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ARTICLE INFO ABSTRACT

Keywords: In this paper we address the issue of safety in the use of Personal Protection Equipment (PPE) in construction,
Worker safety industrial, or similar sites where power tools are used. We propose a novel solution that can control actively
PPE

the power of the tool depending on the worker-tool distance. It is based on RSSI information transmitted
by BLE devices arranged in a particular rig, combined with a Bayesian distance estimator. Such an approach
minimizes the required instrumentation of the workplace and also the number of configuration parameters;
therefore it enables a wide range of applications. Our aim is not only to signal risky situations caused by the
misuse of the PPE (either due to its bad fitting or a wrong distance to the tool), but to intervene in a fast and
robust way to avoid the safety risk.

This solution is built upon previous results on the statistically sound measurement of distances and closeness
in construction sites. Here, we contribute with a thorough analysis of collocating several BLE transmitters near
orthogonally, which reduces interferences while avoiding the cost of more advanced technologies. We study
how many transmitters are needed and what parameters are the best in the Bayesian filter for the optimal
performance of the system.

Real experiments with a prototype have been conducted in a construction workshop where a person
operates a miter saw. The results show how the correct use of the PPE (an earmuff equipped with the BLE
transmitters) can be inferred from the distance estimation in a robust and reliable way.

Distance estimation
Bluetooth Low Energy (BLE)
Internet of Things (ioT)

1. Introduction the most frequent reasons for having problems in this sense are (Yang
et al., 2020): (i) the lack of training to wear proper PPE, (ii) the
reduction of productivity due to their use, (iii) being uncomfortable to
wear, (iv) risk underestimation.

Although employers and managers are responsible for their work-
ers’ safety, and they are encouraged by safety recommendations to
train them on the importance of PPE and to control their proper
use, manual monitoring of a group of workers is very expensive and
time consuming (Mneymneh et al., 2019); moreover, workers may not
comply. For instance, despite the fact that in many situations the only
method to reduce the exposure to noise is the use of hearing protection
PPE (Kozlowski and Mlynski, 2019), workers very often decide not to
wear it, or do not pay due attention to its correct fitting (Nélisse et al.,
2012). In this sense, the automated management of the use of PPE is

Occupational accidents are a worldwide cause of concern, especially
in dynamic working environments, outdoor workplaces, when perform-
ing complex tasks, e.g. in the construction sector (Winge et al., 2019;
Lopez Arquillos et al., 2012; Haslam et al., 2005), or when operating
power tool stations. This is pushing organizations to adapt with new
strategies for safety management (Alruqi and Hallowell, 2019), such as
Prevention through Design (PtD) (Karakhan and Gambatese, 2017; Lopez-
Arquillos and Rubio-Romero, 2015), safety training (Jeelani et al.,
2018), collective prevention measures (Navon and Sacks, 2007), or
Personal Protection Equipment (PPE) (Wong et al., 2020), which is the
focus of this paper.

The misuse of PPE is associated with injuries and professional
diseases such as falling from heights (Dong et al., 2017) or exposure
to noise (Feder et al., 2017) —which is considered one of the most
pervasive physical contaminants (Fernandez et al., 2009). In general,
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an interesting and recent field of study (Nath et al., 2020) that can play
an important role in the improvement of occupational safety conditions
in many industrial sectors, although its potential has not yet been fully
developed (Nnaji et al., 2019).
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In order to reduce the gap in the existing automated PPE manage-
ment with respect to the pursued ideal, in this paper we propose a
system that can be easily configured for a diversity of situations and
provides not just detection of the correct use of the PPE, but also
active risk avoidance when it is misused. For achieving both goals
we use conventional BLE transmitter devices plus a statistical distance
estimation method that measures the distance of the worker to the
powered tool that can produce injuries. Our proposal improves not only
the flexibility and cost of other solutions, but also their robustness due
to the enhancement of distance estimation based on fusing RSSI signals
from multiple BLE beacons collocated in the PPE (i.e., the worker). This
multi-BLE device contribution avoids the use of the newest but more
expensive and complicated AoA or AoD devices. In fact, our system
uses RSSI signals for two different purposes, namely distance estimation
and proper wearing of the PPE, which simplifies the overall design and
implementation, and makes it more flexible in the sense of widening
its range of applicability.

In more detail, the proposed solution consists of a single receiver
attached to the powered tool, along with a microcontroller that pro-
cesses the received RSSI signals from the BLE transmitters and controls
the tool power source in the event of a dangerous situation—power on
when the worker is not using it. On the worker side, the PPE (an ear-
muff in our experiments) includes a simple monitoring microcontroller
that manages the set of BLE beacons transmitters to ensure an accurate
and reliable distance estimation and avoid PPE misuse. Using multi-
ple BLE transmitters in a novel composite triaxial rig maximizes the
orthogonality of the transmitters, minimizing interferences; a Bayesian
filtering method fuses all the beacons data statistically upon a simpli-
fied model of human displacements. All of this alleviates the signal
attenuation issues and produces the best metrical estimations of the
distance. Along the paper we thoroughly analyze the optimal number
of BLE receivers to use in the rig and deduce the best parameters for
the performance of the distance estimation filter.

The structure of the rest of the document is as follows. In Section 2
we examine previous works related to our proposal. In Section 3 the
system architecture of our solution is explained in depth, as well as the
real workshop scenario where our experiments have been conducted.
Section 4 is devoted to a rigorous assessment of the performance of
the approach and to the thorough statistical analysis that provides the
best configuration parameters for the system. At the end of the section,
several real experiments with our solution are described and discussed
as well. The paper ends by outlining the most relevant conclusions and
some future work.

