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A B S T R A C T

Gene regulatory networks define the interactions between DNA products and other substances in cells.
Increasing knowledge of these networks improves the level of detail with which the processes that trigger
different diseases are described and fosters the development of new therapeutic targets. These networks are
usually represented by graphs, and the primary sources for their correct construction are usually time series
from differential expression data. The inference of networks from this data type has been approached differently
in the literature. Mostly, computational learning techniques have been implemented, which have finally shown
some specialization in specific datasets. For this reason, the need arises to create new and more robust strategies
for reaching a consensus based on previous results to gain a particular capacity for generalization. This paper
presents GENECI (GEne NEtwork Consensus Inference), an evolutionary machine learning approach that acts
as an organizer for constructing ensembles to process the results of the main inference techniques reported
in the literature and to optimize the consensus network derived from them, according to their confidence
levels and topological characteristics. After its design, the proposal was confronted with datasets collected
from academic benchmarks (DREAM challenges and IRMA network) to quantify its accuracy. Subsequently, it
was applied to a real-world biological network of melanoma patients whose results could be contrasted with
medical research collected in the literature. Finally, it has been proved that its ability to optimize the consensus
of several networks leads to outstanding robustness and accuracy, gaining a certain generalization capacity
after facing the inference of multiple datasets. The source code is hosted in a public repository at GitHub
under MIT license: https://github.com/AdrianSeguraOrtiz/GENECI. Moreover, to facilitate its installation and
use, the software associated with this implementation has been encapsulated in a python package available at
PyPI: https://pypi.org/project/geneci/.
1. Introduction

Gene expression is the process of reading information encoded in
the genome to produce the set of proteins necessary for the develop-
ment and functioning of a living organism [1]. The sequence of bases
provided by DNA ultimately contains information about which amino
acids and in what order they must be joined to produce various cellular
proteins. DNA is divided into genes, defined as fragments of nucleotide
sequences responsible for storing information necessary to manufacture
specific polypeptide chains, i.e., a given set of proteins.

Genes are selectively transcribed into RNA in each cell, so although
the genome is common to all cells, the transcriptome is a consequence
of their biological functions and, therefore, of the cellular tissue to
which it belongs [2]. This process of activation and deactivation of
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genes that makes cell specialization possible is known as gene expres-
sion regulation [3] and is usually explained by interactions between
gene products and transcription factors.

However, it should be taken into account that this whole process is
efficient thanks to the presence of a certain balance, so the alteration
of this balance can be the trigger of diseases and functional problems
in the organism [4,5]. Therefore, the study of the regulation of gene
expression is of vital importance for modern medicine and future work
related to its personalization [6,7]. Furthermore, expanding knowledge
regarding this topic and having the ability to discover new interactions
between genes allows for improving the level of detail with which the
processes that trigger different diseases are described and fosters the
development of new therapeutic targets [8,9]. However, despite the
wealth of experimental data currently generated, there is very little
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Fig. 1. Representation of gene regulatory networks [11].

specific knowledge about this regulation in different tissues and cell
types.

Gene Regulatory Networks (GRNs) are collections of DNA segments
whose products interact with each other and other substances in the
cell [10]. The connections between the network elements and the di-
rectionality and intensity of their interactions determine the expression
levels of the genes that make up the system within the cell. Therefore,
understanding and analyzing these networks is a fundamental aspect of
extending the existing knowledge on the regulation of gene expression
in different organisms.

As shown in Fig. 1, these networks are usually represented by
graphs. The primary sources for their correct construction are usually
time series from differential expression data obtained by biological pro-
cedures and machinery [12]. After processing and cleaning of the data
using the relevant bioinformatics procedures [13–15], these data reflect
the expression levels manifested by different genes over a specific
period under different experimental conditions.

The exhaustive analysis of these expression levels makes it possible
to deduce the different relationships that exist between the genes that
make up the network (see Fig. 2), making it possible to infer and subse-
quently represent them [16]. However, the techniques designed so far
to infer gene regulatory networks and which apply this approach [17–
26] seem to show a certain level of specialization on datasets with
specific characteristics. That is, depending on the gene network to be
inferred, the same technique can provide more or less competitive
results [27], and in many cases, the reason for this is unknown.

Given that, in most cases, it is unknown which technique may be
most appropriate for a real-world dataset whose results are unknown,
numerous proposals have subsequently appeared. These proposals work
on the consensus of several techniques to provide more general and
robust proposals that guarantee a certain quality in the results. [28–31].
This paper presents the design of an evolutionary machine learning al-
gorithm called GENECI, which acts as an organizer for the construction
of ensembles, considering the results of the main inference techniques
reported in the literature (ARACNE [17], C3NET [18], BC3NET [19],
CLR [20], GENIE3 [21], KBOOST [22], MRNET [23], MRNETB [24],
PCIT [25] and TIGRESS [26]) and optimizing the consensus network
derived from them, according to their confidence levels and topological
characteristics.

The results obtained by GENECI are compared with those provided
by the individual techniques for several datasets. First, datasets were
taken from known solutions in academic benchmarks (Gold Standards),
such as the networks from the DREAM challenges [32] (in particular,
editions 3, 4 and 5) and the IRMA yeast network [33] will be used. In
this case, to quantify the accuracy obtained by the different techniques,
the Area Under the ROC curve (AUROC) and Area Under the Precision–
Recall curve (AUPR) metrics will be calculated concerning the gold
standards. Finally, this proposal will be confronted with a real non-
simulated biological network of patients with melanoma [34]. In the
absence of a known reference for this case, the interactions inferred
by GENECI will be validated by searching for adequate support in
the literature. In addition to obtaining competitive results, robustness
2

Fig. 2. Standard gene network inference procedure.

and generalization capacity have been achieved so that the algorithm
presents promising results for data from different sources and with
different characteristics.

This article is organized into six sections. In Section 2, the state-
of-the-art of the main efforts undertaken so far in the task of inferring
GRNs from differential expression data is presented. Both the individual
inference techniques with the most significant impact in the literature
and the first approaches aimed at an efficient consensus method are
discussed. In Section 3, the algorithmic proposal and all the software
development carried out in this work are shown. Subsequently, the
experimentation and the choice of the main parameters of the evolu-
tionary algorithm will be discussed in Section 4. Section 5 shows the
results and discussion of this work with the accuracy values obtained
by GENECI for each of the studied networks in comparison with the
individual inference techniques. Finally, in Section 6, the conclusions
and possible future lines considered feasible for future versions of the
approached strategy are presented.

2. State of the art

The challenge of accurately inferring gene regulatory networks has
encouraged the emergence of a wide range of specialized techniques
in this area. A representative set of these individual techniques are
conceived as candidate input of the evolutionary machine learning
algorithm and therefore defines the initial quality of the optimization
process. Therefore, GENECI has integrated those tools frequently ap-
pearing in the literature and showing competent results within this
domain. Among them are: ARACNE (Algorithm for the Reconstruc-
tion of Accurate Cellular NEtworks) [17], C3NET (Conservative Causal
Core NETwork) [18], BC3NET (Bagging C3NET) [19], CLR (Context
Likelihood or Relatedness network) [20], GENIE3 (GEne Network In-
ference with Ensemble of trees) [21], KBOOST (kernel PCA regression
and gradient boosting to reconstruct gene regulatory networks) [22],
MRNET (Minimum Redundancy NETworks) [23], MRNETB (Minimum
Redundancy NETworks using Backward elimination) [24], PCIT (Par-
tial Correlation coefficient with Information Theory) [25] and TIGRESS
(Trustful Inference of Gene REgulation with Stability Selection) [26].
All techniques aim to infer gene regulatory networks through the
analysis of time series that record the evolution of the expression levels
of different genes in a limited time period. All of them try to solve the
same problem and are applied to the same datasets, which we will also
use in the GENECI entry. In order to outline an idea of how each of
these techniques works, the main characteristics of each of them are
shown in Table 1.
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Table 1
Main characteristics of each of the inference techniques.

Technique Main calculation Filtering/Procedure Outstanding properties Quantity

ARACNE Mutual information
coefficient

Statistical threshold based on the method of
relevance networks and subsequent application of
the data processing inequality property (DPI)

Elimination of indirect relationships ++

C3NET Mutual information
coefficient

Only the most significant interaction of each gene
is finally selected

Prioritizing the presence of false negatives over the
usual number of false positives

+

BC3NET Mutual information
coefficient

Attempts to relax the constraints imposed on
C3NET filtering by generating several versions of
the input data with the use of a nonparametric
bootstrap and the individual application of the
C3NET algorithm

Consensus perspective that aims to refine the
confidence values

++

CLR Mutual information
coefficient

Filtering based on the calculation of the statistical
probability of each value of mutual information
within the context of its network

Elimination of false positives and correction of
errors caused by inadequate or unequal sampling

+++

GENIE3 Decomposition into
regression
subproblems

Higher confidence to those interactions where the
expression profile of the factor gene takes a high
coefficient in the mathematical formula
constructed for the target gene

Handling of combinatorial and nonlinear
interactions, produces targeted GRNs but recovery
of a regulator of a gene has been shown to
degrade as the number of regulators of the gene
increases

+++++

KBOOST Decomposition into
regression
subproblems

Filtering based on comparison of different models
and estimation of the probability of one gene
regulating another using Bayesian Model
Averaging (BMA)

Fast execution and high false positive detection +++++

MRNET Mutual information
coefficient and
redundancy value

Filtering based on the contemplation of both
values by applying the forward feature selection
method of Maximum Relevance Minimum
Redundancy (MRMR)

High detection of indirect connections due to the
discarding of those with high redundancy during
the filtering process. However, due to the forward
feature selection method the algorithm is strongly
conditioned by the first selected variables

+++

MRNETB Mutual information
coefficient and
redundancy value

Attempts to address the limitations of MRNET by
replacing the forward feature selection method
with a backward elimination procedure combined
with sequential replacement

Elimination of indirect relationships by studying
redundancy

+++

PCIT Partial correlation
coefficients
combined with an
information theory
approach

For each trio of genes, the algorithm calculates the
three first-order partial correlation coefficients and
then applies the data processing inequality
theorem (DPI) of information theory to obtain a
local threshold that determines candidate filtering

It usually rules out bidirectionality among factors,
opting for a single direction of regulation

++

TIGRESS Decomposition into
regression
subproblems

use of the LARS method during feature selection,
stabilized by a procedure that iteratively executes
the above method on randomly perturbed data

High computational cost and stochastic method ++++
Following the DREAM5 challenge [32], all the proposals put for-
ard by the participants were collected. The potential of their joint
pplication was studied in [35]. Specifically, comparisons were made
etween the accuracies obtained by the proposed techniques individ-
ally versus different possible combinations of the techniques. The
esults showed that if the appropriate techniques were chosen, the
onsensus gene networks were undoubted of higher quality than those
btained by the individual techniques.

