Phase angle and COVID-19: A systematic review with meta-analysis

Isabel Cornejo-Pareja^{1,2,3,4} · Isabel M. Vegas-Aguilar^{1,2} · Rocío Fernández-Jiménez^{1,2} · Cristina García-García⁴ · Diego Bellido-Guerrero⁵ · Francisco Tinahones^{1,2,3,4} · Jose Manuel García-Almeida^{1,3,4,6}

Accepted: 27 February 2023 © The Author(s) 2023

Abstract

Phase angle (PhA) has been identified as a poor prognostic factor in patients with COVID-19. This study aimed to achieve a systematic review, where we discussed the potential role of PhA value as a prognostic marker of adverse clinical outcomes such as mortality and complication in hospitalized with SARS-CoV2 infection and established the strength of recommendations for use. A systematic literature review with meta-analysis was done in the main electronic databases from 2020 to January 2023. The selected articles had to investigate adverse consequences of the COVID-19 population and raw bioimpedance parameters such as PhA and published in peer-reviewed journals. GRADE tools regarded the quality of the methodology. The review protocol was registered in PROSPERO. Only eight studies, 483 studies, were eligible for the analysis. In general, differences in PhA were seen between the comparative study groups. Patients with a low PhA experienced poor outcomes. A low PhA was associated with a significantly increased mortality risk [RR: 2.44; 95% CI (1.20–4.99), p=0.01; I2=79% (p=0.0008)] and higher complications risk [OR: 3.47, 95% CI (1.16 – 10.37), p=0.03; I2=82% (p=0.004)] in COVID-19 patients. Our analysis showed four evidence-based recommendations on the prognostic value of PhA with two strong recommendations, one of moderate and another of low-moderate quality, for predicting mortality and complications, respectively. We recommend using PhA as a prognostic marker for mortality and complications in this population. Although the results are promising, future studies must identify the PhA cut-off to guide therapeutic decisions more precisely. **Registration code in PROSPERO:** CRD42023391044

Keywords COVID-19 \cdot SARS-CoV2 \cdot Mortality \cdot Phase angle \cdot Vectorial bioimpedance \cdot Bioelectrical impedance \cdot Body composition \cdot Length of stay \cdot Sarcopenia \cdot Malnutrition \cdot Dysphagia

Isabel Cornejo-Pareja and Isabel M. Vegas-Aguilar contributed equally to this work and share the first authorship. Francisco Tinahones and Jose Manuel García-Almeida also contributed equally to this work and are Joint Senior Authors.	_ Abbrevia AMMI BI — BIA	Appendicular muscle mass index Bioelectrical impedance Bioimpedance analysis
Isabel Cornejo-Pareja isabelmaria.cornejo@gmail.com	-	ment of Endocrinology and Nutrition, Virgen de la a Hospital, Malaga University, 29010 Malaga, Spain
Isabel M. Vegas-Aguilar isabel.mva13@gmail.com		o de Investigación Biomédica de Málaga (IBIMA), de la Victoria University Hospital, 29010 Málaga,
Rocío Fernández-Jiménez rociofernandeznutricion@gmail.com Cristina García-García cristina-garcia-garcia@hotmail.com	³ Centro Fisiopa	de Investigacion Biomedica en Red de la tología de la Obesidad y Nutricion (CIBEROBN), o de Salud Carlos III (ISCIII), 29010 Malaga, Spain
Diego Bellido-Guerrero diegobellido@gmail.com Francisco Tinahones fjtinahones@hotmail.com	⁵ Departi	University, 29010 Málaga, Spain ment of Endocrinology and Nutrition, Complejo alario Universitario de Ferrol, Ferrol, La Coruña,
Jose Manuel García-Almeida jgarciaalmeida@gmail.com	1	ment of Endocrinology and Nutrition, Quironsalud Hospital, 29004 Málaga, Spain

BIS	Bioelectrical impedance spectroscopy
BMI	Body mass index
CI	Confidence interval
COVID-19	Coronavirus Disease 2019
ECW	Extracellular water
FFM	Fat-free mass
GRADE	Grading of Recommendations Assess-
	ment, Development and Evaluation
HR	Hazard ratio
ICU	Intensive Care Unit
IMV	Intensive Mechanical ventilation
LOS	Length of stay
OR	Odds ratio
PhA	Phase angle
PICO	Patient, Intervention, Comparison,
	Outcome
PRISMA	Preferred Reporting Items for Systematic
	Reviews
R	Resistance
RR	Risk Ratio
SARS-CoV-2	Severe acute respiratory syndrome corona-
	virus 2
SMI	Skeletal muscle mass index
SML	Soft lean mass
SMM	Skeletal muscle mass
TBW	Total body water
Xc	Reactance

1 Introduction

The outbreak of Coronavirus Disease 2019 (COVID-19) due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has caused a global pandemic with a substantial spread of the infection and death [1]. This disease is associated with more than 660 million cases confirmed worldwide and more than 6.7 million deaths from march 2020 until January 2023 [2]. COVID-19 is a respiratory disease with high clinical variability, having identified specific clinical risk factors related to life-threatening illness, including comorbidities, older age, male gender, and host genetic variants (e.g., type I interferon auto-antibodies) [3–6].

COVID-19 patients may develop acute respiratory, nervous and musculoskeletal symptoms, leading to complications like sepsis, acute respiratory distress syndrome, thromboembolic events, coagulopathies, renal or cardiac failure, and even systemic organ failure. Therefore, it is essential to adapt support therapies such as intensive mechanical ventilation (IMV), precise fluids management, corticosteroids, and anticoagulant vasopressor treatments to care COVID-19 [7–9].

In the subacute phase, some patients may develop postviral sequels or complications such as gastrointestinal symptoms, dysphagia, decreased food and protein intake, malabsorption, inflammation, low vitamin D levels, anabolic resistance, malnutrition, sarcopenia, fatigue syndrome or "long COVID" [10-12].

Researchers continue to identify prognostic factors for morbidity and mortality of SARS-CoV-2, focusing on both blood biochemical, drug treatments (angiotensinconverting enzyme inhibitors and/or angiotensin receptor blockers), the basic clinical variables (oxygen (O_2) saturation, temperature, heart rate) [3, 5, 6, 13], as well as, tools for assessing body composition (malnutrition, sarcopenia, obesity or excess fat mass overhydration states) and the individual's cellular health status [14–16]. Thus, a more comprehensive insight into COVID-19 has enabled early diagnosis, stratification of disease severity, identification of potential sequelae, and an individualized therapeutic approach to patient management based on the severity of the disease [17].

In patients with severe COVID-19, malnutrition is often uncovered because of a direct effect of the virus resulting in systemic organ failure, long hospitalization, or intensive care unit (ICU) stay with prolonged immobilization [18]. Bioelectrical impedance (BI) assesses a patient's nutritional status and body composition. Mainly, the BI measured using 50 kHz phase-sensitive devices uses whole-body measurements to classify and monitor hydration and cell mass without the use of multiple regression equations, instead focusing on raw bioelectric parameters, such as resistance (R) and reactance (Xc) [19, 20]. Resistance (R) is the opposition of the flow of low-level alternating current due to ionic fluids, and reactance (Xc) is the delay of current entry into cells related to cell membranes and cell interfaces. Phase angle (PhA) describes the lag between voltage and current and characterizes fluid distribution between the extracellular and intracellular compartments (E/I) [19, 20].

Thus, PhA is a cellular health biomarker that discloses the malnutrition and inflammatory status which can accompany these acute and/or serious disorders. PhA is a unique predictor of mortality in diverse clinical conditions [19, 21], including SARS-CoV2 infection and a potentially helpful screening tool for prognosis [22, 23]. Some studies have reported its association with poor outcomes, such as length of stay (LOS), mortality, or the need for intensive support therapies [21, 24–26]. However, the routine use of PhA to assess hospitalized COVID-19 patients has not been established due to the lack of a focused evaluation of clinical findings.

This systematic review of the literature with meta-analysis aims to establish the clinical value of PhA as a prognostic marker of adverse clinical outcomes such as mortality and complication/sequelae in hospitalized with SARS-CoV2 and to establish the strength of recommendations intended for use by health systems in clinical practice guidelines.

2 Methods

2.1 Methodology and protocol registration

This study was prepared using the recommendations of the preferred reporting items for systematic reviews (PRISMA) guide [27]. The review protocol was registered on PROSPERO with the number: CRD42023391044. Additionally, the quality of the evidence of the present systematic literature review was evaluated with the GRADE methodology (Grading of Recommendations Assessment, Development and Evaluation) [28] to develop evidencebased recommendations. The authors developed the clinical questions that guided the literature search and the requests using the PICO (Patient, Intervention, Comparison, Outcome) framework [29].

2.2 Literature search

We conducted our systematic literature identifying potential studies with a comprehensive search in MEDLINE or PubMed, Scopus, Embase, and Web of Science databases (from database inception to January 2023) to identify studies addressing the PhA evaluation and COVID-19. A combination of the following medical subject headings and keywords was used in the title, abstract or keywords fields: "SARS-CoV2," "COVID," "COVID-19" AND "bioelectrical impedance", "BIA", "bio-impedance", "phase angle", "PhA", to identify the main bioimpedance parameters together with the population of interest. The additional search terms for primary outcomes are mortality, length of hospitalization, and complications, such as sarcopenia, malnutrition, dysphagia and invasive mechanical ventilation. Also, the hand-searching of databases was completed by two authors. Articles published in English or Spanish were selected for critical synthesis, and only significant associations are reported.

2.3 Literature inclusion and exclusion criteria

The clinical questions that guided the literature search and the recommendations were developed by the scientific committee composed of four authors with experience in body composition study and COVID-19 (I.C.-P.; J.M.G.-A.; D.B.-G. and F.J.T.) To determine the eligibility criteria, the PICO strategy [29] was adopted: in which "P" (patients), corresponding to COVID-19 patients of all genders and ethnicities; "I" (intervention), was designated as bioimpedance assessment with phase angle, "C" (comparison), was defined as altered results vs normal phase angle results, "O" (outcomes), was the mortality, LOS, severity disease or short- and long-term complications or sequels.

