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Abstract

In current years, cellular networks are experiencing profound changes to cope with the

increasing demand for ever-diverse and ever-demanding services. As a result, the size

and complexity of these networks has increased dramatically, evincing the need for

zero-touch network and service management solutions. In the Radio Access Network

(RAN), operators have already tackled the automation of management procedures in

the past, giving rise to Self-Organizing Networks (SON). However, classical SON solu-

tions are expected to be ine↵ective in next-generation networks o↵ering services with

extremely stringent and varying performance requirements. With the latest advances

in information technology, it is now possible to leverage massive data collected in the

Operations Support System (OSS) to develop advanced data-driven SON tools able to

capture the peculiarities of each particular network. These new SON solutions must

consider new features arising in 5G. One of these features is network slicing, allowing

the coexistence of several separate logical networks operating simultaneously over the

same physical infrastructure.

This thesis tackles the creation of data-driven self-management solutions for the

RAN. Among existing SON use cases, the scope of this work focuses on two particular

well-known self-planning and self-optimization use cases, namely RAN redimensioning

and mobility load balancing. In both cases, solutions are proposed for legacy RANs,

where all users share resources, and for new sliced RANs arising in 5G.

Regarding RAN redimensioning, this work explores the use of supervised learning

over network data to derive performance models to detect potential capacity bottle-

necks with radio planning tools. Models have been built for two purposes: estimating

radio throughput metrics per cell/slice in di↵erent radio access technologies and fore-

casting cell tra�c in the long term (i.e., months horizon).

Moreover, this thesis proposes two data-driven service-oriented mobility load ba-

lancing algorithms through handover parameter tuning. The main goal is to relieve
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local congestion issues by sharing tra�c with neighbor cells. In both proposals, tra�c

steering has been formulated as a control problem. The first algorithm deals with tra�c

steering among cells in di↵erent carriers with quality of experience criteria, whereas the

second algorithm tackles slice-aware tra�c steering to guarantee service level agreement

compliance in new 5G sliced RANs.

It should be pointed out that service-oriented self-management solutions proposed

in this thesis require prior knowledge of the application demanded per user. However,

obtaining such information nowadays is not straightforward for operators due to tra�c

encryption. The task of classifying encrypted tra�c per service type is also addressed

in this work. Such a problem has been tackled through unsupervised learning over

connection traces, circumventing the need for a labeled trace dataset or the installation

of expensive probes in the core network.

All the solutions proposed in this thesis rely on data currently available in the

OSS, thus requiring no change in network infrastructure. To support the significance

of results, performance assessment is always carried out in a realistic environment,

i.e., with data from commercial cellular networks when possible or with a simulation

tool calibrated with configuration and performance data from live networks otherwise.
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Resumen

En la actualidad, las redes de comunicaciones móviles están experimentando cambios

sustanciales para hacer frente a la creciente demanda de servicios móviles cada vez más

diversos y exigentes. Como resultado, el tamaño y la complejidad de estas redes ha

crecido dramáticamente, evidenciando la necesidad de soluciones de gestión de redes

y servicios sin intervención humana. En la red de acceso radio, los operadores ya

han abordado la automatización de los procedimientos de gestión en el pasado, dando

lugar a las redes autoorganizadas. Sin embargo, es esperable que las soluciones clásicas

no sean efectivas en las redes de nueva generación que ofrecen servicios con requisi-

tos de rendimiento extremadamente exigentes y diversos. Con los últimos avances en

tecnoloǵıas de la información, se puede aprovechar la ingente cantidad de datos que

se recopila en el sistema de soporte a las operaciones de la red para desarrollar herra-

mientas de gestión automática avanzadas basadas en datos, capaces de capturar las

peculiaridades de cada red particular. Estas nuevas soluciones de gestión automática

deben tener en cuenta las nuevas funcionalidades que surgen en 5G. Una de ellas es

la segmentación de red, que permite la coexistencia de varias redes lógicas operando

simultáneamente sobre la misma infraestructura f́ısica.

Esta tesis aborda la creación de herramientas basadas en el uso intensivo de datos

para la gestión automática de redes de acceso radio. Entre los casos de uso de auto-

gestión de redes celulares que existen, el alcance de este trabajo se centra en dos casos

de uso de autoplanificación y autooptimización muy extendidos: el redimensionado de

la red de acceso radio y el balance de tráfico por movilidad. En ambos casos, se pro-

ponen soluciones para las redes radio clásicas, en las que los recursos se comparten por

todos los usuarios, y para las nuevas redes de acceso radio segmentadas que aparecen

en 5G.

Para el redimensionado de la red radio, este trabajo explora el de modelos de

aprendizaje supervisado para detectar potenciales cuellos de botella de capacidad con
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herramientas de planificación radio. Se han creado modelos con dos objetivos: a) esti-

mar diversas métricas de caudal (throughput) a nivel de celda y segmento en distintas

tecnoloǵıas de acceso radio y b) predecir el tráfico de celda a largo plazo (es decir, con

un horizonte en una escala temporal de meses).

En paralelo, esta tesis propone dos algoritmos basados en datos para el balance

de tráfico por movilidad orientado al servicio mediante el ajuste de parámetros de

traspaso. El objetivo es aliviar problemas de congestión locales a través del reparto de

tráfico entre celdas vecinas. En ambas propuestas, el reparto de tráfico se ha formulado

como un problema de control. El primer algoritmo distribuye el tráfico entre celdas que

funcionan en distintas frecuencias portadoras con criterios de calidad de experiencia,

mientras que el segundo algoritmo aborda la tarea de repartir el tráfico en las nuevas

redes de acceso radio 5G segmentadas con el objetivo de garantizar el cumplimiento de

los acuerdos de servicio.

Cabe destacar que las soluciones de gestión automática orientadas al servicio pro-

puestas en esta tesis requieren conocer a priori el tipo de aplicación demandada por

cada usuario. Sin embargo, en la actualidad esta información no es fácil de obtener por

los operadores debido al encriptado del tráfico. La clasificación de tráfico encriptado

por tipo de servicio también se aborda en esta tesis. Este problema se ha afrontado con

el uso de aprendizaje no supervisado sobre trazas de conexión radio, que no requiere

un juego de datos etiquetado ni la instalación de caras sondas de tráfico en el núcleo

de la red.

Todos los métodos propuestos en esta tesis se basan en información actualmente

almacenada en el sistema de soporte a operaciones, y por tanto no requieren cambios en

la infraestructura de la red. Para avalar la importancia de los resultados, la evaluación

del rendimiento siempre se lleva a cabo en un entorno realista, es decir, con datos

de redes móviles comerciales cuando es posible o con una herramienta de simulación

calibrada con datos de configuración y rendimiento de redes reales en caso contrario.
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Chapter 1

Introduction

In this opening chapter, the motivation for this thesis is first explained, objectives are

then presented, the research methodology is next detailed and the structure of this

document is finally broken down.

1.1 Motivation

Mobile communication networks have experienced several changes over the last few

years. First, the explosive growth in wireless data tra�c has forced Mobile Net-

work Operators (MNOs) to increase network capacity. For this purpose, in the Radio

Access Network (RAN), classical one-tier macro-cell networks are evolving towards

multi-carrier systems with several operation bands and heterogeneous networks com-

bining small cells and macro cells [2]. Moreover, the highly varying performance re-

quirements and increasing user expectations have led to a change in network mana-

gement procedures from a network-centric paradigm based on network performance

to a user-centric approach focused on customer satisfaction (a.k.a. Quality of Expe-

rience, QoE) [3]. In parallel, the advent of 5G is expanding the business model of

MNOs, who will provide vertical industries with enhanced Mobile BroadBand (eMBB),

ultra-Reliable Low Latency Communications (uRLLC) and massive Machine Type

Communications (mMTC) services, boosting a fully-connected world [4]. The 3rd

Generation Partnership Project (3GPP) launched New Radio (NR) specifications for

standalone and non-standalone 5G networks from release 15 onward. In the RAN, new

frequency ranges (e.g., millimeter waves) and features (e.g., multi-connectivity, beam-

forming, massive Multiple-Input Multiple-Output – MIMO– schemes...) are introduced

1
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to achieve ambitious 5G performance goals [5].

As a result of the above changes, the size and complexity of mobile networks have

increased dramatically, evincing the need for network management tools with mini-

mal human intervention to guarantee an e�cient network operation. In the literature,

plenty of self-planning, self-deployment, self-optimization and self-healing strategies

have been proposed for the RAN in 2G (e.g., [6] [7] [8]), 3G (e.g., [9] [10] [11]) and 4G

(e.g., [12] [13] [14]) networks. Classical solutions for Self-Organized Networks (SON)

rely on analytical models and/or heuristic controllers designed according to the know-

ledge of experts. However, this approach is envisioned to be insu�cient and ine↵ective

in 5G and beyond systems (a.k.a. Next-Generation Networks, NGNs). for several rea-

sons. First, the coexistence of services with strongly di↵erent performance requirements

(e.g., energy e�ciency, latency, reliability, data rate. . . ) calls for a service-oriented

self-management paradigm. Second, SON tools based on preset and fixed controllers

will not make the most of network capabilities in NGNs with di↵erent service mix

(e.g., smart city vs. industry 4.0), network topology (e.g., heterogeneous vs. macro-cell

networks) and configuration (e.g., single-connectivity vs. multi-connectivity). Like-

wise, new 5G features such as network virtualization, cloudification, edge computing or

End-to-End (E2E) network slicing must be considered when managing the network [5].

Network Slicing (NS) is a particularly remarkable 5G functionality due to its strong

impact on network operation and performance. NS allows building separate logical net-

works tailored for specific purposes on top of a common physical infrastructure [15].

From a network management perspective, new Network Functions (NFs) arise in NS

scenarios (e.g., capacity brokers), whose parameters can be self-configured and self-

optimized. Moreover, several aspects must be considered when designing slice-aware

self-management solution, such as: a) the split of network resources among slices, b)

slice activation, deactivation or redimensioning of assigned resources, c) the possibi-

lity to tailor or even omit NFs per slice, and d) privacy issues that may prevent the

central manager and orchestrator from accessing slice-level data managed by the slice

tenant [16]. Additionally, note that a specific self-management solution may perform

di↵erently in distinct NS scenarios (e.g., multi-service slices leased by virtual MNOs

vs. single-service slices for verticals).

To overcome the limitations of legacy SON schemes, with the latest advances in Big

Data Analytics (BDA) and Artificial Intelligence (AI), it is now possible to develop fully

automated data-driven SON tools leveraging massive data (e.g., alarms, connection

traces, performance counters...) collected in the Operations Support System (OSS),
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giving rise to a Zero-touch Network and Service Management (ZSM) paradigm [17].

Cutting-edge data-driven solutions for ZSM networks rely on machine learning tech-

niques, able to capture the peculiarities of each particular network (e.g., type of

scenario, network topology, radio resource management algorithms, service mix, NS

set-up...) [18] [19]. The combination of NS and ZSM, creating logical networks mana-

ged without human intervention, has been recognized as the most e�cient method to

exploit network assets while guaranteeing customer satisfaction in NGNs [20].

A large number of SON use cases can be empowered with network data. Referen-

ces [17], [18] and [20] survey previous contributions proposing data-driven SON tools.

This thesis focuses on two well-known self-planning and self-optimization use cases,

namely RAN redimensioning and Mobility Load Balancing (MLB), for which some

research gaps are still pending (e.g., the design of slice-aware solutions). Although

these procedures are independent, their joint study is well-suited since, as explained

later in this chapter, data-driven RAN redimensioning and MLB solutions can ease the

implementation of a fully automated network design and optimization system.

RAN redimensioning is a critical task for MNOs to prevent capacity bottlenecks

caused by changing mobile tra�c patterns while avoiding unnecessary upgrades of net-

work resources. To detect potential problems in advance, proactive network planning

tools compare busy-hour tra�c forecasts with estimates of network capacity, often

measured as aggregated cell throughput. Tra�c forecasting is the task of predicting

expected tra�c from historical data, which can be treated as a time series analysis

problem. The use of supervised learning over historical network data for short-term

(i.e., second- or minute-scale horizon) and mid-term (i.e., day-scale horizon) tra�c fore-

casting in mobile networks has been extensively covered in the literature [21]. However,

redimensioning actions can take up to several months (e.g., new cell deployment). It

is still to be checked if supervised learning algorithms outperform classical time series

analysis for long-term cellular tra�c forecasting, which, as will be shown later, relies

on noisy and short time series.

In contrast to tra�c forecasting, performance estimation aims to predict Key Per-

formance Indicators (KPIs) at a given time from other information about network state

at the same time. Data-driven models have been proposed for estimating aggregated

cell throughput in High-Speed Down link Packet Access (HSDPA) and Long-Term

Evolution (LTE) networks. Most recent works rely on supervised learning, namely

multi-variable linear regression [22] [23] [24] or complex deep neural networks [25], over

data collected in the OSS. However, the performance of other non-linear models (e.g.,
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ensemble models based on decision trees) less prone to overfitting than deep neural net-

works has not been checked in these Radio Access Technologies (RATs). Likewise, other

throughput metrics with a higher impact on QoE (e.g., user throughput) should also

be considered in the redimensioning process. Additionally, note that the correlation

between network state and cell-level performance metrics may change when enabling

NS. Thus, a separate analysis is required for sliced RANs. In these networks, NFs

such as capacity brokers also require slice-level throughput estimates that complement

cell-level and user-level metrics.

Some redimensioning actions cannot be implemented immediately. In the mean-

time, a cost-e↵ective way of relieving capacity bottlenecks is sharing tra�c demand

between adjacent cells. Load balancing is a self-optimization use case that automa-

tically o✏oads users between cells to deal with uneven tra�c demand in a cellular

network1. It ensures that every user is constantly served by the cell o↵ering the best

performance, thus strongly impacting user experience. Tra�c steering can be addre-

ssed by adjusting antenna parameters such as transmit power [26] [27]. However, this

approach may create coverage holes. Alternatively, most works tackle load balancing

by optimizing mobility NFs (a.k.a. MLB), driven by logical parameters (i.e., timers,

power o↵sets...) that can be cost-e↵ectively and immediately tuned. Some authors opt

for optimizing cell reselection parameters [28] [29]. However, the preferred option is

tuning HandOver (HO) margins, since HO has a larger impact on network performance

[30] [31] [32]. QoE-driven MLB algorithms have only been proposed to handle tra�c

in one-tier macro-cell LTE scenarios [33] [34]. To make the most of capacity in current

multi-tier cellular networks, such an approach must be extended for self-optimizing

inter-frequency tra�c steering. Additionally, slice-aware MLB algorithms must be de-

signed to guarantee Service Level Agreement (SLA) compliance in complex and highly

dynamic sliced RANs [35].

It should be pointed out that service-oriented self-optimization algorithms, pro-

viding a customized handling per connection, assume prior knowledge of the type of

application (e.g., voice call, media streaming, instant messaging...) demanded per user.

Moreover, awareness of service mix can enhance performance models in radio planning

tools. However, classifying connections per service class in cellular networks is a cha-

llenging task due to: a) tra�c encryption, preventing MNOs from using deep packet

inspection techniques [36], b) the reluctance of MNOs to install expensive probes to

1In this thesis, load balancing refers to any tra�c steering strategy, even if the aim is not explicitly
balancing cell load.



CHAPTER 1. INTRODUCTION 5

capture tra�c flows in the core network, and c) the absence of labeled data required

to train classifiers based on supervised learning. All these issues can be circumvented

by performing classification with unsupervised learning over tra�c descriptors derived

from radio connection traces. Therefore, trace-based tra�c classifiers are precious

assets for MNOs.

1.2 Objectives

The aim of this thesis is to develop automatic data-driven procedures for the above-

mentioned self-planning and self-optimization use cases that can be implemented in

network management tools. Specifically, the goal of this thesis is threefold:

O1. Design a strategy for classifying encrypted tra�c per service class in the radio

interface, allowing a customized handling per connection in MLB algorithms and

providing service mix information for performance estimation models.

O2. Explore the use of supervised learning over data collected in the OSS to enhance

the performance of radio planning tools. To this end, three tasks are addressed:

O2.1. Forecast monthly busy-hour cell tra�c in the long term (i.e., months hori-

zon) from short and noisy time series.

O2.2. Estimate radio throughput metrics reflecting cell and user capacity in LTE

and HSDPA networks.

O2.3. Estimate radio throughput metrics reflecting cell and slice performance in

sliced RANs.

O3. Develop data-driven service-oriented MLB algorithms for scenarios where such

an approach has not been considered yet. Specifically, two use cases are covered:

O3.1. Inter-frequency MLB for multi-tier LTE networks with QoE criteria.

O3.2. Slice-aware MLB for 5G sliced RANs with SLA criteria.

The main contributions of this thesis are:

1) A system for encrypted tra�c classification per service class in the RAN relying

on unsupervised clustering over tra�c descriptors computed from information in

connection traces, including some novel features modeling connections at burst

level. The unsupervised approach ensures that the method works in the absence
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of network probes and labeled data, allows to identify new types of applications

arising in the network, and can be easily adapted to di↵erent RATs.

2) A methodology for cell tra�c forecasting in the long term based on supervised

learning that outperforms classical time series analysis. This task has not been

covered until now due to the scarcity of datasets comprising tra�c measurements

collected for years in live networks. However, results presented here evince the

need for further research in this direction.

3) A methodology for estimating radio throughput indicators from data in the

OSS based on supervised learning, which captures network peculiarities. The

methodology is extended to estimate di↵erent throughput indicators (average

user throughput and aggregated throughput) defined at di↵erent levels (cell and

cell-slice) in di↵erent RATs (LTE and HSDPA) and scenarios (legacy and sliced

RANs). The set of candidate predictors includes features derived from di↵erent

data sources (cell counters and connection traces).

4) Two algorithms for service-oriented MLB by tuning HO margins driven by net-

work data. The first algorithm steers tra�c among carriers by tuning inter-

frequency HO margins to improve user QoE in multi-service LTE networks. The

second algorithm performs slice-aware MLB among intra-frequency neighbor cells

to guarantee SLA compliance in all cells and slices. Both proposals rely on a pro-

portional controller driven by indicators computed from connection traces.

5) A dynamic system-level simulator updated to emulate the activity of a realistic

sliced RAN serving users demanding di↵erent uRLLC and eMBB services. In the

absence of commercial networks with network slicing, this tool is a precious asset

for validating slice-aware SON solutions.

All these contributions can be jointly used in a data-driven E2E network design and

optimization system such as that illustrated in Fig. 1.1. The system consists of two

automatic modules for proactive problem detection and problem avoidance, respecti-

vely, in the RAN. These modules are run recursively on a loop fed by network data.

In the problem detection module, cell/slice throughput estimation and long-term cell

tra�c forecasting models allow the proactive detection of potential capacity bottle-

necks on a cell or slice level. Then, in the problem avoidance module, service-oriented

MLB algorithms can temporarily solve imminent foreseen problems until the normal

network state is recovered or a more stable solution (e.g., capacity extension) is taken.

In the latter case, cell/slice throughput estimation models can be used to measure the



CHAPTER 1. INTRODUCTION 7

Figure 1.1: Data-driven network design and optimization system.

impact of candidate actions on network performance. The trace-based tra�c classifier

plays a crucial role in both modules, enabling the operation of MLB algorithms and

providing input features for throughput estimation models. Similarly, the simulator

enhanced as part of this thesis can be used as a digital twin to create realistic synthetic

datasets or validate new SON tools while keeping the live network working in a safe

operating area.

It should be pointed out that MNO constraints, often neglected in research work,

have been taken into account in this thesis. All the proposed models and algorithms

are centralized solutions conceived to make the most of connection traces and counters

currently collected by MNOs in the OSS. Moreover, when using supervised learning,

complex models based on deep neural networks have been avoided to consider the

possibility of having limited datasets and the reluctance of operators to increase com-

putational complexity in their network management tools. Finally, evaluation has

been carried out over data from live networks whenever possible, and with realistic

simulations otherwise.

1.3 Research methodology

Steps followed for the attainment of the defined objectives are described next, breaking

down the specificities of each objective:
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a) Problem selection and literature review. First, the set of SON use cases to be

tackled was identified. Then, the state of research in all the fields within the scope

of this thesis was thoroughly revised. The main topics covered were: a) SON,

to identify shortcomings in current RAN redimensioning and MLB solutions, b)

machine learning, to get insight on data preprocessing and inference algorithms,

and c) 5G technology and NS feature, to fully understand the concept and ope-

ration of a sliced RAN and hence guarantee the consistency of the subsequent

implementation of this feature on a simulation tool.

b) Problem formulation and proposal. Once research gaps were detected, the pro-

blems to be addressed were formulated and new data-driven solutions were pro-

posed. For O1 and O2, contributions consist of a methodology for tra�c classi-

fication, tra�c forecasting or throughput estimation. For O3, proposals are new

MLB algorithms for the considered scenarios.

c) Update of simulation tool. An existing dynamic system-level LTE simulator coded

in Matlab was updated to achieve O2.3 and O3. The most remarkable changes

performed were: a) implementing a new realistic two-tier macro-cellular scenario

to assess the MLB algorithm designed for O3.1, b) including the NS feature

to create datasets for O2.3 and to validate the inter-frequency MLB algorithm

proposed for O3.2, and c) adding new 5G service models with di↵erent target

BLock Error Rate (BLER) and Quality of Service (QoS) requirements to enrich

service diversity in tests for O3.2. These updates were validated by checking the

consistency of results in long simulations (i.e., one hour of network activity). The

resulting simulator is described in detail in appendix A.

d) Data collection, preprocessing and analysis. Datasets used for O1, O2.1 and O2.2

come from commercial cellular networks. The MNO was responsible for collecting

and downloading data from the OSS. Once available, raw data was exported to

a readable format using proprietary tools provided by the MNO and quickly

inspected (e.g., to check names and meaning of available fields). Next, data was

preprocessed (e.g., events in traces used for O1 were decoded and synchronized,

time series for O2.1 were created, features were computed from raw data in O1

and O2.2, etc.). For O2.3, in the absence of public datasets from commercial

5G networks with NS, data was generated via simulation, and thus preprocessing

wast not necessary. No matter the data source, once the dataset was created, a

preliminary statistical analysis was carried out (e.g., to check statistical feature

distribution, correlation analysis...) and outliers are removed.



CHAPTER 1. INTRODUCTION 9

e) Performance assessment. Validation was always carried out on a realistic en-

vironment, i.e., with data from commercial networks when possible and with

a simulation tool calibrated with configuration and performance data from the

emulated network otherwise. In all cases, proposed solutions were compared with

state-of-the-art techniques, considered as a benchmark. Experiments related to

each objective were run over varying software, namely Matlab (O1, O3.1 and

O3.2), SPSS Modeler (O2.1) and Python (O2.2 and O2.3), whereas result ana-

lysis was always carried out in Matlab. Using di↵erent platforms for modeling

tasks allowed to identify each tool’s pros and cons and to provide recommenda-

tions to MNOs.

1.4 Document structure

Apart from this initial chapter, this document comprises six chapters and two appen-

dices.

Chapter 2 introduces the basic principles within the scope of this thesis, namely

machine learning, zero-touch networks and NS, defining key concepts and terminology

used throughout the document.

Once the thesis is contextualized, chapters 3 to 6 correspond to the di↵erent objec-

tives pursued. Specifically, chapter 3 tackles encrypted tra�c classification in the RAN

with unsupervised learning. Then, chapter 4 deals with long-term tra�c forecasting in

cellular networks through supervised learning. Such an approach is also considered in

chapter 5 for throughput estimation in both legacy and sliced RANs. Finally, chapter 6

explores the development of service-centric data-driven MLB solutions for multi-tier

and sliced RANs. For clarity, all these chapters share the same structure. First, a tho-

rough revision of related literature is presented, highlighting the limitations of current

solutions and the contributions of this thesis for the corresponding use case. Next, the

problem to be solved is formulated by identifying available information, decision varia-

bles, constraints and objective function. Then, the proposed solution is detailed and

the validation process is presented, including an analysis of results and computational

complexity. Finally, the main conclusions are outlined.

Chapter 7 summarizes the main findings of this research, providing a list of original

contributions and presenting possible future lines to extend the work carried out here.

Two appendices are included at the end of the document. Appendix A details the
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operation of the simulation tool used to create some datasets used in chapter 4 and to

validate the algorithms developed in chapter 6. Appendix B provides a summary of

this thesis in Spanish.



Chapter 2

Technical background

This chapter outlines the technical aspects related to this thesis. First, section 2.1

focuses on machine learning, one of the enabling technologies for a ZSM framework.

Next, section 2.2 introduces zero-touch networks, for which the solutions presented in

subsequent chapters are conceived. Finally, section 2.3 describes the NS feature, key

to ensure customer satisfaction in NGNs.

2.1 Machine learning

Machine Learning (ML) is a branch of AI that leverages data to create models able

to predict outcomes without being explicitly programmed for that. A wide range of

problems can be tackled through ML. Fig. 2.1 presents a taxonomy of ML algorithms,

which are often divided into three broad groups: Supervised Learning (SL), UnSu-

pervised Learning (USL) and Reinforcement Learning (RL). This section explains the

basics, applications and types of algorithms within each category, focusing on how the

specific algorithms used in this thesis (marked in gray in Fig. 2.1) operate.

2.1.1 Supervised learning

In SL, a learning algorithm infers a parameterized model from a labeled training dataset

that predicts an output Y for a given input X, i.e., Ŷ = f(X) + e, where e stands

for prediction error. Both input and output feature spaces can be multidimensional,

i.e., X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , ym). The training dataset, T , consists

on a set of Nd datapoints for which both explanatory (input) and response (output)

11
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Figure 2.1: Taxonomy of machine learning algorithms.

variables are known, i.e., T = (X(d), Y (d)), d = 1, 2, ..., Nd [37].

SL can be used for classification (i.e., discrete Y ) or regression (i.e., continuous

Y ). Classification assigns each datapoint to a category from a closed and predefined

set of categories according to input features, whereas regression establishes the rela-

tionship between input features and continuous output variables. In this thesis, tra�c

forecasting and throughput estimation are tackled as regression problems. Thus, the

explanation hereafter focuses on this application.

SL regression algorithms can rely on polynomials, support vectors, distance, De-

cision Trees (DTs), Artificial Neural Networks (ANNs) or ensemble techniques com-

bining the output of several weak learners to perform a more robust regression [38].

These alternatives are described below.

a) Polynomial models

These models capture the relationship between each response variable in Y and input

features (a.k.a. predictors) in X by adjusting a p-degree polynomial in the input feature

space, i.e.,

ŷi = �0i + �1ix
p
1
+ �2ix

p
2
+ ...+ �nix

p
n, i = 1, 2, ...m , (2.1)

where �ni is the slope of the regression surface of output variable yi with respect to

predictor xn and �0i is the intercept. The optimal solution is reached by ordinary

linear least squares fitting, which adjusts regression coe�cients to minimize the sum of

squares of residuals between estimates and ground-truth data. For the particular case

of p=1, this algorithm is referred to as Multi-Variable Linear Regression (MLR).
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Figure 2.2: Elements of support vector regression algorithm.

b) Support vector regression

Support Vector Regression (SVR) aims to find the hyperplane that best fits the trai-

ning dataset. For this purpose, input features are mapped to a higher dimensional

feature space by using a kernel function (e.g., linear, polynomial or radial basis), and

the best regression hyperplane is constructed in that large and transformed version of

the feature space [39]. Unlike MLR, SVR neglects all errors below a certain value con-

trolled by the sensitivity parameter, ✏. As illustrated in Fig. 2.2, the best hyperplane

minimizes the deviation of datapoints outside the insensitive ✏-tube (a.k.a. slack data-

points) to the maximum allowed error margin. Moreover, the regularization parameter,

C, restricts the absolute value of regression coe�cients. Both ✏ and C parameters con-

trol the trade-o↵ between regression accuracy and model complexity (i.e., the smaller

✏ and larger C, the better the model fits the training data, but the higher risk of

overfitting) [37].

c) Decision trees

A DT is a flow-chart model that infers simple decision rules from the training dataset.

Fig. 2.3 represents DT operation. In each node, the value of a specific input feature of

the datapoint is compared to a certain threshold, and the left or right branch is chosen

accordingly, leading to another node. This process is repeated until the datapoint

reaches a leaf node. During training, the decision threshold of each node is adjusted

to reduce the impurity of child nodes. To avoid overfitting, DTs are pruned when: a)

a node has less that a minimum number of samples, b) a maximum depth is reached,

or c) a new split does not lead to a significant decrease of impurity. Then, inference

consists on passing inputs of the new datapoint through the DT until a leaf node is
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Figure 2.3: Example of decision tree.

reached. Output value for the new datapoint is computed as the average output values

for the training datapoints belonging to that leaf node [37].

DTs are often weak learners by themselves, but powerful if used in ensemble me-

thods [40]. Three ensemble methods based on DTs are considered in this thesis, namely

Random Forest (RF), Adaptive Boosting (AdaBoost) and eXtreme Gradient Boosting

(XGBoost). In RF, several independent DTs are trained with di↵erent subsets of data-

points (a.k.a. aggregated bootstrapping or bagging) and input features. Then, the

outputs of all DTs are averaged to get the final output [41]. In contrast, in AdaBoost

and XGBoost, DTs are sequentially created, so that DTi tries to improve model per-

formance obtained with DT1 to DTi�1 (a.k.a. boosting). AdaBoost considers one-level

DTs, referred to as stumps. DT1 splits data based on the input feature providing the

lowest prediction error over the training dataset. When training subsequent DTs, the

weight of datapoints with high error in the previous DT is increased, whereas the weight

of datapoints with low error in the previous DT is reduced. The weight of each DT

prediction in the final output depends on its error rate [42]. Alternatively, in gradient

boosting algorithms such as XGBoost, DT1 consists on a leaf with the mean of the

output feature for training datapoints. Then, at each iteration, the gradient descent

optimization algorithm is used to minimize a di↵erentiable loss function over residuals

from the previous DT. To avoid overfitting, the learning rate shrinks the contribution

of each DT in the final output. XGBoost is an advanced version of gradient boost

including L1 and L2 regularization and depth-first tree pruning (i.e., DTs are grown

up to the maximum depth and then pruned backward until the improvement in loss

function is below a threshold) [43].
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d) k-nearest neighbors

k-Nearest Neighbors (KNN) is a non-parametric SL algorithm (i.e., it does not assume

any specific form for the regression function) based on distance. It relies on the premise

that observations with similar characteristics tend to have similar outcomes. To esti-

mate the response variable of a new observation, KNN identifies its k nearest neighbors

in the training dataset according to some previously defined distance metric (e.g., Eu-

clidean, Chebyshev...) and a search algorithm (e.g., ball tree, k-dimensional tree...).

Then, it computes the output as the (sometimes weighted) average of outputs for such

neighbors [44].

The Euclidean distance, often used as distance metric for regression, between a pair

of datapoints p and q is computed as

deuclidean(p, q) =

vuut
nX

k=1

(xk(p)� xk(q))2 . (2.2)

e) Artificial neural networks

ANNs rely on a statistical learning method inspired by the structure of the human

brain. In ANNs, computation units (a.k.a. nodes or neurons) grouped in layers per-

form non-linear calculations through activation functions, capturing complex relations

among input features [45]. Fig. 2.4.a) shows an example of ANN. Neurons in the input

layer consist of the value of input features. Then, the datapoint passes through one

(shallow ANN) or more (Deep ANN, DNN) hidden layers with a configurable number

of nodes. The outcome is then processed by an output layer whose number of neurons

is equal to the output size.

Several ANN architectures have been developed to solve di↵erent problems, sur-

veyed in [46]. For instance, in feed-forward ANNs, information moves from the input

to the output nodes through hidden nodes (if any). In contrast, in recurrent ANNs, co-

nnections between nodes form a graph along a temporal sequence, allowing to capture

time dependencies in input data. Conversely, convolutional ANNs capture complex

patterns in input features through convolutional kernels, compressing input data.

Two types of ANNs are considered in this thesis. The first architecture is the Multi-

Layer Perceptron (MLP), widely used for regression. MLPs are fully connected feed-

forward ANNs, i.e., every node in a layer is connected to all nodes in the subsequent
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(a) Example of ANN. (b) LSTM cell.

Figure 2.4: Neural network elements.

layer. In MLPs, nodes in hidden and output layers are perceptrons. A perceptron

p performs a weighted sum of N inputs xi, i = 1, 2, ..., N , plus a bias, and then

passes the result through an activation function fa (e.g., linear, sigmoid or hyperbolic

tangent... [47]). Such a computation can be expressed as

Y (p) = fa

 
b(p) +

NX

i=1

xi · wi(p)

!
, (2.3)

where wi(p) and b(p) are the weights and bias, respectively (i.e., the trainable parame-

ters) [48].

The second type of ANN used in this thesis is a recurrent network based on Long

Short-Term Memory (LSTM) units (a.k.a. LSTM network), conceived to be used with

time series data. LSTM networks comprise an input layer, one or more hidden layers

with LSTM cells as nodes and an output layer made of perceptrons. A LSTM cell,

illustrated in Fig. 2.4.b), provides a short-term memory that can last long, modeled

as a cell state. Several perceptrons and activation functions are combined to create

three gates regulating the flow of information into and out of the cell state. At a given

step, the forget gate decides what information from prior cell state must be forgotten.

Likewise, the input gate decides what new information must be included in current cell

state. Finally, the output gate computes the current output of the LSTM cell, referred

to as hidden state. Several LSTM hidden layers can allow capturing dependencies in

di↵erent time scales. The reader is referred to [49] for a more detailed explanation of

LSTM cells.

Once ANN architecture is defined, weights are initialized (e.g., zero-initialization or

random Glorot initialization [50]). The training process consists in iteratively propa-
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gating errors obtained for the training dataset with current weights back through the

ANN, and tuning weights accordingly to minimize a predefined loss function, e.g., the

root mean squared error or the mean absolute error. For this purpose, the training

dataset is passed through the network several times, referred to as epochs. A solver

algorithm (e.g., adaptive moment estimation – Adam– [51] or Limited-Memory Broy-

den–Fletcher–Goldfarb–Shanno –L-BFGS– [52]) orchestrates forward inference and

backward gradients for weight updating. In each epoch, some optimizers (e.g., L-BFGS)

process all training datapoints at once (i.e., an epoch comprises a single iteration),

whereas others (e.g., Adam) process data in mini-batches with a fixed number of data-

points (i.e., an epoch may comprise several iterations). An early stopping condition is

often set to avoid overfitting (e.g., loss function for the validation dataset is below a

threshold or has not improved significantly over the last epochs) [53].

2.1.2 Unsupervised learning

USL seeks to identify unknown patterns in unlabeled data, which is useful for tasks

such as clustering, dimensionality reduction and association. These applications are

briefly introduced next.

a) Clustering

Clustering aims to identify groups of datapoints based on the similarity between ob-

servations. Clustering algorithms can be classified into hierarchical, partition-based,

density-based, distribution-based, grid-based and model-based [54]. In hierarchical me-

thods (e.g., agglomerative hierarchical clustering [55]), clusters at one level are joined

at the next level, creating a cluster tree. In partition-based algorithms (e.g., k-means or

k-medoids [56]), spherical non-hierarchical clusters are created around a central struc-

ture (a.k.a. centroid). Density-based algorithms (e.g., Density-Based Spatial Clustering

of Applications with Noise, DBSCAN [57]) identify high- and low-density regions and

create arbitrary-shaped clusters accordingly. Distribution-based techniques (e.g., Gau-

ssian mixture model [58]) compute several statistical distributions, so that clusters

comprise datapoints belonging most likely to the same distribution. In grid-based

strategies (e.g.,entropy-based subspace clustering [59]), data is divided into a finite

number of cells that form a grid structure on which all of the clustering operations are

implemented. Finally, model-based approaches (e.g., self-organization and associative

memory [60]) optimize the best fit between the given data and a mathematical model.



18 2.1. MACHINE LEARNING

In this thesis, agglomerative hierarchical clustering is used for encrypted tra�c cla-

ssification. This algorithm groups datapoints in clusters based on their similarity. The

algorithm starts by treating each datapoint as a singleton cluster. Then, (dis)similarity

between every pair of datapoints in the dataset is computed with a given distance me-

tric (e.g., Euclidean, Chebyshev...), and the two closest clusters are merged into a

single cluster by a linkage function (e.g., unweighted average distance, inner squared

distance...) based on such similarity information. This process is repeated until all

clusters merge into one root cluster or until there are no two clusters with a similarity

lower than a predefined cuto↵ threshold. The result is a tree-based representation of

the data, referred to as dendrogram, representing the order of cluster merging and the

distance between clusters.

b) Dimensionality reduction

Dimensionality reduction compresses input data into a reduced set of new features,

being helpful to visualize multi-dimensional data or as a preprocessing step before

applying SL. For a given problem, an adequate dimensionality reduction often turns

into similar or even better performance with simpler ML models. This task can be

tackled through Feature Selection (FS) or Feature Extraction (FE) [61]. In FS, a sub-

set of relevant features is selected according to a predefined criterion. FS comprises

filtering, wrapper and embedded methods [62]. Filtering methods select features accor-

ding to their variance or correlation with the outcome variable. These schemes are very

e�cient and independent of the subsequent SL algorithm and can thus be used as a

preprocessing step. However, they might fail to find the optimal subset of features. Al-

ternatively, wrapper methods select subsets of variables according to their usefulness for

a given SL algorithm. Despite being computationally expensive, they provide the best

subset of features per algorithm. Finally, embedded methods integrate feature selection

in the learning process. In contrast, in FE, a new (reduced) set of features is built

by combining the features from the original set. An extended FE method for nume-

rical variables is principal component analysis, creating new features (a.k.a. principal

components) computed as orthogonal linear combinations of original features [63].

In this thesis, di↵erent filtering and wrapper FS schemes are used to select a subset

of representative input features to estimate throughput metrics in the RAN.
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Figure 2.5: Reinforcement learning agent.

c) Association

Association aims to find relationships between di↵erent features, usually represented

as rules or frequent itemsets. Some examples of association algorithms are Apriori

and Eclat algorithms [64]. These techniques rely on three key concepts: a) support,

measuring how often an item appears in the dataset, b) confidence, indicating how

often a rule is fulfilled, and c) lift, measuring the strength of a rule.

2.1.3 Reinforcement learning

RL is a ML technique where an agent takes actions in an environment aiming to

maximize a cumulative reward. Fig. 2.5 sketches the agent-environment interaction.

At every time step t = 0, 1, 2... when the environment is in state st 2 S, the agent

takes an action at 2 A according to some policy ⇡t(s, a), for which receives a reward rt

and commutes to a new state st+1. If st retains all relevant past information, RL can

be modeled as a Markov decision process.

RL algorithms can be model-based or model-free. The former model environment’s

transition function to make predictions about the consequences of taking actions (i.e., de-

ductive approach), whereas the latter learn from experience (i.e., inductive approach).

At the same time, model-free RL methods can be policy-based or value-based. Policy-

based approaches learn a deterministic or stochastic optimal policy ⇡⇤. In contrast,

value-based methods learn the optimal value function leading to the optimal policy.

In all cases, the trend is incorporating DNNs into the solution (a.k.a Deep Reinforce-

ment Learning, DRL), allowing agents to make decisions from unstructured input data

without manual engineering of the state space. Some well-known DRL approaches are

deep Q-learning or deep deterministic policy gradient. For further information on these

and other RL algorithms, the reader is referred to [65].
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2.2 Zero-touch networks

NGNs are expected to cope with a wide range of services, technologies, vertical in-

dustries and devices. The associated increase in network performance, flexibility and

cost e�ciency envisages an unprecedented complexity in network operation, manage-

ment and orchestration. This fact, together with the latest advances in BDA and ML,

have propelled the trend towards zero-touch networks with fully automated SON ca-

pabilities enabling an E2E closed-loop automation of network and service management

operations.

In this section, SON is first introduced, focusing on the two specific use cases

covered in this thesis: network redimensioning and MLB. Then, the basis of zero-touch

networks is discussed, identifying di↵erent types of data available in the RAN to be

used in big-data-empowered SON tools.

2.2.1 SON use cases

LTE entailed a growth in the number and types of cells (e.g., macro cells, small cells...)

as well as in the set of parameters in base stations (a.k.a. evolved Nodes B, eNBs) com-

pared to legacy networks with 2G and 3G RATs. Such an increase in RAN size and

complexity boosted the interest of operators in SON techniques o↵ering automatic pla-

nning, deployment, optimization and maintenance of network nodes. This automatic

management paradigm speeds up network deployment, reduces capital and operational

expenditures, ensures QoE provisioning, introduces processes too fast and/or too te-

dious to be implemented manually and releases radio engineers from repeating manual

tasks in space and time, thus diminishing the impact of human errors on network

performance.

Several procedures can be automated in cellular networks. SON use cases are often

divided into four broad groups, namely self-planning, self-deployment, self-optimization

and self-healing, described below [66]:

a) Self-planning comprises all procedures related to the definition of a new Network

Element (NE), excluding NE acquisition and preparation. This process implies

planning NE location, radio and transport parameters nd aligning data from all

NEs in a RAN. Some examples of self-planning use cases are automatic site se-

lection [67] or self-configuration of antenna power [68] and tilt [69], physical cha-
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nnel identifiers [70] or UpLink (UL) power control parameters [71]. Self-planning

solutions are run: a) during the network planning stage, and b) when network

redimensioning actions are executed during the operational stage.

b) Self-deployment automates the process of bringing new NEs into operation, in-

cluding automatic HardWare (HW) installation, node authentication, SoftWare

(SW) download and self-test, among other tasks.

c) Self-optimization aims to constantly make the most of network assets by self-

tuning node parameters to adapt to tra�c fluctuations (e.g., holidays periods,

social events...), changes in network topology (e.g., deployment of new cell or ca-

rrier) or variations in radio channel conditions (e.g., new building, seasonal varia-

tions in propagation environment...) happening during the operational stage. For

this purpose, user equipment and base station performance is monitored and ana-

lyzed, so that optimization actions are triggered on a↵ected NEs when necessary.

Some of the most extended self-optimization use cases are coverage and capacity

optimization [72], mobility robustness optimization [73], inter-cell interference

coordination [74], self-tuning of scheduling parameters [13] [75], self-optimization

of tracking area list [76] or load balancing [33] [77].

d) Self-healing automates troubleshooting, comprising fault detection and diagnosis.

The former process seeks to find problematic cells, whereas the latter identifies

fault causes based on symptoms (e.g., alarms) and decides the recovery action to

be taken. Note that self-healing is a critical task in the RAN, since cells sometimes

serve an area with little (or without) redundancy, and cell outage thus strongly

degrades QoE. Some use cases are automatic alarm prioritization [8], cell outage

detection [78], root cause analysis [14] and cell outage compensation [79].

Legacy SON functionalities initially conceived for LTE have been extended to other

RATs and to optimize inter-RAT procedures (e.g., mobility). For instance, [19] dis-

cusses new SON use cases arising in 5G related to new features and NFs (e.g., op-

timization of spectrum sharing between slices in NS scenarios). A multi-RAT SON

empowers operators with comprehensive, holistic and powerful tools, harmonizing the

whole network management and optimizing operational e�ciency.

The two SON use cases covered in this thesis, namely RAN redimensioning and

MLB, are introduced next.
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Figure 2.6: Flow diagram of RAN redimensioning in radio planning tools.

a) RAN redimensioning

RAN redimensioning is a procedure within the scope of self-planning that aims to detect

potential capacity bottlenecks in advance so that RAN configuration or equipment can

be timely upgraded. This SON use case is critical to warrant service provisioning

in NGNs, where the coexistence of services with very di↵erent requirements and the

(de)activation of slices will lead to complex and changing tra�c patterns and capacity

demands.

Fig. 2.6 illustrates the workflow of RAN re-dimensioning in radio planning tools.

The process comprises bottleneck detection and avoidance stages, detailed next:

1) To detect potential capacity bottlenecks, tra�c forecasts per cell are compared

to some predefined KPIs reflecting cell capacity (e.g., aggregated cell through-

put in DownLink (DL) in high load conditions). With the user-centric network

management approach currently preferred by MNOs, cell capacity KPIs should

be complemented by other indicators that better reflect end-user performance in

congestion scenarios (a.k.a. user capacity). For instance, DL user throughput is

often regarded as a significant QoE metric for eMBB services, which are the first

delivered in 5G networks. Thus, this metric should be considered for redimen-

sioning purposes. It is expected that the higher the averaged user throughput in
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the DL of a congested cell, the higher QoE level can be guaranteed for eMBB

services in that cell.

2) If a potential future lack of resources is foreseen in the cell, an alarm is activated

that triggers a bottleneck avoidance process. Otherwise, the procedure ends.

3) If bottleneck avoidance is required, a set of candidate actions is evaluated. The

considered alternatives depend on how much in advance the problem is envis-

aged. Imminent issues detected with short-term tra�c forecasts (e.g., several

hours or days in advance) often trigger temporary changes in network parame-

ters (e.g., a more e�cient voice coding scheme [6], new HO margin settings for

tra�c sharing between adjacent cells [77] or naive packet schedulers for a lower

computational load [80]). Such quick actions, dealing with fast fluctuations of

tra�c demand, act as temporary solutions until the normal network state is

recovered or, if the problem persists, more stable solutions relying on network

capacity extensions are taken. In contrast, if the lack of resources is foreseen

several months ahead, more future-proof solutions can be implemented, such as

bandwidth extension [81], license extension for the maximum number of channel

elements and/or simultaneous users [9] or new carriers/co-sited cells. The assess-

ment process seeks to estimate candidate actions’ impact on cell capacity. Note

that capacity indicators such as throughput may depend on many additional

factors (e.g., tra�c mix, terminal capabilities. . . ), thus being extremely di�cult

to isolate the impact of a replanning action on these metrics. Alternatively, the

impact of replanning actions on lower-level radio network performance indicators

(e.g., bandwidth, channel quality indicator distribution, power) can more easily

be predicted. Then, such predictions can be used as inputs to a capacity estima-

tion model. Finally, the best action (e.g., the most cost-e↵ective alternative that

solves the capacity bottleneck) is selected and executed.

The above process is repeated periodically (e.g.,daily) on a cell basis. Note that

detecting fake potential bottlenecks could imply unnecessary investments in capacity

extensions. Apart from the associated cost, these actions might degrade the perfor-

mance of other cells in the scenario due to interference. Conversely, not detecting real

potential capacity problems may degrade user experience. As a consequence, radio pla-

nning tools must rely on accurate forecasts of upcoming tra�c demand and estimates

of cell performance for a precise proactive bottleneck detection and action evaluation.

For this purpose, cutting-edge tools rely on BDA and ML over data collected in the
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OSS so as to perform these checks automatically [82] [83]. Such an approach is followed

in this thesis.

b) Mobility Load Balancing

MLB is one of the most extended self-optimization use cases in the RAN. It aims

to alleviate congestion problems due to tra�c fluctuations by o✏oading tra�c from

congested to underutilized cells through mobility parameter self-tuning. Since most

MLB proposals rely on adjusting HO parameters, the HO procedure is described first

and MLB is detailed later. The explanation focuses on LTE and NR technologies 1,

for which MLB algorithms in this thesis are conceived.

In the above-mentioned RATs, mobility of connected User Equipments (UEs) is

handled by an event-based hard HO procedure. The UE measures signal level and

quality received from the serving cell and a set of neighbor cells. Measurement reports

are then sent to the serving base station (i.e., eNB in LTE or gNodeB –gNB– in

NR) either periodically or triggered by an event. Finally, the base station makes

the HO decision based on a predefined HO triggering event. Table 2.1 summarizes

events defined for intra-RAT measurement reporting and HO in the absence of multi-

connectivity [84] [85]. Those events can be evaluated with di↵erent report quantities,

namely Reference Signal Received Power (RSRP), Reference Signal Received Quality

(RSRQ) or Signal-to-Interference-plus-Noise Ratio (SINR). For instance, event A3 is

triggered for a UE u when the selected report quantity Meas received from a neighbor

cell j, Measu(j), exceeds that received from the serving cell i, Measu(i), by a certain

HO Margin (HOM) defined per adjacency, HOM(i, j), expressed as

Measu(j) > Measu(i) +HOM(i, j) 8 t = 1, 2, ..., TTT (i, j) , (2.4)

where all terms are expressed in logarithmic scale. To avoid unnecessary ping-pong

HOs leading to signaling overload and user experience degradation, a UE only performs

a HO if the event persists over a time interval referred to as Time To Trigger (TTT),

also defined per adjacency (i.e., TTT (i, j)).

Regardless of the selected HO scheme (defined by the combination of triggering

event and report quantity), o↵sets/thresholds in Table 2.1 and TTT are key parame-

ters that can be tuned per adjacency for optimization purposes. O↵sets/thresholds

1This thesis covers 5G networks without multi-connectivity.
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Table 2.1: Intra-frequency handover events.

