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A B S T R A C T

Ontologies have become a standard for knowledge representation across several domains. In Life Sciences,
numerous ontologies have been introduced to represent human knowledge, often providing overlapping or
conflicting perspectives. These ontologies are usually published as OWL or OBO, and are often registered in
open repositories, e.g., BioPortal. However, the task of finding the concepts (classes and their properties)
defined in the existing ontologies and the relationships between these concepts across different ontologies –
for example, for developing a new ontology aligned with the existing ones – requires a great deal of manual
effort in searching through the public repositories for candidate ontologies and their entities. In this work, we
develop a new tool, KNIT, to automatically explore open repositories to help users fetch the previously designed
concepts using keywords. User-specified keywords are then used to retrieve matching names of classes or
properties. KNIT then creates a draft knowledge graph populated with the concepts and relationships retrieved
from the existing ontologies. Furthermore, following the process of ontology learning, our tool refines this first
draft of an ontology. We present three BioPortal-specific use cases for our tool. These use cases outline the
development of new knowledge graphs and ontologies in the sub-domains of biology: genes and diseases,
virome and drugs.
1. Introduction

Over the last decades, knowledge has become one of the main
assets of organisations. Knowledge management and processing have
consequently turned into critical challenges. The Semantic Web is
an enabling technology for the Life Sciences because it can signifi-
cantly enhance the efficiency and effectiveness of the integration of
diverse biological resources. In particular, the adoption of ontologies
is widespread, thus leading to increased research activity, in medicine
and biology (Ashburner et al., 2000; Beisswanger, Schulz, Stenzhorn,
& Hahn, 2008; Roldán-García, García-Godoy, & Aldana-Montes, 2016;
Smith, 2004).

The primary function of a domain ontology is to accurately repre-
sent knowledge by formally defining the concepts that surround and
act within a domain (Guarino, 1995). Life Sciences is the product of
the union of a large number of research fields that look at life as
a field of study, placing plant, animal and human organisms in the
focus (National Research Council et al., 2012). There are multiple
works related to the application of ontologies in Life Sciences. Zhang,
Sun, Diao, Zhao, and Shu (2021b) propose a method based on a
knowledge graph integration, which predicts adverse drug reactions.
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Furthermore, Wang et al. (2021) define knowledge graphs to make
drug–drug interaction predictions. Other studies, e.g., Al-Saleem et al.
(2021) and Xiong, Huang, Wang, Liu, and Zhang (2021), leverage prior
knowledge extracted from knowledge graphs to improve drug reuse.
All these works point to the advantages stemming from building new
ontologies to express task-specific knowledge.

However, the design of ontologies is not a trivial task. It requires
coordinating experts’ domain knowledge with the knowledge of se-
mantic Web technologies. Nevertheless, obtaining concepts related to
a domain is challenging due to the heterogeneity of existing con-
ceptualisations and the availability of ontologies. Furthermore, the
ontologies’ documentation or license is often deficient or even not ac-
cessible (Fernández-López, Poveda-Villalón, Suárez-Figueroa, & Gómez-
Pérez, 2019). In this context, the most widely adopted methodology
is the Ontology 101 methodology (Noy et al., 2001), which states that
every ontology must be created following seven fundamental steps: (1)
determining the domain and scope of the ontology, (2) considering the
reuse of existing ontologies, (3) listing the essential terms in the ontol-
ogy, (4) defining classes and hierarchies, (5) defining class properties,
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(6) defining facets, and finally, (7) creating instances. Another method-
ology, Methontology (Gómez-Pérez & Rojas-Amaya, 1999), focuses on
searching for previously developed ontologies to check whether any of
the knowledge they contain could be reused. Thus, the standard step in
those design processes is ontology reuse during the design stage (Doran,
Tamma, & Iannone, 2007). Additionally, ontology engineering good
practices recommend reusing as many terms from the same ontology as
possible rather than importing them from a large set of ontologies (Al-
harbi, Tamma, & Grasso, 2021). This recommendation is focused on
increasing the overall coherence of the developed ontology.

The eXtensible ontology development (XOD) (He et al., 2018) pro-
poses four principles for ontology development: (1) ontology term
reuse, (2) ontology semantic alignment, (3) ontology design patterns,
(4) usage for new term generation and existing term editing and
community extensibility. Another ontology development strategy is
the Minimum Information to Reference an External Ontology Term
(MIREOT) (Courtot et al., 2011) principle, which proposes using the
tiniest information of an external ontology term of direct interest to a
target ontology. Thus, MIREOT presents the following steps: (1) source
ontology URI; (2) source term URI; and (3) target direct superclass URI.
However, none of the proposed methodologies indicates how this reuse
should be approached or automated.

Ontologies are usually collected in systems like ontology directories,
repositories, libraries, and archives, such as Bioportal (Noy et al.,
2009), Cupboard (d’Aquin & Lewen, 2009), the OBO Foundry initia-
tive (Smith et al., 2007) and OLS (Côté, Jones, Martens, Apweiler, &
Hermjakob, 2008). The main objective of those web-based systems is
to make it possible for users to locate and utilise one or more ontologies
from a ‘live’ library of ontologies (d’Aquin & Noy, 2012). The main ap-
proaches for linking to existing knowledge are based on two key ideas:
the automated discovery of links between ontologies using mappings
between their classes (Euzenat et al., 2007) and the search for existing
ontologies based on ontology-level relationships (Allocca, d’Aquin, &
Motta, 2009). While the availability of ontology repositories represents
an important step towards reusability, little attention has been given to
automatically steering the ontology design process towards reusability.
This is also crucial in the FAIR principles (Wilkinson et al., 2016).
The FAIR principles are a collection of guidelines by which to improve
the Findability, Accessibility, Interoperability, and Reusability of data
objects. However, these repositories do not provide mechanisms to
support knowledge reuse from the registered ontologies in the design
process.

In recent years, numerous studies have focused on semi-automatic
ontology creation. Most concentrate on developing ontologies based on
text analysis through text mining and deep learning (Al-Aswadi, Chan,
& Gan, 2020; Asim, Wasim, Khan, Mahmood, & Abbasi, 2018; Dahab,
Hassan, & Rafea, 2008; Kaushik & Chatterjee, 2018). However, they
do not provide a mechanism to reuse other ontologies automatically,
as the effectiveness of automatically discovering the relations between
concepts is still unsatisfactory (Albukhitan, Helmy, & Alnazer, 2017;
Browarnik & Maimon, 2015).

In this work, we propose KNIT (KNowledge recyclIng neTworks),
an ontology design tool system with two primary goals. Firstly, we
propose a methodology to seek and rank concepts (i.e., classes, objects
and data properties) in existing knowledge structures, given a domain
context. And secondly, our system facilitates developing an ontology
with the classes and properties retrieved in the above step. Thus,
KNIT implements a workflow geared towards detecting the relevant
knowledge (classes, data and object properties) in existing ontologies,
analysing their interconnections and relationships, representing them
with a knowledge graph, and finally transforming it into an ontology
in OWL format.

