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A B S T R A C T

Planning safe and effective trajectories for off-road unmanned ground vehicles (UGV) is a critical Artificial
Intelligence (AI) challenge that can benefit from recent advances in digital elevation models (DEM) for readily
capturing accurate terrain geometry. Considering path slopes is crucial to preserve stability and assess terrain
traversability at feasible speeds to optimize travel time, which is highly dependent on direction (i.e., pitch
and roll). In this article, we propose a new DEM-based asymmetric inclination-aware (DEM-AIA) trajectory
planner for ground vehicles. The planner is an any-angle variant of the A⋆ algorithm that computes pitch and
roll estimations for each segment crossing cell triangles in the line-of-sight. Furthermore, we define a non-linear
velocity constraints function that integrates information about tip-over safety limitations, maximum uphill and
downhill slopes for the vehicle, and asymmetric modulation of nominal flat-ground velocity for all pitch and
roll combinations. The planner produces a time sub-optimal trajectory with feasible speed references for each
segment crossing a cell triangle. Moreover, we provide an extensive experimental analysis of inclination-aware
performance on simulated and real-world DEMs as well as a comparison with state-of-the-art path planners
adapted to travel-time optimization. An executable version of the planner with parameterizable variations is
publicly available.
. Introduction

The reliability and safety of unmanned ground vehicles (UGV), such
s disaster robots, agricultural machinery and planetary rovers, requires
ovel Artificial Intelligence (AI) techniques that specifically consider
he challenges of off-road navigation (Muñoz et al., 2017; Sánchez-
báñez et al., 2019). Recently, the widespread use of drones, satellite
magery, and the integration of photogrammetry and lidar have favored
eadily available and reliable digital elevation models (DEM) for path
lanning (Delmerico et al., 2017; Lauterbach et al., 2019; Gabrlik et al.,
021). This accurate terrain information can be useful to consider
afety and travel cost optimization with novel graph-search variants
f A⋆ (Hart et al., 1968), a family of algorithms that is effective for
ath-finding in discretized maps (Muñoz et al., 2017).

In practice, three-dimensional (3D) terrain relief affects both
raversability and path cost. Traversability depends on both the robot
nd the terrain (Hedrick et al., 2020), including inclination aspects such
s tip-over stability, vehicle tractive power or slippage (Sánchez-Ibañez
t al., 2021). As for cost function definition, distance optimization
n 2D projections is not realistic since paths on the DEM surface are
ctually longer (Shum et al., 2015; Muñoz et al., 2017). Furthermore,
niform velocity assumptions can be impractical because traversing
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hills or hollows imposes vehicle speed limitations with respect to
nominal flat-ground velocity for reasons such as energy consump-
tion (Choi et al., 2012), terrain slope and traversability (Hedrick et al.,
2020), or mission-specific requirements, e.g., victim evacuation in
disaster robotics (Toscano-Moreno et al., 2022). Alternatively, trajec-
tory planning produces path segments with corresponding attainable
safe velocities. In this sense, minimization of travel time instead of
path length can produce more feasible terrain plans with realistic
expected execution times, which is crucial for time-critical applications
on challenging terrain such as disaster robotics (Murphy et al., 2016)
and planetary exploration (Ono et al., 2018).

Inclination-aware path planning requires computing DEM-based
slope estimations for path edges. Besides, any-angle path planners avoid
zig-zag paths by not limiting search toward 8-neighbor cells (Daniel
et al., 2010; Choi and Yu, 2011), producing line-of-sight edges that pass
through different cells. Thus, estimating the inclination of constituent
segments is required for partial cost and traversability assessment. In
the any-angle DEM-based 3Dana path planner, Muñoz et al. (2017) pro-
posed computing the maximum slope for each of the four constituent
isosceles right triangles of cells. Nevertheless, using this symmetric up-
per bound estimation for segment inclination can discard segments with
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admissible pitch and roll combinations. Precisely, on uneven terrain,
traversability and actual path costs are not only inclination-dependent
(i.e., conditioned by pitch and roll angles) but also inherently asymmet-
ric (i.e., they differ for uphill and downhill) (Choi et al., 2012; Garrido
et al., 2019).

Our motivation for this work arises from actual needs of robotic
missions. Our aim is to exploit the growing availability of accurate DEM
data to plan effective (i.e., safe, feasible and not over-conservative)
trajectories for UGVs on uneven terrain that explicitly consider asym-
metric behavior regarding inclination and velocity constraints. More-
over, optimizing travel-time and obtaining feasible execution times
is crucial for challenging and time-critical search and rescue (SAR)
robotics, where DEM data is obtained from unmanned aerial robots
(UAV) (Bravo-Arrabal et al., 2021; Toscano-Moreno et al., 2022). In
particular, the major contribution of this work is DEM-AIA, an exten-
sion of the 3Dana any-angle path planner (Muñoz et al., 2017) that
introduces the following novel features:

1. Travel-time optimization with non-uniform velocity for trajec-
tory planning, where a different feasible velocity is appended
to every path segment crossing cell triangles in the any-angle
line-of-sight.

2. A novel formulation to estimate inclination for any-angle plan-
ning that computes both pitch and roll angles for the actual seg-
ments crossing cell triangles. This formulation uses cell-triangle
geometry and considers motion direction.

3. The definition of a vehicle-dependent non-linear function of
velocity constraints to integrate knowledge about tip-over limita-
tions, maximum uphill and downhill slopes, and the asymmetric
modulation of nominal flat-ground velocity for all pitch and roll
combinations. This function allows straightforward implementa-
tion as a look-up table.

Moreover, we provide an extensive experimental analysis of inclination-
aware performance on simulated and real-world DEMs. The analysis
includes a comparison with A⋆ and 3Dana versions that have been
adapted to travel-time optimization, as well as three limited DEM-AIA
configurations to assess the effects of any-angle search and asymmetric
traversability combinations. The executable DEM-AIA code as well as
the synthetic and real DEMs have been made publicly available for the
research community.

The remainder of the article is organized as follows. Section 2 re-
views related work. Section 3 provides definitions for the DEM and the
graph search-based trajectory planning. Section 4 proposes inclination-
aware computations for building the velocity constraints function. Sec-
tion 5 describes the DEM-AIA algorithm. Section 6 discusses experimen-
tal results. Section 7 describes the public repository. Finally, Section 8
offers conclusions and ideas for future work.

2. Related work

A recent review of AI approaches for path planning for autonomous
ground vehicles can be found in Sánchez-Ibañez et al. (2021). However,
the challenging combination of terrain elevation models and vehicle-
dependent variables has not yet been sufficiently studied (Hu et al.,
2022). Some recent works have adopted sampling based planners like
probabilistic roadmaps (PRM) (Yang et al., 2021) or rapidly-exploring
random trees (RRT) using terrain point clouds captured by UAVs (Fe-
dorenko et al., 2018) and considering vehicle kinematics (Ji et al.,
2019), machine learning techniques (Hu et al., 2021), metaheuristic
algorithms such as ant colony for finding energy optimal paths (Xi-
aodong et al., 2022; Jing et al., 2022), and optimal control frameworks
using vehicle dynamics (Singh et al., 2016) or fast marching methods
(FMM) (Garrido et al., 2013). In what follows, we focus on works
specifically related to graph-search planning on DEM.

In general, a DEM consists of a dense regular grid of nodes. Lim-
iting search for successors to the eight neighboring cells can reduce
2

computational cost but results in unnatural zig-zag paths (Choi et al.,
2012). Some authors have applied splines or other polynomial approx-
imations to the resulting path to improve smoothness (Ishigami et al.,
2011; Borges et al., 2019). Alternatively, any-angle path planners search
toward non-neighboring cells to produce smooth paths (Daniel et al.,
2010; Choi and Yu, 2011), which implies computing partial costs for
the DEM cells crossed by the line-of-sight (Muñoz et al., 2017).

As for the consideration of terrain inclination, some works have
processed the DEM to generate threshold-based binary 2D grids of navi-
gable space. Borges et al. (2019) adopted computer vision techniques to
associate traversability costs to nodes in grid-based graphs built from
orthorectified 2D aerial images. Gabrlik et al. (2021) considered the
limitations of the UGV with respect to the maximum slope and the
height of the obstacles over a UAV photogrammetry model, resulting on
a binary map of reachable areas where the standard A⋆ algorithm could
search for UGV paths in a radiation surveillance scenario. Other works
have exploited DEM data to estimate actual inclinations. Thus, Muñoz
et al. (2017) proposed an estimation of the maximum inclinations
of the constituent triangles of DEM cells in order incorporate UGV
pitch limitations in the 3Dana any-angle path planner for planetary
exploration. Moreover, Huang et al. (2021) computed gradient values
by applying the four-direction Sobel operator to the grayscale DEM
image for 8-neighbor search. Similarly, Yu et al. (2020) estimated cell
slope from the elevations of the 8-neighbor window.

Prevention of tip-over risks on uneven or unstructured terrains is
major traversability issue for DEM planning (Kubota et al., 2001;

olas et al., 2013). In many cases, using full dynamics physics simu-
ation of the vehicle and the terrain is not feasible, so simple vehicle
nformation (such as mass and geometry) is pragmatic for predicting
ose and stability in DEM-based path planning (Fabian et al., 2020).
n this sense, Hines et al. (2021) proposed attitude-aware planning by
dentifying non-traversable cells based on pitch and roll estimations and
teepness thresholds, which were also checked during path tracking by
n orientation correction behavior.

On uneven terrain, traversability, energy consumption and travel
ime can be affected significantly not only by slope but also by head-
ng direction (Choi et al., 2012). A few works have considered the
symmetric behavior of ground vehicles for inclination-aware planning.
n this sense, FMM can incorporate anisotropy in a natural way for
nergy-aware motion planing (Garrido et al., 2013), which has been
pplied with DEMs to minimize UGV height changes on planetary
xploration (Garrido et al., 2019) or to compute feasible optimal paths
or biped robots (Kumar and Dutta, 2022). As for graph search meth-
ds, Santos et al. (2020) proposed an orientation-aware extension of A⋆

for tip-over avoidance on vineyards with steep slopes where possible
orientations to neighbor cells were considered as multi-layered grids.

