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Abstract

We continue studying the properties of the f -index of inclusion and show that, given a fixed pair of fuzzy sets, their f -index 
of inclusion can be linked to a fuzzy conjunction which is part of an adjoint pair. We also show that, when this pair is used as 
the underlying structure to provide a fuzzy interpretation of the modus ponens inference rule, it provides the maximum possible 
truth-value in the conclusion among all those values obtained by fuzzy modus ponens using any other possible adjoint pair.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).
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1. Introduction

This paper focuses on the notion of f -index, originally introduced to study the fuzzy inclusion between fuzzy sets, 
and its multiple applications within the theory of mathematical fuzzy logic (or fuzzy logic in the strict sense [17]). 
Most of the generalizations in the literature about fuzzy inclusion have a common feature; namely, they are fuzzy 
relations which, given a pair of fuzzy sets, A and B , assign a value in the unit interval that determines the degree of 
inclusion of A in B . In [29], we followed a different approach and introduced the notion of inclusion by assigning a 
mapping to each pair of fuzzy sets.

The origin of the f -index of inclusion can be dated back to the incorporation of negation connectives [38] in multi-
adjoint logic programs [30,31]. With the incorporation of negations in logic programs arises an important feature: 
inconsistency. In order to handle the inconsistency of fuzzy logic programs [22] within our research line on normal 
residuated (i.e. mono-adjoint) logic programs under the answer-set semantics [23], we introduced the notions of 
coherence [11]. As a result, it was clear that consistency (or inconsistency) should not be considered as a crisp notion 
when applied in (general) fuzzy logic theories, and different approaches were proposed for this goal [25]. As a result, 
we introduced the notion of weak-contradiction in [5] as a generalization of the notion of coherence in the general 
framework of fuzzy set theory.
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Encouraged to search some motivational aspects to the notion of weak-contradiction, we realised that it was closely 
related to a kind of inclusion. Hence, soon after introducing measures for weak-contradiction, we started to imagine 
some kind of function-based approach to measuring the inclusion between fuzzy sets, and presented the first ideas 
about the f -index of inclusion in [29]. Later, in [24], we analyzed the f -index of inclusion in terms of the four most 
common axiomatic definitions of measure of inclusion namely, Sinha-Dougherty [36], Kitainik [19], and Fan-Xie-
Pei [13]. We showed that it satisfies the well-known axioms proposed in these references, except the relationship with 
the complementary namely, the degree of inclusion of one fuzzy set A into another B should coincide with the degree 
of inclusion of Bc into Ac. In this respect two solutions were proposed: in [24] this was solved by rewriting the axiom 
in terms of Galois connections [8], and in [27] by means of a measure of inclusion defined in terms of the f -index of 
inclusion. Once the f -index of inclusion had been consolidated, we have recently recovered the idea of relating the 
two research lines emerged in parallel, namely the weak-contradiction and the f -index of inclusion, with satisfactory 
results [26,28].

In this paper we continue analyzing the relationship of the f -index of inclusion with the standard fuzzy measures 
of inclusion based on residuated implication [14]. Section 2 contains the necessary definitions for introducing the f -
index of inclusion. In Section 3 we show that, on the one hand, the f -index of inclusion corresponding to a fixed pair 
of fuzzy sets can be linked to a standard fuzzy inclusion measure defined by means of an adjoint pair (different fuzzy 
sets, different adjoint pairs). Taking into account that an adjoint pair is the key notion within residuated lattices, as they 
allow to reproduce the modus ponens inference rule in a fuzzy logic [17], we conclude that the f -index of inclusion 
is related to the fuzzy modus ponens. Conversely, we have that every standard fuzzy inclusion measure defined by 
means of an adjoint pair can be considered a particular f -index of inclusion. As a result, we can state that the f -index 
of inclusion somehow groups together all the adjoint pairs and chooses one to define a standard measure of inclusion. 
Actually, we show in Section 4 that this adjoint pair is optimal with respect to a fuzzy modus ponens. Accordingly, 
the f -index of inclusion seems to be suitable in approximate reasoning, as it has been already done with the standard 
fuzzy measures of inclusion [10]. Finally, in Section 5 we present some conclusions and future works.

2. Preliminary definitions

2.1. Mathematical fuzzy logic

Fuzzy logic is based on degrees of truth. Different algebras of truth-values generate different logics, with different 
axiomatisations and even different inference rules. A general approach to fuzzy logic allows to use different operators 
that extend the classical logical connectives; in this setting, it is worth mentioning that the conjunction operator is 
usually represented by a t-norm ∗ [9], namely, a binary mapping ∗: [0, 1] × [0, 1] → [0, 1] which is commutative, 
associative, and monotone, for which 1 is the unit element. Concerning fuzzy implications, they are usually connected 
to the fuzzy conjunction in terms of residuation. Let us recall that for any left continuous t-norm ∗ there is a unique 
→∗ : [0, 1] × [0, 1] → [0, 1] such that for all x, y, z ∈ [0, 1] the following equivalence holds

z ∗ x ≤ y ⇐⇒ z ≤ x →∗ y (1)

Note, however, that there are situations in which conjunctions need not be, for instance, commutative [16]. In order 
to obtain a flexible framework which accommodates most of these possibilities, we introduce below the most general 
definition of fuzzy conjunction and fuzzy implication.

Definition 1. An operator ∗: [0, 1] × [0, 1] → [0, 1] is called fuzzy conjunction if ∗ is monotonic in each component 
and satisfies the boundary conditions 0 ∗ 0 = 0 ∗ 1 = 1 ∗ 0 = 0 and 1 ∗ 1 = 1.

An operator →: [0, 1] × [0, 1] → [0, 1] is called fuzzy implication if → is antitonic in the first component, mono-
tonic in the second component and satisfies the boundary conditions 0 → 0 = 0 → 1 = 1 → 1 = 1 and 1 → 0 = 0.

It is worth mentioning that residuation can also be defined on a fuzzy conjunction in the sense of the previous 
definition. Property (1) is often called adjointness property, and the pair (∗, →∗) is called adjoint pair. The notion of 
residuum is closely related to the notion of isotone Galois connection [7] (also called adjunction [6]), that is used in 
this paper.
2
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Definition 2. Let A and B be lattices, a pair of mappings f : A → B and g : B → A is said to be an (isotone) Galois 
connection if the following equivalence holds for all a ∈ A, b ∈ B

f (a) ≤ b ⇐⇒ a ≤ g(b)

2.2. Defining the f -index of inclusion on fuzzy sets

A fuzzy set A is a pair (U , μA) where U is a non-empty set (called universe of A) and μA is a mapping from 
U to [0, 1] (called membership function of A). In general, the universe is a fixed set for all the fuzzy sets considered 
and, therefore, each fuzzy set is determined by its membership function. For the sake of clarity, we identify fuzzy 
sets with their membership functions (i.e., A(u) = μA(u)) and omit the universe if not necessary. On the set of fuzzy 
sets defined on the universe U , denoted F (U ), we can extend the usual crisp operations of union, intersection and 
complement as follows: given two fuzzy sets A and B , we define

• (union) (A ∪ B)(u) = max{A(u), B(u)}
• (intersection) (A ∩ B)(u) = min{A(u), B(u)}
• (complement) Ac(u) = 1 − A(u).

The previous extensions of union, intersection and complement are the most common in the literature but, cer-
tainly, there are other options. For example, as generalization of the previous extensions, many authors use t-norms to 
generalize intersection, t-conorms to generalize union and negation operators to generalize the complement.

