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Abstract
We will study evolution algebras A that are free modules of dimension two over
domains. We start by making some general considerations about algebras over
domains: They are sandwiched between a certain essential D-submodule and its scalar
extension over the field of fractions of the domain.We introduce the notion of quasiper-
fect algebras and we characterize the perfect and quasiperfect evolution algebras in
terms of the determinant of its structure matrix. We classify the two-dimensional
perfect evolution algebras over domains parametrizing the isomorphism classes by a
convenient moduli set.
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1 Introduction

There is a large number of publications studying two-dimensional evolution algebras
(see [1, 2, 4–6, 8, 9], etc.). Among them, we could highlight those works that deal
with their classification. So, in the works [6, 8], the evolution algebras of dimension
two over the reals and complex numbers are, respectively, classified. The paper [5]
contains the classification of the evolution algebras of dimension two and three over
the real and complex field. The work [1] is addressed to the case in which the ground
field K is algebraically closed. In [2], the classification of the evolution algebras of
dimension two over arbitrary fields is provided. In [3], we can find more information
about the evolution of the research in the field of evolution algebras defined in [10]. Our
contribution in this work is the study of two-dimensional perfect evolution algebras
over domains.

In this paper, the word domain will stand for an integral domain, i.e., a commutative
ring such that xy = 0 implies x = 0 or y = 0. If D is a domain, an evolution algebra
over D is a D-algebra that is free as D-module and has a basis B = {ei }i∈I such that
ei e j = 0 for any i �= j . Such basis B is called a natural basis. Of course, any one-
dimensional D-algebra is an evolution algebra. Evolution algebras over domains are
much more complex than evolution algebras over fields: As we will see, there may be
an infinite family of non-isomorphic one-dimensional evolution algebras over certain
domains (while in the case of fields, we only have two isomorphism classes). One of
the elements of this study is the use of moduli sets from certain classes of algebras:
The idea is to parametrize the algebras of a class by tuples of parameters ranging in
a given space. It turns out that in some cases, the tuples range in curves or surfaces
or other varieties. The different algebras in the same isomorphism class may happen
to be in a curve of an affine plane and the different curves fill the space modulo the
restrictions on the parameters imposed by the class of algebras. This may be seen as
a bundle in the category of sets.

This paper is organized as follows. In Sect. 2, we prove some results on algebras
over domains in Lemma 1 and Proposition 1. We introduce the class of quasiperfect
algebras. We give necessary and sufficient conditions for an evolution algebra over
a domain to be perfect or quasiperfect in terms of its structure matrix and we prove
in both cases that the natural basis is unique up to permutations or multiplication
by invertible scalars (in Proposition 2). Furthermore, we associate a colored directed
graph to a quasiperfect evolution D-algebra and we prove that this graphical colored
representation is unique in Lemma 2. Next, in Sect. 3, we define the required terminol-
ogy to be able to classify our D-algebras, so we introduce some definitions and tools
for the classification task like moduli sets, direct limits, etc. Finally, in Sect. 4, we
give the classification of the two-dimensional perfect evolution algebras over domains
(Theorem 1) parametrizing the isomorphism classes by a corresponding moduli set.

2 Preliminaries and previous results

Aspreviouslymentioned, the classification of evolution algebras over domains ismuch
richer than the classification over fields. For instance, there are two one-dimensional
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evolution algebras over fields up to isomorphism: the ground field with zero multipli-
cation and the ground field with its usual multiplication. But, if you consider a domain
D and a one-dimensional evolution D-algebra, there are more isomorphism classes of
evolution algebras. Ruling out the trivial one, we have defined in D a multiplication
with 12 = d, where d ∈ D∗ := D \ {0}. Denote this algebra by Dd . The product in
Dd is x · y = xyd for any x, y ∈ D. Now, let us define De similarly. If f : Dd → De

is an isomorphism, it is a D-module isomorphism hence f (a) = a f (1) for any a.
So, f is the multiplication times an element x := f (1). Consequently, x ∈ D× (the
group of invertibles of D). But also f (uvd) = f (u) f (v)e whence f (d) = f (1)2e
or d = xe. Thus, the isomorphic condition is Dd ∼= De if and only if there exists
x ∈ D× such that d = xe. So, the isomorphism classes of nontrivial one-dimensional
evolution algebras over domains with nonzero product are in one-to-one correspon-
dence with the set D∗/D×, that is, the set of equivalence classes of D∗ modulo the
action D× × D∗ → D∗ such that x · d = xd for any x ∈ D×, d ∈ D∗. In particular,
if D = Z, we have Z

∗/{±1} ∼= N
∗ = {1, 2, . . .}. Thus, there are countably many

isomorphism classes of one-dimensional evolution algebras over certain domains. If
we consider the domain D := K[x] of polynomials in one indeterminate over the
field K, then the isomorphism classes of one-dimensional evolution D-algebras are in
one-to-one correspondence with the set of monic polynomials of K[x].

Next, we introduce some definitions and properties that we will need later. If D is a
(commutative) domain, we will denote by Q := Q(D) the field of fractions of D. For
any D-module M , we will construct MQ the Q-module of fractions MQ := {md : m ∈
M, d ∈ D \ {0}}with the usual operations of sum, product and product by elements of
Q. To be more specific, we consider the set of couples (m, d)withm ∈ M , 0 �= d ∈ D
modulo the equivalence relation

(m, d) ≡ (
m′, d ′) iff ∃ t ∈ D \ {0}, t (d ′m − dm′) = 0.

Then, we denote the equivalence class of (m, d) in the usual way: m
d and MQ are a

Q-vector space relative to the usual sum of fractions and d1
d2

m
d3

:= d1m
d2d3

. If M is a
torsion-free D-module, there is a canonical monomorphism of D-modules M → MQ

such thatm 
→ m
1 . Usually, wewill denote

m
1 := m, so that the elements ofM and their

images in MQ will be identified. Unless otherwise stated, we will work throughout
this paper with torsion-free D-modules.

Awell-knownproperty ofM is that a set of vectors {ei } ⊂ M is linearly independent
if and only if its image in MQ is D-linearly independent. As well, if {ui }i∈I is linearly
independent in the Q-vector space MQ and ui = mi

di
for any i ∈ I , then the set of

numerators {mi }i∈I is linearly independent in M . We also have

Lemma 1 Let D be a domain, Q its field of fractions, M a torsion-free D-module and
MQ the Q-module of fractions of M.

(a) If {ui }i∈I is a basis of MQ (as a Q-vector space) and ui = mi
di

for i ∈ I , then
{mi }i∈I is also a basis of MQ and a maximal linearly independent subset of M.