Exclusion criteria were as follows: (i) articles did not include a full-text description of the study; (ii) not in Spanish or English language; (iii) differences in phase angle are not evaluated regarding outcomes (e.g., mortality, length of stay, severe disease, complications or sequels); (iv) studies not published in peer-reviewed journals; (v) meta-analyses, reviews, protocols, case series or reports, editorials, and letter to the editor; (vi): pregnant or lactating women studies; and (vii) studies using animal models.

2.4 Study selection

The selection process was conducted by four independent authors (I.C.-P., J.M.G.-A., D.B.-G. and F.J.T.). The reference lists of all included studies were hand-searched for missing publications. Three authors (I.C.-P., J.M.G.-A. and D.B.-G.) independently screened the selected articles for eligibility after testing the abstract and full text. Differences of opinion while selecting the articles were resolved by consensus between authors. One author (F.J.T.) reviewed each opinion difference and decided for inclusion or exclusion in this study.

2.5 Risk of bias assessment

The methodological quality assessment of the studies was achieved using the GRADE methodology [28]. The GRADE method to provide is a standardized tool for rating the quality of evidence and grading the strength of recommendations. Many organizations have endorsed GRADE method to decrease the risk of bias, inconsistency of results across studies, indirectness of evidence, imprecision and publication bias [30]. It proposes specific criteria that should be considered, particularly in observational studies [31].

GRADE's four categories of quality of evidence (high, moderate, low, very low) imply a gradient of confidence in estimates of the effect of a diagnostic test strategy on patientimportant outcomes. This GRADE approach examines methodological quality by analysing the studies potential limitations, focusing on aspects such as study design, risk of bias, directness, indirectness outcomes, patient populations, diagnostic tests, comparison tests, indirect comparisons, inconsistency in study results and imprecise evidence. The GRADE approach to grading the quality of evidence and strength of recommendations for diagnostic tests provides a comprehensive and transparent approach [28].

The authors reviewed the literature, selecting outcomes from the studies, rating their importance, and evaluating outcomes across studies. Then the evidence profile tables for outcomes were created, including a rating of the quality of the evidence, using GRADEpro GDT software (https://gradepro.org). The tables include outcomes, number of studies, study design, risk of bias, effect, quality of evidence, and importance. The overall quality of evidence was rated across outcomes based on the lowest quality of critical outcomes. The authors then made recommendations for each topic based on the literature findings and balancing consequences (e.g., benefits/harms, values, preferences, feasibility).

2.6 Data analysis, processing and data synthesis

The authors manually included the selected articles in a Microsoft Excel table. This Excel document contains the characteristics of selected articles, such as first author, study country, study design, comparative groups, number and type of participants [general or ICU hospitalized patients] participants characterization [sex and age], measurement time, follow-up time, BI device [and frequency (kHz)], PhA value and reference values, raw bioelectrical parameters (R and Xc) nutrition status [fat-free mass (FFM), skeletal muscle mass index (SMI), soft lean mass (SLM), skeletal muscle mass (SMM), appendicular muscle mass index (AMMI), hydration status [extracellular water/total body water (ECW/TBW) ratio, TBW/FFM] and reference value, outcomes [mortality, LOS, complications or sequels], results [(number of events/total population) ratio and effect rate [95% confidence interval (CI)], and conclusions.

Tables summarize data, which were grouped by similar categories to allow comparisons among studies. Likewise, an analysis was carried out following the GRADE methodology to evaluate the quality of the studies and develop recommendations for clinical application of PhA.

2.7 Statistical analysis

The meta-analysis used Review Manager 5.3 statistical software. Risk Ratio (RR) or Odds Ratio (OR) and 95% CI were used for continuous binary variables, respectively. If the heterogeneity test revealed $p \le 0.05$ or $I^2 > 50\%$, we concluded that the index is statistically different between the studies, and the Random Effects Model (Random) is used. If the heterogeneity test p > 0.05 and $I^2 < 50\%$, it indicates that there is no statistical difference in this indicator between studies, and the Fixed Effects Model (Fixed) is used for merging.

3 Clinical characteristics of bioelectrical phase angle

Bioimpedance analysis (BIA) is an indirect method to measure body composition based on the human body's ability to conduct electricity. The current is transmitted through liquids and electrolytes, while fat and bone are not conductors [32]. Through raw impedance parameters, such as R and Xc, the PhA can be obtained: PhA (°) = [arctan (Xc/R)×(180°/ π)]. By definition, PhA is positively associated with tissue Xc, as related to cell mass, integrity, and function, and negatively associated with R, which depends mainly on the degree of tissue hydration [33] (Fig. 1).

PhA is measured directly with BIA, which is fast, portable, non-invasive, reproducible, and sensitive. In addition, it has been considered a valuable tool in various clinical situations. In healthy subjects, the PhA oscillates between 5° and 7° . A low PhA (<4°) indicates unbalanced proportion between cells and fluids. Normality curves have been established for different populations. Age, body mass index (BMI), sex, and race influence PhA values among healthy

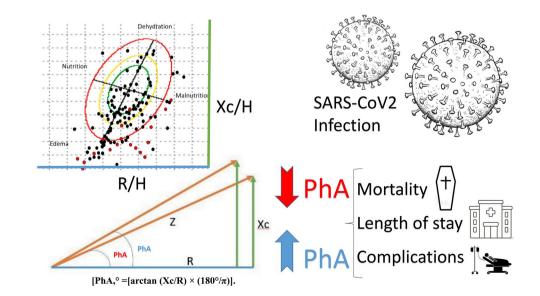


Fig. 1 Clinical outcomes related to Phase Angle on COVID-19 patients (R: resistance; H: height; Xc: reactance; PhA: phase angle) individuals. In this way, although the absolute value of the measure is a parameter that must be assessed, the standardized PhA is obtained by adjusting the PhA obtained by age and sex variables and represents an additional crude measure. That is, this value is important because it allows comparison with respect to healthy population references with the same characteristics (age and sex).

PhA is considered a reliable indicator of cell integrity and has been proposed as a nutritional status marker for adults and children after findings in numerous pathologies. It has also been proposed as a useful prognostic marker for several clinical conditions. In clinical practice, the determination of PhA allows the characterization of a patient relative to a healthy group and facilitates the follow up in the clinical care of patients at nutritional risk, such as screening and to evaluate prognosis and mortality in very diverse pathologies (HIV, cancer, anorexia, liver cirrhosis, haemodialysis, short bowel, cardiac pathology, lung disease, surgery, neurological pathology, surgical pathologies, geriatric diseases, hospitalized patients, critical patients, infectious pathologies such as SARS-CoV2, etc.) [21]. A recent meta-analysis reported normality curves and population percentiles derived in a sample of more than 250,000 patients; in general, lower levels of PhA suggest a worse prognosis and greater morbidity and mortality [21].

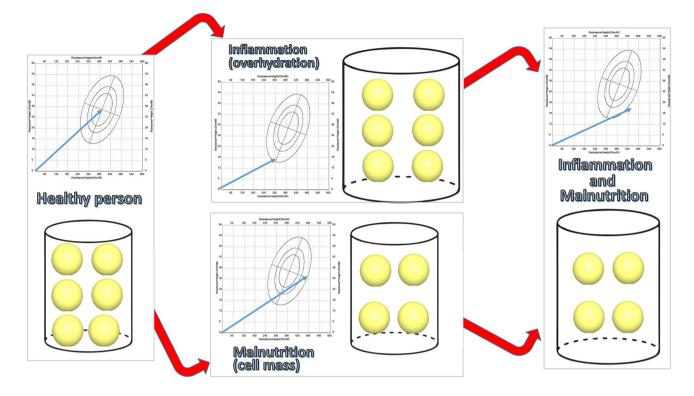
Other aspects of the PhA assessment have raised interest. The reported relationship between low PhA values and agerelated muscle depletion and its correlation with reduced muscle function (strength and endurance) assessed with dynamometry opens a new path in the value of determining PhA in the assessment of malnutrition and sarcopenia [19, 34, 35]. Emerging interest in monitoring PhA values as an indicator of inflammatory states and oxidative stress in obesity and metabolic diseases reinforces its use in patients with SARS-CoV2 infection as a factor in the evaluation of the prognosis of the patient [36].

Beyond the PhA as a primary measurement, we can analyse the raw bioelectrical data. In this sense, the height (H)adjusted R and Xc results are standardized when compared to the population reference pattern. The standardization of the PhA adjusted by age and sex concerning population references allows us to compare different clinical populations [37]. In the same way, the analysis of the raw bioelectrical components R/H transformed into hydration status, and Xc/H transformed into nutrition status with their mean values and population standard deviation allow us to analyse segregated results of the hydration and nutrition components contained in the PhA [38, 39].

PhA and SPhA are BIA measurements that are novel options for practical assessment and clinical evaluation of impaired nutritional status and prognosis among hospitalized COVID-19 patients and could potentially contribute to enhanced patient care and clinical outcomes. The literature review reported that a lower PhA increased the odds of COVID-19 complications and mortality during variable period-time [14, 22, 23, 40–44].

In SARS-CoV2 patients, the interpretation of PhA requires careful consideration of the raw bioelectrical data to identify the R and Xc changes, due to both overhydration status associated with an increased inflammatory process and malnutrition status contributing to a decline in the PhA value [16, 22] (Fig. 2).

4 Results


Our search procedure produced a total of 483 studies, as exposed in the flow-chart (Fig. 3). Of these articles identified from the databases, 272 were removed before the screening process through duplication. Based on our inclusion criteria (PICO) and exclusion criteria, the analysis of titles, keywords, and abstracts identified 22 potentially eligible studies. After reading the complete text, eight relevant studies were finally included in our systematic review of PhA and SARS-CoV2 infection [14, 22, 23, 40–44]. Fourteen reports were excluded due to lack of evaluation of PhA for clinical outcomes or relevance for SARS-CoV2 infection.

4.1 Characteristics of the included studies

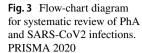
Eight studies were included, six were prospective observational cohort studies from one centre [22, 23, 40–42, 44], while one of them was multicentre with two referral centres [41], one was an observational cross-sectional cohort study [14] and other was a retrospective observational study [43]. Most of the studies were conducted in European countries [14, 22, 23, 43, 44] and Mexico [40–42] (Table 1).