The Zadeh’s inclusion [40] of a fuzzy set A into another fuzzy set B is defined as A(u) ≤ B(u) for all u ∈ U . This 
is a crisp notion that was later extended to the so-called fuzzy inclusion degree of a fuzzy set A into a fuzzy set B , 
denoted by S(A, B), as follows [2]:

S(A,B) =
∧

u∈U

A(u) → B(u). (2)

The f -index of inclusion quantifies the inclusion of one fuzzy set into another by a mapping from [0, 1] to [0, 1]. 
Actually, this feature is an important difference from the standard approach given in Equation (2) and other definitions 
or procedures to represent the inclusion in a fuzzy environment [36,19,13,39], where the inclusion of one fuzzy set 
into another is given, in general, by a value in the unit interval [0, 1]. Not any mapping from [0, 1] to [0, 1] can be 
used to represent the f -index of inclusion: the set of possible assignable mappings is introduced below, together with 
the basic notion of f -inclusion.

Definition 3 ([29]).

• The set of indexes of inclusion, denoted by �, consists of all the deflationary and monotonically increasing 
mapping; that is, any mapping f : [0, 1] → [0, 1] such that
– f (x) ≤ x for all x ∈ [0, 1] and
– x ≤ y implies f (x) ≤ f (y) for all x, y ∈ [0, 1].

• Let A and B be two fuzzy sets and consider f ∈ �. We say that A is f -included in B (denoted by A ⊆f B) if 
and only if the inequality f (A(u)) ≤ B(u) holds for all u ∈ U .

Note that, fixed f ∈ �, the relation of f -inclusion is a crisp relation and, in general, is not even an ordering 
relation (since transitivity fails). Therefore, for the same reason that Zadeh’s inclusion, the f -inclusion (with a fixed 
f ∈ �) seems to be unsuitable to represent the inclusion between two fuzzy sets; i.e. because of its lack of graduality. 
However, we do not define the f -index of inclusion by fixing one f -inclusion, but we consider all of them as different 
degrees of inclusion. Note that, since each f -inclusion is determined by a mapping f in �, we can identify the set of 
all the possible f -inclusion relations with �. The consideration of � as an appropriate set of indexes of inclusion is 
described and motivated in detail in [29] and can be summarized in the following items:
3
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• � has the structure of complete lattice with the natural ordering between functions; i.e., given f, g ∈ �, we say 
that f ≤ g if f (x) ≤ g(x) for all x ∈ [0, 1]. In particular, the mappings id (defined by id(x) = x for all x ∈ [0, 1]) 
and ⊥ (defined by ⊥(x) = 0 for all x ∈ [0, 1]) are the top and bottom elements in �, respectively.

• Each f ∈ � determines a restriction, via the corresponding f -inclusion, that can be understood as “how much we 
have to reduce the truth-values of a fuzzy set in order to be included into another in Zadeh’s sense”. Thus, each 
f ∈ � can be seen as a measure of how much Zadeh’s inclusion is violated.

• Finally, the greater the mapping f ∈ � the stronger the restriction imposed by the f -inclusion. In particular, the 
id-inclusion is the most restrictive case (and is equivalent to Zadeh’s inclusion) and the ⊥-inclusion does not 
establish any restriction at all.

The f -index of inclusion is based on the idea “the more f -inclusions holding between two sets, the greater is the 
fuzzy inclusion”. Fortunately, we do not need to check all the f -inclusions between two sets because, given two fuzzy 
sets, the subset �(A, B) = {f ∈ � | A ⊆f B} has a maximum element in �. This fact allows us to introduce the 
following definition.

Definition 4 (f -index of inclusion [29]). Let A and B be two fuzzy sets, the f -index of inclusion of A in B , denoted 
by Inc(A, B), is defined as the maximum of �(A, B), that is Inc(A, B) = max{f ∈ � | A ⊆f B}.

Note firstly that the f -index of inclusion of A in B does not depend on any prior assumption or any kind of 
parameter [14]. Secondly, thanks to the properties of the f -inclusion (see [29]), considering the whole set of mappings 
f ∈ � such A is f -included in B (i.e., �(A, B)) and the f -index of inclusion (i.e., Inc(A, B)), are equivalent, since 
�(A, B) is characterized by Inc(A, B). Lastly, in [28], an analytical expression for Inc(A, B) together with some 
properties that motivate the use of Inc(A, B) as a suitable index of inclusion between two fuzzy sets can be found. 
These results are recalled in the form of the two theorems below:

Theorem 1 ([28]). Let A and B be two fuzzy sets, then Inc(A, B)(x) = ∧
u∈U {B(u) | x ≤ A(u)} ∧ id .

Theorem 2 ([28]). Let A, B and C be fuzzy sets,

1. (Full inclusion) Inc(A, B) = id if and only if A(u) ≤ B(u) for all u ∈ U .
2. (Null inclusion) Inc(A, B) = ⊥ if and only if there is a set of elements in the universe {ui}i∈I ⊆ U such that 

A(ui) = 1 for all i ∈ I and 
∧

i∈I B(ui) = 0.
3. (Pseudo transitivity) Inc(B, C) ◦ Inc(A, B) ≤ Inc(A, C).
4. (Monotonicity) If B(u) ≤ C(u) for all u ∈ U then, Inc(C, A) ≤ Inc(B, A).
5. (Monotonicity) If B(u) ≤ C(u) for all u ∈ U then, Inc(A, B) ≤ Inc(A, C).
6. (Transformation Invariance) Let T : U → U be a bijective mapping1 on U , then Inc(A, B)=Inc(T (A), T (B)).
7. (Relationship with intersection) Inc(A, B ∩ C) = Inc(A, B) ∧ Inc(A, C).
8. (Relationship with union) Inc(A ∪ B, C) = Inc(A, C) ∧ Inc(B, C).

The previous properties were originally studied in [24] aimed at comparing the f -index of inclusion with the main 
axiomatic approaches in the literature concerning fuzzy measures of inclusions. Actually, we can state that the f -index 
of inclusion is almost a Fan-Xie-Pei [13], a Sinha-Dougherty [36] and a Kitainik [19] measure of inclusion. The only 
property encouraged by the previous authors that is not included in Theorem 2 is the one related to the complement 
and contraposition rule. Such a property states that the degree of inclusion between a fuzzy set A into another B
should coincide with the degree of inclusion between Bc and Ac. In general, Inc(A, B) �= Inc(Bc, Ac), but in [27]
it was shown that such a property is also captured by the f -index of inclusion by means of a measure of inclusion; 
i.e., by a mapping that assigns to each f -index of inclusion a value in the unit interval [0, 1]. Finally, we recall the 
following proposition, that establishes a relationship between the f -inclusion and the complement of fuzzy sets via 
an adjointness property, that will be used later in Section 3.

1 Usually, in approaches related to measures of inclusion, e.g., [28,36], bijective mappings in U are called transformations.
4
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Proposition 1 ([24]). Let (f, g) be an isotone Galois connection, then A ⊆f B if and only if Bc ⊆1−g(1−x) Ac .

3. The f -index of inclusion in terms of residuated implications

The aim of this section is to relate the f -index of inclusion to residuated implications. It is easy to check that the 
standard fuzzy inclusion in Equation (2) where → is a residuated implication, is equivalent to a particular degree of 
f -inclusion. Specifically, given an adjoint pair (∗, →), we have for all α ∈ [0, 1] the equivalence

A(u) → B(u) ≥ α ⇐⇒ A(u) ∗ α ≤ B(u).

