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A B S T R A C T

The gaming industry has proposed the concept of Cloud Gaming (CG), a paradigm that enhances the gaming
experience on reduced hardware devices. However, this paradigm puts a lot of pressure on the communication
links that connect the user to the cloud. As a result, the service experience becomes highly dependent on
network connectivity.

In this context, the present work proposes a framework for measuring and estimating the most important
E2E (end-to-end) metrics of the CG service, namely Key Quality Indicators (KQIs). Therefore, different machine
learning (ML) techniques are evaluated to predict KQIs related to the CG user experience. For this purpose, the
most important KQIs of the service, such as input lag, freezes or perceived video frame rate, are collected in a
real network deployment. The results show that ML techniques can be used to estimate these indicators solely
from network-related metrics. This is seen as a valuable asset for the delivery of CG services over cellular
networks, even without access to the user’s device, as it is expected for telecom operators.
1. Introduction

The entertainment sector has recently experienced tremendous
growth thanks to multimedia services such as gaming. This industry
has been positioned in recent years as one of the main sources of profit
in the leisure sector [1].

The gaming sector has been able to catch people’s attention by
extending the original goal pursued since its foundation: offering a
virtual world where players can perform a myriad of actions as well
as interacting [2] and socialising with other users [3]. These virtual
worlds are getting closer and closer to reality, ranging from sharper
2D environments to 3D augmented and virtual scenarios. Nonetheless,
rendering these environments to the player requires computationally
demanding tasks. This means that users are forced to invest large
amounts of resources in devices that can immerse them in such realistic
environments.

As a result, the gaming industry is trying to take advantage of the
high performance capabilities of cloud computing through the Cloud
Gaming (CG) paradigm [4]. This concept aims to move the execution
of rendering tasks to the cloud, turning user devices into thin clients. In
this way, the only role of the user device is to be the interface between
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the user and the virtual world. This means the collection of user input
actions and the display of video scenes generated by the remote server,
where the environment is being rendered.

In this way, users can play almost any game, anywhere, anytime,
on any device, since decoding is supported by the huge mass-produced
chips included in the cheapest devices on the market. Moreover, this
paradigm allows the introduction of Game on Demand (GoD), which,
in addition to avoiding the installation of games, opens up new ways
of commercialisation (e.g. via subscription) [5].

When it comes to game companies, CG implies a strong asset for
combating piracy, since a game copy will never be downloaded in users’
devices. Additionally, this concept eases platform compatibility issues,
which might also reduce game production costs.

As its main drawback, CG makes the service to become completely
network dependent. Conversely, traditional games only required a sim-
ple network connection to enable online multiplayer, allowing users to
interact, despite their geographical location. In this sense, the informa-
tion usually sent in classic online games ranges from the player’s action
and position to the clothing or object that each character is wearing
at any given moment. This information typically involves exchanging
small packets.
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Conversely, in CG, the fact that the environment is rendered in
a remote server leads to a huge increase in network traffic demand:
the demanding latency requirements hinder the application of content
compression techniques, increasing the volume of data compared to
traditional video services. In addition, the interactive nature of video
games makes this paradigm more sensitive to network latency than
other streaming services [6]. Consequently, the network is the most
critical element in CG performance.

In this context, fifth generation (5G) mobile networks can boost
CG services. The high data rates and low latency values expected with
the service categories introduced and supported by 5G (i.e. Enhanced
Mobile Broadband (eMBB) and Ultra Reliability and Low Latency Com-
munications (URLLC)) place this new technology as the key to enabling
the CG paradigm [7].

This, together with improvements in cloud infrastructure, has at-
tracted the interest of many of the largest technology companies,
which have launched their own CG services, such as Playstation Now
(Sony) [8], Nvidia GeForceNow [9], Amazon Luna [10] or Microsoft
xCloud [11]. At the same time, telecom operators have identified
these platforms as a potential way to offer exclusive services to their
customers, which could be a key differentiator in the market.

However, network management becomes extremely complex in the
scenarios introduced by 5G. Consequently, the use of Self-Organising
Networks (SON) algorithms together with Machine Learning (ML)
techniques are highlighted as the main solution to cover these tasks
[12–15]. Together with SON, network operators are beginning to adopt
a new management strategy based on Quality of Experience (QoE). In
this trend, the network is configured and optimised based on service
Key Quality Indicators (KQIs) [16,17], with the aim of improving the
quality of service perceived by the user.

Nevertheless, the collection of these End-to-End (E2E) metrics is a
challenging task. On the one hand, access to device data is generally
limited and implies a potential threat to the confidentiality of user
data. On the other hand, the increasingly adoption of security protocols
hinders their calculation from traditional techniques such as packet
inspection.

Therefore, this paper aims to contribute in two ways. Firstly, to
provide a measurement framework to solve the difficult task of ex-
tracting E2E metrics from the CG service. In this respect, the main
factors affecting the user experience are described, highlighting some
of the most important KQIs for the service. Secondly, to facilitate the
integration of service information into network management tasks. To
this end, an ML-based approach is presented that enables the estimation
of KQI metrics from available network information.

The rest of the present article is organised as follows. Section 2
presents related works and exposes the main contributions of this work.
Section 3 introduces the most important KQIs for CG services. Based
on that, Section 4 describes a framework for gathering these metrics.
Then, Section 5 presents a ML approach to building regression models
that estimate CG KQIs. Subsequently, Section 6 provides an evaluation
of the ML regression techniques considered. Finally, Section 7 shows
the conclusions and future research lines.

2. Related work and contributions

Since interaction is the main attraction of games, the QoE of online
and CG is highly dependent on system response, thus on network
latency. This has been extensively covered in the literature. In [18]
the authors present a Mean Opinion Score (MOS) study in which they
show the high impact of network latency and packet loss on the QoE of
CG. Following this line, the authors in [19] show the lineal correlation
between network latency and MOS degradation using both an objective
and subjective study. Raeen et al. [20] show in their study that the
majority of gamers are unable to distinguish response times below
40 ms. However, they also indicate that about half of casual gamers
cannot tolerate service response times above 100 ms.
2

In the same line, the authors in [21] study how gamers adapt to
different delay variations using both objective and subjective methods.
The results show that users can adapt to a constant delay, while
frequent delay variations annoy gamers. Furthermore, [22] examines
the influence of user strategy on delay sensitivity. It concludes that the
effect of delay sensitivity on QoE is independent of the strategy chosen
by the gamer to complete a task.