Event Description

A1 Serving cell becomes better than threshold

A2 Serving cell becomes worse than threshold

A3 Neighbor cell becomes o↵set better than serving cell

A4 Neighbor cell becomes better than threshold

A5 Serving cell becomes worse than threshold1 and neighbor cell
becomes better than threshold2

Figure 2.7: Example of tra�c steering by tuning handover margins [87].

determine the specific condition triggering the HO procedure, thus being very powerful

for MLB [86] [33]. In contrast, TTT ensures that the triggering condition lasts for a

while, avoiding HOs caused by an instantaneous degradation in radio channel quality

that may trigger mobility events by chance. As a consequence, TTT is often tuned for

mobile robustness optimization (e.g., to avoid ping-pong HOs) [73].

To illustrate how MLB can be tackled through HO parameter tuning, Fig. 2.7

depicts two neighbor cells i and j in a mobile network. As usual, intra-frequency

mobility is handled through HOs triggered by event A3 driven by RSRP. In this process,

HOMs are set to place cell boundary at point A, so that both cells have a similar service

area (in a live network, there should be a hysteresis area that has been neglected in the

example for simplicity). With this set-up, due to the uneven distribution of UEs in the

network, cell i is underutilized, whereas cell j is congested. However, if HOM(i, j) is

increased by � dB and HOM(j, i) is decreased by � dB, displacing cell boundary to

point B, all UEs in the grey area are handed over from cell j to cell i, thus o✏oading

cell j. In MLB algorithms, such checks and decisions are performed automatically.
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2.2.2 Big-data-empowered SON

ML and BDA techniques are envisioned as key enablers for autonomous network and

service management [88]. Zero-touch networks rely on fully automated SON capabili-

ties to: a) boost the e�ciency of service delivery, b) reduce the operational expenditu-

res, c) lessen or even omit engineer intervention in network management procedures,

and d) ease coordination among SON functions with conflicting goals, dynamically

determining the operating point providing the best performance trade-o↵ [17]. ZSM

architectures will rely on BDA platforms to handle the vast amount of data (i.e., con-

figuration data, call traces, logs...) gathered in current and future cellular networks

during normal operation. Additionally, ML will bring intelligent decision-making to

network management through SON tools using network data to acquire knowledge

learned from experience.

References [17], [18] and [20] present comprehensive surveys of ML-based SON solu-

tions, including tasks related to the use cases considered in this work (e.g., RAN dimen-

sioning in [82] [89], MLB in [90] [91] and encrypted tra�c classification in [92] [93]).

Problems that require estimating, forecasting and classifying variables (e.g., perfor-

mance estimation of tra�c forecasting) can be tackled through SL. In contrast, USL is

helpful for pattern recognition (e.g., tra�c classification). Finally, RL is the preferred

option to address issues requiring network parameter control in complex scenarios

(e.g., HOM tuning).

Current mobile networks generate a vast amount of data in the form of measure-

ments and interaction registers that can be used in data-empowered SON, e.g., Mini-

mization of Drive Test (MDT) data, charging data records, Configuration Management

(CM) data, Performance Management (PM) data or connection traces [94]. All the

solutions proposed in this thesis rely on the three latter data sources, which are intro-

duced next.

a) Configuration and performance management data

CMs and PMs provide information about the state of NEs (e.g., base stations) during

a time interval referred to as Reporting Output Period (ROP). CMs consist of network

parameter settings (e.g., cell bandwidth or transmit power), whereas PMs are counters

that provide aggregated measurements reflecting the performance of the NE (e.g., total

data volume, number of radio resources scheduled in data channels...) during the
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ROP [95] [96]. Higher-level KPIs and Key Quality Indicators (KQIs) better reflecting

network performance (e.g., physical resource block utilization) and user satisfaction

(e.g., average user throughput) are computed from CMs and PMs.

PMs and CMs are collected in NEs and then sent to the OSS at the end of the ROP,

where they are gathered for a more extended period (e.g., months or even years) for net-

work management purposes. In current networks, the ROP is often set to 15 min [97].

In NGNs, this value is expected to be shortened to cope with the higher dynamism and

ambitious performance goals. Note that storing PMs/CMs of every NE with a high

frequency implies deploying large databases. To circumvent this issue, in the past, ope-

rators often opted for storing PMs/CMs on a ROP basis for a while, but only keeping

daily or monthly busy-hour information in the long term (i.e., years). Such a trend is

disappearing with the latest advances in data storage and processing.

Most classical SON tools use PMs and CMs as inputs to heuristic controllers de-

signed from expert knowledge. However, such data can also be exploited to train ML

models driving decision making. Nonetheless, NE-aggregated information may not

su�ce for some service-oriented NFs, requiring UE-level information only available in

radio connection traces.

b) Traces

Radio connection traces (a.k.a. tra�c recordings) contain signaling events in the ra-

dio interface [98]. In this context, an event is a report including measurements and

performance information (e.g., signal level, bit rate. . . ). Events are grouped into two

categories: internal and external events. Internal events are generated by base stations

and are specific to each vendor. In contrast, external events include signaling messages

that the base station exchanges with other NEs via standard protocols, such as Radio

Resource Control (RRC) or S1 application protocol. Events selected by the MNO are

recorded in a trace file per cell generated periodically after each ROP, which is then sent

to the OSS. Two types of trace files are distinguished: Cell Tra�c Recording (CTR)

and UE Tra�c Recording (UETR). While CTRs include events of all users in the cell

anonymously, UETRs store information of a specific user selected by the operator [99].

Radio traces allow to generate new indicators di↵erent from counters provided by

vendors, thus being precious for MNOs [100]. Moreover, with MDT feature launched

in release 10, information in radio traces can be geopositioned [101]. Several trace-

based SON tools have been proposed in the literature. For instance, traces can be used
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in network planning to derive spectral e�ciency curves required in cellular planning

and simulation [102] or the spatiotemporal distribution of radio resources in a live

network [103]. Likewise, traces can be used in the operational stage to check the

performance of certain types of connections for benchmarking purposes [104], tune

network parameters (e.g., link adaptation o↵set [105] or antenna tilt angle [72]) or find

the root cause of problems (e.g., dropped connections [106]).

2.3 Network slicing

NS is a new feature in 5G networks allowing the coexistence of multiple logical networks

tailored for a specific application or tenant (e.g., Over The Top –OTT– service pro-

viders or virtual operators) operating simultaneously over a common physical network

infrastructure [15]. Together with other features such as software-defined networks or

multi-edge computing, NS provides the flexibility and scalability required to handle

the diverse end-users (i.e., humans or machines), devices (e.g., smartphones, vehicles,

wearables, sensors...) and services with highly diverging QoS requirements (i.e., energy

e�ciency for mMTC, E2E latency-reliability for uRLLC, peak data rate for eMBB...)

coexisting in NGNs [4]. As a result, NS maximizes revenues for infrastructure owners

due to the e�cient usage of network assets while opening up new go-to-market models

for vertical industries [107].

Slice life cycle comprises four stages. In the preparation phase, the infrastructure

owner (often a MNO) and the future tenant reach a SLA. Then, the new slice instance is

designed and set up in the commissioning stage. As illustrated in Fig. 2.8, an E2E slice

comprises HW, SW and radio resources together with a collection of Virtualized NFs

(VNFs). Such assets provide storage, processing and networking capabilities required

to comply QoS, security, mobility and availability conditions specified in the SLA

during the operation phase. Finally, in the decommissioning step, slice resources are

released [15]. A central MANager and Orchestrator (MANO) manages the life cycle

of all slices operating in a network. Among other tasks, the MANO splits resources

among slices, decides which VNFs (e.g., UE access control, HO...) are common to

all/multiple slices, which VNFs are tailored or omitted per slice, and sets up VNF

parameters [108].

In the literature, several works have covered di↵erent aspects related to NS. For

instance, [109] surveys works focused on the administrative aspect, where the use of

distributed ledger technologies (e.g., blockchain) has been recognized as as powerful
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Figure 2.8: Network slicing [118].

tool. In [110], several architectures to provide E2E NS are surveyed. The informa-

tion model required for NS in RAN, core and transport network domains is described

in [111]. Other works focus on MANO, defining slice management policies for tasks

such as slice admission control [112] or resource orchestration [113] [114], often relying

on ML [115]. Regarding resource orchestration, ideally, slices must be self-contained

and logically isolated, which increases robustness (i.e., faults in one slice do not af-

fect other slices), improves security (i.e., an attack to a slice does not a↵ect other

slices) and reduces time-to-market due to few dependencies on external NFs. In the

RAN, designing isolated slices is specially challenging due to the inherently limited and

shared nature of spectrum. In [116], four di↵erent strategies to split radio resources

among slices are compared in terms of spatial, temporal and frequency granularity of

assignment, tra�c and radio isolation, and customization. Several capacity brokers

have been proposed following these strategies, sometimes performing joint spectrum

split and access control [117].

It should be pointed out that enabling NS poses additional changes and challenges

from a network management perspective. The inclusion of the new slice domain entails:

a) the arise of new SON use cases related to slice (de)comissioning and maintenance

(e.g., automatic capacity brokers), and b) the need for new slice-aware solutions for

classical SON use cases (e.g., slice-aware MLB). To support these NFs, data such as

PMs, CMs and connection traces must be collected not only per cell, but also on a slice

basis. Moreover, privacy issues may prevent the central MANO from accessing slice-
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level data managed by tenants. Additionally, NS entails a higher network dynamism

due to the activation, deactivation and redimensioning of slices, thus requiring a more

frequent and faster operation of SON NFs [119]. All these factors must be considered

when extending SON use cases to NS scenarios, including those addressed in this

thesis. Regarding RAN dimensioning, legacy cell performance models may fail in a

NS scenario due to: a) the coexistence in the same geographical area of multiple slices

with very di↵erent behaviors over the spatial and temporal domains, and b) the split

of radio resources among slices, which may prevent the e�cient use of cell bandwidth.

As a result, a new slice dimensioning NF arises, which requires slice-level models to

map specific slice characteristics (e.g., tra�c type and demand, bandwidth, spectral

e�ciency...) to performance metrics. These slice-level models are also continuously

exploited during the slice operation phase to check when spectrum sharing has to

be reconfigured to meet the SLA while minimizing resource over-provisioning [120].

Likewise, new slice-aware algorithms for self-optimization use cases such as MLB must

be developed considering slice-specific SLA aspects in the decision-making process. All

these tasks are addressed in this thesis.



Chapter 3

Classification of encrypted tra�c in

cellular networks

This chapter tackles the problem of classifying connections carrying encrypted tra�c

per application type in the RAN. An accurate tra�c classification can benefit many

network management tasks, including capacity planning, troubleshooting, QoE mana-

gement, slice design or NF optimization. In fact, some of the self-management solu-

tions presented later in this thesis assume prior knowledge of the tra�c mix in a cell.

The chapter is divided into five sections. Section 3.1 reviews the related literature.

Section 3.2 introduces some key concepts to understand the proposed classification

method, described later in section 3.3. Section 3.4 assesses method performance over

a trace dataset from a live LTE network. Finally, section 3.5 summarizes the main

conclusions.

3.1 Related work

Tra�c classification aims to associate network tra�c with the underlying generating

application. For this purpose, in LTE, each connection has a QoS Class Identifier

(QCI) used to prioritize services [121]. Similarly, a 5G QoS Identifier (5GQI) is

assigned per tra�c flow in NR [122]. Such information is registered in measurements

collected by radio NEs. However, even if some of these identifiers are associated with a

single service, others comprise services of very di↵erent nature. For instance, in LTE,

QCIs 6, 8 and 9 contain a mixture of multimedia, interactive and Transmission Control

Protocol (TCP)-based services, namely instant messaging, streaming, web surfing or

31
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app download. Such a coarse granularity complicates any application-oriented task.

As such, more precise tra�c classification methods are required.

In legacy Internet Protocol (IP)-based networks, tra�c was classified in the past

by port number [123]. Such an approach is unreliable today due to the proliferation

of new applications with non-standard or randomly generated ports [124]. As an al-

ternative, payload-based methods (e.g., deep packet inspection) match the IP packet

payload with a set of stored signatures to classify network tra�c [125]. However, this

strategy is useless for encrypted tra�c [36]. To solve these limitations, several works

tackle tra�c classification by analyzing payload-independent flow characteristics, re-

lying on the premise that tra�c from di↵erent applications typically has distinct flow

patterns (a.k.a. app fingerprints). In fixed networks, several flow-based methods have

been proposed to classify tra�c in real time by using the first packets of the flow (early

classification) [126] [127] or o✏ine based on the whole flow (late classification) [125].

These approaches have also been extended to wireless networks by leveraging the abi-

lity of SL to identify app fingerprints. In [128], a device-fingerprinting scheme based

on learning tra�c patterns of background activities is proposed. The method uses a

Support Vector Classifier (SVC) and KNN, trained with data from 20 users with di-

↵erent combinations of apps connected to a 3G network. In [129], six types of mobile

applications are identified by analyzing the packet size and transmission direction of

the first 20 packets as input features of a hidden Markov model. In [130], a framework

for fingerprinting and identification of mobile apps is presented based on DTs and

SVC trained with statistical flow features grouped based on timing and destination

IP address/port. In [131], the same framework is used to assess the degradation of

classification performance due to changes in app fingerprints. In [132], an ensemble

approach combining di↵erent state-of-the-art classifiers is proposed. Four classes of

combination techniques are compared, di↵ering in accepted classifiers’ outputs, trai-

ning requirements and learning scheme. Validation on a dataset of real user activity

shows higher accuracy compared to individual classifiers.

App fingerprints vary significantly with time due to terminal evolution, application

updates, user behavior, etc. To overcome this issue, other works propose classifiers

based on deep learning, that work directly on input data by automatically distilling

structured and complex feature representations at the expense of a higher training

complexity [133]. In wireless networks, this approach has been considered via varia-

tional autoencoder networks [134], convolutional networks [92] or multi-modal classi-

fiers [135] [93]. However, deep-learning classifiers present two disadvantages: a) they
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exclusively consider services included in the training dataset, being unable to identify

new services arising in the network, and b) they require large quantities of labeled data,

which are di�cult to obtain. For these reasons, the design of semi-supervised [136]

or unsupervised [137] schemes is considered as a promising research direction [133].

Additionally, in the particular case of mobile networks, flow-based tra�c classification

requires probes that analyze tra�c in the core network. In practice, operators are

reluctant to install such probes because of the high associated costs. As an alternative,

it is possible to process connection traces collected in the radio interface by means

of BDA techniques. Such very detailed information can be used to classify tra�c

without investing in network probes. To the authors’ knowledge, no tra�c classifica-

tion method based on USL over performance indicators in radio connection traces has

been proposed.

This chapter presents an o✏ine method for coarse-grained encrypted tra�c cla-

ssification in cellular RANs. The method relies on USL to classify tra�c into broad

service classes. Unlike classical approaches, based on IP tra�c analysis by probes in

the core network, the proposed method uses tra�c descriptors from connection traces

in the radio interface to perform the classification. Likewise, it can be applied in the

absence of labeled data (seldom available in mobile networks) and identify new types

of services launched in the network. Validation is performed over a dataset from a live

LTE network. The main contributions of this work are: a) the definition of a set of

connection descriptors to characterize tra�c in the radio interface, and b) a method for

encrypted tra�c classification in the absence of labeled data based on such descriptors.

3.2 Problem formulation

In this section, some key concepts for the proposed classification system are explained.

First, some tra�c descriptors from radio connection traces are introduced. Then,

the impact of data encapsulation on such tra�c descriptors is analyzed for di↵erent

services.

3.2.1 Tra�c descriptors from connection traces

Among the types of radio connection traces introduced in section 2.2.2, CTRs are

considered, since they comprise data from all users in the network [100]. CTRs are

binary files in ASN.1 format. To compute tra�c descriptors for classification purposes,
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these files must be first converted into a readable format (e.g., a comma-separated

values file). Each file comprises several events from users demanding services in a cell.

An event includes timestamp, user identifier, cell identifier, QCI and a set of tra�c

parameters that di↵er depending on the event type. For ease of analysis, data in each

file is divided per event type and synchronized. Later, user and node identifiers are used

to build individual connections. A connection comprises data from a user demanding

a specific service in a particular cell. Such data includes user identifier, cell identifier

and a set of tra�c descriptors computed from information in events.

In this work, the following tra�c descriptors are computed per connection k from

CTRs:

RRC connection time, TRRC(k) [ms]. A RRC connection starts when a service

is requested, and lasts until the user leaves the cell, the connection is closed

explicitly or the user inactivity timer expires. In many networks, such a timer

has a default value of 10 s [138]. Thus, in a RRC connection of 13 s, the user

may transmit during the first 3 s and the inactivity timer expires 10 s later. The

connection time excluding that timer (if that is the cause of connection release)

is here referred to as e↵ective connection time, Teff (k) [ms].

Total DL tra�c volume at the Packet Data Convergence Protocol (PDCP) layer,

VDL(k) [bytes].

Percentage of tra�c volume carried in the UL, ⇢UL(k) [%], computed as

⇢UL(k) = 100 ·
VUL(k)

VUL(k) + VDL(k)
. (3.1)

Ratio of DL tra�c volume transmitted in Transmission Time Intervals (TTIs)

when the transmission bu↵er becomes empty (a.k.a. last TTIs [12]), ⌘lastTTI
DL (k),

computed as

⌘lastTTI
DL (k) =

V lastTTI
DL (k)

VDL(k)
. (3.2)

DL activity ratio, ⌧activeDL (k), computed as the ratio between active TTIs (i.e., those

with data to transmit) and the e↵ective duration of the connection,

⌧activeDL (k) =
T active
DL (k)

Teff (k)
. (3.3)

DL session throughput, THsession
DL (k) [bps], computed as the volume transmitted
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in the DL at PDCP layer divided by the e↵ective duration of the connection,

THsession
DL (k) =

8 · VDL(k)

Teff (k)
. (3.4)

As shown in [104], the above tra�c descriptors can easily be computed per connec-

tion from information in common signaling events (e.g., connection setup, connection

release, etc.). All of them are payload-independent, so they can be collected even if

tra�c is encrypted at the application level. Moreover, most are ratios, showing simi-

lar values regardless of encryption scheme. Nonetheless, some of these descriptors are

strongly influenced by radio link and network conditions (e.g., ⌘lastTTI
DL (k) and ⌧activeDL (k)

depend on spectral e�ciency, cell bandwidth, available user capacity and scheduling

algorithm). Thus, connections of the same service might have di↵erent values of these

descriptors. Likewise, these indicators might have similar values in connections of di-

↵erent services, making it di�cult to isolate services. Hence, it is advisable to develop

new tra�c descriptors that are less dependent on network performance.

3.2.2 Data encapsulation process

To reduce design complexity, most networks are organized into protocol layers, each

built upon the one below. As a result, data generated by applications go through

an encapsulation process. Each layer adds a header and passes the data to the next

layer until the lowest layer is reached, where actual communication occurs through the

physical medium.

Fig. 3.1 shows an example of the encapsulation scheme in the user plane of the LTE

radio interface. The upper level is the application layer, which contains application-

specific protocols (e.g., Hypertext Transfer Protocol –HTTP–, File Transfer Protocol

–FTP–, etc.). These protocols generate data packets of very di↵erent sizes. Below

the application layer is the transport layer, which is responsible for transferring data

between application peers. The primary two protocols on this layer are TCP and

User Datagram Protocol (UDP). UDP is a stateless and connectionless option, provi-

ding fast, unreliable data transfer, suitable for streaming services. In contrast, TCP

is stateful and connection-oriented, providing reliable transmission by guaranteeing

in-order data delivery and retransmissions, suitable for web or file transfer. In both

cases, application data packets are broken into smaller, more manageable pieces. The

maximum size of these pieces (a.k.a. Maximum Segment Size, MSS) is usually restric-
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Figure 3.1: Example of packet encapsulation in the LTE user plane.

ted by the maximum transfer unit of the underlying network. In TCP, flow control uses

a sliding window whose size limits how many bytes can be sent (one or more segments)

until receiving an ACKnowledgment (ACK) packet. When a segment is correctly re-

ceived, the receiver sends an ACK and informs about how many bytes can still be

received. Below the transport layer is the network layer, responsible for connecting

devices with IP protocol [139]. In the link layer, PDCP transports IP datagrams and

provides header compression (if required), ciphering and integrity protection. Below

PDCP, Radio Link Control (RLC) segments and concatenates PDCP packets to adapt

them to the transport block size in the Medium Access Control (MAC) layer. RLC has

three modes of operation: transparent mode, unacknowledged mode and acknowledge

mode. The latter is often used to deliver packets through dedicated logical channels

(i.e., user data tra�c) [140].

The performance of the above protocols is strongly influenced by the type of ser-

vice requested by the user. Di↵erent applications have distinct tra�c characteris-

tics and communication patterns. For instance, app or file downloads generate large

packets, while messaging services generate infrequent small packets. To support this

statement, Table 3.1 breaks down tra�c descriptors at di↵erent protocol layers for

four well-demanded services nowadays, namely instant messaging via WhatsApp, web

browsing (on two di↵erent websites), video streaming via YouTube and app download

via Google Play Store. Data in the table is obtained by analyzing tra�c from live appli-

cations captured in a mobile terminal connected to a commercial LTE network. As
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Table 3.1: Tra�c descriptors at di↵erent protocol layers for di↵erent services in LTE.

Measured Theoretical

Service Instant
messaging

Web (small
objects)

Web (large
objects)

Video
streaming

App
download

Full bu↵er

Provider WhatsApp Freepik Vimeo YouTube Google Play
Store

–

T
ra
n
sp
or
t

Protocol TCP TCP TCP UDP TCP –

Header [bytes] 32 32 32 8 32 32

Max. DL payload [bytes] 147 1348 1348 1350 1348 1348

Avg. DL packet size [bytes] 71 1139 1396 1189 1391 1348

Max. DL packet size [bytes] 179 1380 1380 1358 1380 1380

DL packets with MSS [%] 0 73 99 86 99 100

No. of DL packets 27 56 2369 1988 30754 Np

No. of UL packets 30 39 1156 313 10991 Np

Ratio DL/UL packets 0.90 1.44 2.05 6.35 2.80 1

IP

Protocol header [bytes] 20 20 20 20 20 20

Max. packet size [bytes] 199 1400 1400 1378 1400 1400

P
D
C
P Total DL volume [kB] 1.9 63.8 3306.2 2362.9 42770.9 1400⇥Np

Total UL volume [kB] 2.5 4.9 61.9 80.08 571.5 52⇥Np

⇢UL(k) [%] 56.6 7.2 1.8 3.2 1.3 3.58

expected, WhatsApp reports the lowest transport packet size, with an average packet

size of 71 bytes. In fact, no packet fills the transport MSS. For the rest of services

(i.e., data-hungry services), the percentage of packets that fill the transport MSS va-

ries. In app download, video streaming and web with large objects, application data

chunks are large enough to fill payload in most transport packets (� 86%). In con-

trast, in the case of web browsing in simple webs, only 73% of packets fill TCP payload,

revealing the presence of some application data chunks with smaller size (e.g., small

objects).

The di↵erent packet sizes of data-hungry services impact the value of the descriptor

reflecting the ratio of UL volume, ⇢UL. This indicator reflects in which direction

(i.e., UL, DL or both) data tra�c is transmitted in a connection. Connections with

⇢UL(k) close to 0%/100% belong to asymmetric download/upload services, respecti-

vely, while connections with ⇢UL(k) close to 50% correspond to symmetric services. For

download connections, the value of ⇢UL(k) can be approximated analytically by consi-

dering a connection with arbitrarily large application data chunks, where all transport

packets are completely filled (i.e., a full-bu↵er service). Such an example is included in

’Full Bu↵er’ column in Table 3.1. VDL(k) at PDCP level is computed as the maximum
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TCP payload (i.e., 1348 bytes in LTE, according to measurements in Table 3.1) plus

32+20 bytes of TCP and IP headers. Likewise, VUL(k) is approximated by the size of

an ACK packet (52 bytes). Thus, ⇢UL(k) = 100 · 52

1400+52
= 3.58%. Connections with

⇢UL(k) less than that value belong to download services characterized by large data

chunks (e.g., app download). In contrast, connections with a higher ⇢UL(k) corres-

pond to upload services (e.g., file upload), symmetric services (e.g., video conference)

or download services with smaller data chunk size (e.g., web browsing with small ob-

jects). Such an statement is supported by measurements in Table 3.1. It is observed

that Google Play Store, YouTube and Vimeo (web with large objects) show ⇢UL(k)

below 3.58%. In contrast, the simple web shows ⇢UL(k) above 3.58%, and WhatsApp

has ⇢UL(k)⇡50%, since it is a symmetric service.

It should be pointed out that, in the analytical bound obtained for full-bu↵er ser-

vices, it is assumed that: a) there is no header compression in PDCP, which is valid for

most data tra�c in LTE [140], b) TCP protocol is used in the transport layer, and c)

each TCP packet is acknowledged by an ACK. The latter assumptions are not always

true in current networks. For instance, results for app download service in Table 3.1

show that 30,754 packets are sent in the DL and only 10,991 ACKs are sent in the

UL (i.e., 1 UL ACK message acknowledges 2.8 DL packets on average). Likewise,

YouTube sometimes uses UDP protocol [141]. If some of these conditions do not hold

(e.g., there is header compression, less ACKs are sent, and/or a di↵erent transport

protocol is used), a lower value of ⇢UL(k) will be obtained. Nonetheless, it can be

stated that connections filling most transport packets cannot have ⇢UL(k) higher than

3.58% in LTE. This threshold will be used to isolate di↵erent types of services.

3.3 Classification method

This section describes the proposed tra�c classification scheme. The aim of the method

is: a) to divide tra�c into broad application groups (e.g., messaging services, web

browsing, streaming services, etc.) using information from radio connection traces

provided by network operators, and b) to analyze the main features of each group.

Method structure is shown in Fig. 3.2. Once radio traces are collected and processed

as explained in the previous section, the connection dataset is broken into disjoint

groups by the five-step procedure illustrated in the right box of Fig. 3.2). First, a

new set of tra�c descriptors modeling radio connections at burst level is computed

per connection and added to the dataset. It will be shown later that services o↵ered
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Figure 3.2: Tra�c classification method.

in mobile networks are unevenly demanded (e.g., instant messaging is more demanded

than file download). Performing clustering over an imbalanced dataset can lead to the

classes with fewer members being shadowed by those with more members [142]. To

circumvent this issue, the connection dataset is next split into broad service classes

(hereafter referred to as connection blocks) based on prior knowledge on VDL and ⇢UL

descriptors. Then, connections in each block, from services with comparable demand,

are divided into groups through unsupervised clustering. Finally, the obtained groups

are labeled manually by analyzing their properties. A more detailed explanation of

each step is given below.

a) Computation of burst-level tra�c descriptors

Tra�c carried during a connection consists of one or more data chunks sent from/to

the network. As explained above, chunks generated at the application layer can be

segmented into smaller packets in lower layers. Then, as a result of packet scheduling,

packets belonging to the same data chunk can be transmitted in several data bursts

over the radio interface, where traces are collected [140]. Thus, a connection in the

radio interface consists of a series of data bursts, characterized by three parameters:

the number of bursts, N burst
DL (k), the duration per burst, T burst

DL (k, n), and the volume

per burst, V burst
DL (k, n) (where n denotes the burst index, since burst duration and

volume may vary across bursts). Those parameters strongly depend on the service.
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Figure 3.3: Burst-level connection model in the radio interface considering last TTIs.

For instance, when downloading a large file, a single data chunk is available at once at

the application layer, so less bursts are likely to be transmitted than when downloading

a web page comprising many small objects. Hence, the values of the above parameters

can be used to isolate di↵erent services in the radio interface.

Unfortunately, radio connection traces do not explicitly register information at a

burst level. As an alternative, burst-level parameters can be estimated per connection

from the set of tra�c descriptors introduced in section 3.2.1 by assuming that all bursts

are equal (i.e., have the same burst volume and duration), as shown in Fig. 3.3. First,

the activity ratio of a connection k in the DL, ⌧activeDL (k), is expressed as

⌧activeDL (k) =
T active
DL (k)

Teff (k)
=

N burst
DL (k)NactiveTTI

burst DL (k)

Teff (k)
=

NactiveTTI
burst DL (k)

T burst
DL (k)

, (3.5)

where NactiveTTI
burst DL (k) is the average number of active TTIs per burst in DL in connection

k (e.g., NactiveTTI
burst DL (k)=6 in Fig. 3.3). Likewise, by assuming that all the NactiveTTI

DL (k)

active TTIs in DL in a connection transmit the same data volume, V TTI
DL (k), the total

data volume transmitted in last TTIs in DL in the connection can be expressed as

V lastTTI
DL (k) = N burst

DL (k) V TTI
DL (k) = N burst

DL (k)
VDL(k)

NactiveTTI
DL (k)

=

N burst
DL (k)

VDL(k)

N burst
DL (k)NactiveTTI

burst DL (k)
=

VDL(k)

NactiveTTI
burst DL (k)

,
(3.6)

where it has been taken into account that there is only 1 last TTI per burst, and hence

the number of last TTIs in DL in a connection is N burst
DL (k). Thus, the share of volume
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in last TTIs is given by

⌘lastTTI
DL (k) =

V lastTTI
DL (k)

VDL(k)
=

VDL(k)

NactiveTTI
burst DL (k)

VDL(k)
=

1

NactiveTTI
burst DL (k)

. (3.7)

By replacing (3.7) in (3.5), the average burst duration can be computed as

T burst
DL (k) =

1

⌧activeDL (k) ⌘lastTTI
DL (k)

. (3.8)

Then, the number of bursts is estimated as

N burst
DL (k) =

Teff (k)

T burst
DL (k)

, (3.9)

and finally the average burst size is computed as

V burst
DL (k) =

VDL(k)

N burst
DL (k)

. (3.10)

In the above equations, it is assumed that: a) every burst has the same number

of active TTIs, and b) every active TTI transmits the same volume (including last

TTIs). Both statements may not be true for some connections due to changing radio

conditions, TCP ramp-up or services with varying burst size (e.g., multiple objects in a

web page). Nonetheless, N burst
DL (k), T burst

DL (k) and V burst
DL (k) capture the general behavior

of the connection, which should be enough to identify the type of service it belongs

to. These descriptors, less dependent on network performance than those introduced

in section 3.2.1, are computed per connection and added to the dataset.

b) Split per DL volume (VDL)

The total DL volume in a connection, VDL(k), allows to separate data-hungry services

from those requiring a low bit rate. Specifically, connections can be split into three

blocks:

1) High Volume (HV) block, comprising connections with VDL(k) � 256 kB, be-

longing to data-hungry services. Such a threshold is the 5th percentile of web

page size in mobile version according to a comprehensive analysis of the 400

top websites in Alexa ranking [143] performed with the WebPageTest tool [144].

Moreover, such a threshold is below the size of the initial data chunk of any audio
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or video in major streaming platforms [145] [146].

2) Medium Volume (MV) block, made of connections with 300 B <VDL(k)< 256 kB.

This block contains connections from applications consuming less data. The lower

threshold is the minimum data volume exchanged by applications providing ins-

tant messaging service (Telegram, Viber, etc.), which is the less data-demanding

of the most popular services in current mobile networks [147]. Such a threshold

is also the maximum size of push notifications used by mobile applications to

inform users of new events and updates [148].

3) Low volume (LV) block, comprising connections with VDL(k)  300 B. This block

contains tra�c from signaling or push-up notifications.

c) Split per transport segment size (⇢UL)

Di↵erent data-hungry services have di↵erent data chunk size at the application layer.

As explained in section 3.2.2, such behavior has an impact on the UL/DL volume

ratio. Thus, the share of UL volume, ⇢UL(k), can be used to split connections from

HV block in two sub-blocks: a) HV-LC block, comprising connections with Heavy

data Volume and Large data Chunks that tend to make the most of payload size at

the transport layer, and b) HV-SC, comprising connections with Heavy data Volume

and some Small data Chunks that may not fill transport packets. In section 3.2.2,

⇢UL(k)⇡3% was computed as an upper bound for the former services.

d) Clustering per block

Connections in LV block consist of signaling and notifications, often neglected in net-

work dimensioning and service-oriented self-management tools. Likewise, HV-SC block

is expected to include a mix of services whose tra�c patterns are not distinguishable

by information in traces. However, a more fine-grained classification can be performed

over connections in MV and HV-LC blocks. For this purpose, Agglomerative Hierarchi-

cal Clustering (AHC) is used. Among the existing clustering algorithms, AHC has been

selected because: a) it can manage datasets with clusters of di↵erent sizes (remember

that, in mobile networks, services are unevenly demanded) and density (connections

from a service type can have very similar tra�c descriptors or not), b) it does not

require to specify the number of clusters in advance (in the considered problem, such

information is unknown), and c) the dendrogram itself is valuable to understand the

data.
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Most clustering algorithms do not work e↵ectively in high dimensional space due to

the so-called curse of dimensionality [149]. Moreover, in clustering algorithms based on

distance such as AHC, as the number of input features grows, the distances among data-

points become all approximately equal, and no meaningful clusters can be formed [150].

To avoid these undesirable e↵ects, a reduced subset of the considered tra�c descriptors

is used as input features to AHC. Ideally, the selected tra�c descriptors must fulfill

that: a) they take di↵erent values for di↵erent services, b) they are insensitive to net-

work conditions, and c) they do not provide redundant information. A preliminary

analysis of tra�c descriptors (not shown here for brevity) reveals that the subset com-

prising TRRC(k), V burst
DL (k) and N burst

DL (k) fulfills these criteria. Then, only these 3 tra�c

descriptors are used as input features to AHC.

AHC assumes normally distributed data. A log transformation is performed over

the 3 input features to reduce data skewness. Moreover, tra�c descriptors show very

di↵erent ranges of values, which is an issue for distance-based clustering algorithms.

For better performance, log-transformed data is normalized, so all input features are

comparable. For this purpose, a min-max scaling method is used [151]. The normalized

value of each descriptor f in datapoint d, fnorm(d), is computed as

fnorm(d) =
f(d)� fmin

fmax � fmin

, (3.11)

where f(d) is the value of the descriptor after log-transformation and fmax and fmin

are the maximum and minimum values of the descriptor in the dataset. Normalization

must be performed separately in each block of connections (i.e., MV and HV-LC).

For robustness, the optimal point to cut the dendrogram (i.e., the best number of

clusters, Nclust) is found per block by checking the average silhouette score [152] and the

Calinski–Harabasz (CH) score [153] across a wide range of cut points. Silhouette score

assigns a mark between -1 and 1 to each sample in the dataset. Positive values show

that a datapoint is well classified, whereas negative values indicate that the datapoint

is more similar to a di↵erent cluster. In contrast, CH score computes the ratio between

the within-cluster dispersion and the between-cluster dispersion. In both cases, the

higher value, the better.
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e) Group labeling

Finally, the services included in each group are deduced by manually analyzing the

median value of tra�c descriptors for connections in the group.

3.4 Performance assessment

The proposed classification method is validated using connection traces from a live LTE

network. For clarity, assessment methodology is first described, results are presented

later and computational complexity is finally discussed.

3.4.1 Assessment methodology

The dataset is generated from CTRs collected from 10 am to 11 am (busy hour) in

145 cells covering 125 km2 in an urban area of a live LTE network. This data should

be representative of the entire network tra�c because: a) the time period represents a

significant share of daily network tra�c, and b) the area includes financial, residential

and recreational districts with di↵erent user profiles, which should reduce the influence

of time of day. Table 3.2 presents trace events provided by the vendor used to compute

all the considered tra�c descriptors.

Event decoding is performed by a proprietary tool provided by the network operator,

and then connection building is carried out in Java for computational e�ciency. The

resulting dataset consists of 184,349 connections. It is expected that most tra�c is

encrypted by the time the dataset was collected based on reports published by popular

content providers (e.g., Google [154]). As a consequence, QCI is the only information

available regarding service type. The dataset comprises 11.5% of connections with QCI

1 (Voice over LTE, VoLTE), 0.1% with QCI 5 (IP Multimedia Subsystem signaling) and

88.4% with QCIs from 6 to 9 (multimedia and TCP-based services). The latter class,

comprising 162,965 connections, is divided into application groups by the proposed

classification method. Such a method, hereafter referred to as Enhanced Agglomerative

Hierarchical Clustering (E–AHC), is compared with a naive method, referred to as

Basic Agglomerative Hierarchical Clustering (B–AHC). In B–AHC, AHC is directly

applied over all connections with QCIs from 6 to 9 (i.e., without any previous split per

VDL(k) or ⇢UL(k)). This approach, considered a benchmark, may be taken by a data

scientist with no prior knowledge of mobile networks.
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Table 3.2: Events in connection traces used for tra�c classification.

Event name Description

INTERNAL PROC INITIAL CTXT SETUP Event reporting connection start time

INTERNAL PROC UE CTXT RELEASE Event reporting connection release time and
cause

INTERNAL PER UE TRAFFIC REP Periodic event reporting the active number
of TTIs in both UL and DL

INTERNAL PER UE RB TRAFFIC REP Periodic event with total data volume in UL
and DL and data volume transmitted in last
TTIs

AHC is implemented with the Cluster Analysis toolbox in Matlab [155]. In both

B–AHC and E–AHC, a ward linkage function is used, which minimizes the total

within-cluster variance by merging the pair of clusters with minimum between-cluster

distance at each step. The Euclidean distance is used as distance metric [156]. In

the absence of labeled data, which would require using network probes, the method is

validated by checking that the groups created are consistent with the typical mobile

tra�c mix reported by a vendor the year when traces were collected [157].

3.4.2 Results

Results are presented next, broken down per classification algorithm for clarity.

a) B–AHC

Fig. 3.4 shows the average silhouette and CH scores obtained with the classical B–AHC

for di↵erent cuts in the dendrogram (i.e., Nclust choices). For better visualization,

values for each indicator are normalized by their maximum value. It is observed that, in

general, the value of both metrics tends to decrease as the number of clusters increases.

The higher (i.e., the best) value of CH index is obtained when Nclust=4, whereas the

silhouette value for this set-up is close to the best value (i.e., the relative value is 0.86).

Thus, the connection dataset is split by AHC into 4 service groups.

Table 3.3 breaks down the properties of groups (clusters) obtained by for B-AHC

with Nclust=4. For each group, the following information is provided: a) the number

of connections, b) the median value of tra�c descriptors of connections in the group1,

1The median operation is expressed by eliminating the dependence of k (e.g., VDL is the median
of VDL(k) for all connections k in a group)
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Figure 3.4: B–AHC performance with di↵erent number of clusters.

Table 3.3: Groups in B–AHC method.

Group Group 1 Group 2 Group 3 Group 4

No. of connections 35488 55224 51782 20471

TRRC [ms] 10618 10537 14148 28460

VDL [bytes] 211 288 6111 243493

⇢UL [%] 65.1 47.3 36.5 10.7

⌘lastTTI
DL 1 1 1 0.33

⌧activeDL 0.024 0.023 0.012 0.019

THsession
DL [kbps] 2.27 3.41 13.97 132.04

N burst
DL 7 9 35 83

T burst
DL [ms] 132 80 191 114

V burst
DL [bytes] 36 32 173 2925

% of total DL volume 0.13 0.06 1.29 98.52

and c) the percentage of DL volume carried by connections in the group. Results

show that connections in groups 1 and 2 present very similar characteristics (short

connections with reduced volume transmitted in last TTIs). Thus, all these connections

should have been grouped into a single cluster. Moreover, group 4, comprising long

data-intensive connections, has 98.52% of the total carried tra�c in the DL. According

to [157], no service had such an amount of tra�c by the time the dataset was collected

(nor currently). The large number of connections in this group (e.g., 12.56% of the

total) suggests that it contains connections from several data-hungry services. These
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inconsistencies point out that, as expected, AHC is not performing well because the

number of connections in some services is vast, causing that clustering focuses only on

that particular service. To confirm that bad results are not due to the choice of AHC

as clustering algorithm, the experiment is repeated with k-means and DBSCAN [158],

obtaining similar performance.

The above shortcomings are solved by the proposed E–AHC method by dividing

the dataset into blocks of connections based on prior knowledge.

b) E–AHC

In E–AHC, the dataset is first divided into three blocks based on connection data

volume in the DL (LV, MV and HV blocks). This split results in MV block (medium

volume) with the highest number of connections (104,227 connections, 63.99% of the

total), LV block (low volume) with 48,615 connections (31.69% of the total) and HV

block (high volume) with the lowest number of connections (7,032, a 4.32% of the

total). Then, the latter block is split according to ⇢UL(k) value in two sub-blocks:

HV-SC (small data chunks), comprising 7,032 connections, and HV-LC (large data

chunks), with only 3,091 connections. Finally, MV and HV-LC sub-blocks are divided

into clusters by means of AHC.

Fig. 3.5 shows the relative average silhouette and CH scores obtained when cutting

the dendrograms of MV block (blue curves) and HV-LC block (orange curves) with

di↵erent numbers of clusters. The best number of clusters is supposed to provide the

highest score values. Following this rationale, the optimal point should be Nclust=2 for

both MV and HV-LC blocks. However, an analysis of within-cluster sum of distances

(not shown here) reveals that, in both cases, this solution creates non-compact clusters,

providing a too coarse classification. Thus, Nclust=2 is discarded. For Nclust=4, CH

score in MV block has a value of less than 0.6 compared to the maximum, which is

unacceptable. Similarly, in HV-LC block, individual silhouette scores per datapoint

(not shown here) reveal that the number of samples with a negative silhouette score

value (i.e., with very di↵erent features to the typical behavior of the corresponding

cluster) strongly increases when Nclust=4, which is undesirable. In both cases, a larger

number of clusters leads to worse performance. Therefore, Nclust=3 is selected as the

cut point for both MV and HV-LC blocks. This solution provides a trade-o↵ between

cluster compactness and acceptable CH and silhouette scores.

Table 3.4 presents the eight connection groups obtained at the end of the classi-
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Figure 3.5: E–AHC performance with di↵erent number of clusters.

Table 3.4: Groups in E—AHC method.

Block LV MV HV-LC HV-SC

Group Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8

No. of connections 48615 52798 37624 13805 834 1205 1052 7032

TRRC [ms] 10458 11248 17890 12337 62555 18279 21404 46335

VDL [bytes] 144 797 11220 8026 11.96⇥106 1181⇥106 2.11⇥106 97390

⇢UL [%] 5 48.9 35.5 25.4 2.3 2.4 2.3 7.2

⌘lastTTI
DL 1 1 1 0.40 0.24 0.03 0.17 0.23

⌧activeDL 0.026 0.017 0.01 0.02 0.092 0.104 0.067 0.023

THsession
DL [kbps] 2.25 5.44 16.46 37.73 2146.53 2319.8 1480.3 251.1

N burst
DL 4 18 54 18 820 24 136 165

T burst
DL [ms] 127 67 125 144 57 363 80 203

V burst
DL [bytes] 33 40 199 496 12793 84223 16305 6487

% of DL volume 0.02 0.15 2.57 0.74 41.81 9.21 8.33 37.17

Service Push
notifications

Instant
messaging

Instant
messaging

File
sharing

Streaming Full bu↵er
services

Web
browsing

Web browsing
and RSS

fication process (one cluster from LV group, three clusters from MV group and four

clusters from HV group). For each group, it breaks down: a) the block to which the

group belongs, b) the number of connections, c) the median value of tra�c descriptors

of connections in the group, d) the percentage of the total DL volume carried by co-

nnections in the group and e) the underlying service, guessed by analyzing such values.

Groups are analyzed next.

LV block makes up group 1, comprising very short connections (TRRC<11 s and,

thus, Teff<1 s, since default inactivity timer is 10 s) with few data (⇡150 B in both
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UL and DL), all transmitted in last TTIs (⌘lastTTI
DL =1). Due to the low transmitted

data volume, session throughput is very low (⇡2 kbps). Such a description fits with

push notifications, consisting of lightweight audio or visual cues sent by specific ser-

vers (e.g., Google Cloud Messaging Server) to inform users about unread messages or

updates in applications [148]. This group may also include some radio connections com-

prising only a TCP FIN or RESET packet, appearing when these packets are delayed

more than the user inactivity timer [138]. In this case, a TCP connection is split into

two connections over the radio interface (one with the main TCP data flow and another

only with the FIN or RESET message). Note that this group is the second largest in

the mobile network under analysis, comprising approximately 30% of connections in

the dataset.

MV block is split into groups 2 to 4. Group 2 presents the highest number of

connections (about 33% of the total) with a short RRC connection time (⇡11 s), low

data volume (⇡800 B) and 100% of data transmitted in last TTIs. The fact that TRRC

is very close to the inactivity timer suggests that these connections consist of a single

data chunk at the application layer. Moreover, ⇢UL=49%, revealing that connections

belong to a symmetric service, i.e., users send and receive data. All these characteristics

can be associated to instant messaging services (e.g., WhatsApp) [147].

Group 3 has fewer connections than group 2 (23% of the total) with a longer dura-

tion (⇡8 s without considering the inactivity timer) and a higher but still limited data

volume (⇡11 kB). The fact that data is transmitted in last TTIs and the extremely low

activity ratio in the DL (median of 1%) show that data consists of small data chunks

scattered in time (in fact, N burst
DL =54). Since ⇢UL=35%, a considerable amount of the

total data is transmitted in the UL. Thus, these connections are likely due to several

interactions between user and network. This behavior is also typical of instant me-

ssaging services, where several messages are received/sent before the inactivity timer

expires and thus all those messages are part of the same radio connection. Note that

connections in groups 2 and 3 make up 56% of samples in the dataset, which is con-

sistent with the fact that instant messaging services are the most demanded services

in mobile networks nowadays [159].

Connections in group 4 are shorter than those of group 3 (TRRC=12.3 s), with similar

DL volume (8 kB) but lower UL volume ratio (⇡25%). The average burst volume is

much higher than in group 3 (V burst
DL =199 B and 496 B in groups 3 and 4, respectively),

showing an increase in data chunk length. In fact, only 40% of data is transmitted

in last TTIs. This group may be associated with small data files (e.g., images, audio
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recordings, documents, etc.) commonly shared by e-mail, messaging applications or

social networks.

HV-LC block, comprising data-hungry services with large data chunks at the appli-

cation layer (i.e., ⌘DL<3%), is divided into groups 5 to 7. Group 5 presents the lowest

number of connections in the dataset (0.05% of the total) with the longest length

(TRRC⇡62 s) and the highest DL data volume (12 MB), which is transmitted in many

bursts. In fact, despite the reduced number of connections, this group accounts for

41.81% of the total download tra�c in the network. The large duration and DL volume

and the presence of bursty tra�c suggest that this group includes connections from

audio and video streaming applications (e.g., YouTube, Netflix, Spotify, etc.). It is

worth noting that the median value of THDL
session in this group (2146.53 kbps) is higher

than expected (150 kbps is approximately the rate of high-definition video [160]). It

should be pointed out that, at the initial phase of a streaming session, a significant

part of the video/audio file (e.g., 40 s) is downloaded at full speed to avoid rebu↵e-

ring events. Then, download speed decreases, approaching the playout rate [145] [146].

Thus, THDL
session for short videos can be considerably higher than the playout rate. A

deeper analysis of data reveals that THDL
session for connections in this group tends to

decrease as TRRC increases, which is consistent with the fact that, in longer videos,

download speed tends to playout rate.

Groups 6 and 7 comprise shorter connections than group 5 (TRRC⇡20 s) with lower

VDL (⇡2 MB). The new burst tra�c descriptors reveal that, for connections in group

6, data is transmitted in a few very long bursts over the air interface (the heaviest in

the dataset). As a consequence, the activity ratio in the DL and session throughput

are the highest (10.4% and 2.3 Mbps, respectively). These features fit with full-bu↵er

services, such as app download, software update or large file download via FTP, where

the user demands as many resources as possible until all the data is transmitted. In

contrast, group 7 comprises connections with a large number of bursts (N burst
DL = 136

in group 7, compared to 24 in group 6) and lower DL activity ratio (6.7%) and session

throughput (⇡1.48 Mbps). The higher ratio of last TTIs (0.17 in group 7, compared

to 0.03 in group 6) points out the presence of small data bursts, which is confirmed by

the lower V burst
DL (6.5 kB in group 7 vs. 16.3 kB in group 6). Because of the presence

of bursts with di↵erent sizes and the median value of VDL, very similar to the median

size of mobile web pages in Alexa ranking [161], this group is labeled as web browsing.

Finally, HV-SC block corresponds to group 8. Since ⌘lastTTI
DL =0.23, it is deduced

that connections in this group have medium size data chunks. The median value of
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Table 3.5: Share of DL tra�c volume.