Therefore, if we consider the mapping fα(x) = x ∗ α, which obviously belongs to �, we have:∧
u∈U

A(u) → B(u) ≥ α ⇐⇒ A(u) → B(u) ≥ α for all u ∈ U ⇐⇒ A is fα-included in B

As a result, the inequality S(A, B) = ∧
u∈U A(u) → B(u) ≥ α is equivalent to say that A is fα-included in B . 

Therefore, the standard procedure to assign truth degrees to a formula of the type ∀u
(
A(u) → B(u)

)
by means of 

adjoint pairs, coincides with a specific case of f -inclusion. The previous results lead us to make a slight modification 
in the definition of the f -index of inclusion in order to obtain an actual generalization of the degrees of inclusion 
based on a pre-fixed adjoint pair. Specifically, we can define a variation of the f -index of inclusion restricted to a 
certain set of indexes of inclusion as follows:

Definition 5. Let A and B be two fuzzy sets and � be a join-sublattice of �; i.e., � is closed under arbitrary suprema 
and contains ⊥ and id . Then, the f -index of inclusion restricted to �, denoted by Inc�(A, B), is defined as

Inc�(A,B) = sup{f ∈ � | A ⊆f B}.

Note that Inc�(A, B) is well defined, since we require � to be closed under arbitrary suprema; i.e., 
∨

i∈I fi ∈ �

for all subset {fi}i∈I ⊆ �. It is easy to check that the properties 3, 4, 5 and 6 of Inc given in Theorem 2 are satisfied 
also by Inc�; the rest can be rewritten accordingly. We display below some examples of constructions of subsets of 
f -indexes of inclusion � according to the three most well-known t-norms.

Example 1. Let us consider the Gödel t-norm given by x ∗G y = x ∧ y. Then, we define the Gödel set of f -index of 
inclusions �G as the set �G = {x ∗G α | α ∈ [0, 1]}. Note that for each mapping f G

α ∈ �G there exists α ∈ [0, 1] such 
that

f G
α (x) =

{
x if x ≤ α

α otherwise,

and that given α, β ∈ [0, 1] we have that f G
α ∧ f G

β = f G
α∧β and f G

α ∨ f G
β = f G

α∨β . As a result, �G inherits the lattice 
structure of [0, 1] and therefore �G is complete and totally ordered.

A similar construction can be done by considering product and Łukasiewicz t-norms instead of the Gödel one. 
Accordingly, we have the set of f -index of inclusions �P and �L given by �P = {x ∗P α | α ∈ [0, 1]} and �L =
{x ∗L α | α ∈ [0, 1]}. Curiously enough, �P and �L inherit the lattice structure of [0, 1] in the same way than �G. In 
other words, given f L

α ∈ �L (resp. f P
α ∈ �P ) there exists α ∈ [0, 1] such that

f L
α (x) =

{
0 if x ≤ α − 1
x + α − 1 otherwise.

(resp. f P
α = x ·α) and given α, β ∈ [0, 1] we have that f L

α ∧f L
β = f L

α∧β and f L
α ∨f L

β = f L
α∨β (resp. f P

α ∧f P
β = f P

α∧β

and f P
α ∨ f P

β = f P
α∨β ). As a conclusion, �L and �P inherit the lattice structure of [0, 1] and therefore are complete 

and totally ordered.

The three sets of indexes of inclusion built in Example 1 just consider combinations of linear mappings. The 
following example presents a simple non-linear set of f -indexes of inclusion on which Definition 5 can be applied.
5
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Example 2. Let us consider the set of f -indexes of inclusion � = {xn | n ∈ N} ∪ {⊥} where xn denotes the standard 
power of n. Note that we can identify each element in � with an element in N ∪ {∞}; where ⊥ is identified with x∞. 
Moreover, � inherits the complete lattice structure of N ∪ {∞} with respect to the dual ordering; specifically � is a 
complete sublattice of � and actually, xn ∧ xm = xn∨m and xn ∨ xm = xn∧m for n, m ∈ N ∪ {∞}.

The following result shows that Inc�(A, B) effectively generalizes the standard measure of inclusion given by 
Equation (2) when it is based on adjoint pairs.

Theorem 3. Let (∗, →) be an adjoint pair and � = {x ∗ α | α ∈ [0, 1]} then, for all pairs of fuzzy sets A and B ,

Inc�(A,B)(x) = x ∗
⎛
⎝ ∧

u∈U

A(u) → B(u)

⎞
⎠ .

Proof. It is not difficult to check that � is a complete lattice: to begin with, the bottom and top elements ⊥, id belong 
to �. Moreover, since [0, 1] is a complete lattice and � inherits the lattice structure of [0, 1], the lattice � is complete 
as well.

Given a pair of fuzzy sets A and B , since Inc�(A, B) ∈ �, there exists at least one α ∈ [0, 1] such that 
Inc�(A, B)(x) = x ∗ α. We choose δ as the supremum of all those α’s, that is, δ = sup{α ∈ [0, 1] | Inc�(A, B)(x) =
x ∗α}. Let us prove now that Inc�(A, B)(x) = x ∗δ, i.e., that such a supremum is actually a maximum. Let x ∈ [0, 1], 
then:

x ∗ δ = x ∗ sup{α | Inc�(A,B)(x) = x ∗ α} = sup{x ∗ α | Inc�(A,B)(x) = x ∗ α} = Inc�(A,B)(x)

To finish the proof we only have to show that δ = ∧
u∈U A(u) → B(u). Since A is Inc�(A, B)-included in B , for all 

u ∈ U we have:

Inc�(A,B)(A(u)) ≤ B(u) ⇐⇒ A(u) ∗ δ ≤ B(u) ⇐⇒ δ ≤ A(u) → B(u)

and then δ ≤ ∧
u∈U A(u) → B(u). On the other hand, to prove that δ ≥ ∧

u∈U A(u) → B(u) we proceed by reductio 
ad absurdum and assume that 

∧
u∈U A(u) → B(u) = γ > δ. Then, since (∗, →) is an adjoint pair, we have that:∧

u∈U

A(u) → B(u) = γ =⇒ A(u) → B(u) ≥ γ for all u ∈ U ⇐⇒ A(u) ∗ γ ≤ B(u) for all u ∈ U .

As a result, A is (x ∗ γ )-included in B , which contradicts that Inc�(A, B)(x) = x ∗ δ and the choice of δ. �
The following straightforward corollary shows that the f -index of inclusion defined under the parameters of the 

previous theorem, can be used to retrieve the value of S(A, B) = ∧
u∈U A(u) → B(u).

Corollary 1. (∗, →) be an adjoint pair such that 1 ∗ x = x for all x ∈ [0, 1] and � = {x ∗ α | α ∈ [0, 1]} then, for all 
pair of fuzzy sets A and B ,

Inc�(A,B)(1) =
∧

u∈U

A(u) → B(u)

From the previous results, we can say that the original f -index of inclusion takes into consideration, at least, the 
whole set of possible adjoint pairs and their respective degrees of inclusion given in Equation (2).

In the following, we show a kind of converse statement namely, when the universe is finite, the original f -index of 
inclusion can be always linked to an adjoint pair. In order to prove such a relationship, we need to introduce firstly the 
following theorem.