Other works such as [23–25] have studied the impact of network
latency on these services depending on the type of game, e.g. action,
puzzle, etc. Focusing on online games, the authors in [23,25] show
the importance of latency in user performance, suggesting that latency
perception is determined by the precision and deadline of the game
action. Actions with high precision and tight deadlines (e.g. first-person
shooters) are more sensitive to latency than those that require low
precision and do not have immediate deadlines (e.g. strategy games).
Similarly, [26] shows the pronounced effects that first-person shooters
have on player performance.

Using OnLive CG platform, Quax et al. [24] provide a qualitative
comparison among action, strategy, puzzle, and racing types, pointing
to action-oriented games as the most critical in terms of latency.
Likewise, authors in [27] develop a model to predict different game
strictness based on the rate of players’ inputs and the game screen dy-
namics, easing the detection of a CG’s latency sensibility. An extended
prediction model is provided in [28], where the authors use other
game characteristics such as temporal and spatial accuracy, degree
of freedom, consequences, importance of actions, number or required
actions among others.

Conversely, Slivar et al. [29] show through an empirical QoE study
that CG services are more sensitive to network conditions than online
games. By testing both paradigms under different network conditions,
they conclude that CG services suffer more degradation in terms of user
experience than a traditional gaming architecture. They also highlight
the importance of ensuring adequate video quality. The latter fact is
taken into account in the MOS study conducted by the authors in [30],
where video quality is positioned together with input sensitivity as a
primary feature to calculate CG QoE.

Authors in [31] assess the performance of some thin clients such
as UltraVNC and TeamViewer within the CG concept. Based on the
graphic quality as well as the image fluency, they show that this kind
of widely extended platform for remote desktop purposes is not able to
support CG, since low values of frame rate are reached. Additionally,
Claypool et al. [32] present the important role that the network plays in
streaming parameters through their study of CG traffic features. Based
on bitrate, frequency and volume of data, their study shows that a
poor network quality (in terms of high packet loss rate and insufficient
bandwidth) leads to poor quality of the service.

In this context, network operators pursue the provision of CG ser-
vices with the best QoE possible. Nonetheless, the complex architecture
presented by the latest cellular networks, together with the provision
on the same infrastructure of multiple services with heterogeneous
requirements, make network management tasks extremely complex. In
this sense, optimised network management is becoming increasingly
important to offer a good service.

Here, authors in [33] provide an algorithm for the adaptive provi-
sion of CG at edges. Along the same lines, in [34], deep-reinforcement
learning is used for an adaptive resource allocation in the edge. Authors
in [35] analyse the cross-correlation between network parameters and
the subjective and objective QoE . This study concludes that the level
of end-user satisfaction based on QoS information can lead service
providers to wrong conclusions.

In order to avoid that, some studies have focused on KQIs, which
provides an E2E vision of the quality of the service. Herrera et al. [16]
focus on FTP (File-Transport-Protocol) services to present a useful KQI
modelling for the management of new generation mobile networks.
Similarly, in [17] the authors propose a system based on video KQI

estimation to support network slicing negotiation.
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Fig. 1. Quality indicators in an image sequence.
To the best of our knowledge, there are no works in the literature
that help the provision of CG services based on objective E2E metrics
(i.e. KQIs). In this scope, the contribution of this paper is twofold.

Firstly, it is proposed a framework for measuring KQI from CG
services. The novelty here resides on the use of the device’s graphical
driver for collecting data. This avoids complex and expensive setups
based on external devices, such as high-speed cameras, to collect infor-
mation from the service [26]. Likewise, it allows the collection of KQIs
at the end point of service delivery, providing a very accurate view
of E2E service performance. This differs from the framework proposed
in [36], where metrics are only collected from the CG client.

Secondly, the use of regression models to facilitate the integration
of E2E data into the CG architecture. In this respect, standard ML tech-
niques have been assessed for estimating KQIs from readily available
radio network metrics.

3. Cloud gaming quality indicators

The gaming industry has been able to offer a new type of entertain-
ment thanks to the immersive nature of its services. This differentiation
from other services results in a variety of factors affecting service
QoE [37]. On the other hand, the definition of KQIs provides informa-
tion on the E2E performance of the service. Thus, KQIs are metrics that
allow to objectively measure and evaluate different aspects of perceived
service quality.

Although QoE and KQI are different concepts, they are closely
related. They allow the quality of a service to be assessed in different
network contexts. For example, high input lag may negatively affect
the QoE of a CG user. However, the degree to which the value of this
KQI (i.e. input lag) degrades QoE is subjective and depends on other
factors external to the network, such as the type of game played [37].

In this regard, based on visualisation and interaction with the game,
this work considers three of the most important KQIs that provide
valuable information about the CG service. Each of them are described
in the following subsections.

3.1. Visualisation

The various challenges posed by games, as well as the events taking
place in the virtual world, are perceived by users through film scenes.
In this way, the visualisation of the scenario is fundamental to the
3

gaming experience. It is often based on image resolution, frame rate
and freezing.

Firstly, image resolution describes the granularity of the digital
image. This means that a higher resolution usually results in a more
detailed scene, hence, a better user experience. Nowadays, the most
popular resolutions are 720p (High Definition — HD), 1080p (Full High
Definition — FHD), 1440p (Quad High Definition — QHD) and 4K
(Ultra High Definition — UHD).

The number of frames per unit of time (e.g. frames per second —
fps) used to represent the scenario sequences then becomes one of
the most important elements considered by players. Fig. 1 shows the
different effects that using different numbers of frames in a scene has
on the CG QoE services. Therefore, as can be seen in Fig. 1, a higher
number of frames means that they are updated in a shorter period
of time. This improves the user experience by providing a more fluid
and therefore realistic moving display. This is usually described by the
frame rate metric, whose values indicate the number of frames per
second (fps) used in a video rendering.

Finally, the term ‘‘freeze’’ is used when the same frame is displayed
several times. This is caused by the lack of new frames to display.
These events usually have an extremely negative impact on the game
experience. They give the feeling of a frozen image, which breaks the
fluidity of movement. They also tend to be very annoying, as users may
lose control of important events in the environment and lose the game.

Traditionally, all of these indicators are usually dependent on the
CPU (Central Processing Unit) and GPU (Graphics Processing Unit)
capabilities of the user’s devices. These are responsible for rendering
the virtual environment. Nonetheless, in CG, the network connection
takes the leading role in the values of these indicators, since all the
rendering tasks are moved to the cloud. This means that all content
displayed to the player is sent over the network.

3.2. Interaction

The main pillar of games lies in the attractive and addictive pos-
sibility given to users to interact with the virtual world. As a result,
one of the most critical parameters to take into account in gaming
services is the responsiveness of the system, i.e. the time it takes from
the user sending an action to its visualisation (see Fig. 1). This indicator
is commonly known as input lag or latency.

