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A B S T R A C T

This paper presents a Distributed Model Predictive Control (DMPC)-based algorithm for distributed and
coordinated voltage control of wind power plants. Under the proposed approach, voltage magnitude at
the point of connection of wind power plants is optimally controlled to meet voltage requirements. In a
conventional centralized approach, each wind power farm tracks the control signals set by the Transmission
System Operator but DMPC responds locally to mitigate the voltage deviations without the central commands.
The problem is cast as one of optimal control, which is solved at every time step by a distributed optimization.
A dual decomposition scheme is proposed to solve the distributed optimization problem where the voltages
magnitude of the common nodes are used as a consensus term for the coordination. In order to extend the
applicability of this control, the proposed DMPC is carefully designed in such a way that it does not require
any change in the inner control of the electrical machines, controls or compensators. The algorithm has been
tested on an IEEE 9-bus system with two wind power plants and on an IEEE 14-bus system with three power
plants. In both cases, the plants are not directly connected. Following an analysis of the achievable performance
and the computational resources consumed by the local algorithm, the results of the simulations confirm that
the proposed control approach is suitable for the voltage coordination of wind power plants with acceptable
scalable results.
1. Introduction

Renewable energy sources are now a common asset in power sys-
tems in the form of small generators (distributed generation — DG)
or even connected to transmission networks. Wind power generation
has demonstrated its economic feasibility for both configurations. The
penetration of wind energy is expected to have a projected growth
from 2021 through 2028 of up to 90 GW [1]. As a result, wind farms
will have a significant impact on the power system. Currently, modern
wind farms incorporate a voltage and reactive power control system
to regulate the voltage at the Point of Connection (POC). They thus
keep the voltages within a specific range to mitigate the negative effects
caused by intermittent wind power [2]. For voltage regulation, the
most effective variable to consider is the reactive power, which leads
to the volt/var control. As described in [3], several challenges should
be addressed to cope with some particularities involved in the volt/var
operation of large wind farms due to their intermittent nature. Based
on this fact, many countries have developed specific grid codes for
wind farms, which stipulate that these installations should contribute
to voltage control of the power systems.

∗ Corresponding author.
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Therefore, it is critical to develop algorithms and methods for this
control, which make it easier to integrate these systems in the grid. To
that end, it is common to use voltage compensators, such as the Static
Synchronous Compensator (STATCOM) in order to comply with the
grid codes offering a secondary voltage control. These can be integrated
into the machine controllers or built as an additional controller for a
set of wind turbines, referred to as a wind farm [4] or a wind power
plant. The common topology for a wind farm is shown in Fig. 1 [5].

Although wind power plants have their own local control to operate
the controller, it is necessary to coordinate these large-scale generation
units to establish an effective control voltage while minimizing gener-
ation curtailment [6]. The works in [7–9] focus on how to perform the
voltage control among the elements of only one wind farm. A more
ambitious approach with a higher impact on the grid would be the
definition of voltage control for several wind farms.

Thus, to achieve an adequate and safe power system voltage control,
there needs to be adequate control and coordination of the reactive
power compensators of several wind farms. In a transmission network,
the Transmission System Operator (TSO) is in charge of coordinating
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Fig. 1. Diagram of a common controller for a wind power plant.

different reactive sources (mainly synchronous generators and compen-
sation units) to ensure the reactive power balance of the entire system.
Thus, one of the goals of this operator should be to adjust the optimal
set point (SP) of the local controllers, incorporating knowledge of the
environment or market platform. To do so, the TSO gathers all the
information about the components in the network. It then analyses the
data and usually solves an optimization problem in order to decide
the SP of the local controllers. The SPs are sent to the controlled units
as seen in Fig. 2. This is a centralized voltage control strategy, which
can achieve an optimal control performance by processing the overall
information if the data are precise and not manipulated intentionally
or by a transmission error. However, centralized approaches might not
be suitable for a future scenario with multiple large-scale wind farms.
As described in [10], centralized voltage controllers are associated with
significant computational costs, which are driven by the need for global
and complete data. The optimization-based methods designed in these
approaches are usually executed in a period of several seconds or even
minutes with a slow response time. Hence, they might not be able to
handle short-term voltage [5]. The need for substantial computational
resources and the increased execution time with the number of control-
lable units limit the scalability of the centralized solutions. Moreover,
they lack robustness and reliability due to potentially inaccessible data.
As power systems constitute a critical infrastructure, it is necessary to
take into account the threats that their operation entitles. As explained
in [11], false data injection or man-in-the middle are common threats
with which these systems must cope.

In order to offer more robust solutions and to shorten the response
times, distributed approaches have been proposed in recent years as
strategies that get a performance close to the centralized algorithm
but with added capabilities as scalability, enhanced cyber-security.
They also perform better than centralized solutions when there is
data unavailability [12]. The simplest and most cost-efficient methods
follow a distributed and autonomous approach (usually referred to
as decentralized) in which the nodes reconfigure their own voltages
without coordinating with any other nodes in the network. This could
lead to impractical solutions which do not comply with the electrical
restrictions imposed by the power system. This strategy is enhanced
when partial information about the network state is considered, leading
to distributed algorithms. In the context studied, a compensator could
make use of the information sent by its immediate neighbours in the
grid topology, and of some common buses with a high impact on
the performance of the nodes where the compensators are placed.
With a distributed control, these partial data are incorporated into the
controllers’ own sub-problems. In order to reach the optimum solution
(such as that provided in the centralized approach), an iterative process
must be executed. There are therefore three main benefits of using
a correctly designed, coordinated and distributed architecture when
compared with a centralized approach. Firstly, communication costs
and delays are minimized. Secondly, the input data in the controller
2

is reduced so that a faster response may be achieved when solving
the problem, which could even be solved more frequently. The com-
putational time of this local algorithm is lower than that associated
with the centralized approach. Moreover, it is less dependent on the
number of units that need to be controlled, so scalability can be fulfilled
with distributed approaches [13]. Finally, it can be adjusted to data
unavailability due to privacy concerns or technical problems in the
infrastructure. The vulnerabilities in this control are also restricted to
a smaller area, which may help to incorporate cybersecure protection
and monitoring techniques.