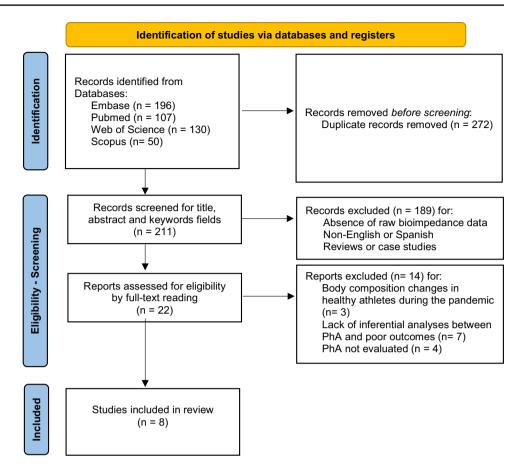
A total of 854 admission patients with SARS-CoV2 infection participated in our systematic review. In all the studies, the male sex was predominant (> 60%). The mean age of the European studies was higher, prevailing at a mean age of > 65 years, while the mean age in two of the Mexican studies [41, 42] was lower with a mean of 55 years, corresponding to studies focused on ICU patients (Table 1).

The BIA device used for the measurement were InBody S10®, a multifrequency model [14, 23, 41, 42], BIA 101 BIVA (Akern), a 50 kHz phase-sensitive model [22, 43], SECA® model mBCA 525, a multifrequency model [44], and BIA Quantum V RJL Systems, a phase-sensitive model [40] (Table 2). In general, the PhA measurements were carried out in the first 24-72 h of admission and follow-up time for adverse outcomes ranged from 20 to 90 d. The measurement technique was performed with patients in a supine position [22, 40–44] and using a frequency of 50 kHz [14, 22, 23, 40, 41] in most of the studies (Table 2).

Fig. 2 Interpretation of the bioelectrical component value of Phase Angle in COVID-19. PhA is a crude measurement. The analysis of its raw bioelectrical components R/H transformed into hydration status and Xc/H transformed into nutrition status allow us to analyse segre-

gated results of the hydration/inflammation and nutrition components contained in the PhA. R: resistance; H: height; Xc: reactance; PhA: phase angle


4.2 Findings


The average PhA ranged from 4.4 to 5.6°. The lowest PhA values were recorded in the studies that included patients with the most severe SARS-CoV2 infection (ICU patients) [14, 22, 41, 42]. The studies focused on COVID-19 patients admitted to general ward had higher mean PhA values [40, 43, 44], than those involving patients admitted to the ICU [14, 22, 41, 42]. In all studies, significantly lower PhA values were found in patients with poor-outcome compared to the comparison groups, except Moone et al. [23] and Del Giorno et al. [43] studies that reported no significant differences between general ward and ICU patients and patients with and without nutritional risk, respectively (Table 2).

A decrease in R and Xc both contribute to the overhydration state for an increase in the inflammatory process and the malnutrition state that contributes to a decrease in PhA value. The publications analysed raw bioelectrical parameters such as R, Xc, and SPhA, as well as parameters related to hydration-inflammation status and those related to cell mass and nutritional status (Table 2). These raw bioelectrical measurements were only analysed in one of the studies [22], while the SPhA value was described in two of the studies [22, 42]. The principal finding was significant differences between the comparative groups (survivors vs. non-survivors) for all studies. Importantly, the mean SPhA was -2.5 (i.e., 2.5 SD less than the healthy population of his age and sex) in critically ill patients while in general ward patients, it was -0.8 (i.e., 2.5 SD less than the healthy population of his age and sex). Thus, patients with more severe disease (critically ill patients) had SPhA further away from the reference population compared to patients with more stable disease (general hospital ward) (Table 2).

Seven studies investigated the hydration status of the patients with COVID-19. Five studies [14, 23, 41, 42, 44] reported hydration status as the ECW/TBW by BIA, and two reports provided [22, 43] the TBW/FFM ratio by BIA. The mean hydration status ranged from 0.39 to 0.45 for EWC/TBW and 73.8% for TBW/FFM. Significant differences were detected in the hydration status of the comparative groups analysed [14, 22, 23, 41, 42, 44]. However, Del Giorno et al. [43], found no significant differences in hydration status between COVID-19 patients with and without nutritional risk (Table 2).

Various assessments of lean soft tissue mass compared in the studies [14, 22, 23, 40, 43, 44] (Table 2). Moonen et al. [14, 23] identified depletion in indices of muscle and FFM between ICU and general ward patients. Significant reductions in BCM [22, 40], AMMI [40] and FFMI and SMMI [44] were found between comparison control groups

(survivors vs. non-survivors, dysphagic vs non-dysphagic patients and malnourished vs. non-malnourished patients). However, Del Giorno et al. [43] found no significant differences between the study groups (Table 2).

4.3 Poor outcomes researched in admission patients with COVID-19

The principal outcomes under analysis were mortality [14, 22, 40, 42–44] and disease severity, defined as the need for mechanical ventilation or a composite score, including the need for ICU admission [14, 23, 43, 44]. The presence of complications, such as thrombo-embolic event, renal failure, delirium, pulmonary fibrosis, dysphagia post-extubating [14, 23, 41] and LOS [23, 43] constituted additional poor outcomes (Table 1).

(I) Mortality

The studies that explored the association of PhA as an independent prognostic factor for mortality used the odds ratio (OR) or hazard ratio (HR) analysis. The highest HR observed for 90-d mortality was 3.912 [95% CI (1.322-11.572), p=0.014] in an adjusted model for sex, age, BMI, comorbidities, and hydration status in 127 COVID-19 patients

(ICU and general ward admission) [22]. The PhA value cut-off point for predicting mortality was 3.95° with a sensitivity of 93.8% and specificity of 66.7% [AUC=0.839, p=0.001] [22].

In an adjusted model by sex, age, comorbidities, prognostic scales (CURB-65 and SOFA), and AMMI in 104 hospitalized patients followed up for 20-d, a low PhA < 3.66° had an HR = 2.571[95% CI (1.217-5.430), p=0.013] [40]; while an adjusted model including nutrition risk (NUTRICscore) and age in 67 critical ill COVID-19 patients demonstrated 60-d mortality HR = 3.08 [95% CI (1.12-8.41), p=0.02] [42]. Further, a PhA < 5.25° [AUC = 0.74, 95% CI (0.60-0.88), p = 0.003) for males and < 3.85° [AUC = 0.83, 95% CI (0.60-(0.99), p = (0.03) in females were predictive mortality markers with a sensitivity (72% and 66.7%, respectively) and specificity (72% and 90%, respectively) [42]. In 54 hospitalized COVID-19 patients (ICU and general ward), a higher PhA value was associated with a significantly lower risk of 28-d mortality [OR: 0.208, p=0.025] [14].

(II) Length of stay (LOS)

A greater PhA was also related to a lower hospital LOS [OR = 0.875, 95% CI (0.765-1.001),

Table 1 Chara	Table 1 Characteristics of the studies, main outcomes studied at	in outcomes studied ar	nd conclusions					
Variables	Moonen H.P. et al. [14]	Del Giorno R. et al. [43]	Cornejo-Pareja I. et al. [22]	Osuna-Padilla I.A. et al. [42]	Reyes-Torres C.A. et al. [41]	Moonen H.P. et al. [23]	Da Porto A. et al. [44]	Rosas-Carrasco O. et al. [40]
Country Study Design	Netherlands Observational Cross- sectional Study	Switzerland Retrospective Observational Study	Spain Prospective Observational Cohort Study	Mexico Prospective Observational Cohort Sudv	Mexico Prospective Observational Cohort Study	Netherlands Prospective Observational Cohort Study	Italy Prospective Observational Cohort Study	Mexico Prospective Observational Cohort Study
Participants centres	One referral centre	One referral centre	One referral centre	One referral centre	Two referral centre	One referral centre	One referral centre	One referral centre
Clinical profile	General ward and ICU patients	General ward patients	General ward and ICU patients	ICU patients	Post-extubated ICU patients	General ward and ICU patients	General ward patients	General ward patients
Patients (n, age, sex)	Q́л	n=90 64.5y (SD±13.7) 67.8% male	n = 127 69y (IQR 59-80) 59.1% male	n=67 55.3y (SD±13.6) 76% male	n=112 54y (SD±12,0) 82% male	n = 150 68y (IQR 66–70) 67% male	n=150 69y (IQR 58-78) 68.7% male	n=104 62,7y (SD±15,0) 51.9% male
Outcomes and follow-up time	28d-Disease severity. ICU admission + complications or mortality	LOS (> 21d), in-hospital mortality and ICU admission, Appetite-loss (until discharge)	90d- Mortality	60-d Mortality	Dysphagia post- extubation (until ICU discharge)	90d-Disease severity: ICU admission + complications or mortality and LOS	60-d IMV, In-hospital mortality	20d- Mortality
Event rate	Disease severity: 34/54 Mortality: 8/54, Complications: 28/54, ICU admission: 24/54	LOS: 19/90, In-hospital mortality: 18/90, Appetite- loss: 28/90	16/127	25/67	46/112	ICU: 41/150 Complications: 59/150 Disease severity: 77/150	IMV: 23/150 Mortality: 22/150	42/104
Conclusion	A lower PhA increased the odds of morbidity, mortality and severe COVID-19	PhA does not seem to add further predictive value	Low PhA < 3.95° is a significant independent predictor of mortality risk in COVID-19 (sensitive 93.8% and specific 66.7%)	Low PhA value is a biological marker that could be a predictor of 60-d mortality in COVID-19 critically ill PhA < 3.85° ($Q)$ and < 5.25° (G) could need special nutrition attention	Low PhA was associated with dysphagia in post- extubated patients. Lower PhA was an independent factor for swallowing recovery at discharge	PhA is independently correlated with an adverse outcome of COVID-19	Malnutrition diagnosed by BIVA was associated with worse outcomes in COVID- 19 patients. PIA was not significantly associated with need of IMV (only 0.7%) or mortality at 60 d	PhA was higher risk predictor of mortality than APACHE, SOFA, and CURB- 65 at admission in patients hospitalized for COVID-19
<i>NA</i> not availat ology and chro	NA not available, SD standard deviation, IQR interquartile rang ology and chronic health evaluation, $SOFA$ sepsis-related organ	<i>QR</i> interquartile range 4 sepsis-related organ	e, y years, d days, <i>ICU</i> intensive care unit, <i>LOS</i> length hosp failure assessment, <i>CURB-65</i> score for pneumonia severity	J intensive care un URB-65 score for	nit, LOS length hospi pneumonia severity	NA not available, SD standard deviation, IQR interquartile range, y years, d days, ICU intensive care unit, LOS length hospital stay, IMV intensive mechanical ventilation, APACHE acute physiology and chronic health evaluation, SOFA sepsis-related organ failure assessment, CURB-65 score for pneumonia severity	nanical ventilation,	APACHE acute physi-