The effect of slopes on vehicle speed, and therefore on total travel
time, is crucial for time-critical applications like planetary exploration
(Ono et al., 2018) and SAR (Delmerico et al., 2017), but travel time
optimization for DEM-based graph search has received scarce attention.
Instead, some works have proposed a post-processing refinement for
distance-optimized paths. Dolgov et al. (2010) used a constant speed
for path length optimization by setting a velocity profile based on
curvature or the proximity of obstacles. Similarly, Overbye and Saripalli
(2021) appended the maximum speed to the path as a function of steer-
ing angles. Moreover, Miranda et al. (2019) proposed a motion control
method for path tracking that considered the anisotropic behavior of
ground agricultural vehicles on slopes and different terrain types. Ex-
plicit time-optimal route planning was addressed by Ono et al. (2018)
for the Mars 2020 Rover Mission, where each DEM cell was assigned
a speed rate based on a classification of slope, soil type and obstacle
density. Delmerico et al. (2017) applied the D⋆ algorithm to optimize
traversal time based on velocities estimated from the terrain class and
a function of distance and gradient between neighbor cells. Adámek
et al. (2022) adapted Hybrid A⋆ for travel-time optimization on a DEM

based on simplified dynamics and bicycle kinematics, where pitch was
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Fig. 1. Illustration of digital elevation model and path  from a start node 𝐧s to a goal node 𝐧g. In this example, the any-angle path follows a line-of-sight between 𝐧s and 𝐧1
and a graph edge between neighbors 𝐧1 and 𝐧g. The inclination-aware path splits segments in the intersections with cell-triangle sides. This path is a sequence of 𝓁 = 14 segments
defined by 15 waypoints, which are both triangle intersections and nodes.
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estimated from the elevation difference between grid cells without
considering tip-over safety. Hua et al. (2022) combined a terramechan-
ics model with elevation data to optimize distance by defining fuzzy
mobility cost function that depends on elevation, slope and attainable
velocities.

To the best of our knowledge, no previous work has addressed
global DEM-based trajectory planning for UGVs travel-time optimiza-
tion by estimating the pitch and roll of path segments for considering
asymmetric vehicle behavior and tip-over avoidance. Our proposed
solution for this problem is an extension of 3Dana, an algorithm that
exploits the effectiveness of the A⋆ family for graph search in discretized
DEM maps with any-angle smooth path generation.

3. Digital elevation model for trajectory planning

This section defines the DEM and reviews graph-search any-angle
path planning concepts.

3.1. Digital elevation model

A geodesic DEM model can be defined as matrix 𝐙 ∈ 𝑀×𝑁 (R)
of altitudes 𝐙(𝑖, 𝑗) = 𝑧𝑖𝑗 for a set of node points 𝐧 = (𝑥𝑖, 𝑦𝑗 , 𝑧𝑖𝑗 ) over a
two-dimensional square grid of spatial resolution 𝛿.

To simplify planning computations, a normalized DEM can be de-
fined as 𝐊 = 𝐙∕𝛿, where nodes 𝐧 =

(

𝑖, 𝑗, 𝑘𝑖𝑗
)

have integer coordinates
(see Fig. 1). In this work, graph search is performed on the 𝐼𝐽 plane
node projections, where n denotes the projection of 𝐧, and 𝐊 is used
to compute inclination-aware costs.

We adopt a corner-node representation where a grid cell 𝐜 = (𝑖, 𝑗) is
defined by 𝐼𝐽 nodes (𝑖, 𝑗), (𝑖 + 1, 𝑗), (𝑖 + 1, 𝑗 + 1) and (𝑖, 𝑗 + 1). Moreover,
cell diagonals define four constituent isosceles right triangles that share
the center point 𝐩𝐜 =

(

𝑖 + 1∕2, 𝑗 + 1∕2, 𝑘𝐜
)

whose normalized altitude
𝑘𝐜 is estimated as the average of the four cell nodes. Triangles allow
estimating the normalized altitude 𝑘a of any arbitrary DEM surface
point 𝐩a (Muñoz et al., 2017). In our approach, the formulation is
simplified because only points belonging to the cell-triangle sides need
to be interpolated. Thus, for a point 𝐩a =

(

𝑖a, 𝑗a, 𝑘a
)

in the triangle side
defined by vertices 𝐩1 =

(

𝑖1, 𝑗1, 𝑘1
)

and 𝐩2 =
(

𝑖2, 𝑗2, 𝑘2
)

, altitude 𝑘a can
be computed as:

𝑘a = 𝑘1+
(

𝑘2 − 𝑘1
)

√

√

√

√

√

(

𝑖a − 𝑖1
)2+

(

𝑗a − 𝑗1
)2

( )2 ( )2
. (1)
𝑖2 − 𝑖1 + 𝑗2 − 𝑗1 c

3

.2. Graph search-based planning concepts

Let search space  be a weighted and directed graph defined as
he set  of 𝑀 ×𝑁 normalized DEM nodes and the set  of edges

representing the node connections, which we define as 8-neighbors. In
this work, we focus on slope-based traversability. Therefore, we do not
consider removing from  nodes defined a priori as explicit obstacles,
such as walls and rocks, or blocked areas (e.g., as in a binary occupancy
map), since obstacles can be implicit in DEMs as insurmountable steep
elevations.

Path planners of the A⋆ family search for a globally optimal cost
ath connecting a start node 𝐧s with a goal node 𝐧g. This is an iterative

node expansion process from 𝐧s that uses a queue of nodes to expand
(OPEN) sorted by an evaluation function 𝑓 (𝐧) = 𝑔(𝐧) + ℎ(𝐧) that
stimates the global cost from 𝐧s to 𝐧g passing through 𝐧. The cost

from 𝐧s to 𝐧 is 𝑔(𝐧) = 𝑔
(

𝚙𝚊𝚛𝚎𝚗𝚝(𝐧)
)

+ 𝑤
(

𝚙𝚊𝚛𝚎𝚗𝚝(𝐧),𝐧
)

, with 𝑔(𝐧s) = 0,
nd the heuristic ℎ(𝐧) estimates the cheapest cost from 𝐧 to 𝐧g. The

resulting graph path is a sequence of edges connecting pairs of nodes
(i.e., parent to child nodes), where the global cost 𝑔(𝐧g) is the sum of
edge costs. The edge cost between nodes 𝐧 and 𝐧′, depends on the
optimization criterion, which can be a metric such as path length,
path smoothness, path safety, total execution time and total energy
consumption (Atiyah et al., 2021). In this work, total travel time is
defined as the optimization criterion.

Particularly, inclination-aware path planning requires computing
DEM-based slope estimations for path edges. Furthermore, in any-angle
search (Daniel et al., 2010; Choi and Yu, 2011), line-of-sight edges
pass through different cells, so computing partial costs is necessary.
We adopt subdivision of edges into segments that cross different cell
triangles (Muñoz et al., 2017), as illustrated in Fig. 1. Then, the path
 can be defined as a sequence of 𝓁 straight segments traversing cell
triangles from a start node 𝐧s to a goal node 𝐧g:

 =
{

𝐩0𝐩1, 𝐩1𝐩2, … 𝐩𝓁−1𝐩𝓁
}

,

where 𝐩𝜄, for 0 ≤ 𝜄 ≤ 𝓁 and 𝜄 ∈ N, are path waypoints in normalized
EM coordinates with 𝐩0 = 𝐧s and 𝐩𝓁 = 𝐧g. These waypoints need to
e transformed into geodesic coordinates for real-world application.

. Inclination-aware computations

This section formulates the estimation of pitch and roll angles for

omputing the inclination-aware cost of path segments. Besides, we
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Fig. 2. Illustration of path segments on cell triangles with the representation of inclination angles on motion direction 𝜃𝜄 and lateral 𝜙𝜄⋅: (a) crossing a cell triangle; (b) cell
diagonal; (c) cell side.
propose an application of the support polygon concept for defining
pitch and roll limits for tip-over avoidance as well as a function to
assign asymmetric reference velocities to segments based on slope and
heading direction. These constraints are incorporated in a vehicle-
dependent velocity function 𝑣ref (𝜃, 𝜙) for the DEM-AIA trajectory plan-
ner.
4

4.1. Pitch and roll estimations

The proposed inclination-aware trajectory planning algorithm ap-
pends pitch 𝜃𝜄 and roll 𝜙𝜄 angle estimations (i.e., the forward and lateral
inclinations with respect to the 𝐼𝐽 plane, respectively) to the 𝜄th path
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Fig. 3. Illustration of tip-over stability analysis based on the supporting polygon (SP) for a 4-wheeled vehicle. Pitch and roll angles affect the vertical projection of the COG (𝐩′COG)
nd the tip-over distance stability margin 𝜌. A reduced SP provides a margin for DEM uncertainties.
egment 𝐩𝜄𝐩𝜄+1. With this purpose, we define function 𝛩 as:

⟨𝐩𝜄𝐩𝜄+1, 𝜃𝜄, 𝜙𝜄⟩ = 𝛩
(

𝐩𝜄𝐩𝜄+1
)

. (2)

he estimation of 𝜃𝜄 in Eq. (2) is computed as:

𝜄 = tan−1 (𝐴∕𝐵) , (3)

ith
𝐴 =

(

𝑘𝜄+1 − 𝑘𝜄
)

,

=
√

(

𝑖𝜄+1 − 𝑖𝜄
)2 +

(

𝑗𝜄+1 − 𝑗𝜄
)2.

As for 𝜙𝜄, this is computed from the cell triangle that contains the
path segment (see Fig. 2). In particular, 𝜙𝜄 can be obtained from the
relation between areas of equivalent parallelograms and the distance
from a point 𝐩⟂𝜄 to a line as:

𝜄 = cos−1
⎛

⎜

⎜

⎜

⎝

𝐶𝑘

√

√

√

√

𝐴2 + 𝐵2

𝐵2
(

𝐶2
𝑖 + 𝐶2

𝑗 + 𝐶2
𝑘

)

⎞

⎟

⎟

⎟

⎠

, (4)

ith

𝑖 =
(

𝑗⟂𝜄 − 𝑗𝜄
) (

𝑘𝜄+1 − 𝑘𝜄
)

−
(

𝑘⟂𝜄 − 𝑘𝜄
) (

𝑗𝜄+1 − 𝑗𝜄
)

,

𝑗 =
(

𝑖⟂𝜄 − 𝑖𝜄
) (

𝑘𝜄+1 − 𝑘𝜄
)

−
(

𝑘⟂𝜄 − 𝑘𝜄
) (

𝑖𝜄+1 − 𝑖𝜄
)

,

𝑘 =
(

𝑖⟂𝜄 − 𝑖𝜄
) (

𝑗𝜄+1 − 𝑗𝜄
)

−
(

𝑗⟂𝜄 − 𝑗𝜄
) (

𝑖𝜄+1 − 𝑖𝜄
)

,

here 𝐩⟂𝜄 =
(

𝑖⟂𝜄 , 𝑗
⟂
𝜄 , 𝑘

⟂
𝜄
)

can be any point of the cell triangle that does
ot belong to 𝐩𝜄𝐩𝜄+1.