Model Predictive Control (MPC) can be applied to distributed volt-
age controls. The basis of this algorithm consists in repeatedly solving
a multi-time-step constrained optimization problem with a sensitivity
model to predict the system evolution. The MPC captures the dynamics
of the system over a time horizon and resolving an optimization algo-
rithm, the best control setting is determined adding control stability.
Unlike conventional control strategies focusing on exploring the closed-
loop control law, the MPC transforms the control problem into an
online open-loop optimization problem by building discrete mathemati-
cal models and cost functions. When implemented in a distributed way,
the stable and efficient operation of networks is achieved as in [14],
which illustrates its application to a power system with distributed
generation. In this work, the control algorithm is embedded within
the voltage and reactive power controller. Using the dynamics of the
primary control, they model the dynamics of the state variable that is
used in the predictive control. The formulation of the distributed MPC
(DMPC) presented in [15] also relies on the machine features to decide
the parameters used to configure the DG units. Specifically, the authors
consider wind turbines in their analysis.

In order for this control to be applied more extensively, the con-
troller we propose is carefully designed so that it does not require any
change in the compensators and does not rely on the specific model of
the controlled machine. In fact, it will follow a plug-and-play structure
in which the new controller is inserted into any machine operated
with an SP, as shown in Fig. 2. This incorporation is accomplished
seamlessly by modifying the SP (initially transmitted by the TSO in a
centralized approach). It is worth noting that the proposed controller
is valid for any type of large-scale generation unit (i.e. wind or solar
farm) or device with a local voltage controller due to these inherent
properties. As the machine dynamics are not considered for the DMPC,
the proposed control can be applied in any machine/device which
has a local voltage control with an accessible input for the setpoint.
This plug-and-play control reduces the technical and economic costs
of the implementation, which also provides a scalable solution. To
illustrate this idea, the diagram in Fig. 2 shows a system with generators
connected on buses 1, 2 and 5. Buses 2 and 5 are connection buses
of alternative generation sources with voltage compensators and their
respective controls. Loads are located on buses 3 and 6. Without
applying our proposed algorithm, the STATCOMs would be configured
by the TSO. This unit would specify the setpoints 𝑉 𝑠𝑝1 and 𝑉 𝑠𝑝2 for
STATCOMs in buses 2 and 5 respectively. Our proposal does not change
the electronics or the internal control of the STATCOM or the renewable
farm. A DMPC is inserted for each compensator control to locally
determine the new setpoint without making structural alterations or
relying on internal parameters of the machine or the compensator. The
control already installed in each STATCOM is operated solely with a
new input, which corresponds to the result of a DMPC algorithm. For
this particular topology, bus 3 is common for both types of renewable
energy farms, and we assume that it would be strongly impacted by
buses 2 and 5 i.e. it would show a high sensitivity. Thus, we can
coordinate the two compensators based on common bus variables as
is shown in the input variables of the DMPC algorithm. Following a
distributed approach, the algorithm we propose also estimates the value
of the control setup of the other STATCOM in the previous iteration
𝜇2(𝑘 − 1) and 𝜇1(𝑘 − 1) in buses 1 and 5 respectively. This estimation
is done from the value of the common variables 𝑉 2

3 (𝑘) and 𝑉 1
3 (𝑘),
which are determined and published by each control in each iteration.
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Fig. 2. Diagram of the proposed plug-and-play controller based on DMPC.
The control action 𝜇 of each controller is not exchanged because it is
needed to increase the degree of autonomy for future events such as
loss of communication, and to maintain privacy over the operation and
control plan of each zone. We can observe that other nodes’ information
required by these local controllers comes from a small set of other
DMPCs in the transmission network. In particular, only DMPCs that
share a common bus must exchange this kind of information. The con-
trols are executed periodically, and on each occasion they perform an
iteration process. In each iteration, each DMPC solves an optimization
problem that minimizes the deviation of the voltage values, the control
action and the penalty on the difference of the negotiation variables
of its zone. From the control action obtained in each iteration, each
control calculates the deviation of the common bus trading variable
and publishes it. These values are used to estimate the control action
applied by the other DMPCs of influence. This value will be used in the
next iteration. Each control then compares its negotiation variable with
that of the other control. The process ends when the difference of the
trading variables is below a threshold, or a certain number of iterations
has been reached.

The main contributions of this work are:

• It proposes a fully distributed approach for the voltage control. It
can be easily implemented in the original wind farm controllers.
Moreover, it is compatible with most control algorithms proposed
in the literature [7–9] to distribute the reactive power demand
among the wind turbines of a wind farm. The distributed algo-
rithm proposed uses the voltage of its immediate nodes and only
exchanges information with a small set of other DMPCs in the
grid (those that have a bus in common, on which they must
reach a consensus). Each DMPC acts according to its predicted
movements and the current information from these closed nodes.

• The original controllers of the compensators are therefore not
modified in a plug-and-play scheme. In fact, the specific dynamic
of the machine is not used for the DMPC but requires the network
state instead. Thus, the proposed DMPC controller is valid for
multiple types of large-scale generation units.

• The network topology is intrinsic to the design, allowing it to
be considered in the controller’s decisions. Specifically, by using
this information, we detect the buses that have more influence
3

on other nodes and we restrict the input data of the controller to
the state of these influencing nodes. This approach minimizes the
information that the DMPC units exchange, which can provide a
clear advantage in terms of scalability and data security.