Service Vendor report Proposed method

Streaming 54.8 % 41.8 %

Web browsing 5.9 % 8.3 %

Full-bu↵er services 6.8 % 9.2 %

Social networks & others 32.6 % 40.7 %

TRRC is 46 s. The reduced DL activity ratio (2.3%) and the low session throughput

(⇡250 kbps) indicate that such a duration is due to several user interactions. This

group may contain a mix of services, such as web browsing (e.g., web with many

small objects or multi-page sessions) or social networks, where a wide range of services

(e.g., instant messaging, file sharing, short video streaming, etc.) can be demanded in

a single connection.

In the absence of labeled data, the classification shown in Table 3.4 is validated

by comparing the results with mobile tra�c statistics published by a vendor [157].

Table 3.5 shows the percentage of tra�c per application type carried worldwide in

2016 [157] (i.e., when traces were collected) and that obtained by E–AHC. According

to [157], audio/video streaming services carry most of the tra�c (54.8%) in current

networks. This figure is consistent with results from E–AHC, which ascribe 41.8% of

tra�c to these services (group 5). In [157], 5.9% of tra�c is assigned to web browsing,

whereas the proposed classification system assigns 8.3% of tra�c to this service (group

7). Software update, application download and file sharing services comprise 6.8% of

tra�c in [157], compared to the 9.2% of tra�c assigned to full-bu↵er services (group

6) by E–AHC. Finally, [157] includes two groups called Social Networks and Others

carrying 32.6% of tra�c. Both groups include tra�c of a di↵erent nature (e.g., instant

messaging, short videos, small file sharing, etc.), equivalent to groups 1, 2, 3, 4 and 8 in

A-EHC, carrying 40.7% of volume in the DL. Nonetheless, note that the classification

performed here is based on traces from a particular network, and percentages may

slightly di↵er from those reported worldwide by the vendor.

3.4.3 Computational complexity

The proposed classification system is conceived to be executed o✏ine, and thus com-

putational e�ciency is not critical. The only tasks that must be performed manually

by an expert are dendrogram cutting and group labeling. Once service groups in the
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network have been identified, there are two options to classify new datapoints (i.e., co-

nnections): a) compute cluster centroids and assign every connection to the cluster

with the nearest centroid, or b) train a SL-based classifier with a dataset labeled with

the proposed system. No matter the selected option, the most time-consuming task

for model exploitation is preprocessing connection traces. For time-constrained appli-

cations, this task can be accelerated by using parallelization.

The whole process must be repeated: a) when a new service is launched in the

network (such an event may require adding a new service group) and b) periodically,

to capture significant changes in network protocols or user behavior a↵ecting the value

of the considered tra�c descriptors (as such an event may change group centroids or

require updating VDL or ⇢UL thresholds used to create connection blocks). In current

mobile networks, these events take place at most with a monthly resolution. Therefore,

performing a new service classification (which takes at most several hours) should not

entail a problem for MNOs.

3.5 Conclusions

This chapter has dealt with the problem of classifying connections per service type

in mobile networks, which is a key task for the proliferation of service-oriented NFs.

A novel scheme for coarse-grained encrypted tra�c classification has been proposed.

Unlike previous flow-based approaches, relying on expensive tra�c probes in the core

network, the proposed method is based on tra�c descriptors computed from connection

traces collected on the air interface. To avoid the influence of network conditions, a

new set of network-independent indicators characterizing connections at burst level

has been developed. Since the model relies on USL, namely agglomerative hierarchical

clustering, it can be applied in the absence of labeled data.

Validation has been performed with a dataset from a live LTE network. Results

have shown the potential of burst-level tra�c descriptors to cluster connections per

service type. Nonetheless, even with the adequate set of input features, unsupervised

clustering algorithms perform poorly when applied directly over all connections in

CTRs due to the uneven demand of services in mobile networks, where some services

(e.g., instant messaging) prevail over others. To circumvent this problem, it is essential

to exploit prior knowledge to create broad connections blocks, and then apply USL

separately over each block for a finer-grained clustering. The classification performed

by the proposed method is consistent with the tra�c share reported for live networks
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the year data was collected, supporting the reliability of results.

The proposed classification scheme can easily be extended to other RATs and is

especially suitable for 5G networks, where highly di↵ering services coexist and hence

the development of service-oriented NFs is key to warrant customer satisfaction.





Chapter 4

Throughput estimation in cellular

radio access networks

This chapter addresses the issue of estimating radio throughput indicators in HSDPA,

LTE and upcoming sliced RANs by applying SL over data collected in the OSS. In

all these networks, cell-level performance estimates are key for detecting and solving

capacity problems in the RAN. Likewise, slice-level performance estimates are required

for slice (re)dimensioning purposes in NS scenarios. Among existing modeling approa-

ches, using SL over network data is a promising solution to derive performance models

tailored to specific network peculiarities (e.g., architecture, Radio Resource Manage-

ment –RRM– algorithms or NS set-up).

Content in this chapter is organized as follows. Section 4.1 revises related work. Sec-

tion 4.2 formulates the problem of estimating radio throughput indicators from statis-

tical measurements. Section 4.3 details the proposed generic estimation methodology,

that can be applied to di↵erent RATs. Then, section 4.4 presents method assessment

when estimating DL cell and user throughput during busy hours in HSDPA and LTE

networks. Finally, section 4.5 extends the analysis to DL cell and slice throughput

estimation in sliced RANs.

4.1 Related work

Performance estimation aims to predict some KPI at a given time from other known or

predicted information about network state at that time (unlike performance forecasting,

55
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where predictors are taken from a di↵erent time instant). Estimating cell capacity is

key for RAN dimensioning tasks, and has therefore been extensively covered in the

literature. Di↵erent metrics have been considered as capacity indicators. In [162], the

authors present an admission control policy driven by an analytical model based on

a multidimensional continuous-time Markov chain to estimate the varying capacity of

cells in LTE caused by user mobility in terms of session blocking probability. In [163],

the available bandwidth (i.e., channel spare capacity) is estimated from measurements

taken in drive tests in MONROE 3G/4G testbed, and the relationship between available

bandwidth and achievable throughput is analyzed. The MONROE platform is also used

in [164] to characterize cell capacity o↵ered by 11 operators in 4 di↵erent countries,

measured as maximum throughput at the application layer. In [165], cell capacity

for VoLTE service is measured as the maximum number of simultaneous active users

that can be served by a cell. Then, an analytical model is proposed to estimate cell

capacity in cell areas where users report di↵erent channel quality information. In [166],

a model based on linear regression is proposed to measure the maximum allowed tra�c

in Erlangs in a multi-service HSDPA network for di↵erent transmit powers and QoS

requirements from network performance indicators.

A common approach is to measure cell capacity as DL cell throughput in high load

conditions. Several analytical models have been developed to estimate cell throughput

considering di↵erent MIMO antenna schemes [167], scheduling algorithms [168] and

tra�c classes [169]. However, cell throughput is highly dependent on multiple factors,

such as service mix, terminal capabilities or propagation environment, which change

with time and location. To deal with this diversity, some studies estimate cell through-

put via simulations [170] [171]. Nonetheless, it is virtually impossible to simulate all

possible combinations of the above-mentioned factors. Alternatively, some works pro-

pose models tuned with real network statistics (e.g., CM, PM, traces...) collected in the

OSS. An interesting approach is to estimate cell performance with regression models

based on SL, able to capture the peculiarities of each particular network (e.g., packet

scheduler). The earliest works rely on Multi-Variable Linear Regression (MLR). In [22],

a performance model based on MLR is derived to estimate DL cell throughput in the

busy hour in a live HSDPA network from code-related, quality-related and power-

related indicators computed from PMs and CMs collected on a cell basis. In [23], it

is shown with real data that MLR can estimate cell throughput reasonably well in a

multi-service LTE network, but not packet delay statistics of VoIP users. In [24], delay

in connection setup is also considered an input to the linear model.
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As explained in chapter 2, current radio planning tools should not rely only on

metrics reflecting aggregated cell performance but also consider user performance me-

trics. In [172], SL algorithms are applied over data collected in a crowdsourced speed

test to estimate DL user throughput. Such tests collect terminal- and network-related

data through a large number of over-the-air transmissions. As a consequence, they can

overload the radio interface and drain user limited data plans, which is undesirable.

Alternatively, in [173], an analytical model is proposed to estimate DL user through-

put using drive test data collected by a radio frequency scanner. However, drive tests

are time-consuming and imply high operational costs, since they must be performed

periodically to adapt to events in the area or in the network a↵ecting radio frequency

measurements (e.g., new building or new cells, respectively) [174]. In [12], an ana-

lytical performance model is presented to estimate radio user throughput for packet

scheduling purposes in a multi-service scenario. Model parameters are adjusted with

information from radio connection traces. A more e�cient approach for operators is to

estimate both aggregated cell throughput (hereafter, cell throughput) and average user

throughput per cell in the DL from the same set of cell-level measurements gathered in

the OSS during normal network operation. Unlike cell performance, user performance

may not be linearly related to cell-level indicators, suggesting the use of non-linear SL

algorithms. For instance, in [25], DL cell and user throughput in LTE are estimated

with a DNN from a labeled dataset. The authors consider a set of 13 CMs and PMs

collected in a live network hourly for two months to train the model. However, net-

work operators are reluctant to use complex deep learning models with thousands of

hyperparameters in their network management tools, since these models are di�cult

to configure and interpret and must be trained with extensive training datasets (tens

of thousands of samples) to avoid overfitting. Under this premise, it this appropriate

to check if simpler classical SL algorithms perform well for the tackled problem.

This chapter presents a comprehensive analysis comparing the performance of

well-known SL algorithms for DL cell/user throughput estimation in busy hours from

cell-level PMs/CMs collected in the OSS. Two di↵erent RATs are considered, namely

HSDPA and LTE. For this purpose, two datasets with the most relevant performance

indicators in each RAT are collected from live networks. The main contributions of

this analysis are:

a) Presenting the first comparison of non-deep SL schemes for estimating DL cell/user

throughput in busy hours from network measurements in LTE. The considered

approaches include RF, MLP, SVR and KNN. These algorithms are compared
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with DNN and MLR techniques proposed in previous works [23] [25] [24].

b) Extending the analysis to HSDPA, where previous works only covered DL cell

throughput estimation with MLR [22].

c) Identifying a minimal set of key network performance indicators to be stored in

the OSS to estimate throughput indicators in both technologies.

In 5G systems, slicing the RAN implies significant changes that, as will be shown

later in this chapter, alter the correlation between network indicators and through-

put. Thus, estimating DL cell throughput in NS scenarios requires a separate analysis.

Moreover, new NFs (e.g., capacity brokers) arise that require slice-level performance

estimates to guarantee SLA fulfillment while ensuring an e�cient use of system band-

width. In [175], an analytical model is presented to estimate user blocking probability

in a cell serving guaranteed-bit-rate slices from channel quality information. The model

is based on a multi-dimensional Erlang-B system, insensitive to session duration dis-

tribution. An analytical approach is also considered in [176] to estimate the required

capacity per slice on a cell and pixel basis for redimensioning purposes. The model is fed

with cell configuration, channel quality information and tra�c information (i.e., spatial

distribution and volume) per active slice. For slices serving eMBB tra�c, throughput

is often the most highly-demanding performance requirement among those included in

SLAs while strongly impacting user experience. As a consequence, the development of

slice-level models to estimate indicators such as the aggregated slice throughput per

cell in the DL (hereafter, DL slice throughput) has gained interest for MNOs.

The ability of ML to capture network peculiarities is key when managing complex

sliced RANs. As a consequence, ML-based solutions have been proposed for resource

split among slices [117] [177], slice admission control [117], user-centric slice design [178]

or slice classification per service type [179], among other tasks. Closer to this thesis,

in [180], SL is used to estimate application-level video requirements from low-layer

network measurements to improve the slice negotiation phase. In [181], a digital twin

network model relying on graph ANNs is used to predict end-to-end packet latency in

three di↵erent NS scenarios, capturing intertwined relationships among slices. However,

the performance of SL models to estimate cell or slice throughput in sliced RANs has

not been assessed yet.

This chapter also presents an analysis of the performance of well-known SL al-

gorithms to estimate DL cell and slice throughput in sliced RANs from data in the

OSS. The considered approaches comprise all the algorithms tested in the analysis for
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non-sliced RANs (except MLR), plus AdaBoost and XGBoost. The analysis focuses on

eMBB services, for which throughput is key to ensure user satisfaction. For this pur-

pose, synthetic measurement datasets have been created with a dynamic system-level

simulator emulating the activity of a live cellular network. The main contributions are:

a) Presenting the first study assessing the performance of well-known SL models to

estimate DL slice throughput in sliced RANs from data in the OSS.

b) Assessing the performance of these algorithms to estimate also DL cell throughput

in sliced RANs. To justify the need for this contribution, an analysis of the

impact of enabling NS on the correlation between network indicators and DL cell

throughput is presented.

c) Extending the comparative analysis to two di↵erent NS scenarios, consisting of

single-service and multi-service slices serving eMBB users.

d) Identifying a minimal set of network performance indicators to be stored in the

OSS for the above tasks. A novelty here is the inclusion of features derived from

radio connection traces, not considered in the analysis performed over non-sliced

network.

It should be pointed out that all SL techniques considered here are included in most

data analytics packages and have already been used in several fields. Hence, the main

novelty is the assessment of well-established SL methods for new use cases related to

radio throughput estimation in cellular networks.

4.2 Problem formulation

This chapter tackles the problem of developing models to estimate radio throughput

indicators at a given time t from information (real or hypothetical) on network state at

time t. These models are key for an e�cient network (re)dimensioning since they allow:

a) to analyze a worst-case scenario for the current network set-up, and b) to assess

the impact of redimensioning actions (e.g., cell/slice bandwidth extension/reduction,

deployment or temporal switch-o↵ of a cell. . . ) on network performance. To capture

network peculiarities, models are built from data gathered in the OSS.

The estimation of DL throughput of an entity k in the RAN of a cellular net-

work, TH(k), from data collected in the OSS can be tackled as a regression problem.

Throughput depends on many factors related to radio channel conditions (e.g., in-
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door/outdoor environment, inter-site distance...), network configuration (e.g., packet

scheduling algorithm, radio resource utilization threshold...) and user profile (e.g., tra�c

mix, terminal capabilities...). As a consequence, complex regression models with

dozens of predictors can be derived, some of which may be RAT-specific features

(e.g., code-related features in HSDPA). In the simplest model, DL throughput es-

timation is formulated as

dTH(k) = f(C(k), Cutil(k), SE(k)) , (4.1)

where C(k) denotes the capacity of entity k, Cutil(k) is the amount of used capacity, and

SE(k) is spectral e�ciency, reflecting how much data can be transmitted per capacity

unit with radio link conditions experienced in the DL of entity k.

The activation of NS feature can have a strong impact on network performance.

Cell bandwidth, Physical Resource Block (PRB) utilization ratio in the Physical DL

Shared CHannel (PDSCH) and Channel Quality Indicator (CQI) statistics are often

considered as capacity, used capacity and spectral e�ciency indicators, respectively,

when estimating DL cell throughout. In live networks, cell bandwidth determines the

maximum achievable cell throughput, whether NS is enabled or not. In legacy networks

without NS, all users share the spectrum, leading to a high PRB utilization ratio in peak

periods in the presence of users demanding data-hungry services. As a consequence, for

a specific cell bandwidth, DL cell throughput strongly depends on spectral e�ciency

(i.e., CQI reported by the UE), which determines the amount of bits that can be

transmitted per PRB. In contrast, in NS scenarios, the split of radio resources among

slices may prevent the packet scheduler to make the most of cell bandwidth. If this

is the case, the PRB utilization ratio becomes a relevant indicator to estimate DL

cell throughput. These di↵erences suggest that separate cell-level performance models

must be derived for non-sliced and sliced scenarios.

Apart from cell-level models, in sliced RANs, some advanced RRM tasks require

estimating system performance per slice. The model in (4.1) can be extended to esti-

mate DL throughput per cell and slice by defining slice-level inputs (e.g., C(k) may be

the average no. of PRBs allocated to an slice per cell in the considered ROP). Note

that slices can either only serve a type of service (e.g., video streaming slice) or a mix

of services (e.g., all tra�c belonging to a virtual MNO). To make it easier for operators

to select the best slice set-up, a comprehensive analysis must be carried out to check

the impact of service mix when estimating slice performance by comparing results from



CHAPTER 4. THROUGHPUT ESTIMATION IN CELLULAR RADIO ACCESS NETWORKS 61

scenarios with single-service and multi-service slices.

In 5G systems, the increase of bursty data from services with small packet size

(e.g., mMTC services) may alter the correlation between network performance indi-

cators (e.g., number of simultaneous users) and DL slice throughput. Previous cell

performance models have been developed using data from live 3G or 4G networks,

where most connections belong to data-hungry services [182]. To deal with service

diversity, it could be necessary to include features reflecting the tra�c mix in network

performance models at cell and slice level.

Note that, in the RAN, several important aspects a↵ecting slice definition are up to

MNOs. For instance, radio resource split among slices might be hard (i.e., dedicated

radio resources per slice) or flexible (i.e., slices share radio resources). Moreover, in the

latter case, resource allocation per slice can be static or dynamic (e.g., slice resource

reallocation every minute). Di↵erent NS settings lead to di↵erent radio-electrical and

tra�c isolation between slices [116]1. Likewise, RRM algorithms (e.g., access control

or packet scheduling) can be customized per tenant, leading to di↵erent slice beha-

vior. More importantly, even in the absence of NS, each mobile network has its own

peculiarities (e.g., topology or RRM algorithms). In this context, empirical SL models

can capture non-linear relationships among features and peculiarities of each specific

scenario when estimating cell or slice performance. In this process, the selection of

adequate predictors is key for model accuracy and generalization.

In this chapter, all these aspects are considered by developing separate SL models to

estimate di↵erent throughput KPIs (i.e., average user throughput, aggregated through-

put) with di↵erent granularity (i.e., cell- or slice-level) in di↵erent RATs (i.e., LTE and

HSDPA) and scenarios (i.e., legacy and sliced RANs) from a set of candidate input

features derived from multiple data sources (i.e., cell counters and connection traces).

4.3 Throughput estimation method

Fig. 4.1 outlines the estimation process followed once the target throughput metric and

the set of candidate predictors are defined. First, data from all cells in the network is

gathered in the OSS to build the dataset, which is then preprocessed to normalize the

values of input features and create training and test datasets. Next, the training dataset

1Radio-electrical isolation refers to the absence of mutual interference at the air interface among
di↵erent slices. In contrast, tra�c isolation refers to the impossibility of a slice to transmit in PRBs
allocated to other slice in a given cell.
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Figure 4.1: Throughput estimation method.

is used to build performance models. In a given network, separate models are created

to estimate each throughput metric. Di↵erent FS techniques are tested to reduce the

number of predictors. In all cases, hyperparameters of SL algorithms are adjusted to

avoid overfitting. Finally, model performance is assessed on the corresponding test

dataset. A more detailed explanation of each step is given next.

4.3.1 Data collection

This thesis tackles the estimation of three di↵erent radio throughput indicators:

a) DL cell throughput [kbps], defined as the total data volume transmitted per

second at the PDCP layer in active periods in the DL of a cell [104].

b) DL user throughput [kbps], defined as the average data volume transmitted per

second to each active user at the PDCP layer in the DL of a cell, excluding last

TTIs [104].

c) DL slice throughput [kbps], defined as the total data volume transmitted per

second at the PDCP layer in active periods in the DL of a cell in PRBs assigned

to a specific slice.

The specific set of considered candidate predictors for estimating these throughput

indicators per RAT will be defined later in this chapter. In HSDPA and LTE, all input

and output features can be computed from PMs aggregated on a cell basis and CMs.

In contrast, in complex NS scenarios, the considered predictors are obtained from PMs
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and CMs gathered on a cell and slice basis and radio traces. In live networks, all this

data can be stored in the OSS after each ROP.

4.3.2 Data preprocessing

To ensure high accuracy and faster convergence of SL algorithms, input features are

normalized, so that all have comparable ranges. For this purpose, a Z-score standardi-

zation method is used [151]. The scaled value of feature f for datapoint d, denoted as

fscaled(d), is computed as

fscaled(d) =
f(d)� µf

�f
, (4.2)

where µf and �f are the mean and standard deviation for feature f in all datapoints

in the dataset.

After data normalization, the Ns samples in the dataset are split into training

and test subsets by creating a random partition. To avoid overfitting, the number of

samples in the training dataset must be higher than the number of trainable model

parameters.

4.3.3 Model creation

The conducted analysis seeks to find the best model to estimate a particular throughput

indicator (i.e., DL cell, user or slice throughput) in all the entities (i.e., cell or cell-slice)

in the same RAT within a network. Modeling is performed through SL. Di↵erent

regression algorithms among those described in section 2.1.1 are tested, based on linear

regression (MLR), support vectors (SVR), distance (KNN), DTs (XGBoost, AdaBoost

and RF) and ANNs (MLP). Several di↵erent models are trained per algorithm and

throughput metric: a) a full model (FULL) considering all candidate input features

and b) several FS models considering a relevant subset of input features.

Two key aspects in modeling, namely hyperparameter optimization and dimensio-

nality reduction, are detailed next.
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a) Dimensionality reduction

It is expected that the larger the number of input features (i.e., network indicators),

the better estimation of the output feature (i.e., throughput metric). However, SL

algorithms may underperform when input features are strongly correlated or are not

relevant for the predicted variable. Moreover, when it comes to cellular networks, it is

preferred to gather only useful data in the OSS to avoid: a) congestion problems in the

backhaul due to the flow of data sent from base stations, b) unnecessary investment

in large databases and processing platforms with a large computational power, and

c) large data preprocessing and model training times, which can be critical for real-

time applications. Additionally, collecting some data (e.g., connection traces) in NS

scenarios may require an agreement between tenants and the infrastructure owner.

Hence, dimensionality reduction is a key aspect in this analysis. The FS approach is

selected for this purpose, since it eliminates the need for gathering irrelevant indicators

in the OSS (note that this issue is not solved by FE).

Three di↵erent FS methods are tested, namely CORrelation-based FS (COR), Se-

quential Forward Selection (SFS) and Recursive Feature Elimination (RFE). COR is

a simple filtering method that considers as relevant those features whose linear corre-

lation, ⇢, with the response variable is high, i.e., |⇢|>0.5. SFS is a wrapper method

that starts with an empty model. Then, the most relevant features according to a pre-

defined loss function are sequentially added until adding an additional feature does not

significantly improve a predefined loss function. Oppositely, RFE is a wrapper method

that starts with a model including all the candidate input attributes and sequentially

removes the least relevant feature until an empty model is created [61].

Note that the set of candidate features di↵ers per RAT. Moreover, some features

may be relevant for estimating a certain throughput indicator, but negligible for others.

Thus, COR must be performed per RAT and output feature, whereas SFS and RFE

must be executed per RAT, output feature and SL algorithm.

b) Hyperparameter tuning

Hyperparameters are internal model parameters controlling the learning process in ML

algorithms. An adequate hyperparameter configuration is key to make the most of

SL models. However, SL algorithms often have dozens (or even hundreds) of hyper-

parameters, and thus fine-grained tuning increases training time exponentially. For

simplicity, in this thesis, the less influential parameters for each algorithm are fixed,
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Table 4.1: Hyperparameters tuned for throughput estimation.

Hyperparameter name Parameter space

M
L
R Fit intercept True (fixed)

S
V
R

Sensitivity, ✏ [0.05, 0.4]

Regularization, C [10, 100]

Kernel function {linear, radial basis, polynomial}

K
N
N No. of neighbors [4, 20]

Distance metric Euclidean (fixed)

X
G
B
oo

st

No. of trees [50, 200]

Maximum tree depth [5, 10]

No. of features per tree No. input features (fixed)

Loss function Squared error (fixed)

Learning rate (⌘) [0.01, 0.1]

L1 regularization term (↵) [0.01 100]

L2 regularization term (�) [0.01 100]

Minimum loss reduction for splitting 0 (fixed)

A
d
aB

oo
st No. of trees [10, 50]

Loss function {linear, square, exponential}

Learning rate [0.1, 0.7]

R
F

No. of trees [30, 100]

Maximum tree depth [5, 50]

Minimum node size to split 2 (fixed)

No. of features per tree {
p

Nf , Nf} (Nf stands for no. of features)

Bagging Enabled (fixed)

Criterion to measure split quality Mean absolute error (fixed)

Minimum impurity reduction for splitting 0 (fixed)

M
L
P

No. of layers [3, 10]

No. of neurons per hidden layer [5, Nf ]

Weight initialization Glorot []

Activation function in hidden layers {Hyperbolic tangent, linear, sigmoid,

rectified linear unit}

Activation function in output layer Rectified linear unit (fixed)

Optimization algorithm {Adam, L-BFGS}

Mini-batch size (Adam optimizer) 64 (fixed)

Loss function MAE (fixed)

Max. no. of epochs 1000 (fixed)

Train / validation split 70% / 30% (fixed)

Early stopping condition Accuracy in the validation dataset

does not improve in 3 epochs



66 4.4. CELL AND USER CAPACITY ESTIMATION IN HSDPA AND LTE

and only the most influential parameters according to previous works [183] are tuned

through a random grid search in the parameter space [184]. Table 4.1 breaks down the

main hyperparameters for the considered SL algorithms, together with the configured

fixed value or parameter space. The reader is referred to [37] for a detailed explanation

of these hyperparameters. The best hyperparameter value (or tuple) is that mini-

mizing a given FoM (e.g., mean absolute error, mean percentage error...). Since the

best setting strongly depends on the problem and set of predictors, the tuning process

is performed separately for each RAT, output feature and selected predictors among

candidates when performing FS (e.g., at each step of the SFS/RFE process).

4.3.4 Performance evaluation

Model performance is assessed over the test dataset with di↵erent Figures of Merit

(FoMs). Accuracy FoMs defined for non-sliced and sliced networks will be presented

in subsequent sections 4.4.2 and 4.5.2, respectively. In both cases, the number of input

features per model is also considered as a proxy of required storage capacity in the OSS

and load in the backhaul due to data exchange. Finally, training time is measured as

a measure of computational complexity. The best model (i.e., SL algorithm and FS

technique) is selected as a trade-o↵ of all these FoMs.

4.4 Cell and user capacity estimation in HSDPA

and LTE

This section tackles the problem of estimating radio throughput indicators reflecting

cell and user capacity in HSDPA and LTE with SL over data collected in the OSS.

Assessment is carried out over two datasets obtained in commercial networks. For

clarity, datasets are first described, performance assessment is detailed next and the

main conclusions are finally exposed.

4.4.1 Dataset description

Two di↵erent datasets are collected from a live HSDPA network and a live LTE net-

work. The main characteristic of these networks and the dataset creation process are

outlined next.
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a) Dataset A – HSDPA

The first dataset is collected in a live 3G network serving an entire country (approxi-

mately 10,000 km2), comprising 12,318 cells of very di↵erent sizes and environments.

Two carrier frequencies are deployed per cell. A first carrier is used for Adaptive

Multi-Rate Circuit-Switched (AMR CS) calls and non-HSDPA packet-switched tra�c,

while a second carrier is used for HSDPA tra�c and AMR CS calls when the first

carrier is full. The analysis is focused on the second carrier (i.e., HSDPA capacity), for

which capacity estimation is more di�cult.

CMs and PMs are collected on a cell and hourly basis for a whole day in the OSS. In

HSDPA, the maximum cell/user capacity is defined as DL cell/user throughput metrics

introduced in section 4.3.1 measured when the TTI utilization ratio, TTIutil rat, is

high. Thus, only data from highly loaded cells is considered in the analysis. The

selection of such cells is carried out through the observation of the cell busy hour,

defined as the hour with the largest average number of active UEs (i.e., with data

to transmit) over HSDPA. Analysis is restricted to those cells with TTIutil rat>50%

during the busy hour. This filter results in a dataset comprising 1,095 datapoints with

the following features:

a) Cell identifier.

b) Date (format DD/MM/YYYY HH:HH).

c) TTI utilization ratio in HSDPA, TTIutil rat, as a measure of cell load.

d) A set of 12 network indicators, shown in Table 4.2, as candidate input features

for capacity estimation. To allow the comparison with previous approaches, the

considered input features are the same as in [22], including code-related indicators

(e.g., no. of codes used in HSDPA), tra�c-related indicators (e.g., no. of active

UEs), power-related indicators (e.g., avg. DL transmit power for HSDPA) and

quality-related indicators (e.g., median CQI).

e) DL cell throughput in HSDPA, THHSDPA
cell , defined in section 4.3.1, as a measure

of cell capacity (i.e., variable to be predicted).

f) DL user throughput in HSDPA, THHSDPA
user , defined in section 4.3.1, as a measure

of user capacity per cell (i.e., variable to be predicted).

Table 4.3 presents the minimum, maximum and mean value and the standard de-

viation of input and output features in the HSDPA dataset.
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Table 4.2: Candidate input features for estimating DL cell throughput in HSDPA.

Type Name Description

Power
Avg R99 DL power [mW] Average DL transmit power for Data CHannel (DCH)

Avg HSDPA DL power [mW] Average DL transmit power for HSDPA

Tra�c Avg activeUE Average number of HSDPA active UEs per TTI in DL

Code

Avg codes used HSDPA Average number of codes used in HSDPA

Avg SF16 codes HSDPA Avg. number of codes with spreading factor 16 reserved for HSDPA

Avg codes HSDPA UE Average number of codes used per HSDPA user

Code load [%] Percentage of channelization codes used in both DCH and HSDPA

CQI class p50 Median DL CQI

CQI class p80 80th-tile of DL CQI distribution

Quality 16QAM usage [%] Usage of 16QAM modulation (as opposed to QPSK)

RLC retx ratio DL Ratio of RLC retransmissions in DL

PDU656 usage [%] Percentage of packet data units with size 656 B (as opposed to
310 B)

Table 4.3: Statistics of dataset A (HSDPA network).

Indicator Min. Max. Mean Std. deviation

Avg R99 DL power [mW] 2,014 15,777 7,512 1,844

Avg HSDPA DL power [mW] 1,200 16,060 5,684 1,368

Avg activeUE 0.85 62.68 20.43 10.85

Avg codes used HSDPA 1.10 9.20 4.30 1.10

Avg SF16 codes HSDPA 5 14 9.48 1.93

Avg codes HSDPA UE 7.15 11.40 9.29 0.67

Code load [%] 47.62 96.66 88.16 3.59

CQI class p50 6 22 15.06 1.90

CQI class p80 9 26 19.47 1.86

16QAM usage [%] 0.10 89.20 22.09 14.41

RLC retx ratio DL 0.02 1.34 0.14 0.07

PDU656 usage [%] 0 135.80 32.82 26.02

THHSDPA
cell [kbps] 252.82 4768.21 1859.92 648.27

THHSDPA
user [kbps] 11.43 1771.50 90.27 112.09

b) Dataset B – LTE

The second dataset is collected in a live LTE network comprising 656 cells covering

urban and residential areas. In this network, two carriers are deployed at 700 MHz

and 2100 MHz with a system bandwidth of 10 MHz and 5 MHz, respectively. In

this case, the analysis includes both carriers. To obtain the dataset, CMs and PMs

are gathered on an hourly and cell basis for 6 days (note that the smaller size of the
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Table 4.4: Candidate input features for estimating DL cell throughput in LTE.

Type Name Description

Avg CQI Average DL CQI

�CQI Standard deviation of DL CQI distribution

CQI class p5 5th-tile of DL CQI distribution

Quality CQI class p10 10th-tile of DL CQI distribution

HARQ fail ratio DL Hybrid Automatic Repeat reQuest (HARQ) failure ratio in DL

RLC retx ratio DL Ratio of RLC retransmissions in DL

DL assign Ack Ratio of correct resource assignments in DL control channel

Tra�c Avg activeUE Average number of active UEs per TTI in DL

CMs
BW [MHz] LTE system bandwidth

PUCCH SR users Max. number of UEs allowed to send Scheduling Request in UL

network allowed a longer data collection period compared to the HSDPA case). Again,

to obtain reliable capacity estimates, the analysis is restricted to those datapoints from

highly loaded cells, i.e., those with DL PRB utilization ratio, PRButil rat, higher than

50% in the daily busy hour. This filter results in a dataset with 2,141 datapoints with

the following information:

a) Cell identifier.

b) Date (format DD/MM/YYYY HH:HH).

c) DL PRB utilization ratio, PRButil rat, as a measure of cell load.

d) A set of 10 network indicators, shown in Table 4.4, as candidate input features.

These include network settings (e.g., system bandwidth), quality-related statistics

(e.g., average CQI) and tra�c-related statistics (e.g., no. of active UEs) provided

by most vendors and used in previous studies for capacity estimation in LTE [23].

e) DL cell throughput, THLTE
cell , defined in section 4.3.1, as a measure of cell capacity

(i.e., variable to be predicted).

f) DL user throughput, THLTE
user , defined in section 4.3.1, as a measure of user capa-

city per cell (i.e., variable to be predicted).

Table 4.5 presents the minimum, maximum and average value and the standard

deviation of input and output features in the LTE dataset.

From the comparison of Tables 4.2 and 4.4, it is observed that some of the con-

sidered indicators provide similar information in both technologies (e.g., number of

active UEs, RLC retransmissions, CQI, etc.), and, thus, both analyses rely on simi-
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Table 4.5: Statistics of dataset B (LTE scenario).

Indicator Min. Max. Mean Std. deviation

Avg CQI 5.50 12.21 7.81 0.95

�CQI 0.29 3.13 0.85 0.19

CQI class p5 1.31 7.12 3.48 0.68

CQI class p10 1.69 8.29 4.17 0.74

HARQ fail ratio DL 0.05 0.11 0.07 7.3·10�3

RLC retx ratio DL 1.2·10�5 0.05 7.2·10�4 1.6·10�3

DL assign Ack 0.26 0.99 0.96 0.07

Avg activeUE 0.30 16.97 1.69 1.06

BW [MHz] 5 10 9.44 1.57

PUCCH SR users 560 730 646.35 34.06

THLTE
cell [kbps] 2441.96 22967.20 8471.62 2112.73

THLTE
user [kbps] 514.31 16004.31 4691.54 1804.45
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Figure 4.2: Cumulative distribution function of network indicators in HSDPA and LTE
datasets.

lar initial information. Nonetheless, other indicators are distinctive of the technology

(e.g., code-related indicators in HSDPA), so that technology-specific information is also

considered. For a deeper analysis, Fig. 4.2 shows the Cumulative Distribution Func-

tion (CDF) of Avg activeUE and CQI class p50 indicators in dataset A (solid lines)

and Avg activeUE and Avg CQI indicators in dataset B (dashed lines). Note that,

although only highly-loaded cells are considered in both technologies, Avg activeUE in
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LTE is lower than in HSDPA, revealing that users in LTE demand more data-hungry

services. Likewise, the highest values of CQI measured per cell (i.e., 22 in HSDPA sce-

nario and 12 in LTE scenario according to Tables 4.2 and 4.4, respectively) are below

the maximum CQI value defined in each RAT (i.e., 30 in HSDPA and 15 in LTE [140]).

Both datasets A and B combine a large geographical area (hundreds of cells) with

an adequate time resolution (hour), similarly to those used by operators for capacity

estimation purposes. This fact guarantees the reliability and significance of results.

Note that, because of the filtering based on busy hour and TTI utilization ratio, these

datasets have a reduced number of samples. This property increases the interest of

assessing the performance of non-deep SL algorithms, less prone to overfitting than

DNNs when trained with reduced datasets, for cell/user capacity estimation.

4.4.2 Performance assessment

This section presents the assessment of the estimation methodology described in sec-

tion 4.3 over the datasets introduced in section 4.4.1. For clarity, analysis set-up is first

explained. Then, results are presented, broken down per RAT. Finally, computational

complexity is discussed.

a) Analysis set-up

The proposed estimation methodology is particularized as follows. Regarding data pre-

processing, for each dataset, 80% of datapoints are used for training and the remaining

20% are used for test. Regarding modeling, six regression algorithms are compared,

namely MLR, SVR, RF, KNN and two MLPs di↵ering in the number of hidden layers.

The first one, denoted as MLP–SNN, has a single hidden layer (a.k.a. shallow ANN)

whose number of units is determined by grid search as set in Table 4.1. The second

one, denoted as MLP–DNN, is a DNN based on that tested in [25] to estimate DL cell

and user throughput in LTE. The number of hidden layers is 3/4 for cell/user capacity

estimation (values obtained through grid search) with as many units as input features.

All SL algorithms are implemented with scikit-learn and Keras, two ML libraries for

Python extensively used in several fields. The reader is referred to [185] [186] for further

information on the implementation of SL algorithms in these libraries.

Three models are derived with each regression algorithm: a full model with all

candidate predictors (FULL model), a simplified model with a subset of input features
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selected by COR method (FS–COR model) and a simplified model with predictors

selected by SFS (FS–SFS model). Thus, 18 regression models are tested. For each

model, the best hyperparameter value (or tuple) is that minimizing the Mean Absolute

Percentage Error, MAPE, in the training dataset. MAPE is computed as

MAPE =
1

Ns

NsX

i=1

����100 ·
by(i)� y(i)

y(i)

���� , (4.3)

whereNs is the number of datapoints, and y(i) and by(i) are the measured and estimated

values of the output feature in datapoint i, respectively. Such a metric is also the loss

function in the SFS process, where the condition to select the optimal number of

features, N opt
f , is when the decrease in MAPE after adding a new feature is lower than

1% provided that MAPE<10%. To prevent overfitting, a 5-fold cross validation is

performed over the training dataset when tuning hyperparameters and over the whole

dataset at each step of the RFE process [37].

Performance evaluation is based on MAPE, complemented by the number of input

features and training time as a proxy to storage and computational e�ciency. A

model (i.e., combination of SL algorithm and FS scheme) is considered acceptable to

estimate DL cell/user throughput if MAPE<10%. This value has been considered

as an acceptable error in previous works [24], since it provides a trade-o↵ between

model complexity and accuracy. A more restrictive MAPE threshold can only be

achieved by complex models requiring large training datasets and higher training times.

In network planning tools, such an increase in complexity does not pay o↵, since

operators have to take the same replanning actions whether capacity problems are

detected with a MAPE of 5% or 10%. On the contrary, a too relaxed threshold

can lead to unnecessary investments (e.g., bandwidth extension licenses) if capacity is

underestimated, or to capacity bottlenecks (e.g., underprovision of radio resources) if

capacity is overestimated. In live networks, the accuracy threshold is up to the MNO.

No matter the set value, the worst case is not detecting problems due to overestimating

capacity, since user experience may be degraded. To ensure that all potential issues are

detected, parameters in redimensioning NFs (e.g., thresholds to trigger minor, major

or critical alarms) must be set considering the expected model error.

The best model for each throughput indicator (output feature) is that with a

MAPE comparable to the best model (i.e., di↵erence lower than 2% in absolute terms)

and the lowest number of input features.
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Table 4.6: MAPE for estimating DL cell and user throughput in HSDPA [%].

THHSDPA
cell THHSDPA

user

Model FULL FS–COR FS–SFS FULL FS–COR FS–SFS

Nf 12 4 — 12 4 —

MLR 7.37 9.39 8.13 (N opt
f = 4) 43.11 49.15 41.24 (N opt

f = 4)

SVR 7.36 9.34 8.17 (N opt
f = 4) 13.31 21.75 11.03 (N opt

f = 4)

RF 6.69 9.06 7.04 (N opt
f = 4) 13.42 22.44 12.11 (N opt

f = 4)

KNN 10.03 8.46 8.27 (N opt
f = 3) 17.09 22.52 12.33 (N opt

f = 4)

MLP–SNN 5.60 9.33 6.80 (N opt
f = 4) 10.64 21.68 9.23 (N opt

f = 5)

MLP–DNN 5.81 8.99 7.13 (N opt
f = 4) 8.79 20.95 10.26 (N opt

f = 10)

b) Results – HSDPA

Table 4.6 breaks down the results obtained for the considered regression algorithms

when estimating THHSDPA
cell and THHSDPA

user with the FULL, FS–COR and FS–SFS

models. THHSDPA
cell results are analyzed first and THHSDPA

user is considered later.

Results from FULL models show that, as stated in [22], MLR achieves an adequate

accuracy (i.e., MAPE=7.37%) when estimating THHSDPA
cell . This result points out

that some input features have a strong linear relationship with the output variable.

RF, MLP–SNN and MLP–DNN improve MLR accuracy, with a MAPE of 6.69%,

5.60% and 5.81%, respectively. KNN shows the worst results, although its MAPE

(=10.03%) is still acceptable. An analysis of the Pearson correlation coe�cients (not

shown here) reveals that CQI class p50, CQI class p80, Avg codes used HSDPA

and 16QAM usage features are linearly correlated with THHSDPA
cell (i.e., |⇢|>0.5). This

is reinforced by the fact that FS–COR models, which use only those 4 indicators as

input features, achieve a MAPE below 10% for all algorithms. Fig. 4.3 depicts the

evolution of the MAPE obtained across FS–SFS process. As expected, in general, the

larger number of features, the higher accuracy. However, KNN performance degrades

progressively when the number of features grows above Nf=5. This unexpected beha-

vior reveals that KNN is su↵ering the so-called curse of dimensionality, since it requires

all neighbor datapoints to be close in all dimensions of the data space, which becomes

more di�cult as the input feature space grows [187]. MLP–SNN and RF perform

similarly, providing the best results with a low number of input features. Table 4.6 in-

cludes, in FS–SFS column, the MAPE obtained for each algorithm with N opt
f selected

with the predefined convergence criterion. MAPE values show that FS–SFS models

reduce the required storage capacity compared to the FULL models at the expense of

a negligible degradation in MAPE (. 1% in absolute terms for all algorithms). In
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Figure 4.3: MAPE evolution across sequential feature selection (FS-SFS) process when
estimating DL cell throughput in HSDPA.

KNN, FS–SFS model is more accurate than the FULL model (i.e., MAPE=10.03%

with FULL model, and 8.27% for FS–SFS model) for the above reasons. Overall, the

best model is MLP–SNN with FS–SFS, since it achieves aMAPE very close to the best

model (6.80%) with only 4 input features (CQI class p50, Avg SF16 codes HSDPA,

Avg codes used HSDPA and 16QAM usage). Nonetheless, Fig. 4.3 reveals that an

acceptable MAPE (i.e., <10%) can be achieved with all non-deep SL algorithms

by selecting a subset of only 2 features (specifically, Avg codes used HSDPA and

16QAM usage). Hence, it can be concluded that MLR is competitive with more so-

phisticated SL algorithms when estimating busy-hour cell throughput in HSDPA DL.

It is remarkable that the subset of features in the best option (MLP–SNN with

N opt
f =4) di↵ers in the number of features and in some of the selected features from the

subset in [22], where THHSDPA
cell is estimated via MLR and feature selection is performed

based on p-values. In that work, the authors propose a model with 5 input features:

CQI class p50, Avg codes used HSDPA, Avg HSDPA DL power, 16QAM usage

and PDU656 usage. Thus, it can be concluded that, when estimating cell capacity,

not only how many features but also which features must be stored in the OSS depend

on the selected SL algorithm and FS approach. This fact justifies that feature selection

and regression must be jointly analyzed.

When it comes to DL user throughput estimation, MLR does not perform well, with
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Figure 4.4: MAPE evolution across sequential feature selection (FS-SFS) process when
estimating DL user throughput in HSDPA.

a MAPE of 43.41% for the FULL model. This poor performance suggests that there is

a non-linear relationship between the input features and the output variable, THHSDPA
user

(on the contrary, it is expected that THHSDPA
user is inversely proportional to the number

of simultaneous active UEs, Avg activeUE). FULL models created with all other

algorithms outperform MLR, with MAPE values below 18%. Still, only MLP–DNN

achieves aMAPE below the 10% threshold (8.79%). FS–COR models strongly degrade

accuracy for all regression algorithms. For instance, in MLP–SNN, MAPE grows

from 10.64% to 21.68% when comparing FULL and FS–COR models (i.e., an increase

of 103% in relative terms). These numbers are consistent with the above statement

about the non-linear relationship among input and output features, since FS–COR is

a FS process based on linearity. Fig. 4.4 shows the evolution of MAPE across FS–SFS

process. In this case, even for algorithms not based on distance, such as MLP–SNN, the

larger number of features does not necessarily lead to a higher accuracy, revealing that

some of the considered input features are irrelevant for estimating THHSDPA
user or provide

redundant information. MLP–SNN achieves the best results when Nf is between 4 and

10, whereas MLR clearly shows the worst performance at every point. Again, the

best point is N opt
f 5 for all algorithms but MLP–DNN, whose best performance is

with N opt
f =10. MAPE obtained over the test dataset at those points is shown in

Table 4.6. Results reveal that, unexpectedly, most FS–SFS models outperform FULL
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Table 4.7: MAPE for estimating DL cell and user throughput in LTE [%].

THLTE
cell THLTE

user

Model FULL FS–COR FS–SFS FULL FS–COR FS–SFS

Nf 10 1 — 10 2 —

MLR 9.09 14.12 9.84 (N opt
f = 5) 17.79 23.09 18.03 (N opt

f = 5)

SVR 7.36 13.72 8.32 (N opt
f = 5) 12.36 17.33 12.14 (N opt

f = 5)

RF 7.25 16.29 7.21 (N opt
f = 5) 10.04 16.72 10.04 (N opt

f = 6)

KNN 7.64 15.58 8.86 (N opt
f = 4) 10.13 16.59 9.62 (N opt

f = 5)

MLP–SNN 6.96 13.93 8.98 (N opt
f = 8) 7.95 15.17 8.86 (N opt

f = 9)

MLP–DNN 6.86 14.11 8.34 (N opt
f = 5) 8.86 17.73 8.73 (N opt

f = 9)

models (e.g., in KNN, MAPE decreases from 17.09% to 12.33%). Overall, the best

results are obtained with the combination MLP–SNN+FS–SFS, being the only one

achieving a MAPE lower than 10% (9.23%) with a reduced subset of input features.

The predictors selected in that model are 16QAM usage, Avg codes used HSDPA,

Avg SF16 codes HSDPA, Avg R99 DL power and Avg activeUE.

c) Results – LTE

Table 4.7 summarizes the results obtained for the considered algorithms when esti-

mating THLTE
cell and THLTE

user with the FULL, FS–COR and FS–SFS models in LTE.

Again, MLR provides acceptable accuracy with FULL model when estimating THLTE
cell

(MAPE=9.09%), but not when estimating THLTE
user (MAPE=17.79%). All other al-

gorithms outperform MLR in both DL cell and user throughput estimations. When

estimating THLTE
cell with FULL model, SL algorithms perform similarly (MAPE⇡7%).

However, when estimating THLTE
user , only MLP–SNN and MLP–DNN fulfill the 10%

threshold (MAPE⇡8% and 9%, respectively). FS–COR models degrade accuracy sig-

nificantly, showing that the most relevant features do not have a strong linear relation to

the output variables. In fact, an analysis of Pearson correlation coe�cients (not shown

here) reveals that only HARQ fail ratio DL has a significant linear correlation with

THLTE
cell , and only HARQ fail ratio DL and Avg activeUE have a significant linear

correlation with THLTE
user .

Fig. 4.5 and 4.6 show the MAPE evolution across FS–SFS process when esti-

mating THLTE
cell and THLTE

user , respectively. In general, the larger number of features,

the higher accuracy. Table 4.7 includes, in FS–SFS columns, the MAPE of each

method with the selected N opt
f value. When considering the trade-o↵ between accu-

racy and number of predictors, KNN is the best option for estimating both THLTE
cell
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Figure 4.5: MAPE evolution across sequential feature selection (FS-SFS) process when
estimating DL cell throughput in LTE.

Figure 4.6: MAPE evolution across sequential feature selection (FS-SFS) process when
estimating DL user throughput in LTE.

(MAPE=8.86% for N opt
f =4) and THLTE

user (MAPE=9.62% for N opt
f =5). The most re-

levant input features for estimating cell throughput are Avg CQI, DL assign ACK,

BW and HARQ fail ratio DL. Unlike [23], DL assign ACK is selected instead
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of Avg activeUE. Likewise, the most relevant input features for estimating user

throughput are CQI class p10, Avg CQI, Avg activeUE, PUCCH SR users and

DL assign ACK.

It should be pointed out that, among the considered regression algorithms, MLP

approaches have the largest number of hyperparameters. The optimal value of these

hyperparameters may vary at each step of the SFS process. In this analysis, for e�-

ciency, only the most relevant parameters have been tuned (as network operators do).

This is probably the reasons for the unstable behavior of MLP approaches across SFS,

translated into peaks in MAPE (e.g., MLP–SNN with Nf=6 in Fig. 4.5 and Nf=5

in Fig. 4.6) and severe performance degradation below a certain number of features

(e.g., MLP–DNN with Nf2 in Fig. 4.3 and 4.4, or Nf3 in Fig. 4.6).

d) Computational complexity

The implementation of SL models for estimating throughput in radio planning tools

entails: a) collecting and preprocessing data in the OSS, b) selecting the best model

(i.e., combination of SL algorithm and set of input features) for the specific network,

c) exploiting the model and d) retraining the model when necessary.