This tendency towards consensus has been further refined by apply-
ng different strategies. For example, in [28] several assembly methods
ased on normalization and analysis of the topological features present
n the networks inferred by the different individual techniques are
roposed. On the other hand, in [29] they study the consensus of
arious inference tools by using graph mining. Specifically, their work
nalyses the networks resulting from each technique and performs
ntelligent pattern detection to provide some reliability for export to
he final network.

Finally, some papers in the literature present consensus network
onstructions by applying evolutionary algorithms that aim to find the
ptimal combination of individual techniques. Although none of these
orks presents an objective function similar to the proposal presented

n this article, two significant cases are mentioned below. While in [30]
he participation of the techniques in the different ensembles (binary
alues) is simply discussed, in [31] the assignment of weights to
he different inference techniques is studied, constructing a weighted
oting system that results in a final gene network.
3

The objective is to find the combination that maximizes the accu-
racy of the resulting network; however, this optimization process is,
in both cases, guided by the network to be inferred (gold standard)
associated with the input data, which this work is intended to avoid.
On the one hand, in [30] each individual is evaluated by directly
equating the fitness value to the AUROC obtained by the consensus
network. On the other hand, in [31] the proposed system uses labeled
information to positively evaluate the assignment of higher weights
to tools with more links correctly predicted. Although these strategies
achieve competitive accuracy values for the data presented, their fitness
functions may present certain limitations concerning the discovery of
new interactions and their application on real biological networks for
which their outcome is unknown.

This article presents an alternative strategy that aims to overcome
these limitations. For this purpose, the idea of optimization towards
consensus has been taken up but establishing the pursuit of appropriate
objectives is entirely different from the gold standards.

3. Algorithmic proposal

GENECI (GEne NEtwork Consensus Inference) takes up the idea of
weight assignment seen in [31], but tries to improve the optimization
process, choosing an approach similar to the one presented in [36]
although adapted for GRNs. This article is helpful to know in practice
the concept of evolutionary machine learning [37] despite having a
purpose outside network inference. This work aims to solve these prob-

lems through computational learning by using its results to optimize the
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Fig. 3. Architecture and workflow covered in GENECI. First, the execution of multiple individual inference techniques in parallel is enabled by encapsulating their implementations
in Docker containers. After that, their results are normalized and collected by the evolutionary algorithm in order to optimize weight vectors that assign a value to each technique.
The weight vectors are iteratively subjected to evaluation (depending on the quality and topology of the consensus networks they represent), selection, crossover, mutation and
finally an additional repair step to keep the sum of values at unity.
n
d

quality of a solution derived from them, thanks to the application of an
evolutionary algorithm.

It has been decided to implement a genetic algorithm within the
evolutionary branch. Firstly, the flexibility of its operators allows for
searching for implementations that adapt correctly to the problem.
Secondly, as it is an algorithm widely used in the literature, it has
numerous execution environments that facilitate the design of our
algorithm and the establishment of a solid and efficient construction
base.

The genetic algorithm has been implemented using the jMetal
framework [38] and takes as input a set of files with confidence
lists related to interactions between genes. These lists can come from
complementary runs on the Python package built or from external
runs produced on other techniques. Although both options exist, it
is recommended to run these techniques on the GENECI environment
as it guarantees uniformity in the output format (tables made up of
Source, Target and Trust columns) as well as the standardization of
their confidence levels between 0 and 1, which is crucial for consensus
building.

It is important to mention that all the functionalities incorporated
in GENECI (including the execution of the evolutionary algorithm
itself) have been encapsulated in Docker images. The main reason
for choosing this design is that GENECI can enjoy the conveniences
and advantages of the Python programming language (such as the
construction of the package in PyPI or the hierarchical design of
commands using the Typer library) while tolerating the implementation
of each functionality in the most suitable programming language for
this purpose, i.e. the most efficient or the one with the most specific
and suitable libraries.

In the GENECI optimization process, the presence of the gold stan-
dard is avoided, and the consensus networks are evaluated according to
their confidence levels and topological characteristics. Specifically, the
designed objective function examines measures such as the confidence
levels of the different links, the adequacy of the weights assigned in the
4

a

Algorithm 1 Main code of the generalized EA
Input files: List of input csv files with trusted lists.
Output consensusList: Final consensus list.
1: inferredNetworks = ReadAll(files)
2: population = GeneratePop(len(inferredNetworks))
3: while numEvaluations < max do
4: fitness = Evaluation(population)
5: numEvaluations += len(population)
6: selectedPopulation = Selection(fitness)
7: crossPopulation = Crossover(selectedPopulation)
8: mutPopulation = Mutation(crossPopulation)
9: repPopulation = Repair(mutPopulation)

10: population = repPopulation
11: fitness = Evaluation(population)
12: bestIndividual = GetBest(fitness)
13: consensusList = MakeConsensus(bestIndividual)
14: return consensusList

ensemble to produce these values, the number of hubs1 present in the
consensus network and their similarity to a scale-free distribution.2

Fig. 3 shows a schematic diagram where each stage addressed in
GENECI is contemplated. As usual, the algorithm includes the main
stages of evaluation, selection, crossover and mutation, to which an
additional repair stage is added because of the chosen representation.
In addition, it can be seen how the stopping criterion imposed in this
case is determined by a maximum number of evaluations specified as
the input parameter. In more detail, its implementation pseudocode is
presented in Algorithm 1.

1 Nodes with a statistically significant number of links concerning the rest
2 That which is characterized by having a small number of high-degree

odes, concerning the rest that usually has a low number of links. This
istribution is the opposite of the random distribution, where all nodes have
fairly similar number of connections.
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Table 2
Example of input to the evaluation process. This table presents a gene network of 4 interactions (column 1) that has been inferred using three different individual techniques
(columns 2, 3 and 4), the results of which are intended to be consensual. In this case, an individual is evaluated, proposing the following vector of weights: (0.5, 0.3, 0.2). The
first significant value to be calculated is the consensus confidence (column 6), which consists of a simple weighted sum where the weight of each technique is multiplied by the
level of individual confidence reported by the technique for the interaction in question. Second, a vector (column 7) is constructed, storing in each position the mean between
the weight of the technique and the distance normalized to the median of the confidence levels of all techniques (column 5). This approach allows the calculation of the second
significant value, the distance. This value consists of the difference between the maximum and the minimum of the vector constructed above, and the fitness function will try to
minimize it.

Interaction Tec 1 Tec 2 Tec 3 Median Ind [0.5, 0.3, 0.2]

Consensus confidence Vector Distance

G1–G2 0.78 0.9 0.69 0.78 0.78 * 0.5 + 0.9 * 0.3 + 0.69 * 0.2 = 0.798 [(0+0.5)/2, (1+0.3)/2, (0.75+0.2)/2] 0.4
G5–G6 0.63 0.71 – 0.63 0.63 * 0.5 + 0.71 * 0.3 + 0 * 0.2 = 0.528 [(0+0.5)/2, (0.13+0.3)/2, (1+0.2)/2] 0.39
G4–G3 0.21 – 0.48 0.21 0.21 * 0.5 + 0 * 0.3 + 0.48 * 0.2 = 0.201 [(0+0.5)/2, (0.78+0.3)/2, (1+0.2)/2] 0.35
G2–G3 – 0.53 0.36 0.36 0 * 0.5 + 0.53 * 0.3 + 0.36 * 0.2 = 0.231 [(1+0.5)/2, (0.47+0.3)/2, (0+0.2)/2] 0.65
3
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To speed up the execution of the algorithm, an asynchronous paral-
elization has been implemented to evaluate, cross and mutate several
ndividuals simultaneously. This approach considerably reduces the
xecution time in those machines with the appropriate performance
espite increasing the amount of RAM consumed during the algorithm’s
rogress.

The following sections describe the aspects and stages of the de-
igned evolutionary algorithm, concluding with a compilation of all the
ecessary input parameters.

.1. Solution representation

The individuals of the population are represented by vectors of
eights, where each position refers to a certain reconstruction of the
etwork (indirectly a machine learning technique) and its value means
he power or weight that this list has to vote for the consensus. There-
ore, given a list of techniques 𝑡 = {𝑡1, 𝑡2,… , 𝑡𝑛} where each of them
ontains a list of relations 𝑟𝑡 = {𝑡𝑟1, 𝑡𝑟2,… , 𝑡𝑟𝑚} with their respective
onfidence values 𝑐𝑟𝑡 = {𝑡𝑐𝑟1, 𝑡𝑐𝑟2,… , 𝑡𝑐𝑟𝑚}, an individual with a vector
f weights 𝑤 = {𝑤1, 𝑤2,… , 𝑤𝑛} implies that the confidence value of the
elation 𝑟𝑖 in the consensus list (𝑐𝑐𝑟𝑖) is given by:

𝑐𝑟𝑖(𝑤) =
𝑛
∑

𝑗=1
𝑤𝑗 ⋅ 𝑡𝑗𝑐𝑟𝑖

here 𝑡𝑗𝑐𝑟𝑖 is the confidence value of the relationship 𝑟𝑖 in the list
roduced by the technique 𝑡𝑗 . If the relationship 𝑟𝑖 is not contemplated
n that list, it will be understood that the technique has not detected
hat interaction, and therefore, its confidence level for 𝑡𝑗 is 0. A
ore detailed example of this calculation can be seen in the column
onsensus confidence of Table 2, where the construction of a 6-gene
onsensus network is simulated for a set of three techniques and a given
ndividual.

The representation of individuals (solutions) as weight vectors im-
lies the need to constantly keep the sum of their values at one. During
he generation of offspring, crossover and mutation operators can alter
his property. To solve this problem, it has been decided to add an
dditional operator in the optimization process to recover this feature
f the solutions.