		3		•	•			
Variables	Moonen H.P. et al. Del Giorno R. [14] et al. [43]	Del Giorno R. et al. [43]	Cornejo-Pareja I. et al. [22]	Osuna-Padilla I.A. et al. [42]	Reyes-Torres C.A. et al. [41]	Moonen H.P. et al. Da Porto A. et al. [23] [44]	Da Porto A. et al. [44]	Rosas-Carrasco O. et al. [40]
Measurement methodology (BI-device and procedures)	InBody S10® (InBody Co., Ltd., Seoul, Korea) (PhA: 50 kHz) Variable: 2-11d	BIA 101, Akern Bioresearch®, Florence, Italy (50 kHz) The first 24 h after admission	BIA 101, Akern (Bioresearch®, Florence, Italy) (50 kHz) The first 72 h of admission	InBody S10® (InBody Co,Ltd, Seoul,Korea) (Frequency NA) Within 48 h of ICU admission and IMV	InBody S10® (InBody Co., Ltd., Seoul, Korea) (PhA: 50 kHz) At first 24 h of postextubation	InBody S10® (InBody Co., Ltd., Seoul, Korea) (PhA: 50 kHz) The first 24 h of admission	SECA® (model mBCA 525; Seca gmbh & Co, Hamburg, Germany) (Frequency NA) The first 36 h after admission	BIA Quantum V, RJL Systems (50 kHz) The first 24 h of admission
Comparative groups	Ward vs. ICU patients	Normal vs. Nutritional risk patients	Survivors vs. Non- survivors	Survivors vs. Non- survivors	Non dysphagic vs. Dysphagic patients	Ward vs. ICU patients	Non-malnourished vs. Malnourished patients	Survivors vs. Non- survivors
PhA (mean and reference values, RV)	4.5° (4.2–4.8) RV: 5.6°-6.5°	5.6° (±1.14) RV: not available	4.4° (3.2–5.4) RV: ♂:5.3–6.6°, ♀: 4.8-6°	5.0° (SD±1.2) RV: Low SPhA<-1.65	4.8° (SD±1.1) RV: Low PhA<4.8°	5.4° (5.2–5.6) RV: 5.6°-6.5°	5.5° (±1.5) RV: not avalaible	5.1° (±1.6) RV:<3.66° (-SD 1.65, p5)
PhA comparative groups	4.8° (4.4–5.2) vs. 4.1° (3.8–4.5), p=0.017	$5.7(\pm 4)$ vs. 5.4 (± 1.3), p=0.386	4.5° (3.5–5.5) vs. 2.8° (2.08–3.68), p<0.001	5.4° (±1.2) vs. 4.4° (±1.0), p<0.001	5.2° (±0.93) vs. 4.0° (±0.96), p<0.001	5.4° (5.2–5.7) vs. 5.2° (4.9–5.4), p=0.14	$5.9^{\circ} (\pm 1.5) \text{ vs. } 4.5^{\circ}$ $(\pm 0.7), \text{ p} > 0.001$	5.43° (±1.5) vs. 4.8° (±1.7), p=0.0309
SPhA (mean, and RV)	Not available	Not available	-0.8 (-2.0 – 0.2)	-2.5 (-3.80.83)	Not available	Not available	Not available	Not available
SPhA comparative groups	Not available	Not available	-0.7 (-1.8 -0.3) vs2.95 (-3.6 - -1.3), p <0.001	-3.7 (±1.4) bs -2.0 (±1.8), p=0.002	Not available	Not available	Not available	Not available
Hydration status (mean and RV)	ECW/TBW: 0.40 (0.39–0.40) RV: 0.380	TBW/FFM: Not available	TBW/FFM: 73.8% (73.3–84.3) RV: 72.7–74.3%	ECW/TBW 0.39 (±0.01) RV: not available	ECW/TBW 0.395 (±0.138) RV: if>0.380 overhydration	ECW/TBW: 0.39 (0.39–0.39) RV: 0.36–0.39	ECW/TBW: 0.451 (±0.033) RV: not available	Not available
Hydration comparative groups	0.39 (0.39–0.40) vs. 0.40 (0.40– 0.41), p=0.015	74.3% (±2.7) vs. 75.2% (±3.2), p=0.204	73.7% (73.2–82.1) vs. 85.2% (76.9– 89.3), p<0.001	0.386 (± 0.01) vs. 0.398 (± 0.01), p=0.001	0.389 (±0.010) vs. 0.402 (±0.014), p<0.001	0.39 (0.39–0.39) vs. 0.39 (0.39– 0.39), p=0.014*	0.444 (± 0.032) vs. 0.47 (±0.027), p < 0.001	Not available
Cellular mass (mean and RV)	SMI: 8.0 kg/m ² (7.6–8.4) FFM: 59.2 kg (55.4–63.1) SLM: 55.9 kg (52.3–59.5)	FFM: 58.2 kg (±10.7) FFM index: 34.3 kg/m (±6.0) BCM: 17.8 kg/m (±4.7)	BCM: 21.4 kg (16.3–27.9)	Not available	Not available	SMI: 8.1 kg/m ² (7.8–8.3) BCM: 37.7 kg (36.2–39.2) FFM: 58.5 kg (56.3–60.7) SML: 55.1 kg (53.1–57.2)	FFM index 59.1 kg/m ² (±13.3) SMM index: 27.1 kg/m ² (±8.4)	AMM index: 7.44 kg/m ² (±1.51)

Table 2 (continued)								
Variables	Moonen H.P. et al. Del Giorno R. [14] et al. [43]	Del Giorno R. et al. [43]	Cornejo-Pareja I. et al. [22]	Osuna-Padilla I.A. et al. [42]	Reyes-Torres C.A. et al. [41]	Moonen H.P. et al. [23]	Da Porto A. et al. [44]	Rosas-Carrasco O. et al. [40]
Cellular mass comparative groups	SMI: 7.5 (7.1–8.0) vs. 8.6 (7.9–9.2), p = 0.006 FFM: 55.5 (50.7–60.3) vs. 63.9 (57.8–70.0), p = 0.028 SLM: 52.4 (47.9–56.9) vs. 60.3 (54.6–66.1), p = 0.028	FFM: 12.4 (± 5.3) vs. 12.5 (± 5.93) , p=0.921 FFM index: 33.9 (± 4.9) vs. 35.8 (± 9.4) , p=0.253 BCM: 17.6 (± 3.9) vs. 18.9 (± 6.9) , p=0.297	BCM: 23 (18.5-31.5) vs. 14.2 (10.2-18.0), p<0.001	Not available	Not available	SMI: 7.9 (7.7–8.2) vs. 8.4 (8.1–8.8), p=0.028 BCM: 36.8 (35.2–38.6) vs. 40.0 (37.8–42.0), p=0.026 FFM: 57.2 (54.8–60.0) vs. 61.8 (58.6–65.0), p=0.026 SML: 53.9 (51.7–56.4) vs. 58.3 (55.3–61.3), p=0.024	FFM index: 62.1 (± 13.1) vs. 49.9 (± 9.3), p < 0.001 SMM index: 29.1 (± 8.2) vs. 20.9 (± 5.7), p < 0.001	AMMI: 7.25 (± 0.92) vs. 6.03 (± 1.29), p=0.0148
R	Not available	Not available	R/H 302.5 Ω/m (272.2–366.3)	Not available	Not available	Not available	Not available	Not available
Resistance comparative groups	Not available	Not available	301.7 (272.2– 363.5) vs. 334.6 (251.5–370.3), p=0.769	Not available	Not available	Not available	Not available	Not available
Reactance	Not available	Not available	24.7 Ω/m (16.3– 31.1)	Not available	Not available	Not available	Not available	Not available
Reactance comparative groups	Not available	Not available	25.3 (18.9–32.4) vs. 15.0 (10.5– 22.6), p=0.001	Not available	Not available	Not available	Not available	Not available
NA not available, S.	MA not available, SD standard deviation, IQR interquartile range, ICU intensive care unit, RV reference values determined as usual, PhA phase angle, ECW extracellular water, TBW total body	<i>IQR</i> interquartile rang	e, <i>ICU</i> intensive care	unit, RV reference v	ge, ICU intensive care unit, RV reference values determined as usual, PhA phase angle, ECW extracellular water	sual, <i>PhA</i> phase angle	<i>ECW</i> extracellular v	vater, TBW total body

water, FFM fat-free mass, SMI skeletal muscle mass index, SLM soft lean mass, SMM skeletal muscle mass, AMMI appendicular muscle mass index, R resistence, Xc Reactance Results published in the original article, with incongruence between the described values of hydration and the significant statistical differences found p=0.037] [23] in a population of 150 patients hospitalized in the ICU and general ward. Osuna-Padilla et al. also found that lower PhA was associated with a longer LOS [r = -0.33, p = 0.03]without deepening multivariate analysis with adjusted models [42]. However, in the study of 90 hospitalized COVID-19 patients investigators did not find a similar association [OR = 1.04, 95%CI (0.12–8.63), p=0.974] [43].

(III) Severity of disease

Phase angle adjusted for age, sex and BMI was significantly associated with the need to IMV [HR = 1.007, 95% CI (0.714–1.422), p=0.007] in 150 hospitalized ward patients [44]. Similarly, Osuna-Padilla et al. found a significant negative correlation between PhA and IMV duration [r = -0.42, p = 0.005] without exploring multivariate analyses with adjusted models [42].

Other studies of patients on the ICU and general ward support the prognostic value of PhA. Among 150 patients, a higher PhA was associated with a lower rate of admission to the ICU [OR=0.531, 95% CI (0.285–0.989), p=0.021] [23]. PhA adjusted for age, sex and BMI was significantly associated with IMV [HR=1.007, 95% CI (0.714–1.422), p=0.007] in hospitalized ward patients [44]. In the composite score studies referred to in the mortality section, PhA was significantly related to the severity of disease in Moonen et al. studies [14, 23], while Del Giorno et al. [43] found no significant differences.