Data used to compute input features considered (i.e., PMs and CMs) is often co-

llected and processed by MNOs for network management purposes, so that dataset

creation should not entail a significant additional computational workload. If required,

parallelization can be used to speed up data processing.

The most time-consuming task is finding the best model, since it implies carry-

ing out the SFS process for several candidate SL algorithms. For MLR, training time

grows linearly with the number of input features, Nf , and the number of samples in the

dataset, Ns. Thus, the worst-case time complexity is O(Ns ⇥Nf ). The back propaga-

tion algorithm used to train a MLP with 1 output and 3 layers has a worst-case time

complexity of O(Ns ⇥ Nf ⇥ Nl ⇥ Ni), where Nl is the size of the hidden layer and

Ni is the number of iterations. Time complexity of sequential minimal optimization

used to train SVR is quadratic with the training set size and linear with the number

of features, O(N2

s ⇥ Nf ). Likewise, the worst-case time complexity of ensemble mo-

dels based on DTs is given by the number of trees (Nt) and time of building a tree,

i.e., O(Nt ⇥Nf ⇥Ns ⇥ logNs). Finally, for KNN, the worst-case complexity is given

by O(Nf ⇥ Ns ⇥ k), where k is the number of neighbors. For instance, Table 4.8

summarizes the time taken to train FULL models once hyperparameters have been
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Table 4.8: Training times for throughput estimation models in HSDPA and LTE [s].

THHSDPA
cell THHSDPA

user THLTE
cell THLTE

user

MLR <0.01 <0.01 0.02 <0.01

SVR 0.05 0.09 0.84 0.17

RF 1.14 2.53 3.02 3.89

KNN <0.01 <0.01 <0.01 <0.01

MLP–SNN 0.23 0.71 0.66 0.95

MLP–DNN 22.92 23.72 32.47 33.28

fixed in a centralized server with Intel Xenon octa-core processor, clock frequency of

2.4 GHz and 64 GB of RAM. Results show that model training in HSDPA is faster

than in LTE, possibly due to the highest number of datapoints in dataset B. For a

given technology and regression algorithm, training when estimating cell throughput is

faster than when estimating user throughput. MLP–DNN takes the largest execution

time for every technology and output feature, whereas MLR and KNN show the lowest

execution times. Nonetheless, even in the worst case (i.e., training a MLP–DNN model

to estimate THLTE
user ), the obtained execution time is only 33 s. This time decreases

significantly with FS–SFS models.

Once the best SL scheme is selected, exploiting the models is immediate (e.g., in

this analysis, prediction time per datapoint is approximately 0.5 ms). This time meets

the requirements even of the most stringent slice redimensioning NFs, typically working

on a second or millisecond timescale.

Estimation models must be executed again after any significant change a↵ecting

input variables (e.g., change in tra�c demand, radio channel conditions or cell band-

width). Likewise, models must be retrained if an event changing the relationship

between predictors and the output variable happens in the network (e.g., an update of

packet scheduling algorithm, the launch of new services or the introduction of new ter-

minal and base station capabilities). Di↵erent models must also be trained for di↵erent

networks.

4.4.3 Conclusions

Accurate estimates of cell and user capacity in the RAN are key for smart radio pla-

nning tools. In this section, a comparative analysis has been presented assessing the

performance of di↵erent SL algorithms to estimate cell and user throughput in the DL

in busy hours from network measurements collected in the OSS. Model assessment has
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been carried out with two datasets taken from live HSDPA and LTE networks. Four

well-known non-deep SL methods have been compared with MLR and DNN models

proposed in previous works.

Results show that MLR performs well when estimating DL cell throughput in both

HSDPA and LTE (MAPE=7.37% and 9.09%, respectively), but not when estimating

DL user throughput (MAPE=41.14% and 17.79%, respectively), probably due to the

non-linear relationship between cell-level indicators and user-level metrics. Nonethe-

less, other SL approaches outperform MLR in terms of accuracy in both DL cell and

user throughput estimation. The DNN achieves adequate accuracy (i.e.,MAPE<10%)

in all cases when the full set of network indicators is available. However, its perfor-

mance strongly degrades when the number of features decreases. Alternatively, with

non-deep SL, it is possible to train models to estimate DL cell/user throughput with

similar accuracy relying on reduced datasets (less than 2,000 samples and collection of

5 or 6 indicators in the OSS). To achieve this goal, a feature selection process must be

performed by wrapper methods.

Considering the trade-o↵ between accuracy and number of predictors, MLP–SNN

has shown the best results in HSDPA, with MAPE=6.80% with 4 input features

when estimating DL cell throughput, and MAPE=9.23% with 5 input features for

DL user throughput. In contrast, in LTE, KNN has shown the best performance, with

MAPE=8.86% with 4 input features for DL cell throughput, and MAPE=9.62% with

5 input features for DL user throughput.

4.5 Cell and slice throughput estimation in sliced

radio access networks

This section addresses the problem of estimating radio throughput at cell and slice level

in sliced RANs through SL over network data gathered in the OSS. The analysis focuses

on eMBB services, for which throughput is a key performance metric. For clarity,

content is structured as in section 4.4, i.e., datasets are first described, performance

assessment is then presented and the main conclusions are finally summarized.
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4.5.1 Dataset description

Since large-scale datasets from operational networks with NS are not available yet,

datasets have been created with a dynamic system-level simulator emulating the acti-

vity of a LTE-Advanced cellular network with NS functionality. The simulation tool is

thoroughly described in appendix A. Among the two networks implemented in the si-

mulator, network A (the largest one in terms of spatial dimension and cells) is selected,

comprising 108 irregular cells in urban and sub-urban areas covering 11⇥23 km2. VoIP,

video streaming, web browsing and file download services are considered. Regarding

user speed, 70% of UEs are static (e.g., indoor users), whereas the remaining 30% are

pedestrians. The rest of simulation parameters are those in table A.1.

The following three NS set-ups (referred to as NS scenarios) are considered:

1) Scenario with single-service slices (NS SS): in this scenario, all cells in the net-

work allocate four slices, which remain active for the whole simulation. Each

slice exclusively o↵ers a single service (i.e., VoIP, video, file download or web

browsing). This scenario is representative of a system where the MNO creates

slices optimized to fulfill certain service requirements of specific clients or those

of OTT service providers.

2) Scenario with multi-service slices (NS MS): in this scenario, there are also four

slices whose operation areas cover the whole network. However, unlike in the

previous case, all slices o↵er all services, emulating a network with 4 virtual

MNOs operating on di↵erent slices over the same infrastructure.

3) Scenario without NS (noNS): a legacy network scenario where all UEs share the

available bandwidth.

To generate datasets, 8 simulations with di↵erent tra�c intensities have been per-

formed for each of the three above-described NS set-ups and for two di↵erent system

bandwidths (5 and 10 MHz), for a total of 48 simulations (=2 bandwidths ⇥ 8 tra�c

intensities ⇥ 3 NS scenarios). Relative UE spatial distribution and tra�c mix per cell

remain constant across simulations, whereas the UE generation rate per cell is altered

to control tra�c intensity. Specifically, the UE generation rate of a cell c in simulation

i, �i(c), is computed as

�i(c) = ki �real(c) , (4.4)
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Figure 4.7: Cumulative distribution function of number of active UEs across simula-
tions – NS SS scenario.

where �real(c) is the UE arrival rate of cell c in the live network and ki modulates tra�c

intensity per simulation, ranging from 0.125 (in the simulation with the lowest tra�c

intensity for a 5-MHz system bandwidth) to 10 (in the simulation with the largest

tra�c intensity for a 10-MHz system bandwidth).

A single simulation reflects 15 minutes of network activity (i.e., typical ROP) emu-

lated with a 10-ms time resolution to reduce computational load. To avoid the transient

e↵ects of a cold start, a longer period is simulated and statistic collection starts once

the adaptive capacity broker has reached a steady state. As an example of the diverse

network conditions considered, Fig. 4.7 shows the CDF of the number of active simul-

taneous UEs, avg activeUE, obtained per simulation in NS SS scenario with system

bandwidth of 10 MHz. Each line comprises 108 points reflecting the average number

of UEs per cell during 15 minutes of network time. It is clearly observed that cells in

the scenario are unevenly loaded.

CTRs, CMs and PMs are gathered during simulations. CMs and PMs are collected

on a cell basis (i.e., a value per cell) in all scenarios, and on a slice basis (i.e., a value

per cell and slice) in NS scenarios. Data is grouped into five datasets depending on the

scenario and granularity (i.e., cell or slice). These datasets are denoted as NS SS cell,

NS MS cell, noNS cell, NS SS slice and NS MS slice, where the prefix denotes the NS
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Table 4.9: Candidate features for estimating DL cell throughput in sliced networks.

Feature name Description
Q
u
al
it
y avg CQI Average DL CQI in the cell

CQI class p50 Median DL CQI in the cell

CQI class p5 5th-tile of DL CQI distribution in the cell

T
ra
�
c

avg actUE Avg. number of active UEs per TTI in DL in the cell

PRButil rat PRB utilization ratio in PDSCH in the cell

s UE rat 8 s 2 {V oIP, video,
ftp, web}

Ratio of UEs in the cell demanding each service s o↵ered
in the network

C
M
s

cell BW [MHz] Cell bandwidth

nPRB i 8i = 1, 2...Nslices Number of PRBs allocated per slice in the cell in DL
(only for NS scenarios)

Table 4.10: Candidate features for estimating DL slice throughput in sliced networks.

Feature name Description

Q
u
al
it
y avg CQI slice Avg. DL CQI in the cell for UEs in the slice

CQI class p50 slice Median DL CQI in the cell for UEs in the slice

CQI class p5 slice 5th-tile of DL CQI in the cell for UEs in the slice

T
ra
�
c

avg actUE slice Avg. no. of active UEs per TTI in DL served by the slice in
the cell

PRButil rat slice PRB utilization ratio in PDSCH considering only those PRBs
allocated to the slice

s UE rat slice 8s 2

{V oIP, video, ftp, web}
Ratio of UEs in the cell served by the slice demanding each
service s o↵ered in the network

C
M
s cell BW [MHz] Cell bandwidth

nPRB slice No. of PRBs allocated to the slice in the cell

setting (i.e., noNS, NS SS or NS MS) and the su�x indicates if the dataset contains

cell-level or slice-level data.

Each cell-level dataset contains 1,728 datapoints (2 bandwidths ⇥ 8 simulations ⇥

108 cells) with the following information:

a) Simulation index.

b) Cell identifier (cell ID).

c) DL cell throughput, THcell, defined in section 4.3.1, as the target KPI to be

estimated.

d) The set of 14 features shown in Table 4.9, as candidate input features.

Likewise, each slice-level dataset is made of 6,912 datapoints (i.e., 2 BWs ⇥ 8 si-

mulations ⇥ 108 cells ⇥ 4 slices) including the following information:
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a) Simulation index.

b) Cell identifier (cell ID).

c) Slice identifier (slice ID).

d) DL slice throughput, THslice, defined in section 4.3.1, as KPI to be estimated.

e) The set of 10 features presented in Table 4.10, as candidate input features.

Features in both tables 4.9 and 4.10 are similar, but aggregated at di↵erent levels

(i.e., a datapoint per cell in Table 4.9, a datapoint per cell and slice in Table 4.10).

The considered set of predictors includes a) general configuration parameters (i.e., cell

bandwidth), b) for NS scenarios, NS-related configuration parameters (i.e., number of

PRBs allocated per slice), c) performance metrics related to spectral e�ciency (i.e., CQI

indicators) and d) tra�c indicators (i.e., tra�c mix and number of active UEs). All

these features can be computed from cell-level or cell-slice-level CMs/PMs except tra�c

mix features, which must be derived by aggregating information in connection traces

on a cell or cell-slice basis.

Tables 4.11 and 4.12 present a statistical summary of the 3 cell-level datasets

(noNS cell, NS SS cell and NS MS cell) and 2 slice-level datasets (NS SS slice and

NS MS slice), respectively. For each dataset, information includes the number of

samples, and mean, standard deviation, maximum value and minimum value of the

input and output features. A rough inspection of the table shows that the variance

of all input features is large to better capture the impact of each predictor on the

target variable. Note that nPRB 1 to nPRB 4 is the number of PRBs assigned to

the slice of each service in NS SS, and to the slice of each MNO in NS MS. These

figures are obtained with the adaptive capacity broker defining the share of bandwidth

among slices in the steady state, which assigns each PRB in a cell to a specific slice.

Thus, for a subcarrier spacing of 180 kHz, the sum of PRBs assigned to all slices in

a cell,
P

4

s=1
nPRB s, is 25 and 50 for a system bandwidth of 5 MHz and 10 MHz,

respectively.

4.5.2 Performance assessment

This section presents the comparative analysis of SL algorithms carried out over the

above-introduced datasets. For clarity, analysis set-up is first explained. Then, results

are presented, broken down per experiment. Finally, computational complexity is

discussed.
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Table 4.11: Statistics of cell-level datasets used to estimate DL cell throughput.
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Table 4.12: Statistics of slice-level datasets used to estimate DL slice throughput.

Dataset name NS SS slice NS MS slice

No. datapoints 6,912 6,912

Statistic Mean Std. deviation Min. Max. Mean Std. deviation Min. Max.

avg CQI slice 11.06 3.30 2 16 10.79 3.26 1.22 16

CQI class p50 slice 11.09 3.80 1 16 10.78 3.76 1 16

CQI class p5 slice 7.46 3.88 1 16 7.12 3.81 1 16

avg actUE slice 4.56 9.65 0.13 20.02 4.74 7.42 0.26 20.43

PRButil rat slice 0.52 0.34 0.05 1 0.54 0.35 0.06 1

voip UE rat slice

s UE rat slice=

(
1, service s o↵ered in slice
0, rest of services

0.21 0.22 0 1

video UE rat slice 0.25 0.23 0 1

ftp UE rat slice 0.25 0.24 0 1

web UE rat slice 0.27 0.24 0 1

cell BW [MHz] 7.5 2.5 5 10 7.5 2.5 5 10

nPRB slice 10.94 9.57 3 40 9.89 4.82 3 29

THslice [kbps] 5389.22 5763.09 21.01 35353.03 4370.87 3047.14 16.35 21772.30

a) Analysis set-up

The following three experiments are carried out:

1) Experiment 1 – preliminary correlation analysis : this experiment aims to justify

the need for deriving specific models to estimate DL cell throughput in NS scena-

rios. For this purpose, the average Spearman’s rank correlation value, ⇢, among

several candidate input features and THcell is compared in noNS cell, NS SS cell

and NS MS cell datasets. Recall that ⇢ assesses the strength and direction of

monotonic association (whether linear or not) between two variables [188]. Sig-

nificant changes in the correlation between predictors and response variable in

di↵erent scenarios would point out the need to derive separate performance es-

timation models.

2) Experiment 2 – estimation of cell throughput in NS scenarios : the goal of this

experiment is to assess the performance of SL algorithms to estimate THcell from

predictors in Table 4.9 in the two considered NS scenarios (single-service and

multi-service slices). For this purpose, the estimation methodology presented in

section 4.3 is applied over NS SS cell and NS MS cell datasets.

3) Experiment 3 – estimation of slice throughput in NS scenarios : this experiment

is similar to experiment 2, but aimed to estimate slice throughput from features

in slice-level datasets (i.e., NS SS slice and NS MS slice). In each scenario, the

slice-level model is trained with datapoints from all slices and cells (single output
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model shared by all slices). This model is then exploited on a cell and slice basis.

In experiments 2 and 3, for each dataset, 70% of datapoints are used for training and

the remaining 30% are used for test. Seven regression algorithms are compared: SVR,

KNN, XGBoost, AdaBoost, RF, a shallow MLP (SMLP) and a Deep MLP (DMLP)

with 2 hidden layers. In both ANNs, the number of neurons in hidden layers is establi-

shed through grid search. Two models are derived with each regression algorithm: a)

a FULL model with all candidate predictors and b) a simplified model with a subset

of input features selected by RFE (hereafter, RFE model). Compared to the analysis

presented in section 4.4, MLR and FS–COR models have been discarded due to their

poor performance. Likewise, since RF showed acceptable accuracy in that analysis,

two additional algorithms based on DTs have been considered, namely AdaBoost and

XGBoost. These algorithms are implemented with scikit-learn and XGBoost Python

libraries, respectively [185] [43]. Thus, a total of 56 models (=7 algorithms ⇥ 2 outputs

⇥ 2 scenarios ⇥ 2 feature sets) are tested in total (considering the RFE process as a

single model).

Both hyperparameter optimization and RFE are executed with 5-fold cross valida-

tion considering the average error, MAE, as loss metric. MAE is defined as

MAE =
1

Ns

NsX

i=1

|by(i)� y(i)| , (4.5)

where Ns is the number of samples in the dataset, and y(s) and by(i) are the measured

and estimated values of the output feature in sample i, respectively. In the RFE

process, N opt
f for a given SL algorithm is the minimum number of predictors achieving

similar performance to the most accurate model (i.e., a di↵erence of both mAPE and

MANE lower than 2% in absolute terms).

Two FoMs are used to assess model performance in terms of accuracy. The first

one is the median value of Absolute Percentage Error, mAPE, computed as

mAPE [%] = median

✓
100 ·

����
by(i)� y(i)

y(i)

����

◆
8 i 2 {1, 2, ..., Ns} . (4.6)

The median (and not the mean) operation has been used to avoid that insignificant

absolute errors in datapoints with low throughput lead to very high and misleading

percentage errors (in section 4.4, this e↵ect was negligible due to the selection of data-

points from busy hours). The second FoM is the Mean Absolute Error Normalized to
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the maximum theoretical throughput in the cell/slice, MANE, defined as

MANE [%] =
1

Ns

NsX

i=1

(100 ·

����
by(i)� y(i)

THmax(ki)

���� , (4.7)

where THmax(ki) is the maximum achievable throughput in entity k (i.e., cell/slice) to

which datapoint i belongs, ki. THmax(ki) is computed assuming that all PRBs in a

cell or slice are allocated to UEs with maximum CQI (i.e., 15). With the modulation

and coding schemes considered in the simulator, the peak throughput is 1 Mbps per

PRB [189]. Under this assumption, THmax(ki) can be computed from cell BW for

cells, and from n PRB s for slices. Note that datapoints in the considered datasets

have di↵erent system bandwidths, given by cell BW and n PRB slice in cell-level

and slice-level datasets, respectively. These features limit the capacity of the entity

(i.e., cell or cell-slice), and, thus, FoMs relying on absolute error (e.g., mean absolute

error) would be dominated by datapoints from entities with the highest capacity, which

is undesirable. The normalization performed in MANE circumvents this issue. As

shown in (4.7), MANE is expressed as a percentage for an easier interpretation.

Following the same rationale as in the analysis over non-sliced networks, a model

is considered acceptable to estimate DL cell/slice throughput if mAPE<10% and

MANE<10%. For robustness, the best model for each output feature is selected as

follows. First, models providing MANE similar to the most accurate model (i.e., di↵e-

rence lower than 1% in absolute terms) are selected as candidates. Then, models with

a di↵erence in mAPE higher than 1% compared to the best mAPE among candidates

are discarded. Finally, the model with the lowest number of features among the re-

maining candidates is selected as best model. If several models satisfy this condition,

the best model is that providing the best results for the worst samples (i.e., lowest 90th

percentile of Absolute Normalized Error, ANE, computed as in (4.7)).

b) Results – correlation analysis

Table 4.13 shows the average value of Spearman’s correlation coe�cient, computed

between cell BW , PRButil rat and avg CQI and THcell in noNS cell, NS SS cell and

NS cell datasets (e.g., average correlation between cell BW and THcell in noNS cell

dataset is 0.59). Those features provide information about cell resources, radio re-

source utilization and spectral e�ciency, respectively. For NS scenarios, the correla-

tion between the number of PRBs allocated per slice, nPRB k 8 k 2 [1, 4], and THcell
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Table 4.13: Correlation between candidate input features and DL cell throughput in
di↵erent NS scenarios.

KPI noNS NS SS NS MS

cell BW 0.59 0.69 0.70

PRButil rat 0.04 0.32 0.36

avg CQI 0.66 0.14 0.12

nPRB 1 – 0.66 0.67

nPRB 2 – 0.48 0.69

nPRB 3 – 0.55 0.68

nPRB 4 – 0.67 0.70

is also included as a metric of spectrum split. It is observed that cell BW is sig-

nificantly correlated with cell throughout in all scenarios (i.e., ⇢�0.59). In contrast,

the correlation of PRButil rat is much higher in NS scenarios than in noNS scenario

(i.e., ⇢=0.32 and 0.36 in NS SS and NS MS scenarios, respectively, compared to 0.04 in

noNS scenario). Likewise, avg CQI is correlated with cell throughput in noNS scenario

(i.e., ⇢=0.66), but not in NS SS and NS MS scenarios (⇢=0.14 and 0.12, respectively).

These di↵erences confirm that enabling the NS feature changes the relationships among

network indicators, as anticipated in section 4.2, revealing the need for creating new

performance models for NS scenarios.

It is also remarkable that similar correlation values are obtained in both NS sce-

narios for all features but nPRB k. This feature presents similar correlation values in

all slices in NS MS scenario (slices o↵ering a service mix), but not in NS SS scenario

(slices o↵ering a single service). To capture these peculiarities, specific performance

models are derived per scenario in experiments 2 and 3.

c) Results – cell throughput estimation

Tables 4.14 and 4.15 break down results obtained when estimating THcell in NS SS and

NS MS scenarios, respectively. Performance from FULL models is first analyzed. KNN

is the worst algorithm for both scenarios, with unacceptablemAPE values. XGBoost is

the best ensemble method, whereas both ANNs (SMLP and DMLP) perform similarly.

In NS SS scenario, XGBoost and ANNs are the best FULL models, with mAPE<7%

and MANE<2%. In contrast, in NS MS scenario, ANNs outperform the rest of al-

gorithms, with mAPE<5% and MANE<1.5%. When comparing scenarios, similar

performance (i.e., di↵erences smaller than 2% in absolute terms) can be obtained to

estimate THcell in NS SS and NS MS scenarios with ANNs.
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Table 4.14: Model performance for estimating DL cell throughput in single-service NS
scenario (NS SS).

Model FULL RFE

FoM mAPE MANE N opt
f mAPE MANE

SVR 8.97 2.33 3 8.02 1.96

KNN 15.06 3.88 3 7.74 2.01

XGBoost 6.30 1.86 3 7.83 2.32

AdaBoost 8.91 2.14 4 8.34 2.15

RF 8.75 2.23 4 7.61 2.01

SMLP 6.47 1.71 3 7.96 1.89

DMLP 6.62 1.72 3 7.63 1.96

Table 4.15: Model performance for estimating DL cell throughput in multi-service NS
scenario (NS MS).

Model FULL RFE

FoM mAPE MANE N opt
f mAPE MANE

SVR 6.94 1.97 8 6.41 1.85

KNN 14.19 4.23 4 6.83 2.06

XGBoost 6.65 1.92 4 6.41 1.80

AdaBoost 7.03 2.07 9 7.03 1,96

RF 7.04 2.02 5 6.30 1.84

SMLP 4.93 1.40 4 5.00 1.38

DMLP 4.88 1.35 5 5.41 1.57

Fig. 4.8 and 4.9 show MANE obtained across RFE process in NS SS and NS MS

scenarios, respectively. For better visualization, only SVR, KNN and the best ANN

and ensemble method are included. mAPE evolution, not shown here for brevity, is

very similar. Again, KNN su↵ers the curse of dimensionality. Such a phenomenon is

also observed in SVR for Nf 2 {3, . . . , 7} in Fig. 4.9.

The last three columns in Table 4.14 summarize FoMs with the best RFE model

for all tested algorithms in NS SS scenario. N opt
f is selected with the convergence

criteria described above, resulting N opt
f =3 for all algorithms but AdaBoost and RF,

with N opt
f =4. RFE models requiring 3 input features (i.e., all but AdaBoost and RF)

are considered potential candidates to estimate THcell. Since the accuracy of both

ANNs is similar and SMLP is faster to train and less prone to overfitting than DMLP,

DMLP is discarded. For a deeper analysis, Fig. 4.10 depicts the CDF of ANE obtained

with the remaining candidate models. All algorithms perform similarly in the lower

part of the CDF, whereas SMLP performs best in the upper part, showing the lowest

error. Thus, RFE–SMLP is considered the best model. The selected input features

(ranked by relevance) are PRButil rat, avg CQI and cell BW .
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Figure 4.8: MANE evolution across RFE process when estimating DL cell throughput
in single service NS scenario (NS SS).

Figure 4.9: MANE evolution across RFE process when estimating DL cell throughput
in multi-service NS scenario (NS MS).
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Figure 4.10: Distribution of absolute normalized error for best models when estimating
DL cell throughput in single-service NS scenario (NS SS).

Similarly, the last three columns in Table 4.15 summarize FoMs obtained with the

best RFE models in NS MS scenario. Unlike in NS SS scenario, the algorithms now

have completely di↵erent N opt
f , ranging from 4 to 9. The best model is RFE–SMLP,

with the highest accuracy (mAPE=5% and MANE=1.38%) and the lowest number

of input features (N opt
f =4). Not shown in the table is the fact that some of the re-

levant input features are also di↵erent, with PRButil rat, CQI class p50, cell BW

and CQI class p5 (listed by relevance). The significant decrease in MANE for SMLP

from Nf=3 to Nf=4 observed in Fig 4.9 confirms that, in NS MS scenario, the in-

clusion of spectral e�ciency of cell-edge users through CQI class p5 improves SMLP

performance. Such an e↵ect may be due to joint packet scheduling for users demand-

ing di↵erent services in each slice, which favors cell-edge users from services with strict

delay requirements (e.g., VoIP) at the expense of those with better channel conditions

from services with loose delay constraints, decreasing cell throughput even with a high

PRButil rat.

From the above results, it can be concluded that SMLP is an adequate SL algorithm

to estimate cell throughput in both NS scenarios, providing acceptable accuracy with

models requiring few input features. With an adequate FS, similar accuracy can be ob-

tained for estimating THcell in NS scenarios with single-service or multi-service slices,

with an error lower than 2% of the achievable cell throughput. It should be pointed out
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that, in both scenarios, the input features to RFE–SMLP model are similar to those

in classical models, shown in (4.1). Those features can be computed from PMs/CMs

stored in the OSS by most network operators. Thus, it is unnecessary to store addi-

tional NS-specific data or collect connection traces to estimate cell throughput in NS

scenarios. A deeper analysis of data shows that, in both scenarios, the worst data-

points (i.e., those with the highest ANE) correspond to underutilized cells with high

spectral e�ciency (i.e., PRButil rat < 40%, avg CQI � 10), where THcell tends to

be underestimated.

d) Results – slice throughput estimation

Tables 4.16 and 4.17 summarize results when estimating THslice in NS SS and NS MS

scenarios, respectively. Likewise, Fig. 4.11 and 4.12 present the evolution of MANE

across RFE for all algorithms in these scenarios (DMLP lines have been omitted for a

better visualization, since they overlap with SMLP).

For FULL models in both scenarios, only algorithms based on DTs and ANNs fulfill

the accuracy threshold of 10% for both mAPE and MANE. RF provides the best

FULL model in NS SS scenario (mAPE=5.53% and MANE=2.57%), whereas both

ANNs get the best results in NS MS scenario (mAPE⇡8.85% and MANE⇡5.15%).

When comparing FULL and RFE models for each scenario, it is observed that, again,

for a given algorithm, similar performance can be obtained with simpler models with

less input variables.

Regarding RFE, Fig. 4.11 and 4.12 reveal that KNN is again su↵ering the curse of

dimensionality, since accuracy diminishes when increasing the number of features above

Nf=3. It is also remarkable that the evolution of SVR performance in NS MS scenario,

with N opt
f =4, di↵ers significantly from NS SS scenario, where only one feature can be

extracted for an acceptable model performance (i.e., MANE increases significantly

below Nf=10). Nonetheless, unlike when predicting THcell, SVR is not competitive

with other SL algorithms when predicting THslice.

When considering a trade-o↵ between accuracy and input size, RFE–RF is the best

model in NS SS scenario (mAPE=6.26% and MANE=2.75% with N opt
f =5), follo-

wed by RFE–SMLP. In NS MS scenario, RFE models built with ANNs show the best

accuracy (i.e., mAPE⇡9% and MANE⇡5.35%) and required information (N opt
f =5).

Fig. 4.13 represents the CDFs of ANE obtained with these models. RFE–XGBoost

model (i.e., the next model with better MANE) is also included. A significant



94 4.5. CELL AND SLICE THROUGHPUT ESTIMATION IN SLICED RADIO ACCESS NETWORKS

Table 4.16: Model performance for estimating DL slice throughput in single-service NS
scenario (NS SS).

Model FULL RFE

FoM mAPE MANE N opt
f mAPE MANE

SVR 14.40 8.30 10 12.64 7.81

KNN 14.56 9.84 3 8.92 3.96

XGBoost 7.37 2.87 4 8.16 3.05

AdaBoost 6.44 2.86 7 8.15 3.21

RF 5.53 2.57 5 6.26 2.75

SMLP 7.70 3.27 4 7.80 2.97

DMLP 6.78 2.83 5 9.63 4.46

Table 4.17: Model performance for estimating DL slice throughput in multi-service NS
scenario (NS MS).

Model FULL RFE

FoM mAPE MANE N opt
f mAPE MANE

SVR 12.47 7.32 4 12.51 7.22

KNN 16.30 9.73 3 12.08 6.99

XGBoost 9.64 5.58 6 9.46 5.53

AdaBoost 10.24 5.77 8 9.86 5.53

RF 9.34 5.48 6 9.16 5.70

SMLP 8.82 5.10 5 8.78 5.25

DMLP 8.87 5.17 5 9.23 5.45

improvement of ANNs over XGBoost is observed for the largest error percentiles.

Among ANNs, RFE–SMLP is the best option (lines are shifted to the left compared to

RFE—DMLP). The input features in the best models (i.e., RFE–RF for NS SS scenario

and RFE–SMLP for NS-MS scenario) are cell BW , nPRB slice, PRButil rat slice,

CQI class p50 slice and voip UE rat slice in both scenarios.

Table 4.18 shows the results for the best models (i.e., RFE–RF in NS SS scenario

and RFE–SMLP in NS MS scenario) broken down per slice. Recall that, in NS SS sce-

nario, slices 1 to 4 serve users demanding VoIP, video, file download and web browsing,

respectively. In contrast, in NS MS scenario, slices serve a service mix changing with

cell and tenant. It can be noticed that di↵erences among slices are larger in NS SS than

in NS MS scenario. For a more detailed analysis, Fig. 4.14 and 4.15 show the proba-

bility density function of PRButil rat slice and slice ID for 5% of samples with the

largest error (i.e., highest MANE) for the best models in NS SS and NS MS scenarios.

In NS SS scenario, slice ID distribution reveals that more than 80% of worst samples
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Figure 4.11: MANE evolution across RFE process when estimating DL slice through-
put in single-service scenario (NS SS).

Figure 4.12: MANE evolution across RFE process when estimating DL slice through-
put in multi-service NS scenario (NS MS).
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Figure 4.13: Distribution of absolute normalized error for best models when estimating
DL slice throughput in multi-service NS scenario (NS MS).

Table 4.18: Performance per slice when estimating DL slice throughput with the best
model.

Scenario NS SS NS MS

Best model RFE–RF RFE–SMLP

FoM mAPE MANE mAPE MANE

Slice 1 14.43 0.38 9.99 5.19

Slice 2 4.82 3.09 9.41 5.34

Slice 3 4.74 3.49 6.97 5.35

Slice 4 5.51 3.86 8.92 5.25

are from slices 3 to 4. Thus, RFE–RF provides the lowest accuracy when estimating

throughput from slices serving web and file download users. This behavior is observed

in most of the tested SL algorithms. Note that the data rate of users of these best

e↵ort services adapts to instantaneous slice capacity (i.e., allocated PRBs) and tra�c

(i.e., UEs to schedule) in the cell and is thus prone to fluctuate, being more di�cult to

estimate. This problem may be solved by creating per-service slice-level models at the

expense of having less training datapoints per model. In NS MS scenario, worst o↵en-

ders for RFE–SMLP are evenly distributed among slices. However, it is remarkable

that 70% of these datapoints belong to slices with PRButil rat slice  20%. Thus,

it can be concluded that RFE–SMLP is less accurate when predicting the aggregate

throughput of underutilized slices, no matter the slice service mix.
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Figure 4.14: Values of features in samples with the largest error when estimating DL
slice throughput with RFE–RF (NS SS scenario).

Figure 4.15: Values of features in samples with the largest error when estimating DL
slice throughput with RFE–SMLP (NS MS scenario).

From the above results, it can be concluded that the best SL algorithm to estimate

slice throughput depends on the NS scenario. Moreover, it is worth noting that, unlike

for cell throughput, accuracy obtained for slice throughput with the best model is

lower in NS MS scenario (MANE=5.25%) than in NS SS scenario (MANE=2.75%).

This may be due to the coexistence of users with services with very di↵erent tra�c

patterns, which makes throughput calculations more complex. Likewise, the RFE

process shows that using information about slice service mix improves THslice estimates.

Specifically, voip UE rat slice has been selected as a key feature in this analysis. Note

that VoIP is the service with the lowest data rate in the considered scenario. Thus,

this feature provides information about the ratio of data-hungry UEs in the slice.

This information may be useful to estimate throughput since bursty tra�c degrades

network spectral e�ciency due to last transmission time interval data and outer loop
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link adaptation [104]. In scenarios with single-service slices, obtaining slice service mix

is straightforward (i.e., no mix). In scenarios with multi-service slices, service mix can

be obtained by applying a tra�c classification algorithm over radio connection traces

even if tra�c is encrypted, as explained in chapter 3.

e) Computational complexity

A thorough discussion on computational complexity when estimating radio throughput

indicators from network data has already been presented in section 4.4.2. Thus, this

section focuses on particular aspects of NS scenarios.

Regarding data collection and processing, according to the results presented above,

service mix information is relevant for slice-level performance models. To this end,

in multi-service slice scenarios, connection traces must be collected and processed to

obtain this data, which may be time-consuming. If required, parallelization can be

used to speed up trace processing.

Table 4.19 shows training time for the FULL models (including hyperparameter

optimization) when estimating THslice in NS SS scenario (i.e., the case with the largest

number of datapoints) in a personal computer with Intel Core i7-8700 processor working

at 3.2 GHz with a RAM of 16 GB. Training times range from a few seconds to near

9 minutes. Di↵erences are due to algorithm complexity and especially to the varying

number of hyperparameters tuned per algorithm. Training time decreases significantly

with RFE models. Nonetheless, in case of tight time constraints, hyperparameter

optimization can be accelerated via parallelization or relaxed (e.g., running less folds of

data). Since the latter option may degrade model performance, the former alternative

is preferred when necessary.

Both slice and cell level models must be executed again after any significant change

a↵ecting input variables (e.g., change in tra�c mix). Moreover, slice-level estimates

must be updated if PRB split among slices varies due to SLA violation, SLA redefinition

or slice activation/de-activation. Likewise, new events can appear in NS scenarios

(e.g., an update of capacity broker policy) altering the relationship between predictors

and predicted variable. Thus, model retraining is likely to be more frequent than in

legacy (i.e., non-sliced) networks.
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Table 4.19: Time complexity of FULL models when estimating DL slice throughput in
single-service NS scenario.

Algorithm Training time [s]

SVR 114

KNN 0.6

XGBoost 458

AdaBoost 13

RF 27

SMLP 164

DMLP 864

4.5.3 Conclusions

In 5G radio access networks, the introduction of NS prevents the use of legacy network

performance models. In this new scenario, slice-level and cell-level throughput estima-

tes are required for network management purposes, such as cell capacity replanning

or spectrum sharing among slices. This section has presented a comprehensive ana-

lysis of the performance of 7 well-known SL algorithms for estimating DL cell and

slice throughput from CMs, PMs and radio traces collected in the OSS. Performance

assessment has been carried out over cell-level and slice-level datasets built with a

system-level simulator. This tool a) is dynamic (i.e., a simulation consists of a set

of correlated snapshots emulating network activity along time on a 10-ms resolution),

b) includes realistic tra�c models from 4 di↵erent services, c) implements real RRM

algorithms from vendors and d) considers a realistic scenario comprising 108 cells with

uneven cell service area, tra�c density and service mix. All these characteristics allow

the creation of realistic datasets supporting the significance of results. Two di↵erent

NS scenarios have been considered, with single-service slices and multi-service slices.

Results show that, with adequate feature selection, all tested algorithms achieve

acceptable accuracy (i.e., MANE and mAPE lower than 10%) when estimating cell

throughput in NS scenarios, using similar information to models in non-NS scena-

rios. Moreover, all algorithms perform similarly in scenarios with single-service and

multi-service slices. When considering the trade-o↵ between accuracy and storage ca-

pacity, SMLP has shown the best results in both scenarios, with MANE=2% and

mAPE<8%. The best models have at most 4 input features related to bandwidth,

radio resource utilization and spectral e�ciency. Such features can be computed from

PMs/CMs collected on a cell basis in the OSS.
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However, only ensemble methods and ANNs achieve acceptable accuracy when es-

timating slice throughput. Moreover, model accuracy is worse in multi-service slices,

where users demand services with highly di↵ering tra�c patterns. RFE–RF has shown

the best accuracy in single-service NS scenario (mAPE=6.26%, MANE=2.75%),

whereas RFE–SMLP has performed best in multi-service NS scenario (mAPE=8.78%,

MANE=5.25%). In both cases, the 5 input features in these models not only include

indicators computed from PMs/CMs at cell level, but also indicators computed at

slice level and information about the service mix per slice that must be derived from

connection traces.

Analyses presented in this chapter have shown the potential of SL to estimate

several radio throughput metrics in di↵erent RATs. It should be pointed out that, for

a given analysis, all the considered SL algorithms have been trained with the same

size-limited dataset. It can be ensured that models have not overfitted since: a) model

architectures (e.g., number of layers/neurons in ANNs) have been chosen by keeping

the number of trainable parameters lower than the number of training datapoints,

and b) cross-validation has been performed during hyperparameter tuning and feature

selection. However, a more extensive dataset may allow making the most of DNNs,

increasing accuracy obtained here. Nonetheless, it can be stated that non-deep SL

algorithms are the best option when limited data is stored in the OSS, providing an

adequate estimation accuracy for (re)dimensioning purposes.

Throughput models proposed here can be used to detect resource overprovisioning,

capacity problems or SLA violations. For instance, cell/slice performance in the worst

conditions can be checked by setting input features to their worst value (e.g., highest

allowed PRB utilization). Moreover, future throughput performance can be predicted

by feeding the models with forecasts of input features to assess the impact of candidate

replanning actions on network performance.



Chapter 5

Long-term cell tra�c forecasting

This chapter deals with cell tra�c forecasting in the long term (i.e., several months

ahead) through SL. In radio planning tools, these tra�c forecasts can be compared with

cell capacity estimates such as those obtained in chapter 4 to detect potential capacity

bottlenecks in advance. Content is organized as follows. Section 5.1 revises related

work. Section 5.2 outlines the problem of predicting monthly busy-hour data tra�c

per cell, highlighting the properties of the time series involved. Section 5.3 outlines the

considered forecasting methodology. Section 5.4 presents performance assessment over

a dataset from a live cellular network. Finally, section 5.5 exposes the main conclusions.

5.1 Related work

Tra�c forecasting in telecommunication networks can be treated as a time series ana-

lysis problem. The earliest works address circuit-switched tra�c prediction by deriving

statistical models based on historical data. Linear time series models, such as Auto

Regressive Integrated Moving Average (ARIMA), capture trend and short-range depen-

dencies in tra�c demand. More complex models, such as seasonal ARIMA [190] [191]

and exponential smoothing (e.g., Holt-Winters) [192] [193], include seasonality. To re-

flect long-range dependencies, these can be extended with non-linear models, such as

Generalized Auto-Regressive Conditionally Heteroskedastic (GARCH) [194].

The previous works show that it is possible to predict cellular tra�c at di↵erent

geographical scales (e.g., network operator [190], province [191], cell [192]) and time

resolutions (e.g., minutes [194], hourly [192], daily [190], monthly [191]), provided that

101



102 5.1. RELATED WORK

tra�c is originated by circuit-switched services (e.g., voice and text messages). Howe-

ver, predicting packet data tra�c is much more challenging [195]. As pointed out

in [193], data tra�c is more influenced by abnormal events and changes in network

configuration than circuit-switched tra�c. In [196], short-term tra�c volume in a 3G

network is predicted via Kalman filtering. In [197], ARIMA is used to predict the

achievable user rate in four cells located in areas with di↵erent land use. In [198],

application-level tra�c is predicted by deriving a ↵-stable model for three di↵erent

service types, and then dictionary learning is implemented to refine forecasts. As an

alternative, more modern approaches tackle data tra�c foretasting with sophisticated

models based on SL to take advantage of massive data collected in cellular networks.

Most e↵orts have been focused on short-term prediction (seconds, minutes) to solve the

limitations of Time Series Analysis (TSA) approaches to capture rapid fluctuations of

the time series. A common approach is to use deep learning to model the spatiotem-

poral dependence of tra�c demand. The temporal aspect of tra�c variations is often

captured with recurrent neural networks based on LSTM units [199] [200] [201] [202].

Alternatively, in [203], a deep belief network and a Gaussian model are used to cap-

ture temporal dependencies of network tra�c in a mesh wireless network. The spatial

dependence is captured by di↵erent approaches. In [199], the scenario is divided into

a regular grid, and a convolutional ANN is used to model spatial tra�c dependencies

among grid points. A similar approach is considered in [204], where extra branches

are added to the ANN for fusing external factors such as crowd mobility patterns or

temporal functional regions. In [205], convolutional LSTM units and 3D convolutional

layers are fused to encode the spatiotemporal dependencies of tra�c carried in the

grid points. Alternatively, other authors model spatial dependencies of tra�c carried

in di↵erent cells. In [202], a general feature extractor is used with a correlation se-

lection mechanism for modeling spatial dependencies among cells and an embedding

mechanism to encode external information. In [206], the spatial relevancy among cells

is modeled with a graph ANN based on the distance among cell towers to deal with an

irregular cell distribution. A graph-based approach is also considered in [207], where

tra�c is decomposed into inter-tower and in-tower tra�c components. Deep lear-

ning schemes such as recurrent [208] [209] or convolutional ANNs [210] have also been

applied to coarser time resolutions (i.e., an hour) to extend the forecasting horizon to

several days.

The above works show that advanced deep learning models perform well if data

is collected with fine-grained time resolution to build long time series (i.e., thousands
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of samples) of correlated data. With these models, advanced dynamic radio resource

management schemes and proactive self-tuning algorithms can be implemented [211].

However, some replanning actions (e.g., deployment of a new cell) may take several

months to be implemented (e.g., radio frequency planning, site acquisition, civil works,

licenses, installation/commissioning, pre-launch optimization. . . ) [212]. Thus, the up-

coming tra�c must be predicted with much longer time horizons (i.e., several months

in advance) [213]. For this purpose, a monthly tra�c indicator is often computed

per cell from busy-hour measurements, limiting the number of historical data samples

used for prediction [214] [215]. Moreover, some studies [216] [217] have shown that the

influence of past measurements quickly diminishes after a few weeks due to changes

in user trends (e.g., new terminals, new hot spots. . . ) and replanning actions by the

operator (e.g., new site, equipment upgrades. . . ). As a consequence, long-term tra�c

forecasting relies on short and noisy time series, which might prevent operators from

using complex deep learning models. As an alternative, it must be checked if simpler

SL algorithms outperform the classical TSA approach for time series with these cons-

traints. For this purpose, a large dataset containing data collected per cell for years is

required. Such information is a precious asset for operators, which is seldom shared.

For this reason, to the authors’ knowledge, no recent work has evaluated long-term

tra�c forecasting in mobile networks considering SL techniques.

This chapter presents a comprehensive analysis assessing the performance of SL

against classical TSA schemes for predicting monthly busy-hour data tra�c per cell

in the long term. For this purpose, a large dataset is collected for 30 months from a

live LTE network covering an entire country. All prediction techniques considered here

are included in most data analytics packages and have already been used in several

fields. Hence, the main novelty is the assessment of well-established SL algorithms

for long-term data tra�c forecasting based on short and noisy time series taken from

current mobile networks o↵ering a heterogeneous service mix. The impact of key

design parameters has been checked, namely the data collection window, the prediction

horizon and the number of models to be created (one per cell or one for the whole

network). Throughout the analysis, algorithms are compared in terms of accuracy and

computational complexity.
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Figure 5.1: Evolution of monthly busy-hour tra�c in a cell.

5.2 Problem formulation

The problem of forecasting tra�c R carried in a cell c with a time horizon h at time t

from historical data gathered during a collection period wc can be formulated as

R̂(c, t+ h) = f(R(c, t), R(c, t� 1), ...R(c, t� wc + 1)) , (5.1)

where t� wc + 1 denotes the oldest available datasample.

The way to tackle tra�c prediction strongly depends on the time granularity of

data, which determines two key factors. The first factor is the length of available time

series, ws. Note that, when training a cell-specific prediction model, the number of

observations must be higher than the number of model parameters [218]. Thus, complex

deep learning models with hundreds of internal parameters cannot be considered if a

short time series (i.e., dozens of samples) is available due to data aggregation on a

coarse time resolution (e.g., monthly data).

A second factor is data predictability, which may be degraded by the aggregation

operation performed to obtain coarse-resolution time series from finer-resolution data.

Such an undesirable e↵ect appears when computing monthly busy-hour statistics from

hourly data for RAN dimensioning purposes. To illustrate this fact, Fig. 5.1 shows the

evolution of monthly busy-hour tra�c in the DL from a live LTE cell. As described later

in section 5.4.1, data aggregation is often performed by selecting the busy hour per week

and then averaging tra�c measurements per week in a month. Weekly and monthly
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aggregation eliminates hourly/daily fluctuations and the impact of sporadic events

(e.g., cell outage, cell barring. . . ), leaving only monthly variations needed for detecting

capacity issues. This variations consists of: a) a trend component, influenced by the

tra�c growth rate, b) a seasonal component, given by the month of the year, and c)

a remainder component, due to abnormal events taking place locally (e.g., new nearby

site, new hot spot. . . ) or network-wide (e.g., launch of new terminals, change of network

release. . . ). In the example of the figure, it is observed that the trend component

prevails over the seasonal component, causing the time series to be non-stationary.

Also important, network events cause sudden trend changes, which decrease the value

of past knowledge and, ultimately, degrade the performance of prediction algorithms.

For a deeper analysis of how time resolution a↵ects predictability, Fig. 5.2.a) and

b) depict a box-and-whisker diagram of the autocorrelation function of the DL tra�c

pattern in 310 cells from a live LTE network on an hourly and monthly basis, respecti-

vely. To ease comparison, two seasonal periods are represented in both cases (two days

for hourly data and two years for monthly data). The shaded area depicts the 95%

confidence interval for each lag, suggesting that values in the white area are very likely

an actual correlation and not a statistical fluke. The smaller interval width for the

hourly series is due to a larger number of samples stored in those series. In Fig. 5.2.a),

the interquartile boxes show a cyclical pattern with maxima (strong positive autocor-

relation) at lags 24 and 48 and minima (strong negative correlation) at lags 12 and

36. Such behavior reveals that hourly tra�c is seasonal. Moreover, in most lags, the

whole box is out of the shadowed area, suggesting that past information is relevant

to the current tra�c value. In contrast, Fig. 5.2.b) reveals that the autocorrelation of

monthly tra�c does not follow a seasonal pattern due to the absence of local maxima

or minima. On the contrary, it quickly diminishes to 0, so that, in most cells, only

information from lags 1 to 4 is significantly correlated with the current tra�c value

(i.e., boxes are outside the shaded area). This fact suggests that, even for time series

with the same available time window (i.e., two periods), monthly busy-hour data is less

predictable than hourly data. It is especially relevant that, unexpectedly, correlation

with lags 12 and 24 (i.e., with data collected in the same month of previous years)

is not significant, reducing data predictability. A closer analysis (not presented here)

shows that seasonality is neither observed in the de-trended monthly tra�c series.

The above analysis confirms that long-term tra�c forecasting for network dimen-

sioning, based on monthly busy-hour tra�c data, requires a separate analysis from

short-term tra�c forecasting based on higher time resolution data.
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(a) Hourly data.

(b) Monthly busy-hour data.

Figure 5.2: Autocorrelation of DL cell tra�c.