Two estimation approaches are proposed depending on whether the
segment crosses a triangle or coincides with a triangle side. When the
segment crosses a triangle, roll and pitch depends only on triangle
inclination and segment direction (see Fig. 2(a)), so only one auxiliary
point 𝐩⟂𝜄 is needed. For simplicity, 𝐩⟂𝜄 is chosen as the cell center point
𝐩𝐜.

When the segment coincides with a triangle side, i.e., connects
a cell node with the cell center or two cell nodes, it is shared by
two neighboring triangles with their corresponding inclinations (see
Fig. 2(b–c)). In this case, two auxiliary points are required to compute
𝜙𝜄 as the average value of Eq. (4) for both triangles:

𝜙 = 1 (

𝜙 + 𝜙
)

.
𝜄 2 𝜄1 𝜄2

5

For simplicity, the two points are chosen as the vertices of the both
neighboring triangles that do not belong to the segment. These points
are the nodes of the opposite cell diagonal if the segment contains the
cell center (see Fig. 2(b)) or the adjacent cell centers if the segment
connects two cell nodes (see Fig. 2(c)).

4.2. UGV pitch and roll constraints

The slope-based traversability limitations for a ground vehicle can
be due to aspects such as maximum traction power, slippage or tip-over
prevention (Isher et al., 2022). In this work, we define asymmetric pitch
[𝜃min, 𝜃max] and roll [𝜙min, 𝜙max] constraints for tip-over avoidance.
With this purpose, we consider wheeled or tracked UGVs whose local
reference frame {𝑥ugv, 𝑦ugv, 𝑧ugv} is defined at the center of the rectan-
gular supporting polygon (SP), with length 𝐿 and width 𝑊 , defined by
ground contact points. The vehicle travel speed and acceleration are
assumed to be moderate, so external and inertial forces other than the
weight force can be neglected (Vidoni et al., 2015). Therefore, a static
stability analysis can be adopted.

Fig. 3 illustrates tip-over static stability analysis based on the SP (Sa-
far et al., 2012; Morales et al., 2013), where the vehicle’s center
of gravity (COG) is 𝐩COG =

(

𝑥COG , 𝑦COG , 𝑧COG
)

in the local frame
coordinates. In actual vehicles, this point is not necessarily centered
with respect to the longitudinal or transversal axes. For static stability,
the vertical projection of 𝐩COG over the ground plane (𝐩′COG) must fall
within the SP. Then, a tip-over distance stability margin Papadakis
(2013) can be defined as the shortest distance 𝜌 from 𝐩′COG to the sides
of the SP.

In order to add a margin for DEM uncertainties, a reduced SP could
be defined at a distance 𝜂 = 𝜌𝑡𝑜𝑙 min{𝐿,𝑊 }∕2 within original SP limits,
where 0 ≤ 𝜌tol ≤ 1. Then, the following expressions:

𝐷𝑥 = 𝑥COG ± 1
2
𝑊

(

1 − 𝜌tol
)

,

𝐷𝑦 = 𝑦COG ± 1
2
(

𝐿 −𝑊 ⋅ 𝜌tol
)

yield the pair of distances from the COG to the left and right sides of
the reduced SP and the pair of distances to the front and rear sides,
respectively.
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Fig. 4. Normalized representation of 𝑣∕𝑣n (Eq. (7)) for different 𝜉 values.
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w
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From this tip-over stability analysis, the pitch thresholds 𝜃min, 𝜃max
can be obtained as:
(

𝜃min
𝜃max

)

= tan−1
(

𝐷𝑦

𝑧COG

)

, (5)

nd roll thresholds 𝜙min, 𝜙max are a function of the estimated pitch 𝜃𝜄
Eq. (3)):
(

𝜙min
𝜙max

)

= tan−1
(

−𝐷𝑥
𝐷(𝜃𝜄) sin 𝜃𝜄 + 𝑧COG cos 𝜃𝜄

)

, (6)

where

𝐷(𝜃𝜄) =

⎧

⎪

⎨

⎪

⎩

min{𝐷𝑦} if 𝜃𝜄 < 0 and 𝑦COG > 0 or
𝜃𝜄 > 0 and 𝑦COG < 0,

max{𝐷𝑦} otherwise.

4.3. UGV locomotion forward speed constraints

On uneven terrain, the optimization of travel time is not equivalent
to path length because the constant velocity assumption does not
necessarily hold for different slopes and heading directions (Choi et al.,
2012). The effect of terrain inclination on the reference velocity can be
defined by a vehicle-dependent function 𝑣(𝜃, 𝜙), which modulates the
6

constant nominal velocity 𝑣n, i.e., that for flat terrain, into a reference
velocity for the 𝜄th segment based on 𝜃𝜄 and 𝜙𝜄.

Without loss of generality, in this work we define 𝑣(𝜃, 𝜙) = 𝑣(𝜃),
where the effect of 𝜙 for forward speed is considered negligible, for
simplicity, under the stability conditions established in Section 4.2. In
particular, the proposed forward speed constraint function is defined
as:

𝑣(𝜃) = 𝑣n ⋅ cos𝜉 𝜃 ,
{

𝜉 = 𝜉↓ if 𝜃 < 0
𝜉 = 𝜉↑ if 𝜃 ≥ 0

, (7)

where 𝜉↓, 𝜉↑ ∈ R≥0 are coefficients defining the asymmetric dependence
on 𝜃. Thus, when 𝜉 = 0, the reference 𝑣 = 𝑣n is constant. On the
other hand, when 𝜉 > 0, 𝑣 is reduced depending on slope, as shown in
Fig. 4. This figure represents the normalized relation 𝑣∕𝑣n for different

values, where Fig. 4(a) and 4(b) show curves for applying with
eaker (0 < 𝜉 ≤ 1) or stronger (𝜉 ≥ 1) velocity dependence degrees,

espectively.
Given a UGV, the 𝜉 coefficients could be set by experimentally

etermining the velocities 𝑣 that show acceptable performance for
ifferent terrain inclinations and then adjusting this data to the appro-
riate left and right curves in Fig. 4. In case of asymmetric constraints
e.g., descending requires less speed), then the left side (𝜉↓) and the
ight side (𝜉 ) of 𝑣 in Fig. 4 would be different 𝜉 values.
↑
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Fig. 5. Illustration of the inclination-aware velocity constraints function 𝑣ref for asymmetric vehicle-dependent coefficients 𝜉↓ = 30 and 𝜉↑ = 10. For clarity, only non-zero (i.e., stable)
alues are shown.
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.4. Inclination-aware velocity constraints function

The DEM-AIA trajectory planner uses vehicle-dependent inclination-
ware velocity constraints defined as a non-linear function 𝑣ref (𝜃, 𝜙)
hat assigns the reference velocity for a path segment based on slope
nd heading direction. This function can be implemented as a 2D
ook-up table built by incorporating UGV locomotion forward speed
onstraints as given by Eq. (7) and then setting zero values to all pitch
nd roll combinations over the thresholds computed in Eqs. (5) and (6).

Fig. 5 illustrates the inclination-aware velocity constraints func-
ion for the case-study vehicle in Section 6. The function 𝑣ref (𝜃, 𝜙)
ncorporates tip-over avoidance (Section 4.2) and the forward speed
onstraints (Section 4.3). For the sake of clarity, only non-zero values
re shown. Zero values (i.e., those outside of the shaded projection
n the 𝜃𝜙 plane, shown in Fig. 5(b)), indicate the unstable inclination
ombinations. In this case, the stable region is asymmetric with respect
o pitch due to the advanced position of the COG. Moreover, the curved
ides of this region indicate that the maximum roll angle supported by
he vehicle decreases with increasing pitch angle (on both uphill and
ownhill slopes). The figure also shows the largest stability region (red
 c

7

ashed square) that could be obtained for identical symmetric pitch
nd roll thresholds, which is more conservative (i.e., restrictive) than
he proposed function.

. DEM-AIA algorithm

This section proposes an any-angle DEM-based asymmetric
nclination-aware planner (DEM-AIA) for ground vehicles that com-
utes a sub-optimal travel-time trajectory by using a vehicle-dependent
elocity constraints function and pitch and roll estimations for each
egment crossing cell triangles. First, we present an overview of the
lgorithm. Then, we describe the inner functions.