(b) A set {mi }i∈I ⊂ M is a maximal linearly independent subset of M if and only if
{mi }i∈I is a basis of the Q-vector space MQ.
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(c) If M is a D-module and {mi }i∈I a maximal linearly independent subset of M, then
⊕i Dmi is an essential submodule of M.

(d) Assume that M is a free D-module with a finite basis {ei }i∈I . A maximal linearly
independent subset {ui }i∈I of M is a basis of M if and only if the determinant of
the change of basis matrix is in D×.

Proof For the first assertion, observe that the set of themi ’s is linearly independent also
inMQ . Indeed, if we have

∑
λimi = 0, thenwe canwrite

∑
λi di

mi
di

= ∑
λi di ui = 0,

hence, for any i , we have λi di = 0, which implies λi = 0. The set {mi }i∈I is also a
system of generators of the Q-vector space MQ because any x ∈ MQ can be written
as

x =
∑

λi ui =
∑

λi
mi

di
=

∑
λi

1

di
mi .

Let us prove now that {mi }i∈I is maximal among the linearly independent subsets
of M : If {mi }i∈I � T , for a linearly independent subset T ⊂ M , then T contains
properly a basis of MQ and is linearly independent, a contradiction.

For the second assertion, take a maximal linearly independent set {mi }i∈I ⊂ M .
We know that {mi }i∈I is linearly independent also in MQ . If this set is not a basis,
there is some x ∈ MQ such that {mi }i∈I ∪ {x} is again linearly independent. If
x = z

d , then {mi }i∈I ∪ {z} is a linearly independent subset of M , contradicting the
maximality of {mi }i∈I . Reciprocally, if {mi }i∈I ⊂ M is a basis of MQ , we know that
{mi }i∈I is linearly independent in M . To prove the third assertion, we take a nonzero
submodule N of M . We must prove that N ∩ (⊕i Dmi ) �= 0. Take 0 �= n ∈ N . Since
{mi }i∈I is a basis of MQ , we have dn = ∑

i dimi for some d, di ∈ D (and d �= 0).
Thus, 0 �= dn ∈ N ∩ (⊕i Dmi ). Finally, we prove the fourth assertion. We have
ui = a j

i e j (using Einstein summation convention) for any i ∈ I . If det[(a j
i )] ∈ D×,

then there are scalars b j
i ∈ D such that ei = b j

i e j for any i . Hence, {ui }i∈I is a basis
of M . Reciprocally, if {ui }i∈I turns out to be a basis, we may write ei = b j

i e j for

suitable scalars b j
i ∈ D. But, then the matrices (a j

i ) and (b j
i ) have product 1, that is,

(a j
i )(b j

i ) = 1. This implies that the determinant of each such matrix is an invertible
element of D. ��
Proposition 1 Let A be a D-algebra, then there is a maximal linearly independent
subset {ai } of A (in fact a basis of the Q-vector space AQ) such that A is contained
as D-module in a sandwich

⊕Dai ⊂ A ⊂ AQ,

and ⊕Dai is an essential D-module of A.

Proof Take a basis {ui } of AQ as a Q-vector space. If ui = ai/di , then {ai } is a
maximal linearly independent subset of A by Lemma 1(a). Also, ⊕Dai is essential
as a D-submodule of A by Lemma 1(c). Note that, A is a torsion-free D-module: If
da = 0 for some nonzero d ∈ D, write a = ∑

i qi ui as a linear combination of the
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ui ’s. Then, we have 0 = d
∑

i qi ui whence dqi = 0 for any i . Since d �= 0, we have
qi = 0. ��

In the situation above, A ⊂ AQ , if A is perfect (A2 = A), then AQ is also perfect.
However, we may have AQ perfect and A not. For instance, consider A = 2Z × Z

with componentwise multiplication. Then, AQ
∼= Q × Q, which is perfect but A is

not.
An example of the situation described in Proposition 1 is given by taking D = Z

and A = {( x2 , y) : x, y ∈ Z} = Z( 12 , 0) ⊕ Z(0, 1). Then, A is a two-dimensional free
Z-module and AQ = Q(1, 0) ⊕ Q(0, 1) being

Z(1, 0) ⊕ Z(0, 1) � A � Q(1, 0) ⊕ Q(0, 1).

Definition 1 An algebra A over a domain D will be termed quasiperfect if A2
Q = AQ .

We will need the following proposition for the classification task of the two-
dimensional perfect evolution algebras over domains, whose first item is exactly the
same as in the case of evolution algebras over fields:

Proposition 2 Assume that E is an evolution algebra over a domain D with a finite
natural basis {ei }i∈I . Let ω j

i ∈ D be the structure constants, that is, e2i = ω
j
i e j (using

Einstein summation convention). Then, we have

(1) E2 = E if and only if the matrix (ω
j
i ) is invertible. Moreover, for any other natural

basis { fi }i∈I , there is a permutation σ of I such that fi = ki eσ(i) and each
ki ∈ D×.

(2) E is quasiperfect if and only if the determinant of (ω j
i ) is nonzero. As in the previous

case, for any other natural basis { fi }i∈I , there is a permutation σ of I such that
fi = ki eσ(i) and each ki ∈ D×.

Proof From E = E2, we deduce that ei = x j
i e

2
j for any i ∈ I . Then, ei = x j

i ωk
j ek so

that x j
i ωk

j = δki (Kronecker Delta). Thus, the matrix (ω
j
i ) is invertible. Reciprocally,

if (ω
j
i ) is invertible, the linear map such that ei 
→ e2i is an isomorphism, whence

E2 = E . Assuming the perfectness of E , if { fi } is another natural basis and we
write fi = a j

i e j , then for i �= j , we have 0 = fi f j = aki eka
q
j eq = aki a

q
j ekeq =

aki a
q
j δkqω

s
kes = aki a

k
jω

s
kes , whence a

k
i a

k
jω

s
k = 0 for any s and any couple (i, j) with

i �= j . Since the matrix (ω
j
i ) is invertible, we consider its inverse matrix (ω̃

j
i ), so we

have ω
j
i ω̃

k
j = δki . Then, from aki a

k
jω

s
k = 0, we get aki a

k
jω

s
kω̃

q
s = 0 or aki a

k
j δ

q
k = 0.