As a proof-of-concept, we show how KNIT searches and reuses
2

concepts from ontology repositories in the BioPortal ecosystem. In this
implementation, the graph is built using Neo4j1 graph data platform
due to their features for managing graphs.

Thus, our work covers the research gap by providing a solution
to discover and retrieve the most relevant ontologies in a process
geared towards reusing their entities in the design process. The main
contributions of this work can be summarised as follows:

• A methodology to reuse existing knowledge by ad-hoc creation
of knowledge graphs, interlinking relevant classes and properties
from existing ontologies to help domain experts automatically
build the first version of the ontology required in their domain.

• An open-source tool for supporting the design of ontologies based
on reusing concepts from existing ontologies in BioPortal.

• An evaluation of the proposed tool in the context of five realistic
use cases, all of them related to Life Sciences data: comorbidities
in patients with COVID-19, the impact of the virome on human
intestinal health, a challenge of the Semantic Web and, and
finally, two case studies using two target ontologies hosted on
Bioportal.

2. Background and related work

This section describes background concepts in the Semantic Web
field to make this paper self-contained. A state-of-the-art review is also
provided to highlight the main differences between the related works
and the proposed approach.

2.1. Background concepts and technologies

Under Noy et al. (2001), an Ontology provides a formal represen-
tation of the real world, which defines an explicit description of the
concepts of a concrete domain expressed as classes, properties related
to the concepts and constraints derived from the described properties.
Ontologies are integrated into the W3C standard stack of the Semantic
Web.2

Knowledge graphs employ a graph-based data architecture to store
knowledge in scenarios where integrating, organising, and extracting
value from several data sources at scale is necessary (Hogan et al.,
2021). A knowledge graph is a semantic graph composed of vertices
(or nodes) and edges. The vertices represent concepts or entities, which
refer to the main categories of objects, such as molecule and protein.
An entity is a physical object in the real world, such as an illness
(e.g. cancer). The edges describe the semantic relationships between
concepts or entities (Ji, Pan, Cambria, Marttinen, & Philip, 2021).

RDF Resource Description Framework (McBride, 2004) is a W3C
recommendation which defines a language capable of describing re-
sources on the web as graphs. Thus, RDF graphs are defined in terms
of triples consisting of subject-predicate and object. Similarly, RDF
Schema (RDFS) can define vocabularies using the RDF description
(Staab & Studer, 2010).

OWL is the standard web ontology language proposed by W3C
and extends RDF and RDFS with more vocabulary. OWL is employed
by applications to describe terms and their interrelationships (Ding &
Peng, 2004).

OWL-DL is syntactic description that gives maximum expressiveness
hile retaining computational completeness and decidability (McGuin-
ess et al., 2004).

SPARQL is a query language for accessing RDF stores. It is the query
anguage recommended by W3C (Harris, Seaborne, & Prud’hommeaux,
013) to manage RDF graphs (Prud et al., 2006), due to supporting
ueries and web data sources identified by URIs.

Cypher is a query language for property graphs. Originally designed
nd implemented as part of the Neo4j graph database however, today
s also used by a number of commercial database companies and
esearchers (Francis et al., 2018)

1 https://neo4j.com/
2 https://www.w3.org/standards/semanticweb/

https://neo4j.com/
https://www.w3.org/standards/semanticweb/
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2.2. Related work

Ontology learning is the effort to automate or semi-automate ontol-
ogy creation processes (Khadir, Aliane, & Guessoum, 2021). In Cimiano,
Mädche, Staab, and Völker (2009), ontology learning is contemplated
as a data mining problem, giving as a solution to the issue a system
built on four modules: a management module, a coordination module,
a processing module, and an algorithm module.

The authors in Gil and Martin-Bautista (2014) approach the ques-
tion from a systematic methodology for learning ontologies, using a
semi-automated and user-centred approach. They allow human inter-
vention at different moments of the creation process. This systematic
methodology offers a visual and manipulable workflow to study the
methods and tools used for the various resources. The work focuses
on analysing the fusion of existing knowledge and the enrichment of
existing ontologies. However, the systematic methodology does not
focus on creating ontologies from scratch.

To address this issue, Kumar, Kumar, and Singh (2016) present an
approach based on the extraction of patterns through linguistic and sta-
tistical studies. Their method relies on the construction of certain rules
and patterns related to the ontological components to be extracted.
Following the linguistic and statistical approach, in Kietz, Maedche, and
Volz (2000), the authors propose a semi-automatic ontology acquisition
method which iteratively improves the output ontology. This process
is focused on a central ontology, an existing generic ontology, which
is modified by employing rules such as taxonomical term dictionaries,
statistical techniques and association rules, among others.

The RENT algorithm (Kaushik & Chatterjee, 2018) is based on the
extraction of terms utilising regular expressions and textual processing
techniques. RENT attributes different weights to words based on the fre-
quency of use in the study corpus and patterns of relationships between
terms. This work proposes two approaches for relation extraction: the
mOIE approach (based on modified open information extraction) and
the RelExOnt approach (based on relation extraction for ontology).

Regarding automatic processes, there are two main areas of ongoing
research, automated learning and deep learning. Regarding the first
field, we note the DL-FOIL (Fanizzi, d’Amato, & Esposito, 2008) tool,
which can learn from the logical descriptions of the concepts using
a supervised process. The authors in Jiang, Huang, Nickel, and Tresp
(2012) present a combination of deductive reasoning and automatic
learning.

Nowadays, we can observe intensified efforts focusing on deep
learning approaches. There are studies at the intersection of machine
learning, pattern recognition, optimisation, neural networks and graph-
ical modelling. Regarding this intersection, in Petrucci, Ghidini, and
Rospocher (2016) the authors present the idea of creating logical
description formulas (DL) from natural language through the use of
neural networks. On this point, Casteleiro et al. (2016) introduce a
methodology where some semantic distribution models are utilised
together with word2vec embeddings (Mikolov, Chen, Corrado, & Dean,
2013; Mikolov, Sutskever, Chen, Corrado, & Dean, 2013). A similar
method, which also uses word2vec, is proposed in the work (Albukhitan
et al., 2017) with the addition of seed terms and the extraction of
related terms after setting an experimental similarity threshold.

In Life Sciences, in Arguello Casteleiro et al. (2018) the authors
employ the word2vec to automatically identify acceptable free-text
erms for genes and proteins in a corpus of millions of scientific publica-
ions. Additionally, they use the biological knowledge of cardiovascular
isease ontology (CVDO) to improve the performance of word2vec.

Ontology reuse is creating new ontologies using existing ontological
nformation as input (Caldarola & Rinaldi, 2016). One can differen-
iate between ontology merging and integration depending on the
nformation in the knowledge sources and if their domains coincide.
urrent ontology engineering approaches address just a tiny portion of
3

eusability difficulties (Pinto & Martins, 2001).
Table 1
KNIT utilises basic OWL-DL semantic syntax to define ontologies formally.