In traditional games, input lag is basically related to the time taken
by the user’s devices to render the different scenes. In addition, as
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can be seen in Fig. 1, the frame rate also affects the responsiveness
of the service. A higher frame rate allows a new frame to be seen
sooner. This means that the response time of the system is reduced,
which is the main reason why regular gamers always try to achieve
high data rates. Similarly, input lag has been linked to the network
with the introduction of online multiplayer. In this context, most of the
response time of the system is caused by sending the user’s metadata to
a common server, which must be accessible to all players sharing the
virtual world.

CG response time is generally monopolised by the delay introduced
by the network into the data trading process. However, the volume of
data exchanged in CG scenarios is much greater than in multiplayer,
putting more pressure on the network link. This means that latency
values are highly dependent on the capabilities of the link. In addition,
visualisation settings also affect the input latency of CG systems: send-
ing content at a higher resolution or frame rate puts more stress on the
network, which can become congested and increase system latency.

4. Measuring key quality indicators

KQI metrics are presented as a quantitative alternative to QoE
for obtaining information about service E2E performance. Using them
provides a numerical way to represent the quality perceived by the end
user. Nonetheless, obtaining these high-level metrics is usually a diffi-
cult task, mostly triggered by the limited access to the application data.
With this in mind, this section describes a Python-based framework for
extracting various KQIs from CG services.

4.1. Metrics extraction

For the extraction of the data, a controlled environment has been
created over Moonlight client [38]. This platform is an open-source
implementation of Nvidia’s GameStream protocol. Besides, it enables
content streaming up to 4K resolution at 120 fps over the RTP protocol
(Real-time Transport Protocol).

In this sense, the controlled environment consists of a one-minute
League of Legends game in which the user’s screen is captured by the
graphics driver. This is done using a Python script that also timestamps
each frame it captures. Here, only the specific area where the action
took place is monitored. This is known as the Area of Interest (AoI).
By taking it into account, the amount of processing required to capture
what is on the screen is reduced, while the frame rate is increased to
144 frames per second.

Along the gameplay, 5 actions are automatically sent by the au-
tomatic action tool presented in [36], which allows to replicate the
actions of the user. Furthermore, at the beginning of each session, the
visualisation settings used to stream the game (i.e. resolution and frame
rate) are set.

At the end of the session, the RGB matrices of each frame are stored.
They are then processed to provide high-level service information
(i.e. KQIs) such as effective frame rate, freezes or system input delay.
Note that the RGB matrices correspond to the decoded frames, so all
the processes described below are independent of the codec.

4.1.1. Effective frame rate
Although the server renders and transmits the scene at the frame

rate set at the beginning of the session, the transmission of the content
over the network may differ from the frame rate visualised in the
user’s device. In this paper, this is referred to as the effective frame
rate (EFPS). To measure EFPS, the session is analysed frame by frame,
deleting those that are not different from their predecessors. Then, once
the entire session has been examined, the total number of frames is
divided by the session time. This gives the frame rate at which the game
has been displayed on the user’s device.
4

Fig. 2. Decimation process.

4.1.2. Freeze occurrences
As with the effective frame rate, sending rendered content over the

network can affect the fluidity of the scene. Some events, such as packet
loss or jitter, can affect the rendering of all the frames in the scene,
causing it to freeze. In this respect, the calculation of freeze events is
very similar to the effective frame rate method: each frame of the scene
is analysed to identify successive frames that are identical.

This analysis is based on game animations, which are continuous
movements that are part of the game experience. The aim of animations
is to provide the user the feeling that the scene continues moving even
when no action is being performed or nothing is happening. This means
avoid the false feeling of a frozen scene. Consequently, animations
causes small differences between frames, so freeze will be detected
when two consecutive frames do not differ in terms of RGB matrix.
Besides, by using the timestamp on each frame, it will be easy to
determine how long the same frame has been displayed on the user’s
device.

Likewise, capturing rate plays a paramount role in the detection
of freeze events. As shown in Fig. 2, a higher capture rate than the
rendered scene rate will cause some frames to be the same between
them, leading the algorithm to trigger a false freeze (false positive
detection). To avoid this, a decimation process is required. This means
that frames are discarded until the capturing frame rate matches the
rendered one (see Fig. 2). In this way, by adjusting the capturing
frame rate, the algorithm is able to correctly detect the freeze that has
occurred in the scene (i.e. true negative and positive detection).

4.1.3. Input lag
The measurement of the input delay is a challenging task due to

the inclusion of the user action in its calculation. In this sense, it is
necessary to consider the time between the user performing the action
and the time of its display, namely 𝑡1 and 𝑡2 respectively.

For the former (i.e. 𝑡1), the timestamps of the actions are collected
by an automatic action tool [36]. The latter (i.e. 𝑡2) is obtained through
the detection of motion on the screen, which is done by processing the
content that is displayed on the AoI.

In this sense, all the frames of the session are analysed one by one
in order to find those that differ by 25% from their predecessor. The
value of this threshold is determined by studying the impact of all
possible actions of the game on the decoded frames. This threshold
hence provides the optimum level of sensitivity for the identification
of the first frame in which the action is represented. Likewise, it also
avoids false detections caused by game animations.

To speed up the process, the frames are divided into different
subsets corresponding to each action performed during the session. This
parallelises the process and facilitates correlating the motion detected
with the action performed, i.e. finding 𝑡2 for each 𝑡1. In this way, it is
possible to correctly identify the exact frame and time in which each
action is represented, and therefore to obtain the absolute response
time of the system through the difference between the two timestamps.
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Table 1
Dataset summary.

Source Indicator Unit Min Mean Max Std.Variation Description

CG session’s quality
CGlatency ms 30.59 87.43 498.65 36.35 50th-tile of the input lag of the whole session.
FreezePercent % 0 8.7 100 17.6 Percentage of the session with a frozen image.
EFPS fps 0.1 57.09 116.17 29.75 User’s perceived frame rate.

CG server Resolution – 720p – 4K – Resolution set in the server for the CG session
fps fps 30 – 120 – Frame rate set in the server for the CG session

UE

PING_avg ms 1 74.88 895 84.63 Round-trip-time between UE and server during the session
PING_Radio_Loss% % 0 0.23 25 1.27 Ping percentage loss in the radio part.
PING_Host_Loss% % 0 0.61 25 2.02 Ping percentage loss in the whole path.
RSRP dBm −104 −71 −50 13.06 Avg. received power from the reference signal.
RSRQ dB −8 −4.1 −3 1.1 Quality of the received reference signal.
RSSI dB −95 −56.51 −51 8.5342 Strength of the received radio signal.
SINR dBm 6 17.52 26 6.85 Signal-to-interference-plus-noise ratio.