Two different repairers were designed. The first one, named Stan-
ardizationRepairer, performs a simple standardization where the values
re rescaled, so their sum is 1. The second repairer, named as GreedyRe-
airer, performs a greedy repair where after choosing a position of the
ector at random, it keeps its values until the sum exceeds unity (in
hich case it sets the following values to 0) or reaches the last position
nd adds the number needed to sum to 1. Finally, it was shown that
he greedy repairer obtains worse results as a consequence of distorting
he weights of the individuals excessively, bringing the optimization
rocess closer to a random search. The repairer in charge of rescal-
ng the values favors the algorithm’s performance by maintaining the
roportions of the values.
5

.2. Evaluation

At each iteration, all the individuals in the population are evaluated
o know the quality of their proposals and to make the selection
tep possible. The process begins with the translation of the vector of
eights to the evaluated concept, the consensus network derived from

he voting system seen above. However, for evaluation purposes, more
han the confidence level alone is needed as a reference of reliability
ince a relationship between genes may obtain a fairly high value but
as originated from an inadequate distribution of weights. For example,
istributions that give too much weight to a particular technique, to a
ery small subset of them, or to techniques whose confidence values
re not supported by any others.

For this reason, the evaluation process is responsible for calculating
vector per interaction and the confidence value of each relationship

fter consensus. The average distance between the median confidence
f all the techniques (scaled between 0 and 1) and the weight as-
igned to the evaluated individual are stored for each technique. After
hat, the distance between that vector’s maximum and minimum val-
es is calculated and stored, together with the previously calculated
onfidence.

This distance will try to be minimized in the first term of the fitness
unction, so the aim is to establish a compensation system between the
istance to the median and the weight assigned by the individual. In
his way, as all the values of the calculated vector have a similar value
and therefore, the distance between the maximum and the minimum
s minimized), the techniques whose proposal is different from the rest
greater distance to the median) will be penalized by being given a
ower weight. On the contrary, the techniques with a proposal quite
lose to the rest (smaller distance to the median) will be compensated
y assigning a high weight.

Therefore, as can be observed in Table 2, having given a higher
eight to the first technique is beneficial for the first three interactions.
his is because the first technique is the closest to the median for these
ases, which provides some reliability to its proposal and consequently
ewards the individual for having assigned it a higher weight. However,
or the last interaction (G2–G3), it can be seen that the calculated
istance has grown because the technique whose value is more reliable
closer to the median) for this case is the third one, to which the
ndividual has assigned the lowest weight.

.2.1. Objective function
An aggregate objective function with two weighted terms has been

esigned: Quality and Topology.
The Quality term aims to encourage the emergence of solutions

ith high confidence levels that also come from consistent weight
istributions that assign greater importance to those techniques whose
alues have high support concerning the rest. Its purpose is to estab-
ish a certain contrast between good and bad links so that the links
inally reported are of high reliability. In this term, a quality value is
ssigned to each interaction considered in the problem. For this assign-
ent, two significant values are considered, the consensus confidence
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Algorithm 2 First term of the fitness function: Quality
Input 𝑐: consensus list with confidence and distance values.
Output 𝑞𝑢𝑎𝑙𝑖𝑡𝑦: value of the first term of the fitness function.
1: 𝑑𝑖𝑠𝑡𝐶𝑜𝑛𝑓 = []
2: for 𝑖 in 𝑙𝑒𝑛(𝑐) do
3: 𝑑𝑖𝑠𝑡𝐶𝑜𝑛𝑓 [𝑖] =

(

𝑐𝑜𝑛𝑓𝑖 + (1 − 𝑑𝑖𝑠𝑡𝑖)
)

∕2

4: 𝑚𝑒𝑎𝑛 =
1

𝑙𝑒𝑛(𝑐)
⋅
∑𝑙𝑒𝑛(𝑐)

𝑖=1 𝑑𝑖𝑠𝑡𝐶𝑜𝑛𝑓 [𝑖]

5: 𝑑𝑖𝑠𝑡𝐶𝑜𝑛𝑓𝑆𝑢𝑚 = 0
6: 𝑐𝑛𝑡 = 0
7: for 𝑖 in 𝑙𝑒𝑛(𝑐) do
8: if 𝑑𝑖𝑠𝑡𝐶𝑜𝑛𝑓 [𝑖] > 𝑚𝑒𝑎𝑛 then
9: 𝑑𝑖𝑠𝑡𝐶𝑜𝑛𝑓𝑆𝑢𝑚 += 𝑑𝑖𝑠𝑡𝐶𝑜𝑛𝑓 [𝑖]

10: 𝑐𝑛𝑡 += 1
11: 𝑛𝑢𝑚𝑃𝑜𝑠𝐿𝑖𝑛𝑘𝑠 = 𝑁2

𝑔𝑒𝑛𝑒𝑠
12: 𝑞1 = |𝑐𝑛𝑡 - 0.1 ⋅ 𝑛𝑢𝑚𝑃𝑜𝑠𝐿𝑖𝑛𝑘𝑠| / (0.9 ⋅ 𝑛𝑢𝑚𝑃𝑜𝑠𝐿𝑖𝑛𝑘𝑠)
13: 𝑞2 = 1 − (𝑑𝑖𝑠𝑡𝐶𝑜𝑛𝑓𝑆𝑢𝑚∕𝑐𝑛𝑡)
14: 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 = 0.25 ⋅ 𝑞1 + 0.75 ⋅ 𝑞2
15: return 𝑞𝑢𝑎𝑙𝑖𝑡𝑦

level and another previously introduced value called ‘‘distance’’. The
first considerable value (consensus confidence) is calculated through a
weighted sum. The weight assigned by the individual being evaluated
and the individual confidence level reported by that technique for the
interaction in question is multiplied for each technique.

On the other hand, the ‘‘distance’’ value, as explained with the
example shown in Table 2, is the difference between the maximum
and the minimum of a vector that stores for each technique the mean
between its weight and the distance between its individual confidence
value and the median of the set of techniques. Finally, the quality value
associated with interaction will be the mean between its consensus
confidence level and the unit subtracted by the distance. In other words,
an interaction will have a good quality when it has a high confidence
level and a small distance value. A small distance value means that
the maximum and minimum of the calculated vector are close values
and that, therefore, the techniques with a confidence value far from
the median have been assigned a lower weight than the rest. Likewise,
it means that the techniques with a confidence level close to the me-
dian (smaller distance) have been compensated with a higher weight.
Finally, those interactions whose quality exceeds the mean are chosen,
and an attempt is made to maximize their quality while approximating
their quantity to 10% of the total number of interactions. This threshold
is set up because minimizing the number of good links would result in
a fuzzy network. The aim is to establish a clear contrast that allows us
to report truly reliable interactions.

Its implementation can be found in Algorithm 2. For each link in
the consensus list, the mean between its confidence value and the unit
subtracted by the distance mentioned above is calculated and stored
in the 𝑑𝑖𝑠𝑡𝐶𝑜𝑛𝑓 vector in the pseudocode (lines 1 to 3). The mean of
he previous vector is then calculated (line 4), and those whose value
anages to exceed it are set as good links. On the one hand, the sum

f the values of all these good links is carried out. On the other hand,
heir quantity is stored (lines 5 to 10). Since the algorithm is oriented
o minimization, the result of this term is lower when the quality of the
onsensus network is higher.

First, to optimize the number of these good links, 𝑞1 is calculated
lines 11 and 12 in Algorithm 2). Specifically, this variable will reduce
ts value when the number of good links is closer to 10% of the total
umber of possible links in the network. Second, for these links to
ave the highest possible quality, the sum of their averages between
onfidence and unity minus distance should be maximized. For this
urpose, in 𝑞2 the mean of the 𝑑𝑖𝑠𝑡𝐶𝑜𝑛𝑓 of these good links is calculated
nd adapted to the minimization objective by subtracting its value from
nity (line 13 in Algorithm 2).
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Algorithm 3 Second term of the fitness function: Topology
Input 𝑏: binary network originated after cut-off.
Output 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦: value of the second term of the fitness function.
1: 𝑑𝑒𝑔𝑟𝑒𝑒 = []
2: for 𝑖 in 𝑁𝑔𝑒𝑛𝑒𝑠 do
3: for 𝑗 in 𝑁𝑔𝑒𝑛𝑒𝑠 do
4: 𝑑𝑒𝑔𝑟𝑒𝑒[𝑖] = 𝑛[𝑖][𝑗]

5: 𝑚𝑒𝑎𝑛 =
1

𝑁𝑔𝑒𝑛𝑒𝑠
⋅
∑𝑁𝑔𝑒𝑛𝑒𝑠

𝑖=1 𝑑𝑒𝑔𝑟𝑒𝑒[𝑖]

6: ℎ𝑢𝑏𝑠𝐷𝑒𝑔𝑟𝑒𝑒𝑆𝑢𝑚 = 0
7: ℎ𝑢𝑏𝑠 = 0
8: for 𝑖 in 𝑁𝑔𝑒𝑛𝑒𝑠 do
9: if 𝑑𝑒𝑔𝑟𝑒𝑒[𝑖] > 𝑚𝑒𝑎𝑛 then

10: ℎ𝑢𝑏𝑠𝐷𝑒𝑔𝑟𝑒𝑒𝑆𝑢𝑚 += 𝑑𝑒𝑔𝑟𝑒𝑒[𝑖]
11: ℎ𝑢𝑏𝑠 += 1
12: 𝑡1 = |ℎ𝑢𝑏𝑠 - 0.1 ⋅ 𝑁𝑔𝑒𝑛𝑒𝑠| / (0.9 ⋅ 𝑁𝑔𝑒𝑛𝑒𝑠)
13: if ℎ𝑢𝑏𝑠 > 0 then
14: 𝑡2 = 1 − (ℎ𝑢𝑏𝑠𝐷𝑒𝑔𝑟𝑒𝑒𝑆𝑢𝑚∕ℎ𝑢𝑏𝑠) ∕

(

𝑁𝑔𝑒𝑛𝑒𝑠 − 1
)

15: else
16: 𝑡2 = 1
17: 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦 =

(

𝑡1 + 𝑡2
)

∕2
18: return 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦

The fact that in 𝑞2 only the quality of good links is reported allows
ENECI to establish the balance mentioned above between distance to

he median and weight by focusing exclusively on the most relevant
nteractions in the network. This allows to eliminate possible noise and
ontradictions that lower intensity relationships could cause and also
ot constantly penalize more selective and strict inference techniques
uch as C3NET.

Finally, the result of the term Quality is the value of 𝑞1 multiplied
by 0.25 plus that of 𝑞2 multiplied by 0.75 (line 14 in Algorithm 2). This

eans that this function gives more importance to good links’ quality
han quantity.