Theorem 4. Let A and B be two fuzzy sets on a finite universe U . Then, there exists a mapping Inc(A, B) : [0, 1] →
[0, 1] such that (Inc(A, B), Inc(A, B)) forms an adjoint pair.
6
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Proof. We will use the following characterization of existence of adjoint pair: given a monotonic mapping 
f : [0, 1] → [0, 1], there exists a mapping g : [0, 1] → [0, 1] such that (f, g) forms an adjoint pair if and only if 
f (0) = 0 and f

(∨
X

) = supx∈X{f (x)} for all X ⊆ [0, 1] (see [15, Proposition 9]).
Firstly, note that Inc(A, B) is monotonic and it holds Inc(A, B)(0) = 0, since it belongs to �. Then, we only have 

to prove that supx∈X{Inc(A, B)(x)} = Inc(A, B) 
(∨

X
)

for all x ∈ X.
Let X ⊆ [0, 1]. By the monotonicity of Inc(A, B), we have that Inc(A, B)(x) ≤ Inc(A, B) 

(∨
X

)
for all x ∈ X

and then supx∈X{Inc(A, B)(x)} ≤ Inc(A, B) 
(∨

X
)
. In order to prove the other inequality, note that if 

∨
X ∈ X, 

then the proof is straightforward. So, let us assume that 
∨

X /∈ X. It is enough to prove that there exists x0 ∈ X such 
that

{B(u) | x0 ≤ A(u) , u ∈ U } =
{
B(u) |

∨
X ≤ A(u) , u ∈ U

}
since, as a result, by means of Theorem 1, we would have

sup
x∈X

{Inc(A,B)(x)} ≥ Inc(A,B)(x0) = sup{B(u) | x0 ≤ A(u)}

= sup
{
B(u) |

∨
X ≤ A(u)

}
= Inc(A,B)

(∨
X

)
,

and the proof would end.
Consider an increasing chain {xn}n∈N in X such that limn xn = ∨

X, as a result we have the following correspond-
ing chain of sets

{B(u) | x1 ≤ A(u)} ⊇ {B(u) | x2 ≤ A(u)} ⊇ · · · ⊇ {B(u) | xn ≤ A(u)} ⊇ . . .

Since U is finite, the sequence of sets should be eventually constant for all n greater than certain integer k. Let us 
prove that {B(u) | xk ≤ A(u)} = {

B(u) | ∨X ≤ A(u)
}
.

By reductio ad absurdum, let us assume that there exists u0 ∈ U such that B(u0) ∈ {B(u) | xk ≤ A(u)} but B(u0) /∈{
B(u) | ∨X ≤ A(u)

}
. This means that xk < A(u0) <

∨
X and, as a result, there exists xj in the chain such that 

xk < A(u0) < xj <
∨

X, but then we would have {B(u) | xk ≤ A(u)} ⊃ {B(u) | xj ≤ A(u)} which contradicts the 
choice of k. �

As an important consequence of the previous result, in the case of a finite universe, we can restrict the set of indexes 
and still, retrieve the same original f -index of inclusion.

Corollary 2. Let A and B be two fuzzy sets on a finite universe U and let G be the set of all the mappings in f ∈ �

such that there exists g : [0, 1] → [0, 1] such that (f, g) forms an adjoint pair. Then

Inc(A,B) = IncG (A,B)

Proof. This result is a consequence of Theorem 4. �
The following theorem has important repercussions, since it shows that in the case of a finite universe, the f -index 

of inclusion can be associated to at least one adjoint pair formed by a fuzzy conjunction and a fuzzy implication.

Theorem 5. Let A and B be two fuzzy sets on a finite universe U . Then, there exists an adjoint pair (∗, →) with ∗ a 
commutative fuzzy conjunction and α ∈ [0, 1] such that

Inc(A,B)(x) = x ∗ α.

Proof. Let α = Inc(A, B)(1) and let us prove that for the fuzzy conjunction ∗ defined by

x ∗ y =

⎧⎪⎪⎨
⎪⎪⎩

0 if α < x ∨ y and x ∧ y = 0
1 if α < x ∧ y

Inc(A,B)(x ∧ y) if x ∨ y ≤ α

Inc(A,B)(x ∨ y) otherwise

(3)
7
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Fig. 1. Diagram with the description of the conjunction ∗ defined in the proof.

there exists an implication → such that (∗, →) forms an adjoint pair. For the sake of presentation, we have included 
a diagram in Fig. 1, where the conjunction ∗ is depicted in the square [0, 1]2.

Firstly, let us check that x ∗ y is a commutative conjunction. The commutativity is straightforward. For the mono-
tonicity, let us assume x, y1, y2 ∈ [0, 1] such that y1 ≤ y2. If the pairs (x, y1) and (x, y2) belong to the same case in 
the definition ∗, then we have trivially x ∗ y1 ≤ x ∗ y2. The rest of possibilities can be easily checked in Fig. 1. The 
only non-entirely trivial case is that of the segments in the X and Y axes. Assume x ∨ y1 ≤ α, and α < x ∨ y2 and 
x ∧ y2 = 0. We have two subcases: either x = 0 or y2 = 0 (hence y1 = 0), in both cases we have

x ∗ y1 = Inc(A,B)(x ∧ y1) = Inc(A,B)(0) = 0 ≤ x ∗ y2

Secondly, we prove that ∗ forms a part of an adjoint pair by checking left-continuity, i.e. given a fuzzy conjunction 
∗ there exists an implication → such that (∗, →) forms adjoint pair if and only if 

(∨
X

) ∗ y = ∨
x∈X(x ∗ y) for all 

set X ⊆ [0, 1] (see [34]).
Consider X ⊆ [0, 1] and y ∈ [0, 1], by commutativity we can assume 

∨
X ≤ y, and it is enough to consider the 

following four cases:

Case 1:
∨

X ≤ y ≤ α. By properties of supremum and infimum and the fact that Inc(A, B) is sup-preserving (as 
checked in the proof of Theorem 4):

∨
X ∗ y = Inc(A,B)

(∨
X ∧ y

)
= Inc(A,B)

(∨
x∈X

(x ∧ y)

)

=
∨
x∈X

(Inc(A,B) (x ∧ y)) =
∨
x∈X

(x ∗ y)

Case 2: 0 = ∨
X ≤ α ≤ y. The result is straightforward: 

(∨
X

) ∗ y = ∨
x∈X(x ∗ y) = 0.

Case 3: α <
∨

X ≤ y. Then there exists x′ ∈ X such that α < x′ ≤ ∨
X. As a result we have:∨

X ∗ y = 1 = x′ ∗ y =
∨
x∈X

(x ∗ y)

Case 4:
∨

X ≤ α < y. Then x ≤ α < y for all x ∈ X and as a result we have∨
X ∗ y = Inc(A,B) (y) =

∨
x∈X

Inc(A,B) (x ∨ y) =
∨
x∈X

(x ∗ y)

Finally, let us check the equality Inc(A, B)(x) = x ∗ α for all x ∈ [0, 1]:

x ∗ α =

⎧⎪⎪⎨
⎪⎪⎩

0 if α < x ∨ α and x ∧ α = 0
1 if α < x ∧ α

Inc(A,B)(x ∧ α) if x ∨ y ≤ α

Inc(A,B)(x ∨ α) otherwise

=
{

Inc(A,B)(x) if x ≤ α

Inc(A,B)(x) if α < x
= Inc(A,B)(x) �
8
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The reader might wonder whether we can relate the f -index of inclusion with a t -norm, which is by far, the most 
prominent family of fuzzy conjunctions used in fuzzy logic. That remains as an open problem, since, as we show in 
the following example, the conjunction ∗ defined in Equation (3) need not be associative.