BS

n_rb_dl RB 25 – 100 – No. available resource blocks (RB) to assign.
cqi – 0 12 15 2.53 Channel quality indication reported.
pucch_snr dBm −11.39 14.66 44.14 15.92 PUCCH SNR reported to the Base Station.
pusch_snr dBm −25.78 15.57 36.65 8.67 PUSCH SNR reported to the Base Station.
Fig. 3. Considered CG scenario.

4.2. Dataset building

A dataset of CG KQI metrics has been built by considering the mea-
suring framework previously described. Fig. 3 shows the CG scenario
used to generate the data.

The scenario uses a laptop as a CG thin client. It runs the controlled
environment introduced in Section 4.1. This laptop uses a Customer
Premises Equipment (CPE) to reach the CG server via an LTE connec-
tion. In terms of network, the CPE is seen as an User Equipment (UE).
The CG server is located on the backhaul of the LTE network and is
equipped with an Nvidia RTX 2070 Super GPU, which enables content
streaming using Moonlight Gamestream.

The LTE network supporting the CG service is deployed via a
network-in-a-box solution. This is based on Software-Defined Radio
(SDR) and General Purpose Processor Platforms (GPPP) to integrate
all the entities that comprise a cellular network into a single device.
This includes the Base Station (BS) and a complete Core Network (CN).
In this respect, Amarisoft software is used for the deployment of all
network elements in accordance with Release 15.

Simultaneously, the network-in-a-box device is complemented by
the network framework presented in [39]. This framework increases
the configurability of the deployed network by running on top of the
device. It also enables the creation of different radio scenarios, as well
as the collection of network information.

So, considering only one BS and one UE, the network has been
configured with 4 radio Physical Resource Blocks (PRBs) allocations
(25, 50, 75 and 100) and different radio conditions (e.g. different power
transmissions or interference). This results in up to 16 network scenar-
ios. For each of the network scenarios, the CG controlled environment
described in Section 4.1 has been run with 4 resolutions (720p, 1080p,
1440p and 4K) and 3 different frame rate values (30, 60 and 120 fps).
Here, a single session minute is sufficient, thanks to the control of the
network supporting the service. This makes it possible to guarantee
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the same network behaviour for all game sessions in a given network
scenario.

Table 1 gives a summary of the 16 parameters that make up the
dataset, including the source of each metric. Moreover, it shows the
minimum, maximum and mean values, together with the standard
deviation, that each parameter takes along the 3840 samples that make
up the dataset. This dataset is publicly available in [40] and more
information about it can be found in [41].

5. Estimation of key quality indicators

As seen in Section 4.1, measuring the CG KQI involves several pro-
cesses that consume large amounts of computing resources (e.g. screen
capture, frame decimation, or input lag calculation). Although these
processes do not affect the performance of the service, they do intro-
duce some delay in the data collection phase. In addition, the execution
of these processes is restricted to a controlled environment where access
to the CG client is available.

These two aspects hinder the integration of service information
(i.e. KQIs) into network management processes. This encourages the
use of ML techniques to obtain these CG KQIs in other environments
without involving the game client. Fig. 4 shows the pipeline of this
ML approach. The goal is to create regression models that are able
to estimate the CG KQIs from easily accessible network parameters.
For this purpose, the models are trained in an offline phase. Then, in
an online phase, they will provide service information based on the
estimation of current network parameters.

In this way, the first step is to pre-process the data injected from the
measuring framework presented in Section 4. This involves standardis-
ing the values and dividing them into training and test subsets.

Based on the training subset, several models following different ML
approaches are created for the estimation of each KQI. To do this, a
grid search is used to find the configuration (i.e. hyperparameter) with
which the models best fit the data to be predicted.

Using these configurations, the different models are trained using
both all the input features of the dataset and a meaningful subset
of them using Feature Selection (FS). This selection is carried out
according to the highest scores with which the different features are
weighted. In addition, the source of the different features (e.g. UE or
BS) is taken into account. This allows the evaluation of predictions from
only one part of the overall architecture.

Once all the models have been trained, their performance in terms
of accuracy and prediction time is evaluated using the test subset. Then,
in the online phase, the selected models could then be integrated into
different parts of the CG architecture, such as the UE or BS, where they
are expected to have a direct impact on the service.

In this context, following subsections will provide a more detailed
description of the offline stage.
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Fig. 4. KQI estimation pipeline.

5.1. Data pre-processing

As it can be seen in the Table 1, the different indicators come
from heterogeneous sources (e.g. UE and BS). Furthermore, they show
different ranges (e.g. SINR from UE shows values from 6 to 26, while
pusch_snr takes values between −25 and 36) and units (e.g. PING_avg
and RSRP are measured in ms and dBm respectively).

In this context, the application of standardisation techniques plays
an important role. These techniques allow the dataset to be overlaid in
order to put all the inputs on the same scale. This facilitates the analysis
of the features used for modelling, leading to faster convergence of the
different ML algorithms.

Accordingly, in this work, the data are standardised according to a
Min-Max Scaler. This method regularises the data to unit variance as
follows:

𝑥𝑖−𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
, (1)

where 𝑥𝑖 is the original value of the parameter, 𝑥𝑚𝑎𝑥 is the maximum
value along the entire dataset, and 𝑥𝑚𝑖𝑛 is the minimum value.

Additionally, the dataset is randomly split into training and test
subsets, containing 70% and 30% of the samples respectively.

5.2. Estimation model building

Model building is the most important step in performing a high-
accuracy estimation. This section outlines the techniques considered,
as well as the steps taken to build various regression models.

5.2.1. Machine learning techniques
As this approach aims to estimate high-level metrics (i.e. KQI),

which are difficult to obtain in uncontrolled situations, from other
metrics, which are easily obtained in any situation, supervised learning
(SL) techniques are considered.
6

SL approaches map one or more inputs to an output by analysing a
set of examples. These examples, which are used to train the different
techniques, are known as labelled data.

In this scope, six of the most extended SL techniques are considered
in this approach:

• Linear Regression (LR) is a mathematical procedure commonly
used to approximate the relationship between a dependent vari-
able and one or more independent variables. This is done by
finding the linear combination of features that minimises the
residual sum of squares between the actual and predicted values.

• K-Neighbours Regression (KNR) is a regression based on the K-
Nearest Neighbours (KNN) algorithm. This algorithm uses the
similarity of the features to predict the values. This means that
the prediction is assigned to a point based on how similar it is to
the k points (or neighbours) in the training set. Finally, the value
of the prediction is assigned by an average (or weighting) of the
different neighbours.