The second term, called Topology, is more oriented towards im-
roving the structure of the consensus network. To this end, it intends
o positively evaluate those proposals that present networks with a
cale-free distribution (as real biological networks usually are). Math-
matically, it tries to increase the degree (number of links) of those
enes with a high potential to be considered hubs. At the same time,
t is intended that the number of genes that meet this condition should
e relatively low since this is usually observed in real genetic networks.
he goal is to promote the approximation of the network to a scale-free
onfiguration and to move away from a random structure.

However, the input of this second term is not the same as the first
ne. In order to correctly study the network topology, it should be
ecided which links are finally labeled as definitive and which are not
eliable enough to do so. This decision is made by applying a certain
ut-off criterion. Three different criteria were designed for this issue:

• The first one called MaxNumLinksBestConfCriteria takes as input
the number of links 𝑘 to be obtained in the definitive network.
After knowing that input, it simply sorts from highest to lowest
all interactions based on their confidence value and returns the
top 𝑘.

• In the second one called MinConfidenceCriteria, the minimum
confidence required to report a link is entered as the input value.
Therefore, all interactions are filtered and only those that have
exceeded the threshold are returned.

• The third one identified as MinConfDistCriteria has a similar op-
eration to the previous criterion, except that in this case the
threshold refers to the average between the confidence and the

unit subtracted by the distance of the links.
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After putting the three criteria to the test, it was found that the one
that considers both metrics is the most effective.

As shown in Algorithm 3, the code starts by calculating the average
of the degrees of all the nodes in the network (lines 1 to 5). After that,
it selects as hubs those genes with a degree higher than the average to
quantify them and store the sum of their degrees (lines 6 to 11).

Similarly to the previous term, with 𝑡1 an optimization of the
umber of hubs is carried out trying to approximate its value to 10%
f the total number of genes (line 12 in Algorithm 3). This quantity is
he one that has been considered appropriate to bring the node degree
istribution closer to a scale-free distribution, where a small number
f nodes concentrate most of the network connections. On the other
and, with 𝑡2, the sum of the degrees of all the hubs is maximized.
or this purpose, the average of these degrees is calculated. Then, it
s normalized by dividing it by the maximum achievable degree and
ubtracted from the unit to adapt the variable to the minimization
bjective (lines 13 to 16 in Algorithm 3).

Finally, the value of the returned term is the average of these two
etrics (line 17 in Algorithm 3). Therefore, the fitness value assigned

o an individual is given by the formula:

𝑖𝑡𝑛𝑒𝑠𝑠(𝐼𝑛𝑑) = 𝑤𝑄 ⋅𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝐼𝑛𝑑) +𝑤𝑇 ⋅ 𝑇 𝑜𝑝𝑜𝑙𝑜𝑔𝑦(𝐼𝑛𝑑)

where 𝑤𝑄 and 𝑤𝑇 are the weights assigned to the Quality and Topology
terms respectively, which are given as input parameters.

3.3. Selection

Selection is carried out using the classical binary tournament in
which individuals are randomly grouped in pairs and pitted against
each other, so only those with better scores are selected. Pairwise
matching is performed as often as necessary to cover the indicated
population size. In other words, the same individual can be tested
on more than one occasion and even selected for the next phase.
However, in the next generation, it will certainly be crossed with other
individuals, and its offspring will subsequently be subjected to different
mutations.

3.4. Crossover

The crossover operation simulates a reproduction process between
individuals, where their respective genetic materials are crossed to
procreate offspring. This operation occurs with a fairly high probability
modifiable in the jMetal framework. How this genetic material is
crossed is what leads to multiple possible operators. Depending on the
characteristics of the problem, the type of crossover chosen will have
better or worse results. However, the best way to check the choice of
a good operator is by testing and comparison.

The jMetal framework offers a wide range of crossover opera-
tors. These include SBXCrossover (Simulated Binary Crossover) [39],
BLXAlphaCrossover (Blend Alpha Crossover) [40], DifferentialEvolution-
Crossover [41], NPointCrossover, NullCrossover and WholeArithmetic-
Crossover. Finally, the SBXCrossover operator was chosen after several
scores tests. Firstly, this operator was the one that reported the best
results concerning the others. Secondly, its choice was the most coher-
ent if considered a linear expression between the two weight vectors.
It tends to maintain the feasibility of the solution and reduce the
distortion cost produced by the repairer.

3.5. Mutation

After crossing the individuals of the previous generation, the off-
spring are subjected to a mutation process to incorporate new genetic
material into the population. Otherwise, the resolution of the problem
would be completely limited by the genetic content of the initial
7

population, which reduces the search procedure and conditions the
Table 3
GENECI input parameters.

Parameter Description

–confidence-list CSV file paths with trusted lists.
–gene-names Path to the TXT file with the name of the genes separated

by comma and without space. If not specified, only genes
specified in the confidence lists will be considered.

–crossover Crossover operator.
–crossover-
probability

Crossover probability.

–mutation Mutation operator.
–mutation-
probability

Mutation probability.

–repairer Repairer to keep the sum of weights equal to 1.
–population-size Population size.
–num-
evaluations

Number of evaluations.

–cut-off-criteria Cut-off criteria for network binarization.
–cut-off-value Numeric value associated with the selected criterion.
–Q-weight Weight associated with term Quality.
–T-weight Weight associated with term Topology.
–threads Number of threads to be used during parallelization. By

default, the maximum number of threads available in the
system is used.

–graphics Graphical representation of the evolution of the fitness
value.

–output-dir Path to the output folder.

solution to the initial decisions of the algorithm. This operation oc-
curs with a fairly low probability, again modifiable from the jMetal
framework. As with the crossover stage, jMetal integrates a wide va-
riety of operators to cover this phase of the evolutionary algorithm.
Specifically, the mutation operators available are the following: Poly-
nomialMutation, CDGMutation, LinkedPolynomialMutation, GroupedPoly-
nomialMutation, GroupedAndLinkedPolynomialMutation, SimpleRandom-
Mutation, UniformMutation, NonUniformMutation and NullMutation. Fi-
nally, after verifying the good results generated in combination with
SBXCrossover, the PolynomialMutation was chosen. In this case, the
modification of the mutated values is compensated by the rest of the
vector weights by repairing individuals.

3.6. Output

After completing the number of evaluations set in the input pa-
rameter, GENECI selects the best vector of weights found during the
execution and produces an output consisting of 5 files:

• List of optimized interactions with their respective consensus
confidence values.

• Binary network resulting from applying the selected cut-off crite-
rion to the previous list.

• Weights assigned to the different techniques in the final solution.
• A plain text file with the evolution of the fitness values.
• Optionally, a pdf file with a graphical representation of this

evolution.

4. Experimentation

GENECI has a fairly large number of parameters, which are shown
in Table 3 along with their respective descriptions. Before elaborating
on the real experimentation of this work, it was necessary to carry out
a parameterization exercise to guarantee the optimal performance of
the algorithm.

4.1. Parameter settings

Similarly, before parameter refinement, it was necessary to ensure
a certain consistency between the fitness values of the individuals and
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their accuracy in the prediction of gene networks. That is to say, a
good fitness value should translate into a good quality index in the
subsequent network prediction. To guide the evolutionary algorithm
to some extent, several networks (mainly from the DREAM challenges)
were tested with different values of the parameters associated with the
weights of the fitness function terms. Finally, the combination with the
best accuracy results (regardless of their fitness values) was chosen.
This combination was 0.75 for the first term and 0.25 for the second.

Once this was done, the rest of the parameters were tested to
optimize the fitness values. Since testing all combinations of values
was completely unfeasible, an incremental procedure was carried out
to try to progressively fix the values of the parameters, starting with the
analysis of the most fundamental ones and ending with those of lesser
importance.

Parameters related to crossover and mutation probabilities were set
before. It is already known in the literature that an adequately con-
structed evolutionary algorithm should respond well to a high crossover
probability and a low mutation probability [42,43]. However, testing
their values ensures the consistency of the implementation. Although
the crossover probability seemed to be clearly fixed at 0.9, the muta-
tion probability varied depending on the number of consensual lists.
After reviewing the literature, it could be seen how the recommended
mutation probability for these cases is the maximum between 0.01 and
1/𝑛 [36,44], where 𝑛 is the length of the vector, which in this case
is the number of lists provided in the input. Therefore, since having a
number less than 0.01 would mean trying to agree on more than 100
lists (which is infeasible), 1/𝑛 was set as the optimal value associated

ith the mutation probability.
The next parameters to be optimized were those related to the

epairer and cut-off criterion. As mentioned in their respective sections,
tandardizationRepairer and MinConfDist were finally established as the
ptimal values for these parameters. In this case, since both parameters
re quite specific to our problem, instead of doing point executions, we
roceeded to perform a systematic test on all datasets. For reasons of
ength, these results can be found in the supplementary material in the
epository. The winners were easily predictable since the alternatives
acked adequate meaning. First, concerning the repairers, it was to be
xpected that the greedy ones would offer worse results. There was
ome randomness in its operation, and it did not fully maintain the
ssence of the vector it was intended to repair. On the other hand, in the
ut-off criteria, the justification discussed in previous sections regarding
he reliability based on the confidence values together with the distance
etween weight means and distance concerning the median confidence
llowed to expect that the criterion contemplating both metrics would
ndeed be the most effective.

Finally, the parameters of population size and the number of evalu-
tions remain to be analyzed. It is evident that the higher the value
iven to them, the higher the quality of the result obtained, but
he more execution time they consume. To find a certain balance,
everal combinations were tested to find the one that would ensure
he algorithm’s convergence at a suitable stage under a reasonable
umber of iterations. It should be mentioned that, regardless of the
ize of the input network, the number of techniques applied in the
xperimentation is the same, so the vector of weights to be optimized
s always of the same size. This means that, although the evaluation
s slower for large networks, the possible combinations of weights
ssigned to the lists cover the same search space as for the rest of the
etworks. Finally, a population size of 100 individuals and a total of
0,000 evaluations were established for the experimentation addressed
n this work.

.2. Experimental procedure

After setting all the GENECI parameters, an experimental procedure
as constructed to demonstrate the validity of the work carried out and
8

he benefits of the proposed strategy. The first part of this study takes
data from academic benchmarks to quantify the accuracy of GENECI.
First, data from some of the DREAM challenges [32] (specifically
editions 3, 4 and 5) are used, as they have been extensively studied in
the literature [26,45–49] and provide specific evaluation scripts that
allow us to compare accuracy values with other research articles. And
secondly, the IRMA 5-gene network [33] is considered, whose gold
standard allows us to evaluate the quality of the results as a binary
classification problem. Finally, GENECI is confronted with a real-world
biological network of melanoma patients [34] whose interactions are
validated by specific literature searches. For each dataset, the process
starts by inferring their corresponding gene regulatory networks using
all the individual techniques integrated into the proposal.