Example 3. Let us consider, on the universe U = {u1, u2}, the following fuzzy sets A and B given by A(u1) = 0.4, 
A(u2) = 1, B(u1) = 0 and B(u2) = 0.4. Then, we have that

Inc(A,B)(x) =
{

0 if x ≤ 0.4
0.4 if x > 0.4

Since Inc(A, B)(1) = 0.4, the conjunction ∗ defined in the proof of Theorem 5 (i.e., in Equation (3)) is:

x ∗ y =

⎧⎪⎪⎨
⎪⎪⎩

0 if 0.4 < x ∨ y and x ∧ y = 0
1 if 0.4 < x ∧ y

Inc(A,B)(x ∧ y) if x ∨ y ≤ 0.4
Inc(A,B)(x ∨ y) otherwise

Then, on the one hand, we have (0.4 ∗0.5) ∗0.5 = 0.4 ∗0.5 = 0.4 but, on the other hand, 0.4 ∗ (0.5 ∗0.5) = 0.4 ∗0.4 =
0. In other words, ∗ is not associative. �

The following result states that we can link an associative and commutative conjunction ∗ to Inc(A, B) when 
Inc(A, B)(1) = 1.

Corollary 3. Let A and B be two fuzzy sets on a finite universe U such that Inc(A, B)(1) = 1. Then, there exists an 
adjoint pair (∗, →) with ∗ an associative and commutative fuzzy conjunction, and α ∈ [0, 1] such that

Inc(A,B)(x) = x ∗ α.

Proof. We consider the same commutative operator ∗ defined in Equation (3) (i.e., in the proof of Theorem 5). Since 
α = Inc(A, B)(1) = 1, we have that x ∗ y = Inc(A, B)(x ∧ y), which is obviously associative. �

Even under the hypothesis of the previous corollary, we cannot guarantee that the resulting operation ∗ constructed 
in the proof of Theorem 5 is a t -norm. Specifically, 1 need not be a neutral element since we have that x ∗ 1 =
Inc(A, B)(x) and then, x ∗ 1 = x if and only if Inc(A, B)(x) = x.

The most important consequence of Theorem 5 is that we can go from the f -index of inclusion to residuated 
implications and, then, to the standard modus ponens used in fuzzy logic.

Corollary 4. Let A and B be two fuzzy sets defined on a finite universe U . Then, there exists a residuated implication 
→: [0, 1]2 → [0, 1] such that, for all u ∈ U ,

Inc(A,B)(α) ≤ B(u) ⇐⇒ α ≤ A(u) → B(u)

Proof. By Theorem 5 we know that there exists an adjoint pair (∗, →) and α ∈ [0, 1] such that Inc(A, B)(x) = x ∗α. 
Then, by the adjoint property:

Inc(A,B)(α) ≤ B(u) ⇐⇒ x ∗ α ≤ B(u) ⇐⇒ A(u) → B(u) ≥ α �
Corollary 5. Let A and B be two fuzzy sets defined on a finite universe U . Then, there exists an adjoint pair (∗, →)

such that

Inc(A,B)(x) = x ∗
⎛
⎝ ∧

u∈U

A(u) → B(u)

⎞
⎠

Proof. Consequence of Theorems 3 and 5. �

9
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4. The f -index of inclusion as an optimal operator for performing inferences by fuzzy modus ponens

It is worth mentioning one significant repercussion in fuzzy logic of the results presented in Section 3. Let us 
assume that we are in a context of machine learning where we have a data set of instances that relate different at-
tributes [33]; without loss of generality, we can also assume that the (finite) set of instance is our universe U and 
that their attributes are fuzzy sets on U . Given two attributes A and B , we wonder whether there is any relation of 
dependence among them in terms of “the value of one implies certain value in the other”. This relationship can be 
syntactically represented by means of the implication A ⇒ B and modelled by the formula ∀u

(
A(u) → B(u)

)
in a cer-

tain fuzzy (first-order) logic. The semantics of such a formula depends on an adjoint pair (∗, →), and its truth-degree 
is given by the standard measure of inclusion S(A, B) = ∧

u∈U A(u) → B(u) (see [35] for more details). Moreover, 
with the truth-degree of 

∧
u∈U A(u) → B(u) and the truth-degree of an instance A(u0), for certain u0 ∈ U , we can 

apply modus ponens and infer information about the instance B(u0). If we identify the values of 
∧

u∈U A(u) → B(u)

and A(u0) with α and β (in [0, 1]), such an inference can be represented as follows:

A ⇒ B ≡ α

A(u) ≡ β

∴ B(u) ≥ β ∗ α

(4)

and the soundness of such an inference is given by the adjoint property of the adjoint pair (∗, →). That is, since

A(u0) → B(u0) ≥
∧

u∈U

A(u) → B(u) = α

then, by the adjoint property we have: B(u0) ≥ A(u0) ∗
⎛
⎝ ∧

u∈U

A(u) → B(u)

⎞
⎠ = β ∗ α.

Let us rewrite now the modus ponens inference in terms of the f -index of inclusion. Firstly, we can model the 
implication A ⇒ B by Inc(A, B), and then, we can define the following modus ponens inference:

A ⇒ B ≡ Inc(A,B)

A(u) ≡ β

∴ B(u) ≥ Inc(A,B)(β)

(5)

The soundness of this latter inference is due to definition of the f -index of inclusion. That is, since A is Inc(A, B)-
included in B , we have that Inc(A, B)(A(u)) ≤ B(u) for all u ∈ U . In particular, if A(u0) = β , we have that 
Inc(A, B)(β) ≤ B(u0).

The point now is: what is the relationship between the two versions of modus ponens defined by (4) and (5)? The 
answer is that version (5) is the greatest inference that can be obtained from modus ponens for the instance B(u0) by 
considering, as variables, the whole set of adjoint pairs in version (4). The following theorem is used to support that 
assertion:

Theorem 6. Let A and B two fuzzy sets defined on a finite universe U and let u0 ∈ U , then:

B(u0) ≥ Inc(A,B)(A(u0)) ≥ A(u0) ∗
⎛
⎝ ∧

u∈U

A(u) → B(u)

⎞
⎠

for all pair of residuated pairs (∗, →) and x ∈ [0, 1].

Proof. Let us consider an arbitrary adjoint pair (∗, →). Then, we have that the mapping

f∗(x) = x ∗
∧

u∈U

A(u) → B(u)

is increasing and f∗(x) ≤ x; i.e., f∗ ∈ �. On the other hand, thanks to Corollary 5, we can say that there exists an 
adjoint pair (�, ↪→) such that
10
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Inc(A,B)(x) = x �
⎛
⎝ ∧

u∈U

A(u) ↪→ B(u)

⎞
⎠

Now, by definition of the f -index of inclusion, necessarily Inc(A, B) ≥ f∗; that is:

Inc(A,B)(x) = x �
⎛
⎝ ∧

u∈U

A(u) ↪→ B(u)

⎞
⎠ ≥ x ∗

⎛
⎝ ∧

u∈U

A(u) → B(u)

⎞
⎠

Finally, given u0 ∈ U , and since Inc(A, B)(A(u0)) ≤ B(u0), we have that

B(u0) ≥ Inc(A,B)(A(u0)) ≥ A(u0) ∗
⎛
⎝ ∧

u∈U

A(u) → B(u)

⎞
⎠ . �

On the basis of the previous theorem, we can reconsider the comparison between the two versions of modus ponens; 
i.e., Equations (4) and (5). Theorem 6 states that for any pair of fuzzy sets A, B , for any adjoint pair (∗, →), and for 
all u0 ∈ U , we have the inequalities:

B(u0) ≥ Inc(A,B)(A(u0)) ≥ A(u0) ∗
⎛
⎝ ∧

u∈U

A(u) → B(u)

⎞
⎠ .