• Support Vector Regression (SVR) follows to obtain a hyperplane
that fits most of the data samples. This is done by transforming the
data into a higher dimensional space using a set of mathematical
functions (also called kernel). This makes it easier to define and
search for an optimal regression hyperplane. At the same time,
based on a tolerance parameter 𝜖, bounds are defined around
the hyperplane with the aim of neglecting any variation within
these margins. In this way, unlike other regression methods, SVR
attempts to minimise the generalised error within a range.

• Kernel Ridge (KRR) is a regression approach, like SVR, that uses
the kernel trick to project the data into other dimensional spaces
and facilitate the search for a regression function. However, the
main difference between SVR and KRR resides in the loss func-
tion. Here, as in LR, the technique is to minimise the squared error
loss to find the optimal model. Instead, a regularisation parameter
𝛼 is used to reduce the variance of the estimate.

• Random Forest (RF) consists of a large number of decision trees
whose outputs are averaged to produce predictions. Such deci-
sion tree models are created by bootstrap aggregation (bagging),
which consists of replacing the training data with random subsets.
This process eases the creation of uncorrelated models, which
leads to overcoming the sensitivity of the decision tree to the
trained data. In this way, their assembly operation allows to
obtain robust regression models, since the trees protect each other
from individual errors, thereby increasing the performance of the
model.

• Artificial Neural Network (ANN) is an ML technique based on the
architecture of the human brain. It consists of several nodes, also
called artificial neurons, distributed along different layers (input,
hidden and output layers). These artificial neurons are responsible
for calculating and weighting the data through activation func-
tions and sending their output to the next layer of the network.
Thus, this approach achieves the creation of a complex regression
model.

5.2.2. Hyperparameter tunning
ML algorithms are open to multiple designs through different hyper-

parameters. Their setting depends strongly on the nature of the problem
and the data. Therefore, an inappropriate configuration of them can
lead to a degradation of the model prediction. For this reason, it is
essential to carry out a hyperparameter tuning process that provides
the optimal settings for each model.

In this context, an exhaustive search of the most important hyper-
parameters has been carried out separately for the different KQIs that
we follow to predict (i.e. CGlatency, FreezePercent and EFPS).

Table 2 briefly describes the different hyperparameters tuned by
grid search in this work. Here, the hyperparameters fixed are those
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Table 2
Hyperparameters tunning summary.

Hyperparameter Description Latency Freeze EFPS

KNR

n_neighbours Number of neighbours 12 4 4
p Power parameter (only for Minkowski metric) – – –
weight Prediction weight function Distance Distance Distance
metric Distance metric for finding neighbours Manhattan Manhattan Manhattan

SVR

kernel Function to transform the data Poly – RBF
epsilon Tolerance parameter within which no penalty is associated 3.5 – 2.5
degree Degree of the polynomial function (only for poly kernel) 5 – –
C Regularisation parameter through a squared l2 penalty 10 – 300

KRR
alpha Regularisation strength 1.0 1.0 1.0
kernel Function to transform the data Poly Poly Poly
degree Degree of the polynomial function (only for poly kernel) 6 6 6

RF
n_estimators Number of trees conforming the forest 70 80 90
max_depth Maximum depth of the trees 10 20 20
criterion Figure of merit to measure the quality of a split MSE MSE MAE

ANN

No. Layers Number of layer conforming the Neural Network 4 3 6
No. Neurons Number of neurons in hidden layers (20,14) (10,5) (120, 40, 20, 10)
Activation function Function used to determine the output of each layer Relu Relu Tanh
Optimiser Function to optimise ANN attributes (e.g., weights) Adam RMSprop Adam
Fig. 5. Metric correlation through mutual information.
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that allow to minimise the Mean Absolute Error (MAE) of the training
dataset. This figure of merit is defined as follows:

𝑀𝐴𝐸 = 1
𝑁

𝑁
∑

𝑖=1
|𝑦𝑖 − 𝑦𝑖| (2)

where 𝑦𝑖 represents the predicted value, and 𝑦𝑖 is the original one.

5.2.3. Feature selection
Generally, in ML, the more input features a model has, the better

the accuracy of its estimation. Nonetheless, the use of a large number of
predictors leads to increased computational cost and time spent on pre-
processing and training. Consequently, a trade-off between accuracy
and number of predictors is required.

The use of features from different sources could enrich the per-
formance of the estimation. In this work, the integration of the KQI
measurement framework with a controlling network environment eases
the collection of features from different elements of the architecture
(i.e. UE and BS).

However, it can be difficult to obtain all these features in a non-
controlled scenario. On the one hand, the collection of metrics from
heterogeneous sources is not trivial, as it is necessary to carefully
manage the collection of these metrics in the different elements in
order to merge them based on timestamps. Besides, this process might
lead to the fact that not all indicators are available at the same time,
hence causing a delay in the prediction. On the other hand, network
metrics are usually secured at operator level. This complicates their
availability and leads their provision to external parties based on high-
level network information together with a time slot. Moreover, the high
computational cost of storing a large number of metrics leads operators
to minimise the number of parameters to be saved.
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In this scope, the effect of using different predictors is investigated
by selecting different features. In this way, different models are created
taking into account different subsets of features from the whole dataset.
In order to do this, an automatic feature selection is applied according
to two criteria: features from the whole dataset or features from a single
source together with the configuration of the CG stream.

In order to perform an automatic selection, the features are taken
according to the k-highest scores assigned to each of them. These
scores are assigned by analysing the dependency between the input and
target features, which is usually determined by Pearson’s correlation.
Nevertheless, this work proposes Mutual Information (MI) as a score
function. MI provides the degree of certainty between two variables as
follows:

𝐼(𝑋, 𝑌 ) =
𝑛
∑

𝑖=1

𝑚
∑

𝑗=1
𝑃 (𝑥𝑖, 𝑦𝑗 ) ⋅ 𝑙𝑜𝑔

𝑃 (𝑥𝑖, 𝑦𝑗 )
𝑃 (𝑥𝑖) ⋅ 𝑃 (𝑦𝑗 )

(3)

In this sense, MI defines the scores based on relationships be-
ond the linear ones obtained with Pearson’s correlation, such as
on-monotonic relationships. Fig. 5 shows the mutual information
etween the different input features of the dataset and the KQIs to be
redicted.

Here, although the values are mainly dependent on the output, it is
enerally observed that the configured resolution, the frame rate of the
ession and the ping between client and server are the most influential
eatures for each KQI. Besides, other parameters such as RSSI, SINR
nd pucch_snr seem to have the same influence on the different KQIs.
onversely, RSRQ and CQI seem to have very slight dependence on the
arget parameters.