Thus, aqi a
q
j = 0 for any q provided i �= j . So, in each column and each row of

the matrix (a j
i ), there is a unique nonzero element. Consequently, fi = ki eσ(i) for

a certain permutation σ of I . Now, the coefficients ki are invertible in D since the
determinant of the matrix of basis change is invertible. Let us prove now the second
assertion. If we have E2

Q = EQ , the matrix (ω
j
i ) is invertible in Q. Its determinant is a

nonzero element of D. Reciprocally, if det(ω j
i ) �= 0, then it is invertible in Q so that

E is quasiperfect. In this case, if {ei } and { fi } are natural bases of E , then there is a
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permutation σ and nonzero elements ki ∈ Q such that fi = ki eσ(i) for any i . Also,

fi = a j
i e j for certain a j

i ∈ D, hence aσ(i)
i = ki and a j

i = 0 if j �= σ(i). In any case
ki ∈ D×. ��
Corollary 1 Any perfect evolution algebra over a domain is quasiperfect.

We prove, in the next lemma, a result that generalizes the situation of perfect
evolution algebras over fields. This lemma is the heart of the classification of the perfect
algebras over domains in the sense that we can associate a graphical representation of a
given evolution algebra. This graphical representation is similar to the one introduced
in [7] with a fundamental variation: Edges representing invertible coefficients are
drawn in black, while those representing nonzero and noninvertible coefficients are
dotted drawn.

Lemma 2 Assume that E is a quasiperfect evolution algebra over a domain D with a
finite natural basis {ei }i∈I . Then, the following numbers do not depend on the natural
basis chosen:

(1) The number of nonzero entries in the structure matrix (ω
j
i ).

(2) The number of nonzero entries in the diagonal of (ω j
i ).

(3) The number of invertible elements in (ω
j
i ).

(4) The number of invertible elements in the diagonal of (ω j
i ).

Proof For our original natural basis, we have e2i = ω
j
i e j . Take now any other natural

basis { fi }. There is a permutation σ of I such that fi = ki eσ(i) for some invertible
elements ki ∈ D× by item (2), Proposition 2. It follows that f 2i = τ

q
i fq , where

τ
q
i = k2i

kq
ω

σ(q)

σ (i) .

So, the number of nonzero (respectively invertible) elements in the matrix (ω
j
i ) coin-

cides with the number of nonzero (respectively, invertible) elements in thematrix (τ
j
i ),

similarly for the diagonal elements. ��
What the lemma tells is that this graphical colored representation is unique in the
quasiperfect case.

Proposition 3 Let D be a domain and Q its field of fractions. If E is a quasiperfect
evolution algebra over D of finite dimension and {mi } is maximal linearly independent
subset of E such that mim j = 0 for i �= j , then {mi } is a natural basis of E .
Proof Fix a natural basis {ei } of E . We know that {mi } is a basis of EQ by Lemma 1
and it is a natural basis. Then, mi = ki eσ(i) for some ki ∈ Q× and a permutation σ .

On the other hand, we can write mi = a j
i e j , where a

j
i ∈ D. Consequently, aσ(i)

i = ki
so that, each ki ∈ D×. Furthermore, a j

i = 0 if j �= σ(i). Thus, {mi } is a natural basis
of E . ��
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3 Themoduli set

In this section, we introduce some terminology in order to present what we will call
the moduli set for the different classes of algebras. Given a class C of algebras, we
will say that a set S is a moduli for C (or a moduli set) if there is a one-to-one
correspondence between the isomorphism classes of algebras of C and the elements
of S. In some occasions, the moduli of a class will have an additional algebraic or
geometric structure. In the category of sets, we recall that a bundle is an epimorphism
π : E → B, where E is called total set, B is the base set and for every b ∈ B, π−1(b)
is the fiber over b. By a cross section of π , we understand a right inverse s : B → E .
We have an example of bundle if we consider as the total set a family of algebras C
and as the base set the set C/ ∼= of isomorphism classes of the algebras in C . Then,
π maps any algebra to its isomorphism class. The fiber of an element represents an
isomorphism class of algebras. If we specify a cross section of the bundle, then this
is equivalent to give a representative of the isomorphism class of any element of C .
Thus, the classification problem ofC under isomorphism consists just in giving a cross
section of the corresponding bundle. The moduli set of the classification is the base
set of the corresponding bundle.

3.1 Direct limits

Some of the cases of our classification are based on direct limits. If M is an abelian
monoid and n ∈ Z, we consider the direct system

M
(·)n→ M

(·)n→ · · · → M
(·)n→ · · ·

where (·)n is the homomorphism such that g 
→ gn , then we will denote the direct
limit of such system by lim→n

M . Recall that this monoid can be described as follows:

Consider the sequence of monoids {Mi }i∈N such that Mi := M for any i . Then, in the
disjoint union �i Mi , we define an equivalence relation: If x ∈ Mi and y ∈ Mj , we say

that x ∼ y if and only if yn
k = xn

h
for some naturals k, h. We denote the equivalence

class of g ∈ M by [g]. So, lim→n M is the quotient of �i Mi modulo ∼. A particular
case of this arises if we take M := D×/(D×)[q], where (D×)[q] := {xq : x ∈ D×}
with q ∈ N

∗. This specific M is a group and its elements are equivalence classes λ̄

with λ ∈ D×. We have λ̄ = μ̄ if and only if λ = μ rq for some r ∈ D×. We can
consider lim→n M whose elements are the equivalence classes [λ̄] with λ̄ ∈ M .

We have a canonical group homomorphism D× → lim→n M such that λ → [λ̄].
Two elements λ,μ ∈ D× are said to have the same image in lim→n M if [λ̄] = [μ̄].
For instance, consider the group lim→2 D×/(D×)[3]. Since 2 and 3 are coprime, the
transition homomorphisms (·)2 are isomorphisms. Then, λ andμ have the same image
in lim→2 D×/(D×)[3] if λ̄2α = μ̄2β

for some naturals α, β ≥ 0. If α = β, then λ̄ = μ̄.
Ifα > β, then μ̄ = (λ̄)2

α−β
and ifα < β, we have λ̄ = (μ̄)2

β−α
. In each case, replacing

2α−β or 2β−α with its remainder ξ modulo 3, we have μ̄ = λ̄ξ or λ̄ = μ̄ξ , where
ξ = 1, 2. So, there is some r ∈ D× such that μ = λr3 or μ = λ2r3 (observe that the
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other possibility λ = μ2s3 is a consequence of μ = λ2r3). Summarizing, we have the
following lemma.

Lemma 3 The elements λ,μ ∈ D× have the same image in the group lim→2 D×/

(D×)[3] if and only if μ = λr3 or μ = λ2r3 for some r ∈ D×.