.1. Overview of the DEM-AIA algorithm

Algorithm 1 presents the basic structure for the DEM-AIA trajectory
lanner. This algorithm is a variant of A⋆ for DEM-based search that
dmits parameterization of different inclination-aware strategies for
omparison and analysis.
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Algorithm 1: DEM-AIA trajectory planner
Function ⟨ ,⟩ = DEM-AIA (𝐊,𝐧s,𝐧g, 𝑣ref ,any_angle,heuristic):

⊳ initialization:
1 ⟨ ,⟩ ← ⟨∅, ∅⟩
2 for 𝐧 ∈ 𝐊 do
3 𝑝𝑎𝑟𝑒𝑛𝑡(𝐧) ← null
4 𝑔(𝐧) ← ∞
5 switch heuristic do
6 case Euclidean_time do ℎ(𝐧) ← ℎe(𝐧) ⊳ Eq. (9)

7 case Octile_time do ℎ(𝐧) ← ℎo(𝐧) ⊳ Eq. (10)

8 𝑔(𝐧s) ← 0
9 OPEN ←

{

𝐧s
}

10 if 𝐧𝐨𝐭 any_angle then CLOSED ← ∅

⊳ iterative node expansion:
11 while OPEN ≠ ∅ do

12 𝐧 ← argmin
𝐧 ∈ OPEN

{

𝑓 (𝐧)
}

13 OPEN ← OPEN − {𝐧}
14 if 𝐧𝐨𝐭 any_angle then CLOSED ← CLOSED ∪ {𝐧}

15 if 𝐧 = 𝐧g then
⊳ obtain resulting trajectory, backtracking from 𝐧g to 𝐧s:

16 while 𝐧 ≠ ∅ do
17  ← segments(𝐧) ∪ 
18 𝐧 ← 𝑝𝑎𝑟𝑒𝑛𝑡(𝐧)

⊳ assign reference velocity for every path segment:
19 for ⟨𝐩𝜄𝐩𝜄+1, 𝜃𝜄, 𝜙𝜄⟩ ∈  do  ←  ∪ 𝑣ref (𝜃𝜄, 𝜙𝜄) ⊳ Eq. (7)

20 return ⟨ ,⟩

21 for 𝐧′ ∈ successors(𝐧) do
22 if any_angle 𝐨𝐫 𝐧′ ∉ CLOSED then
23 UpdateNode

(

𝐧,𝐧′,𝐊, 𝑣ref ,any_angle
)

⊳ Algorithm 2

24 return fail

The algorithm returns a tuple ⟨ ,⟩, where  is a sequence of
path segments (see Section 3.2) and  the corresponding reference
velocities. The inputs for the algorithm are the normalized DEM ma-
trix 𝐊, the start 𝐧s and goal 𝐧g nodes, a normalized version (i.e., in
cells/second) of the inclination-aware velocity function 𝑣ref (𝜃, 𝜙), and
two search configuration parameters (𝚊𝚗𝚢_𝚊𝚗𝚐𝚕𝚎 and 𝚑𝚎𝚞𝚛𝚒𝚜𝚝𝚒𝚌) to
allow fair comparison against other planners.

The vehicle-dependent inclination-aware velocity constraints are
given as a non-linear function 𝑣ref (𝜃, 𝜙) that assigns the reference
velocity for a path segment based on slope and heading direction. The
methodology for computing 𝑣ref (𝜃, 𝜙) is presented in Section 4.

As for configuration parameters, first, the Boolean 𝚊𝚗𝚢_𝚊𝚗𝚐𝚕𝚎 en-
ables line-of-sight search towards non-neighboring nodes, which does
not use the CLOSED set because expanded nodes are still eligible for
re-expansion. Second, the 𝚑𝚎𝚞𝚛𝚒𝚜𝚝𝚒𝚌 parameter identifies the type of
heuristic function ℎ(𝐧). For optimizing total travel time, ℎ(𝐧) can be
defined as:

ℎ(𝐧) =
𝚎𝚜𝚝𝚒𝚖𝚊𝚝𝚎𝚍_𝚍𝚒𝚜𝚝𝚊𝚗𝚌𝚎

(

𝐧,𝐧g
)

𝑣n
, (8)

here 𝑣n is the maximum speed considered for the vehicle in the ab-
ence of terrain restrictions. Commonly used distance estimations (Choi
nd Yu, 2011) for the numerator of Eq. (8) are 3D Euclidean distance,
hich gives an Euclidean time heuristic:

e(𝐧) =

√

𝛥2
𝑖 + 𝛥2

𝑗 + 𝛥2
𝑘

𝑣n
, (9)

r the 3D octile distance:

o(𝐧) =

√

(

|

|

|

𝛥𝑖 − 𝛥𝑗
|

|

|

+
√

2min
{

𝛥𝑖, 𝛥𝑗
}

)2
+ 𝛥2

𝑘
, (10)
𝑣n

8

with 𝛥𝑖 = |𝑖g − 𝑖|, 𝛥𝑗 = |𝑗g − 𝑗|, 𝛥𝑘 = |𝑘𝑖g𝑗g − 𝑘𝑖𝑗 |, for an octile time
stimation.

DEM-AIA consists of two phases (see Algorithm 1): initialization
nd iterative node expansion. First, data structures are initialized, the
euristic function ℎ(𝐧) is evaluated for every node 𝐧 in 𝐊 (lines 5 to
), and 𝐧s is inserted into OPEN (line 9). Then, while there are nodes
n OPEN, the iterative node expansion process is performed. The node

in OPEN with the lowest 𝑓 (𝐧) is extracted (lines 12 and 13). If 𝐧 is
g, the algorithm returns the trajectory ⟨ ,⟩ by backtracking of the
ath segments and the parent nodes from 𝐧g to 𝐧s. Else, successor nodes
f 𝐧 are updated or inserted into OPEN by the UpdateNode function
line 23), which computes the evaluation function with any-angle con-
iderations. If OPEN becomes empty, 𝐧g is unreachable. UpdateNode

is described below along with rest of inner functions.

5.2. DEM-AIA inner functions

Function UpdateNode (see Algorithm 2) updates or inserts suc-
essor nodes into OPEN (line 23 of Algorithm 1). This algorithm calls
unctions EntryExitPoints and Segments, shown in Algorithms

and 4, respectively. These algorithms define the inner functions of
he DEM-AIA trajectory planner.

Algorithm 2: Computes the evaluation function 𝑓 (𝐧′), updates
𝑒𝑔𝑚𝑒𝑛𝑡𝑠(𝐧′) and 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝐧′), and inserts the appropriate node 𝐧′ into
PEN.
Function UpdateNode (𝐧,𝐧′,𝐊, 𝑣ref ,any_angle):

⊳ Compute 𝑔𝑛 = 𝑔(𝐧) + 𝚌𝚘𝚜𝚝
(

𝐧,𝐧′
)

1 𝑔𝑛 ← 𝑔(𝐧)
2 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠𝑛 ← Segments

(

n,n′) ⊳ Algorithm 4
3 for ⟨𝐩𝜄𝐩𝜄+1, 𝜃𝜄, 𝜙𝜄⟩ ∈ 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠𝑛 do
4 𝑔𝑛 ← 𝑔𝑛+ SegmentCost

(

⟨𝐩𝜄𝐩𝜄+1, 𝜃𝜄, 𝜙𝜄⟩, 𝑣ref , 𝛿
)

⊳ Eq. (11)

⊳ Compute 𝑔𝑝 = 𝑔(𝑝𝑎𝑟𝑒𝑛𝑡(𝐧)) + 𝚌𝚘𝚜𝚝
(

𝚙𝚊𝚛𝚎𝚗𝚝(𝐧),𝐧′
)

5 𝑔𝑝 ← −∞
6 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠𝑝 ← ∅
7 if any_angle 𝐚𝐧𝐝 𝐧 ≠ 𝐧s then
8 𝑔𝑝 ← 𝑔

(

𝑝𝑎𝑟𝑒𝑛𝑡(𝐧)
)

9 for
(

p𝒿 ,p𝒿+1
)

∈ EntryExitPoints
(

𝑝𝑎𝑟𝑒𝑛𝑡(𝐧),𝐧′
)

do ⊳ Alg. 3
10 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 ← Segments

(

p𝒿 ,p𝒿+1
)

11 for ⟨𝐩𝜄𝐩𝜄+1, 𝜃𝜄, 𝜙𝜄⟩ ∈ 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 do
12 𝑔𝑝 ← 𝑔𝑝+ SegmentCost

(

⟨𝐩𝜄𝐩𝜄+1, 𝜃𝜄, 𝜙𝜄⟩, 𝑣ref , 𝛿
)

13 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠𝑝 ← 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠𝑝 ∪ 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠

⊳ Select the graph edge with the lowest cost 𝑔(𝐧′) and then update parent
of 𝐧′, segments of path edge to 𝐧′, and insert 𝐧′ into OPEN

14 if 𝑔𝑝 ≠ ∞ 𝐚𝐧𝐝 𝑔𝑝 ≤ 𝑔𝑛 𝐚𝐧𝐝 𝑔𝑝 < 𝑔(𝐧′) then
15 𝑝𝑎𝑟𝑒𝑛𝑡(𝐧′) ← 𝑝𝑎𝑟𝑒𝑛𝑡(𝐧)
16 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠(𝐧′) ← 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠𝑝
17 𝑔(𝐧′) ← 𝑔𝑝
18 𝑓 (𝐧′) ← 𝑔𝑝 + ℎ(𝐧′)
19 OPEN ← OPEN ∪

{

𝐧′
}

20 else if 𝑔𝑛 ≠ ∞ 𝐚𝐧𝐝 𝑔𝑛 < 𝑔(𝐧′) then
21 𝑝𝑎𝑟𝑒𝑛𝑡(𝐧′) ← 𝐧
22 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠(𝐧′) ← 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠𝑛
23 𝑔(𝐧′) ← 𝑔𝑛
24 𝑓 (𝐧′) ← 𝑔𝑛 + ℎ(𝐧′)
25 OPEN ← OPEN ∪

{

𝐧′
}

5.2.1. UpdateNode function
Function UpdateNode (Algorithm 2) is similar to the one used by

3Dana (Muñoz et al., 2017) but we incorporate the vehicle-dependent
inclination-aware velocity constraints function 𝑣ref as well as the travel-
time optimization criterion.