The rest of this paper is organized as follows. In Section 2, the
control model is done first by determining the prediction model of
the bus voltages from the decoupled power flow equations and sep-
arating the controllable buses from the non-controllable ones. Then,
in Section 3, using Lagrangian techniques, decomposition is applied
to the global MPC equation to obtain a local predictive control based
on the distributed model. Section 4 applies the proposed distributed
control to an IEEE 9-bus test system with two wind farms including
their compensation with STATCOMs. The load profile has been varied
to verify the effectiveness of the proposed controller. Finally, Section 5
presents the main conclusions and outlines some future research lines.

2. Related work

In general, most references focus on the control of active and reac-
tive power and the voltage in the POC connection bus of a single wind
farm composed of multiple turbines. The values of the variables of these
buses in some cases are taken to execute a consensus as in [4,13]. The
consensus via critical buses, which can be identified as in [13], requires
some communication channel to transmit the state of the buses. This
constitutes a vulnerability, which could be avoided considering other
buses. Other algorithms like in [16,17] and the one proposed in this
work, they do consider different wind farms connected at different
points of the network. In [16], the authors determine a critical bus to
execute the consensus. In [17], the proposed algorithm does not require
consensus but they achieve coordination by an iterative algorithm to
configure two 𝜆 values. These values depend on the voltage deviation
of the buses to which the distributed generation units are connected
and the power losses. Although the algorithm can be solved locally,
it requires the information of all the voltage deviations, which needs
a communication network and it prevents scalability. In our proposed
algorithm, a common bus is chosen based on the maximum sensitivity
value between each POC bus and the network buses. This is an ad-
vantage because a consensus is executed on the basis of real electrical
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Table 1
Comparison of algorithms.

Reference Testing system Wind farms Algorithm Consensus bus Neighbouring buses Plug and play

[4] IEEE9 1 MPC POC ✗ ✗

[13] IEEE14 1 DMPC POC ✗ �
[16] IEEE14 Several MPC Critical bus ✗ �
[17] Hami region of Xinjiang Several Genetic algorithms ✗ ✗ �

Proposed control IEEE9
IEEE14

Several DMPC � � �
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connections instead of using a communication network as in [13,16].
Finally, as can be seen in Table 1, the most resulting advantage of
our proposed algorithm is that it includes neighbouring buses. This
guarantees that the largest number of buses in the network remains
within the voltage profile set by the code requirements of the system
operator. In addition, as there is not a new communication network to
install and knowing the machine dynamics is not a requirement, it is
a simpler algorithm to implement since it does not involve noticeable
modifications of the equipment.

3. Problem formulation

It is well known that most power grids with multiple nodes can
be described by a linear model close to an operating point 𝑆0 or
esired state. This behaviour is defined by Eq. (1), where 𝛥𝑃 is the
ifference vector of active power of nodes with respect to those in the
perating point, 𝛥𝑄 is the difference vector of the reactive power in
he aforementioned states, 𝑉 represents the voltage magnitude in the
odes and 𝛿 is their voltage angles [18]. For well-conditioned problems,
his matrix system can also be reduced to Eq. (2). This strategy is
he decoupled power flow model which is based on an approximated
ersion of the Jacobian matrix used in the Newton–Raphson method.
his simplification is based on the fact that active power is much more
ensitive to small changes in the phase angle at the node, and reactive
ower is more sensitive to small voltage changes.
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=
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Considering that the line susceptances 𝐵 are much larger than the
ine conductances, we can simplify the Jacobian matrix in the previous
odel leading to Eq. (3) for a power system with 𝑛 nodes. As can be

bserved, the reactive power is related to the voltage magnitude using
he decoupled power flow, in which 𝐵𝑖𝑗 is the susceptance in the line
onnecting node 𝑖 to node 𝑗 [19].
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The decoupled power flow equations constitute an approximated
ut valid model of the power system that relates the change in the
oltage magnitude or reactive power at any given bus to the change
n the voltage magnitude or reactive power at the rest of the buses in
he system. In other words, if a change occurs in one bus, we could
nfer the impact of this change on the other buses. This impact can be
easured by the sensitivity and the electrical distance, as considered

n [20–22].
Eq. (3) can be better detailed by separating it into controllable and

on-controllable nodes as in [18], leaving the one expressed in (4).

𝛥𝑄𝑢(𝑘)
𝛥𝑄𝑐 (𝑘)

]

= −
[

𝐵𝑢𝑢 𝐵𝑢𝑐
𝐵𝑐𝑢 𝐵𝑐𝑐

] [

𝛥 |
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𝛥 |

|

𝑉𝑐 (𝑘)||
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(4)

here the subscript 𝑐, 𝑢, and 𝑘 are used to indicate controllable and
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on-controllable voltage nodes and the time instant respectively. The [
usceptance of the network is considered constant. Hence, the following
quation can be considered:

𝛥𝑄𝑢(𝑘)] = −[𝐵𝑢𝑐 ][𝛥 |

|

𝑉𝑐 (𝑘)||] − [𝐵𝑢𝑢][𝛥 |

|

𝑉𝑢(𝑘)||] (5)

here [𝛥𝑄𝑢(𝑘)] is the vector of the reactive powers of the
on-controllable nodes at the instant 𝑘, [𝐵𝑢𝑐 ] is the matrix of the suscep-
ances of the lines that connect the controllable and non-controllable
odes, [𝐵𝑢𝑢] is the matrix of the susceptances of the lines connecting
he non-controllable nodes and 𝛥 |

|

𝑉𝑐 (𝑘)||, 𝛥 |

|

𝑉𝑢(𝑘)|| are the vectors of the
oltages at the controllable and non-controllable nodes respectively at
he instant 𝑘. It is also possible from (5) to obtain the expression below
Eq. (6)) with which the voltage of the non-controllable nodes at the
nstant (𝑘 + 1) can be calculated from the voltage of the controllable
odes at that same instant.

