j=0

|a(m)
j |zj , z ∈ D, j = 1, 2, 3, . . . .

Since ‖fm‖H2 = ‖gm‖H2 and the Hilbert operator H is bounded on H2, there exists M > 0 such that

‖H(gm)‖2
H2 ≤ M, for all m. (3.2)

Take ε > 0. Use (3.1) to pick N ∈ N such that
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2n+1−2∑
k=2n−1

(k + 1)2|μk|2 ≤ ε

2M 2n, for all n ≥ N. (3.3)

We have

‖Cμ(fm)‖2
H2 =

2N−2∑
k=0

|μk|2
⎛
⎝ k∑

j=0
|a(m)

j |

⎞
⎠

2

+
∞∑

k=2N−1

|μk|2
⎛
⎝ k∑

j=0
|a(m)

j |

⎞
⎠

2

= I + II.

Since fm −−−−→
m→∞

0, uniformly in compact subsets of D, it follows that a(m)
j −−−−→

m→∞
0 for every j. Then there 

exists m0 ∈ N such that I < ε
2 for every m ≥ m0.

Arguing as in the proof of the implication (iii) ⇒ (ii) of Theorem 1 and using (3.3), we obtain, for all m,

II �
∞∑

k=2N−1

(k + 1)2|μk|2
⎛
⎝ k∑

j=0

|a(m)
j |

j + k + 1

⎞
⎠

2

�
∞∑

n=N

2n+1−2∑
k=2n−1

(k + 1)2|μk|2
⎛
⎝ ∞∑

j=0

|a(m)
j |

j + 2n + 1

⎞
⎠

2

� ε

2M

∞∑
n=N

2n
⎛
⎝ ∞∑

j=0

|a(m)
j |

j + 2n + 1

⎞
⎠

2

� ε

2M

∞∑
n=0

2n
⎛
⎝ ∞∑

j=0

|a(m)
j |

j + 2n + 1

⎞
⎠

2

� ε

2M

∞∑
k=0

⎛
⎝ ∞∑

j=0

|a(m)
j |

j + k + 1

⎞
⎠

2

= ε

2M ‖H(gm)‖2
H2 .

Using (3.2) we obtain that II ≤ ε
2 for all m. Consequently, if m ≥ m0 then ‖Cμ(fm)‖2

H2 < ε. �
Proof of the implication (ii) ⇒ (i). Suppose that Cμ is a compact operator from H2 into itself. As in the 
proof of Theorem 1, for 0 < a < 1, set

fa(z) = (1 − a2)1/2

1 − az
= (1 − a2)1/2

∞∑
n=0

anzn, z ∈ D.

We have that, for all a ∈ (0, 1), fa ∈ H2 and ‖fa‖H2 = 1. Also

lim
a→1

fa(z) = 0, uniformly in compact subsets of D.

Then it follows that

‖Cμ(fa)‖2
H2 → 0, as a → 1. (3.4)



P. Galanopoulos et al. / J. Math. Anal. Appl. 526 (2023) 127287 11
In the course of the proof of the implication (ii) ⇒ (iii) in Theorem 1, we proved that

‖Cμ(fa)‖2
H2 ≥ (1 − a)

N∑
n=0

|μn|2
(

n∑
k=0

ak

)2

, 0 < a < 1, N ≥ 2.

Taking a = 1 − 1
N and using (3.4), we obtain that 

∑N
n=0 n

2|μn|2 = o(N). This is equivalent to saying that 
Fμ ∈ λ2

1/2. �
It is natural to conjecture that Cμ is compact on A2

α (α > −1) if and only if Fμ ∈ λ2
1/2. The fact that if 

Cμ is compact on A2
α then Fμ ∈ λ2

1/2 can be proved with an argument similar to the one used to prove the 
corresponding result for H2. We do not know whether or not the other implication is true. Let us remark 
that one of the ingredients used to prove this implication in the case of H2 is the fact that the Hilbert 
operator is bounded in H2. This is not true on the spaces A2

α with α ≥ 0 [19, p. 243]. In fact, the Hilbert 
operator is not even defined on these spaces [7].

Finally, we characterize the measures μ for which Cμ is a Hilbert-Schmidt operator on the Hilbert spaces 
we have been working on.

Let us recall that if H is a Hilbert space, a linear operator T : H → H is said to be a Hilbert-Schmidt 
operator if 

∑
i∈I ‖T (ei)‖2 < ∞ for some (equivalently, for all) orthonormal basis {ei}i∈I of H. Let us recall 

also that if f ∈ Hol(D), f(z) =
∑∞

n=0 anz
n (z ∈ D), the Dirichlet integral D(f) of f is defined by

D(f) =
∫
D

|f ′(z)|2 dA(z) =
∞∑

n=0
n|an|2.

The Dirichlet space D consists of those f ∈ Hol(D) whose Dirichlet integral is finite,

f ∈ D, if and only if f ∈ Hol(D) and D(f) < ∞.

Theorem 5. Let μ be a complex Borel measure on D. The following conditions are equivalent.

(i) Fμ ∈ D.
(ii) The operator Cμ is Hilbert-Schmidt on H2.

Proof. The set {1, z, z2, . . . } is an orthonormal basis for H2. We have, for every n,

Cμ(zn) =
∞∑

k=n

μkz
k,

and, hence,

‖Cμ(zn)‖2
H2 =

∞∑
k=n

|μk|2, n ∈ N.

Then

∞∑
n=0

‖Cμ(zn)‖2
H2 =

∞∑
n=0

∞∑
k=n

|μk|2 =
∞∑

n=0
n|μn|2.

Since D(Fμ) =
∑∞

n|μn|2 the equivalence (i) ⇔ (ii) follows. �
n=0
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In order to state the analogue of Theorem 5 for the spaces A2
α we have to introduce the weighted Dirichlet 

spaces. For 0 < p < ∞ and β > −1, the weighted Dirichlet space Dp
β consists of those f ∈ Hol(D) such 

that f ′ ∈ Ap
β . The space D2

0 is the Dirichlet space D. A simple computation shows that if f ∈ Hol(D), 
f(z) =

∑∞
n=0 anz

n (z ∈ D), then

f ∈ D2
β ⇔

∞∑
n=1

n1−β |an|2 < ∞. (3.5)

Theorem 6. Let μ be a complex Borel measure on D and α > −1. The following conditions are equivalent.

(i) The function Fμ belongs to the space D2
−1−α.

(ii)
∑∞

n=0 n
2+α|μn|2 < ∞.

(ii) The operator Cμ is Hilbert-Schmidt on A2
α.

Proof. The equivalence (i) ⇔ (ii) follows from (3.5).
For n = 0, 1, 2, . . . , set

An(α) =

√
Γ(n + 2 + α)
n!Γ(2 + α)

and

en(z) = An(α)zn, z ∈ D.

Then (see [18, p. 4]) the sequence {en}∞n=0 is an orthonormal basis of A2
α.

For every n, we have

Cμ(en) = An(α)
∞∑

k=n

μkz
k,

and, hence,

‖Cμ(en)‖2
A2

α
= An(α)2

∞∑
k=n

|μk|2.

Thus,

∞∑
n=0

‖Cμ(en)‖2
A2

α
=

∞∑
n=0

|μn|2
(

n∑
k=0

Ak(α)2
)
. (3.6)

Since Ak(α)2 
 k1+α, (3.6) implies that

∞∑
n=0

‖Cμ(en)‖2
A2

α



∞∑
n=0

n2+α|μn|2

and then the equivalence (ii) ⇔ (iii) follows. �
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