As common in any-angle methods (Daniel et al., 2010; Muñoz et al.,
2017), the selection of 𝑝𝑎𝑟𝑒𝑛𝑡(𝐧′), where 𝐧′ is an 8-neighbor successor
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of 𝐧, requires computing two alternative tentative costs: the total cost
passing through 𝑛, which is 𝑔𝑛 = 𝑔(𝐧) + 𝙲𝚘𝚜𝚝

(

𝐧,𝐧′
)

(lines 1 to 4), and
the total cost using a line-of-sight between 𝑝𝑎𝑟𝑒𝑛𝑡(𝐧) and 𝐧′, defined
as 𝑔𝑝 = 𝑔(𝑝𝑎𝑟𝑒𝑛𝑡(𝐧)) + 𝙲𝚘𝚜𝚝

(

𝑝𝑎𝑟𝑒𝑛𝑡(𝐧),𝐧′
)

(lines 5 to 13), where 𝙲𝚘𝚜𝚝()
indicates the partial cost between two nodes:

𝙲𝚘𝚜𝚝(𝐧,𝐧′) =
𝑆𝐧,𝐧′−1
∑

𝑖=0
𝚂𝚎𝚐𝚖𝚎𝚗𝚝𝙲𝚘𝚜𝚝

(

𝐩𝑖𝐩𝑖+1, 𝑣ref (𝜃𝜄, 𝜙𝜄), 𝛿
)

here 𝑆𝐧,𝐧′ is the number of triangle segments between 𝐧 and 𝐧′, with
0 = 𝐧 and 𝑝𝑆𝐧,𝐧′

= 𝐧′. Moreover, the segment cost follows a travel-time
ptimization criterion based on 𝑣ref (𝜃, 𝜙):

𝚂𝚎𝚐𝚖𝚎𝚗𝚝𝙲𝚘𝚜𝚝
(

𝐩𝜄𝐩𝜄+1, 𝑣ref (𝜃𝜄, 𝜙𝜄)
)

=
√

(

𝑖𝜄+1 − 𝑖𝜄
)2 +

(

𝑗𝜄+1 − 𝑗𝜄
)2 +

(

𝑘𝜄+1 − 𝑘𝜄
)2

𝑣ref (𝜃𝜄, 𝜙𝜄)
,

(11)

which is infinite for non-traversable segments, i.e., 𝑣ref (𝜃𝜄, 𝜙𝜄) is zero.
Finally, the lowest finite tentative cost is used to insert or update 𝐧′ in
𝑝𝑎𝑟𝑒𝑛𝑡, 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 and OPEN if it improves the current cost 𝑔(𝐧′) (lines 14
to 25).

To calculate path segments, the function UpdateNode obtains the
segment waypoints by two inner functions: EntryExitPoints (line
9) and Segments (lines 10 and 2), described below.

5.2.2. EntryExitPoints function
The function EntryExitPoints, shown in Algorithm 3, calcu-

lates an ordered list of two-dimensional points at which the 𝐼𝐽 projec-
tion of the line-of-sight between two non-neighboring nodes intersects
the grid lines. This work refers to these points as cell entry/exit points
(see Fig. 1).

Algorithm 3: Returns the list of cell entry/exit points for the
line-of-sight between nodes 𝐧1 =

(

𝑖1, 𝑗1, 𝑘1
)

and 𝐧2 =
(

𝑖2, 𝑗2, 𝑘2
)

.

Function LIST of p𝒿 = EntryExitPoints (𝐧1,𝐧2):
⊳ initialization

1 LIST ←
{(

𝑖1, 𝑗1
)}

2 𝛥𝑖 ← if 𝑖2 > 𝑖1 then 1 else if 𝑖2 < 𝑖1 then −1 else 0
3 𝛥𝑗 ← if 𝑗2 > 𝑗1 then 1 else if 𝑗2 < 𝑗1 then −1 else 0
4 𝑚 ←

(

𝑗2 − 𝑗1
)

∕
(

𝑖2 − 𝑖1
)

5 pa
def
=
(

𝑖a, 𝑗a
)

←
(

𝑖1 + 𝛥𝑖 , 𝑗1 + 𝑚 ⋅ 𝛥𝑖
)

6 pb
def
=
(

𝑖b, 𝑗b
)

←
(

𝑖1 + 𝛥𝑗∕𝑚 , 𝑗1 + 𝛥𝑗
)

7 if 𝑚 = 0 then 𝑖b ← 𝛥𝑖 ⋅∞ else if 𝑚 = ∞ then 𝑗a ← 𝛥𝑖 ⋅∞

8 if 𝑚 = 1 then pb ←
(

𝑖2, 𝑗2
)

⊳ creation of cell entry/exit points list
9 while 𝐧𝐨𝐭

(

𝑖a = 𝑖2 𝐚𝐧𝐝 𝑗b = 𝑗2
)

do
10 if

(

𝑖a ≤ 𝑖b 𝐚𝐧𝐝 𝛥𝑖 > 0
)

𝐨𝐫
(

𝑖a ≥ 𝑖b 𝐚𝐧𝐝 𝛥𝑖 < 0
)

then

11 LIST ← LIST ∪
{

pa
}

12 𝑖a ← 𝑖a + 𝛥𝑖
13 if 𝑚 ≠ ∞ then 𝑗a ← 𝑗1 + 𝑚

(

𝑖a − 𝑖1
)

14 else
15 LIST ← LIST ∪

{

pb
}

16 𝑗b ← 𝑗b + 𝛥𝑗
17 if 𝑚 ≠ 0 then 𝑖b ← 𝑖1 +

(

𝑗b − 𝑗1
)

∕𝑚

18 LIST ← LIST ∪
{(

𝑖2, 𝑗2
)}

19 return LIST

This function is based on the clipping line algorithm (Dimri, 2015)
nd uses the parametric form of a two-dimensional line equation to
alculate the intersection points of a line segment with the boundaries
f a clip window. Unlike the algorithm used by 3Dana, Algorithm 3
omputes the intersection points for any pair of line-of-sight nodes,
ncluding pairs with the same vertical or horizontal coordinates.
9

5.2.3. Segments function
The function Segments, shown in Algorithm 4, computes an or-

ered list of path segments ⟨𝐩𝜄𝐩𝜄+1, 𝜃𝜄, 𝜙𝜄⟩ between one cell’s pair of
ntry/exit points, i.e. one segment for every triangle crossed within
he cell. This function distinguishes two cases of cell entry/exit points:
i) when both correspond to nodes, and (ii) when one or both do not
orrespond with nodes.

Algorithm 4: Returns the list of segments with pitch and roll angles
between a cell’s entry p1 =

(

𝑖1, 𝑗1
)

and exit p2 =
(

𝑖2, 𝑗2
)

points.

Function LIST of ⟨𝐩𝜄𝐩𝜄+1, 𝜃𝜄, 𝜙𝜄⟩ = Segments (p1, p2, 𝐊):
⊳ compute cell and its center:

1 𝐜
def
= (𝑖, 𝑗) ←

⌊(

p1 + p2
)

∕ 2
⌋

2 𝐩𝐜 ← 𝙲𝚎𝚕𝚕𝙲𝚎𝚗𝚝𝚎𝚛
(

𝐜
)

⊳ both entry/exit points correspond to nodes:
3 if p1 = ⌊p1⌋ 𝐚𝐧𝐝 p2 = ⌊p2⌋ then
4 𝐩1 ←

(

p1,𝐊(𝑖1, 𝑗1)
)

; 𝐩2 ←
(

p2,𝐊(𝑖2, 𝑗2)
)

5 if 𝑖1 = 𝑖2 𝐨𝐫 𝑗1 = 𝑗2 then ⊳ 4-adjacent nodes
6 LIST ←

{

𝛩
(

𝐩1𝐩2
)}

⊳ Eq. (2)
else ⊳ opposite nodes in the cell diagonal

7 LIST ←
{

𝛩
(

𝐩1𝐩c
)

, 𝛩
(

𝐩c𝐩2
)}

else ⊳ any of entry/exit points does not correspond to node:

⊳ look up or estimate altitude corresponding to both entry/exit points:
8 𝐩𝑒1 ←

(

⌊p1⌋ ,𝐊 ⌊(𝑖1, 𝑗1)⌋
)

; 𝐩𝑒2 ←
(

⌊p2⌋ ,𝐊 ⌊(𝑖2, 𝑗2)⌋
)

9 if p1 = ⌊p1⌋ then 𝐩1 ←
(

p1,𝐊(𝑖1, 𝑗1)
)

else
10 if 𝑖1 = ⌊𝑖1⌋ then 𝐩𝑒1′ ←

(

⌊𝑖1, 𝑗1 + 1⌋ ,𝐊 ⌊(𝑖1, 𝑗1 + 1)⌋
)

11 else 𝐩𝑒1′ ←
(

⌊𝑖1 + 1, 𝑗1⌋ ,𝐊 ⌊(𝑖1 + 1, 𝑗1)⌋
)

12 𝐩1 ←
(

p1, 𝙴𝚜𝚝𝚒𝚖𝚊𝚝𝚎𝙺
(

p1,𝐩𝑒1,𝐩𝑒1′
)

)

⊳ Eq. (1)

13 if p2 = ⌊p2⌋ then 𝐩2 ←
(

p2,𝐊(𝑖2, 𝑗2)
)

else
14 if 𝑖2 = ⌊𝑖2⌋ then 𝐩𝑒2′ ←

(

⌊𝑖2, 𝑗2 + 1⌋ ,𝐊 ⌊(𝑖2, 𝑗2 + 1)⌋
)

15 else 𝐩𝑒2′ ←
(

⌊𝑖2 + 1, 𝑗2⌋ ,𝐊 ⌊(𝑖2 + 1, 𝑗2)⌋
)

16 𝐩2 ←
(

p2, 𝙴𝚜𝚝𝚒𝚖𝚊𝚝𝚎𝙺
(

p2,𝐩𝑒2,𝐩𝑒2′
)

)

⊳ compute intersections of line segment p1p2 with cell diagonals:

17 pa
def
=
(

𝑖a, 𝑗a
)

← 𝚕𝚒𝚗𝚎
(

p1,p2
)

∩ 𝚕𝚒𝚗𝚎
(

(𝑖, 𝑗) , (𝑖 + 1, 𝑗 + 1)
)

18 pb
def
=
(

𝑖b, 𝑗b
)

← 𝚕𝚒𝚗𝚎
(

p1,p2
)

∩ 𝚕𝚒𝚗𝚎
(

(𝑖, 𝑗 + 1) , (𝑖 + 1, 𝑗)
)

19 if pa ∈ 𝐜 𝐚𝐧𝐝 pa ≠ p1 𝐚𝐧𝐝 pa ≠ p2 then
20 if 𝑖a < 𝑖 + 1∕2 then 𝐩𝑒a ← (𝑖, 𝑗,𝐊(𝑖, 𝑗))
21 else 𝐩𝑒a ← (𝑖 + 1, 𝑗 + 1,𝐊(𝑖 + 1, 𝑗 + 1))

22 𝐩a ←
(

𝑖a, 𝑗a, 𝙴𝚜𝚝𝚒𝚖𝚊𝚝𝚎𝙺
(

pa,𝐩𝑒a,𝐩𝐜
)

)

23 if 𝐩a = 𝐩𝐜 then LIST ←
{

𝛩
(

𝐩1𝐩𝐜
)