𝛥 |

|

𝑉𝑢(𝑘 + 1)|
|

) = −(𝐵𝑢𝑢)−1(𝛥𝑄𝑢(𝑘)) − (𝐵𝑢𝑢)−1(𝐵𝑢𝑐 )(𝛥 |

|

𝑉𝑐 (𝑘 + 1)|
|

) (6)

The Power Flow (PF) method is an iterative process in which a
oltage value 𝑉 is estimated and then the system of equations is solved
ith a method such as Newton–Raphson’s. With this resolution, the
alues of Q and V are found so that the system of equations is fulfilled.
𝑉 obtained in each iteration is the voltage correction made to the
stimated voltage value.

Considering the problem addressed in this paper, we have to take
nto account the fact that decomposition techniques for the optimiza-
ion problem are used to solve and coordinate the voltage control of
arge areas with multiple generators. They have proven to be appli-
able in the design of DMPC for coordinating voltage compensation
evices [23]. These same techniques are used to develop the controller
roposed in this work.

When the control is applied to a voltage compensator, the previous
ormulation differs because the 𝛥𝑉 is the deviation from the desired
oltage at the connection point, i.e. 𝛥𝑉 = 𝑉𝑆𝑃 − 𝑉𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 , where 𝑉𝑆𝑃
s the setpoint value of the voltage (for example 1 pu) and 𝑉𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 is
he measured voltage value. With this in mind, the prediction model of
he controller is then determined.

Eq. (6) illustrates how the ongoing reactive power 𝛥𝑄𝑢(𝑘) disturbs
ncontrolled voltage nodes at the next interval. If the ongoing distur-
ances are known, the new control action 𝛥𝑉𝑐 (𝑘+1) = 𝜇(𝑘) should then
e applied. This voltage setpoint in the controlled nodes is expected to
inimize the voltage deviation of the uncontrolled nodes in the near

uture, i.e. in 𝛥𝑉𝑢(𝑘+ 1). In other words, in each time step the ongoing
oltage deviation is searched for in order to modify the setpoint of the
ontrollable voltage nodes in successive time steps. 𝛥𝑉𝑢(𝑘), represents
he deviation from the desired value of the voltage measured in the
ncontrolled nodes, i.e. nodes without voltage controllers. Conversely,
he 𝛥𝑉𝑐 (𝑘) are the voltages of the nodes with local area controllers that
lready have their own measurement devices.

The obvious control strategy is to select a control action (change the
etpoints of the controllable nodes) in order to minimize the voltage
eviation of the other nodes (𝛥𝑉𝑢(𝑘)). Due to sensitivity, we find that
he voltage variations are proportional to the reactive power variations
here 𝛥𝑉 = −𝐵−1𝛥𝑄 according to [24]. Without loss of generality, the

quation would then be as follows:

| |
−1

| |
𝛥
|

𝑉𝑢(𝑘 + 1)
|

] = −[𝛥𝑉𝑢(𝑘)] − [𝐵𝑢𝑢] [𝐵𝑢𝑐 ][𝛥 |

𝑉𝑐 (𝑘)|] (7)
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In order to align with the common notation in the control theory
field, we execute the following variable changes: 𝑥(𝑘) = 𝛥𝑉𝑢(𝑘) and
𝛥𝑉𝑐 (𝑘) = 𝜇(𝑘). Thus, the previous equation can be expressed as:

𝑥(𝑘 + 1) = −𝑥(𝑘) − [𝐵𝑢𝑢]−1[𝐵𝑢𝑐 ]𝜇(𝑘) (8)

where 𝑥(𝑘), 𝜇(𝑘) are the vector of non-controllable variables and con-
troller actions respectively.

4. Design of the proposed control

We propose the following predictive control problem: considering
that it is necessary to minimize the deviation of the node voltages, the
overall objective function is a linear quadratic function such as that
presented in [25]. The main objective of the control is to keep the
bus voltage magnitudes within the rated voltage limits at all times.
In our analysis we consider this to be between 0.9 and 1.05 (pu). In
the following equation, this objective is achieved by minimizing the
voltage deviation of all grid nodes, including in the vector 𝑥(𝑘). The
secondary objective is to minimize the action of the controllers and
hence the operating cost of all controllers included in the vector 𝜇(𝑘).
The optimal operation of the zones – e.g. minimization of active power
losses or maximization of reactive power reserves – is not considered in
this work as it is left to the TSOs. The timescale of short-term voltage
control focused on in this paper is the period of several tens of seconds
after a disturbance.

𝑓 (⋅) =
𝑁𝑝−1
∑

𝑘=0
𝑥(𝑘)𝑇 ∗ 𝑄 ∗ 𝑥(𝑘) + 𝜇(𝑘)𝑇 ∗ 𝑅 ∗ 𝜇(𝑘) (9)

where 𝑁𝑝 is the prediction horizon and 𝑄 and 𝑅 are positive definite
weighting matrices.

The restriction for this optimization problem is related to the model
developed for the variable Eq. (8) as derived in the previous section,
i.e.