In this way, the automatic selection will take the k-highest influ-

ntial features for each KQI. Instead, the source-based selection of the
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Fig. 6. MASE evolution.
features takes into account the element from which the features are
generated. For instance, a model can be created to estimate a KQI
by taking only the parameters of the session configuration and those
available in the UE (see Table 1).

This criteria allows to analyse the performance of the models when
only indicators (or a part of them) of one element of the whole
communication architecture are available. In order to also take into
account that not all the indicators of an element may be available,
MI has also been used to analyse the performance of the estimation
through the different number of input features.

5.2.4. Model creation
In this process, models are created based on the information ob-

tained in the previous blocks. This means that each ML algorithm is
configured according to the hyperparameters that best fit the nature
of the data. Likewise, the models are trained taking into account the
previous feature selection.

In addition, a k-fold cross-validation is carried out in order to avoid
overfitting or underfitting. This enables validating the effectiveness of
the model on new data input.

5.3. Performance evaluation

Once the models have been built using the techniques described
above, their performance is assessed using the Mean Absolute Scaled
Error (MASE) [42].

This metric provides a measure of how well a model estimates
compared to a naive estimation. The latter is a simple and basic method
of estimation, which consists in assuming that the future value is equal
to the average of the values obtained in the past. The MASE then shows
how the use of regression models improves the estimation obtained
without identifying causal factors. It is referred to as:

𝑀𝐴𝑆𝐸 = 𝑚𝑒𝑎𝑛

(

∑𝑁
𝑖=1 |𝑦𝑖 − 𝑦𝑖|

∑𝑁
𝑖=1

|

|

𝑦𝑖 − 𝑦|
|

)

(4)

From the equation it is seen that MASE gives a scaled error of the
model prediction with respect to a naive prediction. In this sense, a
MASE value of 0.1 means that the estimation error of the regression
model is 10% of the average error obtained with the naive estimation.
In other words, the model is 90% more accurate than a naive estima-
tion. Therefore, the lower the MASE value, the better the accuracy of
the model.

Like Mean Absolute Percentage Error (MAPE), MASE is a scale-free
figure of merit that allows estimation performance to be compared
regardless of the scale of the data. Nevertheless, MASE offers several
advantages over MAPE. Unlike MAPE, it applies the same penalty to
both positive and negative errors. This issue often leads to the use of
symmetric MAPE (sMAPE) instead of MAPE. Nonetheless, MASE never
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𝑀

returns infinite or undefined values, even when there are zero values
in the dataset, as is the case with MAPE and sMAPE.

As can be seen in Table 1, some of the CG KQIs could have values
equal or close to zero (i.e. FreezePercent and EFPS). For this reason, and
thanks to the characteristics described above, MASE is positioned as the
most appropriate metric for assessing models accuracy.

Finally, in addition to the estimation error, the computational cost
of each model in terms of prediction time is also considered. These two
aspects are of primary importance for the online phase, where accurate
and fast predictions are required.

6. Evaluation

In order to evaluate the KQI estimation, this section provides a
performance analysis of the different models. Table 2 shows the hy-
perparameters that minimise the prediction error for each model. From
this point on, all models evaluated will follow these settings, taking into
account the algorithm used and the KQI to be predicted.

For this purpose, as described in Section 5, each regression approach
is tested with different predictors. Thus, models are built using predic-
tors from the whole dataset or considering their source (i.e. combining
CG server parameters with metrics from the UE or BS). These have been
trained following 10-fold cross-validation.

The following subsections present the evaluation of such models
for the different KQIs. As aforementioned, both estimation error and
prediction time are taken into account.

6.1. Estimation error

Fig. 6 shows the estimation error in terms of MASE of the dif-
ferent ML algorithms for estimating the three KQIs introduced in the
previous sections: input lag (CGlatency), freeze percent (FreezePercent)
and effective frame rate (EFPS). In this way, the MASE obtained with
each regression model is represented as a function of the number
of input features (𝑁_𝑓𝑒𝑎𝑡). These features are selected according to
their influence on each KQI, i.e. the metrics shown in Fig. 5 with the
k-highest MI values.

Similarly, Fig. 7 shows the evolution of the MASE along the number
of input features, but in this case taking into account the source of
the features (i.e. UE or BS). This means that only information from
one source, together with data from the CG server, is used to estimate
the KQIs. For example, for cases marked as BS, only metrics whose
source field in the 1 table corresponds to BS (i.e. n_rb_dl, cqi, pucch_snr,
pusch_snr) are used together with those from the CG server (Resolution
and fps).

In order to facilitate the analysis, all models are categorised accord-
ing to the value of the MASE as poor (𝑀𝐴𝑆𝐸 > 0.7), acceptable (0.5 <
𝐴𝑆𝐸 ≤ 0.7), good (0.2 < 𝑀𝐴𝑆𝐸 ≤ 0.5) or excellent (𝑀𝐴𝑆𝐸 ≤ 0.2).
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Fig. 7. MASE evolution considering the source.
6.1.1. Latency
Focusing on Fig. 6(a), it can be observed that all regression tech-

niques generally achieve MASE values below 0.8. Here, the LR tech-
nique, which is used as a baseline in this paper, produces poor re-
gression models, as the best estimation is made with a MASE of ap-
proximately 0.76. Furthermore, its evolution indicates that only three
metrics provide information, as no improvement in prediction is shown
by adding more metrics (i.e. 𝑁𝑓𝑒𝑎𝑡 > 3). This means that only these pre-
dictors have a significant linear relationship with this KQI. Regarding
the MI values shown in Fig. 5, these metrics correspond to Resolution,
fps and PING_avg.

Conversely, acceptable models (i.e. 𝑀𝐴𝑆𝐸 < 0.7) are obtained
by the KRR, KNR, SVR, RF and ANN techniques. Unlike LR, these
techniques manage to find a relationship with more than three features,
which leads to an improvement in the accuracy of the models. The
estimation by KNR and RF models is richer when a greater number
of features are taken into account, although this is ultimately seen as
a slight deterioration. In this sense, the introduction of 12 features
(𝑁𝑓𝑒𝑎𝑡 = 12) allows to obtain values of MASE around 0.65.

Nevertheless, this behaviour is not replicated by the other ap-
proaches. The KRR technique needs seven features to estimate with
the smallest error (i.e. MASE ≈ 0.66). Beyond this number of features
(i.e. 𝑁𝑓𝑒𝑎𝑡 > 7), the accuracy of KRR models begins to degrade. The
same applies for the SVR and ANN algorithms: the best performance
(i.e. MASE ≈ 0.64) is obtained with eight and nine features respectively,
becoming worse as the number of inputs increases.