Descriptions Abstract syntax DL Syntax

Operators 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝐶1 , 𝐶2 ,… , 𝐶𝑛) 𝐶1 ⊓ 𝐶2 ⊓⋯ ⊓ 𝐶𝑛
𝑢𝑛𝑖𝑜𝑛(𝐶1 , 𝐶2 ,… , 𝐶𝑛) 𝐶1 ⊔ 𝐶2 ⊔⋯ ⊓ 𝐶𝑛

Restrictions
for at least 1 value 𝑉 from 𝐶 ∃𝑉 .𝐶
for all values 𝑉 from 𝐶 ∀𝑉 .𝐶
R is Symmetric 𝑅 ≡ 𝑅−

Class Axioms 𝐴 𝑝𝑎𝑟𝑡𝑖𝑎𝑙(𝐶1 , 𝐶2 ,… , 𝐶𝑛) 𝐴 ⊑ 𝐶1 ⊓ 𝐶2 ⊓⋯ ⊓ 𝐶𝑛
𝐴 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒(𝐶1 , 𝐶2 ,… , 𝐶𝑛) 𝐴 ≡ 𝐶1 ⊓ 𝐶2 ⊓⋯ ⊓ 𝐶𝑛

At the same time, many information sources do not explicitly accept
extra ontological primitives like attributes and axioms. Domain ex-
perts have trouble understanding such complicated structures, making
integrating them into the target ontology challenging (Doran et al.,
2007). In this sense, MoodTool (Doran et al., 2007) is software to
extract entities from ontologies to reuse them. Nevertheless, a flaw in
its implementation is that the concepts inherited from other ontologies
are not obtained.

OntoFox (Xiang, Courtot, Brinkman, Ruttenberg, & He, 2010) fetches
user-specified terms and their annotations from source ontologies and
assigns them under defined superclass(es) in target ontologies. Ontodog
(Zheng, Xiang, Stoeckert, & He, 2014) and Ontobull (Edison, Jie, Smith,
Yongqun, et al., 2016) are based on OntoFox, and are designed for
obtaining terms and axioms from a set of ontologies. Many other tools
also support ontology term reuse. The Protégé MIREOT plugin Hanna
et al. (2012) and OntoMaton (Maguire, González-Beltrán, Whetzel,
Sansone, & Rocca-Serra, 2013) also facilitate terms reuse. Furthermore,
ROBOT (Overton, Dietze, Essaid, Osumi-Sutherland, & Mungall, 2015)
is a Java command-line utility that supports extracting ontology words.
Besides, Ontobee (Ong et al., 2017), on its web page,3 has a function
that displays all other ontologies that utilise a specific term.

In contrast to the previous approaches, our system, KNIT, automates
iscovering relevant ontologies, their concepts, attributes, entities and
xioms in any repository of ontologies. It also keeps track of the
appings between ontologies in the domain of the ontology repository.
NIT allows specifying the input terms without their URI, then helping

he user with the re-utilisation of axioms. Therefore, KNIT addresses
he research gap by providing a solution to retrieve the most relevant
ntologies in a reuse process and a methodological approach to reusing
xisting knowledge from existing ontologies to build the core of the
esired ontology for a domain specified via keywords. Furthermore, the
esults provided by our approach could be extended using any of the
elated ontologies to enhance the resulting ontology.

. KNIT framework for semi-automated ontology building

KNIT follows the OWL-DL semantic syntax to define new ontologies.
able 1 summarises the OWL-DL syntax, which includes various types
f operators, restrictions, and axioms to represent the concepts and rela-
ionships within a domain. Thus, KNIT has a rich syntax that provides
or different types of operators, restrictions, and axioms to represent
he concepts and relationships within a domain. These features allow
NIT to define complex knowledge formally and logically, making it
elpful in developing ontologies with the characteristics of knowledge
epresentation, semantic web development, and automated reasoning.

KNIT takes a list of keywords as input and produces an OWL
ntology importing the reused artefacts (concepts and properties) as a
esult. KNIT framework for ontology construction consists of four steps
or building a knowledge graph that will be translated to OWL:

3 https://ontobee.org/

https://ontobee.org/
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Fig. 1. Structure of KNIT algorithm. There are described the four steps of the algorithm
— first, retrieval of candidate concepts. Second, ranking and selecting concepts. Later,
building a taxonomy and finally enrichment and creating the owl file.

1. Retrieval of candidate concepts;
2. Selection of concepts;
3. Taxonomy building;
4. Retrieval of other artefacts/ enrichment step.

An overview of the process is represented in Fig. 1. KNIT takes
the list of keywords or search terms (so, a multi-query specified by
the user) that are to be matched 1:0..1 to concepts from all source
ontologies of an ontology repository. The output ontology is built around
these concepts. To convey an intuition of our approach, we assume
that the ontology repository allows for four types of operations: (a)
retrieving a ranked list of matching 4 concepts and their provenance,
i.e., their source ontology, given a single input term; (b) retrieving
all parent concepts of a given concept in a specific source ontology;
(c) retrieving equivalent concepts across all source ontologies given a
specific concept (d) retrieving all properties of a given concept in a
specific source ontology.

Step 1: Retrieval of candidate concepts. For the first step, we carry out
operation (a) in the ontology repository for each search term. For each
term, we record only the first candidate concept, ranked by similarity,
from each of the source ontologies, thus obtaining candidate concepts
(Fig. 2).

Step 2: Selection of concepts. To finalise the mapping from input terms
to concepts, we rerank candidate concepts according to the coverage
of their source ontologies in descending order (Fig. 3). We define the
coverage as the number of candidate concepts retrieved from a single
source ontology. We then assign a top candidate to each of the input
terms with a non-empty candidate list. If there is a tied ranking, we
assign priority to a concept with more properties in its source ontology.

4 We define the notion matching as a black box – i.e., we rely on a third
party ontology repository to provide a functionality of ranking concepts, across
all the source ontologies reflected in the repository, based on a textual query
supplied by the user.
4

Fig. 2. Retrieval of candidate concepts. In this step, KNIT fetches the terms in the
ontology repository and returns a set of tuples of terms and ontologies ranked by
similarity.

Fig. 3. Selection of concepts. This step assigns a candidate concept to each term. The
candidate is selected according to the coverage of its source ontologies.

Step 3: Taxonomy building. To convert the selected concept set into a
taxonomy, we recursively retrieve parent concepts from the respective
source ontologies for each of the selected concepts. The retrieved parent
nodes and corresponding taxonomy relationships are included in our
structure. The process iterates through selected candidates from step 2
in descending rank order. It retrieves parent concepts until one of three
stopping conditions are met: a root, Thing node, is reached; a newly
retrieved parent node has an equivalent node among other selected
nodes and already retrieved parent nodes, via operation (c); a candidate
node has a parent node among already retrieved parent nodes or
selected candidates, via operation (b). The process is illustrated in
Fig. 4.