5.3 Forecasting method

Overall, the considered forecasting methodology comprises the same stages as that

proposed in section 4.3 for cell throughput estimation, namely data collection and pre-

processing, model training and performance evaluation. Thus, for brevity, this section

focuses on specific aspects of applying this generic methodology to forecasting, namely

the considered prediction algorithms, the considerations to be taken into account when

applying them for long-term cell tra�c forecasting and the di↵erent model construction

strategies.
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a) Prediction algorithms

Six forecasting algorithms are tested. A first group consists of two classical statistical

TSA schemes, namely Seasonal Auto Regressive Integrated Moving Average (SARIMA)

and Additive Holt-Winters (AHW). SARIMA computes the current value of a time

series di↵erence as the combination of previous di↵erence values and the present and

previous values of the series. As detailed in [219], a SARIMA process is described as

SARIMA(p,d,q)(P ,D,Q)m. (p,d,q) describe the non-seasonal part of the model, where

p is the auto-regressive order, d is the level of di↵erence and q is the moving average

order, with p, d and q non-negative integers. (P ,D,Q)m describe the seasonal part of

the model, where P , D and Q are similar to p, d and q, but with backshifts of the

seasonal period m (e.g., for monthly data, m = 12).

Holt-Winters calculates the future value of a time series with recursive equations

by aggregating its typical level (average), trend (slope) and seasonality (cyclical pa-

ttern) [220]. These three components are expressed as three types of exponential

smoothing filters with smoothing parameters ↵, � and �, respectively. As in SARIMA,

the seasonal period is denoted as m. Holt-Winters can be additive (when seasonality

is roughly constant) or multiplicative (when seasonality is proportional to level). In

this work, the former variant is chosen, since, as shown in Fig. 5.1, the seasonal e↵ect

is nearly constant through the time series.

A second group comprises state-of-the-art SL algorithms, namely RF, SVR and two

di↵erent ANNs. The first ANN, denoted as ANN–LSTM, is a deep recurrent network

with two hidden layers based on LSTM units capable of capturing long-term depen-

dencies thanks to information control gates. The second one, denoted as ANN–MLP,

is a shallow MLP that addresses forecasting as a time-independent regression problem.

b) Peculiarities of long-term tra�c forecasting

Several issues must be considered when using the above algorithms for long-term ce-

llular tra�c forecasting in cellular networks, based on short and noisy time series:

1) Data collection window (wc): the available period available in data warehouse

systems of current cellular networks for long-term forecasting is typically less

than 24 months. Moreover, time series from recently deployed cells may have even

fewer monthly historical measurements. Thus, it is vital to check the capability

of forecasting algorithms to work with small data collection windows. Such a
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feature is especially critical during network deployment, when network structure

constantly evolves (e.g., new cells are activated every month). At this early stage,

robust tra�c forecasting is crucial to avoid capacity problems and/or unnecessary

investments by the MNO.

2) Number of models : recursive models such as SARIMA, AHW and ANN–LSTM

are conceived to build a specific model per time series (i.e., cell) based on historical

data of that particular cell. However, the short length of time series available

for long-term tra�c forecasting may jeopardize prediction capability with this

approach, since it is always necessary to have more observations than model

parameters to avoid model overfitting. As an alternative, with all SL algorithms

(including ANN–LSTM), a single model can be derived for the whole network

from historical data of all the cells. The latter ensures that enough training data

is available to avoid model overfitting. Likewise, sharing past knowledge across

cells in the system increases the robustness of predictions in cells with limited

data or abnormal events.

3) Forecasting horizon (h): The earlier a capacity bottleneck can be predicted, the

more likely the problem will be fixed without any service degradation. Note that

some network replanning actions (e.g., deploying a new site) may take several

months. Such a delay forces operators to foresee tra�c demand several months in

advance (referred to as multi-step prediction). In classical TSA approaches, such

as SARIMA and AHW, multi-step prediction is carried out by recursively using

a one-step model multiple times (i.e., the prediction for the previous month is

used as an input for predicting the following month). Such a recursive approach

reduces the number of models needed, but quickly increases prediction errors

originated by using predictions instead of observations as inputs [221]. This is

a critical issue when using recursive algorithms for series with significant ran-

dom components, such as those used in long-term forecasting. In contrast, SL

algorithms can directly train a separate model for each future step. Such an

approach does not entail an increase of computational load if the set of steps

predicted is small (e.g., 3 and 6 months ahead) and/or parallelization is used.

4) Interpretability : Ideally, prediction models should be simple enough to have an

intuitive explanation of their output values [222]. Models built with SARIMA and

AHW are easier to understand, since their behavior is described by closed-form

expressions, whereas SL models cannot be explained intuitively. Interpretability

is not an issue in long-term tra�c forecasting, thus being neglected here.
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(a) Forecasting timeline for TSA algorithms (SARIMA and AHW).

(b) Forecasting timeline for SL algorithms (RF, ANN–MLP, ANN–LSTM and SVR).

Figure 5.3: Timeline of prediction algorithms in a generic case.

c) Model construction

Fig. 5.3.a) and b) illustrate model training and test strategies considered for TSA

(i.e., SARIMA/AHW) and SL (i.e., RF/SVR/ANN–MLP/ANN–LSTM) algorithms,

respectively, conceived by taking into account all the above-mentioned peculiarities.

Consider a network comprising Nc cells in which, in a given current month, wc historical

tra�c measurements are available to predict cell tra�c expected h months ahead,

R(c, wc + h). For TSA approaches, as illustrated in Fig. 5.3.a), a di↵erent model is

fitted per cell by using all historic measurements available as inputs (i.e., the input

window to the model, wi, is wi=wc). That model is then applied recursively to predict

tra�c carried h0=1,2,...,h months ahead. This strategy results in Nc models (one
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per cell). In contrast, for SL algorithms, a single model is created to predict tra�c

expected h months ahead in any cell of the whole network by using data from all cells,

as shown in Fig. 5.3.b). First, the model is trained. The training dataset consists

of Nc datapoints (one per cell) with wc historical measurements. For each datapoint,

the oldest wi=wc-h samples are used as predictors, whereas the most recent sample

is used as output. Note that, unlike in TSA approaches, not all months can be used

as predictors in the training stage to allow the h-month horizon. Once the model is

trained, tra�c expected h months ahead in each specific cell is computed by passing

a new datapoint with the wi most recent tra�c measurements of the cell as predictors

through the network-wide model.

It should be pointed out that, as stated above, ANNs based on LSTM units are

conceived to build a model per time series (i.e., per cell). However, these models

often have hundreds or even thousands of parameters (e.g., the ANN–LSTM model

considered here has 1,331 parameters). To circumvent this problem, in this work,

ANN–LSTM is used as the other SL algorithms, i.e., by creating a single model for all

the cells in the network. To this end, a single time series is generated by concatenating

time series from all cells in the network up to the considered current month, and only

time lapses of wc samples where the most recent sample corresponds to that current

month are considered.

5.4 Performance assessment

This section presents the comparative analysis of forecasting schemes. For clarity, the

dataset is first presented. Then, assessment methodology is detailed. Next, results

are presented, broken down per experiment. Finally, computational complexity is

discussed.

5.4.1 Dataset description

The proposed analysis requires a large dataset including data gathered from the largest

number of cells during several years. Unfortunately, such data is not still available

for 5G networks. As an alternative, a LTE dataset is considered that contains data

collected from January 2015 to June 2017 (i.e., 30 months) in a large commercial

network serving an entire country. The network comprises 7,160 eNBs covering a

geographical area of approximately 500,000 km2, including cells of di↵erent sizes and
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environments, with millions of subscribers. Analysis is restricted to the DL, as it has

the largest utilization in LTE networks.

In the network, tra�c measurements are gathered on a per-cell and hourly basis.

Such raw data is preprocessed to obtain a single tra�c measurement per cell/month

to be stored in the long term for network dimensioning tasks. The resulting dataset

consists of 7,160 time series (1 per cell) with 30 measurements (1 per month) of the

monthly DL tra�c volume in the busy hour, expressed as a rate (i.e., in kbps). The

monthly DL tra�c volume carried in a cell c and month m during the busy hour,

R(c,m), is calculated as follows:

1. The average DL tra�c volume (in kbps) and the average number of active users

are measured and collected per cell and hour.

2. The weekly busy hour is selected per cell as the hour with the highest number of

active users in week k. Each week belongs to a month m. The DL tra�c volume

(in kbps) during that busy hour is selected as the weekly DL tra�c volume per

cell, week and month, R(c, k,m) (in kbps).

3. Finally, the monthly busy-hour DL tra�c volume per cell and month, R(c,m),

is computed as the average of R(c, w,m) across weeks in month m, as

R(c,m) =
1

Nweek(m)

Nweek(m)X

k=1

R(c, k,m) , (5.2)

where Nweek(m) is the number of weeks in month m. For simplicity, a week riding

two months is considered to belong only to the month including more days.

The considered dataset combines a large temporal and spatial scale (30 months, en-

tire country) with a fine-grained space resolution (cell), guaranteeing the reliability and

significance of results. Moreover, it allows testing prediction algorithms with di↵erent

data collection windows and time horizons, broadening the scope of the analysis.

5.4.2 Assessment methodology

Assessment is carried out with IBM SPSS Modeler [223], a commercial tool for pre-

dictive analytics extensively used in several fields [224] [225] [226]. The tool has a

visual interface allowing users to use statistical and data mining algorithms without

programming. Likewise, it o↵ers an expert mode to find the optimal settings for certain
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model hyperparameters. These features are extremely valuable for network planners

without a deep knowledge of prediction algorithms. SPSS Modeler 18.1 includes all

the forecasting algorithms considered in this work except for ANN–LSTM, which is

implemented using Keras Python library. Regarding model hyperparameters, to get

the best of classical TSA approaches, p, d, q, P , D and Q in SARIMA and ↵, � and

� in AHW must be set on a cell basis. For this purpose, the Expert mode o↵ered by

SPSS Modeler is used. In this mode, the input data series is first transformed when

appropriate (e.g., di↵erentiating, square root or natural log), and model parameters are

then aromatically set to maximize accuracy in one-step ahead prediction. Such an Ex-

pert mode is also used to set the number of neurons in the hidden layer in ANN–MLP.

The rest of hyperparameters are fixed or tuned following the random grid search in

the parameter space identically as in chapter 4 considering the MAE defined in (4.5)

as loss metric. The reader is referred to [227] and [186] for further information on the

algorithms in SPSS Modeler and Keras, respectively.

Four di↵erent cases are compared to check the sensitivity of forecasting algorithms

to the data collection period (wc) and prediction time horizon (h). Regarding wc,

algorithms are tested in two di↵erent cases. In the first case, it is assumed that the

operator collects tra�c data on a cell basis for 24 months. In this case, the six con-

sidered algorithms can be compared. In the second case, it is assumed that only data

collected for last 12 months is available in the warehouse (e.g., network deployment

stage). This reduction in the data collection window is an important constraint for

SARIMA and AHW, which require more than 12 input samples to predict monthly

data (13 for AHW and 16 for SARIMA) [218]. Hence, only SL algorithms are com-

pared in the second case. To check the impact of prediction time horizon (h) on model

performance, two horizons are considered: 3 and 6 months (i.e., tra�c is predicted

3/6 months in advance, respectively). The combination of wc and h results in four

cases, hereafter referred to as cases 12–3, 12–6, 24–3 and 24–6, where the first number

denotes wc and the second number denotes h. From the operator’s point of view, the

less data stored and the more in advance tra�c is forecast (i.e., case 12–6), the better,

but, from an accuracy point of view, the opposite is likely true (i.e., case 24–3).

For clarity, Fig. 5.4 illustrates model training and test timelines for predicting

tra�c carried in June 2017 with h=3 (i.e., prediction is made on March 2017) based

on measurements from previous months. Specifically, Fig. 5.4.a) and b) present the

timeline used for TSA and SL approaches, respectively, in case 24–3. In this case,

since wc=24, tra�c in June 2017 is predicted in March 2017 based on historical data
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from April 2015 to March 2017. Similarly, Fig. 5.4.c) corresponds to case 12–3, where

only data from April 2016 to March 2017 is available. In the latter case, SARIMA and

AHW algorithms cannot be used due to the limited length of the time series. Tra�c

forecasting for cases 24–6 and 12–6 follows a similar procedure with a 6-month gap

between the end of the data collection window and the target month (e.g., in case

24–6, tra�c in June 2017 is predicted in December 2016 based on measurements from

January 2015 to December 2016).

To test the above-described cases, three experiments are performed sequentially.

The results of each experiment motivate the execution of the following one.

Experiment 1 – selection of data collection window. The first experiment aims

to determine how many months of data (i.e., wc=12 or 24 months) are required

to forecast cellular tra�c accurately for the two considered prediction horizons

(i.e., h=3 and 6 months). For this purpose, the six considered forecasting al-

gorithms are evaluated in cases 12–3, 12–6, 24–3 and 24–6. The data to be

predicted is cell tra�c in June 2017, as shown in Fig. 5.4. Note that assessing

(i.e., training and testing) case 24–6 (the most data-demanding case) requires

collecting data 30 months in advance (i.e., dataset size), and thus June 2017 is

the only possible target month for this experiment in the considered dataset.

Experiment 2 – algorithm comparison. The second experiment aims to check: a)

how much time in advance (3 or 6 months) prediction can be made with accep-

table accuracy, b) the dependence of model performance on the target month,

and c) which is the best prediction algorithm. For this purpose, cell tra�c from

July 2016 to June 2017 (i.e., for a year) is forecast considering cases 12–3 and

12–6. Cases 24–3 and 24–6 (and thus TSA approaches) are discarded according

to results in experiment 1. For each SL algorithm, a di↵erent model is trained

to predict tra�c in each month as explained in Fig. 5.3, with the current month

the closest to the target month for each horizon (e.g., in case 12–3, if the target

month is May 2017, the data collection window starts in July 2016 and ends in

February 2017).

Experiment 3 – creation of specific models for high-tra�c cells. In capacity

planning, accurate tra�c prediction is especially important in cells with high

tra�c, as these are more likely to su↵er capacity problems. This experiment

assesses the possibility of creating a di↵erentiated model for such cells. The

idea is to discard underutilized cells, often showing noisy tra�c measurements,
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(a) Case 24–3 for TSA approaches.

(b) Case 24–3 for SL approaches.)

(c) Case 12–3 for SL approaches.

Figure 5.4: Timeline of prediction algorithms in cases 24–3 and 12–3 when forecasting
cellular tra�c in June 2017.
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when training the model. To this end, a model to forecast tra�c in June 2017

is trained only with data from high-tra�c cells. In this work, a cell c0 is con-

sidered as a high-tra�c cell if its tra�c in current month (e.g., in case 12–3, in

March 2017) exceeds the 85th percentile of the monthly cell tra�c in the network,

i.e., R(c0,Mar17) > PR(c,Mar17)

85
.

In all the experiments, prediction accuracy is measured with MAPE and MAE,

defined in (4.3) and (4.5), respectively. Additionally, two secondary indicators are used

for a more detailed assessment: a) the bias, computed as the mean error

bias =
1

Nc

X

c

( bR(c,m)�R(c,m)) , (5.3)

and b) the execution time, as a measure of computational load.

5.4.3 Results

a) Experiment 1

Table 5.1 breaks down the performance of prediction algorithms in cases 12–3 and

24–3 (3-month horizon). Recall that SARIMA and AHW cannot be tested in case

12–3. Results show that SARIMA achieves the worst performance in case 24–3, with

an extremely large MAPE (43.25%) and MAE (2069.72 kbps). AHW outperforms

SARIMA, but still performs poorly (MAPE=29.28% and MAE=1780.71 kbps). Such

a poor performance may be due to the recursive nature of these models, where noisy

input data severely degrades the accuracy of predictions beyond the next step. All SL

techniques outperform AHW, with MAPE below 28% and MAE below 1600 kbps.

When comparing case 24–3 against case 12–3, it is observed that SL algorithms per-

form similarly or even better in case 12–3 (e.g., for ANN–MLP, MAE increases from

1023.55 kbps with 12 months to 1339.91 kbps with 24 months). This fact confirms that

the influence of past measurements quickly diminishes in the long term due to changes

in user trends and replanning actions by the operator.

Table 5.2 shows the comparison between cases 12–6 and 24–6 (6-month prediction

horizon). In case 24–6, all SL techniques but SVR again outperform both SARIMA

and AHW (SVR outperforms SARIMA, but not AHW). When comparing cases 12–6

and 24–6, all SL algorithms achieve a better MAE in case 12–6, as in cases 12–3 vs.

24–3 (e.g., in SVR, MAE decreases from 2517.43 kbps in case 24–6 to 1372.89 kbps in
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Table 5.1: Impact of data collection window for 3-month forecasting horizon.

Case (wc � h) 12–3 24–6

FoM MAPE [%] MAE [kbps] MAPE [%] MAE [kbps]

SARIMA – – 43.25 2069.72

AHW – – 29.28 1780.71

RF 23.75 1017.55 23.29 1236.44

SVR 25.78 1070.03 27.86 1572.81

ANN–MLP 24.28 1023.55 24.90 1339.91

ANN–LSTM 22.65 976.69 23.38 999.15

Table 5.2: Impact of data collection window for 6-month forecasting horizon.

Case (wc � h) 12–3 24–6

FoM MAPE [%] MAE [kbps] MAPE [%] MAE [kbps]

SARIMA – – 590.17 16708.55

AHW – – 30.88 1902.44

RF 23.94 1048.63 22.76 1199.32

SVR 30.81 1372.89 37.66 2517.43

ANN–MLP 24.23 1055.93 23.58 1250.32

ANN–LSTM 22.23 1034.30 29.55 1253.69

case 12–6, a 45.47% decrease in relative terms).

From the above results, it can be concluded that: a) SL approaches outperform

SARIMA and AHW when predicting tra�c in cellular networks in the long term, and

b) there is not much benefit in storing tra�c measurements for more than one year

(unless SARIMA and AHW are the only options).

b) Experiment 2

Table 5.3 presents the average MAPE, MAE and bias achieved for di↵erent target

months for each algorithm and case. For a more detailed analysis, Fig. 5.5 breaks down

MAE obtained in cases 12–3 (solid lines) and 12–6 (dotted lines) for each target month.

Recall that cases 24–3 and 24–6 are not considered based on the conclusions in experi-

ment 1. Table 5.3 shows that, in case 12–3, RF, ANN–MLP and ANN–LSTM perform

similarly (MAPE⇡27% andMAE⇡1000 kbps), outperforming SVR (MAPE=30.26%

andMAE=1059.86 kbps). Moreover, Fig. 5.5 reveals that prediction accuracy for most

algorithms significantly degrades when predicting tra�c in July and August 2016 (su-

mmer holidays) compared to the rest of months (working months). This might be

due to isolated events taking place during summer months in the country where data
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Table 5.3: Average performance of forecasting algorithms across di↵erent target
months.

Case 12-3 12-6

FoM MAPE [%] MAE [kbps] bias [kbps] MAPE [%] MAE [kbps] bias [kbps]

RF 27.63 994.21 160.51 40.09 1329.31 719.20

SVR 30.26 1059.86 -251.32 36.71 1327.15 -531.02

ANN–MLP 27.73 987.28 134.61 38.71 1256.40 572.46

ANN–LSTM 26.37 986.88 134.27 31.87 1173.39 287.73

Figure 5.5: MAE evolution across di↵erent target months.

was collected (e.g., tourism, festivals, etc.) that change tra�c patterns unpredictably,

making data collected three months in advance not representative of the tra�c in

the months to come. In contrast, SVR shows a more stable behavior during summer

months (i.e., MAE does not degrade).

By comparing cases 12–3 and 12–6 in Table 5.3, it is observed that, for all al-

gorithms, there is a significant degradation in accuracy if tra�c predictions are made

more than three months in advance (e.g., for ANN–LSTM, MAE and MAPE in-

crease by 18.89% and 20.85% in relative terms, respectively). Moreover, dotted lines in

Fig. 5.5 shows a substantial variation in MAE across months in case 12–6. Thus, it is

recommended to use a 3-month prediction horizon when possible. ANN–LSTM shows

the best overall results, with a MAPE of 26.37% and a MAE of 986.68 kbps in case

12–3, and the slightest degradation in accuracy from case 12–3 to case 12–6. Nonethe-
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(a) Cell A (not a↵ected by replanning action).

(b) Cell B (a↵ected by replanning action).

Figure 5.6: Example of the impact of replanning actions on cell tra�c.

less, for a 3-month horizon, ANN–MLP and RF algorithms can be used alternatively

with similar accuracy (MAPE⇡27.70% and MAE⇡990 kbps).

It should be pointed out that, even for the best model (i.e., combination of algorithm

and case), forecasts are not very accurate (i.e., MAE⇡1000 kbps, or, expressed more

intuitively, a deviation of 0.39 GB per hour and cell). This fact confirms the unpre-

dictability of busy-hour tra�c metrics. A deeper analysis reveals that such a poor

performance can be partially explained by replanning actions taken by the operator in

the considered network during the data collection period, which lead to unpredictable

tra�c changes in neighbor cells. For a closer analysis, Fig. 5.6.a) and b) illustrate
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Figure 5.7: Prediction error vs. monthly busy-hour tra�c (ANN–LSTM, case 12–3).

tra�c prediction from January 2017 to June 2017 with a 3-month horizon for two

cells, referred to as Cell A and Cell B, with the compared algorithms. No significant

replanning actions were taken in the surroundings of Cell A during the data collection

period, whereas Cell B is a cell with a new neighbor cell deployed in October 2016.

In Fig. 5.6.a), it is observed that, for cell A, all algorithms predict real tra�c quite

well (e.g., MAE fluctuates between 4 and 900 kbps for ANN–MLP, and between 314

and 824 kbps for RF). In contrast, in cell B, the abrupt decrease in tra�c in October

2016, caused by the deployment of a nearby cell, leads to large prediction errors for all

models.

It is also remarkable that bias values in Table 5.3 for case 12–3 are negative or close

to 0, i.e., models tend to underestimate tra�c. This behavior is especially risky for

high-tra�c cells, which are more likely to su↵er from capacity problems. For a closer

analysis of bias, Fig. 5.7 depicts the scatter plot of prediction error, bR(c,m)�R(c,m),

versus measured cell tra�c obtained when predicting tra�c carried in March 2017

with ANN–LSTM in case 12–3 (the combination of month/algorithm/horizon with the

lowest MAE in this experiment). The regression line shows that the more loaded cells

are, the more negative the error is. This trend points out the need for a more accurate

model for high-tra�c cells. This problem will be addressed in experiment 3.
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Table 5.4: Performance of network-wide and specific forecasting models for high-tra�c
cells (case 12–3).

Model Network-wide Specific

FoM MAPE [%] MAE [kbps] MAPE [%] MAE [kbps]

RF 12.46 1339.88 11.26 1212.18

SVR 20.44 2223.88 14.49 1725.20

ANN–MLP 12.31 1374.55 11.35 1232.98

ANN–LSTM 12.21 1311.72 13.27 1356.13

c) Experiment 3

Table 5.4 breaks down MAPE and MAE in case 12–3 for the 1,074 (15%) cells

with the largest tra�c in March 2017, obtained with two di↵erent models: a) the

model built in experiment 1 (denoted as network-wide model), and b) a specific model

trained exclusively with data collected from these high-tra�c cells (denoted as spe-

cific model). To isolate the e↵ect of building a di↵erentiated model, those high-tra�c

cells a↵ected by replanning actions between March 2017 and June 2017 have been

considered for model training, but not for model exploitation. The table shows that

the specific model outperforms the network-wide model for RF, SVR and ANN–MLP

algorithms. In contrast, the specific model created with ANN–LSTM does not im-

prove the network-wide model built with this approach. The latter can be due to

the lower number of training datapoints in specific models, which can lead to over-

fitting for models with a large number of internal parameters such as ANN–LSTM.

SVR experiences the largest improvement with the specific model in absolute terms,

decreasing MAE from 2223.88 kbps to 1725.20 kbps (22.42% in relative terms) and

MAPE from 20.44% to 14.19% (29.11% in relative terms). Nonetheless, it is still

the worst algorithm. Specific models created with RF and ANN–MLP show the best

results, achieving MAPE⇡11% and MAE⇡1200 kbps. Nonetheless, CDFs show that

error is still negative in many cells (⇡45% for RF, ANN–MLP and ANN–LSTM and

⇡75% for SVR). This issue must be addressed by other means (e.g., models based on

predictors other than cell tra�c).

For a closer analysis, Fig. 5.8.a)–d) represent the error CDFs obtained with SL

algorithms for high-tra�c cells with the network-wide model (solid lines) and the spe-

cific model (dashed lines) in case 12–3 for the selected target month (June 2017). It

is observed that, for all algorithms, error curves with the specific models are shifted to

the right compared to those with the network-wide models, whose median values are
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(a) RF. (b) SVR.

(c) ANN–MLP. (d) ANN–LSTM.

Figure 5.8: Error cumulative distribution functions for SL algorithms when forecasting
tra�c in high-tra�c cells (case 12–3).

closer to 0. Thus, the specific models for high-tra�c cells increase prediction accuracy

while reducing bias. Nonetheless, CDFs show that error is still negative in many cells

(⇡45% for RF, ANN–MLP and ANN–LSTM and ⇡75% for SVR). This issue must be

addressed by other means (e.g., models based on predictors other than cell tra�c).

5.4.4 Computational complexity

Cell tra�c forecasting in radio planning tools entails: a) collecting and preprocessing

data in the OSS, b) training the model (or set of models), c) exploiting the model

and d) retraining the model when necessary. PMs used to compute aggregated cell

tra�c per hour are often collected by MNOs for network management purposes. Like-

wise, calculating busy-hour monthly tra�c per cell from hourly tra�c measurements is
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Table 5.5: Execution times for forecasting models [s].

Case 12–3 12–6 24–3 24–6

Number of predictors

TSA algorithms – – 24 24

SL algorithms 9 6 21 18

Execution times [s]

SARIMA (per cell) – – 0.56 0.61

AHW (per cell) – – 0.65 0.72

RF (entire network) 5 4 8 6

SVR (entire network) 12 10 14 13

ANN–MLP (entire network) 3 2 6 4

ANN–LSTM (entire network) 140 98 313 245

simple; thus, dataset creation should not entail a significant computational workload.

The most time-consuming task is model fitting. For SL algorithms, time complexity

was discussed in section 4.4.2. For SARIMA and AHW, it is expected that running

time grows linearly with the number of predictors (months), wi, and the number of

models built (cells), Nc. Thus, their worst-case time complexity is O(Nc ⇥ w). Once

trained, model exploitation is immediate (in this analysis, less than 0.1 ms per time

series). The whole process must be repeated every month.

As an example of model computational complexity, Table 5.5 summarizes the exe-

cution time for the tested algorithms in experiment 1 (7,160 cells) in a centralized

server with Intel Xenon octa-core processor, clock frequency of 2.4 GHz and 64 GB

of RAM. For SARIMA and AHW, execution time comprises computing a cell-specific

model and extending it until the target month, which must be repeated for all cells

in the system. For SL algorithms, execution time comprises training a network-wide

model with the series from all cells and computing predictions from historical tra�c

values (i.e., no model extension is needed). The number of predictors per case is

shown in the upper part of the table. Results show AHW and SARIMA are the most

time-consuming approaches in cases 24–3 and 24–6, since they require building a model

per cell. Among SL algorithms, ANN–MLP and ANN–LSTM are the fastest and most

time-consuming approaches, respectively. In SL algorithms, the longer data collection

period, the larger number of predictors, and hence the larger runtime. For a certain

collection period, the larger the time horizon, the lower number of predictors in the

model, and thus the lower runtime. In contrast, in SARIMA and AHW, the longer
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the time horizon, the larger runtime, since the model must be extended until the tar-

get month. Nonetheless, execution times in all cases are negligible for the considered

application, where models must be trained and exploited once a month.

5.5 Conclusions

Accurate long-term tra�c forecasting is crucial for replanning the RAN in cellular

networks. However, monthly busy-hour time series often used for this purpose are

short and noisy, making long-term prediction a challenging task. In this chapter, a

comparative study has been conducted to assess di↵erent approaches for predicting

cellular tra�c in the long term (i.e., several months in advance). Six algorithms have

been compared, including classical time series analysis schemes (SARIMA and AHW)

and supervised learning algorithms (RF, ANN–MLP, ANN–LSTM and SVR). To this

end, three experiments have been carried out with a dataset taken from a live LTE

network covering an entire country (7,160 cells) and tra�c data for two and a half

years.

Results have shown that SL algorithms outperform classical TSA in terms of accu-

racy and required storage capacity. Specifically, with SL algorithms, tra�c carried

per cell can be predicted with a MAE⇡1000 kbps with a 3-month time horizon

and a 12–month data collection period. It has also been shown that it is advisable

to develop specific models for high-tra�c cells, where prediction accuracy is critical.

Overall, RF and ANN–MLP have shown the best results, providing acceptable accu-

racy (MAPE⇡11%) to detect capacity bottlenecks in high-tra�c cells with a 3-month

prediction horizon by using data from the past 12 months. It is remarkable that these

non-deep algorithms perform very similar to deep neural networks based on LSTM

units, used to model time dependencies in short- and medium-term tra�c forecasting.

This is due to the monthly busy-hour aggregation of data, which reduces time series

length and predictability compared to hourly or daily tra�c series. Nonetheless, none

of the considered algorithms is highly accurate, especially for summer months, due to

changes in user trends, social events or temporary replanning actions by the operator.

Two work lines have been explored to improve model performance obtained in this

analysis in the framework of a contract with a telecom vendor: a) preprocessing time

series before fitting and exploiting forecasting models and b) refining/changing the

training approach from that presented in Fig. 5.3. Although results cannot be detailed

here for confidentiality reasons, some conclusions are outlined next. Regarding data
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preprocessing, applying smoothing over time series leads to a better trend estimation

at the expense of losing (or attenuating) the contribution of any other component

(e.g., seasonality) to the series, which is paid o↵ in most cells due to negligible sea-

sonal component in monthly busy-hour tra�c series. Alternatively, additive time series

decomposition can be used to separate trend, seasonal and residual components and

then train a di↵erent model to forecast each component. When recomposing the final

forecast for a given cell, some components can be omitted if considered irrelevant. It

should be pointed out that these advanced data preprocessing techniques pose a sig-

nificant increase in computational complexity (especially the latter). No matter the

selected preprocessing approach (i.e., smoothing, decomposing or leaving time series

as they are), e�cient outlier management improves forecasts significantly. Since cells

in a network present significantly di↵erent tra�c patterns and levels, outlier detection

must not rely on network-wide statistical information, but be performed on a per-series

basis.

Regarding model construction, a tested option is training a specific model for each

month of the year by using datapoints with the same input and output months in

past years. The possible benefit would be capturing relations between tra�c carried in

the network in specific months. As a side e↵ect, training these models entails storing

more historic tra�c measurements per cell (at least wc+12-h samples per time series).

Another explored option is increasing the number of datapoints without changing the

collection window (wc) by reducing the input window, i.e., wi<wc+h. This approach

helps to avoid model overfitting and may provide SL models with more tra�c patterns

at the expense of increasing computational complexity considerably. Preliminary tests

reveal that any of these options improve model performance significantly, which is

consistent with the analysis of autocorrelation presented in section 5.2 (i.e., lack of

peaks in lags 12/24, fast decrease in autocorrelation values...).

Nonetheless, it is strongly recommended that operators store data with finer time

resolution (e.g., daily busy-hour measurements) in the long term to make the most of

SL models for tra�c forecasting.



Chapter 6

Tra�c steering in cellular networks

Once networks are deployed, an e↵ective MLB strategy is key to relieving locali-

zed congestion problems, avoiding unnecessary re-planning actions while guaranteeing

customer satisfaction. This chapter deals with the problem of performing MLB in

multi-service cellular networks with di↵erent scenarios (i.e., multi-tier and sliced RANs).

Content is organized as follows. Section 6.1 reviews state-of-the-art contributions.

Then, section 6.2 presents a data-driven MLB algorithm for multi-tier networks with

QoE criteria. Likewise, section 6.3 proposes novel solutions for MLB in sliced RANs.

6.1 Related work

In the literature, several algorithms have been proposed for MLB through HOM tuning

in cellular RANs. Most contributions tackle HOM optimization as a control problem,

for which di↵erent types of controllers have been proposed. The earliest works relied

on proportional controllers driven by heuristic rules to perform intra-frequency MLB in

macrocellular scenarios. In [30], an incremental controller tunes HOMs in fixed steps

when the load di↵erence of adjacent cells exceeds a threshold. Cell load is measu-

red considering PRB utilization ratio and QoS requirements. In [228], the controller

estimates the impact of changing HOMs on network performance with an analytical

model, and tunes HOMs to maintain all cells under a preset load threshold. A similar

approach is proposed for small-cell scenarios in [32], where an adaptive load threshold

is considered, so that MLB can also act in non-congested cells with unevenly loaded

cell boundaries. In [86], HOMs in a femtocell scenario are tuned with a Fuzzy Logic

Controller (FLC) fed by current HOM values and blocking statistics to equalize the

125
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blocking ratio among cells.

With the latest advances in information technology, cutting-edge load balancing

solutions rely on artificial intelligence. [229] surveys ML-based load balancing schemes.

Although some works are based on SL (e.g., MLR [230]), most MLB schemes rely on

RL. Initially, RL was used to enhance the ability of classical controllers to adapt to

changing environments. For instance, [231] improves the solution proposed in [86]

for femtocell scenarios by using a Q-learning agent that customizes IF-THEN rules

of the FLC driven by information from trial-and-error interactions with the network.

In [232], this fuzzy Q-learning approach is tested in macrocellular scenarios, revealing

the potential of readjusting FLC rules with constant exploration and exploitation to

capture changes in network conditions. As an alternative, RL can be used to drive the

control process. For instance, in [233], a Q-learning agent takes decisions per adjacency

to equalize cell load from information about PRB utilization and cell-edge users.

In multi-tier networks, tra�c steering becomes more complex due to the asymme-

tric signal and interference levels between cells of di↵erent layers (e.g., cells of di↵erent

carriers, macro cells vs. small cells...) [234]. The earliest proposals dealt with user

mobility in multi-band (or multi-carrier) cellular networks, consisting of co-located

cells using di↵erent frequency bands [235]. Later schemes deal with user mobility in

heterogeneous cellular networks, comprising overlapping cells of di↵erent sizes or tech-

nologies. In multi-tier networks, a common approach is to address inter-frequency load

balancing in the cell (re)selection process. In [28], a heuristic algorithm that assigns

cell-specific o↵sets to low-power nodes in a heterogeneous LTE network is proposed, so

that more users can be associated with them during cell reselection (a.k.a. cell range

expansion). In [236], an association scheme that jointly maximizes DL system capacity

and minimizes mobile station UL transmit power is presented. In [29], the parame-

ters in di↵erent cell (re)selection strategies are optimized with statistical information

of radio propagation to achieve a target tra�c distribution in a multi-carrier LTE

network. Alternatively, other authors tackle tra�c steering by adjusting the value of

inter-frequency HO parameters. For instance, in [237], the optimal configuration of

inter-RAT HOMs in a multi-RAT multi-layer wireless network is derived through a

sensitivity analysis. In [31], a self-tuning algorithm based on a FLC adapted with RL

is proposed to adjust inter-RAT HOMs to reduce call dropping ratio in heterogeneous

LTE networks. In [238], cell-specific o↵sets are adjusted by taking into account target

cells and their surroundings, reducing the number of unsatisfied users and HOs.

All the above tra�c steering algorithms are driven by simple performance indica-
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tors obtained from the aggregation of all connections in a cell. In legacy networks,

where voice calls were the predominant service, these approaches achieved the best

user performance. However,field trial results in [87] point out that balancing cell load

in LTE networks and beyond supporting services of very di↵erent requirements does

not guarantee the best overall user QoE. As an alternative, more recent works tackle

MLB from a QoE perspective. In [33], the QoE of neighbor cells in a single-layer

macrocellular scenario is balanced by tuning service-specific HOMs with a FLC. Other

QoE-based works rely on optimization instead of using heuristic control rules. For

instance, in [34], the impact of tuning HOM on system QoE is estimated with an ana-

lytical model adjusted with network data, and optimality is ensured with a gradient

ascent scheme. In [239], an algorithm based on dynamic particle swarm optimiza-

tion is centrally applied, which optimizes the overall QoE and reduces the number of

users with poor QoE. QoE aspects have also been considered in RL-based MLB solu-

tions as part of state [90] and/or reward [240] [241]. Closer to this work, in [242], a

throughput-based tra�c steering algorithm for heterogeneous LTE-Advanced networks

is presented. Tra�c steering decisions are evaluated by predicting whether forcing the

HO of users may increase the overall system throughput. For this purpose, the maxi-

mum radio link throughput that each user could potentially achieve on each neighbor

cell is estimated by the Shannon formula with a round-robin packet scheduler. The

algorithm improves the overall user throughput, revealing the potential of evaluating

HO impact on user performance for MLB. However, in current networks o↵ering mul-

tiple services, end-user throughput strongly depends on the tra�c mix and the packet

scheduling algorithm. Thus, changing the scheduler or the demanded services might

lead to inaccurate throughput estimations. Moreover, an increase in user through-

put does not necessarily lead to a significant QoE improvement due to the non-linear

mapping between QoS and QoE (e.g., logarithmic [243] or exponential [244]).

This chapter proposes a data-driven MLB algorithm for multi-carrier LTE networks

to address these shortcomings. The algorithm aims to improve the overall system QoE.

For this purpose, tra�c steering is carried out by tuning RSRQ-driven HOMs in a

classical inter-frequency HO scheme. The tuning process is driven by a novel indicator

derived from individual connection traces that estimates the impact of HOs on end-user

QoE. The algorithm is validated in a dynamic system-level simulator implementing a

real multi-carrier scenario. The main contributions of this proposal are: a) a novel

indicator derived from individual connection traces, showing the impact of HOs on

end-user QoE, and b) a new self-tuning algorithm for steering users among carriers to
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improve the overall system QoE.

Additionally to the need for service-oriented tra�c steering, in NGNs, NS makes

network management more complex, requiring self-optimization solutions ensuring SLA

compliance in slices with di↵erent radio capacity and performance targets [245]. Few

slice-aware self-optimization solutions have been proposed in the literature due to the

absence of live networks with NS. Close to this work, a slice-aware mobility robustness

optimization algorithm is presented in [246], which tunes slice-specific HOMs every

15 minutes with an actor-critic agent based on twin delayed deep deterministic policy

gradient. However, to the author knowledge, the task of performing slice-aware MLB

has not been covered yet.

To address the above gap, this chapter also proposes a slice-aware MLB algorithm

aiming to improve SLA compliance in NS scenarios. For this purpose, tra�c steering is

carried out by tuning RSRP-driven intra-frequency HOMs in a slice-aware HO scheme.

The tuning process is driven by a novel indicator derived from connection traces re-

flecting the imbalance of SLA compliance per slice between neighbor cells. To deal

with the high dynamism of NS scenarios, the algorithm works on a time resolution

finer than the legacy 15-min ROP. The main contributions of this second part are:

a) Proposing the first slice-aware MLB scheme, driven by a novel SLA-based indi-

cator derived from connection traces.

b) Comparing its performance with other slice-aware and slice-unaware MLB solu-

tions in a sliced RAN o↵ering eMBB and uRLLC services.

c) Analyzing the impact of key settings in the self-tuning process, such as time

resolution or parallelization, on system performance.

Unlike most related contributions, the two algorithms proposed here are validated in

a dynamic system-level simulator emulating the activity of realistic network scenarios

taken from live networks, increasing the significance of results.

6.2 QoE-driven tra�c steering in multi-tier LTE

networks

This section deals with the problem of performing inter-frequency tra�c steering with

QoE criteria in LTE networks. For this purpose, section 6.2.1 formulates the problem
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of optimizing the QoE in a multi-carrier LTE network by improving inter-frequency

HO performance. Then, section 6.2.2 describes the proposed self-tuning algorithm,

which is assessed via simulation in section 6.2.3. Finally, section 6.2.4 summarizes the

main conclusions.

6.2.1 Problem formulation

As explained in section 2.2, UE mobility in LTE is handled by an event-based hard

HO procedure often driven by RSRP and/or RSRQ measurements [247]. RSRP is

defined as the linear average of the received power in the resource elements carrying

cell-specific reference signals within the measurement frequency bandwidth. RSRQ is

defined as the ratio

RSRQ =
NPRB ·RSRP

RSSI
, (6.1)

where NPRB is the number of PRBs over the carrier bandwidth and RSSI is the

E-UTRA carrier Received Signal Strength Indicator, providing information about total

received wideband power, including all interference and thermal noise. Hence, RSRP is

equivalent to signal strength, while RSRQ provides information about received signal

quality and cell load. The type of measurement (i.e., RSRP or RSRQ) used to evaluate

equations for event triggering is up to the operator.

In multi-carrier networks, it is essential to set a suitable HO scheme (i.e., triggering

events, measurement type and HO parameters) to ensure e�cient bandwidth use and

guarantee end-user satisfaction. It is common practice for operators to configure both

intra-frequency and inter-frequency HOs based on RSRP measurements [248]. Fig. 6.1

shows the typical HO scheme (hereafter referred to as Signal-Based HO scheme, SBHO)

for handling mobility in a two-tier network. The bottom layer, comprising large cells

(cells 1 and 2) working at a low carrier frequency, represents the coverage layer (Lcov).

The top layer, consisting of small cells (cells 3 and 4) with large bandwidth and a higher

carrier frequency, works as a capacity layer (Lcap). In both layers, intra-frequency HOs

are triggered by event A3 introduced in (2.4) driven by RSRP (a.k.a. power-budget

HOs), i.e.,

RSRPu(j) � RSRPu(i) +HOMintra(i, j) , (6.2)
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Figure 6.1: Typical handover scheme in a two-tier network.

where RSRPu(i) and RSRPu(j) are pilot signal levels received by user u from the

serving cell i and neighbor cell j, respectively, and HOMintra(i, j) is the intra-frequency

HOM, defined on a per-adjacency basis. In contrast, inter-frequency HOs are triggered

by RSRP-driven event A5, i.e.,

RSRPu(i)  thd1(i) , (6.3)

RSRPu(j) � thd2(j) , (6.4)

where thd1(i) and thd2(j) are absolute signal level thresholds, and i and j are inter-

frequency neighbor cells (e.g., cells 1 and 3 in Fig. 6.1).

Since SBHO scheme is based on RSRP, it ensures that UEs are always connected

to a cell with adequate received power. However, RSRP measurements do not re-

flect other factors a↵ecting the radio link performance, such as noise, interference or

cell congestion. As a consequence, network performance can be severely degraded if

the coverage layer becomes congested due to its better propagation conditions. This

problem can be solved by using RSRQ to trigger inter-frequency HOs.

To show the link between cell load and RSRQ, Fig. 6.2 represents an example of

the evolution of RSRQ received by a LTE user from the serving cell as cell load (mea-

sured by the PRB utilization ratio, PRButil) changes in a simulation tool. Two RSRQ

values are shown: instantaneous RSRQ, RSRQinst, and RSRQ averaged over a cer-

tain time window, RSRQavg, the latter reported in measurement reports [84]. It is

observed that the value of RSRQinst strongly depends on cell load, i.e., the highest

PRButil, the lowest RSRQinst. Likewise, the left side of the figure shows that, even



CHAPTER 6. TRAFFIC STEERING IN CELLULAR NETWORKS 131

0 50 100 150 200 250
0

50

100

0 50 100 150 200 250
-10

-8

-6

-4

Figure 6.2: Impact of cell load on RSRQ.

when cell load is constant, RSRQinst varies due to desired signal strength and in-

terference fluctuations. This rapid variation can turn into instabilities when evalua-

ting HO triggering conditions. The averaging operation in RSRQavg smoothes out

such fluctuations. Thus, RSRQavg may be an adequate measurement for triggering

inter-frequency HOs in multi-carrier LTE networks, as tra�c will be o✏oaded from

coverage layers when capacity layers become underutilized. Some studies [249] [250]

state that RSRQ-driven inter-frequency HOs lead to better performance in terms of

packet delay, data throughput, number of HOs and UE power consumption. For this

reason, RSRQ-driven inter-frequency HOs has been used as a passive tra�c steering

solution in multi-carrier scenarios [242]. Nonetheless, proper HOM settings must still

be configured to ensure the best user experience. This is done by the proposed QoE-

based MLB algorithm.

6.2.2 Tra�c steering strategy

In this section, a novel strategy for tra�c steering in multi-carrier LTE networks is

presented. The aim is to improve the overall system QoE by redistributing users

between carriers. For this purpose, a two-stage optimization process is carried out.

First, a mobility scheme combining RSRQ and RSRP measurements to trigger inter-

frequency HOs is activated. Then, inter-frequency HOMs are tuned per adjacency with

a new MLB algorithm.
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Figure 6.3: Quality-based handover scheme for a two-tier network.

Stage 1: activation of RSRQ-driven inter-frequency HOs

First, the HO scheme illustrated in Fig. 6.3 is enabled, hereafter referred to as Quality-

Based HO scheme (QBHO). Unlike SBHO scheme presented in Fig. 6.1, QBHO relies on

RSRQ-driven HOs triggered by event A3 to handle mobility from coverage to capacity

layer. Thus, a HO in this direction is triggered for user u when

RSRQu(j) � RSRQu(i) +HOMinter(i, j) , (6.5)

where RSRQu(i) and RSRQu(j) are the RSRQ values received by user u from the

serving and neighbor cells, respectively, andHOMinter(i, j) is the inter-frequency HOM.

A default value of HOMinter(i, j)=3 dB is set for all adjacencies (i, j)|{i 2 Lcov, j 2

Lcap} [251]. Recall that RSRQ value depends not only on the received signal strength

but also on DL interference and cell load. Consequently, even if signal strength received

from Lcap is lower than that received from Lcov, some users will be o✏oaded from Lcov

to Lcap when Lcap is underutilized. Moreover, any user experimenting bad coverage

at Lcap will be reallocated to Lcov thanks to the coverage-based HO mechanism set

for HOs from Lcap to Lcov. Hence, QBHO scheme guarantees service continuity while

retaining a good signal quality.

Stage 2: QoE-driven optimization of inter-frequency HOMs

Once QBHO scheme is activated, a novel MLB algorithm referred to as Optimized

Experience (OE) is executed, which is the main contribution. The algorithm aims to

improve the overall system QoE by finding the best share of users among cells of di↵e-
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rent carriers. This goal is achieved by tuning RSRQ-driven inter-frequency HOMs on

an adjacency basis. Unlike classical tra�c steering algorithms, where parameter tuning

is driven by cell-level performance counters (e.g., PRButil), the proposed algorithm re-

lies on a new indicator that estimates the impact of HOs on end-user QoE. For clarity,

the rationale of the algorithm is first explained, the indicator used to drive the tuning

process is then defined and the controller is described later.

Rationale of the algorithm In LTE, an inter-frequency HO changes: a) the radio

link conditions of the handed-over user and b) the number of simultaneous users in the

source and target cells. These changes have an impact on received signal level of the

handed-over user and cell loads, which may ultimately a↵ect the QoE of every user in

both cells.

From a QoE perspective, the optimum HO point is that maximizing the overall

QoE of users in both source and target cells. Steering a user to the new cell too early

might negatively a↵ect the QoE of the handed-over user (e.g., due to low signal in the

target cell) and that of users in the target cell (e.g., due to an earlier increase of cell

load). In this early case, the overall QoE in the adjacency is expected to be degraded

after the HO (i.e., the overall QoE is worse when the handed-over user is in the new

cell). Conversely, steering a user to the new cell too late might negatively a↵ect the

QoE of the handed-over user (e.g., due to low signal in the source cell) and users in the

source cell (e.g., due to a later decrease of cell load). In this case, the overall QoE in

the adjacency is expected to improve after the HO (i.e., the overall QoE is worse when

the handed-over user is in the old cell). In the optimal situation, the overall QoE in

the adjacency should be the same just before and after the HO.

From the previous observation, it can be inferred that changes in the overall QoE

measured after a HO event reflect the impact of changing the HO point. Since the HO

point is displaced by tuning the HOM, such QoE di↵erences before and after the HO

can be used to derive the sign and approximate the magnitude of the gradient of the

objective function (i.e., the overall system QoE, QoET ) with respect to the decision

variables (i.e., HOM(i, j)), @QoET

@HOM(i,j) . This information can then be used to implement

a gradient ascent method to optimize the overall system QoE. To that end, a self-tuning

algorithm is proposed to adjust HOM(i, j) per adjacency so that the overall QoE in

the adjacency is the same before and after HOs events on average. For this purpose, the

QoE of individual connections around HO events must be estimated from connection

traces.
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Description of the driver a user u performing a HO k between two neighbor cells

experiences a change of QoE defined as

�QoE(k)
u = QoE(k)

afterHO �QoE(k)
beforeHO , (6.6)

where QoE(k)
beforeHO and QoE(k)

afterHO are the QoE experienced by the user just before

and just after the HO, respectively, measured in MOS scale, i.e., raging from 1 (bad)

to 5 (excellent). For a user handed over from cell i to cell j, QoEbeforeHO is measured

in cell i and QoEafterHO is measured in cell j. A positive value of �QoE(k)
u implies

that user satisfaction improves after HO.