In this case, we have a bundle π : D× → lim→2 D×/(D×)[3] such that λ 
→ [λ̄].
The fiber of some [λ̄] is the set of all μ ∈ D× such that μ = λr3 or μ = λ2r3 for
some r ∈ D×.

3.2 Algebraic sets

Assume that we have an action D× × X → X , where X is some subset of Dn . So,
for t ∈ D× and a = (a1, . . . , an) ∈ X we might have t · (a1, . . . , an) = (x1, . . . , xn),
where each xi is a polynomial in t with coefficients in D. Consequently, we may write
xi = pi (t), where pi is the mentioned polynomial. The orbit of a under the above
action is in a curve xi = pi (t). More precisely, the orbit is contained in the image
of the map c : Q → Qn such that t 
→ (p1(t), . . . , pn(t)), where Q is the field of
fractions of D. Then, the Zariski closure of the image of c is an algebraic set V ⊂ Qn

and the orbit of a ∈ X is just V ∩ X . This setting will appear in our classification of
evolution algebras.

4 The perfect case

In this section, we give the classification of two-dimensional perfect evolution algebras
over domains. For this task,we analyze the correspondingmoduli sets. Consider a two-
dimensional evolution algebra E over the domain D with a natural basis {e1, e2} and
assume that E is perfect. We study the different cases.

4.1 Case e21 = ˛e1, e22 = ˇe2

Then, α, β ∈ D×. We can define f1 = α−1e1 and f2 = β−1e2. So, we have f 21 =
α−2αe1 = f1 and f 22 = β−2βe2 = f2. All the algebras in this case are isomorphic to
D × D with componentwise operations. Then, up to isomorphism, there is only one
algebra of this type.

4.2 Case e21 = ˛e2, e22 = ˇe1

Again α, β ∈ D×. We can define f1 = e1 and f2 = αe2. So, we get f 21 = αe2 = f2
and f 22 = α2β f1. Thus, we have a one-parametric family of algebras given by the
multiplication table e21 = e2 and e22 = αe1, where α ∈ D×. Denote the above algebra
by A2,α . We analyze the isomorphism question A2,α ∼= A2,β . If the isomorphism
exists we have bases {e1, e2} and {u1, u2} of A2,α such that e21 = e2, e22 = αe1 and
u21 = u2, u22 = βu1. Then, we have two possibilities:
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(1) ui = ki ei , ki ∈ D× for i = 1, 2. This gives βα−1 = k31 and k2 = k21. So
βα−1 ∈ (D×)3.

(2) u1 = ke2 and u2 = he1 for some k, h ∈ D×. In this case k3 = βα−2, h = k2α
and so βα−2 ∈ (D×)3.

Therefore, we have A2,α ∼= A2,β if and only if βα−1 ∈ (D×)3 or βα−2 ∈ (D×)3.
But, I ask the reader to check the implication⇐. A moduli set for the class of algebras
A2,α is the group lim→2 D×/(D×)[3].

4.3 Case e21 = ˛e1, e22 = ˇe1 + ıe2,ˇ �= 0

In this case, α, δ ∈ D×. We define f1 = α−1e1 and f2 = δ−1e2. Then, f 21 = f1 and
f 22 = λ f1 + f2 for a certain λ ∈ D∗. We get a one-parameter family of algebras A3,λ
with λ �= 0 and product e21 = e1, e22 = λe1 + e2. We investigate the isomorphism
A3,λ ∼= A3,μ. As before, we have two natural basis {e1, e2} and {u1, u2} such that
e21 = e1, e22 = λe1 + e2 and u21 = u1, u22 = μu1 + u2. Then,

(1) If ui = ki ei for i = 1, 2, after some computations, we get k2 = k1 = 1, thus
λ = μ.

(2) If u1 = ke2 and u2 = he1, we get an inconsistent system of equations.

Thus, A3,λ ∼= A3,μ if and only if λ = μ. The moduli set for the class A3,λ is D∗,
which is a monoid.

4.4 Case e21 = ˛e2, e22 = ˇe1 + ıe2, ı �= 0

In this case, α, β ∈ D×. We have a family A(α, β, δ) of algebras with α, β ∈ D×
and δ ∈ D∗ (and the multiplication above). It is straightforward to prove that there
is no possible isomorphism A(α, β, δ) ∼= A(α′, β ′, δ′) when δ ∈ D× but δ′ /∈ D×.
So, let us investigate the algebras A(α, β, δ) with δ ∈ D×. We will prove that in this
case, A(α, β, δ) ∼= A(λ, 1, 1) for a suitable λ ∈ D×. Indeed, defining f1 = βδ−2e1
and f2 = δ−1e2, one gets f 21 = λ f2 and f 22 = f1 + f2, where λ = αβ2δ−3 ∈ D×.
Furthermore, it is easy to check that A(λ, 1, 1) ∼= A(μ, 1, 1) if and only if λ = μ.

Let us investigate now the other class of algebras: A(α, β, δ) with δ /∈ D×. By
making the change of basis f1 = k1e1, f2 = αk21e2, we get f 21 = k21αe2 = f2 and
f 22 = α2βk31 f1 + δαk21 f2 and α2βk31 ∈ D× while δαk21 /∈ D×. Thus, any A(α, β, δ)

with δ not invertible is isomorphic to A(1, λ, μ), where λ ∈ D× and 0 �= μ /∈ D×.
In addition, A(1, λ, μ) ∼= A(1, k3λ, k2μ) for any k ∈ D× (μ /∈ D×). Moreover,
A(1, λ, μ) ∼= A(1, λ′, μ′) (where μ,μ′ /∈ D×) if and only if there is a k ∈ D× such
that λ′ = k3λ and μ′ = k2μ.

Summarizing: The algebras in this case fall into two mutually non-isomorphism
classes: those of the form A(λ, 1, 1) with λ ∈ D× and those of the form A(1, λ, μ)

with λ ∈ D×, 0 �= μ /∈ D×. Also,

A(λ, 1, 1) ∼= A(μ, 1, 1) iff λ = μ (1)

A(1, λ, μ) ∼= A(1, λ′, μ′) iff ∃k ∈ D× : λ′ = k3λ,μ′ = k2μ. (2)

123



Journal of Algebraic Combinatorics

The algebras of the form A(1, λ, μ) only exist over domains that are not fields. Note
that, the condition (2) induces an action D××X0 → X0, where X0 = D××(D∗\D×)

given by k · (λ, μ) = (k3λ, k2μ). Note that, the isotropy subgroup of any (λ, μ) ∈ X0
is trivial. This implies that the cardinal of each orbit agrees with that of D×.