For the benchmark data, the predictive capacity of the results pro-
vided by the individual techniques is evaluated to conduct a subsequent
comparison exercise concerning the quality of the GENECI consensus
networks. Specifically, metrics AUROC (Area Under the ROC curve)
and AUPR (Area Under the Precision–Recall curve) are calculated. The
area under the receiver operating characteristic curve (AUROC) is a
single scalar value that quantifies the overall performance of a binary
classifier. Its value is bounded by the interval [0.5–1.0], where the
minimum value represents the performance of a random classifier, and
the maximum value is associated with a perfect classifier. Secondly, the
area under the precision–recall curve (AUCPR) is a model performance
metric that has been recognized as useful for classification performance
assessment for unbalanced binary responses in bioinformatics [50].
This is the case for predicting interactions between genes that form the
GRNs, as the number of truly interconnected genes is small compared to
all the possible connections. Its value increases the better the classifier
is evaluated.

For the DREAM challenges, a subcommand integrated into the
package is used to call the evaluation scripts presented in the respective
challenges. Another generic subcommand is used for the IRMA data
that treats the case as a binary classification problem. Subsequently,
a total of 25 independent runs are elaborated by the evolutionary
algorithm (except for the last DREAM5 network due to its size), and
the quality of the prediction made for each is validated. Finally, a
comparison is made between the median AUROC and AUPR values of
these 25 runs and the individual values of the different techniques.

The GENECI result is studied for real-world data by validating the
presence of the main interactions reported in the literature from a
biomedical point of view.

5. Results and discussion

This section presents the results provided by GENECI for the ex-
perimental procedure described previously. A section is dedicated to
each dataset, illustrating the precision values obtained in each case and
graphical representations that allow visualizing network topologies,
distribution of fitness values, weights assigned by GENECI and a series
of comparisons between the results of different inference techniques.

5.1. Benchmarks

5.1.1. DREAM3
The DREAM3 challenge on ‘‘in silico’’ network inference [51] sought

to discover the ability to exist technology to infer gene networks
of various sizes and connection densities. The data provided in the
challenge were based on subnetworks associated with two organisms: E.
coli (Escherichia coli) and yeast (Saccharomyces cerevisiae). Specifically,
data were generated using continuous differential equations represent-
ing reasonable approximations for their gene expression regulatory
functions. These values were subsequently altered by introducing a
small amount of Gaussian noise to simulate measurement error. Five
networks (Ecoli1, Ecoli2, Yeast1, Yeast2, Yeast3) were contemplated

for each subchallenge, which divided the challenge by network sizes.
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Table 4
Accuracy values for DREAM3 and size 10 networks. AUPR and AUROC values are provided for each technique and problem, highlighting in bold the results obtained by GENECI
and the best obtained by any of the individual techniques.

Técnica D3_10_Ecoli1 D3_10_Ecoli2 D3_10_Yeast1 D3_10_Yeast2 D3_10_Yeast3

AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

ARACNE 0.561 0.1529 0.524 0.1852 0.6269 0.1546 0.6031 0.417 0.5043 0.2463
BC3NET 0.6116 0.2146 0.4804 0.2158 0.5606 0.2359 0.5914 0.3459 0.4846 0.228
C3NET 0.5754 0.1599 0.5218 0.1832 0.5719 0.1368 0.6003 0.414 0.5167 0.2538
CLR 0.5719 0.1477 0.4542 0.1599 0.5788 0.1724 0.5782 0.3783 0.4893 0.2619
GENIE3_ET 0.6157 0.1762 0.6524 0.2172 0.525 0.1212 0.5858 0.3417 0.5809 0.2855
GENIE3_GBM 0.5673 0.139 0.7458 0.2848 0.4863 0.1341 0.5643 0.4183 0.5381 0.2695
GENIE3_RF 0.5938 0.1598 0.6818 0.2369 0.5 0.1064 0.5545 0.345 0.5689 0.3072
KBOOST 0.5949 0.1739 0.648 0.2392 0.3438 0.0928 0.5415 0.3246 0.3168 0.1786
MRNETB 0.5472 0.141 0.4631 0.1685 0.5487 0.1285 0.5754 0.4043 0.4485 0.223
MRNET 0.5155 0.1469 0.5116 0.1785 0.5206 0.1264 0.5788 0.4122 0.4402 0.2318
PCIT 0.5455 0.2987 0.4862 0.1626 0.5631 0.1694 0.412 0.2336 0.5675 0.3501
TIGRESS 0.481 0.1174 0.6569 0.4301 0.6763 0.242 0.4892 0.2491 0.4305 0.2013

Median GENECI 0.5627 0.1707 0.6089 0.2468 0.5175 0.1311 0.5982 0.3645 0.5127 0.2711
Best GENECI 0.5685 0.1791 0.6196 0.2523 0.5275 0.1369 0.6025 0.3956 0.5287 0.3245
ig. 4. For the first 10-gene yeast network of the DREAM3 challenge, the gene networks inferred by the individual techniques and the consensus gene network computed in the
un whose AUROC corresponds to the median exposed in Table 4 are illustrated. Graphs attempt to represent gene regulatory networks by setting up genes in the form of nodes
nd interactions through links. In addition, it can be seen that the directionality and confidence of these interactions are represented in these networks.
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pecifically, the sub-challenges were of 10, 50 and 100 nodes, for which
, 23 and 46 different trajectories were provided, respectively.

Currently, the DREAM3 challenge has become a standard bench-
ark for evaluating the reconstruction of GRNs from expression data.
he scripts provided in the challenge have established a unified evalu-
tion mechanism that facilitates the comparison of quality between the
ifferent proposals in the literature to some extent.

ize 10
First, the results for the 10-node networks of the DREAM3 challenge

re shown. Table 4 shows the AUROC and AUPR values for each of
he individual techniques and the median of these same metrics for
he 25 independent runs of the evolutionary algorithm. In addition,
or comparative purposes, the best value obtained by the inference
echniques and the one achieved by GENECI are highlighted in bold for
ach column. In this case, the values of the accuracy metrics reported
or the consensus networks are in a competitive range but without
tanding out from the rest. The exception can be observed for the
UROC obtained for the second yeast network, where the distance
etween the best result of the techniques and that of GENECI is rela-
ively small. However, this case is considered insignificant, considering
9

n

ts isolated character and the low precision quality reported by the
ndividual techniques.

The explanation of these results is that the second term of the
itness function is practically frozen for cases of such a small size.

hen faced with 10-node networks, the evolutionary algorithm does
ot seem to have enough margin to carry out the optimization part
imed at improving the consensus network topology. However, this is
ot considered a problem if one remembers that the goal of GENECI
s to optimize the consensus of real-world gene networks, where the
umber of transcription factors is much larger than that contained in
his subchallenge.

Fig. 4 shows the graphs associated with each of the networks
nferred by the individual techniques and the consensus network whose
UROC corresponds to the median of the runs. These graphs show the
irectionality of the interactions (direction of the arrows), the degree
f the genes (size of the nodes) and the intensity of the relationships
thickness of the links and numerical specification for the highest
alues). In addition to appreciating the small size of these networks,
t can be seen how the techniques that have obtained the best results
n Table 4 (TIGRESS and those derived from GENIE3) present random
etworks that are far from the scale-free configuration that usually
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Table 5
Accuracy values for DREAM3 and size 50 networks. In this table, a gene network is contemplated for each pair of columns, where in each row the AUPR and AUROC values are
provided for each inference technique.

Técnica D3_50_Ecoli1 D3_50_Ecoli2 D3_50_Yeast1 D3_50_Yeast2 D3_50_Yeast3

AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

ARACNE 0.4893 0.0241 0.539 0.0424 0.537 0.0505 0.5252 0.0761 0.5283 0.0887
BC3NET 0.5015 0.0263 0.5271 0.0372 0.5455 0.0429 0.5144 0.0715 0.5245 0.084
C3NET 0.5083 0.0265 0.5209 0.0391 0.5363 0.0508 0.5198 0.0764 0.5244 0.0868
CLR 0.5831 0.0334 0.627 0.0606 0.5401 0.0504 0.5292 0.0814 0.5491 0.1014
GENIE3_ET 0.5338 0.0294 0.6373 0.0783 0.5463 0.0514 0.5709 0.0872 0.5752 0.0965
GENIE3_GBM 0.4951 0.0299 0.6269 0.087 0.5704 0.0778 0.571 0.0906 0.5775 0.1058
GENIE3_RF 0.5563 0.0338 0.6318 0.0811 0.5665 0.07 0.5892 0.0895 0.5739 0.1004
KBOOST 0.5459 0.0277 0.528 0.0379 0.4628 0.0347 0.4659 0.0668 0.5168 0.0738
MRNETB 0.6046 0.0363 0.6401 0.057 0.5467 0.0557 0.5357 0.0755 0.5507 0.0992
MRNET 0.5803 0.0329 0.6237 0.0557 0.5409 0.0507 0.5383 0.0786 0.5474 0.0983
PCIT 0.5765 0.0403 0.5953 0.0677 0.5636 0.0588 0.499 0.0644 0.539 0.0843
TIGRESS 0.5794 0.0289 0.3846 0.0246 0.5591 0.0335 0.5876 0.084 0.5807 0.0983

Median GENECI 0.5998 0.0348 0.6461 0.0713 0.5517 0.0657 0.5688 0.0839 0.574 0.1001
Best GENECI 0.6027 0.0349 0.6475 0.0719 0.5553 0.0662 0.5694 0.0846 0.5821 0.1014
ig. 5. Boxplots of the fitness values and weights over the 25 independent runs. The first 5 graphs represent the distribution of the weights assigned by GENECI across all the
uns for each of the techniques. Finally, the sixth figure shows the distribution of the fitness values obtained in the different runs performed.
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ppears in real-world gene networks of larger size. This means that the
ENECI target is far from the topological characteristics of the gold

tandard in these cases, which again explains the limited results shown.

ize 50
This section shows the results obtained for the 50-node networks of

he DREAM3 challenge. In Table 5, it can be seen that the increase in
he size of the networks to be inferred has led to better results than
n the previous section. This is because a size of 50 nodes already
ives a certain margin to the evolutionary algorithm to optimize the
opological characteristics of the consensus networks. In this case, it
an be observed that the medians of the AUROC and AUPR values of
ENECI are quite close to the best results of the individual techniques.

n addition, it is worth mentioning that the maxima of these metrics
re selected individually so that, in many cases, the method that
rovides the best result concerning AUROC is not the same as the best
bout AUPR. Therefore, the fact that GENECI is able to approach the
aximums of both metrics (or even surpass them), is in many cases an

mprovement over any of the individual techniques.
10

d

Fig. 5 shows boxplots representing the weights assigned to the
ifferent techniques by the final solutions of the 25 independent runs.
n additional diagram concerning the fitness values of these solutions

s depicted at the bottom right, where the variation of the achieved
alues can be observed for each network.