Both QoE(k)
beforeHO and QoE(k)

afterHO can be computed from user performance infor-

mation in connection traces by using utility functions mapping objective QoS metrics

(e.g., throughput) to Mean Opinion Score (MOS) values, ranging to 1 from 5. Exam-

ples of these utility functions are provided in appendix A. For the sake of robustness,

the time window used to measure the performance indicators in these equations must

be long enough to provide representative information of the current user QoE in the

serving cell, but short enough to isolate the impact of the HO from other events when

computing QoE(k)
u . In this work, a 500-ms window is established. This value is long

enough to reduce the impact of the throughput ramp-up e↵ect due to TCP slow-

start [104] and outer loop link adaptation convergence [105] for throughput-sensitive

services (e.g., web browsing or FTP).

In addition, any HO modifies the number of simultaneous users in both source and

target cells (i.e., source cell loses a user, while target cell gains a user). As a result,

the HO will also a↵ect other users in such cells. Thus, the change in the overall QoE

in the adjacency due to a HO k can be calculated as

�QoE(k)
T =

X

u2{i,j}

�QoE(k)
u , (6.7)

where u 2 {i, j} represents all users served by cells i and j when the HO is executed

and �QoE(k)
u is the change in QoE of user u, defined in (6.6). Note that, for the user

performing the HO, QoEbeforeHO and QoEafterHO in (6.6) are calculated in di↵erent

cells, and the performance di↵erence is due to the change of serving cell. In contrast,

for the rest of users, both terms are calculated in the same cell (as their serving cell

does not change), and the performance di↵erence comes from the cell load change.
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The indicator used as a driver to tune inter-frequency HOMs on an adjacency basis

is the average QoE change after a HO in the adjacency, defined as

�QoET (i, j) =
1

NHO(i, j)

NHO(i,j)X

k=1

�QoE(k)
T , (6.8)

where NHO(i, j) is the number of HOs performed from cell i to cell j during a certain

ROP.

A negative value of �QoET (i, j) indicates that, on average, the overall user satis-

faction in cells i and j decreases when HOs are performed from i to j, and thus the

number of these HOs must be reduced (i.e., HOMs must be more restrictive). In con-

trast, a positive value of �QoET (i, j) indicates that user satisfaction increases when

HOs are performed from i to j, and thus the number of these HOs must be increased

(i.e., HOMs must be less restrictive). The optimal HO point is given by the condition

�QoET (i, j) = 0. At that point, on average, QoE does not experience any degradation

because of HOs.

A proof of concept (not shown here for brevity) has been carried out in a pilot LTE

network that confirms the feasibility of building �QoET (i, j) indicator by processing

data in individual radio connection traces [252].

Control algorithm Algorithm 1 outlines the operation of the self-tuning algorithm.

It is designed as a set of proportional controllers (1 per adjacency) that iteratively

modify inter-frequency HOMs, HOMinter(i, j), based on the value of above-described

indicator �QoET (i, j). In each iteration, the value of HOMinter(i, j) is tuned incre-

mentally on a per-adjacency basis. Specifically, the increment/decrement in the HOMs,

�HOMinter(i, j), is computed from the value of �QoET (i, j) as

�HOMinter(i, j) =

8
>>>><

>>>>:

1 �QoET (i, j) < �1 ,

0 �1  �QoET (i, j)  �2 ,

�1 �QoET (i, j) > �2 ,

(6.9)

where �1 and �2 are thresholds for triggering HOM changes so as to eliminate random

actions due to small fluctuations of drivers. These parameters must be set to provide an

adequate trade-o↵ between optimality and complexity (in this work, �2 = ��1 = 0.05).

Larger absolute values reduce the number of iterations required to reach equilibrium
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Algorithm 1 QoE-driven self-tuning algorithm.

repeat

Collect connection traces during ROP

for all adjacencies (i, j)|{i 2 Lcov, j 2 Lcap} do

Compute �QoET (i, j)

if �QoET (i, j) > �1 then

�HOMinter(i, j) = 1

else if �QoET (i, j) < �2 then

�HOMinter(i, j) = �1

else

�HOMinter(i, j) = 0

end if

Update HOMinter(i, j) value

end for

until the predetermined number of loops is reached

at the expense of deteriorating network performance slightly, since the optimization

process stops before �QoET (i, j) = 0.

The algorithm is executed a predetermined number of times (referred as to optimi-

zation loops). In every loop, connection traces are collected during a predetermined

ROP (e.g., 15 min). Then, the algorithm computes the value of �QoET (i, j) in each

inter-frequency adjacency (i, j) where HOs are RSRQ-driven. Finally, the new value

of HOMinter(i, j) is computed as

HOM (n+1)

inter (i, j) = HOM (n)
inter(i, j) +�HOM (n)

inter(i, j) , (6.10)

where superscripts (n) and (n+ 1) denote iteration index.

Note that the chosen 1-dB step in (6.9) provides an adequate trade-o↵ between fast

convergence and stability. Lower values of �HOMinter(i, j) make optimization too

slow, while too large values lead to abrupt changes in HOMs, both degrading network

performance. Moreover, to guarantee an adequate HO performance, HOMinter(i, j)

values are limited to the range [�7, 7] dB [73]. The lower bound avoids too early HOs

and ping-pong e↵ect, while the upper bound avoids too late HOs, which can degrade

user experience.

The proposed self-tuning algorithm performs small changes in the value of HOMs
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iteratively (+/- 1 dB) until equilibrium is reached (i.e., �QoET (i, j) = 0). This equi-

librium condition leads to a local maximum of the problem. However, due to the

heuristic nature of the controller, convergence is not guaranteed. In practice, feedback

loop gain is small enough to avoid oscillations in the system. In addition, thresholds

�1 and �2 in (6.9) ensure that the controller stops when the value of �QoET (i, j) is

small in every adjacency.

Note that every change performed by the algorithm only a↵ects inter-frequency

HOs from the coverage to the capacity layer. All other mobility mechanisms keep the

default settings during the optimization process (e.g., HOM (n)
intra(i, j) = 3 dB 8 i, j, n).

Moreover, these changes only a↵ect HO triggering condition. Neither TTT nor HO exe-

cution procedures are modified at any time. As a consequence, the proposed self-tuning

algorithm does not increase latency in the HO process, but just changes the condition

that must be fulfilled to initiate the HO.

6.2.3 Performance assessment

This section presents the validation of the proposed tra�c steering strategy through

simulation. For clarity, assessment methodology is first described, results are presented

later and computational complexity is finally discussed.

a) Assessment methodology

Validation is performed with the simulator described in A, which emulates the activity

of a live LTE-Advanced cellular network. Among the scenarios implemented in the tool,

network B (i.e., multi-carrier network) is selected, comprising 48 cells distributed in 8

sites located in a dense urban area. Cells 1–24 work at 700 MHz (hereafter, L700) and

cells 24 to 48 work at 2100 MHz (hereafter, L2100). L700 acts as a coverage layer, o↵ering

better propagation conditions but reduced cell bandwidth (1.4 MHz). In contrast,

L2100 is a capacity layer with worse propagation conditions but a higher capacity (cell

bandwidth of 5 MHz). Four di↵erent services are considered, namely VoIP, progressive

video streaming (VIDEO), file download via FTP (FTP) and web browsing via HTTP

(HTTP). User QoE is measured with the MOS models in (A.1)–(A.8), considering that

indoor users have higher expectations than outdoor users. Network slicing feature is

disabled (i.e., all users share radio resources). For further details on the simulation

tool and service models, the reader is referred to appendix A.
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Four di↵erent mobility management methods are tested. A first method, referred

to as Operator Solution (OS), considers mobility procedures configured in the live

network, namely: a) idle users select carrier based on a token algorithm, b) cell

(re)selection is then performed to select the best cell according to RSRP measure-

ments), c) connected users are handed over according to the SBHO scheme shown in

Fig. 6.1, and d) no MLB algorithm is enabled. Initial HO set-up is HOM(i, j)=3 dB

and TTT (i, j)=256 ms for event A3 and thd1(i)=-115 dBm and thd2(j)=-108 dBm

for event A5 8 i, j. This method is considered as a baseline. The other three methods

consist of combinations of HO scheme and self-tuning algorithm. A first combina-

tion, denoted as SBHO+LB (Load Balancing), tackles tra�c steering by executing a

classical load balancing algorithm [30] to adjust HOMinter(i, j) values in the SBHO

scheme (i.e., RSRP-driven inter-frequency HOs). A second combination, denoted as

QBHO+LB, executes the same load balancing algorithm to adjust HOMinter(i, j) in

the quality-based mobility scheme (i.e., RSRQ-driven inter-frequency HOs) presented in

section 6.2.2. Finally, the third combination, denoted as QBHO+OE, is the two-stage

strategy proposed in this work, modifying HOMinter(i, j) values in QBHO scheme with

OE algorithm. In all combinations, 10 optimization loops are simulated. Each loop

consists of 15 min of network activity, which is the minimum ROP to collect traces in

current LTE networks. It is checked a posteriori that 10 loops are enough to ensure that

control system reaches steady state with the di↵erent self-tuning algorithms. For a fair

comparison, every optimization loop is carried out under identical conditions by pre-

generating all random variables. Thus, performance di↵erences between loops are only

due to the di↵erent mobility settings and not to the stochastic nature of simulation.

Two use cases are considered to check the impact of user context on the proposed

strategy, referred to as cases A and B. In case A, 70% of users are indoors and 30%

are outdoors. In case B, all users are outdoors. The four analyzed methods (OS,

SBHO+LB, QBHO+LB and QBHO+OE) are tested in both scenarios.

The main FoM to assess method performance is the global QoE, computed as the

average user QoE in the scenario,

QoEglobal =
1

Nu

X

u

QoE(u) , (6.11)

where Nu is the number of users in the scenario and QoE(u) is the session QoE expe-

rienced by user u, computed with the QoE models in (A.1)–(A.8).

Two secondary FoMs are considered for a more detailed assessment. The first one is
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the average cell load in terms of PRB utilization ratio, PRButil, measured globally and

on a per-layer basis. The second one is the average HOM deviation from the default

settings caused by the corresponding MLB algorithm (i.e., LB or OE), computed as

�HOM (n)
inter =

P
(i,j)

�HOM (n)
inter(i, j)

Na
=

P
(i,j)

⇣
HOM (n)

inter(i, j)�HOM (0)

inter(i, j)
⌘

Na
,
(6.12)

where Na is the total number of adjacencies in the network where parameters tuning

is performed, and HOM (0)

inter(i, j) is the default inter-frequency HOM value at the

beginning of the optimization process (i.e., iteration 0).

b) Results

Table 6.1 shows some relevant performance metrics obtained with the initial HO se-

ttings (OS) in cases A and B. Recall that simulation parameters are set so that network

performance resembles that of the live network. With the token-based cell (re)selection

mechanism used by the operator, approximately 60% of users are served by cells at L2100

and 40% of users are served by cells at L700, even if L2100 has larger bandwidth than

L700. Moreover, tra�c demand is dominated by VIDEO users, followed by FTP users.

In both cases, the average cell load in L2100 is less than that of L700 (about 30% in case

A and 40% in case B). As a consequence of the high load in L700, many users in this

carrier experience poor QoE (on average, 1.91 MOS points in case A, and 2.49 MOS

points in case B). These results point out the need for steering users from L700 to L2100.

Case A (indoor/outdoor users) Fig. 6.4 shows the evolution of QoEglobal across

iterations in the tuning process. In all methods, loop 0 represents OS performance.

In SBHO+LB, loops 1 to 9 show the behavior of the legacy approach that executes a

classical LB algorithm in a SBHO scheme. In QBHO+LB curve, loop 1 shows the im-

pact of enabling RSRQ-driven inter-frequency HOs and loops 2 to 9 show the impact of

adjusting inter-frequency HOMs by LB in a QBHO scheme. Similarly, in QBHO+OE,

loop 1 shows the e↵ect of enabling RSRQ-driven inter-frequency HOs and loops 2 to

9 show the impact of adjusting inter-frequency HOMs based on the novel trace-based

indicator in OE. Large markers indicate the final QoEglobal achieved with each method.

It is observed that SBHO+LB does not have a significant impact on QoE. In contrast,

both QBHO+LB and QBHO+OE improve QoEglobal compared to OS (3.75 and 3.91
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Table 6.1: Initial performance of simulated two-tier LTE network.

FoM L700 L2100 L700+L2100

Share of connections [%] 40.27 59.73 100

Data volume ratio VoIP [%] 1.5 · 10�5 6 · 10�5 2.4 · 10�3

Data volume ratio VIDEO [%] 26.51 57.27 53.86

Data volume ratio FTP [%] 50.98 32.11 32.14

Data volume ratio WEB [%] 22.50 10.62 13.99

PRButil case A [%] 87.71 52.70 59.48

QoEglobal case A 1.91 4.35 3.32

PRButil case B [%] 88.1 46.9 54.87

QoEglobal case B 2.49 4.38 3.57
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Figure 6.4: Evolution of the overall QoE in the scenario.

vs. 3.32 MOS points, respectively). The improvement obtained by QBHO+LB is es-

sentially due to the activation of RSRQ-driven inter-frequency HOs, since no significant

increase on QoEglobal is shown from loop 1 onwards (i.e., again, LB does not improve

QoEglobal). This result is consistent with the fact that LB does not aim to improve

QoE, but to equalize cell load between layers. In contrast, QBHO+OE obtains an

additional gain thanks to the OE algorithm, resulting in the highest QoEglobal.

It should be pointed out that, even if OE aims to optimize user experience, a de-

crease of 0.03 MOS points in QoEglobal is observed from loop 7 to loop 8 in QBHO+OE,

due to the iterative nature of the controller. As in most closed-loop control systems,
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Table 6.2: Performance comparison of MLB strategies in a two-tier LTE network –
case A (indoor/outdoor).

FoM OS SBHO+LB QBHO+LB QBHO+OE

QoEglobal 3.32 3.32 3.75 3.91

Global PRButil [%] 59.48 59.48 79.36 72.22

PRButil L700 [%] 87.71 87.71 79.73 26.29

PRButil L2100 [%] 52.70 52.70 77.79 83.25

�HOM (9)

inter [dB] – -5.97 -0.35 -3.38

small oscillations in system performance are observed when the controller reaches the

steady state. Note that the decrease in QoEglobal from loop 7 to 8 is negligible (0.03

MOS points) and is compensated in the following optimization loop.

Fig. 6.5.a)–c) show the CDF of user QoE, QoE(u), for VIDEO, FTP and WEB

services with the di↵erent methods. VoIP is omitted since its tra�c is negligible.

Likewise, OS is not included, as its performance is identical to SBHO+LB. It is observed

that, for all services, QBHO+LB and QBHO+OE improve QoE distribution compared

to SBHO+LB, with QBHO+OE achieving the best QoE figures. In HTTP and VIDEO

services, such an improvement is achieved at the expense of a slight decrease in QoE(u)

for the best users. Note that many VIDEO users experience a QoE(u) value of 4.02

and 3.92, corresponding to the upper limiting values in the outdoor and indoor QoE

models when the initial bu↵ering time is 3 s (fixed value [146]).

For a more detailed analysis, Table 6.2 breaks down several statistics for the tested

methods at the end of the optimization process (loop 9 in Fig. 6.4). OS is also in-

cluded for comparison purposes. Regarding the main FoM, QoEglobal, both QBHO+LB

and QBHO+OE outperform OS, with QBHO+OE achieving the largest improvement.

(3.91 against 3.32, i.e., a 17.8% improvement compared to OS). PRButil values show

that QBHO+OE obtains such a gain by o✏oading tra�c from L700 to L2100, since

PRButil increases in L2100 (from 52.70% to 83.25%) and decreases in L700 (from 87.71%

to 26.29%). This tra�c steering is also confirmed by the negative value of �HOM (9)

inter

(i.e., �3.38 dB). As a side e↵ect, QBHO+OE increases the global PRButil from 59.48%

to 72.22% (i.e., a 12.74% increase in absolute terms).

Case B (outdoor users) Table 6.3 summarizes the results when all users are out-

doors. Most indicators show trends similar to those in case A. Again, in terms of

QoEglobal, both QBHO+LB and QBHO+OE outperform OS and SBHO+LB, with

QBHO+OE achieving the largest improvement (4.25 vs. 3.57, i.e., a 19 % improve-
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(b) FTP.
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(c) WEB.

Figure 6.5: Cumulative distribution function of user QoE for di↵erent services.
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Table 6.3: Performance comparison of MLB strategies in a two-tier LTE network –
case B (outdoor).

FoM OS SBHO+LB QBHO+LB QBHO+OE

QoEglobal 3.57 3.57 4.17 4.25

Global PRButil [%] 54.87 54.87 70.99 68.11

PRButil L700 [%] 88.10 88.10 72.59 34.01

PRButil L2100 [%] 46.90 46.90 70.61 76.30

�HOM (9)

inter [dB] – -7.55 0.42 -3.09

ment compared to OS). In this case, di↵erences between QBHO+OE and QBHO+LB

are lower, since the value of QoEglobal after enabling RSRQ-driven HOs in step 1 is

already high (4.16 MOS points). Also, note that, from the �HOM (9)

inter figures, it can

be deduced that QBHO+LB and QBHO+OE steer tra�c in opposite directions, lea-

ding to di↵erent tra�c shares between layers. Specifically, �HOM (9)

inter is negative in

QBHO+OE (i.e., tra�c is o✏oaded from L700 to L2100), whereas it is positive for

QBHO+LB (i.e., tra�c is o✏oaded from L2100 to L700).

It is worth noting that, in both cases A and B, even if QBHO+LB achieves a

more evenly loaded scenario between the two tiers, it is QBHO+OE that reaches the

best QoE. This is clear evidence that an evenly loaded network (which is the aim of

classical MLB algorithms) does not lead to the best overall QoE, provided that system

bandwidth is not the same in all cells [253]. Finally, it is also remarkable that no

improvement in QoEglobal is achieved with SBHO+LB, even if HO margins are shifted

nearly �6 dB in case A and �7.5 dB in case B. This is due to the di↵erent propagation

conditions in the two carriers that make it extremely di�cult to trigger RSRP-driven

event A3.

c) Computational complexity

The proposed MLB method is designed as a rule-based controller and therefore has

low computational complexity. The total execution time comprises the time required

to process connection traces, the computation of the indicator reflecting the average

impact of inter-frequency HOs on user QoE per adjacency, �QoET (i, j), and the com-

putation of the output of the controller. In practice, the total execution time in the

above-described scenario in a computer with an Intel Xenon processor with a clock

frequency of 2.4 GHz and 64 GB of RAM is 0.022 seconds per optimization loop (note

that trace processing is not needed in simulations). The dominant operation is the com-
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putation of �QoET (i, j), with 0.016 seconds per optimization loop. The time taken by

this operation grows linear with the number of users a↵ected by HO events. Thus, the

worst-case time complexity of the algorithm is O(NHO ⇥Nu), where NHO is the total

number of HOs and Nu is the average number of active users.

6.2.4 Conclusions

In this section, a novel strategy for tra�c steering in multi-tier LTE networks has been

proposed to improve the overall system QoE. For this purpose, RSRQ-driven inter-

frequency HOs are first enabled, and, later, a novel MLB algorithm that adjusts inter-

frequency HOMs on a per-adjacency basis driven by QoE measurements is executed. In

each adjacency, an independent controller increases (or decreases) the value of HOMs

based on an indicator showing the impact of HOs on overall user satisfaction. Such an

indicator is computed by processing data in connection traces.

Performance assessment has been carried out in a dynamic system-level simulator

implementing a realistic scenario. Results have shown that the proposed algorithm out-

performs classical load balancing techniques. Specifically, the overall QoE is improved

by up to 19% compared to a traditional load balancing algorithm executed over a le-

gacy RSRP-driven inter-frequency HO scheme. Such a performance gain is achieved by

o✏oading tra�c from coverage layers to capacity layers, so that users make the most

of the large bandwidth available at capacity layers.

6.3 SLA-driven tra�c steering in sliced radio

access networks

The above-presented QBHO+OE algorithm is suitable for HSDPA and LTE networks,

where the variety of services o↵ered requires QoE-driven self-optimization solutions

to guarantee customer satisfaction. In contrast, in NGNs with NS, performance tar-

gets per service are included in slice-specific SLAs, suggesting the design of SLA-driven

SON tools. This section addresses slice-aware tra�c steering in sliced RANs to improve

SLA compliance. For this purpose, section 6.3.1 formulates the problem of performing

slice-aware MLB. Then, section 6.3.2 presents a novel slice-aware tra�c steering al-

gorithm, assessed via simulation in section 6.3.3. Finally, section 6.3.4 summarizes the

main conclusions.
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6.3.1 Problem formulation

Consider a cellular network with NS where a set of Ns slices, denoted as S, operate

simultaneously. In the RAN, the network comprises Nc cells, denoted as C, working

at the same frequency band, so that every cell c 2 C may serve users from all active

slices s 2 S. As typical in live networks, intra-frequency mobility is handled through

power-budget HOs. Thus, the HO of a user u from serving cell i to a neighbor cell j is

triggered by the condition (6.2) replacing HOMinter(i, j) by HOMintra(i, j), i.e.,

RSRPu(j) � RSRPu(i) +HOMintra(i, j) . (6.13)

In this scenario, a legacy MLB algorithm would adjust HOM(i, j) to steer tra�c

from congested to underutilized cells so that cell load is balanced. With the above HO

scheme, parameter self-tuning can be performed on a per-adjacency basis. However,

note that a certain HO set-up in a given adjacency may not lead to the same per-

formance for all slices due to: a) the di↵erent tra�c characteristics (e.g., user spatial

distribution, mobility, performance requirements in SLA...) among slices, and b) the

capacity broker, which may underestimate/overestimate resources required by a par-

ticular slice in a particular cell (or area), but not for others. This fact suggests the

need for slice-aware MLB algorithms. For this purpose, a slice-aware HO scheme must

be set first. The triggering equation for slice-aware RSRP-based HO event A3 can be

expressed as

RSRPu(j) � RSRPu(i) +HOM(i, j, su) , (6.14)

where su is the slice to which user u belongs. With this new HO scheme, HOM tuning

can be performed per adjacency and slice.

The aim of slice-aware MLB algorithms must be guaranteeing SLA compliance (and

thus both tenant and end-user satisfaction) for all slices. However, as stated in [87],

an evenly loaded scenario does not ensure that all cells o↵er the same performance

(e.g., due to di↵erent radio link conditions). This behavior is expected to worsen in

sliced RANs. In these networks, equalizing global load of neighbor cells can have a

negligible (or even negative) impact on SLA compliance for slices o↵ering services with

low rate, whose performance is jeopardized by eMBB slices with a larger radio resource

allocation. Moreover, even for eMBB slices, each slice may access to a di↵erent amount
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of PRBs in each cell, and thus the di↵erence in spare PRBs per slice among neighbor

cells may be di↵erent from the global load imbalance. As a consequence, slice-aware

MLB strategies must be SLA-driven (and not load-driven, as legacy solutions).

When designing slice-aware SLA-driven MLB algorithms, it should be taken into ac-

count that optimizing network performance globally sometimes compromises cell-edge

users (i.e., those with the highest risk of violating SLA). Such an issue is circum-

vented by approaches that equalize performance among cells, as that presented in [33].

Likewise, a high dynamism is expected in sliced 5G networks due to slice activation, de-

activation and resource reallocation [35]. As a consequence, slice-aware tra�c steering

must operate in a time resolution finer than legacy schemes, where HOMs are tuned

based on performance counters updated every 15 minutes at most. Due to such dy-

namism, indicators driving the MLB process must reflect slice performance in the last

few seconds, which can only be obtained by processing connection traces. All these

aspects are considered by the tra�c steering algorithm proposed here.

6.3.2 Tra�c steering strategy

This section, a novel slice-aware MLB algorithm is presented. The algorithm aims to

equalize the level of SLA compliance per slice across the scenario by steering tra�c

among cells working at the same frequency band. For this purpose, HOMintra(i, j, s) in

the slice-aware HO scheme presented in (6.14) is self-tuned on a per-adjacency-and-slice

basis. As a novelty, the driver indicator reflects the imbalance of SLA compliance per

slice in neighbor cells.

When enabling the slice-aware intra-frequency HO scheme in (6.14), an initial value

of HOMintra(i, j, s)=3 dB is set 8 i, j, s, as starting point for tra�c steering. To pre-

vent ine↵ective parameter changes, the MLB algorithm only operates on a subset of

adjacencies denoted as A, comprising a limited number of relevant adjacencies per

cell. Moreover, to avoid that changing several HOMs for a cell simultaneously leads to

excessive reduction/increase of cell area for a slice, HOM tuning is not performed simul-

taneously for all adjacencies in A. For clarity, the adjacency selection and clustering

strategy is first detailed and the self-tuning algorithm is presented later.
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Algorithm 2 Adjacency clustering algorithm.

Create A

Initialize empty G

k=1

repeat

Initialize empty group gk

for all adjacencies a = (i $ j) 2 A do

if any adjacency a0 2 gk contains cell i or j then

Add a to group gk

Remove a from A

end if

end for

Add group gk to G

k=k+1

until A is empty

Ng = k

Stage 1. Adjacency selection and clustering

The subset of adjacencies in the whole network where MLB will operate, A, is created

as follows. For every cell c in the scenario, a fixed number of relevant neighbors cells,

Nn, is selected. That set of Nn neighbors per cell c, denoted as N (c), includes: a) all

co-sited cells, and b) the most interfering cells in the Down Link (DL) from nearby

sites. Then, bidirectional adjacencies (c $ j) 8 j 2 N (c) are included in A. After

repeating this process for all cells in the scenario, the number of adjacencies in A is

Nc ⇥Nn. Then, duplicated adjacencies in A (if any) are removed.

Next, adjacencies in A are divided into a set of disjoint groups, G. Clustering is

performed with the heuristic scheme presented in Algorithm 2, inspired in [69]. Groups

are created sequentially. For each group gk, a random adjacency from A is first selected

as seed and removed from A. Then, another adjacency in A is randomly selected to

be added to group gk if it does not include any cell in the adjacency previously added

to group gk. More adjacencies are sequentially added to group gk until no adjacency

in A comprises disjoint cells with all adjacencies already in the group. Then, a new

group gk+1 is created. This process is repeated until A becomes empty.

The subsequent MLB iteratively tunes HOMs. In each iteration k, only HOMs

from adjacencies in group gk are modified. As a consequence, the number of groups in
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G, Ng, determines how often parameters change per adjacency. Since Ng grows with

Nn, to ensure fast and optimal convergence, Nn must have the lowest value allowing

to include all relevant adjacencies per cell in A. Nonetheless, Ng may vary in di↵erent

executions if the random seed changes. It is recommended to perform multiple runs of

the clustering algorithm with di↵erent seeds before optimization starts, and select the

solution providing the lowest Ng.

It should be pointed out that HOM tuning reshapes cell serving area, and thus DL

interference may change once the tuning process begins (e.g., due to cell load changes).

However, it is strongly recommended to perform the above adjacency clustering process

with a stable HOM set-up and redefine it only after a significant event altering radio

link performance in the network (e.g., deployment of a new cell).

Stage 2. SLA-driven HOM tuning

Once adjacency groups G have been created, the slice-aware self-tuning algorithm de-

tailed below is executed. For clarity, the indicator driving the tuning process is descri-

bed first and the control algorithm is presented later.

Description of the driver The average level of SLA compliance for slice s in the

DL of a given cell c during a certain period of time can be expressed as

SLA(c, s) =
1

Nu(c, s)

Nu(c,s)X

u=1

SLA(u, c) , (6.15)

where Nu(c, s) is the number of users from slice s with relevant activity in the DL of cell

c, i.e., those with data to be transmitted in at least 5% of transmission time intervals

during the considered time period, and SLA(u, c) is the level of SLA compliance for

user u belonging to slice s in cell c. SLA(u, c) is computed as

SLA(u, c) =
NKPI(su)X

p=1

wp(su)SLAp(u, c) , (6.16)

where NKPI(su) is the number of KPIs included in the SLA for slice su to which user

u belongs, wp(su) is a weight factor showing the relative importance of KPI p for the

performance of slice su, and SLAp(u, c) is the level of SLA compliance related to KPI

p for user u served by cell c. wp(su) ranges from 0 to 1, so that
PNKPI(s)

p=1
wp(s) = 1 8 s.
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Likewise, SLAp(u, c) is calculated as

SLAp(u, c) = min

✓
KPIp(u, c)

KPI tgtp (su)
, SLAmax

◆
, (6.17)

where KPIp(u, c) denotes performance of KPI p for user u in cell c, KPI tgtp (su) is the

performance target for KPI p in the SLA of slice su, and SLAmax is a maximum level

of SLA compliance to avoid that users exceeding the SLA conceal those with worse

performance in (6.15).

The indicator driving HOM tuning is the di↵erence of SLA compliance levels for

slice s in the two cells i and j of an adjacency, SLAdiff (i, j, s), defined as

SLAdiff (i, j, s) = SLA(j, s)� SLA(i, s) . (6.18)

A negative value of SLAdiff (i, j, s) indicates that, on average, the level of SLA

compliance for slice s is better in cell i than in cell j, whereas a positive value of

SLAdiff (i, j, s) indicates the opposite. The HO point for a balanced scenario is given by

the condition SLAdiff (i, j, s)=0. At that point, on average, the level of SLA compliance

for slice s is similar in both cells i and j.

Control algorithm Algorithm 3 outlines the operation of the self-tuning algorithm,

designed as a set of proportional controllers (one per adjacency and slice) that iterati-

vely modify HOMintra(i, j, s) based on the value of SLAdiff (i, j, s) indicator.

The algorithm is executed a predetermined number of optimization loops. Unlike in

section 6.2, a loop comprises Ng iterations. The inter-iteration time (hereafter referred

to as Tuning Interval, TI) must be short enough to reflect the current (and not past)

network state, but long enough to get reliable computations of SLA compliance for

services with bursty tra�c (e.g., in this work, TI=5 s). In each iteration k, the HOM

value for adjacencies in group gk is tuned incrementally on a per-adjacency-and-slice

basis. Specifically, the increment/decrement in HOM, �HOMintra(i, j, s), is computed

from the value of SLAdiff (i, j, s) as

�HOMintra(i, j, s) =

8
>>>><

>>>>:

2 SLAdiff (i, j, s) < ↵1 ,

0 ↵1  SLAdiff (i, j, s)  ↵2 ,

�2 SLAdiff (i, j, s) > ↵2 ,

(6.19)
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Algorithm 3 SLA-driven slice-aware self-tuning algorithm.

Create A and compute G with Algorithm 2

repeat

for all k 2 [1, Ng] do

Wait for TI and collect connection traces

for all slices s 2 S do

for all adjacencies a = (i $ j) 2 gk do

Compute SLAdiff (i, j, s)

if SLAdiff (i, j, s) < ↵1 then

�HOMintra(i, j, s)=2

else if SLAdiff (i, j, s) > ↵2 then

�HOMintra(i, j, s)=-2

else

�HOMintra(i, j, s)=0

end if

Update HOMintra(i, j, s) and HOMintra(j, i, s) values

end for

end for

end for

until the predetermined number of loops is reached

where ↵1 and ↵2 are analog to �1 and �2 in (6.9) (in this work, ↵2 = �↵1 = 0.05).

Then, the new value of HOMintra(i, j, s) is computed as

HOM (k+1)

intra (i, j, s) = HOM (k)
intra(i, j, s) +�HOM (k)

intra(i, j, s) . (6.20)

To guarantee adequate HO performance, HOMintra(i, j, s) values are limited to the

range [�6, 12] dB. Finally, to avoid ping-pong e↵ect, in all cases, a 6-dB hysteresis

area is maintained by jointly setting HOMs in both directions of an adjacency so

that HOMintra(j, i, s) +HOMintra(i, j, s)=6 dB.

Note that SLA(c, s) for empty cells (i.e., Nu(c, s)=0) must be set to a value higher

than SLAmax + max(|↵1|, |↵2|) to ensure that the MLB algorithm presented below

o✏oads tra�c to the empty cell. It is also remarkable that a larger step has been

chosen in 6.19 compared to 6.9 (2 dB vs. 1 dB) since user density decreases when

considering only tra�c from a slice, and hence a higher change in HOM is required in

slice-aware HO schemes to o✏oad tra�c from congested cells.
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6.3.3 Performance assessment

This section presents the validation of the proposed slice-aware MLB algorithm. In the

absence of commercial 5G networks with NS, method assessment is carried out with

the simulation tool described in appendix A. For clarity, the considered SLA definition

is introduced first, assessment methodology is detailed next, results are presented later

and computational complexity is finally discussed.

a) SLA definition

In the simulator, the contracted SLA is defined in terms of performance targets for the

expected tra�c in a given area. Two performance KPIs are considered, computed on

a session level. The first KPI is DL session throughput, TH, defined as

TH(u) =
VDL(u)

tsession(u)
, (6.21)

where VDL(u) is the total data volume transmitted to user u in the DL at PDCP layer,

and tsession(u) is session duration. The second KPI is latency-reliability commitment,

LR, defined as the ratio of packets transmitted in a session with an E2E latency below

a predefined threshold [254], i.e.,

LR(u) =
psucc(u)

p(u)
, (6.22)

where p(u) is the total number of packets in the transmission bu↵er during the session

of user u and psucc(u) is the number of those packets fulfilling target E2E latency for

slice s to which user u belongs1.

During experiments, the level of SLA compliance per user is computed in two

di↵erent ways: a) per session, as a FoM to assess algorithm performance, and b) per

session, cell and TI, to calculate SLAdiff (i, j, s) indicator driving the HOM tuning

process. In the latter case, with the above SLA definition, equation (6.16) can be

particularized as

SLA(u, c) = wTH(su)SLATH(u, c) + wLR(su)SLALR(u, c) . (6.23)

1In the simulator, it is assumed that: a) a packet is a block of data to be transmitted, and b) E2E
latency is the time from the packet arrives to transmission bu↵er until it is scheduled.
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Table 6.4: Simulation set-up for assessing MLB strategies in a NS scenario.

Slice Service Speed TH tgt(s) LRtgt(s)

1
FTP 3 km/h

1 Mbps 1 s for 90% of packets
LIVE VIDEO Static

2 HAPTIC Static 400 kbps 10 ms for 99.9% of packets

3 DRIVING 30 km/h 16 kbps 10 ms for 99.9% of packets

Note that SLATH(u, c) and SLALR(u, c) must reflect SLA compliance in terms of TH

and LR per user, cell and TI. In SLATH(u, c) calculation, TH(u, c) is computed as

TH(u, c) =
VDL(u, c, T I)

tTI(u, c)
, (6.24)

where VDL(u, c, T I) is the DL data volume transmitted to user u in cell c during the

corresponding TI, TI, and tTI(u, c) is the time period of TI where user u is served by

cell c. Similarly, when computing SLALR(u, c), LR(u, c) only considers packets that

arrive to the transmission bu↵er and are sent or dropped within the TI, i.e.,

LR(u, c) =
psucc(u, c, T I)

p(u, c, T I)
. (6.25)

For the above calculations, radio connection traces should be processed in a live envi-

ronment.

b) Assessment methodology

Validation is performed emulating the activity of network A (i.e., the largest scenario)

with a system bandwidth of 10 MHz. Table 6.4 summarizes service and NS set-up.

Three slices operate simultaneously in the network, which serve tra�c from four di-

↵erent services, namely file download via FTP (FTP), live video streaming (LIVE

VIDEO), haptic communications (HAPTIC) and autonomous driving (DRIVING). As

in live networks, user speed depends on service. Slice 1 serves FTP and LIVE VIDEO

users, with the highest TH requirement (TH tgt(1)=1 Mbps), but a relaxed target LR

(LRtgt(1)=1 s for 90% of packets). FTP users are pedestrians moving at 3 km/h,

whereas LIVE VIDEO users are static. Slice 2 serves HAPTIC tra�c, generated

from static users demanding a moderate TH (400 kbps) with stringent LR require-

ments (10 ms for 99.9% of packets). Finally, slice 3 serves DRIVING users moving at
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30 km/h demanding a low rate (16 kbps), but with the same stringent LR requirements

as HAPTIC users.

The proposed tra�c steering algorithm, referred to as SLA-driven MLB over Slice-

Aware HO scheme (SAHO+SLA) is compared with other three MLB strategies. The

first, referred to as Load Balancing over Legacy HO scheme (LHO+LB), is a classi-

cal MLB algorithm that tunes HOMs per adjacency on a legacy (i.e., slice-unaware)

HO scheme, whose aim is to balance PRB utilization across cells. The second, re-

ferred to as Load Balancing over Slice-Aware HO scheme (SAHO+LB), steers tra�c

on a per-adjacency-and-slice basis to balance PRB utilization of those PRBs assigned

to each slice between adjacent cells. To justify the need for adjacency clustering in

SAHO+SLA, a third strategy referred to as SLA-driven MLB with fast convergence

over Slice-Aware HO scheme (SAHO+SLAfast) is considered, which applies the pro-

posed slice-aware self-tuning algorithm, but omitting adjacency clustering (i.e., HOMs

for all adjacencies in A are tuned every TI). A simulation without MLB, referred to as

No MLB, is also run as a benchmark.

For each of the above MLB strategies, 14 optimization loops (a total of 15 minutes of

network activity) are simulated. In the starting point (i.e., TI=0), the adaptive capacity

broker has already reached steady state. Therefore, resource allocation per slice remains

fixed during the optimization process. The number of relevant neighbors per cell, Nn,

is set to 6, with a total of 427 adjacencies (i $ j) in the network to be optimized

per slice. The adjacency clustering algorithm results in Ng=13 groups of adjacencies.

TI is set to 5 s. Recall that, in LHO+LB and SAHO+LB and SAHO+SLA, HOM is

tuned once per optimization loop for each adjacency. With the above set-up, a loop

lasts for 5⇥ 13=65 s, which is a reasonable time to adapt to rapid changes in network

conditions. Finally, SLAmax=1.2 and wTH(s) = wLR(s) = 0.5 8 s 2 S.

The main FoM to assess algorithm performance is the percentage of users complying

SLA in terms of both TH and LR, SLAglobal, computed as

SLAglobal =
100

Nu

X

u

SLAbool(u) [%] , (6.26)

where Nu is the number of users in the scenario and SLAbool(u) is the boolean level of
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SLA compliance per user u, computed as

SLAbool(u) = floor

0

@
floor

⇣
TH(u)

THtgt(su)

⌘
+ floor

⇣
LR(u)

LRtgt(su)

⌘

2

1

A . (6.27)

This FoM is analyzed in absolute terms (SLAglobal) and relative to that obtained in

the baseline case (SLAnorm
global), i.e.,

SLAnorm
global =

SLAglobal

SLAglobal baseline
. (6.28)

The overall SLA compliance per service, SLAi 8 i 2 {FTP, LIV E V IDEO,HAPTIC,

DRIV ING} is similarly computed.

Five secondary FoMs are also considered. The first is the final SLAdiff (i, j, s)

averaged for all the tuned adjacencies, showing the capacity of MLB strategies to

balance SLA compliance among neighbor cells. The second is the final PRB utilization

ratio across cells in the scenario, PRButil, as a proxy of resource usage. The third is the

average absolute HOM deviation per slice from initial settings in the tuned adjacencies,

|�HOM (n)
intra|(s), computed as

|�HOM (n)
intra(s)| =

1

Na

X

(i,j)2A

|�HOM (n)
intra(i, j, s)| =

1

Na

X

(i,j)2A

|HOM (n)
intra(i, j, s)�HOM (0)

intra(i, j, s)| ,
(6.29)

where n denotes optimization loop index, Na is the number of adjacencies in A, and

HOM (0)

intra(i, j, s) is the initial intra-frequency HOM value (i.e., in TI=0). Finally, the

ratio between the number of HOs in a simulation compared to the baseline, nHOnorm,

is also considered as a measure of the increase in signaling load caused by MLB.

c) Results

To gain insight into how the di↵erent tra�c steering algorithms work, Fig. 6.6.a)–c)

show the evolution of |�HOM (n)
intra|(s) per slice across the optimization process obtained

for all the tested MLB strategies. The (almost) stable level observed in the last op-

timization loops in all curves confirms that all algorithms converge for all slices. As
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(a) Slice 1 (FTP + LIVE VIDEO). (b) Slice 2 (HAPTIC).

(c) Slice 3 (DRIVING).

Figure 6.6: Evolution of absolute handover margin deviation from default values in
tuned adjacencies per slice.

expected, SAHO+SLAfast shows the fastest convergence, since it tunes HOMs for all

adjacencies in A simultaneously every TI (i.e., 5 s). It should also be pointed out that,

since LBO+LB relies on a slice-unaware HO scheme, red curves in Fig. 6.6.a) to c) are

identical. For the remaining approaches, the evolution of HOM settings significantly

di↵ers per slice. This observation suggests that, at the beginning of the tuning pro-

cess, performance (i.e., load for SAHO+LB, and SLA compliance for SAHO+SLA and

SAHO+SLAfast) in neighbor cells varies per slice. This phenomenon may be due to:

a) the di↵erent tra�c distribution per slice, or b) a poor capacity broker performance

for some slices in certain cells.

According to Fig. 6.6.a)–c), slice 1 presents the most similar final HOM settings

across algorithms. In this slice, eMBB tra�c requires a high PRB allocation per

cell. Hence, slice 1 performance strongly impacts cell PRB utilization ratio. As a
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Figure 6.7: Evolution of the overall SLA compliance in the scenario.

consequence, LHO+LB may perform similarly to SAHO+LB. Moreover, since LR

target for this slice is not too tight, the level of SLA compliance mainly depends

on TH performance. As throughput is related to PRB utilization, load-based and

SLA-based slice-aware approaches tend to tune HOMs in the same direction. Nonethe-

less, HOM set-up per strategy varies in many adjacencies, leading to di↵erent SLAFTP

and SLALIV E V IDEO FoMs, as will be shown later.

To illustrate the impact of MLB on network performance, Fig. 6.7 shows the evo-

lution of SLAnorm
global for all the tested algorithms. It can be observed that, surprisingly,

legacy LHO+LB algorithm presents the worst level of SLA compliance, even below the

baseline case (i.e., SLAnorm
global<1). In contrast to LHO+LB, all the remaining algorithms

(i.e., SAHO+LB, SAHO+SLA and SAHO+SLAfast) outperform the baseline case in

terms of SLAnorm
global across the whole tuning process (i.e., curves over 1 in Fig. 6.7). This

behavior confirms the potential of slice-aware MLB schemes to improve SLA com-

pliance in NS scenarios. It is remarkable that SAHO+SLA approach presents unstable

SLAnorm
global evolution, with the best initial results due to fast HOM tuning followed by

an undesirable strong performance degradation, compensated later.

For a deeper analysis, Table 6.5 summarizes the value of all the considered FoMs

at the end of the tuning process (i.e., average FoM values in TIs belonging to the

last optimization loop), computed globally and broken down per slice. SLA FoMs per

slice reveal that LHO+LB has very poor performance in slice 3 (DRIVING), with a
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Table 6.5: Performance comparison of MLB strategies in a NS scenario.

Slice FoM No MLB LHO+LB SAHO+LB SAHO+SLA SAHO+SLAfast

Global

SLAglobal [%] 66.75 63.54 70.43 72.61 71.65

PRButil [%] 56.25 59.71 62.07 62.28 63.71

nHOnorm 1 3.32 3.39 2.41 3.82

Slice 1

SLAFTP [%] 39.16 45.41 50.95 57.37 59.07

SLALIV E V IDEO [%] 56.52 58.87 65.71 68.09 67.95

Avg. SLAdiff (i, j, 1) 0.39 0.36 0.29 0.25 0.25

�HOM (14)

intra(1) [dB] 0 6.67 6.24 6.37 7.20

Slice 2

SLAHAPTIC [%] 77.67 78.80 79.02 79.04 79.76

Avg. SLAdiff (i, j, 2) 0.29 0.29 0.26 0.25 0.25

�HOM (14)

intra(2) [dB] 0 6.67 6.86 3.74 5.15

Slice 3

SLADRIV ING [%] 74.84 62.60 73.33 76.18 73.02

Avg. SLAdiff (i, j, 3) 0.23 0.30 0.18 0.17 0.16

�HOM (14)

intra(3) [dB] 0 6.67 6.88 4.94 7.34

SLADRIV ING degradation of 12.24% in absolute terms compared to No MLB. Note

that the low target TH for DRIVING users leads to a reduced PRB allocation per cell

to slice 3, which therefore has a negligible impact on cell PRB utilization that drives

the tuning process in LHO+LB. In contrast, for slices 1 (FTP + LIVE VIDEO) and 2

(HAPTIC), with a higher PRB allocation per cell, LHO+LB outperforms the baseline,

with SLAFTP , SLALIV E V IDEO and SLAHAPTIC higher than those of No MLB. Thus,

it can be stated that balancing cell load in NS scenarios o✏oads congested cells only

for slices accessing a significant number of PRBs. Even so, LHO+LB performance for

slices 1 and 2 is still the worst among the tested MLB schemes.

Regarding slice-aware algorithms, PRB utilization values in Table 6.5 reveal that

the improvement in SLAnorm
global shown in Fig. 6.7 comes along with a higher usage of radio

resources due to the fact that tra�c is o✏oaded from congested to underutilized cells.

SAHO+SLA shows the best SLAglobal, with a final improvement of 8.78% in relative

terms compared to No MLB (i.e., 72.61% vs. 66.75%), followed by SAHO+SLAfast,

with a SLAglobal improvement of 7.34% compared to No MLB. These results prove that

SLAdiff (i, j, s) indicator is more powerful than PRB utilization ratio as a driver for

MLB in sliced networks. Per-service SLA FoMs show that SAHO+LB is competitive

to SAHO+SLA only for HAPTIC users served by slice 2, with SLAHAPTIC⇡79%.

Although the tested algorithms provide significantly di↵erent HOM settings for this

slice (shown in |�HOM (14)

intra|(2) values), the high TH and LR requirements lead to

moderate SLA improvements in all cases, with a maximum SLAHAPTIC increase of 3%
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Figure 6.8: Cumulative distribution of final SLA compliance per cell for slice 1 (FTP
+ LIVE VIDEO).

in relative terms compared to No MLB.

To understand how SLA-driven algorithms obtain the above results, Fig. 6.8 shows

the CDF of the final SLA compliance per cell in slice 1 for SAHO+SLA (solid line) and

SAHO+SLAfast (dashed line), compared to No MLB (dotted line). Both MLB schemes

show better SLA compliance in the worst cells at the expense of a slight performance

degradation in the best cells. This behavior, also present in slices 2 and 3, is typical

on self-tuning algorithms that balance a FoM across the scenario. In fact, according

to SLAdiff (i, j, s) figures in Table 6.5, SAHO+SLA and SAHO+SLAfast provide the

best equilibrium of SLA compliance in neighbor cells, with a relative reduction of

35.9%, 10.4% and 26.1% in SLAdiff (i, j, s) compared to No MLB for slices 1 to 3,

respectively. Thus, balancing SLA compliance among cells on a per-adjacency-and-slice

basis improves the overall system SLA compliance in NS scenarios.

When comparing SAHO+SLA and SAHO+SLAfast results in Table 6.5, it is ob-

served that HOM deviations reached at the end of the tuning process are significantly

di↵erent, even if both schemes have the same goal (i.e., equalizing SLA compliance per

slice between neighbor cells). The highest variation appears in slice 3, with a di↵e-

rence of 2.4 dB in |�HOM (14)

intra|(3) obtained with SLAHO+SLAfast and SAHO+SLA.

For a deeper analysis, Fig. 6.9 depicts the CDF of final absolute HOM deviation per

adjacency in slice 3, |�HOM (14)

intra|(i, j, 3), in the tuned adjacencies for all the tested al-

gorithms. It is observed that SAHO+SLA follows the most conservative tuning, leaving
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Figure 6.9: Cumulative distribution of final handover margin deviation from initial
setting in tuned adjacencies for slice 3 (DRIVING).

20% of HOMs with the initial value. In contrast, SAHO+SLAfast performs the most

aggressive HOM changes, with extreme HOM values in approximately 60% of adjacen-

cies. According to Table 6.5, the conservative strategy followed by SAHO+SLA turns

into the lowest increment in HOs triggered due to tra�c steering, with nHOnorm=2.14

(for all the remaining strategies, nHOnorm>3). Thus, SAHO+SLA causes the lowest

signaling overload and likelihood of dropped connections due to failures in the HO

process.