PhA also was as an independent prognostic factor with a composite outcome such as ICU admission and complications including mortality [OR 0.299, p=0.046] [14] and [OR = 0.502, 95% CI (0.281– 0.898), p=0.015), respectively [23]. While Del Giorno et al. found no association between PhA and the composite outcome that includes ICU admission and in-hospital mortality [OR = 0.59, 95%CI (0.21–1.71), p=0.332] [43]. Likewise, the PhA showed not associated with mortality in 150 ward patients into an adjusted model by age, sex and BMI [HR = 1.084, 95% CI (0.803–1.463), p=0.081] [44].

(IV) Complications

Among 150 patients on an ICU and ward hospitalized patients, a lower PhA was a significant predictor of complications such as thrombo-embolic event, renal failure, delirium, and pulmonary fibrosis [OR = 0.579, 95% CI, (0.344–0.973), p=0.031] [23]. In contrast, PhA was not a significant prognostic factor for these complication in 54 patients [OR = 0.413, p=0.061], but PhA was a significantly predictive of severe disease or mortality, as previously shown [14].

Post-extubating dysphagia is emerging as a complication of SARS-CoV2 infection. Among 112 critically ill patients, a PhA < 4.8° was identified as an independent predictor of post-extubating dysphagia in a model adjusted for age and sex [OR = 12.2, 95% CI(4.3-34.1), p < 0.05] [41]. This initial finding suggests a mechanism by which low PhA can contribute to malnutrition in patients with SARS-CoV2 infection.

Studies using regression analysis to determine the significance of the PhA as a predictive marker of poor outcomes included various independent variables for model development. At the same time, age and sex were employed homogeneously in all studies [14, 22, 23, 40-44], most used an indirect indicator of body composition such as BMI [14, 22, 23, 43, 44] or AMMI [40]. Other studies introduced nutritional risk scales such as NUTRIC score [42], hydration status [22], or cell mass [40]. Only three studies included comorbidities [22, 40, 43] as possible confounding factors, and four studies used the risk or prognostic scales [14, 23, 40, 43], making these analyses heterogeneous. This leads to the fact that there may be some differences in the results among some of the studies evaluated, as described previously in this section.

4.4 Quality of studies

The initial literature review yielded 483 publications, only 8 publications covered all four topics related to PICO issues. The quality of the evidence was evaluated following the GRADE method (Table 3), which allowed the scientific committee to make 4 evidence-based recommendations on the prognostic and clinical value of PhA measurements (Table 4).

PhA can be used, with a strong recommendation strength and moderate evidence quality, to predict mortality in hospitalized patients with SARS-CoV2 infection. Similarly, PhA, which has a weak strength of recommendation and a very low-low quality of evidence, can predict a longer LOS hospital stay and advise increased risk of severe disease in hospitalized patients with SARS-CoV2 infection. Also, PhA, with a strong strength of recommendation and a low to moderate quality of evidence, can be used to predict complications in hospitalized patients with SARS-CoV2 infection.

4.5 Usefulness of the PhA as a prognostic factor of poor outcomes: meta-analysis

A randomized-effect or fixed-effect model used when the tests were characterized as heterogeneous or

All-cause mortality in p 1 Moonen 2020 All-cause mortality in p	Certainty assessment						Effect			Certainty	Importance
l-cause mortality in pr Moonen 2020 I-cause mortality in pr	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Nº of events	Nº of individuals	Rate (95% CI)		
Moonen 2020 I-cause mortality in pa	All-cause mortality in patients (ward and ICU hospitalized SARS-CoV	hospitalized SAR	S-CoV2 infection	patients) (follow-	-up: 28 days; ass	2 infection patients) (follow-up: 28 days; assessed with: phase angle)	ngle)				
l-cause mortality in p	observational studies	serious ^a	not serious	not serious	serious ^b	None	8	54	event rate 0.2 (to)	⊕⊕⊖⊖ Low	CRITICAL
	All-cause mortality in patients (ward and ICU hospitalized SARS-CoV	hospitalized SAF	SS-CoV2 infection	patients) (follow	-up: 90 days; as:	/2 infection patients) (follow-up: 90 days; assessed with: phase angle)	angle)				
1 Cornejo-Pareja 2021	observational studies	not serious	not serious	not serious	serious ^c	None	16	127	event rate 3.9 (1.322 to 11.572)	⊕⊕⊕⊖ Moderate	CRITICAL
-cause mortality in pa	All-cause mortality in patients (ICU hospitalized SARS-CoV2 infection patients) (follow-up: 60 days; assessed with: phase angle (Low SPhA <-1.65)	ed SARS-CoV2 ii	nfection patients) (follow-up: 60 da	ys; assessed with	1: phase angle (Low	/ SPhA <- j	1.65)			
1 Osuna-Padilla 2021	observational studies	not serious	not serious	serious ^d	not serious	None	25	67	event rate 3.1 (1.12 to 8.41)	$\oplus \oplus \oplus \bigcirc$ Moderate	CRITICAL
-cause mortality in p	All-cause mortality in patients (General ward hospitalized SARS-CoV2 infection patients) (follow-up: 60 days; assessed with: phase angle)	ospitalized SAR5	S-CoV2 infection	vatients) (follow-	up: 60 days; asse	ssed with: phase at	ngle)				
1 Da Porto 2021	observational studies	not serious	not serious	serious ^e	serious ^f	None	22	150	event rate 1.1 (0.803 to 1.463)	⊕⊕⊖⊖ Low	CRITICAL
-cause mortality in pa	All-cause mortality in patients (General ward hospitalized SARS-CoV2 infection patients) (follow-up: 20 days, assessed with: phase angle <3.66 ^o)	nospitalized SAR5	S-CoV2 infection [atients) (follow-	up: 20 days, asse	ssed with: phase ar	1gle < 3.66 ^c				
l Rosas-Carrasco 2022	observational studies	serious ^g	not serious	not serious	not serious	None	42	104	event rate 2.6 (1.217 to 5.430)	$\oplus \oplus \oplus \bigcirc$ Moderate	CRITICAL
olonged length hospit	Prolonged length hospital stay (defined as length hospital stay > 21 days) in patients (General ward hospitalized SARS-CoV2 infection patients) (assessed with: phase angle)	gth hospital stay>	> 21 days) in patier	nts (General ward	I hospitalized SA	RS-CoV2 infection	n patients) (assessed with: 1	phase angle)		
1 Del Giorno 2020	observational studies	serious ^h	serious ⁱ	not serious	serious ^j	None	19	06	event rate 1.0 (0.12 to 8.63)	⊕⊖⊖ Very Low	IMPORTANT
ngth of hospital stay i	Length of hospital stay in patients (General ward and ICU hospitalized	urd and ICU hospi		V2 infection patie	ants) (follow-up:	SARS-CoV2 infection patients) (follow-up: 90 days; assessed with: phase angle)	vith: phase	angle)			
1 Moonen 2021	observational studies	not serious	not serious	not serious	seriou ^k	None	I	150	event rate 0.9 (0.765 to 1.001)	⊕⊕OO Low	IMPORTANT
everity disease (evaluated by a comp 28 days; assessed with: phase angle)	Severity disease (evaluated by a composite score that comprised ICU admission and complications including mortality) in patients (General ward and ICU hospitalized SARS-CoV2 infection patients) (follow-up: 28 days; assessed with: phase angle)	re that comprised	ICU admission ar	d complications	including mortal	ity) in patients (Ge	neral ward	and ICU hospit	alized SARS-CoV2 inf	ection patients)	(follow-up:
1 Moonen 2020	observational studies	serious ^a	not serious	not serious	serious ^{bl}	None	34	54	event rate 0.3 (to)	⊕⊕OO Low	CRITICAL
everity disease (evaluated by a comp 90 days; assessed with: phase angle)	Severity disease (evaluated by a composite score that comprised ICU admission and complications including mortality) in patients (General ward and ICU hospitalized SARS-CoV2 infection patients) (follow-up: 90 days; assessed with: phase angle)	re that comprised	ICU admission ar	d complications	including mortal	ity) in patients (Ge	neral ward	and ICU hospit	alized SARS-CoV2 inf	ection patients)	(follow-up:
1 Moonen 2021	observational studies	not serious	not serious	not serious	serious ^c	None	LT	150	event rate 0.5 (0.281 to 0.898)	⊕⊕⊕⊖ Moderate	CRITICAL
ere Disease (defined :	Severe Disease (defined as Need for supportive care) with intensive mechanical ventilation in patients (General ward hospitalized SARS-CoV2 infection patients) (follow-up: 60 days; assessed with: phase angle)	care) with intensi	ive mechanical vei	ntilation in patien	tts (General ward	hospitalized SAR	S-CoV2 inf	ection patients)	(follow-up: 60 days; as	ssessed with: ph	ase angle)
1 Da Porto 2021	observational studies	not serious	not serious	serious ^e	serious ^f	None	23	150	event rate 1.0 (0.714 to 1.422)	⊕⊕⊖⊖ Low	IMPORTANT
verity disease (evaluat	Severity disease (evaluated by composite score that comprised in-hospital mortality and needs ICU admission) in patients (General ward hospitalized SARS-CoV2 infection patients) (assessed with: phase angle)	that comprised in	1-hospital mortalit	y and needs ICU	admission) in pa	tients (General war	rd hospitali	zed SARS-CoV	2 infection patients) (as	ssessed with: ph	ase angle)
1 Del Giorno 2020	observational studies	serious ^h	serious ^m	not serious	serious ⁿ	None	18	90	event rate 0.6 (0.21 to 1.71)	000 Very Low	CRITICAL

🖄 Springer

Table 3 GRADE evidence in SARS-CoV2 infection: Summary of the body of evidence, the judgments about the quality of the evidence, key results, and importance