Regarding the assignment of weights, it can be seen that in most of
he networks, the proposed solutions throughout the 25 runs are quite
imilar. However, there is the exception of the Ecoli2 network, which
n addition to showing outliers in the fitness boxplot also presents a
lightly more random distribution of weights. This may be because
his network presents more local minima that hinder the algorithm’s
rogress. Most runs seem to have stalled at one of them, as there are
poradic runs with better results. Consequently, both the distributions
f good solutions and those related to premature convergences coexist
n the boxplots of the weights, which explains the variability shown in
he graph.

From a different perspective, specific techniques in certain networks
o not seem to converge to a given weight. Two different situations
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Table 6
Accuracy values for DREAM3 and size 100 networks. The AUPR and AUROC values are presented in two clearly distinguishable bands. The first band shows the precision values
for the individual inference techniques, while the second band shows the values obtained by GENECI after the consensus of the techniques, distinguishing between the median of
the runs and the best result obtained from them.

Técnica D3_100_Ecoli1 D3_100_Ecoli2 D3_100_Yeast1 D3_100_Yeast2 D3_100_Yeast3

AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

ARACNE 0.5512 0.0238 0.5323 0.0187 0.553 0.0332 0.5216 0.053 0.5126 0.064
BC3NET 0.5442 0.0175 0.5286 0.0175 0.523 0.0191 0.5148 0.0435 0.5063 0.0569
C3NET 0.5413 0.0233 0.5189 0.017 0.5232 0.0263 0.5165 0.0507 0.5108 0.0638
CLR 0.659 0.0311 0.5909 0.0268 0.5553 0.0472 0.521 0.0557 0.5284 0.0693
GENIE3_ET 0.6596 0.0338 0.5822 0.0374 0.6235 0.0496 0.5343 0.0528 0.5176 0.0672
GENIE3_GBM 0.6176 0.0363 0.5729 0.0455 0.6515 0.0629 0.5566 0.0621 0.5274 0.0713
GENIE3_RF 0.6673 0.042 0.6001 0.0506 0.6465 0.0557 0.5548 0.0602 0.5269 0.0719
KBOOST 0.4975 0.0153 0.506 0.0132 0.4934 0.0193 0.4692 0.0389 0.4721 0.0516
MRNETB 0.6422 0.0332 0.6045 0.0235 0.5478 0.0357 0.5116 0.0482 0.5246 0.0658
MRNET 0.6352 0.032 0.6002 0.0229 0.5505 0.032 0.513 0.05 0.5284 0.0671
PCIT 0.5972 0.0236 0.5879 0.0242 0.5133 0.0269 0.4909 0.0432 0.5084 0.0564
TIGRESS 0.6257 0.0178 0.557 0.0258 0.5051 0.0163 0.5251 0.0412 0.4863 0.0504

Median GENECI 0.6813 0.0368 0.6093 0.0347 0.5869 0.0433 0.5305 0.0577 0.5291 0.0693
Best GENECI 0.6918 0.0373 0.6115 0.0351 0.5905 0.0436 0.5336 0.0583 0.5299 0.0694
can be seen in the illustrated graphs. First, in the case of Yeast2 graph,
BC3NET and GENIE3_GBM obtain quite different weights depending
on the execution. The fact that the fitness values remain constant is a
sign that their variability is not related to the algorithm’s convergence.
Moreover, since all other techniques remain constant, it can be deduced
that the weight increase in one is usually reflected in a decrease in the
weight of the other, although being this balance completely indifferent
with regard to the fitness value of the solution. The only case in which
this is possible is when the techniques infer quite similar networks,
and therefore the granting of greater weight to one or the other is
practically indiscernible for the consensual network.

Second, in the case of GENIE3_RF for the Yeast3 network, there is a
quite similar situation to the previous one, except that on this occasion,
the increase or decrease in the weight of this technique is uniformly
assumed by the rest. This may be a consequence of the fact that the
confidence values of this list are quite close to the median of the
remaining ones, and therefore, voting during consensus is somewhat
redundant.

Size 100
Finally, the experimentation on the DREAM3 challenge networks

is concluded by presenting the results associated with the 100-node
networks. Similar to the previous section, Table 6 shows how the results
provided by GENECI are practically at the same level as those obtained
by the best individual techniques.

In fact, it is observed that the increase in size continues to bring ben-
efits to the results. While in the 50-node table, only in one case GENECI
came to exceed the maximum AUROC of the individual techniques, in
the 100-node table, this occurs for 3 of the 5 networks. This means that
the optimization performed on the topological characteristics of the
network becomes more meaningful the larger the size of the network
to be inferred.

Fig. 6 shows the Ecoli1 network agreed upon by GENECI in the run
corresponding to the median of the AUROC values. As can be seen, the
network is clearly scale-free, as the degrees of the different nodes are
distributed non-uniformly. The interactive 3D representation generated
using the Python package built in this proposal is very useful for
network analysis, allowing rotations, overlapping techniques, zooming,
the query of confidence values, etc. The fitness curves for the 25 runs
performed on this network are shown on the right. In them, one can
visualize how a few runs seem to have stagnated at a local minimum,
which is also appreciable in the violin plot located at the top right.
After several tests, it has been shown that GENECI tends to converge
well before 50,000 evaluations, so reducing this value would represent
some gain concerning the execution time without harming the quality
of the results.

Finally, it is worth mentioning that the AUROC and AUPR values
11

for some of the individual techniques had already been calculated
previously in the literature. Specifically, some accuracy values for the
DREAM3 challenge networks can be observed in [46,48], where the
resemblance of the results to those obtained in this work provides some
reliability in the study addressed. It is striking to note the low quality
of accuracy that is achieved today in the task of inferring GRNs, and it
is for this reason that it remains a significant area of research.

5.1.2. DREAM4
The DREAM4 challenges were a new edition of the challenges

already exploited in DREAM3 by incorporating new datasets. Similar to
what was seen in the previous edition, the in silico network inference
challenge was classified in two parts according to the size of the
networks. In this case, they were established in network sizes of 10 and
100 nodes, and as for DREAM3, there were 5 networks in each group.
For the 10-node networks, expression levels of 21 time points and 5
replicates were provided, and for the 100-node networks, another 21
time points, but in this case 10 replicates.

Networks vary in their topology, but all of them try to mimic
real organisms such as Escherichia coli or Saccharomyces cerevisiae.
The data attempt to simulate their known dynamic properties, which
are simulated using different initial conditions and kinetic parameters.
Stochastic differential equations were used to generate the expression
data for each topology, followed by the addition of noise proportional
to the gene expression level (as seen in the real microarray datasets).
In addition, four sets of observations are available for each network:
time series, wild type, knock-out and knockdown.

This edition can be considered the most studied of all the DREAM
challenges. The proportion of evaluation scripts and the background
imposed in the previous editions prompted several participants to test
their inference proposals. As in the previous section, the presentation of
the results will be divided into sub-challenges, detailing first the results
obtained for the 10-node networks and then for the 100-node networks.

Size 10
Table 7 shows the AUROC and AUPR values for each of the individ-

ual techniques and the median of these metrics for the 25 independent
runs of the proposal. Indeed, as in the previous challenge, the nodes’
scarcity and the networks’ small size lead to moderate results for
GENECI. This is visible in networks 1, 2 and 5, as well as in the AUPR
of network 3. However, the exception of network 4 stands out, where
GENECI achieved competitive results. In this case, unlike the exception
seen in DREAM3 for networks of the same size, the AUROC and AUPR
values provided by the individual techniques are neither homogeneous
nor of low quality, so this time it is considered a merit on the part of
the algorithm.

To analyze this sporadic behavior, Fig. 7 shows for Net-4 10-

gene the graphs related to the different individual techniques and
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Fig. 6. For the first 100-gene Ecoli network of the DREAM3 challenge, the consensus gene network calculated in the run whose AUROC corresponds to the median illustrated in
Table 6 is plotted on the left. On the right, the evolution of the fitness values obtained during the 25 runs and a violin plot representing the distribution of their corresponding
final values.
Table 7
Accuracy values for DREAM4 and size 10 networks. For each gene regulatory network included in this dataset (columns), the AUPR and AUROC values are shown after comparing
the networks inferred by the different techniques (rows) with the respective gold standards.

Técnica D4_10_1 D4_10_2 D4_10_3 D4_10_4 D4_10_5

AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

ARACNE 0.6236 0.331 0.4489 0.171 0.5618 0.2771 0.6693 0.3033 0.6688 0.3168
BC3NET 0.7236 0.4237 0.4954 0.1841 0.5671 0.1936 0.6349 0.2785 0.6613 0.2166
C3NET 0.6636 0.354 0.4865 0.1823 0.5262 0.2625 0.6344 0.2866 0.6966 0.3497
CLR 0.6507 0.3483 0.4861 0.1881 0.5947 0.2693 0.6893 0.2694 0.6912 0.3648
GENIE3_ET 0.8631 0.4533 0.614 0.2401 0.6533 0.2437 0.7073 0.2686 0.8259 0.4167
GENIE3_GBM 0.664 0.2638 0.5971 0.2296 0.696 0.3017 0.6883 0.2658 0.6613 0.3193
GENIE3_RF 0.8284 0.4441 0.6326 0.2546 0.6898 0.3486 0.6883 0.3097 0.8024 0.4379
KBOOST 0.5858 0.2324 0.603 0.2368 0.576 0.2533 0.7383 0.3412 0.6667 0.2393
MRNETB 0.6867 0.3614 0.4907 0.1838 0.6302 0.2936 0.6718 0.317 0.6704 0.34
MRNET 0.6493 0.3439 0.5046 0.1876 0.5422 0.2744 0.7118 0.3173 0.672 0.3416
PCIT 0.5884 0.3262 0.5819 0.2948 0.5649 0.2084 0.5395 0.2562 0.5577 0.2579
TIGRESS 0.5973 0.3257 0.614 0.2191 0.4871 0.1674 0.4915 0.15 0.4017 0.1268

Median GENECI 0.7689 0.4371 0.5887 0.2709 0.6933 0.274 0.7493 0.3445 0.7906 0.4248
Best GENECI 0.7733 0.4393 0.5938 0.2724 0.6987 0.2777 0.7572 0.3561 0.8077 0.4638
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he GENECI consensus gene network corresponding to the median. In
he graphs, despite the small size of the network, a certain scale-free
istribution is shown, where the most interconnected node also has
he most intense relationships. This means that when GENECI rewards
ndividuals that increase the degree of the only existing hub (1/10 =
0% of genes), it is actually bringing the consensus network closer
o the gold standard. This behavior in the rest of the networks is
nsatisfactory because there is no single hub in the network since, as
xplained in the section on DREAM3, networks of this size tend to have
random configuration.

ize 100
Again, incorporating a larger number of nodes favors the optimiza-

ion of the topological characteristics of the consensus network. Table 8
hows the results for the 100-node networks (DREAM4). It should be
emembered that, as in the rest of the sections, obtaining good pre-
ision values by GENECI implies incorporating a reliable method that
uarantees outstanding results for networks of various densities and
haracteristics (discarding the excessively small ones of 10 nodes). This
12

w

mplies that when it is desired to infer a gene regulatory network whose
tructure is unknown, the application of GENECI provides a reliable
nd effective resolution method. This is not feasible with the individual
echniques since, as shown in the tables, they tend to provide good
esults only for specific subsets of problems, reporting less satisfactory
esults for the rest.