The distinct HOM settings of SAHO+SLA and SAHO+SLAfast lead to a di↵erent

final performance. SAHO+SLAfast only outperforms SAHO+SLA in more than 1% in

absolute terms for FTP users, with SLAFTP of 57.37% vs. 59.07% for SAHO+SLA and

SAHO+SLAfast, respectively. Not shown in Table 6.5 is the fact that SAHO+SLAfast

dramatically increases the number of HOs for slice 1 (nHOnorm=27.16), which does not

pay o↵. On the contrary, SAHO+SLA outperforms SAHO+SLAfast in slice 3, with

SLADRIV ING of 76.18% vs. 73.02% for SLAHO+SLA and SAHO+SLAfast, respecti-

vely. More importantly, SAHO+SLAfast degrades performance for this slice compared

to No MLB case. Actually, SAHO+SLA is the only strategy outperforming the baseline

for slice 3. The poor LHO+LB performance, due to a reduced PRB allocation per cell,

has been discussed above. This problem should be solved by SAHO+LB, taking into

account slice-specific PRB utilization measurements. However, DRIVING users have
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a bursty tra�c profile consisting of small data chunks sent periodically that must be

scheduled immediately. For a given cell-slice bandwidth, if data must be simultaneously

transmitted to all DRIVING users, LR SLA may be violated even if PRB utilization

remains low, since no data arrives to the transmission bu↵er until the next period. In

contrast, if data bursts for DRIVING users in a cell must be transmitted at di↵erent

time instants, average PRB utilization will be higher, but LR SLA is more likely be

complied. Hence, PRB utilization is not representative of SLA compliance for slices

with low TH but stringent LR requirements. Finally, to understand the bad perfor-

mance of SAHO+SLAfast in slice 3, note that DRIVING users move fast during long

connections (unlike the other considered services). Due to the larger distance traveled,

their radio conditions are subject to a wider range of variability. Consequently, for

these users, aggressive cell area changes caused by the simultaneous modification of se-

veral HOMs in SAHO+SLAfast can lead to very poor radio conditions that temporarily

prevent data transmission. For services with high latency and reliability requirement

such as DRIVING, not transmitting a single packet strongly impacts the level of SLA

compliance.

The above results confirm that the slice-aware MLB algorithm with adjacency clus-

tering proposed in this work (SAHO+SLA) is the best option to enhance the level of

SLA compliance while equalizing end-user satisfaction across the scenario and keeping

a low increase in the number of HOs due to tra�c steering.

d) Computational complexity

The proposed slice-aware MLB algorithm relies on a set of simple proportional con-

trollers driven by an indicator computed from connection traces. Thus, discussion on

computational complexity presented in section 6.2.3 also applies here. In this case,

the worst-case time complexity of the algorithm, dominated by the computation of the

indicator driving the tuning the process, SLAdiff (i, j, s), is O(Nu), where Nu is the

average number of active users.

6.3.4 Conclusions

In 5G and beyond systems with network slicing, new slice-aware self-optimization solu-

tions are required to guarantee SLA compliance. In this work, a novel slice-aware MLB

algorithm has been proposed. The algorithm adjusts intra-frequency handover margins

on an adjacency-and-slice basis driven by an indicator reflecting the imbalance of SLA
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compliance in neighbor cells per slice. In each adjacency and slice, an independent

controller increments (or decrements) the value of handover margins based on that

indicator, which can be computed by processing data in connection traces. To avoid

ine↵ective actions and network instabilities, the algorithm operates only in the most

relevant adjacencies per cell, and parameter tuning is performed simultaneously only

in adjacencies comprising di↵erent cells. Moreover, to deal with the high dynamism of

NS scenarios, MLB operates in a finer time resolution than in legacy MLB schemes.

Performance assessment has been carried out in a simulator emulating the activity of

a realistic network with slices serving tra�c from eMBB and uRLLC services. Results

have shown the poor performance of slice-unaware MLB techniques in NS scenarios,

specially for slices with busty tra�c demanding a low data rate, which are neglected

by legacy load balancing schemes. The proposed self-tuning algorithm has also outper-

formed a slice-aware load-driven MLB scheme, showing the potential of the proposed

SLA-based indicator to drive the tuning process. Additionally, it has been proved that,

even with the adequate driver indicator, tuning parameters too often (every 5 s) and

in all adjacencies simultaneously dramatically increases the number of HOs, leading

to signaling overload and possible dropped calls. In 15 minutes of network activity,

the proposed algorithm has improved the overall SLA compliance by up to 8% com-

pared to the case of not performing any MLB, while equalizing SLA compliance among

neighbor cells. This improvement has been obtained with a significantly di↵erent final

HOM set-up per slice.

It should be pointed out that the two tra�c steering algorithms proposed in this

chapter (QBHO+OE and SAHO+SLA) are conceived as centralized solutions to be

run in the network management system, where connection traces from every cell in the

network are collected. Likewise, recall that these algorithms are independent solutions

designed for di↵erent RATs (QBHO+OE for 3G/4G, SAHO+SLA for 5G and beyond).





Chapter 7

Conclusions

This closing chapter summarizes the major findings of this thesis. Section 7.1 highlights

the most relevant contributions. Then, section 7.2 outlines possible future research

lines. Finally, section 7.3 provides a list of the publications arising from this work.

7.1 Main contributions

The high diversity, dynamism and complexity of upcoming cellular networks evince the

need to develop advanced data-driven SON tools able to handle very di↵erent services

and capture the peculiarities of each particular network. Moreover, in 5G, the new net-

work slicing feature entails addressing new SON use cases (e.g., slice (re)dimensioning)

and providing slice-aware solutions for legacy SON use cases. In this framework, this

thesis has proposed data-driven solutions for two well-known SON use cases, namely

RAN (re)dimendioning and MLB, relying on data gathered in the OSS.

Research has started with a thorough revision of literature in related topics. This

initial stage has been essential for detecting research gaps and deciding how to formulate

the problems to solve. First, the di↵erent types of machine learning algorithms have

been presented to understand the existing alternatives for data-driven SON solutions.

Then, the workflow of RAN (re)dimensioning and MLB procedures has been outlined

to identify potential tasks to be enhanced and parameters to be optimized by using

network data. Afterward, the types of data available in the OSS for this purpose

have been explored. The knowledge of preprocessing complexity, available data and

temporal/spatial granularity of di↵erent data sources is key for identifying the type of

163
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data to be used in each SON solution. More importantly, the in-depth data analysis

has confirmed that limited information regarding service type is available per user in

current cellular networks. This is an issue for service-oriented SON solutions (including

some models and algorithms developed in this thesis), assuming a prior knowledge of

the application type demanded by the user. Finally, network slicing feature has been

presented to identify its impact on the two tackled SON use cases.

Next, di↵erent analyses have been carried out. The main conclusions from these

analyses, that can be transferred to other works (in some cases, even out of the telco

scope) are:

a) Radio connection traces are a powerful source of information for data-driven SON

tools, and hence should be stored in the OSS. Although trace files are heavy and

trace processing may be time-consuming, the investment pays o↵ if such valuable

information is used to empower several network management tools.

b) Self-optimization solutions taking into account specific performance requirements

per service are essential to guarantee end-user satisfaction in upcoming cellular

networks o↵ering extremely di↵erent services. Improving performance of services

with stringent latency and reliability requirements arising in 5G is especially

challenging due to the di�culty of estimating the impact of network parameter

changes in latency.

c) The definition of input features is key to make the most of clustering algorithms.

The set of features must contain all relevant information while being orthogonal

(i.e., two features must not provide the same information). The fewer features,

the lower the possibility of su↵ering the curse of dimensionality. If dimensio-

nality reduction is required, it should be considered that interpretable features

derived with expert knowledge ease cluster interpretation compared to those ob-

tained with feature extraction techniques (e.g., PCA). In addition, for imbalanced

datasets, it is strongly recommended to divide datapoints into blocks with ex-

pert knowledge before performing clustering in order to prevent frequent data

patterns from concealing less frequent patterns.

d) When addressing time series forecasting with SL, the best prediction model

(i.e., combination of SL algorithm, window observation and training strategy) is

influenced by time series length, noise and seasonality strength. For short, noisy

and non-seasonal series, simpler algorithms only capturing the general trend of

time series tend to outperform complex recurrent ANNs such as LSTM.
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e) Although deep learning is powerful for regression, testing simpler SL algorithms is

worth, since they can perform similarly or even better than DNNs while avoiding

overfitting, specially for size-limited training datasets. No matter the selected al-

gorithm, data preprocessing (i.e., feature normalization and outlier management)

is critical to make the most of SL algorithms.

Experiments have always been carried out in realistic environment (in most cases,

with data from commercial networks), which has entailed: a) a thorough read of vendor

manuals to understand fields in CTRs and PM/CM files, and b) the development of

parsing tools to preprocess raw data (e.g., to isolate connections from CTRs or calculate

KPIs from PMs/CMs). The specific contributions and conclusions of each analysis are

summarized next, broken down per topic.

7.1.1 Classification of encrypted tra�c in cellular networks

The problem of classifying connections per service type in mobile networks has been

addressed first. The idea of performing classification over information from radio traces

(i.e., CTRs) has been explored for the first time. As part of problem formulation, an

analysis of tra�c captured from a mobile terminal connected to a commercial LTE

network when demanding di↵erent live applications has been presented. This prelimi-

nary analysis has helped to establish theoretical bounds for some tra�c descriptors in

CTRs from full-bu↵er services. The dependence of other tra�c descriptors on network

conditions has also been pointed out.

Then, a novel scheme for coarse-grained tra�c classification has been proposed.

The method relies on agglomerative hierarchical clustering. Thus, it can be used in

the absence of labeled data, seldom available in commercial mobile networks. To

avoid the influence of network conditions, a new set of network-independent features

characterizing connections at burst level has been analytically derived from information

in CTRs. To circumvent the limitations of distance-based clustering algorithms to

handle imbalanced datasets, broad connection blocks have been created based on expert

knowledge before performing clustering. Validation has been carried out with a trace

dataset from a live LTE network. Results have shown that the classification performed

by the proposed method is consistent with the tra�c share reported for live networks

the year data was collected, confirming the potential of combining expert knowledge

and USL over burst-level tra�c descriptors to cluster connections per service type.



166 7.1. MAIN CONTRIBUTIONS

7.1.2 Supervised learning for radio access network

(re)dimensioning

Next, work has focused on creating SL models for (re)dimensioning purposes. Two

key tasks in this process have been covered: estimating radio throughput indicators

at cell/slice level and forecasting cell tra�c in the long term. Previous contributions

on radio throughput estimation through SL consider either simple MLR models or

complex DNNs. Likewise, long-term cellular tra�c forecasting had not been tackled

yet via SL due to the need for an extensive dataset comprising measurements collected

for years. This thesis has compared the performance of well-known SL algorithms

based on distance, vectors, decision trees and ANNs for these tasks.

a) Throughput estimation in cellular radio access networks

The estimation of radio throughput indicators from data gathered in the OSS has

been formulated as a regression problem. HSDPA and LTE networks have been first

considered. In each RAT, a di↵erent set of input features built from CMs and PMs has

been defined to estimate the aggregated cell throughput in the DL (DL cell throughput)

and the average user throughput per cell in the DL (DL user throughput) in high load

scenarios. Six well-known SL algorithms have been compared, namely MLR, SVR,

KNN, RF, a shallow MLP and a deep MLP. Feature selection has been performed

separately with a correlation-based method or with wrapper methods.

Assessment has been carried out over two datasets from a live HSDPA network and

a live LTE network, respectively. Results have shown that wrapper feature selection

methods outperform correlation-based schemes when finding the optimal subset of

input features (determining data to be collected in the OSS). In both RATs, non-linear

SL algorithms have outperformed classical MLR, especially when estimating DL user

throughput. More importantly, some non-deep algorithms (e.g., shallow MLP) have

shown similar performance to DNNs with fewer input features while being faster to

train and less prone to overfitting. The best algorithms (i.e., shallow MLP for HSDPA

and KNN for LTE) have shown error metrics lower than 10% with six input features

at most.

Then, the analysis has been extended to network slicing scenarios arising in 5G.

In the absence of large-scale datasets from operational networks with NS, assessment

has been carried out over simulated data. For this purpose, network slicing has been
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implemented in an existing simulation tool that emulates a realistic LTE-Advanced

cellular network. The same set of simulations has been run in three scenarios: a

non-sliced scenario and two NS scenarios with single-service and multi-service slices.

As a result, three cell-level datasets (one per scenario) and two slice-level datasets (one

per NS scenario) have been built. Datasets comprise input features computed from

CTRs and CMs/PMs collected on a per cell and cell-slice basis. The target indicator is

DL cell throughput for cell-level datasets and aggregated throughput per cell and slice

(DL slice throughput) for slice-level datasets. In the light of results from the previous

analysis, MLR algorithm and correlation-based feature selection have been omitted,

and XGBoost and AdaBoost algorithms have been included.

A preliminary analysis of cell-level datasets has revealed significant di↵erences in

the correlation among some input features and DL cell throughput in each scenario,

justifying the need for a separate analysis per scenario. The, results have shown that,

with adequate feature selection, all the tested algorithms achieve a similar and accep-

table performance (i.e., error lower than 10%) when estimating DL cell throughput

in the two tested NS scenarios. Models showing the best trade-o↵ between accuracy

and complexity are those based on a shallow MLP with four input features related

to bandwidth, radio resource utilization and spectral e�ciency. Such features can be

computed from cell-level PMs/CMs. In contrast, only ensemble methods based on DTs

and ANNs have reached acceptable accuracy when estimating DL slice throughput. As

expected, model performance is worse in multi-service slices o↵ering a mix of appli-

cations. It is also remarkable that, in both network slicing scenarios, the five input

features to best models not only include features computed from cell-level PMs/CMs,

but also features computed from slice-level PMs/CMs and information about service

mix per slice derived from CTRs.

After this analysis, it can be concluded that non-deep SL techniques estimate ra-

dio throughput metrics in di↵erent RATs and scenarios with adequate performance.

Moreover, the fact that slice-level models require information regarding service mix

confirms the need for the tra�c classification method previously developed.

b) Long-term cell tra�c forecasting

The task of predicting cell tra�c several months in advance has been formulated as a

time series problem. A preliminary analysis comparing the autocorrelation of hourly

and monthly busy-hour cell tra�c in two live LTE networks has revealed the challenges
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of long-term tra�c forecasting, based on short and noisy time series.

Then, a comparative study has been carried out assessing the performance of several

SL algorithms not tested for this purpose so far against classical TSA approaches. To

this end, three experiments have been carried out over a unique dataset comprising

tra�c measurements collected for two and a half years in a live LTE network covering

an entire country.

Results have shown that SL algorithms outperform classical TSA approaches in

terms of accuracy and required storage capacity. It has also been concluded that

specific models must be developed for high-tra�c cells, where prediction accuracy is

critical. Unexpectedly, RF and a shallow MLP have shown the best results, with similar

performance to DNNs based on LSTM units designed to model time dependencies.

These results confirm the limited predictability of monthly busy-hour tra�c compared

to hourly or daily tra�c series. None of the considered algorithms is extremely accurate,

especially for summer months with holidays in the country where the network operates.

Subsequent research (not shown here) has revealed that per-series outlier management

combined with time series smoothing or additive decomposition can improve forecasts

significantly.

7.1.3 Tra�c steering in cellular networks

Finally, the task of designing service-oriented MLB algorithms driven by network data

has been addressed. An in-depth review of related literature has pointed out the lack of

MLB strategies to handle inter-frequency tra�c steering QoE, and the absence of slice-

aware MLB algorithm considering SLA aspects. These research gaps have been covered

in this thesis. In both cases, MLB has been formulated as a control problem. Moreover,

unlike legacy approaches driven by indicators computed from cell-level counters, the

solutions proposed here rely on novel indicators reflecting individual user performance,

which are computed from radio connection traces.

First, a novel strategy for steering tra�c in multi-tier LTE networks to improve the

overall system QoE has been proposed. For this purpose, RSRQ-based inter-frequency

HOs are first enabled, and inter-frequency HOMs are tuned later per adjacency after

each ROP with a novel QoE-based data-driven MLB algorithm. In each adjacency, the

tuning process is carried out by a proportional heuristic controller driven by a novel

indicator assessing the average impact of HOs for all users in cells of an adjacency.
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Performance assessment has been carried out with the above-mentioned simula-

tor. For this purpose, a realistic two-tier scenario has been first implemented. The

considered services are VoIP, video streaming, file download and web browsing. Ex-

periments emulating di↵erent mobility scenarios have demonstrated that the proposed

tra�c steering strategy outperforms classical MLB techniques based on balancing PRB

utilization among cells. Improvement is due to the o✏oading tra�c from coverage la-

yers to capacity layers, so that users make the most of the large bandwidth available

at capacity layers.

Then, the analysis has been extended to NS scenarios. A novel slice-aware MLB

algorithm to increase SLA compliance in sliced RANs has been proposed. For this

purpose, the algorithm adjusts slice-specific intra-frequency HOMs per adjacency. The

tuning process is driven by a novel indicator reflecting the imbalance of SLA compliance

per slice in neighbor cells. In each adjacency and slice, an independent controller

increments (or decrements) the value of HO margins based on that indicator. To avoid

ine↵ective actions and network instabilities, the algorithm operates only in a subset

of relevant adjacencies, clustered into groups of adjacencies with disjoint cells. Then,

parameter tuning is performed in a di↵erent adjacency group every 5 seconds.

Performance assessment has been carried out by simulating the activity of a realistic

NS scenario with three slices serving eMBB and uRLLC tra�c from users with di↵erent

mobility patterns. For this purpose, tra�c models for live video streaming, haptic

communications and autonomous driving services have been implemented. SLA per

slice has been defined as target session throughput and latency-reliability commitment.

Results have shown the poor performance of legacy (i.e., slice-unaware) MLB in NS

scenarios, specially for those slices with low radio resource allocation. The proposed

algorithm has outperformed other slice-aware tra�c steering strategies not driven by

SLA or not performing adjacency clustering, converging in only 15 min. Improvement

is obtained by balancing SLA compliance across the network.

7.1.4 Discussion on model implementation

When introducing the data-driven approach, the trade-o↵ between a centralized and

distributed SON architecture becomes extremely important. All models and algorithms

developed within this thesis are conceived to be used in centralized solutions running

in the OSS, where data from all cells and slices is gathered. Such a centralized MANO

approach eases the detection of network-wide issues. Moreover, orchestrating the be-
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havior of radio network equipment across an entire network is more robust against

instabilities caused by the concurrent operation of several SON functions with con-

flicting objectives. Nonetheless, all solutions proposed here can be implemented in

a distributed MANO if an interface among base stations exists. For instance, the

tra�c classification scheme can be applied per cell. Likewise, the driver indicator of

the proposed inter-frequency MLB algorithm can be easily computed if base stations

exchange data. Finally, those proposals requiring supervised training could be trained

with federated learning [255].

7.2 Future work

Several work lines arise from this thesis that could be explored in the future. The first

interesting research direction is reproducing all the experiments conducted here in other

scenarios (preferably in live networks). The aim is to check the capacity of proposed

algorithms and methodologies to be generalized to RANs with di↵erent characteristics

(e.g., topology or RRM algorithms). This work line entails some di�culties, such as

the reluctance of operators to a) tune radio parameters network-wide to test MLB

algorithms and b) share network data required for the remaining analyses (if available,

which is not always the case, especially for tra�c forecasting experiments requiring data

collected for several years). Moreover, NS feature is not enabled yet in any commercial

5G systems. Thus, by now, NS experiments can only be reproduced via simulation.

Some brief ideas and guidelines on other open research lines for each problem tackled

in this thesis are presented next.

a) Encrypted tra�c classification in cellular RANs

The validation of the proposed encrypted tra�c classification scheme has been per-

formed over a LTE network. However, the method can easily be extended to other

RATs and is especially suitable for 5G networks, where highly di↵ering services co-

exist and thus the development of service-oriented NFs is key to warrant customer

satisfaction.

In NR, similarly to LTE, tra�c classification must start by dividing connections per

QoS identifier (i.e., 5QI). Then, the proposed method must be applied over connections

with 5QIs comprising di↵erent service types. Two aspects must be considered to adapt

the method to NR: a) ⌘UL threshold set to split connections with high volume into two
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groups must be recomputed considering headers of the NR stack protocol in the user

plane (e.g., the new service data adaptation protocol layer), and b) 5G numerology

must be taken into account when computing burst-level indicators. For instance, for

numerology schemes µ where TTIs last less than 1 ms (i.e., µ > 0), T active
DL (k) =

N burst
DL (k)NactiveTTI

burst DL (k) TTTI in (3.5), where TTTI is TTI duration expressed in ms. By

considering these aspects, the classification method should perform well for connections

with 5QIs from 6 to 9, analog to those QCIs in LTE. It must also be checked if the

same tra�c descriptors su�ce to classify connections with other 5QIs comprising a mix

of services (e.g., 5QI 3, with a mix of real-time gaming and V2X tra�c, among other

services) or if new features must be computed.

b) Throughput estimation in cellular RANs

This thesis has tackled the estimation of DL radio throughput indicators in the DL,

which may su�ce for legacy mobile networks. However, for e↵ective redimensioning in

NR, the analysis must be extended to the UL, which strongly influences some new 5G

services (e.g., live video upload or sensor networks). Moreover, uRLLC and mMTC

services should be included to assess the impact on throughput modeling, more im-

portantly, model other performance metrics (e.g., latency-reliability for uRLLC). Note

that emulating uRLLC tra�c accurately implies analyzing network activity with a

1-ms time resolution. Likewise, mMTC services are characterized by an extremely

large number of devices connected simultaneously to the network. These requirements

would increase simulation time by more than 10 times, making it unfeasible to run the

set of simulations required to get a significant amount of data. Thus, such an analysis

must be performed over real data from commercial 5G networks when available. Then,

more complex models based on DNN may be tested, which would have overfitted with

the size of the datasets simulated here. Additionally, we will consider in the future

the use of transfer learning [256] to leverage pretrained models derived for slices with

di↵erent RRM algorithms (e.g., slices managed by virtual MNOs with di↵erent packet

schedulers) or for di↵erent networks. Likewise, the use of multitask ANNs [257] will

be explored to jointly estimate the performance of multiple slices in a cell and its

neighbors.
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c) Long-term tra�c forecasting

Results in this thesis prove the need for further research on long-term tra�c prediction.

Apart from enhancing data preprocessing as commented in section 5.5, forecasting

models can be extended to account for events that drastically change tra�c patterns

in a cell, e.g., new neighbor site, equipment upgrades, social events, etc. This approach

has been explored for cell hourly tra�c time series [258]. Other potentially beneficial

approaches are using graph ANNs to simultaneously consider the evolution of tra�c in

a cell and its neighbors, or creating multi-variable models to predict the evolution of

several KPIs in a cell simultaneously. All these extensions are crucial for NGNs, where

the coexistence of several services, slice (de-)activation, multi-connectivity and other

features will lead to extremely complex tra�c patterns, and hence a deep knowledge of

the radio and social environment cells will be key to achieve accurate tra�c forecasts.

Nonetheless, note that all these approaches imply using complex ANNs with thousands

of internal parameters, thus requiring large datasets to be trained. As a consequence, it

is strongly recommended that operators store data with finer time resolution (e.g., daily

busy-hour measurements) in the long term to make the most of SL models for tra�c

forecasting.

d) Tra�c steering in cellular networks

QoE-based and SLA-based tra�c steering strategies presented in this thesis can be ex-

tended to handle inter-RAT mobility in legacy cellular networks and sliced NGNs, res-

pectively. The most challenging task is finding the most suitable HO scheme (i.e., HO

triggering event and report measurement). Once identified, applying the proposed

MLB algorithms should be straightforward. Moreover, the idea of driving parameter

tuning with indicators derived from connection traces, reflecting individual user per-

formance, could be extended to create algorithms for optimizing parameters driving

carrier aggregation or multi-connectivity schemes in NGNs. For the QoE-driven model,

no matter the use case, the first step is developing models to compute QoE experienced

for new services.

Another promising research line is designing QoE/SLA-driven MLB algorithms re-

lying on DRL. Solutions proposed here improve a certain FoM that is maximized by

reaching an equilibrium point (i.e., a value of 0 for the imbalance indicator). However,

the optimal HO set up from a QoE/SLA perspective may be di↵erent for some adjacen-

cies, which can be learned by a DRL agent. Moreover, unlike fixed heuristic controllers,
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models in DRL agents can be retrained to adapt to changes in the network a↵ecting

slice performance (e.g., activation of a new slice or change in capacity broker...), lea-

ding to a faster (and maybe better) convergence. In NS scenarios, a promising option

is using a collaborative multi-agent approach, as done in [177] for the capacity broker,

capturing slice peculiarities and inter-slice performance relationships. The use of fed-

erated learning to train these models will avoid: a) overload in the backhaul due to

data exchange with the OSS, and b) privacy issues preventing operators from accessing

slice-level data [259].
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redes LTE multi-portadora”, XXXIV Simposio Nacional de la Unión Cient́ıfica

Internacional de Radio (URSI 2019), Sevilla (Spain), Sep. 2019.

[IX] C. Gijón, M. Toril, S. Luna, J. L Bejarano, M. L. Maŕı, “Estimación de la
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Appendix A

Simulation tool

This appendix describes the simulation tool used in this thesis. It consists of a dynamic

system-level simulator that emulates the activity of the DL in a LTE-Advanced RAN

with NS feature. The tool is implemented in Matlab due to its e�ciency in operating

with large matrices. In this appendix, the general structure of the simulator is first

described. Then, the most relevant procedures in physical, link and network layers are

explained. Finally, NS implementation is presented.

A.1 General structure

This section introduces the simulation tool. For clarity, its workflow is first outlined.

Next, the di↵erent scenarios considered within this thesis are described. Then, UE

model is detailed. Finally, the implemented QoE models are presented.

A.1.1 Work flow

Fig. A.1 illustrates the simulator workflow. A simulation starts by loading a presaved

configuration file that acts as an interface allowing the user to run simulations without

a deep knowledge of the internal code. A wide range of parameters can be tuned re-

garding simulation time (e.g., duration, time resolution...), scenario (e.g., site location,

number of cells per site...), base station parameters (i.e., carrier, bandwidth, transmit

power...), tra�c (e.g., UE density and spatial distribution, service mix per cell and

slice, UE speed...), network procedures (e.g., HO parameters, packet scheduling al-

gorithm, target BLER per service...) and NS set-up (e.g., number of slices and service
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Figure A.1: Simulator workflow.

time, capacity broker...). Table A.1 summarizes the simulation set-up considered in

this thesis, detailed in subsequent sections of this appendix.

Once the configuration file is loaded, the initialization stage begins, where: a)

simulation variables are initialized, b) the scenario is generated, c) radio resources are

split into active slices, and d) several UEs (a.k.a. warm-up UEs) are created following

pre-established tra�c conditions per slice. These UEs emulate users already connected

to the network before the simulation starts and aim to ensure that tra�c conditions

are stable, thus guaranteeing the reliability of results from the very beginning of the

simulated time. Then, for computational e�ciency, matrices containing radio link

performance at each point of the scenario are computed and saved. These matrices

consider path loss, antenna gains, slow fading and fast fading e↵ects. During the

simulation, they are used for cell allocation and to compute the SINR experienced by

UEs in the scenario.

Next, a temporal loop is executed. The number of iterations depends on the con-

figured simulation time and step resolution (e.g., 360,000 iterations to emulate 1 h

of network activity with a resolution of 10 ms). In each iteration, radio link perfor-

mance computations (i.e., RSRP, RSRQ and SINR per UE) are first performed. Then,

RRM procedures are executed. At link layer, packet scheduling is carried out with link

adaptation based on CQI. At network layer, inter-frequency and intra-frequency HO

mechanisms are implemented. Regarding NS management, active slices whose service



APPENDIX A. SIMULATION TOOL 181

Table A.1: Main simulation parameters.

Parameter Description

Time resolution 10 ms

Transmission mode Frequency division duplexing

5G numerology (µ) 0

Propagation model Path loss: Hata, COST-231 [260]

Slow fading: log-normal �SF = 8 dB, dc = 50 m

Fast fading: ETU model [261]

Base station model Tri-sectorized antennas, MIMO 2x2, transmit power from real
base stations ([47.8-49] dBm), no beamforming

Packet scheduler Classical exponential/proportional fair [262]

Link adaptation CQI-based, MCS selected to guarantee a target BLER defined
per service

Tra�c model Non-uniform spatial UE distribution and tra�c mix

Services: VoIP, progressive video streaming, file download,
web browsing, live video streaming, haptic communications,
autonomous driving

UE mobility Constant speed at 0 km/s (static), 3 km/s (pedestrian) or
50 km/h (car) and constant random direction

HO set-up Event A3: HOM(i, j)=3 dB and TTT (i, j)=256 ms

Event A5 (RSRP-driven): thd(i)=-115 dBm, thd(j)=-108 dBm

NS implementation Slicing at packet scheduling level [116], adaptive capacity broker,
slice admission control based on PRB availability

time expires at that iteration are released. Likewise, new slice requests are attended

by an admission control mechanism and, if accepted, new slices are conformed and

activated. Slice activation and release imply a redistribution of spectrum among slices.

Finally, finished connections (i.e., UE served by a recently-released slice, ended connec-

tion or dropped call) are released and new connections from previously existing or new

slices are created.

When the temporal loop finishes, results (i.e., KPIs, KQIs, PMs...) are saved for

further analysis.

A.1.2 Simulation scenarios

The simulation tool allows emulating ideal scenarios with regular cell area or realistic

scenarios with base station location and parameters from a live network. The latter

option is selected in this thesis. Specifically, the two scenarios illustrated in Fig. A.2.a)

and b) are considered for di↵erent contributions. Network A consists of 108 irregular
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cells placed in urban and suburban areas covering 11⇥23 km2. All cells work at 2.1 GHz.

This scenario was already available in the simulation tool from previous works [33] [73].

Network B comprises 48 macro cells located in a dense urban area working at two

di↵erent carriers: 736 MHz and 2100 MHz. Cells are distributed in 8 sites, each

including two co-located sets (one per carrier) of tri-sectorized antennas. Thus, half

of the cells work at each carrier. This scenario has been included in the simulator as

part of this thesis to validate the MLB algorithm for multi-tier networks described in

chapter 6.

As specified in LTE and NR standards for the considered frequency bands, the

simulator operates in frequency-division duplexing mode [263]. Di↵erent bandwidths

in [263] are set in di↵erent simulations with a subcarrier spacing of 15 kHz (i.e., 5G

numerology with µ = 0).

A.1.3 UE model

The simulated UEs can demand seven di↵erent services, namely VoIP (VoIP), progre-

ssive video streaming (VIDEO), file download via FTP protocol (FTP), web browsing

via HTTP protocol (WEB), live video streaming (LIVE VIDEO), haptic communi-

cations (HAPTIC) and autonomous driving (DRIVING). Table A.2 breaks down the

main service parameters regarding tra�c model. It should be pointed out that the set of

considered services comprises applications that are mainly delay-sensitive (e.g., VoIP),

throughput sensitive (e.g., FTP), or both (e.g., HAPTIC), which will coexist in NGNs.

Haptic and live video services can be demanded simultaneously by the same UE.

Both spatial UE distribution and service mix are configurable and can be either

uniform or vary per cell and slice. During simulations, in a cell c, new UEs appear

following a Poisson process with arrival rate �(c). UEs can be static (indoor users),

pedestrians walking at 3 km/h or car travelers at 50 km/h. Those UEs in motion

follow a straight trajectory with a random direction chosen at the beginning of the

connection. The ratio of UEs at each speed can be set per service.

A.1.4 QoE model

QoE is measured for VoIP, VIDEO, FTP and WEB sessions. For this purpose, utility

functions are used to map objective QoS measurements into a MOS value, ranging

from 1 (bad) to 5 (excellent). Likewise, context information is used to di↵erentiate
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(a) Network A (one-tier).

(b) Network B (two-tier).

Figure A.2: Scenarios implemented in the simulation tool.

indoor and outdoor users, so that indoor users are more demanding in terms of QoS.

Thus, two utility functions are defined per service, as in [13].

The utility functions used for VoIP service are [266]

QoE(V oIPoutdoor) = 1 + 0.035R + 7 · 10�6(R� 60)(100�R) , (A.1)

QoE(V oIPindoor) = 1 + 0.035 R
1.5 + 7 · 10�6 R

1.5(
R
1.5 � 60)(100� R

1.5) , (A.2)

where R is a parameter related to packet delay, ranging from 0 to 93. It is assumed

that QoE(V oIPindoor) = QoE(V oIPoutdoor) = 1 if a VoIP connection is dropped.
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Table A.2: Service model parameters.

Service Description

VoIP Coding rate: 16 kbps (a packet of 40 B every 20 ms)

Call duration: exponential (avg. 60 s)

Call dropped after 1 s without resources

VIDEO Packet arrival process and file size from H.264/MPEG-4 AVC real trace with
720p resolution

Call duration: uniform [30, 540] s

Chunk size: 20 s of video content (initial burst), 5 s of video content (rest)

Connection dropped when stalling lasts for twice the video duration

FTP File size: log-normal (avg. [15, 85] MB)

WEB No. of pages per session: log-normal (avg. 4)

Page size: shifted log-normal (avg. 9.5 MB, min. 1.5 MB)

Reading time: exponential (avg. 30 s)

LIVE VIDEO Packet arrival process and file size from H.264/MPEG-4 AVC real trace with
720p resolution

Call duration: uniform [30, 300] s

Chunk size: 5 s of video content (initial burst), 2 s of video content (rest)

HAPTIC Multi-point haptic tra�c model in [264]

Three components: globe, position tracker and actuators

Packet size per component: fixed (min. 72 B, max. 442 B)

Inter-packet time per component: Gaussian (avg. [10.87, 12.95] ms, std. dev.
[1.98, 2.49] ms)

Call duration: uniform [300, 600] s

DRIVING Packet size=201 B

Inter-packet arrival time of 100 ms (derived from lane merge use case
data [265])

Call duration: uniform [300, 600] s

For VIDEO service, the utility functions are [267]

QoE(V IDEOoutdoor) = 4.23� 0.0672Tinit � 0.742Freb � 0.106Treb , (A.3)

QoE(V IDEOindoor) = 4.23� 0.0672(1.5Tinit)� 0.742(1.5Freb)� 0.106(1.5Treb) , (A.4)

where Tinit is the initial bu↵ering time in seconds, Freb is the average stalling (a.k.a. re-

bu↵ering) frequency in seconds-1 and Treb is the average stalling duration in seconds.
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For both indoor and outdoor users, the QoE value for a video connection is upper

limited to 4.23, showing that some users do not score their experience as excellent even

with the best possible link conditions. Again, a value of 1 is set if a connection is

dropped.

The QoE of FTP users is computed as [268]

QoE(FTPoutdoor) = max(1,min(5, 6.5TH � 0.54)) , (A.5)

QoE(FTPindoor) = max(1,min(5, 6.5TH
1.5 � 0.54)) , (A.6)

where TH is the average session throughput in Mbps.

Finally, the utility functions used for WEB users are [268]

QoE(WEBoutdoor) = 5�
578

1 +
�
TH+541.1

45.98

�2 , (A.7)

QoE(WEBindoor) = 5�
578

1 +

✓
TH
1.5 +541.1

45.98

◆2
, (A.8)

where TH is the average session throughput in kbps.

A.2 Physical layer

This section outlines the main aspects of the physical layer implementation of the

simulation tool, namely propagation, noise and interference models.

A.2.1 Propagation model

In this subsection, path loss, slow fading and fast fading models used in the simula-

tor are first presented, and the process performed to compute radio link performance

metrics per UE are outlined later.
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a) Path loss

Hata model and its extension COST 231 are used to compute path loss at 736 MHz

(PL736

Hata) and 2100 MHz (PL2100

COST231
), respectively [260]. The resulting path loss ex-

pressions considering an urban zone and a fixed UE height of 1.5 m are

PL736

Hata [dB] = 144.55� 13.82 log hBS + (44.9� 6.55 log hBS) log d , (A.9a)

PL2100

COST231
[dB] = 158.92� 13.82 log hBS + (44.9� 6.55 log hBS) log d , (A.9b)

where d is the distance between base station and UE in km and hBS denotes base

station height in m. For the scenarios considered here, hBS is extracted from the

corresponding live networks, within the range [10, 64] m.

The resulting path loss is then refined by considering base station azimuth and a

typical radiation pattern for tri-sectorized antennas.

b) Slow fading

The e↵ect of large buildings or geographical structures obstructing the line of sight on

the radio signal is modeled as a log-normal distribution characterized by a standard

deviation �SF whose value depends on the environment. For urban macro-cell scenarios

as those considered in this thesis, �SF is typically set to 8 dB [269].

c) Fast fading

The Extended Typical Urban (ETU) model is used for multi-path fast fading, whose

power profiles are broken down in Table A.3 [261]. ETU model can be seen as a

time-variant filter characterized by finite time response h(⌧, t). A narrow-band Rayleigh

model is first applied over each multi-path component and then a bi-dimensional Do-

ppler filter is used as indicated in [1]. Next, Fourier transform is applied over the delay

⌧ to obtain the transfer function H(f, t). Finally, to get UE position (and not time) as

an independent variable (i.e., H(f, d)), the relation d = v · t is applied. In this process,

cell bandwidth is sampled with a 45 kHz resolution.



APPENDIX A. SIMULATION TOOL 187

Table A.3: ETU model [1].

Delay (⌧) [µs] Relative power [dB]

0 –1.0

50 –1.0

120 –1.0

200 0.0

230 0.0

500 0.0

1600 –3.0

2300 –5.0

5000 –7.0

d) Radio link performance calculations per UE

Radio link performance indicators (e.g., RSRP, SINR...) per UE are updated at every

iteration to capture UE mobility and tra�c fluctuations across time. For computational

e�ciency, calculations are based on three precomputed 3D matrices containing path

loss plus antenna gains, slow fading and fast fading components across the scenario

for each base station, respectively. For this purpose, the covered area is divided into

a grid of points. For path loss and slow fading matrices, grid points have a resolution

of 50 ⇥ 50 m. In contrast, to capture every multi-path component, grid points in the

fast fading matrix cover 15 ⇥ 15 cm. In the latter case, for computational e�ciency, a

propagation matrix of 48 ⇥ 48 m is created and repeated across both spatial dimensions

until the whole scenario is covered.

During simulation, radio link performance metrics per UE are computed by com-

bining the transmit power with all the above-mentioned matrices. The value of these

matrices for the exact UE location are estimated by linearly interpolating values co-

rresponding to the two nearest positions.

A.2.2 Noise model

Noise level per PRB is computed as

NPRB [dBm] = NSD [dBm/Hz] +NFUE [dB] + 10 logBWPRB [Hz] , (A.10)

where NSD is the noise power spectral density, NFUE is the noise figure of UEs and
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BWPRB is PRB bandwidth. In the simulation tool, NSD=-174 dBm/Hz, NFUE=9 dB

and BWPRB=180 kHz (i.e., µ=0). As a result, NPRB=-112.44 dBm.

A.2.3 Interference model

A total frequency reuse scheme is considered. Thus, the interference level received by

a UE u in a given PRB p at iteration t, I(u, p, t), can be computed as the sum of the

signal received from all cells transmitting data simultaneously in that PRB, i.e.,

I(u, p, t) =
X

j 6=i

Prx(u, j, t) · PRButil(j, t� 1) , (A.11)

where Prx(u, j, t) is the power level received by UE u from cell j at time t considering

path loss and slow fading, and PRButil(j, t� 1) is the average PRB utilization of cell

j in the last simulation iteration t� 1.

A.3 Link layer

This section presents the main link level functionalities in the simulation tool, namely

link adaptation, packet scheduling and retransmission scheme.

A.3.1 Link adaptation

Link adaptation is in charge of selecting the most appropriate MCS to transmit data

to a particular UE through the PDSCH channel according to link conditions. In the

simulator, such a process is performed per UE and PRB in each iteration relying on

CQI information sent by UEs in the UL.

The set of 16 MCSs in the 4-bit CQI table in [189] are considered. The e↵ective

SINR per PRB, SINReff , is first computed as detailed in [270]. Then, for compu-

tational e�ciency, a link abstraction model built with the link-level Vienna simulator

described in [271] is used to map SINReff to BLER on a certain MCS [272]. For each

UE, the MCS allowing to transmit the highest number of bits while guaranteeing the

target BLER for the demanded service is selected.



APPENDIX A. SIMULATION TOOL 189

A.3.2 Packet scheduling

Packet scheduling consists on allocating PRBs for the communication with UEs at every

TTI. The simulator includes several packet schedulers, such as round robin, best cha-

nnel, Proportional Fair (PF) or classical EXPonential/Proportional Fair (EXP/PF) [273].

The latter scheme is used in all the simulations within this thesis.

PF is a channel-aware packet scheduler that provides a trade-o↵ between through-

put performance and fairness. Classical EXP/PF is an extension of PF conceived to

simultaneously handle real-time (RT) and Non-Real-Time (NRT) connections. It en-

hances the priority of RT flows, guaranteeing a bounded delay to RT packets while still

maximizing system throughput and ensuring proportional fairness between UEs. For

this purpose, the UE priority metric is separately calculated for RT and NRT users.

For the former UEs, priority grows exponentially with delay, so that they have higher

priority than NRT UEs when packet delay is reaching the dateline. This algorithm

performs better than PF in high-load scenarios at the expense of higher computational

complexity [262].

A.3.3 Retransmission scheme

HARQ is a mechanism combining retransmissions and error correction. In the simu-

lator, the maximum number of attempts to transmit a given block of data (i.e., set of

bytes transmitted in a PRB) is defined per service, ranging from 1 (for uRLLC ser-

vices with very stringent latency constraints) to 4. Since link adaptation guarantees

a predefined target BLER per service, the probability of failure when transmitting a

scheduled block of data is that target BLER. Such a process is modeled with a random

variable. To emulate HARQ round-trip time, if the transmission fails and the maxi-

mum number of attempts has not been reached, the eNB tries to retransmit it in the

next simulation iteration (i.e., after 10 ms).

A.4 Network layer

This section outlines the network layer procedures in the simulator most relevant for

this thesis, namely admission control and handover.



190 A.4. NETWORK LAYER

A.4.1 Admission control

A UE u is accepted in the network if there is some cell c from which the received RSRP,

RSRPu(c), exceeds a threshold RSRPmin(c) predefined on a cell basis, i.e.,

RSRPu(c) � RSRPmin(c) . (A.12)

If several cells fulfill this condition, the UE camps in the cell with the best radio channel

conditions (i.e., highest RSRPu(c)). Once the UE changes from idle to connected

RRC mode, the condition in (A.12) is assessed again for both inter-frequency and

intra-frequency neighbors of the camping cell. If all candidate serving cells work in

the same carrier, the serving cell is that with the highest RSRPu(c). Otherwise, the

serving cell is randomly chosen among the best candidates at all carriers. In such a

process, the higher the cell bandwidth compared to other candidates, the higher the

probability of being selected as serving cell.

A.4.2 Handover scheme

Three di↵erent well-established HO schemes are used to handle inter-frequency and

intra-frequency HO in the simulator:

1. Power-BudGeT (PBGT) HO: this type of HO is triggered when HO event A3

(i.e., neighbor cell is better than serving cell by a threshold) based on RSRP is

fulfilled during a certain TTT (i.e., condition in (6.2)). The aim is to guarantee

that UEs are always connected to the cell from which they receive the best signal.

In SON, PBGT HOs are often used for load balancing among cells working at

the same carrier.

2. Quality-BudGeT (QBGT) HO : this type of HO is analog to PBGT, HO but

using RSRQ instead of RSRP (i.e., triggering condition in (6.5)). The aim is to

guarantee that UEs are always connected to the cell with the best quality even

if received signal is not the highest. This strategy can be beneficial for both

intra-frequency and inter-frequency tra�c steering.

3. Level HO: this type of HO is triggered by event A5 (i.e., serving cell is worse than

a threshold and neighbor cell is better than another threshold) based on RSRP.

This strategy is often used for inter-frequency tra�c mobility.
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For computational e�ciency, in the simulator, HO events are assessed every 50 ms.

A.5 Network slicing implementation

NS feature has been implemented in the simulation tool as part of this thesis. If enabled,

di↵erent scenarios can be emulated with a configurable number of slices serving a single

service (e.g., OTT service provider) or a set of services (e.g., eMBB slice). These slices

can either remain active during the whole simulation or be activated/deactivated at

a predefined time instant. This section outlines how the main procedures in slice life

cycle management have been implemented.

As in [176], the SLA is defined in terms of capacity requirements for the expected

tra�c in a given area. In the preparation phase, a tenant applying for a slice i provides

the infrastructure owner an individual slice template including: a) the slice operation

area, b) the expected service spatial distribution and tra�c intensity in peak periods, c)

the required average session throughput per service s o↵ered in the slice, THAPP (i, s),

defined at application layer, and d) the required reliability in the slice for a target E2E

latency.

In the planning phase, the capacity conformance NF uses an analytical model to

determine the spectrum allocation required per cell to fulfill the SLA. The number of

PRBs required by slice i in cell c, NPRB(c, i), is the aggregation of PRBs required to

schedule UEs demanding all services s o↵ered in the slice, Nserv(i),

NPRB(c, i) =
Nserv(i)X

s=1

NPRB(c, i, s) . (A.13)

For a given service s, NPRB(c, i, s) can be estimated as

\NPRB(c, i, s) = NUE(c, i, s) \NPRB UE(c, i, s) , (A.14)

where NUE(c, i, s) is the expected average number of simultaneous RRC connected UEs

from slice i demanding service s in cell c and \NPRB UE(c, i, s) is the estimated number

of PRBs required by each individual UE in cell c to fulfill service requirements in the

SLA. The former term can readily be computed from tra�c information in the SLA,
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whereas the latter term can be estimated as

\NPRB UE(c, i, s) =
THPHY (i, s)

THPRB(c)
, (A.15)

where THPHY (i, s) is the throughput required at the physical layer to achieve the

target THAPP (i, s) and THPRB(c) is the DL throughput per PRB experienced by a

UE with average SINR in the service area of cell c.

For VoIP, HAPTIC and DRIVING services (i.e., small data chunks), headers are

considered to compute THPHY (i, s). In contrast, for the remaining considered services,

header size is negligible compared to data chunk size, and it is therefore assumed that

THPHY (i, s) ⇡ THAPP (i, s). To avoid underestimating required capacity in cells with

low tra�c, a minimum value of NPRB(c, i) = 3 is set for every cell and slice. If there

are enough available resources in all cells of the slice operation area, the request is

accepted and the slice is conformed and activated. Otherwise, the request is rejected.

In the operation phase, as in [177], the capacity broker NF periodically adjusts

NPRB(c, i) per cell and active slice by reassigning underutilized PRBs to slices whose

capacity requirements have been underestimated. This process is repeated every 5 min

until a steady state is reached. To make the most of spectrum capacity, the minimum

slice chunk is reduced to 1 PRB.

The above-described spectrum sharing scheme is well aligned with previous pro-

posals in the literature [116]. Intra-cell tra�c isolation is ensured, since the packet

scheduling function of a slice can only use PRBs assigned to that slice, thus preventing

a high-load period in a slice from a↵ecting other slices. However, since PRB assignment

may di↵er in adjacent cells, inter-cell tra�c isolation is not guaranteed. Nonetheless,

spectrum splitting is performed by minimizing the probability of assigning a certain

PRB p to di↵erent slices in neighbor cells to reduce inter-cell inter-slice interference.
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Summary (Spanish)

Este apéndice presenta un resumen en español del trabajo realizado en esta tesis. En

primer lugar, se describen los antecedentes que han motivado su realización. Durante

el discurso, se expone el estado actual de la investigación y la tecnoloǵıa, justificando la

necesidad del estudio. A continuación se plantean los objetivos de la investigación y la

metodoloǵıa de trabajo seguida. Después, se resumen los resultados obtenidos en cada

uno de los temas tratados. Por último, se identifican las principales contribuciones

originales y se adjunta la lista de publicaciones asociadas a este trabajo.

B.1 Antecedentes y motivación

Las redes de comunicaciones móviles han experimentado grandes cambios en los últimos

años. En primer lugar, el crecimiento exponencial del tráfico de datos asociado a usua-

rios en movilidad ha obligado a los operadores a aumentar la capacidad de la red. Para

ello, en la red de acceso radio (Radio Access Networks, RAN), las redes clásicas con

una capa de macroceldas se están transformando en redes multi-portadora (es decir,

con varias bandas de operación) y heterogéneas (p.ej., combinando celdas pequeñas

y macroceldas) [2]. Además, los distintos requisitos de rendimiento de los servicios

en movilidad y las altas expectativas de los usuarios han llevado a un cambio en los

procedimientos de gestión de la red, que ya no se centran en el rendimiento de la red

sino en la calidad de la experiencia del cliente (Quality of Experience, QoE) [3]. En

paralelo, la llegada de la tecnoloǵıa 5G está ampliando el modelo de negocio de los ope-

radores, que proporcionarán servicios de banda ancha móvil mejorada, comunicaciones

ultrafiables de baja latencia y comunicaciones masivas de tipo máquina a industrias

193
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verticales [4]. El 3GPP lanzó las especificaciones del estándar New Radio (NR) en la

versión 15. Para alcanzar los ambiciosos objetivos de rendimiento de 5G, en la RAN se

introducen nuevos rangos de frecuencia (p.ej., bandas milimétricas) y funcionalidades

(p.ej., multiconectividad o antenas con esquemas masivos de entrada múltiple y salida

múltiple).