For a fixed (λ, μ) ∈ X0, we can consider c : Q → Q2 such that c(k) = (k3λ, k2μ).
The Zariski closure of the image of c is V (I ), the algebraic set of zeros of the ideal
I � Q[x, y] generated by the polynomial μ3x2 − λ2y3. So, it is a curve cλ,μ of Q2.
Thus, the cardinal of the orbit of (λ, μ) agrees with that of the set of points of cλ,μ

lying on X0. Any point of X0 is in some curve cλ,μ, in fact, (λ, μ) ∈ cλ,μ. Denote by
c∗
λ,μ the section c∗

λ,μ := cλ,μ ∩ X0. Then, if (λ′, μ′) /∈ cλ,μ we have c∗
λ,μ ∩ c∗

λ′,μ′ = ∅.
So, X0 is the disjoint union of all sections c∗

λ,μ and we have a bundle (in the category
of sets) p : X0 → X0/D×, in which p(λ, μ) = orb(λ, μ) can be identified with c∗

λ,μ.
The fibers of this bundle are the points in one specific curve, so the fibers represent
classes of isomorphic algebras.

Lemma 4 The cardinal of each orbit of X0/D× is |D×| and agrees with that of the
set of points of the curve cλ,μ ≡ μ3x2 − λ2y3 = 0 in D× × (D∗ \ D×). The orbit set
X0/D× is the base space of a bundle p : X0 → X0/D×, where the fibers represent
classes of isomorphic algebras. So, X is a disjoint union of sections cλ,μ ∩ X0.

The previous bundle can be “lifted” to specific fields, for instance, in the real case,
we may consider the plane with the axes removed: � := R

× × R
×. Denote by O the

origin O := (0, 0). Consider also the curves cλ,μ each one of which is the zero set
of μ3x2 − λ2y3. Then, � = �λ,μc∗

λ,μ is the disjoint union of the perforated curves
c∗
λ,μ := cλ,μ \ {O} with λ,μ �= 0. Each such curve cλ,μ cuts the line x = 1 in a

unique point: (1, μ/
3
√

λ2). Then, we consider π : R
× × R

× → R
×, where π(λ,μ)

can be defined as the intersection of cλ,μ with the vertical line x = 1. In other words,
π(λ,μ) = μ

3√
λ2
. Since for any nonzero t , we have π(1, t) = t , the map π is surjective,

and defining the curve c̃t := cλ,μ for any (λ, μ) ∈ π−1(t), we have

R
× × R

× =
⊔

t∈R×
c̃∗
t ,

where c̃∗
t := c̃t \ {0}. We could paraphrase this by saying that the plane with the axes

removed is a disjoint union (indexed in R
×) of perforated curves (Figs. 1, 2).

Ifwe consider, for instance, the domain D = Z[√3] ⊂ R,weknow that D× consists
of all a+ b

√
3 ∈ D such that a2 − 3b2 = 1, which has infinite cardinal. Thus, in each

orbit of X0 = Z[√3]× × (Z[√3]∗ \ Z[√3]×) under the action of Z[√3]×, there are
infinitely many elements. The orbits of this action are in one-to-one correspondence
with the points of the real line of the form μ

3√
λ2
, where μ ∈ Z[√3]∗ and λ ∈ Z[√3]×.

So, we can consider the monoid M := { μ
3√

λ2
: μ ∈ Z[√3]∗, λ ∈ Z[√3]×} ⊂ Q̄ and

the orbits of the action Z[√3]× × X0 → X0 are in one-to-one correspondence with
the monoidM. Consequently, the isomorphism classes of algebras of type A(1, λ, μ)

are in one-to-one correspondence with M.
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To manage the general case of Lemma 4, we have to make the following consider-
ations. Pick a domain D, let Q be its field of fractions and Q̄ the algebraic closure of
Q. Take the multiplicative monoid M := {μ

k : μ ∈ D∗, ∃λ ∈ D×, k3 = λ2} ⊂ Q̄.
Then, we consider μ3(M) := {x ∈ M : x3 = 1} and define the quotient monoid

M̄ := M/μ3(M) (3)

whose elements are equivalence classes [λ]. It is interesting to note that μ3(M) =
μ3(Q̄): Indeed, if x ∈ μ3(Q̄), we have x = 1

x2
∈ M, since (x2)3 = 12. Furthermore,

there is a bijection X0/D× ∼= M̄ such that the equivalence class of (λ, μ) in X0 maps
to [ μ

3√
λ2

]. Definitively, the isomorphism classes of algebras of type A(1, λ, μ) over D

are in bijective correspondence with the elements of M̄.

4.5 Case e21 = ˛e1 + ˇe2, e22 = �e1 + ıe2,˛, ˇ, �, ı �= 0

In this case, αδ − βγ ∈ D×. Denote by B(α, β, γ, δ) the two-dimensional evolution
algebra with natural basis {e1, e2} and multiplication e21 = αe1 +βe2, e22 = γ e1 + δe2
being αδ − βγ ∈ D× and α, β, γ, δ �= 0. The change fi = ki ei (i = 1, 2) and
ki ∈ D× gives

⎧
⎨

⎩
f 21 = k1α f1 + k21

k2
β f2

f 22 = k22
k1

γ f1 + k2δ f2.

So,

B(α, β, γ, δ) ∼= B

(

k1α,
k21
k2

β,
k22
k1

γ, k2δ

)

(4)

for any ki ∈ D×. On the other hand, the change f1 = ke2, f2 = he1 with k, h ∈ D×
produces

{
f 21 = kδ f1 + k2γ

h f2

f 22 = h2β
k f1 + hα f2.

This allows to conclude that B(α, β, γ, δ) ∼= B(kδ, k2γ
h ,

h2β
k , hα) for any k, h ∈ D×.

Any isomorphism between algebras of the type B(α, β, γ, δ) is of one of the previous
forms. We now distinguish several mutually non-isomorphism classes:

4.5.1 Both˛ and ı are invertible

We have the following isomorphism B(α, β, γ, δ) ∼= B(1, δ
α2 β, α

δ2
γ, 1). Thus, our

algebra is of type B(1, λ, μ, 1) with 1 − λμ ∈ D× and λ,μ �= 0. Moreover, it
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is easy to see that B(1, λ, μ, 1) ∼= B(1, λ′, μ′, 1) if and only if (λ, μ) = (λ′, μ′)
or (λ, μ) = (μ′, λ′). The moduli set is the orbit set X/Z2, where X is the set of all
(λ, μ) ∈ D∗×D∗ with 1−λμ ∈ D× and the actionZ2×X → X is 0·(λ, μ) = (λ, μ),
1 · (λ, μ) = (μ, λ).