2. Related works

The improvement in the design of power tool stations and the
corresponding PPE instrumentation has been helping in recent years
to reduce work risks. In particular, sensor-based safety management
is allowing for new smart tools that improve safety conditions at the
workplace (Asadzadeh et al., 2020). These systems can be classified
according to the sensors and technologies used, as it is shown in
Table 1.

The majority of these works focus on the detection of the presence
of the PPE. Additionally, some of them are able to send a warning signal
to the worker when a risky situation is detected, although they are
not able to avoid the problem. In contrast, the proposal presented in
this paper can power the tool station off if the PPE is not being used
properly by the worker; thus we contribute not with a passive detection
technology but with an active one that is able to act at the very source
of the risk.

Some of the technologies described in Table 1 are based on the
use of computer vision and machine learning. They are still passive,
and require a significant computing infrastructure; besides, cameras can
raise privacy issues in the workplace. Although no special devices are
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to be mounted onto the PPE in that case, these solutions are often im-
practical. To address these disadvantages the design and development
of more flexible, inexpensive, robust and easy to configure systems is
necessary.

A straightforward and practical approach to those issues is the
estimation of the distance between the source of the risk and the
worker. A number of solutions have been proposed for that purpose.
For instance, the safety alert system in Teizer et al. (2010) has been
designed to detect whether the equipment and the operator are in too
close proximity. Similarly, a proximity alert to workers on construction
sites that uses BLE (Bluetooth Low Energy) has recently been reported
in Huang et al. (2021). Other authors propose a location-based prox-
imity system to estimate hazard exposure (Luo et al., 2016). Since
proximity detection is frequently based on limited data, it is common
to include additional methods for testing that proximity (Marks and
Teizer, 2013). All in all, the development of new systems for detecting
the proximity of workers to occupational risks is the main topic for
several authors (Wang et al., 2021; Nnaji et al., 2021; Izadi Moud et al.,
2021; Rey-Merchéan et al., 2020), but still, in most cases, the estimated
distance is used to warn the worker to stay away from the risk source,
without actively mitigating the risk. Our simpler proposal, based on
multiple conventional BLE transmitters, addresses all these issues.

Estimating the distance between the worker and the risk can be
based on several technologies: RF signals (e.g. RFID or Bluetooth) are
particularly inexpensive and easy to deploy. RFID (Radio Frequency
Identification) is based on wireless transponders, used mainly for pres-
ence detection, that can be implemented in a passive or active way;
passive RFID transponders are easy to deploy and maintain as they do
not require batteries, although they have short range, so they are not
convenient in many working situations.

Methods based on Bluetooth, on the other hand, can be used for
distance estimation since revision 4.0. These devices are active, but
the BLE specification makes it possible to implement small transpon-
ders (the so-called BLE beacons) that periodically broadcast mes-
sages (Siekkinen et al., 2012). Bluetooth receivers can provide infor-
mation about the relative attenuation of the received signal (RSSI),
which can then be used to estimate distances through different meth-
ods (Wang et al., 2013; Gomez-de Gabriel et al., 2019).

More recently, the introduction of the specification 5.1 of Bluetooth
in 2019 added enhanced optional localization features based on the
direction-finding-capability of the Bluetooth Low Energy (BLE) stan-
dard (Suryavanshi et al., 2019). With these, a BLE receiver can estimate
its relative angle to the beacon using either Angle of Arrival (AoA) or
Angle of Departure (AoD) methods, using multiple antennas in either
the receiver or the transmitter respectively —the transmitter needs to
be upgraded to include a Constant Tone Extension (CTE). In this way,
a single AoA receiver can estimate two angles to the transmitter with
higher accuracy than the distances estimated with the RSSI (Pau et al.,
2021). When using multiple synchronized and connected receivers at
known locations, a tracker can even estimate the transmitter location
through triangulation.

As promising and powerful as these enhanced BLE technologies are,
in the end only the relative distance between the worker (using a
wearable device) and the risky tool is essential for safety. More than one
AoA receiver (e.g. installed in the tool) would be needed for estimating
that distance with such enhanced technology, augmenting the cost and
reducing the flexibility of the solution. Moreover, that would require
fixed and precise locations for both the receivers and the equipment,
which is not easy in working environments as dynamic as construction
sites or workshops, where the number and placement of machines may
change every day. Finally, the use of RSSI measurements in wearables is
under variable attenuation due to the inference from the human body
and the change in the polarization angle due to the worker moving
around, something that these technologies do not deal with.
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Table 1
Different approaches to detect the correct use of PPEs.

Sensing technology =~ Method Purpose PPE Cite Dataset Precision Freq. Range Require
worker
collab.