In this case, ANN is positioned as the most accurate technique for
the estimation of CGlatency. Furthermore, it can be seen that the best
performance is obtained with a low number of features (i.e. 𝑁𝑓𝑒𝑎𝑡 =
8), outperforming the other techniques up to the inclusion of eight
predictors.

Similarly, in Fig. 7(a), the evolution of MASE considering CG server
and UE inputs (labelled UE) shows a similar trend. This behaviour is
due to the fact that, as seen in Fig. 5, metrics from the CG server and
UE have more MI than BS metrics. This is why the models with the
fewest number of inputs are consistent. This is shown in the case of
the LR technique: the models show the same behaviour for the LR and
LR(UE) cases. As seen before, this algorithm is not able to find strong
links beyond the metrics Resolution, fps and PING_avg.

Similarly, the remaining models (i.e. KRR(UE), SVR(UE), KNR(UE),
RF(UE) and ANN(UE)) achieve closer results compared to the use of
inputs from heterogeneous sources. As before, ANN is retained as the
most accurate model when only metrics from the UE are available.
Furthermore, it requires only three inputs to perform estimation with
smaller error.

Focusing now on the BS metrics, the results show a general dete-
rioration for all cases. This trend is very noticeable for the LR(BS),
9

ANN(BS) and KRR(BS) cases, whose difference in terms of MASE with
respect to the best case goes up to approximately 0.2, 0.1 and 0.05,
respectively. This means that these models estimate with 20%, 10%
and 5% more error, respectively, than the most accurate models for
each ML technique.

For their part, the SVR and RF models are capable of estimating
with similar performance with both UE and BS metrics. In this respect,
both approaches achieve a MASE of about 0.67 with 𝑁𝑓𝑒𝑎𝑡 = 6.

Finally, considering the source of the features, KNR can achieve a
more precise estimation with BS inputs than with UE metrics. More-
over, with all the BS features, the model performs with an error close
to the ANN(UE), which are the most accurate models with UE metrics.
Thus, when only metrics from the CG session and the BS are available,
the KNR models can be confirmed as the best option for estimating
CGlatency.

6.1.2. Freeze percent
Fig. 6(b) shows the evolution of the MASE obtained with the freeze

percent estimation models. It can be seen that all the models obtained
for this KQI are good or excellent. However, it is noteworthy that it has
not been possible to obtain a model with SVR that converges with the
data (i.e. 𝑀𝐴𝑆𝐸 = 4.6). This is because it is not possible to find a set
of hyperparameters that fit this metric and hence obtain a model that
converges. Therefore, in order to facilitate the analysis of the models,
the SVR is not shown in Figs. 6(b) and 7(b).

In this case, the traditional LR technique achieves MASE values
around 0.47. Moreover, from their evolution it can be deduced that four
predictors have a strong relationship with the KQI. Considering the MI
values shown in Fig. 5, these are PING_avg, Resolution, RSRP and SINR.

As in the case of CGlatency, the use of advanced techniques leads
to a significant improvement in the accuracy of the prediction. Here,
KRR allows building good regression models, resulting in estimation
with about 25% less error than naive estimation. Moreover, it is noted
that the peak accuracy is reached for 𝑁𝑓𝑒𝑎𝑡 = 5, as the performance
degrades as the number of features increases.

Conversely, excellent models (i.e. 𝑀𝐴𝑆𝐸 < 0.2) are built using
KNR, RF and ANN techniques. Considering ANN models, the best results
(i.e. MASE ≈ 0.16) are obtained for 𝑁𝑓𝑒𝑎𝑡 = 9, getting worse when more
than 11 features are introduced. A slight improvement is achieved with
the KNR technique, which results in an error that is 5% lower than the
one obtained with the ANN models. In addition, the best results for
KNR are obtained with fewer predictors (i.e. 𝑁𝑓𝑒𝑎𝑡 = 5). These results
are downgraded when more than eight input features are considered.
Here, the prediction error is even slightly better than that obtained with
ANN models.

However, the best prediction is reached with RF models. The use
of these models guarantees a small estimation error for any number of
inputs, with the exception of 𝑁𝑓𝑒𝑎𝑡 = 3. Furthermore, it is observed that
from 5 input features, the error values are very close to this obtained

by the most accurate case (i.e. 𝑁𝑓𝑒𝑎𝑡 = 8).
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With regard to the source of the metrics, it is again evident that the
use of data from the UE gives similar results to a mixed use. As with
CGlatency, the most influencing parameters for this KQI come from the
CG session and the UE.

Thus, Fig. 7(b) shows similar results to those described above. On
the one hand, LR(UE) models are able to halve the estimation error of
a naive prediction (i.e. 𝑀𝐴𝑆𝐸 ≈ 0.5). Unlike before, this value is now
obtained with 𝑁𝑓𝑒𝑎𝑡 = 5, keeping constant beyond the use of more input
predictors.

On the other hand, these results are improved by the other regres-
sions. Thus, KRR(UE) and ANN(UE) show the same performance as
before, although their MASE gradually decreases when more than five
inputs are used. Furthermore, RF(UE) still has the best MASE, but in
this case the minimum is reached for 𝑁𝑓𝑒𝑎𝑡 = 5. Here KNR(UE) achieves
the same behaviour as RF(UE) for 𝑁𝑓𝑒𝑎𝑡 ≤ 4. However, it can be
observed that beyond this number of features, their performance starts
to get progressively worse as the number of input features increases.
Therefore, both KNR(UE) and RF(UE) are considered excellent for
estimating freeze percent using only data from the UE.

When it comes to metrics from BS, LR(BS) gets MASE values above
0.82. This means that LR(BS) is only 18% more accurate than a naive
estimation, so they are considered poor models. Moreover, these values
are far from the most accurate models (i.e. KNR (UE) and RF (UE)),
which achieve a MASE around 0.15.

For their part, KRR(BS) and ANN(BS) models improve the prediction
accuracy, obtaining MASE values of 0.5 and 0.4 respectively. However,
although they are considered good models, the estimation error is still
higher than that obtained by KNR (UE) and RF (UE).

In this context, as can be seen in Fig. 7(b), RF(BS) and KNR(BS)
are the models that provide estimations with a lower degree of error.
However, the accuracy of KNR(BS) is slightly better than that of RF(BS).

From this it can be concluded that KNR is the most reasonable
technique to use when metrics are available from only one part of the
architecture. Otherwise, the best estimation of the freeze percent would
be achieved by RF models.