, 𝛩
(

𝐩𝐜𝐩2
)}

24 else if ∄𝐩b then LIST ←
{

𝛩
(

𝐩1𝐩a
)

, 𝛩
(

𝐩a𝐩2
)}

25 if pb ∈ 𝐜 𝐚𝐧𝐝 pa ≠ pb 𝐚𝐧𝐝 pb ≠ p1 𝐚𝐧𝐝 pb ≠ p2 then
26 if 𝑖b < 𝑖 + 1∕2 then 𝐩𝑒b ← (𝑖, 𝑗 + 1,𝐊(𝑖, 𝑗 + 1))
27 else 𝐩𝑒b ← (𝑖 + 1, 𝑗,𝐊(𝑖 + 1, 𝑗))

28 𝐩b ←
(

𝑖b, 𝑗b, 𝙴𝚜𝚝𝚒𝚖𝚊𝚝𝚎𝙺
(

pb,𝐩𝑒b,𝐩𝐜
)

)

29 if ∃𝐩a then
30 if (𝑖a − 𝑖1)2 + (𝑗a − 𝑗1)2 ≤ (𝑖b − 𝑖1)2 + (𝑗b − 𝑗1)2 then
31 LIST ←

{

𝛩
(

𝐩1𝐩a
)

, 𝛩
(

𝐩a𝐩b
)

, 𝛩
(

𝐩b𝐩2
)}

32 else
33 LIST ←

{

𝛩
(

𝐩1𝐩b
)

, 𝛩
(

𝐩b𝐩a
)

, 𝛩
(

𝐩a𝐩2
)}

34 else LIST ←
{

𝛩
(

𝐩1𝐩b
)

, 𝛩
(

𝐩b𝐩2
)}

35 return LIST

When both points correspond to nodes, there are two possible cases.
First (line 6), if the pair of cell entry/exit points correspond with
4-adjacent nodes, the path segment coincides with cell side 𝐩𝜄𝐩𝜄+1 (see
Fig. 2(c)). In this case, the elevation of the points is already known
(line 4). Second (line 7), if both cell entry/exit points correspond with
opposite nodes in the cell diagonal, this produces two path segments
split by the central point of the cell (see Fig. 2(b)).

When one or both cell entry/exit points do not correspond with
nodes (lines 8 to 34), the partial path is composed of two or three path
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Table 1
Path planning configurations used for comparative analysis.

Planner Inclination Any-angle Traversability

Modified A⋆
|𝛼z| no symmetric

Modified 3Dana |𝛼z| yes symmetric
DEM-AIA(n, s) 𝜃𝜄 , 𝜙𝜄 no symmetric
DEM-AIA(s) 𝜃𝜄 , 𝜙𝜄 yes symmetric
DEM-AIA(n) 𝜃𝜄 , 𝜙𝜄 no asymmetric
DEM-AIA 𝜃𝜄 , 𝜙𝜄 yes asymmetric

segments depending of the number of intersections with cell diagonals.
For instance, the example in Fig. 2(a) produces three segments because
the partial path intersects both cell diagonals. In any case, for non-
node points, elevation is estimated from the two nodes that define the
entry (lines 10 to 12) and exit (lines 14 to 16) cell sides. A similar
computation is proposed for the intersections with the cell diagonals
(lines 20 to 22 and lines 26 to 28) when the intersection point is not
the cell center 𝐩𝐜.

6. Experiments

This section describes the experimental methodology and presents
an analysis of the DEM-AIA trajectory planner with respect to two
comparable versions of state-of-the-art planners: A⋆ and 3Dana. Fur-
thermore, the effects of any-angle search and asymmetric inclination
awareness are assessed by comparing limited DEM-AIA configurations
(see Table 1). Finally, the application to a real-world DEMs is also
discussed.

6.1. Methodology

The methodology adopted for validation and comparative analysis
is consistent with related works in the AI literature. In particular, as
in Muñoz et al. (2017), we compare the proposed planner with the
most related antecedent method, which in our case is 3Dana, as well
as with a comparable version of A⋆. Both algorithms have had to be
modified to incorporate inclination-dependent velocity and travel time
as the optimization criterion. For A⋆, we have adapted the DEM variant
roposed by Muñoz et al. (2017). Hereinafter, we will refer to A⋆ and
Dana meaning our modified versions of these algorithms.

Moreover, in the comparative analysis, we assess the effect of three
istinctive characteristics of DEM-based planning with variable velocity
nd travel-time optimization (see Table 1):

• Segment pitch and roll estimation versus triangle’s maximum slope,
which are needed for traversability assessment and segment
velocity computation. We propose the estimation of 𝜃𝜄 and 𝜙𝜄 an-
gles from DEM information using Eqs. (3) and (4). Alternatively,
3Dana uses the absolute value of the angle 𝛼z formed by the
normal vector of the cell triangle and the global 𝑍 axis, which
is constant for any segment in the triangle.

• Any-angle versus 8-adjacency graph-search method.
• Asymmetric versus symmetric inclination awareness for

traversability. Asymmetric roll and pitch vehicle constraints
yield irregular traversability combinations, like the shaded area
in Fig. 5(b). Conversely, symmetric inclination constraints (i.e.,
the same for 𝜃 and 𝜙 independently of the inclination sign)
produce a square region (see the red dashed line in the figure).
For A⋆ and 3Dana, only symmetric inclination is considered due
to the constant |𝛼z|.

As shown in Table 1, in addition to full DEM-AIA, three lim-
ited versions of the algorithm have been considered for combina-
tions of any-angle and asymmetry characteristics: ‘‘n’’ denotes that
search is limited to neighbor cells (i.e., 𝚊𝚗𝚢_𝚊𝚗𝚐𝚕𝚎 = 𝙵𝙰𝙻𝚂𝙴), and ‘‘s’’
 s

10
Table 2
Case-study vehicles parameters for the synthetic experiments.

Parameter Symbol Value

SP dimensions 𝐿 ×𝑊 0.68 × 0.62 m
Reduced SP coefficient 𝜌tol 0.29
COG 𝐩COG (0.00, 0.03, 0.60) m
Velocity for flat terrain 𝑣n 1m∕s
Vehicle type:
𝑣uref

(

𝜉↓ , 𝜉↑
)

(0, 0)
𝑣dref

(

𝜉↓ , 𝜉↑
)

(6, 2)
𝑣sdref

(

𝜉↓ , 𝜉↑
)

(30, 10)

that traversability limitations are symmetric. Besides, each configura-
tion has been tested with both 𝚑𝚎𝚞𝚛𝚒𝚜𝚝𝚒𝚌 = 𝙴𝚞𝚌𝚕𝚒𝚍𝚎𝚊𝚗_𝚝𝚒𝚖𝚎 (ℎ𝑒) and
𝚑𝚎𝚞𝚛𝚒𝚜𝚝𝚒𝚌 = 𝙾𝚌𝚝𝚒𝚕𝚎_𝚝𝚒𝚖𝚎 (ℎ𝑜).

As for the UGV, we have considered three cases with the same
constructive parameters but different inclination-dependence degrees
for velocity (see Table 2). For constructive parameters, we have used
representative values for wheeled or tracked robotic vehicles. In partic-
ular, the COG is centered with respect to the local 𝑥𝑢𝑔𝑣 axis but has a
positive 𝑦COG (i.e., slightly on the forward side). Parameters 𝐿, 𝑊 , 𝐩COG
and 𝜌tol are used with Eqs. (5) and (6) to compute the asymmetric pitch
and roll tip-over avoidance constraints. The resulting pitch thresholds
are 𝜃min = −20.1° and 𝜃max = 25.0°, and roll limits vary within [−20.1°,
−18.4°] for 𝜙min, and [18.4°, 20.1°] for 𝜙max (see Fig. 5). The symmetric
onfigurations use |𝜃min| = |𝜃max| = |𝜙min| = |𝜙max|=19.1° (see Fig. 5(b)).

Furthermore, parameters 𝑣n, 𝜉↓ and 𝜉↑ are used with Eq. (7) and
the pitch and roll limits to compute the vehicle-dependent inclination-
aware velocity constraints function 𝑣ref (𝜃, 𝜙). First, the nominal velocity
𝑣n has been set at 1m∕s, a representative moderate value for mobile
obotics applications on natural terrain. Then, three (𝜉↓, 𝜉↑) sets are
onsidered to define 𝑣ref (𝜃, 𝜙) = {𝑣uref , 𝑣

d
ref , 𝑣

sd
ref} functions for vehicles

ith different inclination-dependence degrees:

• Uniform velocity (𝑣uref ). Velocity is not dependent of terrain incli-
nation: (𝜉↓, 𝜉↑ = 0), so 𝑣 = 𝑣n. This case is analogous to the path
length as optimization criterion.

• Dependence (𝑣dref ). Velocity is moderately conditioned by terrain
inclination. We have tested asymmetric values 𝜉↓ = 6 and 𝜉↑ = 2.

• Stronger dependence (𝑣sdref ), with 𝜉↓ = 30 and 𝜉↑ = 10.

The example in Fig. 5 corresponds to 𝑣sdref (𝜃, 𝜙). Moreover, Fig. 6
compares the three 𝑣ref (𝜃, 𝜙) functions for 𝜙 = 0°. In the cases of
nclination-dependence, the asymmetry yields faster velocities for as-
ending than for descending because we have found empirically that
elocity variations (e.g., slowing down or turning) in downwards mo-
ion are more critical for traction loss due to the effect of gravity.

Regarding terrain, we generated synthetic DEMs of size 500 × 500
ells with the diamond square algorithm (Fink et al., 2019), a fractal-
ased terrain generation technique, using elevations in the range of 0 to
0 m and spatial resolution 𝛿 = 1m. From these random DEMs, we have
hosen three illustrative ones with at least 50% of traversable cells, and
istinctive and realistic terrain profiles, which are shown in Fig. 7.

For each DEM, we have generated 500 (𝐧s,𝐧g) pairs of start-goal
odes. To make path lengths comparable, all 𝐧s nodes have been
andomly chosen in the lower fifth of the 𝑌 coordinate and all 𝐧g in

the higher fifth (see the south and north areas marked in each DEM
of Fig. 7). All in all, the total number of path planning experiments
performed in the comparative analysis has been 54000 (i.e., 3 synthetic
DEMs × 500 (𝐧s,𝐧g) pairs × 6 path planning configurations × 2 heuristic
unctions × 3 vehicles with different inclination-dependence degrees for
elocity).