										Certainty	Importance
S	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	№ of events	№ of individuals	Rate (95% CI)		
1 Moonen 2020 oj	observational studies	serious ^a	not serious	not serious	serious ^b	None	28	54	event rate 0.4 (to)	⊕⊕OO Low	IMPORTANT
COVID-19 complications, (defined as thrombo-embolic event, renal failure, delirium, lung fibrosis, among others) in patients (General ward and ICU hospitalized SARS-CoV2 infection patients) (follow-up: 90 days; assessed with: phase anole)	s, (defined as thrombo- ile)	embolic event, r	enal failure, deliriu	ım, lung fibrosis,	among others) i	n patients (General	ward and IC	CU hospitalized	l SARS-CoV2 infectio	n patients) (follo	ow-up: 90 days;
1 Moonen 2021 ol	observational studies	not serious	not serious	not serious	serious ^c	None	59	150	event rate 0.6 (0.344 to 0.973)	⊕⊕⊕() Moderate	IMPORTANT
COVID-19 complications (defined as dysphagia post-extubation) in patients (ICU hospitalized SARS-CoV2 infection patients) (assessed with: phase angle <4.8°)	s (defined as dysphagia	post-extubation) in patients (ICU	hospitalized SAR	S-CoV2 infectic	on patients) (assesse	sd with: pha	se angle $<4.8^{\circ}$	-		
1 Reyes-Torres 2021 o	observational studies	not serious	not serious	not serious	serious ^c	None	46	112	event rate 12.2 (4.3 to 34.1)	⊕⊕⊕⊖ Moderate	IMPORTANT
Explanations:											
^a Cross-sectional study. No predefined criteria for the PhA measurement at admission and short follow-up time -28d-	No predefined criter	ia for the PhA	measurement at	t admission and	l short follow-ı	up time –28d–					
^b Not report confidence interval	interval										
^c Wide confidence intervals	vals										
^d Indirect evidence: only assessed ICU patients. Applicability may not be the same in overall COVID-19 hospitalized patients. Populations may differ in varying degrees of disease severity	v assessed ICU patie.	nts. Applicabi	lity may not be t	he same in over	rall COVID-19	9 hospitalized pat	tients. Popu	ulations may	differ in varying deg	rrees of diseas	e severity
*Risk results associated with malnutrition are found, but not significant concerning to mortality or the need for supportive care with intensive mechanical ventilation	l with malnutrition a	re found, but r	not significant co	incerning to me	rtality or the 1	reed for supportiv	ve care wit	h intensive m	echanical ventilation	r.	
^f When performing Cox regression (multivariate) analysis with an adjusted model (with possible confounders) significance is lost. The confidence interval includes the null value	regression (multiva	riate) analysis	with an adjusted	l model (with p	ossible confou	ınders) significan	ce is lost.	The confidence	ce interval includes	the null value	
^g To assess overall mortality, it includes a short follow-up time –20d–	ality, it includes a sh	ort follow-up	time -20d-								
hRetrospective Observational Study	ttional Study										
¹ Heterogeneity between results: the significant result for the study of PhA in predicting prolonged length of hospital stay (defined by > 21 days) assessed by receiver operating characteristic (ROC) curve, but when performing Logistic regression (multivariate) analysis significance is lost	1 results: the signific performing Logistic	cant result for tregression (n	the study of Ph nultivariate) ana.	A in predicting lysis significant	g prolonged le ce is lost	angth of hospital	stay (defir	ied by>21 d	ays) assessed by ree	ceiver operati	ng characteristi
^j It not provides PhA cut-off points in the analysis of receiver operating characteristic (ROC) curves for the length of hospital stay. It not defines why it establishes in 21 days the point to define prolonged length hospital stay	nt-off points in the ar tal stay	alysis of rece	iver operating cl	naracteristic (R	OC) curves fo	r the length of hc	ospital stay	. It not define	ss why it establishes	in 21 days th	e point to defin
^k Wide confidence interval, which crosses the value of 1	val, which crosses th	te value of 1									
¹ When performing Logistic regression (multivariate) analysis with an adjusted model (with possible confounders) significance is lost	istic regression (mul-	tivariate) anal	ysis with an adju	isted model (wi	th possible co	nfounders) signif	icance is lo	ost			
"Heterogeneity between results: with the significant result for the study of PhA in predicting severity disease by composite outcomes assessed by receiver operating characteristic (ROC) curve, but when performing Logistic regression (multivariate) analysis significance is lost	in results: with the si ogistic regression (m	gnificant resu ultivariate) ar	It for the study c nalysis significar	of PhA in predicted in the second sec	cting severity	disease by compo	osite outco:	mes assessed	by receiver operatii	ng characterist	ic (ROC) curve
ⁿ It not provide PhA cut-off points in the analysis of receiver operating characteristic (ROC) curves for severity disease. And a wide confidence interval, which crosses the value of	-off points in the ana	ulysis of receiv	er operating cha	rracteristic (RO	C) curves for :	severity disease.	And a wide	confidence	interval, which cross	es the value o	f 1

No.	Торіс	Strength of recommendation	Quality of evidence	Recommendation
R1	Phase angle	Strong	Moderate	The phase angle, measured by bioelectrical impedance analysis, can be used for predicting mortality in hospitalized patients with SARS-CoV2
R2	Phase angle	Weak	Very Low-Low	The phase angle, measured by bioelectrical impedance analysis, can be suggest a longer length of hospital stay in hospitalized patients with SARS-CoV2
R3	Phase angle	Weak	Very Low-Low	The phase angle, measured by bioelectrical impedance analysis, can advise severe disease in hospitalized patients with SARS-CoV2
R4	Phase angle	Strong	Low-Moderate	The phase angle, measured by bioelectrical impedance analysis, can be used for predicting complications in hospitalized patients with SARS-CoV2 infection

Table 4 Evidence-based recommendations following the GRADE method for hospitalized patients with SARS-CoV2 infection

homogeneous, respectively, was employed for meta-analysis. Meta-analysis of data from 502 patients indicated a significantly increased mortality risk in COVID-19 patients with lower PhA [RR: 2.44; 95% CI (1.20–4.99), p = 0.01]. Heterogeneity between studies: $I^2 = 79\%$ (p = 0.0008)]. A significantly increased complications risk was found in 316 COVID-19 patients with lower PhA [OR: 3.47, 95% CI (1.16–10.37), p = 0.03; Heterogeneity between studies: $I^2 = 82\%$ (p = 0.004)]. Nevertheless, PhA was not a significant predictor of severe disease with 444 patients included [RR: 1.59, 95% CI (0.94–2.69), p = 0.08] (Fig. 4).

5 Discussion

The present systematic review with meta-analysis evaluated the predictive capability of PhA on the clinical prognosis of COVID-19 patients. The overall result showed that a low PhA in hospitalized COVID-19 patients could predict a higher risk of death or complications. This systematic review was the first report of the combined use of the GRADE method and incorporating meta-analysis for the evaluation of the value of PhA as a prognostic marker for poor outcomes in hospitalized COVID-19 patients [45]; allowing statistical evaluation of the included studies and to analyse their quality to generate recommendations.

A. PhA as a prognostic marker for Mortality

			Survivors	Non-Survivors		Risk Ratio	Risk Ratio
Study or Subgroup	log[Risk Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Da Porto A 2021	0.0807	0.0462	128	22	28.3%	1.08 [0.99, 1.19]	-
Rosas-Carrasco O. 2022	0.9443	0.3816	62	42	21.7%	2.57 [1.22, 5.43]	
Osuna-Padilla IA 2021	1.1249	0.4836	42	25	19.0%	3.08 [1.19, 7.95]	
Cornejo-Pareja I 2021	1.364	0.5535	111	16	17.2%	3.91 [1.32, 11.57]	
Moone et al. 2020	1.5702	0.7006	46	8	13.9%	4.81 [1.22, 18.98]	
Total (95% CI)			389	113	100.0%	2.44 [1.20, 4.99]	
Heterogeneity: Tau ² = 0.47;		4 (P = 0	.0008); I² = 7	9%			
Test for overall effect: Z = 2.	45 (P = 0.01)						Favours [Survivors] Favours [Non-survivors]

B. PhA as a prognostic marker for Severe Disease

			Not Severity Disease	Severity Disease		Risk Ratio	Risk	Ratio	
Study or Subgroup	log[Risk Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Rando	om, 95% Cl	
Da Porto A 2021	0.007	0.1754	127	23	39.8%	1.01 [0.71, 1.42]		•	
Del Giorno R, 2020	0.5276	0.543	72	18	16.1%	1.69 [0.58, 4.91]			
Moone HP 2021	0.6892	0.2967	73	77	30.2%	1.99 [1.11, 3.56]			
Moone et al. 2020	1.206	0.6044	20	34	13.9%	3.34 [1.02, 10.92]			
Total (95% CI)			292	152	100.0%	1.59 [0.94, 2.69]		•	
Heterogeneity: Tau ² = Test for overall effect:			= 0.08); I ² = 56%				0.01 0.1 Favours [Not Severity Disease]	1 10	100

C. PhA as a prognostic marker for Complications

Fig. 4 The subgroups analyses of PhA as a prognostic marker for poor outcomes in hospitalized COVID-19 patients. The severity data of OR or HR and 95% CI from 8 studies were pooled in this metaanalysis and the result of the meta-analysis was described as a forest plot. 8 studies were grouped, in the main poor outcomes studied: mortality (**A**), severity disease (**B**) and complications (**C**). OR: Odds ratio; HR: Hazard ratio; CI: confidence interval; intensive care unit The reported PhA and other bioelectrical parameter values differed significantly in hospitalized COVID-19 patients between comparison groups. A low PhA was associated with the patient group, which had a poor clinical evolution or a severe disease with complications (critically ill, presence of complications or mortality). The decreased mean PhA values of the patients with COVID-19 are consistent with the findings of patients with other pathologies, such as inflammatory or infectious pathologies [46, 47], pulmonary disease [48], or patients admitted to the ICU [49].

When assessing the association between PhA and mortality risk of hospitalized patients with SARS-CoV2 infection, this analysis included five studies and 502 patients and determined a significant association. This finding was also seen in patients who were critically ill or had cancer, chronic kidney disease, or heart failure [21]. Also, the present review determined an association between low PhA and complications in hospitalized patients with SARS-CoV2 infection using data from three studies and 316 patients. A similar observation was reported in patients undergoing lung cancer surgery [50]. The severity of the disease was also related to low PhA values in liver disease [51]. Other studies discovered that a reduced PhA was predictive of more extended hospital stay in patients hospitalized in internal medicine [25] or medical and surgical patients in general ward [35]. Our systematic review found no significant association for PhA as a predictor of disease severity (four studies and 444 patients).