Step 4: Retrieval of other artefacts. For each of the nodes of the tax-
onomy created in the previous step, we retrieve properties from the
source ontologies for data properties and instances. This process is
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Fig. 4. Taxonomy building. The third step of KNIT transforms the concept set in a
taxonomy, creating a graph with nodes and relationships between them. Each number
in the branch means the order of creation of the graph.

straightforward, as they are transferred directly into the output on-
tology. For object properties, we import the ‘target’ concepts into the
output ontology as stubs. Specifically, we do not recursively import the
properties of these stub concepts — we keep them as boundary items
in the proposed output ontology.

3.1. Formal description of the algorithm

More formally the algorithm can be represented as follows. We
denote the multi-query supplied by the user as 𝑄 = {𝑡1, 𝑡2,… , 𝑡𝑛}, where
𝑡𝑖 represents an individual search-term. For simplicity, in the formal
definition of the algorithm, we represent the repository of ontologies
as a single directed (multi-)graph 𝐺 = {𝑉 ,𝐸}, where 𝑉 denotes a
collection of the nodes of the graph that is to say, concepts of the on-
tologies, and 𝐸 denotes the collection of edges between them. Vertices
and edges of 𝐺 are all vertices and edges of ontologies 𝑂1, 𝑂2,… , 𝑂𝑚.
Moreover, we denote individual concepts as 𝐶𝑖,𝑗 , so that the notation
conveys the provenance of the node by tying it to a specific ontology
represented in the repository 𝐺 specifically, 𝐶𝑖,𝑗 denotes 𝑗th concept of
the 𝑖th ontology. Individual edges of 𝐸 are denoted as 𝑒𝑙,𝐶𝑖,𝑗 ,𝐶𝑘,𝑙

, where
𝑙 is the identifier of the edge type, property URI, 𝐶𝑖,𝑗 is the source node
and 𝐶𝑘,𝑙 is the target node.

The operation of retrieving a ranked list of matching nodes (i) can
be defined via a scoring function (1), where string[] is used to denote
a set of all possible user-supplied keyword queries.

The set of retrieved candidate concepts for a term 𝑡𝑘 can be therefore
defined as function (2), where 𝜖 denotes a minimal strength of a match
relationship (e.g., 𝜖 = 0). Set of all candidates 𝑆 is then defined as
function (3).

Coverage, used to rank per-search-term candidates, can be then
defined formally as function (4).

Let 𝑑𝑜𝐶𝑖,𝑗
denote out-degree of 𝐶𝑖,𝑗 in 𝐺. Selection of candidate

concepts can be defined as a function 𝐻 over the sets of candidate
concepts 𝑆𝑡𝑘 : function (5)

We denote a set of selected concepts as function (6). We note that
theoretically, 𝐻 does not provide a 1:0,1 mapping from search-terms to
concepts; however, the approach has been effective to this end in our
empirical evaluations, i.e. no additional tie-breaker mechanisms were
needed in examples presented further in this work.

𝜌(𝑡𝑘, 𝐶𝑖,𝑗 ) ∶ (𝑠𝑡𝑟𝑖𝑛𝑔[], 𝑉 ) ↦ R≥0 (1)
5

𝑆𝑡𝑘 = {𝐶𝑖,𝑗 ∶ ∀𝑖,𝑗∧𝑗≠𝑙𝜌(𝑡𝑘, 𝐶𝑖,𝑗 ) > 𝜌(𝑡𝑘, 𝐶𝑖,𝑙) ∧ 𝜌(𝑡𝑘, 𝐶𝑖,𝑗 ) > 𝜖} (2)

𝑆 = 𝑆𝑡1

⋃

𝑆𝑡2

⋃

...
⋃

𝑆𝑡𝑛 . (3)

ℎ(𝑡𝑘, 𝐶𝑖,𝑗 ) = |𝐶𝑘,𝑙 ∶ ∀𝑙∧𝑘=𝑖𝐶𝑘,𝑙 ∈ 𝑆| (4)

𝐻(𝑆𝑡𝑘 ) = 𝐶𝑖,𝑗 ∶ 𝐶𝑖,𝑗 ∈ 𝑆𝑡𝑘 ∧ ∀𝐶𝑙,𝑝∈𝑆𝑡𝑘
ℎ(𝐶𝑖,𝑗 ) ≥ ℎ(𝐶𝑙,𝑝)∧

∄𝐶𝑙, 𝑝 ∈ 𝑆𝑡𝑘 ⧵ 𝐶𝑖,𝑗 (𝑑𝑜𝐶𝑖,𝑗
≤ 𝑑𝑜𝐶𝑙,𝑝

∧ ℎ(𝐶𝑙,𝑝) = ℎ(𝐶𝑖,𝑗 )) (5)

𝑁 = 𝐻(𝑆𝑡1 )
⋃

𝐻(𝑆𝑡2 )
⋃

...
⋃

𝐻(𝑆𝑡𝑛 ) (6)

1 # N - set of selected 'seed' concepts C
# T - taxonomy in construction

3 # G - ontology repository
# C - set of concepts

5

def build_taxonomy_branch(C, G, T):
7 if C in T:

return
9 T.vertices.add(C)

equivalence_found=False
1 for v in G.get_equivalent_classes(C):

if v in T:
3 T.edges.add(C, v, owl.equivalence)

equivalence_found=True
5 if equivalence_found:

return
7 for p in G.get_superclasses(C):

build_taxonomy_branch(p, G, T)
9 T.edges.add(p, C, owl.subclass)

1 T=Graph(V={owl.Thing})
for C in N:

3 build_taxonomy_branch(C, G, T)

Listing 1: Pseudocode illustrating taxonomy creation from selected
concepts. For each concept in the set of selected concepts, KNIT
searches equivalented concepts in the ontology repository and create
a relationship between them.

The process of building a graph 𝑇 i.e., taxonomy building step, is
represented in Fig. 4, but it can be described more formally with the
pseudocode shown in Listing 1.

The retrieval of other artefacts, i.e., properties and instances, is then
carried out for each concept of the taxonomy 𝑇 created in the previous
step. It results in a creation of a draft ontology 𝑂 and can be presented
as shown in Listing 2. The resulting graph structure, 𝑂 is then returned
to the user in OWL format.

1 # T - taxonomy is constructed in the previous step
# O - ontology in construction

3 # G - ontology repository

5 edge_types={owl.ObjectProperty, owl.DataProperty,
owl.Annotation,

owl.Disjoint, owl.Type, owl.Equivalent}
7 O = copy(T)

9 for C in T.concepts:
edges=G.get_properties(C)

1 for e in edges:
if e.type in edge_types:

3 if e.target not in O:
O.vertices.add(e.target)
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5 O.edges.add(e)

Listing 2: Pseudocode illustrating taxonomy enrichment of the
taxonomy with properties from the ontology repository. For each
concept, KNIT fetches the instances, data and object properties from
he ontology repository. Then, all the elements found are included in
he new ontology.