Unlike the other cases, on this occasion, GENECI seems to overcome
he individual inference techniques through the AUPR values. This oc-
urs in 3 of the 5 exposed networks, highlighting notably the consensus
ddressed on network number 5 of this subchallenge.

Fig. 8 shows the consensus gene network corresponding to the
edian calculated by GENECI. Again, it can be observed how the
istribution of node degrees is not uniform, with a large group being
ostly interconnected in contrast to the rest of the network. On the

ight are the fitness curves, which in this case, reflect the correct
onvergence of all the executions and the end in a fixed and concrete
itness value.

Finally, it is worth mentioning that, as with DREAM3, previous
orks have tested different techniques for inferring networks from this
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Fig. 7. For Net-4 10-gene of the DREAM4 challenge, the gene networks inferred by the individual techniques and the consensus gene network computed in the run whose AUROC
corresponds to the median exposed in Table 7 are illustrated. In these graphs we can see how each gene corresponds to a node and each edge to a specific gene interaction. The
directionalities are expressed by arrows and the confidence values by the thickness of the links, even specifying their value when this is highly significant.
Table 8
Accuracy values for DREAM4 and size 100 networks. This table shows the results of the evaluation scripts run on each of the individual (first band) and consensus (second band)
results for each problem network (columns). The best value of the individual techniques and the values of the consensus networks per geneci (best and median of all runs) are
shown in bold.

Técnica D4_100_1 D4_100_2 D4_100_3 D4_100_4 D4_100_5

AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

ARACNE 0.5568 0.0317 0.5412 0.0453 0.559 0.0673 0.5525 0.0419 0.5826 0.0594
BC3NET 0.5629 0.0334 0.5312 0.0315 0.5905 0.0617 0.5537 0.06 0.5939 0.0565
C3NET 0.5345 0.029 0.518 0.038 0.5522 0.0664 0.54 0.0383 0.5622 0.0575
CLR 0.6963 0.048 0.6291 0.0578 0.7079 0.1036 0.6654 0.0621 0.6768 0.0764
GENIE3_ET 0.7733 0.0756 0.6741 0.0526 0.7289 0.1143 0.7046 0.0683 0.7555 0.0842
GENIE3_GBM 0.7608 0.0567 0.6929 0.0624 0.719 0.0983 0.7046 0.0634 0.7707 0.0815
GENIE3_RF 0.756 0.062 0.6873 0.0633 0.7411 0.1182 0.7195 0.0698 0.7694 0.082
KBOOST 0.6135 0.0461 0.5234 0.0431 0.5764 0.054 0.5247 0.0367 0.5171 0.0414
MRNETB 0.6848 0.047 0.6334 0.0639 0.7169 0.1076 0.6667 0.0604 0.6798 0.0739
MRNET 0.6771 0.0446 0.6322 0.0583 0.7124 0.1022 0.6622 0.0568 0.6786 0.081
PCIT 0.6172 0.0614 0.5649 0.0486 0.6149 0.1017 0.5988 0.0772 0.6339 0.0894
TIGRESS 0.6581 0.0261 0.5595 0.0617 0.6476 0.0319 0.6281 0.0402 0.6509 0.0312

Median GENECI 0.7613 0.0674 0.6631 0.0685 0.7316 0.1241 0.7078 0.0742 0.7368 0.1143
Best GENECI 0.7623 0.0676 0.665 0.0691 0.7396 0.1265 0.7097 0.0748 0.7377 0.1144
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hallenge. Results and quality metrics related to DREAM4 networks can
e seen in [26,45–49], where again the kinship between these values
nd those calculated in this work bring some confidence to this study.

.1.3. DREAM5
In the next edition of the DREAM challenges, the scientific com-

unity was invited to infer genome-scale transcriptional regulatory
etworks from gene expression data derived from an in silico bench-
ark (Net 1), the human pathogen S.aureus (Net 2), the prokaryotic
odel organism E. coli (Net 3) and finally the eukaryotic model or-

anism S.cerevisiae (Net 4). These nets had a size of 1643, 2810,
511 and 5950 genes, respectively, which gave them greater veracity
rom a biological point of view. However, during the evolution of the
hallenge, the network related to the human pathogen, i.e., the second
etwork of the challenge, was eventually discarded from the evaluation
rocess. It is clear that since the interactions between the organisms
nvolved were not fully known, the gold standards were somewhat
ncomplete. Although this phenomenon has been present in many of
he benchmarks collected in the literature, the case of the S. aureus
13

e

etwork stood out for its few interactions available with experimental
upport, invalidating the evaluation process too much. For this reason,
ike many of the works presented in the literature, only networks 1, 3
nd 4 of this challenge will be worked with.

Due to its large size, 15 runs have been carried out for the last
etwork instead of 25. Therefore, in this case, the values reported for
et 4 in Table 9 refer to the AUROC and AUPR values concerning those
5 runs (denoted by *). Due to the slowness of the single TIGRESS
echnique, it has been finally discarded from the optimization process
or this challenge. In the table, it can be observed that the results are
gain favorable. There is an exception for the AUROC obtained in the
hird network of the challenge. However, it is worth mentioning that
he distance observed concerning the best individual technique is due to
ts accuracy being a clear outlier for the rest of the values. These results
inally demonstrate that GENECI responds satisfactorily to the input of
ene expression data from large networks with biological support.

For individual inference techniques, similar results can be observed
n [22,26], where the absence of the second gene network during the
valuation process is indeed appreciated.
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Fig. 8. For the first 100-gene network of the DREAM4 challenge, the consensus gene network calculated in the run whose AUROC corresponds to the median illustrated in Table 8
is plotted on the left. On the right, the evolution of the fitness values obtained during the 25 runs and a violin plot representing the distribution of their corresponding final
values.
Table 9
Accuracy values for DREAM5 networks. AUPR and AUROC values are provided for
each technique and problem, highlighting in bold the results obtained by GENECI and
the best obtained by any of the individual techniques.

Técnica D5_1 D5_3 D5_4

AUROC AUPR AUROC AUPR AUROC AUPR

ARACNE 0.5538 0.1011 0.5131 0.0296 0.5005 0.0176
BC3NET 0.5673 0.0966 0.5149 0.0257 0.5006 0.0176
C3NET 0.5393 0.0865 0.5071 0.0243 0.5005 0.0176
CLR 0.7402 0.2234 0.5892 0.0602 0.5211 0.0212
GENIE3_ET 0.8149 0.2502 0.6632 0.0879 0.543 0.0222
GENIE3_GBM 0.7952 0.3042 0.6108 0.0682 0.5318 0.0208
GENIE3_RF 0.8135 0.2802 0.6535 0.0844 0.5494 0.0223
KBOOST 0.4679 0.0634 0.5572 0.0445 0.5037 0.0182
MRNETB 0.7421 0.2 0.5948 0.0697 0.52 0.0195
MRNET 0.7404 0.2054 0.5943 0.0557 0.521 0.0196
PCIT 0.6761 0.1712 0.5751 0.0621 0.5173 0.0194

Median GENECI 0.8007 0.2788 0.6211 0.0751 0.5316* 0.0214*
Best GENECI 0.8024 0.2801 0.6264 0.0762 0.5317* 0.0214*

5.1.4. IRMA
The In vivo Reverse-engineering and Modeling Assessment (IRMA)

network was created to evaluate the performance of different gene
network reconstruction methods. Specifically, quantitative RT-PCR on
the yeast Saccharomyces cerevisiae measured expression levels at dif-
ferent time points. The network has 5 genes (CBF1, GAL4, SWI5, GAL80
and ASH1) and 6 regulatory interactions, giving rise to ‘‘switch on’’
and ‘‘switch off’’ versions by culturing cells in galactose or glucose,
respectively.

The synthetic network includes several regulatory interactions, cap-
turing the behavior of large eukaryotic gene networks but on a smaller
scale. The network was designed to be negligibly affected by endoge-
nous genes and to respond to galactose, which triggers the transcription
of its genes. This network is deceptively simple, yet it is actually
quite articulate in its interconnections. In fact, they include regulatory
chains, single-entry motifs, and multiple feedback loops generated by
the combination of transcriptional activators and repressors.
14
Table 10
Accuracy values for IRMA networks. In this table, a gene network is contemplated for
each pair of columns, where in each row the AUPR and AUROC values are provided
for each inference technique.