𝑥(𝑘 + 1) = −𝑥(𝑘) − [𝐵]𝜇(𝑘) (10)

As analysed previously, using the sensitivity matrix and separating
the controllable and non-controllable buses (the controllable buses are
buses in which the compensators are connected), we have a decomposi-
tion problem. In the [𝐵] = [𝐵𝑢𝑢]−1[𝐵𝑢𝑐 ] matrix, the concept of electrical
distance is incorporated and therefore the effect of the voltages of the
intermediate buses (from the controllers to the uncontrolled buses) is
modelled. With this procedure it becomes necessary to separate the
controls in the system dynamics model. This is a control problem with
sharing buses, i.e. their actions affect buses in their areas of influence
as well as common buses. This creates some complexity when adjusting
the common interface as described in [26] and represented in Fig. 3.
Usually the decomposition problems in power systems use fictitious
buses. Our proposal focuses on buses between the compensators, called
common buses. In this example, the decomposition of the system
generates eight variables. The decomposition procedure is based on
cloning the variables of the common buses. Each STATCOM has its
own replica of the active and reactive power flows, voltage and phase
angle deviation on bus 5. This bus is located on the line connecting
STATCOM 1 and 2. These variables are known as consensus variables
on which an iterative procedure is executed to reach a consensus. It
is therefore possible to convert the network Fig. 3(a) in an equivalent
(b) incorporating the variables of interest of each bus shared by the
compensators.

As explained above, an 𝑖th controller has a set of buses in its neigh-
bourhood on which it has a relevant impact, i.e. it alters their voltages.
This neighbourhood is determined by the sensitivity 𝑆 = [𝐵𝑢𝑢]−1[𝐵𝑢𝑐 ]
defined previously. Within those buses there may be buses that are also
controlled by another controller ′𝑗′. These buses are known as common
buses, and a consensus between the 𝑖 and 𝑗 controllers is required
for a proper control design so that the variables are equal. In the
5

Fig. 3. Illustration of the proposed decomposition problem with a common bus.

decomposition process of the global model (11) this consensus appears
as a restriction, which is incorporated into each controller applying the
augmented Lagrangian with the condition of consensus at time step 𝑘
as follows:

min
𝜇𝑖

𝑛
∑

𝑖=1

(𝑁−1
∑

𝑙=0
𝑥𝑖(𝑘 + 1 + 𝑙)𝑇 ∗ 𝑄𝑖 ∗ 𝑥𝑖(𝑘 + 1 + 𝑙) + 𝜇𝑖(𝑘 + 𝑙)𝑇 ∗ 𝑅𝑖 ∗ 𝑢𝑖(𝑘 + 𝑙)

+
∑

𝑗∈𝛺𝑖

(

𝜆𝑗𝑖(𝑘)(𝑌𝑗𝑖(𝑘) − 𝑌𝑖𝑗 (𝑘)) +
𝛾
2
‖

‖

‖

𝑌𝑗𝑖(𝑘) − 𝑌𝑖𝑗 (𝑘)
‖

‖

‖

2
))

subject to:

𝑥1(𝑘 + 1 + 𝑙) = (−𝑥1(𝑘 + 𝑙)) − (𝐵1)(𝜇1(𝑘 + 𝑙))v=20pt −
𝑛𝑗
∑

𝑗=1,𝑗≠1
𝐵𝑗1𝜇𝑗 (𝑘 + 𝑙)

𝑥2(𝑘 + 1 + 𝑙) = (−𝑥2(𝑘 + 𝑙)) − (𝐵2)(𝜇2(𝑘 + 𝑙)) −
𝑛𝑗
∑

𝑗=1,𝑗≠2
𝐵𝑗2𝜇𝑗 (𝑘 + 𝑙)

⋮

𝑥𝑖(𝑘 + 1 + 𝑙) = (−𝑥𝑖(𝑘 + 𝑙)) − (𝐵𝑖)(𝜇𝑖(𝑘 + 𝑙)) −
𝑛𝑗
∑

𝑗=1,𝑗≠𝑖
𝐵𝑗𝑖𝜇𝑗 (𝑘 + 𝑙)

(11)

for 𝑙 = 0,… , 𝑁 − 1, 𝜆𝑗𝑖(𝑘)(𝑌𝑗𝑖(𝑘) − 𝑌𝑖𝑗 (𝑘)) is the consensus term,
𝛾
2
‖

‖

‖

𝑌𝑗𝑖(𝑘) − 𝑌𝑖𝑗 (𝑘)
‖

‖

‖

2
is the penalization term and 𝛺𝑖 is the set of neigh-

bourhood controls of 𝑖. As can be observed, the objective function has
the relaxed coupling constraint, and, in addition, a quadratic term is
included to guarantee local convexity and improve convergence [25,
26].

The Lagrange multipliers weigh up the difference in the voltage
values calculated by the local controllers. This helps the problem to
converge. To linearize the proposed formulation in (11), the auxiliary
problem principle is applied as in [27], so the local problem for control
𝑖, at time step 𝑘 consists of:

min
𝜇𝑖

𝑁−1
∑

𝑙=0
𝑥𝑖(𝑘 + 1 + 𝑙)𝑇 ∗ 𝑄𝑖 ∗ 𝑥𝑖(𝑘 + 1 + 𝑙) + 𝜇𝑖(𝑘 + 𝑙)𝑇 ∗ 𝑅𝑖 ∗ 𝜇𝑖(𝑘 + 𝑙)

+
∑

𝑗∈𝛺𝑖

(

𝜆𝑗𝑖(𝑘)𝑝𝑌𝑗𝑖(𝑘)𝑝 +
𝛽
2
‖

‖

‖

𝑌𝑗𝑖(𝑘)𝑝 − 𝑌𝑗𝑖(𝑘)𝑝−1
‖

‖

‖

2

+ 𝛾𝑌𝑗𝑖(𝑘)𝑝(𝑌𝑗𝑖(𝑘)𝑝−1 − 𝑌𝑖𝑗 (𝑘)𝑝−1)
)

subject to:

𝑥𝑖(𝑘 + 1 + 𝑙) = −𝑥𝑖(𝑘 + 𝑙) − [𝐵𝑖](𝜇𝑖(𝑘 + 𝑙)) −
𝑁𝑗
∑

[𝐵𝑗 ]𝜇𝑗 (𝑘 + 𝑙) (12)

𝑗=1,𝑗≠𝑖
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Fig. 4. Flowchart for the proposed DMPC local controller.

where: 𝛽
2
‖

‖

‖

𝑌𝑗𝑖(𝑘)𝑝 − 𝑌𝑗𝑖(𝑘)𝑝−1
‖

‖

‖

2
+ 𝛾𝑌𝑗𝑖(𝑘)𝑝(𝑌𝑗𝑖(𝑘)𝑝−1 − 𝑌𝑖𝑗 (𝑘)𝑝−1) are penal-

ization terms.
For the update of the 𝜆 values, we use:

𝜆𝑗𝑖(𝑘)𝑝+1 = 𝜆𝑖(𝑘)𝑝 + 𝛼(𝑌𝑗𝑖(𝑘)𝑝 − 𝑌𝑖𝑗 (𝑘)𝑝) (13)

Due to the interactions between the controls it is necessary to agree
on their actions, therefore the controls must participate in a series
of iterations. In each iteration 𝑝 local calculations are performed, in
which the value of the consensus variable 𝑌𝑖𝑗 (𝑘)𝑝−1 calculated by the
neighbouring controls in the previous iteration is considered. In turn,
the local control calculates 𝑌𝑗𝑖(𝑘) and publishes it.

The predictive control problem 𝑖 proposed in this paper is formu-
lated in Eq. (12). Here the vector 𝑥𝑖 are the buses that belong to the area
of influence (𝛺𝑖) of the controller, 𝑄𝑖, 𝑅𝑖 are weighting matrix, 𝜆𝑗𝑖 are
the Lagrange multipliers associated with the consensus, and 𝛾 and 𝛽 are
positive constants. [𝐵𝑖] and [𝐵𝑗 ] are column vectors of sensitivity which
relate the vector 𝑥𝑖 states to control 𝑖 or 𝑗, and the ∑𝑁𝑗

𝑗=1,𝑗≠𝑖[𝐵𝑗 ]𝜇𝑗 (𝑘+ 𝑙)
term is referred to as the disturbance on the variable 𝑥𝑖 generated by
the actions of the neighbouring controls. Fig. 4 depicts the flowchart of
the DMPC-based local controller.

5. Plug-and-play connection

One of the main advantage of our proposed algorithm relies on the
fact that is simple to implement, even if the power system is already
installed. Let us suppose a power system which contains 𝑁 wind farms
with their respective STATCOMs as support for the voltage control. To
incorporate and execute the proposed DMPC in the bus 𝑖, we will need
to go on the following steps:

• Determine the sensitivity from each bus 𝑖 on which a farm is
installed to other nodes 𝑗 in the power system. This can be
easily done, as the system operator usually knows the topology
of the system and the parameters of the lines, and from these two
data the susceptance matrix can be calculated and the sensitivity
matrix 𝑆 can be obtained.
6

𝑗𝑖
• Analyse these results to determine the set of nodes 𝑘𝑖 ⊂ 𝑗 that
make up the neighbourhood of each farm 𝑖.

• Identify the common nodes, which are those that are repeated in
the previous set for different wind farms.

• Install metering on the set of nodes 𝑘𝑖 in the neighbourhood.
• Install the proposed controller on the farm 𝑖. Identify in the

controller program which nodes 𝑘𝑖 belong to the neighbourhood
of this controller. Then, identify in the controller of the set 𝑘𝑖
which are common nodes and to which other controller it belongs.
Connect the meter readings of the 𝑘𝑖 nodes to the 𝑖 controller.

• Connect the output of the proposed controller to the SP input of
the STATCOM internal control.

As can be seen from the above listed steps, there is no information
about the internal dynamics of the machines. Additionally, the con-
troller can be installed in the desired number of wind farms but it is
not necessary to install it in all of them.

Once a wind farm receives the setpoint by the proposed DMPC,
the coordination among the wind turbines in this wind farm can be
accomplished by other controllers as the ones in [7–9].

6. Evaluation and test results

To assess the effectiveness of the designed control, the algorithm is
implemented in MATLAB with the YALMIP toolbox. This toolbox helps
to model and resolve optimization problems [28]. In particular, we
have initially tested the control in the IEEE 9-bus test system, illustrated
in Fig. 5. For this network, bus 1 (B1) is a slack node, buses 2 and 3 (B2
and B3) are PV and buses 4, 5, 6, 7, 8 and 9 (B4, B5, B6, B7, B8 and
B9) are PQ. In the power system, we have incorporated two wind farms
and the two corresponding STATCOMs, which are effective voltage
compensators [29]. As usual, STATCOMs have a shunt connection with
a non-negligible line impedance so the power system also includes
nodes 11 and 12 (B11 and B12 in the figure).

We have tested the performance of the power system with four
different configurations: (i) no control applied to the wind farm buses;
(ii) fixed set point (SP) for the STATCOMs of the wind farms, i.e. the
same value is kept for any event; (iii) centralized control applied
to the two STATCOMS; and (iv) proposed DMPC executed in these
voltage compensators. The DMPC is executed every 200 ms and all the
iterations must be done in this interval.