Vision Deep Learning (Yolo PPE use detection Hardhat, Vest Nath et al. (2020) Custom 72.3% 11 Hz Medium No

R_CNN) (Pictor-v3)
Vision Deep learning Hardhat use Hardhat Fang et al. (2018b)  Custom 93.7% 5 Hz Large No
(Faster R-CNN) detection private

Vision Deep learning Detection of hardhat Hardhat Wu et al. (2019) Public 72.3 3.2 Hz Medium No

benchmark dataset use and color (GDUT-HWD)

Vision Motion detection Hardhat use Hardhat Mneymneh et al. N/A 90.1% 18.8 Hz Medium No

detection (2019)

Vision Background Hardhat use Hardhat Park et al. (2015) N/A 99.6% 10 Hz Medium No

subtraction detection

Vision Background Safety Vest use and  Safety Vest Seong et al. (2017)  Not needed 99.36%  N/A Medium No

subtraction color detection
Metal Detector Sensor attached to Worker warning Safety Vest Rajendran et al. Not needed N/A Continuous Short Yes
PPE signal (2020)

BLE Beacons Relative Location, Monitoring system Harness attached Gomez-de Gabriel N/A N/A 35.36 Hz medium Yes
recursive Bayesian to detect the use of to lifeline et al. (2019)
filtering harness

Vision R_CNN+CNN Safety harness Harness Fang et al. (2018a) N/A 79.2% N/A Medium No

detection

RFID Detection Portal and Control of PPE Various Kelm et al. (2013) N/A 100% Once per shift Short Yes

database completeness
RFID Zigbee network and  Real-time PPE Various Barro-Torres et al. N/A 100% 1/600s Short Yes
Cyberphysical monitoring system (2012)
system

Vision Deep Learning System for PPE Various Zhafran et al. Custom 80% 3.33 Hz Medium No
(R-CNN) Detection (2019) private

Embedded (optical, Wifi network and PPE-Tool pair check Various Yang et al. (2020) Not needed N/A 10 Hz Short Yes

resistance, touch ) Time-stamps

3. System architecture

In this section we describe the different components of the proposed
system, both hardware and software (Section 3.1 and 3.2 respectively),
and the working scenario where our real experiments have been carried
out, as well as its instrumentation to acquire ground-truth measure-
ments that serve for assessing the quality of the solution and find its
optimal parameters (Section 3.3).

3.1. Hardware

The presented PPE system aims to provide the worker with an
intelligent powered tool that can only operate when the authorized
user is close enough to it and wears the appropriate personal protection
equipment. The diagram of this intelligent tool approach can be seen in
Fig. 1. A novel beacon rig has been designed to minimize the effects of
the antenna polarization changes due to the variable orientation of the
wearable as the worker moves. It has three orthogonal placeholders,
denoted as X, Y and Z, for carrying BLE beacon transmitters. These
beacons perform continuous (periodic) transmissions, i.e. BLE adver-
tising. The RSSI values measured at the receiver located on the tool
side are statistically filtered and fused to estimate the distance to the
wearable PPE. A fourth beacon placeholder (denoted as S) holds a BLE
enabled microcontroller device that advertises only while the correct
use of the wearable is detected by reading a presence sensor in the PPE;
if that sensor detects the PPE during a minimum safety time, the BLE
transmissions are enabled until the sensor detects its absence again.

In this implementation, the beacon S attached to the PPE is com-
posed of a BLE-enabled microcontroller (model M5StackC from
Mb5Stack.com) and a light sensor (light dependent resistor, LDR or
photoresistor) hidden inside one of the earpieces, as it can be seen in
Fig. 2. It can be considered that the protective equipment is properly
fitted if no light is detected. The microcontroller periodically reads the

amount of light received by the LDR using an analog input to estimate
the status so as to activate the BLE advertising messages only when the
correct use of the PPE can be assessed.

This system can be replicated in any number of tools and users,
and even manage a list of authorized users for each tool that can be
dynamically and remotely updated. Absolute coordinates or locations
on a map are not required; in fact, the receiver can be relocated without
affecting the functionality of the approach in any way or requiring
further setup. This feature is essential in dynamic environments where
a centralized map setup is impractical.

3.2. Estimation method

The method for estimating the distance between the worker and the
tool is based on the closeness/distance probabilistic estimator reported
in Gomez-de Gabriel et al. (2019) for a single beacon. It consists of a
double statistical filter: an Extended Kalman Filter (EKF) in charge of
estimating the metrical distance between a BLE beacon transmitter and
a receiver, and a discrete filter upon it that deduces the probability of
both devices being closer than a given threshold. This approximation to
the exact recursive Bayesian solution to the estimation problem, which
would consist of two separate filters, is computationally very efficient
and produces small errors in practice.

Here we have adapted that double estimator to be used with mul-
tiple BLE collocated beacons, which provides better performance in
some measures of interest, as shown further on. More concretely, the
filters in Gomez-de Gabriel et al. (2019) were devised for constant
time increments between consecutive RSSI measurements, i.e., the RSSI
observations come from just one beacon that can be configured with
a fixed sample period, and a non-motion model of the transition of
distances was used with constant uncertainty. Here, instead we have
several beacons, that interleave their RSSI measurements from the point
of view of the receiver, so it is sensible to change dynamically the
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Fig. 1. Diagram of the proposed Smart Tool Approach. The PPE includes a beacon array with different antenna orientations (beacon placeholders X, Y and Z), while the receiver
microcontroller runs the software to estimate the distance to the PPE. In addition, a user detection sensor in the PPE (beacon placeholder S) provides information about the correct

use of the protection by the worker.