. Use cases: Knowledge graph exploration

.1. Implementation of the KNIT system

In order to show the use of KNIT in real scenarios, we have devel-
oped several use cases taking advantage of a set of existing ontology
repositories in the Life Sciences: the Bioportal ecosystem. BioPortal5
s an open-source repository for biological ontologies in OWL, RDF,
nd OBO. Ontologies can be browsed, searched for, and viewed. Be-
ides, Bioportal allows users to annotate ontology terms, map terms to
ne another, and review ontologies based on elements like usability,
omain coverage, content quality, documentation, and support (Noy
t al., 2009). The BioPortal ecosystem covers the following databases6:

• BioPortal: Repository of biomedical ontologies with 1.018 ontolo-
gies, 14.740.276 classes and a total of 79.636.946 properties.

• AgroPortal LIRMM : Repository of semantic resources for the agri-
culture domain with 147 ontologies, 938.638 classes, 2.963.171
individuals and more than 323 users.

• BioPortal SIFR: Repository of French biomedical ontologies with
40 ontologies, 888.324 classes, 563.312 properties, and more
than 160 users.

• EcoPortal: Repository created by LifeWatch ERIC of semantic
resources for the ecological domain with 25 ontologies and more
than 815 classes.

• MedPortal: Repository of semantic resources for the medical do-
main with 54 ontologies and more than 2.000.000 classes.

The KNIT methodology has been adapted to the particularities of
hese databases, including a final process responsible for converting the
esulting graph to OWL format, thus facilitating its study and reuse by
he life sciences research community.

In this case, BioPortal is accessed using the provided REST-API.7
he KNIT tool takes advantage of the functionalities provided by the
ioPortal ecosystem: keyword search and ontology mapping retrieval.
hen, specific information related to a given ontology is retrieved using
PARQL queries to the particular SPARQL Endpoint of each database.

With the information collected from the REST-API and the SPARQL
ndpoints of the different databases of the BioPortal ecosystem, our
ool imports the data through massive queries to Neo4j, as presented
n the Cypher queries listing 3, listing 4, listing 5, listing 6 and listing
. The MATCH clause in cypher lets users describe the patterns that
he database should look for. Besides, MERGE allows new data to be
reated and bound in the graph.8

MERGE (a {name:'name',label:'label', uri:'uri',synonym:'[
synonym]', definition:'definition', ontology: '
ontology'})

SET a:ontology acronym
RETURN a

Listing 3: Cypher query that adds a new node in a graph given a name,
a label, a URI, a set of synonyms and the graph itself, which represents
an ontology.

5 http://bioportal.bioontology.org
6 Statistics as of November 2022.
7 http://data.bioontology.org/documentation
8

6

https://neo4j.com/developer/cypher/ N
MATCH (a {uri:'uri'}),(b)
MERGE(a)-[:PROPERTY {{uri:"http://www.w3.org

/1999/02/22-rdf-syntax-ns#type"}}]->(b)
RETURN a,b

Listing 4: A query that assigns each node its type where b represents
the type of the node.

MATCH (a {{uri: 'uri'}),(b {uri:'uri parent'})
MERGE (a)-[:SCO {uri: 'http://www.w3.org/2000/01/rdf-

schema#subClassOf'}}]->(b)
RETURN a,b

Listing 5: Cypher query whose goal is to create the relationships
subClassOf between two classes.

MATCH (a {uri: 'uri1'}),(b {uri:'uri2'})
MERGE (a)-[:mapping {uri:'http://www.w3.org/2002/07/

owl#equivalentClass'}]->(b)-[:mapping {uri:'http
://www.w3.org/2002/07/owl#equivalentClass'}]->(a)

RETURN a,b

Listing 6: Cypher query that creates the relationship equivalentClass
between two classes.

MATCH (a {uri:'uri1'}),(b {uri:'uri2'})
MERGE (a)-[:PROPERTY {uri:'uri property', label: 'label

property', type:' type property'}]->(b)
RETURN a,b

Listing 7: Cypher query, whose aim is to create custom relationships
between two classes.

Once the creation of the graph is finished, Neo4j allows studying
he ontologies to which the different nodes belong and how the other
ntologies are aligned. After incorporating the graph into Neo4j, the
ool converts the graph to OWL format so that it is easier to study, thus
ompleting the workflow of the tool.

It is worth noting that the KNIT tool does not limit the number
f maximum keywords in the list of search terms as KNIT groups the
eywords to search by batches of terms.

.2. Use cases

This section illustrates realistic use cases for the design of ontologies
ased on the reuse of existing knowledge. Three use cases made from
ctual research data are presented below. These case studies have been
eveloped using KNIT in conjunction with the BioPortal database. As
ar as there is no reference ontology, these cases have been evaluated
y an expert to analyse the usefulness of the produced solutions.

.2.1. Use case 1: Genes and diseases
This use case is based on the work of Singh, Mobeen, Chandra,

oshi, and Ramachandran (2021), which addresses the issue of diseases
hat aggravate the adverse effects of SARS-CoV 19 and the genes
hat contribute to the development of these diseases. Thus we aim to
esign an ontology in the domain of this research work, related to
roteins, genes and diseases. Therefore the keywords that KNIT will
se are MRPS25, MRPS27, SRP72, FBLN5, FBN1, FBN2, Leigh syndrome,
earns–Sayre syndrome, Williams syndrome, Marfan syndrome, congenital
ontractural arachnodactyly and acute myeloid leukaemia.

The retrieval of candidate concepts step used the BioPortal API us-
ng the input terms obtaining classes from the following ontologies:
ational Cancer Institute Thesaurus (NCIT) (Kumar & Smith, 2005),

http://bioportal.bioontology.org
http://data.bioontology.org/documentation
https://neo4j.com/developer/cypher/
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Table 2
Candidate concepts obtained from the different ontologies for the creation of use case
1.

Keywords Data found

SRP72 Found class: SIGNAL RECOGNITION
PARTICLE, 72-KD
Synonymous: SRP72
Uri: http://purl.bioontology.org/
ontology/OMIM/602122
Ontology: OMIM

FBLN5 Found class: FBLN5
Synonymous: FBLN5, ADCL2, EVEC,
DANCE, FIBL-5, UP50, ARMD3, ARCL1A
URI:
http://identifiers.org/ncbigene/10516
Ontology: GEXO

Williams syndrome Found class: Williams Syndrome
Synonymous: Williams Syndrome,
Williams–Beuren Syndrome (WBS),
Williams–Beuren Syndrome, Williams
syndrome
URI: http://ncicb.nci.nih.gov/xml/owl/
EVS/Thesaurus.owl#C85232
Ontology: NCIT

FBN2 Found class: FBN2 gene
Synonymous: FBN2 Gene, FBN2,
Fibrillin 2 Gene
URI: http://ncicb.nci.nih.gov/xml/owl/
EVS/Thesaurus.owl#C120566
Ontology: NCIT

Online Mendelian Inheritance in Man (OMIM) (Hamosh, Scott, Am-
berger, Valle, & McKusick, 2000), Gene Expression Ontology (GEXO),9
and SNOMED-CT.10

As previously explained, the knowledge structure is generated from
the input data (keywords or search terms). An example is presented in
Table 2, where we can observe the search terms and what is retrieved
by the tool. It is interesting to note the case of the SPR72 keyword,
for which our tool has designated the Signal Recognition concept as the
correct mapping since this concept has a synonym in its ontology that
matches our search term.