4.5.2 Only one of˛ and ı is invertible

Wemay assume without loss of generality that α ∈ D× but δ /∈ D×. Thus, our algebra
is isomorphic to some B(1, ξ, ν, ρ) with ρ − ξν ∈ D×, ξ, ν, ρ �= 0 and ρ /∈ D×. We
focus in the class of algebras

C := {B(1, ξ, ν, ρ) : ρ − ξν ∈ D×, ξ, ν, ρ �= 0, ρ /∈ D×}.

But then, C = C1 � C2 � C3 (a disjoint union), where

C1 := {B(1, ξ, ν, ρ) ∈ C : ξ, ν ∈ D×, ρ /∈ D×},
C2 := {B(1, ξ, ν, ρ) ∈ C : ξ ∈ D×, ν, ρ /∈ D×},
C3 := {B(1, ξ, ν, ρ) ∈ C : ν ∈ D×, ξ, ρ /∈ D×},
C4 := {B(1, ξ, ν, ρ) ∈ C : ξ, ν, ρ /∈ D×}.

The algebras of the different classes are not isomorphic and any algebra in C
is isomorphic to some of Ci , for i ∈ {1, 2, 3, 4}. Thus, we have to investigate the
isomorphism question within each class Ci .

C1: If k ∈ D×, we have B(1, ξ, ν, ρ) ∼= B(1, ξ
k , k2ν, kρ) using (4) and for k = ξ

we have B(1, ξ, ν, ρ) ∼= B(1, 1, ξ2ν, ξρ). Then, any algebra in C1 is isomorphic
to B(1, 1, λ, μ) with λ ∈ D×, μ /∈ D×, μ �= 0 and λ − μ ∈ D×. Moreover,
two such algebras B(1, 1, λ, μ) and B(1, 1, λ′, μ′) are isomorphic if and only
if (λ, μ) = (λ′, μ′). For instance, over the integers, there are only two non-
isomorphism classes in C1: the one of B(1, 1, 1, 2) and that of B(1, 1,−1,−2).

C2: Any algebra in this class is isomorphic to some B(1, 1, λ, μ) with λ,μ /∈ D×
but λ − μ ∈ D× and λ,μ �= 0. For any such algebras, we have B(1, 1, λ, μ) ∼=
B(1, 1, λ′, μ′) if and only if (λ, μ) = (λ′, μ′).

C3: In this case, any algebra in this class is isomorphic to some B(1, λ, 1, μ) with
λ,μ /∈ D×, but μ − λ ∈ D× and λ,μ �= 0. For any such algebras, we have
B(1, λ, 1, μ) ∼= B(1, λ′, 1, μ′) if and only if (λ, μ) = (λ′, μ′) or (λ, μ) =
(−λ′,−μ′).

C4: The isomorphism condition is B(1, ξ, ν, ρ) ∼= B(1, ξ ′, ν′, ρ′) if and only if there
is some k ∈ K× such that ξ ′ = 1

k ξ , ν
′ = k2ν and ρ′ = kρ using (4). Denote by

D∗ \ D× the set of nonzero and noninvertible elements of D and recall that

�3 = {(ξ, ν, ρ) ∈ (D∗ \ D×)3 : ρ − ξν ∈ D×}.

Now, consider the class of two-dimensional evolution algebras (over the domain
D) given by C = {B(1, ξ, ν, ρ) : (ξ, ν, ρ) ∈ �3}. Observe that there is an action
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D× × �3 → �3 given by k · (ξ, ν, ρ) = (
ξ
k , k2ν, kρ) for k ∈ D×. The set of

orbits of�3 under this action will be denoted by�3/D×. Then, the isomorphism
classes in C are in one-to-one correspondence with the elements of the orbit set
�3/D×. Alternatively, we can consider the curve xz = ξρ, ρ2y = νz2 in Q3,
so that the isomorphism classes of algebras B(1, x, y, z) in C are in one-to-one
correspondence with the points of intersection of �3 with the curve

{
xz = ξρ

ρ2y = νz2
(ξ, ν, ρ) ∈ �3.

Denote by ∂ξ,ν,ρ such curve in the affine space Q3 and ∂∗
ξ,ν,ρ := ∂ξ,ν,ρ ∩ �3 its

sectionwith�3. Then,we have that (ξ ′, ν′, ρ′) /∈ ∂ξ,ν,ρ implies ∂∗
ξ,ν,ρ∩∂∗

ξ ′,ν′,ρ′ =
∅. Also (ξ, ν, ρ) ∈ ∂ξ,ν,ρ for any (ξ, ν, ρ) ∈ �3. Thus, �3 is a disjoint union of
sections ∂∗

ξ,ν,ρ and we can define ∂ as the set whose elements are the different
curves ∂ξ,ν,ρ . Therefore,weget a bundle�3 → ∂ such that (ξ, ν, ρ) 
→ ∂ξ,ν,ρ and
the isomorphism classes of algebras in C are in one-to-one correspondence with
∂ . So, the isomorphism classes of algebras inC are indexed by the set of curves ∂

or if we prefer, amoduli set forC is ∂: Each algebra inC is completely determined
by a curve ∂ξ,ν,ρ . For instance, if D = Z, an element in this class of algebras is
B(1, 3, 2, 5) and its isomorphism class consists on itself and B(1,−3, 2,−5).

4.5.3 Neither˛ nor ı are invertible

Again we distinguish two mutually non-isomorphism cases.

(1) β or γ is invertible. Wemay assume without loss of generality that β ∈ D×. Then,
B(α, β, γ, δ) ∼= B(kα, 1, β2k3γ, βδk2) for any k ∈ D× using (4). The algebras in
this class are therefore of the form B(μ, 1, λ, ω)withμ,ω /∈ D× andμ, λ, ω �= 0,
μω − λ ∈ D×.