Path planning has been executed on a 3.6GHz Intel© Octa-Core i7-
700K processor and 16GB RAM running Windows 10. In particular,
athWorks® MATLAB R2022a with the MATLAB Coder application

as been used to generate executable code (MEX files). For a fair
omparison, all algorithms have been implemented with the same

oftware.
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Fig. 6. Representation of 𝑣ref (𝜃, 𝜙) functions for 𝜙 = 0°: 𝑣uref (black), 𝑣dref (red) and 𝑣sdref (blue).
Fig. 7. The three 500 × 500 cells synthetic DEMs used for the experimental analysis. 1500 (𝐧s ,𝐧g) pairs of start-goal nodes are defined by randomly generating 500 pairs from
south and north areas marked, respectively, in each DEM.
6.2. Analysis and discussion

For the comparative analysis, the following performance indices
have been used:

• Number of iterations in the search algorithm.
• Number of explored nodes.
• Number of re-expanded nodes.
• Computing time of the planning algorithm.
• Total travel time which is the optimization criterion.
• Total absolute heading turn.

Table 3 summarizes comparative results for the three vehicles by
presenting the median of three relevant performance indices (comput-
ing time, total travel time and total turn) for each planner. Values are
shown for both heuristic functions (ℎ𝑒 and ℎ𝑜). In addition, the table
shows the best mark obtained by the planners for each performance
index, which is the percentage of experiments where the planner has
achieved the best score for an index.

Moreover, Figs. 8 and 9 offer box-and-whiskers plots that represent
the quartiles of data distribution for the 1500 (𝐧s,𝐧g) pairs of analyzed
start-goal nodes, where the line of a center-box represents the median
value (second quartile) of dataset. For every index, graphs are given
for the three vehicles with different inclination-dependence degrees
for 𝑣ref (𝜃, 𝜙). For each planner (indicated under the abscissa axis), two
boxes are shown: blue for Euclidean-time and red for octile-time.

6.2.1. Total number of iterations, explored nodes and re-expanded nodes
Fig. 8(a) shows the number of iterations performed during the node

expansion process for each vehicle type and planner. The number of
11
explored (see Fig. 8(b)) and re-expanded (see Fig. 8(c)) nodes deter-
mines the total number of iterations. Only any-angle planners support
re-expansion of previously explored nodes.

The heuristic function influences the total number of iterations.
The octile-time heuristic reduces the number of explored nodes (red
boxes in Fig. 8(b)). This can be explained because the graph-search
process is based on an 8-adjacency nodes connectivity and, therefore,
the octile distance is an appropriate estimation of the total path length.
For any-angle planners with the 𝑣uref vehicle, the Euclidean-time heuris-
tic leads to a smaller number of re-expanded nodes (blue boxes in
Fig. 8(c)). This can be explained because the resulting trajectories
tend to rectilinear paths and, therefore, Euclidean distance is a better
estimation of total path length than octile in this case. Consequently,
the Euclidean-time heuristic reveals a smaller number of iterations for
any-angle planners with the 𝑣uref vehicle (blue boxes in Fig. 8(a)(left)).

For the octile-time heuristic function (see red boxes in Fig. 8(c)), the
number of re-expanded nodes decreases significantly for the stronger
inclination-dependent vehicle (𝑣sdref ). This could be explained because,
relief inclination changes have more impact on vehicle velocity reduc-
tions, which favors the search for faster non-rectilinear trajectories.

Moreover, the double-valued estimation of segment inclination –
i.e., pitch and roll angles – and the asymmetric inclination awareness
lead to a marked decrease in the number of iterations of the DEM-AIA
algorithm compared to A⋆ and 3Dana planners. This difference is
reduced for the 𝑣sd vehicle, since the high velocity reductions that the
natural terrain relief would imply, could lead to an increase of the
search space.



M. Toscano-Moreno, A. Mandow, M.A. Martínez et al. Engineering Applications of Artificial Intelligence 121 (2023) 105976

Fig. 8. Box-and-whiskers plots of the analyzed performance indexes for path planning configurations: iterations of the search algorithm, and explored and re-expanded nodes.

Fig. 9. Box-and-whiskers plots of analyzed performance indexes for path planning configurations: computing time (in second), total travel time (in second) and total turn (in
radian).

12
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Table 3
Median value and best mark of the three most relevant performance indices for each path planning configuration, heuristic function and inclination-dependence
degree for velocity. These indices are computing time, total travel time and total turn.

Path planning Computing time Total travel time Total turn

configuration (ms) Best mark (%) (s) Best mark (%) (rad) Best mark (%)
ℎe/ℎo ℎe/ℎo ℎe/ℎo ℎe/ℎo ℎe/ℎo ℎe/ℎo

Vehicle with uniform velocity (𝑣uref )

Modified A⋆ 298/282 8.3/38.9 675.8 – 279.6 –
Modified 3Dana 1312/1500 – 647.3/647.2 – 149.6/149.6 –
DEM-AIA(n, s) 431/351 0.1/6.0 501.7 – 142.2 –
DEM-AIA(s) 881/1116 – 482.5/483.2 – 66.4/67.8 –
DEM-AIA(n) 408/302 –/35.5 472.1 – 95.0 –
DEM-AIA 933/1233 –/11.2 453.5/456.4 91.4/8.7 23.2/28.0 76.7/23.4

Vehicle with inclination-dependence velocity (𝑣dref )

Modified A⋆ 332/316 15.3/58.9 708.2 – 282.0 –
Modified 3Dana 1454/1412 – 684.4/684.4 – 155.3/154.8 –
DEM-AIA(n, s) 495/431 0.1/9.3 528.0 – 142.2 –
DEM-AIA(s) 1040/929 – 511.7/511.6 – 67.8/67.5 –
DEM-AIA(n) 495/417 0.1/16.3 501.4 – 99.8 –
DEM-AIA 1175/1114 – 485.8/485.8 42.0/58.5 28.5/28.5 48.6/51.9

Vehicle with stronger inclination-dependence velocity (𝑣sdref )

Modified A⋆ 419/414 30.7/62.7 867.5 – 336.2 –
Modified 3Dana 1619/1569 – 846.1/846.2 – 251.8/251.3 –
DEM-AIA(n, s) 668/634 0.2/6.3 644.2 – 190.1 –
DEM-AIA(s) 1316/1230 – 627.1/626.9 – 128.0/127.8 1.2/1.1
DEM-AIA(n) 759/758 –/0.1 620.3 – 163.4 0.1/0.1
DEM-AIA 1480/1377 – 603.3/602.9 40.9/72.1 103.4/103.4 54.4/56.5
6.2.2. Computing time
The experimental results for computing time are summarized in

Fig. 9(a) and Table 3(left). Computing time is affected by the total
number of iterations as well as the computation of the cost and heuristic
functions in each iteration. Thus, evaluating the cost of every segment
in the line-of-sight for any-angle search produces an average overhead
of 176% (456ms against 1261ms). This average overhead reaches 330%

hen comparing A⋆ with 3Dana. DEM-AIA configurations with disabled
any-angle search have longer computing times than A⋆ (between 30%
and 60% longer), mainly due to the double estimation of the segment
inclinations: pitch 𝜃𝜄 and roll 𝜙𝜄. However, any-angle DEM-AIA config-
urations have shorter times than 3Dana (between 18% and 40% less),
which could be explained because the pitch and roll estimation and the
asymmetric inclination awareness allow considering a larger number of
traversable cells, thus reducing the number of explored nodes.

In general, the octile-time heuristic produces similar but slightly
shorter computing times with respect to Euclidean, with the exception
of any-angle planners with the 𝑣uref vehicle (i.e. equivalent to path
length optimization). This is consistent with the results discussed for
the same case regarding the number of iterations.

For all vehicles, A⋆ with ℎ𝑜 scores the best mark (between approxi-
mately 39.7% and 60%) for computing time. With ℎ𝑜, non any-angle
DEM-AIA with asymmetric inclination awareness has a similar best
mark (35.5%) and computing time (approximately 300ms) as A⋆ for
uniform velocity. Nevertheless, full DEM-AIA achieves an average 15%
(1287ms against 1514ms) improvement in computing time with respect
to 3Dana for the two inclination dependent vehicles.

6.2.3. Total travel time and total turn
Total travel time and total turn indicate the quality of the resulting

trajectories. Interestingly, the sum of best marks for both indices in
Table 3 (middle and right) is always larger than 100%. The analysis
of individual experiments reveals that in some cases (0.14% for 𝑣uref ,
0.54% for 𝑣dref , and 13.14% for 𝑣sdref ), DEM-AIA finds the same trajectory
for both ℎ𝑒 and ℎ𝑜. The larger coincidence for 𝑣sdref can be explained
by a lower number of traversable (i.e., eligible) cells. Precisely, the
differences between ℎ𝑒 and ℎ𝑜 indices indicate that any-angle planners
may lead to different results depending on the heuristic function, since
these algorithms do not fulfill the admissibility property and, therefore,
an optimal solution is not guaranteed.
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Table 4
Vehicle parameters for the real-world DEM experiments.

Parameter Symbol Value

SP dimensions 𝐿 ×𝑊 2.025 × 1.210 m
Reduced SP coefficient 𝜌tol 0.8
COG 𝐩COG (0.00, 0.3, 0.97) m
Velocity for flat terrain 𝑣n 1m∕s
Inclination-dependence

(

𝜉↓ , 𝜉↑
)

(300, 100)

Figs. 9(b–c) reveal a similarity between total travel time and total
turn performances. 3Dana presents a reduction in both indices with
respect to A⋆. Nevertheless, all DEM-AIA configurations improve these
results because pitch and roll estimations are less restrictive than the
maximum slope of the triangles. Besides, DEM-AIA configurations with
asymmetric inclination awareness further improve this results. All in
all, full DEM-AIA achieves the lowest total travel times and total turn
in all cases (see Table 3).