The ranking and selection of concepts step provided a ranking of these
ontologies based on the number of input terms represented in them:

1. NCIT [7 terms: fbn1, fbn2, leigh syndrome, Kearns–Sayre syn-
drome, williams syndrome, marfan syndrome, congenital con-
tractural arachnodactyly].

2. GEXO [6 terms: mrps25, mrps27, fbln5, fbn1, fbn2, leigh syn-
drome].

3. SNOMEDCT [4 terms: Kearns–Sayre syndrome, williams syn-
drome, congenital contractural, arachnodactyly, acute myeloid
leukaemia].

4. OMIM [4 terms: srp72, leigh syndrome, Kearns–Sayre syndrome,
marfan syndrome].

The building a taxonomy step produced a Neo4j graph with the
retrieved concepts (see Fig. 5) and their sub-taxonomies in the reused
ontologies (see Fig. 6).

During the enrichment step, this Neo4j graph is extended with
additional information from the reused ontologies. This step produces
the final representation of the resulting graph in the Neo4j database,
as seen in Fig. 7.

9 https://bioportal.bioontology.org/ontologies/GEXO
10 https://bioportal.bioontology.org/ontologies/SNOMEDCT
7

Fig. 5. Use Case 1: Ontology classes. The found classes are from the following
ontologies: NCIT (Yellow), GEXO (Blue), OMIM (Green) and SNOMEDT (Red).

As stated, the resulting graph is translated to OWL in a final step.
This resulting ontology takes advantage of the alignments to interrelate
the different branches. In Fig. 8 we see a representation of the new
ontology generated by the Protégé software. This result is relevant for
researchers working in this domain. However, the expert evaluation
highlights some minor aspects of repeating the ‘‘protein’’ concept ex-
tracted from different ontologies. This issue could be solved by aligning
the reused ontologies to discover the similarity of concepts.

4.2.2. Case 2: Viroma ontology
The second use case reuses the dataset introduced by Gregory

et al. (2020). As the authors explain, gut microbes profoundly affect
humans, but the viruses that affect them are often overlooked due
to the limitations of the reference database. To resolve this situation,
the researchers developed a human intestinal virome (GVD) database
from 2697 viral particles or microbial metagenomes from 1986 people
representing 16 countries.

The retrieval of candidate concepts step used the BioPortal API using
the input terms obtaining classes from the following ontologies: Med-
ical Subject Headings (MESH),11 National Cancer Institute Thesaurus
(NCIT) (Kumar & Smith, 2005), Biological and Environmental Research
Ontology (BERO),12 National Center for Biotechnology Information
(NCBI) Organismal Classification (NCBITAXON)13 and Interlinking On-
tology for Biological Concepts (IOBC) (Kozaki, Kushida, Yamamoto, &
Takagi, 2019).

The ranking and selection of concepts step provided a ranking of these
ontologies based on the number of input terms represented in them:

1. MESH [22 terms: adenoviridae, anelloviridae, asfarviridae, astro-
viridae, caliciviridae, circoviridae, geminiviridae, lipothrixviridae,
herpesviridae, inoviridae, iridoviridae, microviridae, myoviridae,
papillomaviridae, parvoviridae, picornaviridae, podoviridae, poly-
omaviridae, poxviridae, rudiviridae, siphoviridae, archaeal virus].

2. BERO [18 terms: alphaflexiviridae, anelloviridae, asfarviridae, bi-
caudaviridae, circoviridae, geminiviridae, inoviridae, iridoviridae,
lipothrixviridae, microviridae, myoviridae, papillomaviridae,
podoviridae, polyomaviridae, rudiviridae, siphoviridae, virgaviri-
dae, archaeal virus].

11 https://bioportal.bioontology.org/ontologies/MESH
12 https://bioportal.bioontology.org/ontologies/BERO
13 https://bioportal.bioontology.org/ontologies/NCBITAXON

http://purl.bioontology.org/ontology/OMIM/602122
http://purl.bioontology.org/ontology/OMIM/602122
http://identifiers.org/ncbigene/10516
http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#C85232
http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#C85232
http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#C120566
http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#C120566
https://bioportal.bioontology.org/ontologies/GEXO
https://bioportal.bioontology.org/ontologies/SNOMEDCT
https://bioportal.bioontology.org/ontologies/MESH
https://bioportal.bioontology.org/ontologies/BERO
https://bioportal.bioontology.org/ontologies/NCBITAXON
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Fig. 6. Use Case 1: Taxonomy graph. NCIT in yellow, GEXO in blue, OMIM in green, SNOMEDT in Red and THING in orange.
-

Fig. 7. Use Case 1: Enrichment. The hierarchy is extended with data and object
properties from the source ontologies.
8

3. NCIT [17 terms: study, individual, type, age, western, healthy, base
pair, adenoviridae, astroviridae, caliciviridae, herpesviridae, par-
voviridae, picornaviridae, poxviridae, unassigned, bacteriophage].

4. NCBITAXON [16 terms: caliciviridae, cruliviridae, genomoviridae,
herpesviridae, inoviridae, iridoviridae, lipothrixviridae, microviri-
dae, myoviridae, papillomaviridae, parvoviridae, poxviridae, rudi-
viridae, siphoviridae, smacoviridae, virgaviridae].

5. IOBC [16 terms: multiple displacement amplification, base pair,
anelloviridae, lipothrixviridae, asfarviridae, circoviridae, geminiviri
dae, inoviridae, iridoviridae, microviridae, myoviridae, papillo-
maviridae, podoviridae, polyomaviridae, rudiviridae, siphoviridae]

A sample of the term relationships generated by KNIT can be seen
in Table 3.

The building a taxonomy step produced a Neo4j graph with the
retrieved concepts (see Fig. 9) and their taxonomies in the reused
ontologies (see Fig. 10).

During the enrichment step this Neo4j graph is extended with addi-
tional information from the reused ontologies. This step produces the
final representation of the resulting graph in the Neo4j database as can
be seen in Fig. 11.

In Fig. 12 we can see a representation generated by the Protégé
software of the final ontology. The resulting ontology includes concepts
that cover the target terms used in the search, including a reasonable
structure connecting them, thanks to the limited number of ontologies
used in the reuse process.
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Fig. 8. Use Case 1: OWL Ontology. Base schema of the ontology developed automatically.
Fig. 9. Use Case 2: Ontology classes. The found classes are from the following ontologies: MESH (pink), NCIT (Yellow), BERO (Blue), NCBITAXON (Green) and IOBC (Red).
4.2.3. Case 3: Ontological medicines
The third use case is part of the Semantic Web Challenge on Tabular

Data to Knowledge Graph Matching.14 For this use case, the dataset
name in the challenge15 has been selected. Using this dataSet, the KNIT
tool characterises and represents the keywords: Medicine, ATC Code,
Route of administration.