(a) Assume λ /∈ D×. Since B(μ, 1, λ, ω) ∼= B(kμ, 1, k3λ, k2ω) for any k ∈ D×,
we may define �3 := {(μ, λ, ω) ∈ (D∗ \ D×)3 : μω − λ ∈ D×} and we
have an action D× × �3 → �3 given by k(μ, λ, ω) = (kμ, k3λ, k2ω). The
isomorphism classes of algebras of this kind are in one-to-one correspondence
with the orbit set�3/D×. Now, letC denote the class of algebras B(μ, 1, λ, ω)

with μ,ω /∈ D× and μ, λ, ω �= 0, μω − λ ∈ D×. We have an action D× ×
�3 → �3 given by k(μ, λ, ω) = (kμ, k3λ, k2ω). The isomorphism classes
of algebras of this kind are in one-to-one correspondence with the orbit set
�3/D×. Let σμ,λ,ω be the curve of Q3 given by

{
μ3y = x3λ

μ2z = x2ω
(μ, λ, ω) ∈ �3. (5)

As in previous cases denote by σ ∗
μ,λ,ω = σμ,λ,ω∩�3. Then, (μ, λ, ω) ∈ σμ,λ,ω

for any (μ, λ, ω) ∈ �3. As before, the different σ ∗
μ,λ,ωs are pairwise disjoint

and their disjoint union is �3, so we get a bundle �3 → σ , where σ is the set
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whose elements are the σμ,λ,ωs. Thus �3/D× is one-to-one correspondence
with the set σ and this is a moduli for the class C .

(b) If λ ∈ (D×)[3], then λ = ε3 for some invertible ε. Since B(μ, 1, λ, ω) ∼=
B(kμ, 1, k3λ, k2ω) (for k ∈ D×), we may take k = ε−1 and then k3λ = 1,
so that B(μ, 1, λ, ω) ∼= B(kμ, 1, 1, k2ω). Thus, the algebras in this case are
all of the form B(ξ, 1, 1, ρ) with ξ, ρ �= 0, ξρ − 1 ∈ D× and ξ, ρ /∈ D×. We
have B(ξ, 1, 1, ρ) ∼= B(kξ, 1, 1, k−1ρ) whenever k ∈ D× satisfies k3 = 1.
So, denoting by μ3(D) := {k ∈ D× : k3 = 1} and �2 := {(ξ, ρ) ∈ (D∗ \
D×)2 : ξρ − 1 ∈ D×}, we have the action μ3(D) × �2 → �2 given by
k · (ξ, ρ) = (kξ, k−1ρ). To analyze the orbit set �2/μ3(D) define for any
(ξ, ρ) ∈ �2 the curve hξ,ρ of Q2 given by xy = ξρ. Define also h∗

ξ,ρ =
hξ,ρ ∩�2. We have (ξ, ρ) ∈ hξ,ρ and if (ξ ′, ρ′) /∈ hξ,ρ , then h∗

ξ,ρ ∩h∗
ξ ′,ρ′ = ∅,

so �2 is the disjoint union of all h∗
ξ,ρ . Therefore, �2/μ3(D) is in one-to-one

correspondence with the set h whose elements are the “hyperbolae” hξ,ρ .
(c) In case λ ∈ D× but not necessarily λ ∈ (D×)[3], since B(μ, 1, λ, ω) ∼=

B(kμ, 1, k3λ, k2ω) for any k ∈ D×, the only thing we can do is to consider
the set S of all triples (μ, λ, ω) ∈ (D∗ \ D×)× (D× \ (D×)[3])× (D∗ \ D×),

such that μω − λ ∈ D× and the action D× × S → S given by k(μ, λ, ω) =
(kμ, k3λ, k2ω). Thus, the orbit set S/D× is in one-to-one correspondencewith
the set σ ′ whose elements are the sections σ̃μ,λ,ω := σμ,λ,ω ∩ S defined for
(μ, λ, ω) ∈ S in the affine space Q3 by equations (5) by replacing (μ, λ, ω) ∈
�3 with (μ, λ, ω) ∈ S.

Note that, the case presented in ((b)), that is, when λ ∈ (D×)[3], is in fact a subcase
of ((c)). We have specified it because if λ is a cube, one more 1 can be got in the
structure matrix of the algebra.

(2) β, γ /∈ D×. So, we have the algebras B(α, β, γ, δ), where the four scalars are
nonzero and noninvertible but αδ − βγ ∈ D×. We will denote by �4 as the set of
all (α, β, γ, δ) ∈ (D∗ \ D×)4 such that αδ − γβ ∈ D×. We have an isomorphism

B(α, β, γ, δ) ∼= B(k1α,
k21
k2

β,
k22
k1

γ, k2δ) for any k1, k2 ∈ D×. Thus, we have an
action

(D× × D×) × �4 → �4

given by (k1, k2) · (α, β, γ, δ) := (k1α,
k21
k2

β,
k22
k1

γ, k2δ). The isomorphism classes
of algebras of this type are in one-to-one correspondence with the elements of the
orbit set �4/(D× × D×). The orbit set �4

(D××D×)
can be described defining (for

every (α, β, γ, δ) ∈ �4) the surface ωα,β,γ,δ of Q4 given by

{
ytα2 = βδx2

zxδ2 = αγ t2.

Therefore, ω̄α,β,γ,δ := ωα,β,γ,δ ∩ �4, so that �4 is a disjoint union of ω̄α,β,γ,δs

and we have a bijection
�4

D× × D× ∼= ω, where the elements of ω are the sections

123



Journal of Algebraic Combinatorics

ω̄α,β,γ,δ . Furthermore, this orbit set is in one-to-one correspondence with the Q-
points of the surface

{
ytα2 = βδx2

zxδ2 = αγ t2

that are in �4. For instance, if D = Z, the isomorphism class of B(2, 3, 3, 5) has
the following four elements: B(2, 3, 3, 5), B(−2, 3,−3, 5), B(2,−3, 3,−5) and
B(−2,−3,−3,−5). Now, if we consider D = Z[x, x−1], then D× = {±xn : n ∈
Z} and we have

B
(
7x3 + 4x2, 4x, 5x5 + 3x4, 3x3

) ∼= B(7x + 4, 4, 5x + 3, 3)

being the elements (7x3 + 4x2, 4x, 5x5 + 3x4, 3x3) and (7x + 4, 4, 5x + 3, 3)
in the same orbit of �4 under the action of D× × D×. Indeed, (x2, x3) · (7x +
4, 4, 5x + 3, 3) = (7x3 + 4x2, 4x, 5x5 + 3x4, 3x3).

Now,we can associate a colored directed graph to anyquasiperfect evolution algebra
over a domain. We fix a natural basis {ei } of an evolution D-algebra E . Let ω j

i be the
structure constants. Then, we consider the graph whose vertices are in bijection with
{ei } and we draw a black edge from vertex i to vertex j if ω

j
i ∈ D×. We draw a dotted

edge from vertex i to vertex j if ω
j
i ∈ D∗ \ D×. The associated directed graph to a

quasiperfect evolution algebra over a domain does not depend on the chosen natural
basis because of Lemma 2.