6.3. DEM-AIA applied to a real-world DEM

The DEM-AIA planner has been applied to real-world DEMs gen-
erated from drone photogrammetry using Pix4D-mapper with three
different resolutions 𝛿 = {0.5, 1, 2}m. The terrain corresponds to the
Experimentation Area in New Technologies for Emergency Interven-
tion of Universidad de Málaga (Spain) (UMA, 2022), which is used
for realistic SAR exercises with disaster robots, where safe and ef-
fective off-road path planning is critical (Bravo-Arrabal et al., 2021;
Toscano-Moreno et al., 2022). Moreover, UGV parameters (see Table 4)
have been obtained empirically from skid-steer Rover J8, developed
by Argo (Kitchener, Ontario, Canada). The resulting pitch thresholds
𝜃min = −13.3° and 𝜃max = 40.5° reveal highly asymmetric inclination
constraints. For roll limits, these vary within [−7.13°, −6.73°] for 𝜙min,
and [6.73°, 7.13°] for 𝜙max. For inclination dependence parameters,
high values of 𝜉↓ and 𝜉↑ imply penalization of speed on steep slopes,
especially downhill, as required in missions such as disaster victim
evacuation (Toscano-Moreno et al., 2022).

Next, asymmetric behavior and the effect of DEM resolution on
DEM-AIA planner is discussed. Moreover, a comparative with original

3Dana is evaluated with uniform velocity.
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Fig. 10. Illustrations of the DEM-AIA planner applied to a real-world DEM (𝛿 = 1m).
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Table 5
DEM-AIA trajectory planning with different DEM resolutions (to goal/from goal).
𝛿 (m) 0.5 1 2

Example shown in Fig. 10(a)

Distance (m) 197.1/339.8 182.3/334.2 182.9/327.7
Travel time (s) 317/420 282/403 256/392
Runtime (ms) 1421/1722 444/597 188/251

Example shown in Fig. 10(b)

Distance (m) 215.3/237.0 210.6/234.3 207.0/226.7
Travel time (s) 242/287 234/276 229/269
Runtime (ms) 2454/1105 740/363 213/178

6.3.1. Asymmetric behavior and DEM resolution
Two representative round-trip trajectories for 𝛿 = 1m are illustrated

in Fig. 10, where a color scale indicates planned segment velocities.
These examples, where the maximum pitch value is highlighted for
each trajectory, show how the planner reduces velocities on uphill and
downhill slopes. Moreover, Table 5 summarizes results for the three
DEM resolutions.

The examples are illustrative of two major effects of asymmetric
inclination awareness provided by DEM-AIA. First, in Fig. 10(a), the
maximum slope in the uphill trajectory to the goal point (𝜃 = 13.7°)

ould exceed the downhill limit 𝜃min, so a different return trajectory
s found with maximum downhill slope 𝜃 = −6.9°. Thus, asymmetric

traversability achieves a faster admissible trajectory to the goal point
(282 s) against the time that would have been required to travel the
return path in reverse (355 s, computed by changing the signs of 𝜃 and

in the trajectory segments). The second example (see Fig. 10(b))
llustrates asymmetric inclination-dependent velocities. In this case, the
aximum slope of the uphill trajectory (8.8°) would be admissible for

returning. However, the planner produces a longer return path (234.3m
gainst 210.6m, as shown in Table 5) because travel time is shorter:
76 s against 310 s for the initial path in reverse. This is explained by
ehicle parameters 𝜉↓ > 𝜉↑ in Table 4, which yield lower velocities for
teeper downhill slopes in Eq. (7).

As for the effect of DEM resolution (see Table 5), the average
omputing time (runtime) grows with higher resolution on account
f the increase in the number of explored nodes. In these examples,
verage runtime approximately triples when 𝛿 is halved. Moreover,
esults show a slight increase of travel time with higher resolution,
hich can be explained by more slope variations due to a larger number
f segments. The impact of resolution is also related to the quality
f the photogrammetric process: we have found significant differences
n travel time, and even in the resulting paths, for DEMs generated
ith extreme values (not given in the table) 𝛿 = 0.25m, which might

ndicate noisy data, and 𝛿 = 4m, which can be explained by excessive
errain filtering. Furthermore, for all resolutions in Table 5, there is

significant difference in computing times between the trajectories
o and from the goal. In this case, shorter runtimes can be explained
y reduced traversability conditions around the initial node (nodes
ot satisfying the UGV inclination constraints), which implies a more

irected node expansion towards the resulting trajectory. D
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Table 6
DEM-AIA versus 3Dana planners with uniform velocity and 𝛿 = 1m (to goal/from goal)

Planner DEM-AIA 3Dana

Example shown in Fig. 11(a)

Distance (m) 132.7/188.5 411.9/413.3
Runtime (ms) 183/899 6400/1473
Iterations 2031/10499 31680/12297
Explored nodes 1235/9852 18735/10844
Re-expanded nodes 800/647 13248/1458

Example shown in Fig. 11(b)

Distance (m) 180.6/203.4 276.6/276.1
Runtime (ms) 3065/813 7940/1355
Iterations 12771/6784 33057/10317
Explored nodes 2802/5624 15919/9171
Re-expanded nodes 10387/1166 17440/1164

6.3.2. Application to distance optimization
A comparison of DEM-AIA and the original 3Dana is illustrated

in Fig. 11 and Table 6. In this case, DEM-AIA has been limited to
uniform velocity for geodetic distance optimization. In these examples,
both planners achieve round-trip trajectories between the start and
goal points. The paths obtained by DEM-AIA produce shorter distances
than 3Dana because asymmetric inclination constraints allow exploring
nodes that are discarded by a unique symmetric threshold. For both
planners, computing time is affected by two factors: path length, which
is related to the number of explored nodes, and the number of re-
expanded nodes for sub-optimal search. Nevertheless, computing times
are shorter for DEM-AIA even with the extra computational load of
estimating 𝜃 and 𝜙 for each path segment against a single |𝛼z| for cell
triangles. This can be explained because asymmetry can direct the node
expansion process more quickly to the resulting path, which reduces
the number of iterations. In 3Dana, the round-trip paths are slightly
different, which is not due to symmetry constraints, but to the fact that
both planners are sub-optimal and results can differ according to node
re-expansion.

Furthermore, the comparison between Figs. 10 and 11 shows the
differences between time- and distance-based optimization with DEM-
AIA. Interestingly, even if the return path in Fig. 11(a) – 188.5m – is
notably shorter than that in Fig. 10(a) – 334.2m –, steep slopes of up to
37.7° would impose strong speed limitations for travel time. Similarly,
the initial path in Fig. 11(b) moves quite straight to the goal, but crosses
two steep uphill slopes of up to 31.2°, whereas the maximum slope of
8.8° in Fig. 10(a) allows for faster travel time.

. Public repository

The executable codes – i.e., MEX files compiled for MathWorks®
ATLAB R2022a –, and four MAT files consisting of the three synthetic
EMs used for the comparative analysis and the real-world DEM with
= 1m discussed in Section 6 are available in the GitHub repository:
ttps://github.com/mToscanoMoreno/DEM-AIA. Besides, a main script
est_DEMAIA.m is included to test and facilitate the use of the

EM-AIA planner for the community.

https://github.com/mToscanoMoreno/DEM-AIA
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Fig. 11. Illustration with comparative of the DEM-AIA and 3Dana planners applied to a real-world DEM with uniform velocity and 𝛿 = 1m.
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8. Conclusions

This work has proposed a DEM-based trajectory planner for ground
vehicles (DEM-AIA) that accounts for path inclination (i.e., pitch and
roll estimated from DEM data) and asymmetry (i.e., traversability, par-
tial costs and segment speeds can be different for uphill and downhill).
The new intelligent planner extends the 3Dana (Muñoz et al., 2017)
any-angle graph search algorithm. The major distinctive features of our
contribution are the following: (i) Our method computes a time sub-
optimal trajectory between the start and goal points with non-uniform
velocity by assigning a feasible velocity to path segments; (ii) a novel
formulation that uses cell-triangle geometry and motion direction to
estimate inclination for any-angle planning that computes both pitch
and roll angles for the actual segments crossing cell triangles; and (iii)
a vehicle-dependent non-linear function of pitch and roll that can be
implemented as a look-up table and defines admissible velocity by
incorporating asymmetric inclination-dependent forward speed limits,
tip-over stability constraints, and feasible inclination-aware speed rates
with respect to the maximum nominal speed for flat terrain.

The experimental analysis has been based on 54000 experiments
where we have compared our algorithm with a DEM variant of A⋆ and
Dana (Muñoz et al., 2017), which have been adapted to travel-time
ptimization and inclination-dependent velocity. In the experimen-
al analysis we have also evaluated the effect of any-angle search,
onsideration of asymmetry, and octile- vs. Euclidean-time heuristics.

Pitch and roll estimation of segment inclination and asymmetric
nclination awareness have led to a significant reduction in the number
f iterations of the DEM-AIA algorithm compared to A⋆ and 3Dana
lanners. This reduction has been specially noticeable for vehicles
ith moderate inclination velocity constraints, where the number of

raversable nodes is larger. Moreover, computing time has been slightly
aster using the octile-time heuristic function, except for any-angle
lanners with uniform velocity vehicles (i.e. equivalent to path length
ptimization) due to larger number of re-expanded nodes produced by
hat heuristic. For all vehicles, A⋆ with the octile-time heuristic scored
he best mark for computing time. However, DEM-AIA has shown faster
omputing times than 3Dana, due to the reduction in the number of
xplored nodes.

Experimental analysis has revealed a correlation between travel-
ime and total-turn performance. The asymmetric inclination awareness
eature of DEM-AIA has achieved the fastest total travel times and total
urn in all cases, because pitch and roll estimations allow for realistic
nclination constraints. These performance has also been observed in
xamples with real off-road DEMs.

Our future research will validate the proposed trajectory planning
ethod for planning of a real skid steer UGV on off-road natural

errain. It will also be interesting to explore the specification of high-
evel missions on irregular terrain as sequences of task by means of
odal temporal logic, such as linear temporal logic (LTL) (Fainekos
t al., 2009), where tasks can be planned by DEM-AIA with inclination

15
awareness and travel-time optimization. Furthermore, the inclination-
aware velocity constraints functions defined in this work are vehicle-
dependent but not consider different soil characteristics. The effect
of characteristics such as humidity, rugosity and compactness can be
considered by classifying soil types from visual data in digital terrain
models and defining soil-wise velocity constraints functions for the
vehicle.
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