Fig. 2. Placement of the LDR sensor inside the PPE to detect its proper use.

uncertainty of each step according to the increment of time in that
step (thanks to the orthogonal arrangement of transmitters in our rig,
we can assume independent readings from different devices). Hence we
define the transition of the transmitter-receiver distance (x,) at step k
as follows:

X =X + €, withe, ~ N'(x;;0,6%,)

2 UmwSAk : (1)
o-x,k = 2

where we have assumed that the worker can walk at a maximum speed
of v,,, and the time increment in step k has been A4, seconds. In
other words, with Eq. (1) we set that there is approximately a 95%
probability of the worker having changed the distance to the receiver
by v,,,,s4;x (uniform motion). In our experiments we use v,,,,, = 1.5 m/s
as the approximate maximum walking speed measured for different
non-disabled persons on several city streets without major obstacles
during main business hours (Levine and Norenzayan, 1999). We have
checked out in all our experiments that this constraint is not violated.

3.3. Working scenario

The real workshop where our field experiments have been carried
out is shown in Fig. 3. There we have a miter saw (the powered tool)
and a free area in front of it where the worker can move, about 5 m
long. The BLE receiver is placed alongside the saw, while the worker

carries the three orthogonal BLE beacons (transmitters) as explained in
the previous subsections.

Before setting up our devices in a production site, we need to model
the beacons behavior, i.e., to propose a theoretical distribution for
the RSSI signal value that the receiver would measure from a BLE
transmitter device placed at a given distance; such a model also serves
to assess the performance of our filters. For building those models
we require ground-truth measurements of the distance between the
worker (transmitter beacons) and the saw (receiver), along with the
corresponding real RSSI measurements gathered at those positions.

Due to the large uncertainty in RSSI measurements, there is no need
for very high precision in the ground-truth data, so they can be obtained
with simple arrangements. We have used for that an encoder connected
both to the receiver and to a reel of thread; the thread is attached to
the worker at the other end, so it is unrolled when going away from the
reel, measuring the worker—tool distance, which can then be associated
with the current RSSI value. For the encoder to measure the length of
the unrolled wheel, a calibration is needed that takes into account the
change in the radius of the reel as the thread unrolls, which can be
done with a quadratic model.

Using this system, we have attached, in turn, 3 different BLE trans-
mitters, referred to as '#1’, ’#2’ and "#3’, to the wearable placeholders
labeled ‘X’, ‘Y’ and ‘Z’ in Section 3. From these physical transmitters
we have gathered both RSSI and ground-truth distances over the entire
range that we intend to use further on in the distance estimator filter,
namely from 0 m to 5 m. In this modeling process, the worker first
walked away from the saw, took a short break at the middle of the path,
continued until the back of the workshop, and then returned, repeating
the same pattern the other way round (see Fig. 4).

With these data, we have fitted a double exponential model with
homoskedastic uncertainties (as proposed in Gomez-de Gabriel et al.,
2019) to each BLE transmitter device. The exponential model provides
the theoretical expectation of the RSSI values measured when the
receiver and the transmitter device are at a certain distance. The
fittings are shown in Fig. 5. The probability distributions for the RSSI
measurements based on these models are Gaussians with ¢, ~ 5
—otherwise, the very efficient Kalman approach would not be possible.
The figures show that the Gaussian simplification is quite close to
reality, but a small bias exists with respect to the real distribution of the
measurements, dragging them slightly to longer distances. Also notice
that, in general, the real RSSI signals are quite useful to distinguish
distances that are <0.5 m approx., but not as useful if much farther
than that.
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Fig. 3. Workshop environment where our solution has been validated. Top-Left: The receiver is placed to the right, where the power tool (e.g. a miter saw) is located, while the
transmitter beacons move along the white line, with the worker. Top-Right: Top view of the same setting. Bottom-Left: Closer look at the saw. Bottom-Right: Detailed view of the

low-cost ground-truth measurement device placed along the BLE receiver.

-30 16
ground-truth

-40 - 15
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3 <
~ ] S
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12 ©
O]

11

100 ‘ RSSI (plue: #1, red: #2,‘ cyan: #3) 0
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Fig. 4. Data gathered from the real workshop for creating the models of the transmit-
ting beacons. In red, the ground-truth trajectory of the worker while walking away from
and back to the saw (distance between beacons and receiver over time). In blue (#1),
red (#2) and cyan (#3), the RSSI data provided by each beacon device. Approximately
100,000 RSSI and ground-truth observations were gathered per beacon, in a ~14 min
walk. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

In Fig. 6-Top-Left we show the three exponential models (the the-
oretical expectations of the RSSI measurements) together: beacon de-
vices #1 and #2 are more useful in short distances, while beacon
#3 has greater (negative) slope in long distances and therefore may
serve to estimate those distances better. These performance variations
between physical devices, even those of the same model and manu-
facturer, are common. In Fig. 6-bottom-right we have detrended the
RSSI data used for the exponential fitting in order to observe only
the noise; it can be seen how the three noise distributions have a

negative skewness, which confirms the longer left tail of the RSSI data
compared to the theoretical normal. For alleviating this problem of the
Gaussian approximation, we have decided to inflate the uncertainty of
the models by using o, = 10, i.e., double the original one.

4. Parameter configuration and experimental results

In this section we first define some performance measures for rig-
orously assessing the suitability of our solution, and then deduce the
best number of beacons to collocate in the wearable and the proper es-
timator parameters that optimize those measures (Section 4.1). In Sec-
tion 4.2 we present and analyze the workshop experiments conducted
with the prototype of the complete system.