The retrieval of candidate concepts step used the BioPortal API us-
ing the input terms obtaining classes from the following ontologies:

14 https://www.cs.ox.ac.uk/isg/challenges/sem-tab/2021/index.html
15 TOUGH_WEB_MISSP_drugs.csv
9

National Cancer Institute Thesaurus (NCIT) (Kumar & Smith, 2005),
Bioscientific data analysis ontology (EDAM) (Black et al., 2021). Given
the necessary knowledge from the keywords we obtain the Table 4.

The ranking and selection of concepts step provided a ranking of these
ontologies based on the number of input terms represented in them:

1. NCIT [2 terms: medicine, route of administration]
2. EDAM [2 terms: medicine, atc code]

The building a taxonomy step produced a Neo4j graph with the
retrieved concepts (see Fig. 13) and their taxonomies in the reused
ontologies (see Fig. 14).

https://www.cs.ox.ac.uk/isg/challenges/sem-tab/2021/index.html


Expert Systems With Applications 228 (2023) 120239J. Rodríguez-Revello et al.
Table 3
Candidate concepts obtained from the different ontologies for the creation of use case
2.

Keywords Data found

Base pair Found class: Base Pair
Synonymous: base pair, Base Pair
URI: http://ncicb.nci.nih.gov/xml/owl/
EVS/Thesaurus.owl#C94634
Ontology: NCIT

Bicaudaviridae Found class: Bicaudaviridae
Synonymous: archaeal virus, prokaryotic
virus
URI: http://purl.obolibrary.org/obo/
NCBITaxon_423358
Ontology: BERO

Caliciviridae Found class: Caliciviridae
Synonymous: Nebovirus
URI: http://purl.bioontology.org/ontology/
MESH/D002139
Ontology: MESH

Multiple displacement
amplification

Found class: multiple displacement
amplification
Synonymous MDA
URI: http:
//purl.jp/bio/4/id/200906031228917655
Ontology: IOBC

Table 4
Candidate concepts obtained from the different ontologies for the creation of use case
3.

Keywords Data found

Route of
administration

Found class: Route of Administration
Synonymous: ROUTE DETAIL, Route of
Drug Administration, route of
administration (ROA), ROUTE, Drug
Route of Administration
URI: http://ncicb.nci.nih.gov/xml/owl/
EVS/Thesaurus.owl#C38114
Ontology: NCIT

atc code Found class: ATC code
URI: http://edamontology.org/data_3103
Ontology: EDAM

Medicine Found class: Medicine
Synonymous: Medicine, medicine
URI: http://ncicb.nci.nih.gov/xml/owl/
EVS/Thesaurus.owl#C1683
Ontology: NCIT

During the enrichment step this Neo4j graph is extended with addi-
tional information from the reused ontologies. This step produces the
final representation of the resulting graph in the Neo4j database as can
be seen in Fig. 15. In Fig. 16 we can see a representation generated by
the Protégé software of the final ontology. This ontology includes the
terms used in the search process. These concepts are well connected in
the ontology structure.

5. Evaluation

In the previous section, we have shown realistic examples of the
usage of the proposed methodology. However, the desired ontology
is unknown, making the evaluation of the algorithm subjective. This
section focuses on two synthetic use cases to evaluate KNIT. We pick
two target ontologies from BioPortal. Our choice of target ontologies is
based on the availability of mappings of the target ontology to other
ontologies in the repository. For each evaluation scenario, we restrict
KNIT from using the target ontology directly by adding it to a ‘black’
list. We use the concept labels of the target ontology as keywords.
Finally, we evaluate the algorithm on the similarity of the output
ontology to the target ontology. In other words, we would want KNIT
to re-create the target ontology, given its concept labels as inputs.
10
Fig. 10. Use Case 2: Taxonomy graph. MESH in pink, NCIT in yellow, BERO in blue,
NCBITAXON in green, IOBC in Red and THING in orange.

Fig. 11. Use Case 2: Enrichment. The hierarchy is extended with data and object
properties from the source ontologies.

We measure the overlap between both ontologies using the Jaccard
score (Essayeh & Abed, 2015; Sun, Ma, & Wang, 2015). The Jaccard’s
coefficient for the similarity of two sets A and B is calculated as follows:

𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝐴,𝐵) =
|𝐴

⋂

𝐵|
|𝐴

⋃

𝐵|

We can measure the distance between A and B, with values between
0 and 1 (values closer to 0 mean better results in approximating the
target ontology) as follows:

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐽 (𝐴,𝐵) = 1 − 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐴,𝐵) =
|𝐴

⋃

𝐵| − |𝐴
⋂

𝐵|
|𝐴

⋃

𝐵|

http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#C94634
http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#C94634
http://purl.obolibrary.org/obo/NCBITaxon_423358
http://purl.obolibrary.org/obo/NCBITaxon_423358
http://purl.bioontology.org/ontology/MESH/D002139
http://purl.bioontology.org/ontology/MESH/D002139
http://purl.jp/bio/4/id/200906031228917655
http://purl.jp/bio/4/id/200906031228917655
http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#C38114
http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#C38114
http://edamontology.org/data_3103
http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#C1683
http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#C1683
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Fig. 12. Use Case 2: OWL Ontology. Base schema of the ontology developed automatically.
Fig. 13. Use Case 3: Ontology classes. The found classes are from the following
ontologies: NCIT in blue and EDAM in yellow.

In our case A and B are the set of Classes and Properties from
the ontologies to be compared. In order to calculate the intersection,
we need to know which classes or properties mean the same from
a semantic point of view. This is needed as the URI of the classes
and properties in different ontologies could be not the same even
when they refer to the same conceptual piece of knowledge. Ontology
Alignment, also known as Ontology Matching, refers to the process of
identifying entities in two or more ontologies that share similarities
or matches. This technique enables the determination of relationships
between multiple ontologies. Various tools have been developed to
facilitate Ontology Alignment. However, in this work, we have followed
a manual alignment process.

For evaluations we use MINERAL16 ontology and GFO17 ontology.
MINERAL includes mappings with more than 74 different ontologies.

16 https://bioportal.bioontology.org/ontologies/MINERAL/
17 https://bioportal.bioontology.org/ontologies/GFO
11
Fig. 14. Use Case 3: Taxonomy graph.NCIT in blue and EDAM in yellow.

Meanwhile, GFO includes mappings with more than 400 different
ontologies.

5.1. MINERAL

The following words have been used as Keywords: Calcite, Evapor-
ite, Feldspar, Hematite, Magnetite, Malic, Mineraloid, NonmetallicMin-
eral, Olvine, Pyrolite, Pyroxine, Quartz, Glass. These words have been
selected from the labels of leaf classes that make up the MINERAL
ontology.