Técnica IRMA_switch-off IRMA_switch-on

AUROC AUPR AUROC AUPR

ARACNE 0.6667 0.6815 0.6667 0.6815
BC3NET 0.5833 0.5679 0.5833 0.5679
C3NET 0.6667 0.6815 0.6667 0.6815
CLR 0.6111 0.5339 0.7222 0.609
GENIE3_ET 0.6667 0.6815 0.8611 0.7865
GENIE3_GBM 0.5 0.4 0.75 0.7759
GENIE3_RF 0.6944 0.6261 0.75 0.7759
KBOOST 0.7778 0.7099 0.6111 0.5339
MRNETB 0.6667 0.6815 0.6667 0.6815
MRNET 0.6667 0.6815 0.6667 0.6815
PCIT 0.5 0.4 0.5 0.4
TIGRESS 0.7778 0.6 0.7778 0.6

Median GENECI 0.8611 0.7865 0.8889 0.75
Best GENECI 0.8611 0.7865 0.8889 0.75

Table 10 shows the AUROC and AUPR results for each of the
individual techniques and the median of the 25 independent runs
of GENECI. It should be noted that the evaluation process carried
out on these networks differs from the previous ones. In this case,
IRMA does not offer specific evaluation scripts, so the confidence lists
reported by the different techniques have been binarized to perform
this task. Subsequently, the generic evaluation subcommand has been
used, facing the binary classification problem.

Finally, it can be seen that after applying the same evaluation
criteria to all the networks, GENECI is again shown to perform well (see
Table 10). It outperforms the AUROC and AUPR maxima of the individ-
ual techniques for most cases, with a remarkably significant difference
in the case of the ‘‘switch off’’ network. The graphs reported by the
different inference techniques and the consensus network constructed
by GENECI are shown in Fig. 9. It can be seen that the network is
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Fig. 9. For the ‘‘switch on’’ IRMA network, the gene networks inferred by the individual techniques and the consensus gene network calculated in the run whose AUROC corresponds
to the median exposed in Table 10 are illustrated. The graphs shown in this figure try to represent the different inferred networks, arranging the genes in the same layout in order
to facilitate visual comparison between them.
really small, with a clear disagreement in the set of proposals when
establishing the existing interactions.

The IRMA network has been frequently used in the literature to test
various techniques for network reconstruction [22,46–49]. However,
the lack of a rigorous official criterion for measuring the accuracy of
the different tools has given the scientific community a certain margin
to choose the procedure that best suits its proposal in each case. For
this reason, the results reported in the literature on the levels of quality
differ considerably between articles, making it difficult to compare
them in the first instance.

5.1.5. Statistical significance
In this section, a statistical analysis is addressed that allows a

rigorous comparison of the precision obtained by each of the individual
inference techniques, as well as the consensus of these techniques
developed by GENECI, from a global point of view that considers all
the results presented so far (except for the MELANOMA dataset).

According to Friedman’s statistical ranking and Holm’s non-
parametric tests [52] performed for both AUROC and AUPR values (see
Table 11 and 12 respectively), the best GENECI result is the one that
obtains the first position in both cases (thus acting as a control denoted
with *).

After this, it can be seen that the median of GENECI and the
techniques derived from GENIE3 are also in good positions, and no
statistical difference in their performance can be assured. The rest of the
techniques show statistically lower performances since, in their case,
the null hypothesis of Holm’s test is rejected.

GENIE3 obtained such good results during our experimentation due
to the main use of the DREAM challenges as a data source. This algo-
rithm shows a clear specialization of the time series exposed in these
challenges, as it won several times. This is part of what is discussed
in the manuscript about the unidentified specialization of the different
inference techniques, and that causes that in the absence of a gold stan-
dard, it is not possible to know a priori which is the best tool to infer
the problem network. This is what GENECI tries to solve, i.e., it does
not try to outperform all the individual techniques in their domains of
specialization (since, by the No Free Lunch theorem itself, this would be
impossible) but aims to obtain quality results (competitive concerning
the best technique) for a wide range of problems, gaining generalization
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Table 11
Friedman mean rank with Holm’s adjusted 𝑝 values (0.05) for AUROC.

AUROC

Algorithm 𝐹𝑟𝑖𝑒𝑑𝑚𝑎𝑛′𝑠𝑅𝑎𝑛𝑘 𝐻𝑜𝑙𝑚′𝑠𝐴𝑑𝑗 − 𝑝

*Best GENECI 3.100e+00 –
GENIE3_RF 3.833e+00 0.742e+00
GENIE3_ET 4.067e+00 0.742e+00
Median GENECI 4.367e+00 0.723e+00
GENIE3_GBM 5.617e+00 0.079e+00

MRNETB 7.417e+00 3.215e−04
CLR 7.467e+00 3.170e−04
MRNET 8.083e+00 2.769e−05
TIGRESS 9.117e+00 2.034e−07
PCIT 1.002e+01 1.518e−09
ARACNE 1.002e+01 1.518e−09
BC3NET 1.033e+01 2.344e−10
C3NET 1.052e+01 7.896e−11
KBOOST 1.105e+01 2.386e−12

Table 12
Friedman mean rank with Holm’s adjusted 𝑝 values (0.05) for AUPR.

AUPR

Algorithm 𝐹𝑟𝑖𝑒𝑑𝑚𝑎𝑛′𝑠𝑅𝑎𝑛𝑘 𝐻𝑜𝑙𝑚′𝑠𝐴𝑑𝑗 − 𝑝

*Best GENECI 2.867e+00 –
GENIE3_RF 3.783e+00 0.412e+00
Median GENECI 4.233e+00 0.412e+00
GENIE3_GBM 5.200e+00 0.092e+00
GENIE3_ET 5.433e+00 0.070e+00

CLR 7.333e+00 1.772e−04
MRNETB 7.517e+00 1.002e−04
MRNET 8.117e+00 8.194e−06
PCIT 8.350e+00 3.074e−06
ARACNE 9.250e+00 3.082e−08
C3NET 9.750e+00 1.857e−09
BC3NET 1.077e+01 2.853e−12
KBOOST 1.117e+01 1.846e−13
TIGRESS 1.123e+01 1.233e−13

capacity and relieving the researcher of the need to choose and rely on
an individual technique.

On the other hand, it is worth mentioning that GENECI, as well as
boosting the weight of the most promising techniques for each dataset,
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Fig. 10. For Melanoma expression data, gene networks inferred by multiple individual techniques as well as the consensus one produced by GENECI are represented. Graphs
attempt to represent gene regulatory networks by setting up genes through nodes and interactions through links. In this case, as they are captures of interactive representations,
the directionality of the interactions is not visible to the naked eye. However, the equal arrangement of nodes allows the topology of the different networks to be easily compared.
has shown that it can quickly silence those that are not. The presence
of noise from the less competitive techniques has not been detected,
and GENECI has not hesitated to assign low weights to them in those
cases where it has been considered pertinent.

All this assures that the GENECI proposal obtains a highly competi-
tive performance and ensures robustness for its use in the inference of
real-world datasets for which no previous solutions are known.

5.2. Real-world: MELANOMA

Finally, GENECI has also experimented on non-simulated gene ex-
pression data. Specifically, real-world clinical data from melanoma
patients are used. These include gene expression levels obtained from
NanoString,3 i.e., from the platform comprising the immunological
profiling panel. This panel was treated and subjected to specific filtering
techniques, resulting in the elimination of 35 genes showing less stable
results.

Since, in this case, there is no gold standard to validate the ac-
curacy of the consensus network, a review of the current literature
will proceed to manually check the existence of the most relevant
inferred relationships in studies related to melanoma and immunology.
Fig. 10 shows the results of the different individual techniques and the
GENECI consensus gene network at the top left. The three relationships
that obtained the highest level of confidence after consensus are (1)
IL1R2-ARG1, (2) IL18R1-IL1RL1 and (3) HLA-DQA1-HLA-DQB1.

Regarding the first interaction, several studies relate both genes
within the context of cancer [53,54]. Specifically, in [55] it is con-
cluded that the amebiasis pathway could be involved in melanoma
metastasis through these genes. Regarding the second connection, de-
spite appearing in the literature as highly associated with allergic
pathologies such as asthma or dermatitis [56–58], in [59] both genes
are related to repressors involved in epithelial cancers. Finally, for
the third interaction, in addition to numerous articles that relate the
HLA antigen family to this type of cancer [60,61], in some of them,
this relationship becomes the protagonist, and the central axis of the
study [62].

3 https://www.nanostring.com/
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6. Conclusions

GENECI has demonstrated that its ability to optimize the consensus
of several inference techniques leads to high-quality and accurate re-
sults. Moreover, its application on several datasets has allowed it to be
defined as an effective general methodology that provides good results
for networks of diverse characteristics, thus overcoming the limitations
imposed by some individual techniques due to their specialization in
specific regulatory networks.

This novel ensemble approach organized by an optimization al-
gorithm is proposed in this study for GRNs inference. Therefore, it
is intended to bring to the state-of-the-art novel and proven efficient
techniques encapsulated in a ready-to-use software package.

The construction of this procedure is a practice with clear indica-
tions of lasting over time since implementing new inference techniques
that improve the results of the current ones would not mean that this
work would be outdated. The higher the quality of the confidence lists
provided to GENECI, the higher the quality of the consensus network
built. Therefore, the emergence of new techniques could be beneficial
and worthy of study for incorporation into the ensemble produced by
the evolutionary algorithm.

Moreover, the integration of all the necessary software in a single
tool implemented in a language as well known as Python facilitates its
subsequent use by external users, who have easy access and installation
procedure thanks to the hosting of the code in a repository in GitHub4

and its availability in PyPI.5 The complementary functionalities incor-
porated into the tool (inference using known individual techniques,
application of cut-off criteria, generic evaluation, static and interactive
representation of networks, etc.) and its easy execution using a simple
hierarchy of commands encourage the installation and use of this tool.
Its flexibility to incorporate other expression data or confidence lists
from other techniques eliminates any limitation and allows the user to
elaborate on new experiments beyond the one presented in this work.

After developing this study and gaining a more detailed under-
standing of the gene network inference problem, a series of possible
modifications that could further improve the results have emerged.

4 https://github.com/AdrianSeguraOrtiz/GENECI
5 https://pypi.org/project/geneci/

https://www.nanostring.com/
https://github.com/AdrianSeguraOrtiz/GENECI
https://pypi.org/project/geneci/
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First, the design of new fitness functions with some biological context
or that explores in greater detail the topological term of the current one
could further align the optimization process with the accuracy obtained
during inference. From a different perspective, introducing a multi-
objective approach that deals with existing conflicts between several
functions are a territory to be explored whose application could provide
significant benefits. Finally, integrating new inference techniques or
even allowing the input of labeled data could be a great idea to bring
more knowledge to the consensus process, improving its trajectory and
results.

Regarding future experiments, based on previous collaboration with
Dr. Miguel Berciano [34,63], the intention is to work on the clinical
analysis of the network of melanoma patients to discover new biomark-
ers for this problem. In addition, to expand the scope of this proposal
in the field of real biological networks, new and more current datasets
will be used to cover other clinical pathologies.
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