In other words, the result of the fuzzy modus ponens modelled by the f -index of inclusion, i.e. the value 
Inc(A, B)(A(u0)) (MP version (5)) is greater than or equal to the result of the fuzzy modus ponens modelled by 
any adjoint pair (∗, →), i.e., the value A(u0) ∗

(∧
u∈U A(u) → B(u)

)
(MP version (4)) and it is closer to the real 

value of the instance B(u0). As a result, we can say that the f -index of inclusion chooses among all the adjoint pairs, 
the optimal one to perform the modus ponens inference.

Another interesting advantage that provides the use of the f -index of inclusion is the possibility of defining a 
modus tollens inference thanks to Theorem 4 and Proposition 1. From both results we can ensure that the f -index of 
inclusion between the complement of B and the complement of A is at least 1 − Inc(A, B)(1 − x), where Inc(A, B)

is the only mapping in [0, 1] → [0, 1] such that (Inc(A, B), Inc(A, B)) forms an adjoint pair. In other words, we can 
define the following modus tollens inference for all u ∈ U :

A ⇒ B ≡ Inc(A,B)

Bc(u) ≡ β

∴ Ac(u) ≥ 1 − Inc(A,B)(1 − β)

(6)

As mentioned, the soundness of this latter inference lays on Theorem 4 and Proposition 1, since for all u ∈ U we 
can ensure that for all u ∈ U we have

Ac(u) ≥ 1 − Inc(A,B)(1 − Bc(u))

It is important to introduce two remarks in this context: firstly, note that the previous inequality is equivalent to

A(u) ≤ Inc(A,B)(B(u))

for all u ∈ U and, therefore, the modus tollens can be used to infer an upper bound for the value of A; secondly, 
the difference between performing the inference of Ac(u) from the modus ponens plus Inc(Bc, Ac) and from the 
modus tollens plus Inc(A, B), is that in the latter we cannot ensure the use of the optimal residuated implication. 
Nevertheless, the reader can find out that the difference between the mappings Inc(Bc, Ac)(x) and 1 −Inc(A, B)(1 −
x) is a set of measure 0 (see [27]). Hence, the difference between the modus tollens and the inference performed by 
the modus ponens and Inc(Bc, Ac), is negligible.

To finish this section, we include a example to illustrate a fuzzy inference system based on the f -index of inclusion 
and its comparison with an inference system based on fixed adjoint pairs.
11
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Example 4. Let us consider the following dataset of 8 entries and two variables (named A and B):

u1 u2 u3 u4 u5 u6 u7 u8

A 0.3 0.1 0.8 0.5 0.6 1 0.2 0.5

B 0.7 0 0.8 0.3 0.7 1 0.4 0.6

Note that each entry has been identified with one element in U = {u1, u2, . . . , u8} and that the variables A and B can 
be considered fuzzy sets defined on U . Our goal is to establish a relationship between A and B in terms of inclusion. 
On the one hand, we begin compute the three standard degrees of inclusion with respect to the three most common 
connectives in fuzzy logic: Łukasiewicz, Gödel and Product:

SŁ(A,B) =
8∧

I=1

A(ui) →Ł B(ui) = 0.8 SŁ(B,A) =
8∧

I=1

A(ui) →Ł B(ui) = 0.6

SG(A,B) =
8∧

I=1

A(ui) →G B(ui) = 0 SG(B,A) =
8∧

I=1

A(ui) →G B(ui) = 0.2

SP (A,B) =
8∧

I=1

A(ui) →P B(ui) = 0 SP (B,A) =
8∧

I=1

A(ui) →P B(ui) = 3

7

As stated above, those three degrees of inclusion can be identified with the truth-degree of the first order formulae 
∀u

(
A(u) → B(u)

)
and ∀u

(
B(u) → A(u)

)
, respectively. Thus, as mentioned above, they can be identified as the truth 

degrees of the fuzzy rules A ⇒ B (resp. B ⇒ A) and be used to perform inference based on the standard fuzzy Modus 
Ponens.

On the other hand, the two respective f -indexes of inclusion can be obtained by using the expression given in 
Theorem 1. It is worth to stress here that the computation of the indexes of inclusion is almost straightforward.

Inc(A,B)(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x ≤ 0.1
x if 0.1 < x ≤ 0.3
0.3 if 0.3 < x ≤ 0.5
x if 0.5 < x ≤ 1

Inc(B,A)(x) =

⎧⎪⎪⎨
⎪⎪⎩

x if x ≤ 0.2
0.2 if 0.2 < x ≤ 0.4
0.3 if 0.4 < x ≤ 0.7
x if 0.7 < x ≤ 1

As explained above, we can also apply a modus ponens inference based on the f -indexes of inclusion. Hence, we also 
may say that we have two fuzzy rules A ⇒ B and B ⇒ A.

At this point we want to analyze which pair of fuzzy rules is more precise in the representation of the relationship 
between A and B . To carry out such an analysis, we assume that some entries of B are missing and we calculate their 
truth degrees from those of A and the four pairs of fuzzy rules given above. Below we provide a comparison between 
the different results obtained after the application of each modus ponens. For the sake of a better understanding of 
the inference, we consider a new entry related to u9 ∈ U ; so we assume that A(u9) = 0.7 but B(u9) is unknown. The 
information we can infer about B(u9) from the premise A(u9) = 0.7 and the four modus ponens are the following:

A ⇒Ł B ≡ 0.8
A(u9) ≡ 0.7

∴ B(u9) ≥ 0.5

A ⇒G B ≡ 0
A(u9) ≡ 0.7

∴ B(u9) ≥ 0

A ⇒P B ≡ 0
A(u9) ≡ 0.7

∴ B(u9) ≥ 0

A ⇒ B ≡ Inc(A,B)

A(u9) ≡ 0.7
∴ B(u9) ≥ 0.7

Note firstly, that the modus ponens based on Product and Gödel connectives does not provide any useful information, 
since A ⇒G B = SG(A, B) = 0 and A ⇒P B = SP (A, B) = 0. Secondly, note that the greatest lower bound for the 
value B(u9) is given by the modus ponens based on the f -index of inclusion. That is not by chance, it is because of 
Theorem 5; it holds for all u ∈ U and for all dataset considered at the beginning of the example.