4.1. Performance assessment and election of parameters

For assessing the performance of the system and also finding its best
parameters (mainly the best number of transmitter beacons and the
value of some EKF uncertainties), we define the following measures of
interest:

* M,: Accuracy or expected error. The expected difference be-
tween the true worker-tool distance (unknown, approximated by
the ground-truth) and the one estimated by our statistical filter.
M Precision or uncertainty in the expected error. The stan-
dard deviation of the errors around the expected one. The smaller
this measure, the more predictable will be the performance of the
distance estimator under varying circumstances.

M,: Filter lag. Any statistical filter for estimation will have a de-
lay w.r.t. the actual dynamics of the system being estimated (the
changing in worker-tool distance in our case), due to the need to
collect a certain number of observations before convergence. We
quantify this through the cross-correlation between the ground-
truth and the estimated distance, translating the maximum of that
correlation —the lag for which both signals match best— into a
value in seconds.
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Fig. 5. Fitting of non-linear double-exponential, homoskedastic, Gaussian models to the RSSI data of the three beacons used in this work. In red, the exponential expectation;
in dashed yellow, the Gaussian 2¢ bands of the probability distributions centered at those expectations, all of the same variance —homoskedasticity. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Top-Left: Expectation curves provided by the exponential model of each beacon device, as a function of the beacon-receiver distance. Bottom-Right: Distribution of the
RSSI noise for each beacon, once detrended with its own expectation model, compared to a N (rssi;0,52).

+ M,: All measures. For searching for optima in the overall perfor-
mance of our distance estimator, a single numeric value is needed.
We use for that the weighted sum of the previous measures
(each one normalized in the interval [0, 1]); concretely, we assign
the greatest importance to the expected error of the distance
estimator (weight of 0.45), then to the lag (0.35), then to the
deviation of errors (0.2).

We have used these measures firstly to find the best parameters
for the metrical part of the distance estimation filter, concretely the

uncertainty in the RSSI likelihood (c;) and the one in the distance
transition distribution (¢, ). In previous sections we have already set
baselines for the former as o, = 10 (Section 3.3) and for the latter
as o, = \/”'"";—SA" (Section 4, Eq. (1)). In practice, inflating these
uncertainties may have benefits in the filter performance: on the one
hand, the actual transition distributions for the worker—tool distance
will depend on the achieved speeds of the worker in each experiment,
thus the previously proposed model is just a suitable starting point;
on the other hand, we have already inflated the RSSI noise to cover
for the observed skewness in an ad-hoc manner, but the theoretical
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Fig. 7. Trajectory (green) of the simulated person used for the statistical search of the best parameters for our approach. The simulation considers a minimum distance of 0.2 m
and a maximum of 5 m, lasts for 103 s, imposes a maximum human walking acceleration of 0.68 m/s* (indicated with yellow and purple dashed lines), as reported in Teknomo

(2002), and forces to have certain number of walking and stopping segments. The resulting walking speeds are within the human limitation of +1.5 m/s assumed in Section 3.2
(blue and orange dashed lines). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

independence assumption between RSSI measurements provided by
different beacons is just an approximation to reality, thus we can also
benefit from further tuning that uncertainty.

For this purpose we need to conduct statistically significant exper-
iments that scan diverse combinations of transmitter beacons and of
o, and o,. Gathering enough data for that is impractical in the real
environment, thus we have implemented a simulated person in Matlab
that carries the beacons and, while walking away from and back to
the receiver —intending to reflect most common situations in working
environments (see Fig. 7)—, gets both RSSI values randomly generated
from the models of Section 3.3 and the true worker—tool distances.
We have launched 1000 replications of that walk for each given set of
beacons and combination of ¢ values, and then calculated the median
of the 1000 tuples of the three performance measures in order to get
statistically robust estimations.

As statistical experiments, these have two factors or independent
variables: the set of transmitter beacons used in the wearable rig and
the values of o, and o,. The experiments also have three effects or
dependent variables: the three performance measures defined at the
beginning of this subsection.

As for the factors, we have used 7 different rigs for the worker
wearable, either with one of the available beacon devices or with tuples
of three of these beacons (assuming all are placed orthogonally): { #1,
#2, #3, (#1, #1, #1), (#2, #2, #2), (#3, #3, #3), (#1, #2, #3) }.
For the second factor, we consider all combinations ¢, = 10 - p, and
oo = /et . p . with multipliers p, € [1,8] C N (if any of these
multipliers is 1, the resulting o gets its baseline value). All in all, we
have 7x8x8 = 448 different walking experiments to test, each one with
1000 replications.

In Fig. 8-Left the results of these experiments for the case of the set
of beacons (#1, #2, #3) are shown. There, performance measures M,,
M;, M, and M, are displayed separately (rows). Each color map is
built upon the median of these performance measures calculated over
the 1000 replications of the experiment. In these maps the diagonal
patterns of the performances are clear; they come from the strong
influence of the ratio o,/0, in the correction that the Kalman filter
makes on its predictions to obtain estimations, namely through the
Kalman gain.

Table 2
Summary of the values found for the uncertainty parameters of the distance estimator
filter in order to attain their minima (best performance as of M,) in all the sets of
beacons.