Como resultado de estos cambios, el tamaño y la complejidad de las redes móviles

se han incrementado drásticamente, siendo evidente la necesidad de contar con herra-

mientas de gestión automática con mı́nima intervención humana para garantizar un

funcionamiento eficiente de la red. En la literatura, se han propuesto numerosas he-

rramientas de configuración, optimización y curación automática para la RAN de las

redes 2G (p.ej., [6] [7] [8]), 3G (p.ej., [9] [10] [11]) y 4G (p.ej., [12] [13] [14]). Las solu-

ciones clásicas para estas redes auto-organizadas (Self-Organizing Networks, SON) se

basan en modelos anaĺıticos y/o controladores heuŕısticos derivados manualmente por

expertos. Sin embargo, se prevé que este enfoque funcione mal en las redes celulares

de nueva generación por varias razones. En primer lugar, la coexistencia de servicios

con requisitos de calidad de servicio muy diferentes (p.ej., eficiencia energética, latencia

extremo a extremo, caudal o throughput...) requiere soluciones de gestión automática

orientadas al servicio. En segundo lugar, es probable que las herramientas basadas en

controladores preconfigurados no aprovechen al máximo las capacidades de todas las

redes 5G, con diferentes combinaciones de servicios (p.ej., ciudad inteligente frente a

industria 4.0), topoloǵıas (p.ej., redes heterogéneas frente a redes de macroceldas) y

configuración (p.ej., multiconectividad activada o no). Por último, las nuevas funcio-

nalidades 5G como la virtualización de la red o la segmentación de la red extremo a

extremo deben considerarse a la hora de gestionar la red [5].

Una funcionalidad que destaca especialmente por su alto impacto en el funciona-

miento y rendimiento de las redes es la segmentación de red (Network slicing, NS),

que permite la operación simultánea de varias redes lógicas independientes, diseñadas

para un propósito espećıfico, sobre una infraestructura f́ısica compartida [15]. Desde el

punto de vista de la gestión de red, con NS surgen nuevas funciones de red (Network

Functions, NFs) (p.ej., repartidores de capacidad) cuyos parámetros pueden configu-

rarse y optimizarse automáticamente. Además, a la hora de diseñar cualquier solución

de autogestión consciente de la existencia de segmentos, hay que considerar aspectos

como: a) la división de los recursos de red entre los segmentos, b) la activación, des-

activación o redimensionado de segmentos, que altera dicha división de recursos, c) la

posibilidad de adaptar o incluso omitir ciertas NFs por segmento y d) las cuestiones de
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privacidad, que pueden impedir que el sistema de gestión central de la red (MANager

and Orchestrator, MANO) acceda a la información a nivel de segmento, gestionada por

el arrendatario [16]. Además, se debe tener en cuenta que una solución de autogestión

espećıfica puede funcionar de forma diferente en distintos escenarios de NS (p.ej., redes

con segmentos multiservicio frente a aquellas con segmentos uniservicio).

Para sortear las limitaciones de las soluciones SON clásicas en las redes celulares

actuales, con los últimos avances en el análisis masivo de datos y la inteligencia artifi-

cial, es posible aprovechar los datos (p.ej., alarmas, trazas de conexión...) recopilados

en el sistema de soporte a las operaciones (Operations Support System, OSS) para de-

sarrollar herramientas de gestión 100% automáticas basadas en datos en un paradigma

de gestión de redes y servicios sin intervención humana (Zero-touch Service and Net-

work Management, ZSM)[17]. Las soluciones basadas en el uso intensivo de datos más

avanzadas para las redes ZSM emplean técnicas de aprendizaje automático, capaces de

captar las peculiaridades de cada red (p.ej., tipo de escenario, topoloǵıa, algoritmos de

gestión de recursos radio, combinación de servicios, configuración de NS...) [18] [19].

La combinación de NS y ZSM, que da lugar a redes lógicas gestionadas sin intervención

humana, ha sido reconocida como el método más eficiente para aprovechar al máximo

los activos de la red y garantizar la satisfacción del cliente en las redes de próxima

generación [20].

Existe un gran número de casos de uso SON que pueden ser mejorados con el uso

intensivo de datos de la red. Por ello, el alcance de esta tesis se ha limitado a dos casos

de uso de auto-configuración y auto-optimización muy extendidos: a) el redimensionado

de la RAN y b) el balance de carga por movilidad (Mobility Load Balancing, MLB).

El redimensionado de la RAN es una tarea fundamental para evitar cuellos de

botella de capacidad causados por cambios en los patrones de tráfico, aśı como para

evitar actualizaciones innecesarias de los recursos de la red. Para detectar posibles

problemas con antelación, las herramientas de planificación radio proactivas comparan

previsiones futuras de tráfico en la hora cargada con estimaciones de la capacidad de

la red. La predicción de tráfico a partir de datos históricos se ha abordado tradicional-

mente como un problema de análisis de series temporales (Time Series Analytics, TSA).

Este enfoque ha mostrado buenos resultados para la predicción de tráfico en redes ce-

lulares de conmutación de paquetes para distintas escalas geográficas (p.ej., red [190],

provincia [191], celda [192]) y temporales (p.ej., minutos [194], horas [192], d́ıas [190],

meses [191]). Trabajos posteriores exploran el uso de aprendizaje supervisado (Su-

pervised Learning, SL) para predecir el tráfico a corto plazo (es decir, en una escala
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temporal de segundos o minutos) y a medio plazo (es decir, en una escala temporal de

d́ıas) en las redes celulares de conmutación de paquetes, cuyos perfiles de tráfico son

mucho más complejos [21]. Sin embargo, algunas acciones de replanificación (p.ej., el

despliegue de nuevas celdas) pueden conllevar hasta varios meses. Está por comprobar

si los algoritmos de SL también mejoran el rendimiento de los métodos clásicos de TSA

para predecir el tráfico de celda a largo plazo a partir de series temporales mensuales,

que son cortas (es decir, con pocas muestras) y ruidosas.

La estimación de rendimiento consiste en predecir el desempeño de la red en un

determinado instante a partir de otra información (conocida o predicha) del estado de

la red en ese instante. En lo que respecta al aprendizaje automático, en la literatura se

ha estimado el throughput de las celdas en redes HSDPA y LTE aplicando una simple

regresión lineal múltiple [22] [23] [24] o complejas redes neuronales profundas [25] sobre

información disponible en el OSS. Sin embargo, está por comprobar el potencial de

otros modelos no lineales menos propensos al sobreajuste que las redes neuronales

profundas para estimar este indicador de rendimiento en las mismas tecnoloǵıas radio.

Asimismo, en el proceso de dimensionado deben considerarse también otras métricas de

rendimiento con mayor impacto en la QoE, como el throughput de usuario. Además,

la correlación entre indicadores de celda puede cambiar en las redes 5G segmentadas,

requiriéndose un análisis separado para este tipo de redes. En dicho análisis, se debe

abordar también la estimación de rendimiento a nivel de segmento, útil para NFs como

los repartidores de capacidad [116].

Algunas acciones de redimensionado no pueden aplicarse inmediatamente. Mientras

tanto, una forma rentable de aliviar los cuellos de botella de capacidad es repartir el

tráfico entre celdas adyacentes. El balance de carga es un caso de uso de optimización

automática muy extendido que redistribuye a los usuarios entre las celdas de la red

para hacer frente a la distribución irregular de la demanda de tráfico. Dado que esta

funcionalidad garantiza que cada usuario sea atendido constantemente por la celda más

conveniente, tiene un alto impacto en la QoE. El reparto de tráfico puede realizarse

ajustando los parámetros de las antenas, como la potencia de transmisión [26] [27].

Sin embargo, este enfoque aumenta el coste de operación y puede ocasionar huecos de

cobertura. Como alternativa, la mayoŕıa de los trabajos abordan el balance de carga a

través de la optimización de las NFs asociadas a la movilidad (también conocido como

MLB), impulsadas por parámetros lógicos (p.ej., temporizadores, márgenes de poten-

cia...) que pueden ajustarse de forma inmediata sin coste alguno. Algunos autores

optan por optimizar los parámetros de reselección de celda [28] [29]. Sin embargo,
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la opción preferida es ajustar los márgenes de traspaso, ya que este procedimiento

tiene un mayor impacto en el rendimiento de la red. Los primeros algoritmos prop-

uestos buscan equilibrar el rendimiento de la red empleando distintos tipos de contro-

ladores (p.ej., proporcionales [30] [32], lógica difusa [31][86]) y escenarios (p.ej., ma-

croceldas [30], celdas pequeñas [32], femtoceldas [86], redes multi-tecnoloǵıa [238]...).

Contribuciones posteriores proponen algoritmos de reparto de tráfico con criterios de

QoE para redes de macrocedas LTE [33] [34]. Para aprovechar al máximo la capa-

cidad en las redes celulares multi-capa actuales, este enfoque debe extenderse para

el reparto de tráfico entre capas. Adicionalmente, es necesario diseñar técnicas de

reparto de tráfico para RAN segmentadas que permitan garantizar los requisitos de

rendimiento recogidos en los acuerdos de nivel de servicio (Service Level Agreement,

SLA) en términos de throughput, latencia extremo a extremo o fiabilidad [35].

Cabe destacar que las soluciones SON orientadas al servicio, que manejan las cone-

xiones de forma personalizada, asumen un conocimiento previo del servicio demandado

por cada usuario. Además, conocer la mezcla de servicios en cada celda puede mejorar

los modelos de rendimiento usados en las herramientas de planificación radio. A la

hora de clasificar conexiones por servicio, deben tenerse en cuenta los siguientes aspec-

tos: a) el cifrado del tráfico, que impide el uso de técnicas de inspección profunda de

paquetes [36], b) la reticencia de los operadores a instalar costosas sondas para capturar

los flujos de tráfico en el núcleo de la red, y c) la escasez de datos etiquetados, que

dificulta el uso de clasificadores basados en SL como los propuestos en [93] [134]. Como

alternativa, la clasificación puede basarse en aprendizaje no supervisado (UnSupervised

Learning, USL) sobre descriptores de tráfico derivados de trazas de conexión radio.

B.2 Objetivos

El objetivo principal de esta tesis es desarrollar soluciones automáticas para los casos

de uso de auto-configuración y auto-optimización en la RAN mencionados anterior-

mente. Como aspecto diferenciador, se plantea el uso intensivo de datos disponibles en

herramientas comerciales de gestión de red. En concreto, esta tesis persigue 3 objetivos:

O1. Diseñar un sistema de clasificación de tráfico encriptado por servicio en la interfaz

radio, que permita un tratamiento personalizado por conexión en los algoritmos

MLB y que proporcione información de la mezcla de servicios para los modelos

de rendimiento usados en las herramientas de planificación radio.
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O2. Explorar el uso del aprendizaje supervisado sobre los datos recogidos en el OSS

para mejorar el rendimiento de las herramientas de planificación radio. En este

ámbito, se abordan tres tareas:

O2.1. Predicción de tráfico mensual de celda en la hora cargada a largo plazo

(es decir, con un horizonte temporal del orden de meses) a partir de series

temporales con pocas muestras y ruidosas.

O2.2. Estimación de métricas de throughput a nivel radio que reflejen la capacidad

de celda y usuario en redes LTE y HSDPA.

O2.3. Estimación de métricas de throughput a nivel radio que reflejen el rendi-

miento de celda y segmento en RANs segmentadas.

O3. Desarrollar algoritmos de MLB basados en el uso intensivo de datos orientados

al servicio para escenarios en los que este enfoque no se ha considerado en la

literatura. En este ámbito, se han cubierto dos casos de uso:

O3.1. Reparto de tráfico entre portadoras con criterios de QoE para redes LTE

multi-portadora.

O3.2. Reparto de tráfico con criterios de SLA para redes 5G segmentadas.

Un aspecto distintivo de esta tesis es la consideración de aspectos prácticos que a

menudo no se tienen en cuenta en los trabajos de investigación. Todos los modelos y

algoritmos propuestos son soluciones centralizadas concebidas para explotar las trazas

de conexión y contadores que se recopilan en el OSS de las redes celulares actuales.

Además, los algoritmos de SL se han seleccionado teniendo en cuenta la posibilidad de

no disponer de un amplio juego de datos o la reticencia de los operadores a aumentar la

carga computacional de sus herramientas de gestión de red, lo que desaconseja el uso de

modelos complejos basados en redes neuronales profundas. Por último, la evaluación

del rendimiento se ha realizado con datos de redes comerciales o, en su defecto, en

entornos realistas de simulación.

B.3 Metodoloǵıa de trabajo

A continuación se describen los pasos seguidos para la consecución de los objetivos

definidos, desglosando las peculiaridades de cada objetivo espećıfico:
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a) Definición del problema y revisión de la literatura. En primer lugar, se identifica

el conjunto de casos de uso de SON a abordar. A continuación, se revisa el es-

tado de la investigación y la tecnoloǵıa en los campos del ámbito de esta tesis.

Los principales temas estudiados son: a) las redes auto-organizadas, para identi-

ficar las limitaciones de las soluciones actuales de redimensionado y MLB, b) el

aprendizaje automático y el análisis masivo de datos, para conocer las técnicas

de preprocesado de datos y los algoritmos que se utilizarán en las herramientas

desarrolladas; y c) la tecnoloǵıa 5G, especialmente la funcionalidad de NS, para

conocer el funcionamiento de una RAN segmentada, entender su impacto en los

casos de uso abordados y garantizar que la posterior implementación de esta

funcionalidad en una herramienta de simulación esté alineada con la literatura.

b) Formulación del problema y propuesta. Una vez detectadas las lagunas de in-

vestigación, se formulan los problemas a tratar y se proponen nuevas soluciones

basadas en el uso intensivo de datos. Para O1 y O2, se propone una metodoloǵıa

para el propósito correspondiente (es decir, clasificación de tráfico, predicción

de tráfico o estimación de throughput). Para O3, las contribuciones son nuevos

algoritmos de MLB para los escenarios considerados.

c) Actualización de herramienta de simulación. Se actualiza un simulador dinámico

de nivel de sistema LTE programado en Matlab para evaluar las soluciones pro-

puestas en O2.3 y O3. Los cambios realizados más importantes son: a) la im-

plementación de un nuevo escenario realista con dos capas de macroceldas para

validar el algoritmo diseñado en O3.1, b) la inclusión de la funcionalidad de NS

para crear juegos de datos necesarios para la consecución de O2.3 y para validar

el algoritmo propuesto en O3.2, y c) la inclusión de nuevos servicios 5G con

distintos requisitos de tasa de error de bloque (Block Error Rate, BLER) y de

calidad de servicio para enriquecer la diversidad de usuarios en las pruebas reali-

zadas en O3.2. Estas actualizaciones se han validado comprobando la coherencia

de los resultados en simulaciones largas (una hora de actividad de la red). La

herramienta de simulación resultante se describe en detalle en el apéndice A.

d) Recogida, preprocesado y análisis de datos. Los juegos de datos utilizados para

O1, O2.1 y O2.2 proceden de redes celulares comerciales. El operador se encarga

de recopilar y descargar los datos del OSS. Tras ello, los datos en bruto se ex-

portan a un formato legible mediante herramientas propias proporcionadas por el

fabricante y se inspeccionan superficialmente (p.ej., para comprobar los nombres

y el significado de los campos disponibles). A continuación, los datos se prepro-
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cesan (p.ej., decodificar y sincronizar los eventos de las trazas utilizadas para O1,

crear series temporales para O2.1, calcular indicadores útiles a partir de los datos

brutos en O1, O2.2 y O2.3...). Para O2.3, a falta de juegos de datos públicos de

redes comerciales 5G con NS, los datos se generan mediante simulación, por lo

que no es necesario el preprocesado. Una vez creado el juego de datos, se lleva a

cabo un análisis estad́ıstico preliminar (p.ej., comprobación de la distribución es-

tad́ıstica de cada indicador, análisis de correlación...) y se eliminan los muestras

no válidas o at́ıpicas.

e) Evaluación del desempeño. La validación de las soluciones propuestas se realiza

con datos de redes reales o, en su defecto, con una herramienta de simulación

calibrada con datos de configuración y rendimiento de la red emulada. En to-

dos los casos, las soluciones propuestas se comparan con otras de la literatura

consideradas como referencia. Los experimentos relacionados con cada objetivo

se ejecutan en distintos entornos, como Matlab (O1, O3.1 y O3.2), SPSS Mode-

ller (O2.1) y Python (O2.2 y O2.3), mientras que el análisis de los resultados se

realiza siempre en Matlab. El uso de diferentes plataformas para las tareas de

modelado permite identificar las ventajas e inconvenientes de cada herramienta

y ofrecer recomendaciones al operador.

B.4 Desarrollo de la investigación

B.4.1 Clasificación de tráfico encriptado en redes celulares

La clasificación de conexiones por servicio se ha realizado a partir de las trazas de

conexión recopiladas en la interfaz radio. En la formulación del problema, primero se

ha presentado un conjunto de descriptores de tráfico clásicos que se pueden calcular a

partir de la información contenida en dichas trazas. Tras ello, se ha analizado el tráfico

capturado en un terminal móvil conectado a una red LTE comercial cuando demanda

aplicaciones de mensajeŕıa instantánea, navegación en distintas páginas web, descarga

de v́ıdeo progresivo y descarga de ficheros. Este experimento preliminar ha permitido

estimar el valor máximo del ratio de volumen de datos transmitido en el UL (⌘UL)

para los servicios tipo full bu↵er. También se ha señalado la dependencia de otros

descriptores de tráfico de las condiciones de la red (p.ej., esquema de control de flujo).

A continuación, se ha propuesto un nuevo esquema de clasificación de tráfico. El

método se basa en USL, concretamente en agrupamiento jerárquico aglomerativo. Por
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lo tanto, no requiere datos etiquetados, raramente disponibles en las redes móviles

comerciales. Nótese que la demanda de servicios en dichas redes no es uniforme. Para

mejorar el desempeño del algoritmo de agrupamiento ante juegos de datos desequilibra-

dos, primero se han creado 4 bloques de conexiones basados en el conocimiento previo

del valor de ciertos descriptores de tráfico clásicos (p.ej., ⌘UL) para distintos servicios.

A continuación se ha realizado el agrupamiento de las conexiones de cada bloque para

obtener una clasificación más detallada. Para evitar la influencia de las condiciones de

la red en la clasificación, el algoritmo de agrupamiento recibe como entrada un con-

junto de descriptores de tráfico novedosos que caracterizan las conexiones a nivel de

ráfaga. Dichos descriptores pueden construirse a partir de la información contenida en

las trazas mediante un modelo anaĺıtico.

La validación se ha realizado sobre un juego de trazas recopiladas una red LTE

comercial que incluye 162.965 conexiones con identificador de calidad de servicio (Quali-

ty-of-service Class Identifier, QCI) del 6 al 9, correspondientes a servicios multimedia

y basados en el protocolo de control de transmisión (Transmission Control Protocol,

TCP) [121]. En primer lugar, se ha comprobado el desempeño del algoritmo de agru-

pamiento aplicado sobre todas las conexiones simultáneamente. La incoherencia de los

resultados obtenidos ha mostrado la necesidad de dividir las conexiones en bloques pre-

viamente. El esquema de clasificación propuesto ha dividido las conexiones en 8 grupos,

que se han asociado con servicios de notificación emergente, mensajeŕıa instantánea,

intercambio de archivos, audio y v́ıdeo, servicios de tipo full bu↵er, navegación web

y redes sociales. El porcentaje de volumen en el enlace descendente (DownLink, DL)

agregado por categoŕıa es consistente con la cuota de tráfico reportada para las redes

comerciales el año en que se recogieron los datos según [157], confirmando el potencial

de los descriptores de tráfico a nivel de ráfaga para agrupar las conexiones por tipo de

servicio.

B.4.2 Estimación de rendimiento en redes de acceso radio

celulares

La estimación de indicadores de throughput radio a partir de la información disponible

en el OSS se ha formulado como un problema de regresión. Para su resolución, se ha

propuesto una metodoloǵıa basada en el uso de SL. Se ha comparado el desempeño de

algoritmos clásicos de SL basados en regresión lineal, distancia, vectores, árboles de

decisión y redes neuronales artificiales. Para reducir la complejidad de los modelos, se
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ha llevado a cabo un proceso de selección de atributos.

a) Estimación de rendimiento en redes no segmentadas

En primer lugar se han considerado las redes HSDPA y LTE. En cada tecnoloǵıa de

acceso radio (Radio Access Technology, RAT ), se ha definido un conjunto espećıfico de

predictores candidatos para estimar el throughput agregado de celda y el throughput

medio de usuario por celda en el DL (en adelante, throughput de celda/usuario en el

DL, respectivamente) en escenarios de congestión. Dichos predictores se construyen a

partir de indicadores de configuración (Configuration Management, CM) y contadores

de rendimiento (Performance Management, PM) agregados a nivel de celda. Se han

comparado seis algoritmos de SL: regresión lineal múltiple, bosque aleatorio, regresión

de vectores de soporte, k -vecinos más cercanos y perceptrones multicapa superficial y

profundo. Para cada algoritmo, se ha realizado selección de atributos con dos métodos

basados en correlación lineal y en envoltura, respectivamente.

La evaluación del desempeño se ha llevado a cabo sobre juegos de datos recopila-

dos en una red HSDPA comercial y en una red LTE comercial, respectivamente. Los

resultados han demostrado que los métodos de selección de atributos basados en en-

voltura superan a los enfoques basados en correlación lineal a la hora de encontrar el

subconjunto óptimo de predictores (y, por tanto, la información que debe recopilarse

en el OSS). En ambas RATs, los algoritmos de SL no lineales han mostrado mejor

desempeño de la regresión lineal múltiple, especialmente para estimar el throughput

de usuario. Aún más importante, el rendimiento de las redes neuronales profundas,

complejas y propensas al sobreajuste, ha sido mejorado por otros algoritmos más senci-

llos. Los mejores algoritmos han sido el perceptrón multicapa superficial para HSDPA

y k -vecinos más cercanos para LTE, con un error porcentual absoluto medio inferior al

10% cuando se estiman ambos indicadores con modelos entrenados con menos de 2.000

muestras y, como máximo, 5 predictores.

b) Estimación de rendimiento en redes segmentadas

A continuación, el análisis se ha extendido a los nuevos escenarios 5G con NS. Ante

la inexistencia de juegos de datos de redes comerciales con NS, la evaluación se ha

realizado sobre datos simulados. Para ello, se ha implementado la funcionalidad de NS

en la herramienta de simulación descrita en el apéndice A, que emula la actividad de

una red celular LTE-Advanced en un entorno realista. Se han considerado los servicios
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de llamada, descarga de v́ıdeo progresivo, navegación web y descarga de ficheros. Se

ha ejecutado un mismo conjunto de diez simulaciones en tres escenarios: un escenario

sin NS y dos escenarios con NS con segmentos uniservicio (NS SS) y multiservicio

(NS MS), respectivamente. Esto ha permitido construir tres juegos de datos a nivel de

celda (uno por escenario) y dos juegos de datos a nivel de celda-y-segmento (uno por

escenario con NS). Los juegos de datos de celda se han usado para estimar el throughput

agregado de celda en el DL, mientras que los juegos de datos por celda-y-segmento se

han empleado para estimar el throughput agregado por celda-y-segmento en el DL (en

adelante, throughput de segmento en el DL). Para ello, se ha definido un conjunto

de predictores calculados a partir de trazas radio y CM/PM agregados por celda y

por celda-y-segmento. A la vista de los resultados obtenidos en el análisis anterior,

se han descartado el algoritmo de regresión lineal y la selección de atributos basada

en correlación, y se han incluido los algoritmos basados en árboles de decisión con

potenciación adaptativa (Adaptive Boosting, AdaBoost) y potenciación extrema del

gradiente (eXtreme Gradient Boosting, XGBoost), respectivamente.

Un análisis preliminar de los tres juegos de datos a nivel de celda ha demostrado el

impacto de habilitar el NS en las relaciones entre indicadores de red y el throughput de

celda, aśı como la existencia de ciertas diferencias entre los escenarios NS SS y NS MS,

lo que justifica la necesidad del estudio y la conveniencia de realizar un análisis separado

para cada escenario de NS.

Los resultados han mostrado que, con una adecuada selección de atributos, todos

los algoritmos evaluados alcanzan un rendimiento similar y aceptable (es decir, con

error inferior al 10%) para estimar el throughput de celda en los escenarios NS SS

y NS MS. En ambos casos, el algoritmo que muestra mejor relación entre precisión

y complejidad es el perceptrón multicapa superficial, con error absoluto normalizado

medio inferior al 2% para modelos basados en cuatro predictores relacionados con

el ancho de banda, la utilización de recursos radio y la eficiencia espectral. Estos

indicadores pueden calcularse a partir de PMs/CMs agregados a nivel de celda. En

cambio, sólo los modelos basados en árboles de decisión y perceptrones multicapa han

obtenido una precisión aceptable al estimar el throughput de segmento. Además, el

desempeño ha sido peor en el escenario con segmentos multiservicio. Los mejores

modelos han sido bosque aleatorio para el escenario NS SS y el perceptrón multicapa

superficial para el escenario NS MS. Es destacable que los cinco atributos de entrada a

estos modelos no solo incluyen predictores calculados a partir de PMs/CMs a nivel de

celda, sino también predictores calculados a partir de PMs/CMs a nivel de segmento e
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información sobre la mezcla de servicios por segmento derivada de trazas de conexión.

Tras este análisis, se puede concluir que las técnicas de SL no profundas pueden

estimar métricas de throughput radio en diferentes RAT y escenarios con un rendi-

miento adecuado. Además, el hecho de que los modelos a nivel de segmento requieran

información sobre la mezcla de servicios confirma la utilidad del método de clasificación

de tráfico desarrollado en esta tesis.

B.4.3 Predicción de tráfico de celda a largo plazo

La tarea de predecir el tráfico de celda a largo plazo (es decir, con varios meses de

antelación) se ha abordado como un problema de series temporales. Como parte de la

formulación del problema, se ha presentado un análisis de la autocorrelación del tráfico

de celda a nivel horario y a nivel de la hora cargada del mes empleando datos de redes

redes LTE comerciales. Dicho análisis ha puesto de manifiesto las dificultades que

plantea la predicción de tráfico a largo plazo, basada en series temporales con pocas

muestras y ruidosas.

A continuación, se ha llevado a cabo un estudio comparativo del desempeño de

algoritmos clásicos de SL, no probados hasta ahora para este fin, frente a los enfoques

clásicos de TSA. En concreto, se han comparado seis algoritmos: media móvil auto-

rregresiva integrada con estacionalidad, Holt-Winters aditivo, regresión de vectores de

soporte, bosque aleatorio, red neuronal basada en perceptrón multicapa superficial y

red neuronal basada unidades con memoria (Long Short-Term Memory, LSTM). Un

aspecto clave al definir la metodoloǵıa de predicción ha sido la construcción de los

modelos de SL, dado que la corta longitud de las series temporales mensuales impide

entrenar un modelo espećıfico por celda.

El análisis ha constado de tres experimentos realizados sobre un juego de datos

único por su escasez, que incluye mediciones de tráfico recogidas durante dos años y

medio en una red LTE real con 7160 celdas que cubre un páıs completo. El primer

experimento ha demostrado que los algoritmos de SL superan a los TSA en precisión

y cantidad de datos históricos necesaria. El segundo experimento ha confirmado que

dichas conclusiones se pueden extrapolar a todos los meses del año, y que aumentar el

horizonte de predicción de 3 a 6 meses disminuye considerablemente la precisión. El

tercer experimento ha demostrado que es conveniente desarrollar modelos espećıficos

para celdas de alto tráfico, donde la precisión de la predicción es cŕıtica. Inespera-

damente, los modelos de bosque aleatorio y perceptrón multicapa han mostrado los
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mejores resultados (error porcentual absoluto medio del 11% en celdas cargadas), con

un rendimiento similar a la red neuronal basada en unidades LSTM diseñadas para

modelar dependencias temporales. Estos resultados confirman la limitada predictibi-

lidad del tráfico de la hora cargada del mes en comparación con las series de tráfico

horarias o diarias. Ninguno de los algoritmos considerados ha mostrado resultados

altamente precisos, especialmente para los meses de verano, con vacaciones en el páıs

donde opera la red.

B.4.4 Reparto de tráfico en redes celulares

Por último, se ha abordado la tarea de diseñar algoritmos de MLB basados en el

uso intensivo de datos que tienen en cuenta aspectos propios de cada servicio. Se

han considerado dos casos de uso: MLB entre portadoras con criterios de QoE, y

MLB en redes con NS considerando aspectos de SLA. En ambos casos, el reparto

de tráfico se ha formulado como un problema de control. Además, a diferencia de

las soluciones de reparto de tráfico tradicionales, basadas en indicadores calculados a

partir contadores agregados por celda, los algoritmos propuestos se rigen por nuevos

indicadores calculados a partir de trazas de conexión, que reflejan el rendimiento de

los usuarios individuales.

a) Reparto de tráfico basado en QoE en redes LTE multi-portadora

En primer lugar, se ha propuesto una estrategia de reparto de tráfico en redes LTE

multi-portadora que busca mejorar la QoE global del sistema. Para ello, primero se ac-

tiva un mecanismo de traspaso entre portadoras basado en la calidad de señal recibida

(Reference Signal Received Quality, RSRQ), y posteriormente se ajustan los márgenes

de traspaso por adyacencia con un algoritmo novedoso de MLB con criterios de QoE.

El ajuste de parámetros se realiza con un controlador heuŕıstico de tipo proporcional

guiado por un nuevo indicador que evalúa el impacto medio de los traspasos para todos

los usuarios servidos por las celdas de una adyacencia. Una prueba de concepto realiz-

ada en una red piloto LTE (no incluida en este documento por brevedad) ha confirmado

que dicho indicador puede construirse procesando trazas de conexión radio [252].

La evaluación del rendimiento se ha llevado a cabo con el simulador mencionado an-

teriormente, en el que se ha implementado un escenario realista con dos capas de macro

celdas. Se han considerado servicios de voz, descarga progresiva de v́ıdeo, descarga de

ficheros y navegación web. Experimentos realizados emulando diferentes escenarios de
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movilidad han demostrado que la estrategia de reparto de tráfico propuesta supera

significativamente a las técnicas clásicas de MLB basadas en equilibrar el porcentaje

de utilización de recursos radio entre celdas, mejorando la QoE global de la red en

un 19% tras 10 iteraciones. La mejora se logra traspasando el exceso de tráfico en la

capa de cobertura hacia la capa de capacidad, de modo que los usuarios aprovechan al

máximo el gran ancho de banda disponible en esta última.

b) Reparto de tráfico basado en SLA en redes de acceso radio segmentadas

A continuación, el análisis se ha extendido a escenarios 5G con segmentación. Se ha

propuesto un nuevo algoritmo de reparto de tráfico que busca aumentar el cumplimiento

de los SLAs. Para ello, el algoritmo ajusta los márgenes de traspaso intra-frecuencia

en un esquema de movilidad con parámetros definidos por segmento. El proceso de

ajuste se basa en un indicador novedoso que refleja el desequilibrio en el cumplimiento

del SLA por segmento entre celdas vecinas. En cada adyacencia y segmento, un con-

trolador independiente basado en proporcionalidad incrementa/decrementa el valor de

los márgenes de traspaso en función de dicho indicador. Para evitar acciones ineficaces

e inestabilidades en la red, el algoritmo opera solo en las adyacencias más relevantes

de la red, que se dividen en grupos compuestos por adyacencias con distintas celdas.

Cada 5 segundos, se ajustan los parámetros de las adjacencias de un grupo distinto.

La evaluación del rendimiento se ha llevado a cabo simulando la actividad de una

red con NS realista, con tres segmentos que sirven tráfico eMBB y uRLLC de usuarios

con diferentes patrones de movilidad. Para ello, se han implementado modelos de

tráfico para los servicios de transmisión de v́ıdeo en directo, comunicaciones hápticas y

conducción autónoma. El SLA por segmento se ha definido en términos de throughput

de sesión y cumplimiento de requisitos de latencia. Los resultados han mostrado el

bajo rendimiento del esquema MLB tradicional (es decir, que no considera la existencia

de segmentos) en escenarios de NS, especialmente para aquellos segmentos con baja

asignación de recursos radio. El algoritmo propuesto ha mostrando mejor desempeño

que otras estrategias de MLB por segmento, que a) no se rigen por indicadores de SLA,

o b) que no realizan agrupación de adyacencias, convergiendo en solo 15 minutos. La

mejora se obtiene equilibrando el cumplimiento del SLA a lo largo del escenario.
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B.5 Conclusiones

A continuación se exponen las principales contribuciones de esta tesis a nivel cient́ıfico,

desglosadas por problema abordado.

1) Clasificación de tráfico encriptado en redes celulares

En este ámbito, las principales contribuciones son:

a) Se ha desarrollado un modelo anaĺıtico para construir un nuevo conjunto de

descriptores de tráfico a nivel de ráfaga a partir de información contenida en

trazas de conexión radio.

b) Por primera vez, se ha propuesto un esquema de clasificación de tráfico por servicio

basado en trazas radio, que puede utilizarse sin sondas de red ni datos etiquetados,

identificar nuevos tipos de aplicaciones que surjan en la red y adaptarse fácilmente

a diferentes RATs. El método primero crea grandes bloques de conexiones a partir

de conocimiento experto, y después aplica agrupamiento jerárquico aglomerativo

sobre las conexiones de cada bloque empleando los descriptores de tráfico a nivel

de ráfaga. El criterio para la división de conexiones en bloques se ha derivado de

un análisis del tráfico de un terminal conectado a una red LTE, que ha permitido

estimar el valor de algunos descriptores de tráfico para distintos servicios.

c) La validación del método propuesto sobre un juego de trazas de una red LTE

comercial ha confirmado el potencial de los descriptores de tráfico de nivel de

ráfaga para agrupar las conexiones por servicio, aśı como la importancia de añadir

conocimiento experto a las técnicas de USL para realizar la clasificación, debido

a la demanda desigual de servicios en las redes móviles actuales.

2) Estimación de rendimiento en redes de acceso radio celulares

Esta tesis ha presentado el primer estudio comparativo del desempeño de distintos

algoritmos clásicos de SL para estimar indicadores de throughput radio a partir de

información recopilada en el OSS. Para ello, se ha adaptado una metodoloǵıa clásica

de SL a dicha aplicación (definición de atributos de entrada y salida, cifras de mérito...).

Se han comparado algoritmos basados en regresión lineal, vectores, distancia, árboles

de decisión y redes neuronales. Las principales contribuciones son:

a) Se ha evaluado por primera vez el rendimiento de algoritmos clásicos de SL no

profundos para estimar el throughput de celda y usuario en el DL en la hora
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cargada en una red LTE comercial a partir de información del OSS. Hasta ahora,

solo se hab́ıa considerado el uso de regresión lineal múltiple [23] [24] y redes

neuronales profundas [25].

b) El análisis se ha extendido a una red HSDPA comercial, donde la literatura

solo cubre la estimación del throughput de celda en el DL con regresión lineal

múltiple [22].

c) Se ha presentado el primer análisis comparativo del desempeño de algoritmos de

SL para estimar el throughput de celda y segmento en el DL en redes con NS

a partir de información recopilada en el OSS. Se han considerado dos escena-

rios diferentes de NS con segmentos uniservicio y multiservicio, respectivamente.

Como no existen redes comerciales operativas con NS, para generar los juegos de

datos se ha implementado la funcionalidad de NS en una herramienta de simu-

lación existente. Dicha herramienta es ahora un recurso muy valioso para el de-

sarrollo de soluciones SON en redes 5G segmentadas.

d) En todos los casos, se ha identificado el conjunto mı́nimo de indicadores de ren-

dimiento de la red que deben almacenarse en el OSS para la estimación.

e) Se ha presentado un análisis del impacto de la activación de la funcionalidad de

NS en la correlación entre los indicadores de red y el throughput de celda en el

DL, que justifica la inclusión de este indicador en el estudio realizado en c).

f) Los resultados han demostrado que es posible estimar las métricas de throughput

definidas en todas las redes consideradas con un rendimiento aceptable (error

inferior al 10%) a través del uso de SL no profundo sobre información recopilada

en el OSS. Para ello, debe emplearse un método de selección de atributos de

envoltura. El mejor modelo (es decir, combinación de algoritmo de SL y conjunto

predictores) puede variar en cada red concreta y para cada métrica a estimar.

Además, se ha comprobado que es conveniente proporcionar información sobre la

mezcla de servicios a los modelos de rendimiento a nivel segmento. En segmentos

multiservicio, esta información puede obtenerse procesando trazas de conexión

radio.

3) Predicción de tráfico de celda a largo plazo

En este ámbito, las principales aportaciones son:

a) Se ha presentado un análisis de autocorrelación que ha evidenciado las diferencias

a nivel de predictibilidad de las series temporales de tráfico en la hora cargada del
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mes frente a otras series con mayor resolución temporal, justificando la necesidad

de estudiar estos problemas de forma separada.

b) Se ha realizado el primer estudio comparativo del rendimiento de algoritmos

clásicos de SL frente a técnicas clásicas de TSA para la predicción de tráfico

de celda a largo plazo (es decir, en un horizonte temporal de meses) en una red

LTE comercial. Como parte de este estudio, se ha analizado el impacto de los

principales parámetros de diseño, como son la ventana de recopilación de datos,

el horizonte de predicción y el número de modelos a crear.

c) Los resultados han demostrado que los algoritmos de SL mejoran el rendimiento

de las técnicas clásicas de TSA y han confirmado la limitada predictibilidad del

tráfico de la hora cargada del mes en comparación con las series de tráfico hora-

rias o diarias, evidenciando la necesidad de seguir investigando en esta dirección.

De hecho, una extensión de este análisis realizada con posterioridad ha revelado

que la gestión de los valores at́ıpicos por serie, combinada con el suavizado o la

descomposición aditiva de las series temporales, puede mejorar las predicciones

de forma significativa. No obstante, se recomienda a los operadores almacenar

medidas de tráfico con una mayor resolución temporal a largo plazo para explotar

las capacidades de los algoritmos de SL.

4) Reparto de tráfico basado en QoE en redes LTE multi-portadora

Las principales contribuciones en esta ĺınea de investigación son:

a) Se ha desarrollado un nuevo indicador que evalúa el impacto de un evento (en

este trabajo, un traspaso entre frecuencias) en la QoE de las celdas de cada ad-

yacencia. Este indicador, derivado a partir de trazas radio, puede adaptarse para

optimizar los parámetros lógicos que controlan cualquier mecanismos de movilidad

que implique eventos como la agregación de portadoras o la multiconectividad.

b) Se ha abordado por primera vez el problema del reparto de tráfico entre celdas

vecinas que trabajan a distintas frecuencias con criterios de QoE. La estrategia

de tráfico propuesta se basa en ajustar los márgenes que controlan el proceso de

traspaso de usuarios desde las capas de capacidad a las capas de cobertura, que

se configura previamente para dispararse por el evento A3 basado en RSRQ. El

ajuste se realiza mediante un controlador heuŕıstico basado en el indicador de

cambio de QoE por adyacencia, que busca minimizar el efecto de estos traspasos

en la QoE global.
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c) Se ha presentado una comparación exhaustiva del algoritmo propuesto los métodos

de reparto de tráfico de la literatura en un simulador dinámico LTE que emula

una red realista, considerándose varios escenarios de movilidad.

5) Reparto de tráfico basado en SLA en redes de acceso radio segmentadas

Las principales aportaciones en este ámbito son:

a) Se ha desarrollado un nuevo indicador que evalúa el desequilibrio del cumplimiento

de SLA por segmento en celdas vecinas. Este indicador, derivado de trazas ra-

dio, puede calcularse para SLAs que incluyan cualquier conjunto de métricas de

rendimiento.

b) Se ha abordado por primera vez el problema del reparto de tráfico entre cel-

das vecinas en escenarios con NS con criterios de SLA. La estrategia de tráfico

propuesta se basa en ajustar los márgenes que controlan el proceso de traspaso

intra-frecuencia en un esquema de movilidad consciente de la existencia de segmen-

tos. El ajuste se realiza mediante un controlador heuŕıstico basado en el indicador

de desequilibrio de SLA por adyacencia y segmento, que busca homogeneizar el

cumplimiento de SLA en la red.

c) Se ha presentado una comparación exhaustiva del rendimiento del algoritmo pro-

puesto frente a otros métodos de reparto de tráfico de la literatura, tanto en su

versión original como adaptados a la existencia de segmentos, a través de la simu-

lación de una red con NS realista con segmentos que ofrecen servicios eMBB y

uRLLC.

Aun siendo concebidas para ser ejecutadas de manera centralizada, todas las solu-

ciones propuestas aqúı pueden implementarse en una arquitectura SON distribuida

siempre que exista una interfaz entre las estaciones base. Por ejemplo, el esquema

de clasificación del tráfico puede aplicarse por celda. Del mismo modo, el indicador

de cambio de QoE por adyacencia que dirige el algoritmo MLB inter-frecuencia pro-

puesto puede calcularse fácilmente si las estaciones base pueden intercambiar datos.

Por último, los modelos que requieren aprendizaje supervisado pueden entrenarse con

aprendizaje federado [255]. En los escenarios de NS, el uso de aprendizaje federado

también podŕıa ser útil para resolver posibles problemas de privacidad que impidan a

los operadores acceder a la información del rendimiento de los segmentos [255].
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celulares”, XXXVII Simposio Nacional de la Unión Cient́ıfica Internacional de

Radio (URSI 2022), Málaga (España), sep. 2022.

[XXVIII] C. Cerezo, S. Luna, A. Durán, M. Toril, C. Gijón, “Gestión de valores anómalos
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classification using deep learning: Experimental evaluation, lessons learned, and

challenges,” IEEE Transactions on Network and Service Management, vol. 16,

no. 2, pp. 445–458, 2019.

[93] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapè, “MIMETIC: Mobile encryp-
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[242] L. C. Gimenez, I. Z. Kovács, J. Wigard, and K. I. Pedersen, “Throughput-based

tra�c steering in LTE-Advanced HetNet deployments,” in IEEE 82nd Vehicular

Technology Conference (VTC-2015-Fall), 2015, pp. 1–5.

[243] P. Reichl, S. Egger, R. Schatz, and A. D’Alconzo, “The logarithmic nature of QoE

and the role of the Weber-Fechner law in QoE assessment,” in IEEE International

Conference on Communications, 2010, pp. 1–5.

[244] M. Fiedler, T. Hossfeld, and P. Tran-Gia, “A generic quantitative relationship

between quality of experience and quality of service,” IEEE Network, vol. 24,

no. 2, pp. 36–41, 2010.

[245] I. Da Silva, G. Mildh, A. Kaloxylos, P. Spapis, E. Buracchini, A. Trogolo, G. Zi-

mmermann, and N. Bayer, “Impact of Network Slicing on 5G Radio Access Net-

works,” in 2016 European conference on networks and communications (EuCNC).

IEEE, 2016, pp. 153–157.

[246] Q. Liao, T. Hu, and D. Wellington, “Knowledge Transfer in Deep Reinforce-

ment Learning for Slice-Aware Mobility Robustness Optimization,” arXiv pre-

print arXiv:2203.03227, 2022.

[247] 3GPP, “LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical

layer; Measurements,” in TS 136.214, version 14.2.0, 2017.

[248] J. Kurjenniemi, T. Henttonen, and J. Kaikkonen, “Suitability of RSRQ measure-

ment for quality based inter-frequency handover in LTE,” in IEEE International



BIBLIOGRAPHY 241

Symposium on Wireless Communication Systems, ISWCS’08. IEEE, 2008, pp.

703–707.

[249] M. Kazmi, O. Sjobergh, W. Muller, J. Wierok, and B. Lindo↵, “Evaluation of

inter-frequency quality handover criteria in E-UTRAN,” in IEEE 69th Vehicular

Technology Conference (VTC-2009-Spring), 2009, pp. 1–5.

[250] I. Petrut, M. Otesteanu, C. Balint, and G. Budura, “Hetnet handover perfor-

mance analysis based on RSRP vs. RSRQ triggers,” in IEEE 38th International

Conference on Telecommunications and Signal Processing (TSP), 2015, pp. 232–

235.

[251] 3GPP, “Technical Specification Group Radio Access Network; Evolved Universal

Terrestrial Radio Access (E-UTRA); Mobility enhancements in heterogeneous

networks,” in TS 36.839, version 11.1.0, 2012.

[252] C. Gijón, S. Luna-Ramirez, and M. Toril, “Un nuevo criterio basado en calidad

de experiencia para el balance de carga en redes LTE,” in XXXIII Simposio

Nacional de la Unión Cient́ıfica Internacional de Radio (URSI 2018). URSI,

2018.

[253] S. Luna-Ramı́rez, M. Toril, M. Fernández-Navarro, and V. Wille, “Optimal tra�c

sharing in GERAN,” Wireless Personal Communications, vol. 57, no. 4, pp. 553–

574, 2011.

[254] P. Popovski, J. J. Nielsen, C. Stefanovic, E. De Carvalho, E. Strom, K. F. Trill-

ingsgaard, A.-S. Bana, D. M. Kim, R. Kotaba, J. Park et al., “Wireless access for

ultra-reliable low-latency communication: Principles and building blocks,” IEEE

Network, vol. 32, no. 2, pp. 16–23, 2018.

[255] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges,

methods, and future directions,” IEEE Signal Processing Magazine, vol. 37, no. 3,

pp. 50–60, 2020.

[256] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer learning,”

Journal of Big data, vol. 3, no. 1, pp. 1–40, 2016.

[257] S. Ruder, “An overview of multi-task learning in deep neural networks,” arXiv

preprint arXiv:1706.05098, 2017.



242 BIBLIOGRAPHY

[258] J. L. Bejarano-Luque, M. Toril, M. Fernandez-Navarro, C. Gijon, and S. Luna-

Ramirez, “A deep-learning model for estimating the impact of social events on

tra�c demand on a cell basis,” IEEE Access, vol. 9, pp. 71 673–71 686, 2021.

[259] B. Brik and A. Ksentini, “On predicting service-oriented network slices perform-

ances in 5G: A federated learning approach,” in 2020 IEEE 45th Conference on

Local Computer Networks (LCN). IEEE, 2020, pp. 164–171.

[260] Y. Singh, “Comparison of Okumura, Hata and COST-231 models on the basis

of path loss and signal strength,” International journal of computer applications,

vol. 59, no. 11, 2012.

[261] 3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station

(BS) radio transmission and reception,” in TS 36.104, version 15.2.0, 2018.

[262] J.-H. Rhee, J. M. Holtzman, and D.-K. Kim, “Scheduling of real/non-real time

services: adaptive EXP/PF algorithm,” in The 57th IEEE Semiannual Vehicular

Technology Conference, 2003 (VTC-2003-Spring), vol. 1. IEEE, 2003, pp. 462–

466.

[263] 3GPP, “New Radio (NR); User Equipment (UE) radio transmission and recep-

tion; Part 1: Range 1 Standalone,” in TS 38.101-1, version 17.2.0, 2021.

[264] M. Abu-Tair and A. Marshall, “An empirical model for multi-contact point haptic

network tra�c,” in Proc. of the 2nd International Conference on Immersive Tele-

communications, 2009, pp. 1–6.

[265] O. Nassef, L. Sequeira, E. Salam, and T. Mahmoodi, “Building a lane merge

coordination for connected vehicles using deep reinforcement learning,” IEEE

Internet of Things Journal, vol. 8, no. 4, pp. 2540–2557, 2020.

[266] ITU-T, “Vocabulary for performance, quality of service and quality of expe-

rience,” in Recommendation P.10/G.100, 2017.

[267] R. K. Mok, E. W. Chan, and R. K. Chang, “Measuring the quality of experience of

HTTP video streaming,” in IFIP/IEEE International Symposium on Integrated

Network Management (IM). IEEE, 2011, pp. 485–492.

[268] J. Navarro-Ortiz, J. M. Lopez-Soler, and G. Stea, “Quality of experience based

resource sharing in IEEE 802.11 e HCCA,” in 2010 European Wireless Conference

(EW). IEEE, 2010, pp. 454–461.



BIBLIOGRAPHY 243

[269] F. Khan, LTE for 4G mobile broadband: air interface technologies and perfor-

mance. Cambridge university press, 2009.
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