For the controller we propose, we need to calculate the sensitivity
of the grid nodes with respect to the nodes with a POC. This matrix
helps to determine the buses that have the highest sensitivity to voltage
changes in the POCs and those that are common to the controllers.
When the value of the sensitivity in a node with respect to a POC
is above a certain value, it is considered to be a node in the neigh-
bourhood of that controller, and if it is also within the neighbourhood
of another controller then it is said to be a node common to both
controllers. As explained in the previous section, in this case the node
will be considered a consensus node for our distributed algorithm.
Table 2 represents the sensitivity that all nodes have with respect to
the controllers in points of connection POC11 and POC12. For POC 11,
buses 1, 4, 5 and 9 have the highest sensitivity values so that these
buses can be considered in the vicinity of bus 11. For POC 12, the same
analysis is carried out, concluding that nodes 2, 3, 6, 7, 8 and 9 are in
the vicinity of bus 12. It can be observed that bus 9 belongs to both
vicinities, i.e. bus 9 is a common bus that requires a consensus in our
algorithm.

We have changed the reactive load in the PQ buses B5 and B7. At
the beginning of the simulation, the load in bus B5 is 90 MW and 30
MVAr. In bus B7, the load is 100 MW and 35 MVAr; while in bus B9 we
have initially set 125 MW and 50 MVAr. Then, at 0.5 s the inductive
power on bus B5 is increased by 20 MVAr. At 0.8 s, the load on bus B7

is incremented by 50 MVAr, leading to a total reactive of 185 MVAr
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Fig. 5. Diagram of IEEE-9 bus test system with two wind farms and their corresponding STATCOMs.
Table 2
Sensitivity matrix.

Bus POC

11 12

1 0.7410 0.3075
2 0.2636 0.7797
3 0.4098 0.6273
4 0.7410 0.3075
5 0.8995 0.1182
6 0.4098 0.6273
7 0.1182 0.8999
8 0.2636 0.7797
9 0.5868 0.4745

Table 3
PF resolution in the PV nodes for the analysed configuration of the IEEE-9 bus test
system for the initial load conditions.

Bus B1 B2 B3

Type Swing PV PV

P [MW] 72 85 163
Q [MVAr] 42 −2 −7.4

and active 235 MW. Later, at 1.2 s the 50 MVAr are removed from bus
B7 and at 1.5 s the 20 MVAr are removed from bus B5.

For the initial load, we can determine the system parameters. With
an PF algorithm, we obtain the powers specified in Table 3. Since the
goal of our algorithm is for the load variations to be compensated by
the STATCOMs connected to the wind farms, it will be easy to see the
power contributions of the compensators on these initial values when
evaluating the simulation results.

The influence of the parameters on the algorithm was studied by
running several simulations with different values of these parameters
and constructing Table 4. The control interval of the DMPC was set at t
= 0.2 s and the load variations described previously at t = 0.5 s, 0.8 s,
1.2 s and 1.5 s. It should be pointed out that the maximum number of
iterations (𝐼𝑚𝑎𝑥) is affected mostly by 𝛼, and to a lesser degree by 𝛽. The
impact of 𝛾 is less significant, so it is not specified for any configuration.
Decreasing any of these parameters causes the number of iterations to
decrease and therefore decreases the control execution time. Each step
of the prediction horizon is equal to the control interval and should
7

Table 4
Maximum number of iterations for convergence of the DMPC.
𝑁 Configuration

𝛽 𝛾 𝛼 𝐼𝑚𝑎𝑥
3 2 1 0.1 5
7 10 0.1 0.1 5
30 2 1 0.1 5
3 2 1 1 15
7 2 0.1 1 15
7 0.1 2 1 15
30 2 0.1 1 15
7 0.1 0.1 10 30
7 2 1 10 30

cover the transient response of the open-loop system. Although a very
long 𝑁 should lead to a more stable performance, it also implies a great
computational effort. Nevertheless, this assumption does not always
hold. In fact, in [30] we demonstrate how a low 𝑁 in many electrical
systems gives the same results as a long one. The most commonly used
method to determine the optimal 𝑁 value is trial and error. From the
simulation results shown in Table 4, the same response is obtained from
N = 3 to 30, therefore N = 3 was chosen.

An empirical procedure was used with a constant step size, 𝛼 =
𝛽∕2 = 𝛾. 𝑎𝑙𝑝ℎ𝑎 and 𝑔𝑎𝑚𝑚𝑎 are constants that weigh up the difference
of the negotiation variables so they can be equalized. Then, a step size
of 𝑎𝑙𝑝ℎ𝑎 = 1 was chosen, since – as obtained from the simulations –
this value gives a low number of iterations for convergence. Finally
the chosen values are 𝑁 = 3, 𝛼 = 1, 𝛽 = 2 and 𝛾 = 1. For this
configuration, we have analysed some metrics. In Fig. 6, we show the
deviation of the voltages from the desired value (1 (pu)) in the load
buses for each control technique evaluated. It immediately stands out
that the proposed control is very similar to the centralized control and
that it also reduces the number of oscillations with respect to the fixed
control when there are load changes. For this reason, it is interesting to
test the deviation with respect to the centralized control in the further
analysis.