Set of beacons p,, interval p, interval ::l Dist. to avg (0.33)
#1 (2.625,3.375)  (7,9) 0.371 —0.040
#2 (2.571,3.429) (6.8) 0.446 -0.116
#3 (2.625,3.375) (7.9) 0.375 —0.045
(#1 #1 #1) (0.750,1.250)  (3,5) 0.257  +0.073
(#2 #2 #2) (0.667,1.333) (2.4) 0.296 +0.034
(#3 #3 #3) 0.667,1.333)  (2,4) 0.282  +0.048
(#1 #2 #3) (1.714,2.286) (6.8) 0.284 +0.046

We show in Fig. 8-right the same medians of the performance mea-
sures, but re-grouped along the ratio p,/p,, the factor directly defining
the ratio ¢, /0. The previously shown diagonal patterns translate here
into clear minima in very smooth curves.! Those minima correspond to
the ratio of uncertainties where the filter obtains the best performance.

For the sake of space, we summarize in Table 2 the values of M,
for every set of transmitter devices tested for the worker wearable rig.
Notice that using several identical beacons (in the sense that they are
perfect replicas of the same electronic device, which is an idealization)
makes more likely for the filter to not require any increment in o,
(i.e., p, = 1) in order to attain its best performance. In more practical
cases, the ratio of multipliers is always very close to 0.33, the average
of all the ratios listed in the last column of the table.

Once we have found suitable parameters for the distance estimator
filter (mainly, p,/p, = 0.33), we can make the decision on how
many transmitting beacons are the best choice for its performance
under those parameters. To unravel this, we have employed the same
measures and simulated person as before, and conducted exhaustive
experiments with diverse numbers of beacons, ranging from 1 to 12,
with both replicas of the same device and different devices

Fig. 9 illustrates our results for the case that p, = 2 (hence p, =
0.66). There you can see that the number/sets of beacons more to

1 The experiments only sample a discrete set of values for both multipliers;
we have interpolated those points through splines to get the final curves.
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the right of each graph are best in terms of performance; of course,
if there are too many transmitter beacons in the rig, its physical
implementation can be impractical or costly, and orthogonality could
only be approximated.

In general, we can define, for each set of transmitters of that graph
(i.e., for each location in the plane of the figure), a number that
indicates its distance to the average-performance point, negative if the
rig point is worse than the average, positive if it is better. We call this
the improvement distance of that configuration. This signed number can
be easily calculated from the coordinates of the rig point in the plane
and those of the average point: 4, is the position of the rig in the
horizontal ordering of the graph with respect to the point of crossing
with the average (i.e., the more positive 4,,,, the better the overall
performance), and 4,,, is the improvement achieved by that rig in
the overall performance with respect to the average (we multiply the
vertical distance in the graph by 1000 to get an integer for 4,,,; the
more positive this value, the greater the improvement).

In Table 3 we collect all the improvement distances for p, € [1, 8],
keeping p,/p, = 0.33, in the case of M,. The following conclusions can
be drawn:

+ In general, the largest improvements are larger as we increase the
number of transmitter beacons in the worker wearable (down-
wards in the table) and also if we use a large uncertainty for the
RSSI noise (i.e., p, = 8).

Using a diversity of devices (#123, #123-d) is better when we
use greater uncertainties for the RSSI noise or a greater number
of beacons. Also notice that using all the available devices is much
more realistic than having exact replicas of one device.
Diversity in the devices (i.e., using the three of them in our
case) also pays off regarding the robustness of the solution. In
Table 3, the number of cases of several beacons producing worse
performances than the average are: 19 (#222), 17 (#111), 12
(#333), 5 (#123), while the number of cases reporting the best
performances are: 19 (#123), 9 (#111), 2 (#222), 2 (#333).

This analysis indicates that having extended the filter of Gomez-
de Gabriel et al. (2019) with more than one beacon has proven to be
clearly beneficial for the overall performance of the distance estimator,
and suggests that, for mounting a practical rig (less than 6 beacons)
and expecting a reasonable good performance in many scenarios, it
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is sensible to use 3 diverse devices and model their RSSI noise with
py € {4,7}) (best with p, € [4,5]). If cost or size is not a problem, and
an approximation of orthogonality is sufficient to avoid interferences,
a rig with 6 diverse beacons ((#1,#2,#3,#1,#2,#3) in our case) with
p, = 8 produces the greatest benefits in performance.

4.2. Safety experiments with the prototype

The parameters of the system found in Section 4.1, i.e., p, = 5,
o = p,/0.33, and three different collocated BLE transmitters attached
to the X, Y and Z placeholders (plus the one attached to S, in charge
of indicating a correct use of the PPE), have been implemented and
used for several real experiments carried out in the workshop described
in Section 3.3. Here the entire software filtering system is employed,
i.e., both the metrical estimation of the distance between the transmit-
ter (worker) and the receiver (saw) and the qualitative estimation of the
closeness to the saw. The latter is a discrete recursive Bayesian filter

designed specifically to reflect both the closeness due to the metrical
distance and the commonsense knowledge that the closeness cannot
vary instantaneously; the result is a signal that varies more smoothly
than the metrical distance signal alone would indicate, and therefore
more suitable to implement a practically safe PPE.

Fig. 10 shows an experiment of more than 2 min where the worker
changes the distance to the saw within the entire range of [0,5] m
wearing the PPE correctly at all times (the relay signal and the fourth
beacon transmissions are not shown). In spite of the erratic motion
and the intense noise in the RSSI data, the metrical filter is able to
retrieve an estimated trajectory that is very close to the true one: the
expected error is ~20 cm, a reasonable value given the noisy RSSI data,
and the lag of the filter is ~100 ms, similar to the RSSI advertising rate
of one beacon. The yellow curve in Fig. 10-top-right is the probability
of closeness (< 1 m). As it can be observed, this closeness filter provides
a consistent alert indication that can be used to power the tool on or
off through a relay and that does not suffer from most of the noise of
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Summary of performance improvements achieved by different rigs of transmitter beacons in the overall measure
M, (in red if they are worse than the average). In gray, the optimal rigs within each category of 1, 3, 6, 9 and

12 beacons).