As Fig. 17 shows, the resulting ontology is similar to the target one,
with the resulting ontology containing additional parent concepts due
to the inclusive implementation of the MIREOT principle. The concepts
of the resulting ontology were all retrieved from SWEET ontology. This
ontology contains concepts matching all the query terms. The Jaccard

https://bioportal.bioontology.org/ontologies/MINERAL/
https://bioportal.bioontology.org/ontologies/GFO
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Fig. 15. Use Case 3: Enrichment. The hierarchy is extended with data and object properties from the source ontologies.
score between the result and the target is 0.84, which, we believe,
represents a good approximation.

5.1.1. GFO
The following keywords have been used as inputs: Category, Con-

cept, Symbol structure, Universal, Individual, Abstract, Concrete, Per-
petuant, Presential, Amount of substrate, Material boundary, Material
object, Processual Structure, Occurrent, Process, Property, Relational
role, Relator, Role, Processual role, Relational role, Social role, Space
time entity, Space entity, Spatial boundary, Line, Point, Surface, Spa-
tial region, Topoid, Time entity, Temporal region, Chronoid, Time
boundary, Left time boundary, Right time boundary.

The structure of the GFO ontology (target) is shown in Fig. 18. As
shown in Fig. 19, all the elements have been recovered using the two
different ontologies. NCIT18 was chosen as a primary source. Since not

18 https://bioportal.bioontology.org/ontologies/NCIT
12
all keywords were matched to NCIT concepts, KNIT filled in the gaps
with concepts from a second ontology (PMD19). The Jaccard overlap
between the target and resulting ontology is 0.55. Again, most ‘errors’
result from KNIT importing entire branches for its implementation of
the MIREOT principle. Notably, 93% (40 of 43) of GFO elements are
retrieved.

6. Discussion

The proposed system facilitates generating ontologies for a given
design need, with a focus on reusing the existing knowledge. Due to
the difficulty that this idea implies, specific design decisions were taken
in the KNIT design; the goal of these decisions was to improve the
speed, versatility and quality of the results. Example of these decisions

19 https://bioportal.bioontology.org/ontologies/PMD

https://bioportal.bioontology.org/ontologies/NCIT
https://bioportal.bioontology.org/ontologies/PMD
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Fig. 16. Use Case 3: OWL Ontology. Base schema of the ontology developed automatically.
Fig. 17. Comparative figure between the base structures of Mineral Ontology and the
KNIT ontology created with SWEET.

Fig. 18. Target Ontology (GFO).
13
Fig. 19. Resulting ontology for the GFO evaluation; the green colour represents the
PMD classes, and the red colour belongs to NCIT.

includes the strategy to retrieve the matching concept within a set of
ontologies or the ‘tiebreaker’ in the ontology ranking process.

The case of the ‘tiebreaker’, a circumstance that occurs when two
o more ontologies contain the same number of candidate concepts
matched to keywords, is not a trivial issue. In our case, said tiebreaker
is resolved by studying the ‘richness’ of the ontologies in terms of
properties that describe the candidate concepts. Thus, in case of a ‘tie’,
we opt to choose a concept with more information.

As shown, KNIT needs an ontology repository. The larger said
repository is and the greater its thematic richness, the better the per-
formance and retrieval effectiveness of KNIT would be. Thus, our case
studies have been based on BioPortal to have a large set of interrelated
ontologies in a given domain. However, KNIT can be applied to any
ontology repository since its benefits are not based on the API but on
knowledge reuse.
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As can be seen in the presented use cases, KNIT has been able to
etrieve and reconnect diverse knowledge to provide coherent results.
his retrieval and reconnection are evident in the taxonomy figures of
he use cases, where we can easily observe the existence of mappings
etween the various branches of our graphs.

However, despite the fact that our results appear to be coherent,
uantifying their quality is an open problem. This paper presents a
inimal evaluation using synthetic use cases, attempting to reconstruct

n ontology artificially removed from the repository. While it does
ot amount to a complete evaluation, we believe it would make for
reasonable starting point for future research on the topic. We plan

o address the issue of evaluating automated retrieval-based ontology
reation more systematically in our future work.

We also note that our evaluation lacks comparison to baseline
ffectiveness. This is primarily because KNIT effectively proposes a
ovel workflow, so comparisons to existing tools are problematic. For
xample, similar results could be reached with OntoFox, which imple-
ents the MIREOT principle and is the conceptually closest existing

ool. Nonetheless, reaching them with OntoFox would require the
ser to search for the individual concepts semi-manually, while KNIT
utomates the discovery process. On the other hand, a naive baseline of
mporting best matching concepts via BioPortal concept search will not
esult in a taxonomical structure. It will likely retrieve concepts from
ultiple source ontologies. The latter is an undesired characteristic

nown to hamper the coherence of the resulting structure (Alharbi
t al., 2021).

The proposed solution takes as input a set of keywords defining the
omain. This set is taken to retrieve those ontologies that are close to
he provided context. Thus, the selection of keywords is relevant for
etting good results. For example, when the number of keywords is
lose to one, the context cannot be properly determined due to the lack
f elements for selecting candidate ontologies. We will address the chal-
enge of correctly inferring the user’s intent from limited information
s a part of future work.

. Conclusions

In this work, we have presented KNIT, a solution for embedding
the reusability component in ontology design. Our approach provides
a way of designing new ontologies from existing knowledge. KNIT
depends on the existence of ontology repositories. The building of the
output ontology is done by accessing the ontology repository to collect
the terms of interest for the ontology designer. Thus, the process is
oriented to reconstruct the part of a knowledge graph that could solve
the application or domain needs.

As a proof of concept, we have implemented the proposed ap-
proach in the field of Life Sciences. We present case studies using the
BioPortal repositories. Neo4j has been used as the intermediate tool
for managing knowledge graph reconstruction. This project is open to
other developers to contribute to the tool and leverage it in their own
projects.20

Overall, we note that our initial hypothesis was met. Our work in
this space does not end here since we are presented with new lines of
research in relation to the validation of the ontologies generated by our
algorithm.

It should be noted that the algorithm is able to retrieve the context
starting from the user input (presented as a set of keywords) in a
chosen domain. Thus, this solution could be used as part of a data
characterisation process using the existing metadata as input. In this
sense, our approach would support other artificial intelligence solutions
for data characterisation through reusing existing knowledge. The 2021
AI Index Report published by the AI Index Steering Committee of
the Human-Centered AI Institute (Stanford University) (Zhang, Mishra,

20 https://github.com/ProyectoAether/KNIT
14
et al., 2021a), exposes this problem as a vital challenge to create rich
models that integrate data specific to the domain and adjacent knowl-
edge. In this sense, our algorithm can be presented as an advanced
and a powerful starting point for future studies that address ontological
learning and data characterisation as effective solutions.
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