In Fig. 7, we show the deviation with respect to values derived
by the centralized control. Highlighting and as mentioned above if no
control is applied, the system suffers from a high variability of the
voltage levels. If used with a fixed set point value, peaks appear at
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Fig. 6. Deviation of the bus voltage values in IEEE 9-bus test system.
Fig. 7. Voltage dispersion for every control algorithm compared to the centralized solution in IEEE 9-bus test system.
R
o
a
a

changes in the system load, showing an error with respect to cen-
tralized control, whereas the proposed distributed control generates
very similar dynamics to the centralized control. We can see that
the oscillations are minimized with the DMPC algorithm. In order to
assess the convergence of the 𝜆s coefficients, we have analysed the
updates of this parameter during the iterations. Fig. 8 represent this
evolution for the first execution of the DMPC algorithm. The Lagrange
multiplier updating schemes in Eq. (13) is based on the calculation of
sub-differentials. This scheme is well-known to suffer from oscillatory
behaviour as it is shown in Fig. 8. However, it can be observed that
8

the values tend to a stable number for all the iterations. It can be seen
that there is a positive 𝜆 value and a negative one. The 𝜆s are used
to establish how and in what sense each controller approaches the
solution or the desired value of the consensus variable. Therefore, 𝜆s
reflect how fast a solution is sought and this is set by the 𝛼 coefficient.

egarding the direction in which the solution is defined, the difference
f the values of the consensus variable calculated in each iteration is
n indicator of this movement. In one control, we have 𝛼 ∗ (𝑌 1 − 𝑌 2)
nd in the another we have specified 𝛼 ∗ (𝑌 2 − 𝑌 1). This configuration

forces each control to approach the final solution in opposite directions.
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Fig. 8. Convergence of the 𝜆 coefficients for the first execution in the in IEEE 9-bus test system.
Fig. 9. Active power on generation buses for every control technique in IEEE 9-bus test system.
A similar performance is observed for other changes on the load. To
evaluate the performance of the DMPC code, the execution time of the
algorithm was measured using the tic and toc functions provided by
Matlab. A Dell Inspiron 15 laptop machine was used. It is an Intel©
Core™ i7-8550U CPU @ 1.80 GHz × 4, 8 GB memory and it runs
Linux Mint 19.3 Cinnamon. We got a maximum value of 140 ms
per execution of the DMPC algorithm. The execution of the DMPC
algorithm includes several iterations until the convergence is achieved.
Thus, by the execution time of the DMPC algorithm we mean the
sum of time required by all the corresponding iterations to achieve
convergence.
9

The next issue to evaluate is the support of the proposed control
over the active and reactive power of the system generators. The
previous resolution of the PF constitutes the reference for the operation
of the IEEE 9-bus system. The support that the wind farms provide
with the TSO restriction usually consists in keeping the generators
at the power values calculated in the PF. With respect to the active
power illustrated in Fig. 9, the simulation results show that both control
strategies – the proposed DMPC and the centralized control – similarly
support the generators during power variations, which validates the
use of a distributed algorithm. A similar behaviour is observed for the
reactive power in Fig. 10.
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Fig. 10. Reactive power on the generation buses and on the wind farms in IEEE 9-bus test system.

Fig. 11. IEEE-14 bus test system.
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Fig. 12. 𝜆 values for the IEEE 14-bus test system.
Fig. 13. Error of the voltage dispersion for every control algorithm in the IEEE 14-bus test system.
To evaluate the scalability of our proposal, we have also tested our
algorithm on the IEEE-14 bus test system, illustrated in Fig. 11. It has
been modified with 3 wind farms with their respective STATCOMS
installed on buses B8, B12 and B14 and 4 generators. For the WFs
connected on buses B8 and B12, the common bus is B13 and for those
on B12 and B14, it is B9. The reactive power of the bus B11 in 𝑡 = 0.3 s
was increased from 2.52 MVAR to 50 MVAR and in bus B9, we have set
a change from 23.24 MVAR to 60 MVAR at 𝑡 = 0.7 s. Then in 𝑡 = 1.1 s
and 1.3 s they return to their initial powers respectively.

With two common buses, 4 𝜆 values are generated, two for each
common bus. These lambdas are represented in Fig. 12 and as can
be seen they converge on a time scale similar to that of the previous
system. The 𝜆 and 𝜆 are used for consensus between control 1 and
11

1 2−1
control 2. Likewise the 𝜆3 and 𝜆2−3 are used for the consensus between
control 3 and control 2. Regarding the voltage dispersion, we can check
that the proposed distributed approach approximates to the centralized
solution better than when a fixed SP is applied. Fig. 13 shows these
differences.

As can be seen in Fig. 12, the time to respond of each control is
longer than the previous test system, because it increased the number
of controls in consensus, as well as the number of buses that the
controllers must consider i.e. the buses in the vicinity of each controller,
which are affected by the controls according to the sensitivity. To
further test the proposed control as shown in 13 the reactive power
changes were made shorter in time. For example; there is a change from
1.1 to 1.3 s which are 200 ms and the control requires about 300 ms,
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so in this time span the controls fail to correct the voltage profiles.
However after 1.1 s it can be seen how the control is improving the
response thanks to the closed loop effect that generates the prediction
horizon which finally gives stability to the system.

7. Conclusions

In this article, we propose a DMPC for voltage compensators with
the goal of locally generating the reference signal or control setpoint.
Our proposal uses information regarding the most influencing nodes
(identified with the electrical distance). In fact, the controller was
designed based on the sensitivity values (Jacobian matrix), which
guarantees that the network topology is intrinsically included in the al-
gorithm. This helps to determine the area of influence on the controller.
Since it does not require any structural variables of the compensator
controls in the design, the proposal can be considered a plug-and-play
scheme. The interaction with neighbouring distributed controls are con-
sidered through the consensus of common buses. This locally generates
the reference signal or setpoint of the compensator controller from this
consensus. The algorithm was tested through two power systems with
two and three large-scale wind farm units in a transmission network
respectively. The tests validated the fact that the control considerably
reduces the deviation of the bus voltage values. The simulation output
shows that the proposed distributed approach approximates correctly to
the results obtained by the centralized control in both scenarios. The
scalability of the solution has also been validated.

This control can be applied to any voltage compensator device or
machine with a local voltage control when it has an accessible input
for the setpoint. The algorithm is able to cope with variations in the
topology or the load profile. This capability is due to the fact that
the formulation of the algorithm relies on the electrical distance or
sensitivity matrix and therefore the network topology is considered
intrinsically.
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