Beacons Py =1 py=2 Py =3 py =4 Py =5 Py =6 Py =7 pp=8
#1 —8.89 —8.86 -9.49 —7.66 -7.95 -0.09 0.28 -3.79
#2 —7.89 —7.86 -8.49 —4.66 -2.95 -1.09 -0.72 —4.79
#3 —6.89 -5.86 -5.49 —2.66 0.05 -3.09 -1.72 =5.79
#111 5.11 0.14 0.51 —0.66 -3.95 —11.09 -10.72 -0.79
#222 -2.89 3.14 3.51 2.34 -0.95 —6.09 =5.72 -1.79
#333 4.11 6.14 1.51 —1.66 -1.95 -5.09 —4.72 11.21
#123 0.11 —-0.86 2.51 4.34 6.05 0.91 1.28 -2.79
#111-6 9.11 9.14 8.51 7.34 5.05 =7.09 —6.72 9.21
#222-6 1.11 1.14 -0.49 —3.66 -4.95 —4.09 -3.72 7.21
#333-6 —-0.89 5.14 5.51 5.34 3.05 —10.09 -9.72 8.21
#123-6 —4.89 —4.86 —4.49 0.34 1.05 6.91 7.28 12.21
#111-9 -5.89 —6.86 -7.49 —6.66 —6.95 -2.09 -2.72 1.21
#222-9 6.11 -2.86 —6.49 —8.66 —8.95 -8.09 —8.72 6.21
#333-9 211 4.14 -2.49 —5.66 -5.95 -9.09 -7.72 0.21
#123-9 7.11 7.14 6.51 8.34 8.05 2.91 3.28 4.21
#111-12 -3.89 -3.86 -3.49 1.34 2.05 5.91 6.28 10.21
#222-12 —1.89 -1.86 -1.49 3.34 4.05 3.91 4.28 3.21
#333-12 3.11 2.14 4.51 6.34 7.05 4.91 5.28 5.21
#123-12 8.11 8.14 7.51 9.34 9.05 1.91 2.28 2.21
Best: #111-6 #111-6 #111-6 #123-12 #123-12 #123-6 #123-6 #123-6
2nd best: #123-12 #123-12 #123-12 #123-9 #123-9 #111-12 #111-12 #333
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Fig. 10. Experiment with three collocated BLE transmitters while the worker walks in both directions of the workshop area and with high variance in the motion. (top-left)
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the metrical filter. If needed, a further hysteresis filter can be added
without much cost in order to eliminate the few bounces in the signal
that still persist.

In the case where we use only one BLE transmitter in the worker
wearable, we get the results shown in Fig. 11. The estimation is rather
poor in comparison with the three-beacons rig: from best to worse,
the expected errors are 27.8 cm (#2), 53 cm (#1), 62.5 cm (#3); the
error deviations (2 - ¢) are 1.13 m (#2), 1.53 m (#3), 1.61 m (#1);
and the lags are 80 ms (#1), 91 ms (#2), 438 ms (#3). Since device
#2 is the best one of the three in these results, we have included
in the figure the histogram of its errors in order to appreciate better
the improvements achieved by the three-beacons system. Notice that,
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although that beacon produces similar expected error and lag compared
with using the three beacon rig, its error deviation is much larger,
which means that the system with only that device in the wearable
is considerably less robust concerning the diversity of situations found
during the experiment.

Fig. 12 shows still another experiment where the worker walks
away from the saw, making short pauses from time to time, wearing
the rig composed of devices #1, #2 and #3. The particularity of that
experiment is that beacon #3 (the cyan points in the top-left figure)
suffers from anomalies in such a way that its three channels emit with
different power. In spite of that, the filter is able to recover a suitable
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Fig. 11. The same experiment of Fig. 10 but using only the RSSI data coming from one transmitter (beacons #1, #2 and #3 in each figure, respectively). (Bottom-Right) Error

histogram for the case of beacon #2.

estimated trajectory with just 12 cm of expected error and no detected
lag.

If using just one device in the wearable during this experiment, we
get, from best to worse, expected errors of 18.6 cm (#3), 29 cm (#2),
43 cm (#1); error deviations (2 - ¢) of 1.3 m (#3), 1.91 m (#2), 1.63 m
(#1); and lags of 0 (#3), 0 (#2), 1.82 s (#1). The best performing one
is beacon #3, but again its performance is worse than the rig of three
beacons, particularly in the deviations of the error, i.e., its ability to
adapt to diverse circumstances, as shown in Fig. 13.

Finally, Fig. 14 shows the effects of the worker not wearing correctly
the PPE at some times. In particular, from 18 s on, the wearable is not
put on during 15 s approximately; during that period, in spite of the
worker being close to the tool, the tool power is kept off. The rest of the
time, when the worker has the wearable correctly put on, the distance
to the tool is the parameter that controls the power.