Conversely, we may consider the fuzzy rule B ⇒ A and repeat the same procedure above by assuming that one B is 
known but A unknown. However, that is pointless. It is definitely more valuable to use the modus tollens (Equation (6)) 
of the rule B ⇒ A and still assume that B is unknown. The first step is to compute the only mapping from [0, 1] to 
[0, 1] such that (Inc(B, A), Inc(B, A)) forms an adjoint pair. That is easy by using the formula Inc(B, A)(x) =
sup{y ∈ [0, 1] | Inc(A, B) ≤ x} (a very well known property of Galois Connections [15]), which results on:
12
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Inc(B,A) =

⎧⎪⎪⎨
⎪⎪⎩

x if x < 0.2
0.4 if 0.2 ≤ x < 0.3
0.7 if 0.3 ≤ x < 0.7
x if 0.7 ≤ x ≤ 1

Now, since A(u9) = 0.7, we have that Ac(u9) = 1 − 0.7 = 0.3 and we can apply the modus tollens inference of 
Equation (6):

B ⇒ A ≡ Inc(B,A)

Ac(u9) ≡ 0.3
∴ Bc(u9) ≥ 0.3

Now, we can use that Bc(u9) ≥ 0.3 is equivalent to B(u9) ≤ 0.7 and, as a result, by joining this inequality with 
B(u9) ≥ 0.7 we can conclude that B(u9) ∈ [0.7, 0.7], that is, B(u9) = 0.7.

Concerning the standard degrees of inclusion, only the connectives of Łukasiewicz admit a modus tollens with 
respect to the standard negation.2 It is well known that SŁ(Ac, Bc) = SŁ(B, A) = 0.6. By applying modus tollens 
here, we obtain that Bc(u9) ≥ Ac(u9) ∗Ł 0.6 = 0 and then B(u9) ∈ [0.5, 1].

Below we present a table with all the inferences for all the entries in the training dataset (i.e., for those u ∈
{u1, . . . , u8}). Note that by Theorem 6, the inferences based on the f -index of inclusion are consistent and more 
precise that those obtained by means of any adjoint pair; in this case we only compare it with Łukasiewicz, Godel and 
product.

u1 u2 u3 u4 u5 u6 u7 u8

A 0.3 0.1 0.8 0.5 0.6 1 0.2 0.5

approx. of B by f -index [0.3,0.7] [0,0.1] [0.8,0.8] [0.3,0.7] [0.6,0.7] [1,1] [0.2,0.4] [0.3,0.7]
approx. of B by Łuka. [0.1,0.7] [0,0.5] [0.6,1] [0.3,0.9] [0.4,1] [0.8,1] [0,0.6] [0.3,0.9]
approx. of B by Gödel [0,1] [0,1] [0,1] [0,1] [0,1] [0,1] [0,1] [0,1]
approx. of B by Prod. [0,1] [0,1] [0,1] [0,1] [0,1] [0,1] [0,1] [0,1]
B 0.7 0 0.8 0.3 0.7 1 0.4 0.6

Note that for u3 and u6 we obtain the most precise inference; specifically, B(u3) = 0.8 and B(u6) = 1. Actually, 
if we consider a new entry u such that A(u) > 0.6, then the inference based on the f -index of inclusion provides the 
result B(u) = A(u). The reason is because in the training dataset we have that A(u) = B(u) for all u ∈ {u1, . . . , u8}
with A(u) > 0.6.

5. Conclusions and future work

We have presented some new properties of the so-called f -index of inclusion. Specifically, we have shown some 
close relationships between the f -index of inclusion and the standard measures of inclusion based on adjoint pairs; 
e.g., those formed by t -norms ∗ and their residua. As a consequence of our results, we can assert that a modus ponens 
based on the f -index of inclusion performs the greatest inference among all those that can be performed by adjoint 
pairs and their standard measures of inclusion. As a result of this feature, we have obtained the following results:

• The modus ponens based on the f -index of inclusion is just as suitable to perform logical inferences as the 
standard one based on adjoint pairs.

• The f -index of inclusion is essentially based on the notion of f -inclusion, which simply consists in the ordering 
f (A(u)) ≤ B(u) in [0, 1] for monotonic mappings f less or equal than the identity function. In fact, the f -index 
of inclusion is closely related to the multi-adjoint structures [31] but approaching the issue in a simpler way.

• The optimality of the chosen residuated implication supports the use of the f -index of inclusion in machine 
learning where the knowledge in databases is modelled by rules of fuzzy logic. Specifically, this fact encourages 

2 It is convenient to mention that product and Gödel connectives admit also a modus tollens, but that is by considering the drastic negation, which 
provides very limited information in general.
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the use of the f -index of inclusion as the core for performing formal reasoning, as done by monotonic functions 
in [37], and to represent fuzzy ontologies, as done by standard fuzzy inclusions in [4] or by classical inclusion 
in [1].

As future work, Example 4 has presented a very preliminary version of a possible fuzzy inference system based 
on the f -index of inclusion and its use to recovering missing data. To complete such a system, it is necessary to 
check different possibilities in the construction technique and to test the results of data that has been not used in the 
training dataset. From a theoretical point of view, we will study the problem of constructing a t-norm ∗ compatible 
with the proof of Theorem 5. Furthermore, the fact that the f -index of inclusion behaves similarly to an implication 
opens the possibility to include it in a residuated structure. In such a case, we could use the f -index of inclusion 
directly as an implication and apply it in all those areas where the underlying structure is residuated, for instance, 
Fuzzy Formal Concept analysis [3,20,32], Fuzzy Mathematical Morphology [12,21], Fuzzy Logic [35], Fuzzy Logic 
Programming [18].
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[3] R. Bělohlávek, Concept lattices and order in fuzzy logic, Ann. Pure Appl. Log. 128 (1–3) (2004) 277–298.
[4] F. Bobillo, U. Straccia, The fuzzy ontology reasoner fuzzyDL, Knowl.-Based Syst. 95 (2016) 12–34.
[5] H. Bustince, N. Madrid, M. Ojeda-Aciego, The notion of weak-contradiction: definition and measures, IEEE Trans. Fuzzy Syst. 23 (4) (2015) 

1057–1069.
[6] I.P. Cabrera, P. Cordero, F. García-Pardo, M. Ojeda-Aciego, B. De Baets, On the construction of adjunctions between a fuzzy preposet and an 

unstructured set, Fuzzy Sets Syst. 320 (2017) 81–92.
[7] I.P. Cabrera, P. Cordero, E. Muñoz-Velasco, M. Ojeda-Aciego, B. De Baets, Relational Galois connections between transitive digraphs: 

characterization and construction, Inf. Sci. 519 (2020) 439–450.
[8] I.P. Cabrera, P. Cordero, F. García-Pardo, M. Ojeda-Aciego, B. De Baets, Galois connections between a fuzzy preordered structure and a 

general fuzzy structure, IEEE Trans. Fuzzy Syst. 26 (3) (2018) 1274–1287.
[9] R. Cignoli, F. Esteva, L. Godo, A. Torrens, Basic fuzzy logic is the logic of continuous t-norms and their residua, Soft Comput. 4 (2000) 

106–112.
[10] C. Cornelis, E. Kerre, Inclusion-based approximate reasoning, Lect. Notes Comput. Sci. 2074 (2001) 221–230.
[11] C.V. Damásio, N. Madrid, M. Ojeda-Aciego, On the notions of residuated-based coherence and bilattice-based consistence, Lect. Notes 

Comput. Sci. 6857 (2011) 115–122.
[12] B. De Baets, E. Kerre, M. Gupta, The fundamentals of fuzzy mathematical morphology, part 1: basic concepts, Int. J. Gen. Syst. 23 (2) (1995) 