The inconsistency between the findings of our metaanalysis review and some individual reports may be due to the few studies that evaluated the association of PhA and poor outcomes in COVID-19 patients and specific technical characteristics and differences between studies. Studies were homogeneous for age (overall > 65 y), sex (male gender dominant > 60%) and clinical profile (e.g., hospitalized COVID-19 patients: ICU or general ward). However, they were heterogeneous relative to experimental design (e.g., prospective cohort study (most), cross-sectional study or retrospective study), follow-time (20-90 d), PhA measurement time (24-72 h after admission), BIA device (e.g., BIA InBody S10®; BIA 101 BIVA AKERN®; BIA SECA® model mBCA 525; BIA Quantum V RJL Systems®), and reference PhA values determined as usual. The PhA values were determined with substantially different BIA devices. Measurements were performed using different types of electrodes (gel wet electrodes vs dry contact), different BI technologies (single 50 kHz frequency phase-sensitive devices optimized calibration vs bioelectrical impedance spectroscopy (BIS) with phase sensitivity using phase detection mediated between 4 to 1000 kHz), and most of the studies did not specify the body position during measurement (recumbent vs standing). Use of different BIA devices to determine PhA (50 kHz compared to multifrequency) can influence the reported values [21]. PhA values are maximal near 50 kHz when measured directly and can vary if determined indirectly (e.g., modelled). Although PhA was measured at 50 kHz in most studies, not all studies specified the frequency at which they had measured PhA.

Thus, another significant matter is related to the PhA cutoff or the reference values employed in the analyses of the studies. Currently, there is no known specific and valid PhA value to identify mortality, severe disease or complications in COVID-19 patients. However, the lower PhA percentiles found in the studied groups were used as a cut-off. This problem of lack of reference values in the disease can be partially solved by analysing the SPhA. The age- and sex-adjusted SPhA may be useful to obtain a prognostic value. Thus, in two of the studies analysed in this systematic review, data on SPhA in relation to mortality are provided. SPhA is also associated with poor outcomes in other diseases [24].

The human body may be considered as a network of resistors (R), represented by body fluids and their electrolytes, and capacitors (Xc) consisting of cell membranes and tissue interfaces. Thus, BIA and PhA measurements may indicate fluid distributions (E/I) and cell mass (BCM). The preponderance of the studies of patients with COVID-19 identify simultaneously identify poor outcomes with low PhA values, and a common finding also overhydration status associated with a high degree of inflammation and a lower cell mass related to malnutrition and sarcopenia (Table 2).

Observational reports identify excess fluid accumulation and acral and pulmonary oedema in SARS-CoV-2 infection, especially those patients that progress to acute respiratory distress syndrome [52]. In SARS-CoV-2 infection, overhydration refers to an imbalance in fluid distribution between extracellular and intracellular water volumes with the expansion of ECW associated with systemic inflammation and aggressive fluid administration [53]. The pathogenesis of overhydration is due to the inflammatory component of the disease and the primary fluid retention due to cardiac or renal hemodynamic failure. This mechanism may be similar to the PhA changes that occur in heart failure [54] or kidney failure [55]. Therefore, patients with overhydration status are related with poor outcomes such as, a higher incidence of sepsis or complications with multiple organ failure constitutes inflammatory settings favourable to more fluid retention.

Similarly, patients with acute SARS-CoV2 infection tend to lose weight due to cachexia with catabolic and metabolic alterations that directly impact nutritional status [56]. Obesity is a risk factor for adverse outcomes of COVID-19[57]. It is associated with impaired measures of the quantity and quality of muscle mass and fat mass that exacerbate outcomes in severe SARS-CoV2 infection and can indirectly promote malnutrition [34, 58], which is highly related to mortality [35].

Heterogeneity in studies is a main limitation of this systematic review. Body composition, sex, or age influence PhA values. Whereas control of these contributing factors is important in studies of potential biomarkers of prognosis, clinical and medical circumstances may not fully allow the avoidance of them. Also, confounding factors such as comorbidities or risk scales [59, 60] may be impractical to control. Statistical analytical methods allow for adjustment in age and gender and body composition, generally BMI, in the assessment of risk.

Similarly, adjustment for indices of nutritional status assessment and prognostic scales is infrequently performed in risk assessments.

The strengths of the systematic review were consistent with the PRISMA statement. This was achieved by using a rigorous research protocol to evaluate relevant publications, allowing adequate eligibility criteria and uniform search strategies to be used. The search utilized different databases and was reviewed by various authors; there were no restrictions made for year of publication or also not the place of execution. Also, this review used the GRADE method, which is a validated tool for the analysis of the quality of the evidence. GRADE proposes specific criteria that should be considered, particularly in observational studies. It provides guidance to describe clinical recommendations about the usefulness of PhA as a predictor of poor outcome markers. The meta-analysis enables the derivation of global results to determine risks of reduced PhA associated with mortality, severity, and complications of SARS-CoV2 infection.

7 Conclusion

This systematic review determined that PhA, by BIA, is a valid prognostic indicator of mortality and complications in hospitalized COVID-19 patients.

Although the results are promising, there is still a deficiency of knowledge about the use of thresholds of the PhA in this population. Future studies are needed to identify PhA cut-off to guide therapeutic decisions more precisely. The reduction in values of PhA can indicate poor outcomes and allow a more adjusted supportive treatment of these patients.

Author contribution The authors I.C.-P., J.M.G.-A., D.B.-G., F.J.T., I.M.V.-A., R.F.-J. and C.G.-G. contributed to the design, search, sorting and data 483 extraction and analysis procedure. I.C.-P., I.M.V.-A., R.F.-J. and C.G.-G. I. drafted the manuscript. I.C.-P., J.M.G.-A., D.B.-G., and F.J.T., critically revised 211 the manuscript for important intellectual content. All authors approved the final version of the manuscript.

Funding Funding for open access publishing: Universidad Málaga/ CBUA. I.C.-P. was the recipient of a postdoctoral grant (Río Hortega CM 17/00169) and is now the recipient of a postdoctoral grant (Juan Rodes JR 19/00054) from the Instituto de Salud Carlos III and co-funded by Fondo Europeo de Desarrollo Regional-FEDER. Funding for open access charge: Universidad de Málaga / CBUA.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

- Demeco A, Marotta N, Barletta M, Pino I, Marinaro C, Petraroli A, et al. Rehabilitation of patients post-COVID-19 infection: a literature review. J Int Med Res. 2020;48:300060520948382.
- WHO Coronavirus (COVID-19) Dashboard. World Health Organization. [Internet]. 2023 [cited 2023 Jan 14]. Available from: https://covid19.who.int.
- Docherty AB, Harrison EM, Green CA, Hardwick HE, Pius R, Norman L, et al. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: Prospective observational cohort study. BMJ. 2020;369:m1985.
- Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann H-H, Zhang Y, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370:eabd4585.
- Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–62.
- Bellou V, Tzoulaki I, van Smeden M, Moons KGM, Evangelou E, Belbasis L. Prognostic factors for adverse outcomes in patients with COVID-19: a field-wide systematic review and meta-analysis. Eur Respir J. 2022;59:2002964.
- Qian Z, Lu S, Luo X, Chen Y, Liu L. Mortality and clinical interventions in critically ill patient with coronavirus disease 2019: a systematic review and meta-analysis. Front Med (Lausanne). 2021;8:635560.
- Therapeutics and COVID-19: Living guideline. World Health Organization. [Internet]. 2023 [cited 2023 Jan 14]. Available from: https://www.who.int/publications-detail-redirect/WHO-2019-nCoV-therapeutics-2022.4.
- Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395:507–13.
- Lopez M, Bell K, Annaswamy T, Juengst S, Ifejika N. COVID-19 guide for the rehabilitation clinician: a review of nonpulmonary manifestations and complications. Am J Phys Med Rehabil. 2020;99:669–73.
- Narici M, Vito GD, Franchi M, Paoli A, Moro T, Marcolin G, et al. Impact of sedentarism due to the COVID-19 home confinement on neuromuscular, cardiovascular and metabolic health: Physiological and pathophysiological implications and recommendations for physical and nutritional countermeasures. Eur J Sport Sci. 2021;21:614–35.

- Welch C, Greig C, Masud T, Wilson D, Jackson TA. COVID-19 and acute sarcopenia. Aging Dis. 2020;11:1345–51.
- Huang NX, Yuan Q, Fang F, Yan BP, Sanderson JE. Systematic review and meta-analysis of the clinical outcomes of ACEI/ARB in East-Asian patients with COVID-19. PLoS ONE. 2023;18:e0280280.
- Moonen HPFX, van Zanten FJL, Driessen L, de Smet V, Slingerland-Boot R, Mensink M, et al. Association of bioelectric impedance analysis body composition and disease severity in COVID-19 hospital ward and ICU patients: The BIAC-19 study. Clin Nutr. 2021;40:2328–36.
- de Blasio F, Scalfi L, Castellucci B, Sacco AM, Berlingieri GM, Capitelli L, et al. Poor nutritional status and dynapenia are highly prevalent in post-acute COVID-19. Front Nutr. 2022;9:888485.
- Cornejo-Pareja I, Vegas-Aguilar IM, Lukaski H, Talluri A, Bellido-Guerrero D, Tinahones FJ, et al. Overhydration assessed using bioelectrical impedance vector analysis adversely affects 90-day clinical outcome among SARS-CoV2 patients: a new approach. Nutrients. 2022;14:2726.
- Jeong YJ, Wi YM, Park H, Lee JE, Kim S-H, Lee KS. Current and Emerging Knowledge in COVID-19. Radiology. Radiol Soc North Am. 2023;222462.
- Zhao X, Li Y, Ge Y, Shi Y, Lv P, Zhang J, et al. Evaluation of nutrition risk and its association with mortality risk in severely and critically Ill COVID-19 patients. JPEN J Parenter Enteral Nutr. 2021;45:32–42.
- Lukaski HC, Kyle UG, Kondrup J. Assessment of adult malnutrition and prognosis with bioelectrical impedance analysis: Phase angle and impedance ratio. Curr Opin Clin Nutr Metab Care. 2017;20:330–9.
- Lukaski HC, Vega Diaz N, Talluri A, Nescolarde L. Classification of hydration in clinical conditions: Indirect and direct approaches using bioimpedance. Nutrients. 2019;11.
- Garlini LM, Alves FD, Ceretta LB, Perry IS, Souza GC, Clausell NO. Phase angle and mortality: a systematic review. Eur J Clin Nutr. 2019;73:495–508.
- 22. Cornejo-Pareja I, Vegas-Aguilar IM, García-Almeida JM, Bellido-Guerrero D, Talluri A, Lukaski H, et al. Phase angle and standardized phase angle from bioelectrical impedance measurements as a prognostic factor for mortality at 90 days in patients with COVID-19: a longitudinal cohort study. Clin Nutr. 2022;41:3106–14.
- Moonen HPFX, Bos AE, Hermans AJH, Stikkelman E, van Zanten FJL, van Zanten ARH. Bioelectric impedance body composition and phase angle in relation to 90-day adverse outcome in hospitalized COVID-19 ward and ICU patients: The prospective BIAC-19 study. Clinical Nutrition ESPEN. 2021;46:185–92.
- Paiva SI, Borges LR, Halpern-Silveira D, Assunção MCF, Barros AJD, Gonzalez MC. Standardized phase angle from bioelectrical impedance analysis as prognostic factor for survival in patients with cancer. Support Care Cancer. 2010;19:187–92.
- 25. Del Giorno R, Quarenghi M, Stefanelli K, Rigamonti A, Stanglini C, De Vecchi V, et al. Phase angle is associated with length of hospital stay, readmissions, mortality, and falls in patients hospitalized in internal-medicine wards: a retrospective cohort study. Nutrition. 2021;85:111068.
- 26. do Amaral Paes TC, de Oliveira KCC, de Carvalho Padilha P, Peres WAF. Phase angle assessment in critically ill cancer patients: Relationship with the nutritional status, prognostic factors and death. J Crit Care. 2018;44:430–5.
- Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. Br Med J Publ Group. 2021;372:n71.
- Schünemann HJ, Oxman AD, Brozek J, Glasziou P, Jaeschke R, Vist GE, et al. Grading quality of evidence and strength of recommendations for diagnostic tests and strategies. BMJ. 2008;336:1106–10.
- 29. Cumpston MS, McKenzie JE, Thomas J, Brennan SE. The use of 'PICO for synthesis' and methods for synthesis without