A quantitative comparison of the performance of this system with
the related methods shown in Table 1 is not straightforward, as many of
them employ different sensing technologies and approaches. The closest
related work (Yang et al., 2020), summarized in the bottom row of
that table, shares with ours the same purpose of checking the PPE-
Tool presence. While Yang et al. (2020) proposes a system based on
a WiFi-enabled microcontroller for both PPE and tool, the proximity
detection based on timestamps and time-of-flight would require a much
higher clock resolution and synchronization methods, not presented
yet. The use of WiFi communications requires much more energy than
BLE, preventing the use of coin-cell-powered devices in construction.

5. Conclusions and future research

In this paper we have proposed a simple cost-effective system, with
high availability, for improving safety in the use of industrial powered
tools. The system is composed of a set of BLE transmitters that can be
attached to a wearable set and a receiver in the tool side that, endowed
with proper software, estimates the metrical distance between worker
and tool and provides suitable alert signals that can serve to control the
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power in dangerous situations (i.e., when the PPE is not properly worn
and/or when the distance is beyond a given threshold).

Our practical contributions include the design of such a system, a
working prototype, and a thorough statistical analysis for finding the
optimal parameters for both the software and the equipment.

In this work we show that using several orthogonally collocated
BLE transmitters improves robustness and overall performance with
respect to just using one, without requiring more complex and costly
equipment such as AoA devices. In general, the improvements are
largest as we increase the number of transmitters; also, using a diversity
of devices is better when these devices are noisy, and it also pays off
regarding the robustness of the solution.

We have also shown that the use of an arrangement of orthogonal
BLE beacons enables for an increased rate of advertising messages. An
extended Kalman filter plus a discrete filter for deducing the closeness
of the worker to the tool can benefit from that increased flow of data,
providing a simple and efficient approximation to the problem of safety
estimation in this context.

The use of an additional beacon to notify the correct use of the
PPE, implemented inside a wearable microcontroller, is a very flexible
solution as it allows for different local implementations using different
sensors and measurements without the need to modify the RSSI-only
method in the receiver, and with any number of users.

On the downside, our proposal requires a modeling phase for each
transmitter device (due to the diversity of their behaviors) to be carried
out before using them in production, which would increase its cost;
furthermore, due to this diversity, sets of three orthogonal BLE trans-
mitters where none of them has a good distinctive behavior at distances
below the desired alert threshold should be discarded (if the threshold
is below 1 m, this will occur rarely, though); also, if there are materials
in the workshop that absorb radio waves (e.g., thick concrete blocks
or large water cans), BLE signals can become too weak and distort the
estimates; finally, protection from electromagnetic interferences caused
by the power tool should be considered.
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Fig. 12. Experiment with the three collocated BLE transmitters while the worker walks away from the saw, making short pauses.

Estimations for beacon #1

6
——Beacon est
Beacon gt
5 Beacon closeness
4l
Esf
@
o
g
i 2
a
Wl |
) Ty
0
1 L
0 50 100 150 200 250
time (secs)
7 Estimations for beacon #3
Beacon est
6 Beacon gt
Beacon closeness
5
4
E
8 3
e
K]
7]
a2
1
4 . . . . .
0 50 100 150 200 250

time (secs)

Estimations for beacon #2

7.
Beacon est
6 ||—Beacon gt
Beacon closeness
5L
—4r
E
83t
I=4
o
]
az2r
P P —
0 ﬁ
1 . . )
0 50 100 150 200 250
time (secs)
800 - Estimation error histograms (gt - est)
700 -

[EBeacon error (m: -0.186026, 2s: 1.302845)

-3 -2 -1 0 1
Error (m)

Fig. 13. The same experiment of Fig. 12 but using only the RSSI data coming from one transmitter. (Bottom-Right) Error histogram for the case of beacon #3.

In summary, after the design and testing of the system to avoid
the misuse of an earmuff PPE, it can be concluded that the system is
reasonably robust, cheap and easy to install. It is also quite flexible,
and it can be integrated in many power tools that can be considered as
a source of hazardous noise, such as a drill or miter saw, taking into
account the limitations listed in the previous paragraph.
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The main impact of the proposed system on construction safety
is the improvement of the safety conditions through the controlled
management of the workers and the risks associated with their misuse
of PPE. The designed system can be easily integrated in a wide variety
of dangerous machines and tools such as angle grinders, concrete
mixers, pneumatic drills, etc.
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Fig. 14. Experiment with three collocated BLE transmitters while the worker walks back and forth in the environment (estimated worker-tool distance in green) but wears the
PPE incorrectly from time 18,06 to time 33,22 (dark blue line). Only when the PPE is correctly worn (rest of times) and the closeness to the tool is enough (light blue line is 1)
the power relay is on (yellow pulses). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The extended use of the system in construction sites should improve
the appropriate use of PPE without continuous on-site supervision of
every task performed by each single worker.

Additionally, the current approach can contribute to creating a bet-
ter safety culture, since the workers can perceive that the appropriate
use of PPE will improve their safety and productivity.

5.1. Future research

Our ongoing works are devoted to the development of dynamic
self-configuring methods for accurate distance estimation (and perhaps
relative localization) that are able to monitor the misuse of PPE in
relocatable equipment on the floor-plan of a factory or construction site
without an a-priori map or calibration. In this sense, it is essential to
conduct further research on the automatic and dynamic adaptation of
the beacon models during the work, in real-time.

Also, in future research the detection of more than one PPE could be
integrated in the current system. Additionally, a further analysis of the
data obtained using a Fuzzy Logic System (FLS) or Artificial Intelligence
could improve the safety management in the workshop according to
real workers’ exposure to the safety risks.
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