155–171.
[13] J. Fan, W. Xie, J. Pei, Subsethood measure: new definitions, Fuzzy Sets Syst. 106 (2) (1999) 201–209.
[14] J. Fodor, R. Yager, Fuzzy set-theoretic operators and quantifiers, in: D. Dubois, H. Prade (Eds.), Fundamentals of Fuzzy Sets, in: The Hand-

books of Fuzzy Sets Series, vol. 7, Springer US, 2000, pp. 125–193.
[15] B. Ganter, R. Wille, Formal Concept Analysis: Mathematical Foundation, Springer Verlag, 1999.
14

http://refhub.elsevier.com/S0165-0114(23)00021-0/bib5B8E57F315859BF7FB02CD166C0F8E09s1
http://refhub.elsevier.com/S0165-0114(23)00021-0/bibF1F050AD35BB9FB566A3052AE6629A05s1
http://refhub.elsevier.com/S0165-0114(23)00021-0/bibF1F050AD35BB9FB566A3052AE6629A05s1
http://refhub.elsevier.com/S0165-0114(23)00021-0/bib98BD63D077F5C6321A1E608963A58E10s1
http://refhub.elsevier.com/S0165-0114(23)00021-0/bibFD1C9D497B19C326FA04BB7B26B97BF5s1
http://refhub.elsevier.com/S0165-0114(23)00021-0/bib7DA8E766DD1890636A29CE459294419Cs1
http://refhub.elsevier.com/S0165-0114(23)00021-0/bib7DA8E766DD1890636A29CE459294419Cs1
http://refhub.elsevier.com/S0165-0114(23)00021-0/bibBF06BDDC2F687869BB1E3E39BE735609s1
http://refhub.elsevier.com/S0165-0114(23)00021-0/bibBF06BDDC2F687869BB1E3E39BE735609s1
http://refhub.elsevier.com/S0165-0114(23)00021-0/bib55A841EC41E504FA020104CC13F74178s1
http://refhub.elsevier.com/S0165-0114(23)00021-0/bib55A841EC41E504FA020104CC13F74178s1
http://refhub.elsevier.com/S0165-0114(23)00021-0/bib4ABD20C463E9BBD86C795C83A8E8084As1
http://refhub.elsevier.com/S0165-0114(23)00021-0/bib4ABD20C463E9BBD86C795C83A8E8084As1
http://refhub.elsevier.com/S0165-0114(23)00021-0/bib70371D32A78890913D36AB352F89A431s1
http://refhub.elsevier.com/S0165-0114(23)00021-0/bib70371D32A78890913D36AB352F89A431s1
http://refhub.elsevier.com/S0165-0114(23)00021-0/bibF70F107C3EA1B2BECF430D4DF6A1CC8As1
http://refhub.elsevier.com/S0165-0114(23)00021-0/bib190140FC8CA2FA626C7086B98B438D70s1
http://refhub.elsevier.com/S0165-0114(23)00021-0/bib190140FC8CA2FA626C7086B98B438D70s1
http://refhub.elsevier.com/S0165-0114(23)00021-0/bib74A431EB4CA5EC464841A26BBEA8BE8Fs1
http://refhub.elsevier.com/S0165-0114(23)00021-0/bib74A431EB4CA5EC464841A26BBEA8BE8Fs1
http://refhub.elsevier.com/S0165-0114(23)00021-0/bib089C999C440011F144489CFDF0F64655s1
http://refhub.elsevier.com/S0165-0114(23)00021-0/bibD289ED3FE208726EC7F6E7413880EFD7s1
http://refhub.elsevier.com/S0165-0114(23)00021-0/bibD289ED3FE208726EC7F6E7413880EFD7s1
http://refhub.elsevier.com/S0165-0114(23)00021-0/bibF3C5DF2FCE63FE80DBC2321D900131F0s1


JID:FSS AID:8474 /FLA [m3SC+; v1.361] P.15 (1-15)

N. Madrid and M. Ojeda-Aciego Fuzzy Sets and Systems ••• (••••) •••–•••
[16] G. Georgescu, A. Iorgulescu, Pseudo-MV algebras, Mult. Valued Log. 6 (2001) 95–135.
[17] P. Hájek, Metamathematics of Fuzzy Logic, Trends in Logic, vol. 4, Springer, Netherlands, 1998.
[18] P. Julián, J. Medina, M. Ojeda-Aciego, On reductants in the framework of multiadjoint logic programming, Fuzzy Sets Syst. 317 (2017) 

27–43.
[19] L.M. Kitainik, Fuzzy Inclusions and Fuzzy Dichotomous Decision Procedures, Theory and Decision Library, vol. 4, Springer Netherlands, 

Dordrecht, 1987, pp. 154–170.
[20] J. Konecny, J. Medina, M. Ojeda-Aciego, Multi-adjoint concept lattices with heterogeneous conjunctors and hedges, Ann. Math. Artif. Intell. 

72 (2014) 73–89.
[21] N. Madrid, J. Medina, M. Ojeda-Aciego, I. Perfilieva, L-fuzzy relational mathematical morphology based on adjoint triples, Inf. Sci. 474 

(2019) 75–89.
[22] N. Madrid, M. Ojeda-Aciego, Measuring inconsistency in fuzzy answer set semantics, IEEE Trans. Fuzzy Syst. 19 (4) (2011) 605–622.
[23] N. Madrid, M. Ojeda-Aciego, On the existence and unicity of stable models in normal residuated logic programs, Int. J. Comput. Math. 89 (3) 

(2012) 310–324.
[24] N. Madrid, M. Ojeda-Aciego, A view of f-indexes of inclusion under different axiomatic definitions of fuzzy inclusion, Lect. Notes Artif. 

Intell. 10564 (2017) 307–318.
[25] N. Madrid, M. Ojeda-Aciego, A measure of consistency for fuzzy logic theories, Math. Methods Appl. Sci. (2020), https://doi .org /10 .1002 /

mma .7470, in press.
[26] N. Madrid, M. Ojeda-Aciego, On contradiction and inclusion using functional degrees, Int. J. Comput. Intell. Syst. 13 (1) (2020) 464–471.
[27] N. Madrid, M. Ojeda-Aciego, New measures of inclusion between fuzzy sets in terms of the f -index of inclusion, in: Proc. of 24th European 

Conference on Artificial Intelligence (ECAI), in: Frontiers in Artificial Intelligence and Applications, vol. 325, 2020, pp. 2616–2623.
[28] N. Madrid, M. Ojeda-Aciego, Functional degrees of inclusion and similarity between L-fuzzy sets, Fuzzy Sets Syst. 390 (2020) 1–22.
[29] N. Madrid, M. Ojeda-Aciego, I. Perfilieva, f -inclusion indexes between fuzzy sets, in: Proc. of IFSA-EUSFLAT, 2015.
[30] J. Medina, M. Ojeda-Aciego, P. Vojtáš, Similarity-based unification: a multi-adjoint approach, Fuzzy Sets Syst. 146 (1) (2004) 43–62.
[31] J. Medina, E. Mérida, M. Ojeda-Aciego, A neural implementation of multi-adjoint logic programming, J. Appl. Log. 2 (3) (2004) 301–324.
[32] J. Medina, M. Ojeda-Aciego, J. Ruiz-Calviño, Formal concept analysis via multi-adjoint concept lattices, Fuzzy Sets Syst. 160 (2) (2009) 

130–144.
[33] T.M. Mitchell, Machine Learning, McGraw-Hill, 1997.
[34] N.N. Morsi, Propositional calculus under adjointness, Fuzzy Sets Syst. 132 (1) (2002) 91–106.
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