Finally, we will collect the previous results in the following theorem in which the
classification given is mutually exclusive thanks to Proposition 2.

Theorem 1 Let E be a two-dimensional perfect evolution algebra over a domain D.
Then, we have one and only one of the following possibilities:

(1) E ∼= A1 = D × D with product (x, y)(u, v) = (xu, yv). The graph associated to
the evolution algebra is of the form

•1���� •2 ����

(2) E ∼= A2,α , where A2,α = D × D with product (x, y)(u, v) = (αyv, xu) and
α ∈ D×. These algebras are classified by the moduli lim→2 D×/(D×)[3], that is,
A2,α ∼= A2,β if and only if βα−1 ∈ (D×)3 or βα−2 ∈ (D×)3. The graph is

•1 ���� •2����

(3) E ∼= A3,α = D × D with product (x, y)(u, v) = (xu + αyv, yv) and α �= 0.
These algebras are classified by the moduli D∗, that is, A3,α ∼= A3,β if and only
if α = β. The graph is one of

•1���� •2 ����
�� or •1���� •2 ����

������
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where the dotted arrow stands for the fact that α is not invertible but it is nonzero.
(4) Denote by A(α, β, δ) = D × D with multiplication (x, y)(u, v) = (β yv, δyv +

αxu). Then,

(a) E ∼= A(λ, 1, 1) = D × D with λ ∈ D×. The corresponding graph is

•1 ���� •2 ����
����

(b) E ∼= A(1, λ, μ) with λ ∈ D× and 0 �= μ /∈ D×. The graph is

•1 ���� •2 ��
����

An algebra in one of the cases is not isomorphic to any algebra in other case.
The isomorphism condition in each case is A(λ, 1, 1) ∼= A(μ, 1, 1) if and only
if λ = μ, that is, the moduli is D× and A(1, λ, μ) ∼= A(1, λ′, μ′) if and only if
∃k ∈ D×, λ′ = k3λ, μ′ = k2μ. The moduli set is M̄.

(5) Denote by B(α, β, γ, δ) = D × D with multiplication (x, y)(u, v) = (αxu +
γ yv, βxu + δyv). Then

(5.I) Either α or δ is invertible. We have the following mutually excluding cases:
(i) E ∼= B(1, λ, μ, 1), λ,μ �= 0, 1 − λμ ∈ D×. The graph is one of

•1���� ���� •2 ����
���� or •1���� �� •2 ����

����

or •1���� ���� •2 ����
�� or •1���� �� •2 ����

��

(ii) E ∼= B(1, 1, λ, μ) with λ ∈ D×, 0 �= μ /∈ D×, λ − μ ∈ D×. The
corresponding graph is

•1���� ���� •2 ��
����

(iii) E ∼= B(1, 1, λ, μ) with λ,μ /∈ D× but λ−μ ∈ D×, λ,μ �= 0. The graph
is

•1���� ���� •2 ��
��

(iv) E ∼= B(1, λ, 1, μ) with λ,μ /∈ D× but μ − λ ∈ D×, λ,μ �= 0. The
associated graph is

•1���� �� •2 ��
����

(v) E ∼= B(1, λ, μ, γ ), λ,μ, γ �= 0, γ −λμ ∈ D×, γ, λ, μ /∈ D×. The graph
is

•1���� �� •2 ��
��
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An algebra in one of the cases is not isomorphic to any algebra in other case.
In case (i), B(1, λ, μ, 1) ∼= B(1, λ′, μ′, 1) if and only if (λ, μ) = (λ′, μ′) or
(λ, μ) = (μ′, λ′). In cases (ii) and (iii), B(1, 1, λ, μ) ∼= B(1, 1, λ′, μ′) if and
only if (λ, μ) = (λ′, μ′). In case (iv), B(1, λ, 1, μ) ∼= B(1, λ′, 1, μ′) if and
only if (λ, μ) = (λ′, μ′) or (λ, μ) = (−λ′,−μ′). In case (v), B(1, λ, μ, γ ) ∼=
B(1, λ′, μ′, γ ′) if and only if ∃k ∈ D×, λ′ = k−1λ, μ′ = k2μ and γ ′ = kγ .
The moduli set is ∂ .

(5.II) Neither α nor δ is invertible, but β or δ is invertible. We have the possibilities:
(i) E ∼= B(λ, 1, μ, γ ), λ, γ, μ /∈ D×, λ,μ, γ �= 0, γ λ−μ ∈ D×. The graph

is

•1�� ���� •2 ��
��

(ii) E ∼= B(λ, 1, μ, γ ), λ, γ /∈ D×, μ ∈ D× λ,μ, γ �= 0, γ λ − μ ∈ D×.
The corresponding graph is

•1�� ���� •2 ��
����

In this case if μ ∈ (D×)[3], we have E ∼= B(λ, 1, 1, γ ).
Again the cases are mutually excluding. In case (i), we have B(λ, 1, μ, γ ) ∼=
B(λ′, 1, μ′, γ ′) if and only if ∃k ∈ D×, λ′ = kλ, μ′ = k3μ, γ ′ = k2γ . The
moduli set is σ . In case (ii), when μ /∈ (D×)[3], we have B(λ, 1, μ, γ ) ∼=
B(λ′, 1, μ′, γ ′) if and only if ∃k ∈ D×, λ′ = kλ, μ′ = k3μ, γ ′ = k2γ .
The moduli set is σ ′. In this case, when μ ∈ (D×)[3], we get B(λ, 1, 1, γ ) ∼=
B(λ′, 1, 1, γ ′) if and only if ∃k ∈ D×, λ′ = kλ and μ′ = k−1μ. The moduli
set is h.

(5.III) The elements α, δ, β and δ are not invertible. Then, E ∼= B(α, β, γ, δ) and the
graph is

•1�� �� •2 ��
��

We have that B(α, β, γ, δ) ∼= B(α′, β ′, γ ′, δ′) if and only if ∃k1, k2 ∈ D×,
α′ = k1α, β ′ = k21

k2
β, γ ′ = k22

k1
γ , δ′ = k2δ. The moduli set is ω.

From this classification, we can recover the classification of two-dimensional per-
fect evolution algebras over arbitrary fields in [2].

Corollary 2 If D is a field, then the two-dimensional perfect D-algebras are A1, A2,α
(for α �= 0), A3,α (α �= 0), A(λ, 1, 1) (λ �= 0) and B(1, λ, μ, 1) (λ,μ �= 0, 1,
λμ �= 1).
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