meta-analysis: Protocol for a survey of current practice in systematic reviews of health interventions. F1000Res. 2021;9:678.

- Kavanagh BP. The GRADE system for rating clinical guidelines. PLoS Med. 2009;6:e1000094.
- Guyatt GH, Oxman AD, Sultan S, Glasziou P, Akl EA, Alonso-Coello P, et al. GRADE guidelines: 9. Rating up the quality of evidence. J Clin Epidemiol. 2011;64:1311–6.
- Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, et al. Bioelectrical impedance analysis-part II: Utilization in clinical practice. Clin Nutr. 2004;23:1430–53.
- García Almeida JM, García García C, Vegas Aguilar IM, Bellido Castañeda V, Bellido GD. Morphofunctional assessment of patient's nutritional status: a global approach. Nutr Hosp. 2021;38:592–600.
- Cornejo-Pareja I, Soler-Beunza AG, Vegas-Aguilar IM, Fernández-Jiménez R, Tinahones FJ, García-Almeida JM. Predictors of sarcopenia in outpatients with post-critical SARS-CoV2 disease. Nutritional ultrasound of rectus femoris muscle, a potential tool. Nutrients. 2022;14:4988.
- 35. Fernández-Jiménez R, Dalla-Rovere L, García-Olivares M, Abuín-Fernández J, Sánchez-Torralvo FJ, Doulatram-Gamgaram VK, et al. Phase angle and handgrip strength as a predictor of diseaserelated malnutrition in admitted patients: 12-month mortality. Nutrients. 2022;14:1851.
- da Silva BR, Gonzalez MC, Cereda E, Prado CM. Exploring the potential role of phase angle as a marker of oxidative stress: a narrative review. Nutrition. 2022;93:111493.
- Cardinal TR, Wazlawik E, Bastos JL, Nakazora LM, Scheunemann L. Standardized phase angle indicates nutritional status in hospitalized preoperative patients. Nutr Res. 2010;30:594–600.
- Piccoli A, Nigrelli S, Caberlotto A, Bottazzo S, Rossi B, Pillon L, et al. Bivariate normal values of the bioelectrical impedance vector in adult and elderly populations [Internet]. Am J Clin Nutr. 1995 [cited 2020 Jun 20]. Available from: https://pubmed.ncbi.nlm.nih. gov/7840061/?from_single_result=.+Piccoli+A%2C+Nigrelli+S% 2C+Caberlotto+A%2C+Bottazzo+S%2C+Rossi+B%2C+Pillon+ L%2C+et+al.+Bivariate+normal+values+of+the+bioelectrical+ impedance+vector+in+adult+and+elderly+populations.+Am+J+ Clin+Nutr.+1995%3B61%3A+269%E2%80%93270.
- Piccoli A, Rossi B, Pillon L, Bucciante G. A new method for monitoring body fluid variation by bioimpedance analysis: The RXc graph. Kidney Int. 1994;46:534–9.
- 40. Rosas-Carrasco O, Núñez-Fritsche G, López-Teros MT, Acosta-Méndez P, Cruz-Oñate JC, Navarrete-Cendejas AY, et al. Low muscle strength and low phase angle predicts greater risk to mortality than severity scales (APACHE, SOFA, and CURB-65) in adults hospitalized for SARS-CoV-2 pneumonia. Front Nutr. 2022;9:965356.
- Reyes-Torres CA, Flores-López A, Osuna-Padilla IA, Hernández-Cárdenas CM, Serralde-Zúñiga AE. Phase angle and overhydration are associated with post-extubating dysphagia in patients with COVID-19 discharged from the ICU. Nut in Clin Prac. 2022;37:110–6.
- 42. Osuna-Padilla IA, Rodríguez-Moguel NC, Rodríguez-Llamazares S, Aguilar-Vargas A, Casas-Aparicio GA, Ríos-Ayala MA, et al. Low phase angle is associated with 60-day mortality in critically ill patients with COVID-19. J Parenter Enteral Nutr. 2022;46:828–35.
- Del Giorno R, Quarenghi M, Stefanelli K, Capelli S, Giagulli A, Quarleri L, et al. Nutritional risk screening and body composition in COVID-19 patients hospitalized in an internal medicine ward. IJGM. 2020;13:1643–51.
- 44. Da Porto A, Tascini C, Peghin M, Sozio E, Colussi G, Casarsa V, et al. Prognostic role of malnutrition diagnosed by bioelectrical impedance vector analysis in older adults hospitalized with COVID-19 pneumonia: a prospective study. Nutrients. 2021;13:4085.
- Alves EAS, Salazar TCDN, Silvino VO, Cardoso GA, Dos Santos MAP. Association between phase angle and adverse clinical outcomes in hospitalized patients with COVID-19: a systematic review. Nut Clin Prac. 2022;37:1105–16.

- 46. Schwenk A, Beisenherz A, Römer K, Kremer G, Salzberger B, Elia M. Phase angle from bioelectrical impedance analysis remains an independent predictive marker in HIV-infected patients in the era of highly active antiretroviral treatment. Am J Clin Nutr. 2000;72:496–501.
- 47. Shah S, Whalen C, Kotler DP, Mayanja H, Namale A, Melikian G, et al. Severity of human immunodeficiency virus infection is associated with decreased phase angle, fat mass and body cell mass in adults with pulmonary tuberculosis infection in Uganda. J Nutr. 2001;131:2843–7.
- de Blasio F, Scalfi L, Di Gregorio A, Alicante P, Bianco A, Tantucci C, et al. Raw bioelectrical impedance analysis variables are independent predictors of early all-cause mortality in patients with COPD. Chest. 2019;155:1148–57.
- 49. Lee Y, Kwon O, Shin CS, Lee SM. Use of bioelectrical impedance analysis for the assessment of nutritional status in critically ill patients. Clin Nutr Res. 2015;4:32–40.
- 50. Suzuki Y, Kushimoto Y, Ishizawa H, Kawai H, Ito A, Matsuda Y, et al. The phase angle as a predictor of postoperative complications in patients undergoing lung cancer surgery. Surg Today. 2022.
- Pagano AP, Sicchieri JMF, Schiavoni IL, Barbeiro D, Manca CS, da Silva BR, et al. Phase angle as a severity indicator for liver diseases. Nutrition. 2020;70:110607.
- Valtueña J, Ruiz-Sánchez D, Volo V, Manchado-López P, Garayar-Cantero M. Acral edema during the COVID-19 pandemic. Int J Dermatol. 2020;59:1155–7.
- Alhazzani W, Møller MH, Arabi YM, Loeb M, Gong MN, Fan E, et al. Surviving sepsis campaign: Guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Med. 2020;46:854–87.

- Scicchitano P, Massari F. The role of bioelectrical phase angle in patients with heart failure. Rev Endocr Metab Disord. 2022;1–13.
- 55. Han B-G, Lee JY, Kim J-S, Yang J-W. Clinical significance of phase angle in non-dialysis CKD stage 5 and peritoneal dialysis patients. Nutrients. 2018;10:1331.
- González-Salazar LE, Guevara-Cruz M, Hernández-Gómez KG, Serralde Zúñiga AE. Nutritional management of the critically ill inpatient with COVID-19. A narrative review. Nutr Hosp. 2020;34:622–30.
- 57. Cornejo-Pareja IM, Gómez-Pérez AM, Fernández-García JC, Barahona San Millan R, Aguilera Luque A, de Hollanda A, et al. Coronavirus disease 2019 (COVID-19) and obesity. Impact of obesity and its main comorbidities in the evolution of the disease. Eur Eat Disord Rev. 2020;28:799–815.
- Cava E, Carbone S. Coronavirus disease 2019 pandemic and alterations of body composition. Curr Opin Clin Nutr Metab Care. 2021;24:229–35.
- Barbosa-Silva MCG, Barros AJD, Wang J, Heymsfield SB, Pierson RN. Bioelectrical impedance analysis: population reference values for phase angle by age and sex. Am J Clin Nutr. 2005;82:49–52.
- 60. Gonzalez MC, Heymsfield SB. Bioelectrical impedance analysis for diagnosing sarcopenia and cachexia: What are we really estimating? J Cachexia Sarcopenia Muscle. 2017;8:187–9.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.