6.1.3. EFPS
The estimation error with which each model estimates the EFPS is

represented by the MASE in Fig. 6(c).
Firstly, it is noted that this KQI has a stronger linear relationship

with some inputs than in the case of CGlatency and Freeze Percent.
For example, the best MASE values for the traditional LR are around
0.32. Furthermore, it can be seen that the greatest improvement is
obtained with two features. Concerning the MI information results
shown in Fig. 5, these are the configured frame rate in the client (i.e. fps
arameter) and the average ping between UE and BS (i.e. PING_avg).

Following the trend previously observed for the other KQIs, a better
stimation is achieved with the advanced techniques, which are able
o establish strong relationships between the metrics. This leads to the
reation of excellent models (i.e. 𝑀𝐴𝑆𝐸 < 0.2).

KRR and SVR show a similar evolution for 𝑁𝑓𝑒𝑎𝑡 ≤ 5, albeit the
atter achieves better values. However, for 𝑁𝑓𝑒𝑎𝑡 > 5 KRR begins to

show a negative trend, while SVR models continue to improve up to
seven predictors.

In the case of ANN, the models estimate with smaller errors com-
pared to the previous techniques. This algorithm uses 11 of the 13
available metrics to achieve the lowest error (i.e. 𝑀𝐴𝑆𝐸 ≈ 0.1). RF
nd KNR also achieve similar values, but with fewer features than ANN.
n the one hand, RF needs seven features to obtain the most accurate
odel. After that, there are no significant differences. On the other
and, KNR models give the best estimation for 𝑁𝑓𝑒𝑎𝑡 = 4. Later, some

fluctuations are noticed, although eventually MASE gets closer to the
previous values.

Regarding the source of the features, the MASE of all these ML
techniques for estimating the EFPS metric is shown in Fig. 7(c). Here,
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the estimation error of the EFPS metric is similar to that seen above.
LR(UE), KRR(UE) and SVR(UE) follow the same trend as before. The
same applies to the RF(UE) models, which continue to behave as before,
even when only UE metrics are considered. Finally, for ANN(UE) and
KNR(UE), a gradual decrease in MASE is observed for 𝑁𝑓𝑒𝑎𝑡 > 5.

Focusing on the use of metrics from the BS, all models perform with
a MASE below 0.40, so they are considered good estimation models.
Among these models, the less accurate estimations are obtained by
LR(BS) and KRR(BS), with a MASE of 0.40 and 0.23 respectively. For
their part, the KNR(BS), SVR(BS), ANN(BS) and RF(BS) models provide
excellent estimates, obtaining low estimation errors (i.e. 𝑀𝐴𝑆𝐸 ≤ 0.2).

ere, KNR(BS) has the best performance (i.e. 𝑀𝐴𝑆𝐸 ≈ 0.1), which is
onsistent with the most accurate models using features from the UE.

Thus, it can be seen that KNR is the best technique for estimating
FPS, since excellent models are obtained for each of the three cases
nalysed. Nevertheless, it is noteworthy that the vast majority of the
odels considered achieve a substantially good estimation for this KQI,

egardless of the sources of the predictors.

.2. Prediction time

In addition to the estimation error, the models are also evaluated
n their prediction time, i.e. the time it takes each model to estimate
alues. This evaluation has been carried out on an Intel Xeon Silver
ith 12 CPU cores, 2.2 GHz clock frequency and 128 GB RAM. Table 3

ummarises the mean prediction time (in milliseconds) of 1000 predic-
ions of each KQI using different regression techniques and input source
i.e. All, UE or BS).

For simplicity, models using the maximum available number of
eatures for input source have been considered. This means that for
ll, UE and BS source, the models evaluated for each technique take
3, 9 and 6 input features, respectively. As expected, models based on
R technique are the fastest thanks to its simplicity, requiring less than
ms in any case. When it comes to more advanced techniques, the

rediction times become much higher. KNR needs about 17 ms to get
n estimate for both FreezePercent and EFPS, being double in the case
f CGlatency. These values decrease for UE or BS input metrics due to
ewer inputs considered.

These values are higher for the SVR case, which takes about 47 ms
nd 31 ms to predict CGlatency and EFPS respectively. The difference

between these two values lies in the kernel set used for the models.
Here, similar prediction times are obtained when only UE or BS metrics
are considered. Note that SVR based models could not be trained for
FreezePercent. Similarly, KRR models need about 55 ms to estimate any
KQI with any type of input (i.e. All, UE or BS).

ANN models spend up to 4 times as much time providing an
estimation. This huge increment resides on the high complexity of these
models. Thus, ANN needs about 200 ms to estimate CGlatency using any
of the sources. These times are higher for the estimation of FreezePercent
and EFPS, reaching values up to 234 ms and 268 ms respectively.

Finally, RF takes the shortest time for the prediction of the latency
(i.e. 11.69 ms). It also shows similar prediction times to KNR in the case
of FreezePercent and EFPS. Similarly, RF achieves low prediction times
when considering only metrics from UE or BS. In this case, these times
are only improved by the KNR models.

In this respect, the RF and KNR models require less time to provide
an estimation. This means that they are less computationally demand-
ing in the online phase of the approach. These models are therefore
suitable for use in devices with hardware limitations. Besides, RF
models (UE) have shown excellent performance in terms of accuracy,
resulting in the best balance between error and prediction time.

Conversely, if the models are focused to be used in the network,
other alternatives could be more adequate. For example, although the
ANN model shows the highest prediction time, it could be interesting
for estimating CGlatency when less than 8 metrics are available from
the whole system (i.e. UE and BS). In these cases, ANN shows less error

than the other models (see Fig. 6(a)). Nonetheless, RF still shows a
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Table 3
Model prediction times (ms).

Source Tech CGlatency FreezePercent EFPS

ALL

LR 0.079 0.086 0.079
KNR 30.89 16.84 17.03
SVR 46.94 – 31.37
KRR 52.96 53.52 52.98
RF 11.69 16.07 20.59
ANN 208.23 234.09 165.6

UE

LR 0.1 0.1 0.1
KNR 15.33 10.09 10.57
SVR 55.84 – 28.96
KRR 58.16 58.21 60.74
RF 13.1 20.6 26.47
ANN 196.39 216.08 268.15

BS

LR 0.1 0.11 0.11
KNR 8.72 6.87 6.21
SVR 50.32 – 27.22
KRR 55.7 55.13 56.98
RF 14.67 21.3 26.77
ANN 207.53 197.4 248.38

very good performance in both aspects (i.e. accuracy and prediction
time). Likewise, when only the metrics available in the BS are taken
into account, the KNR (BS) models achieve the best balance in the
estimation of the CG KQIs.

It can be concluded then that a balance must be reach depending
on the place where the models will be integrated. Higher accuracy is
preferred when it is expected to be deployed on a network element
(e.g. BS, OSS). Meanwhile, simpler models (ranked here by their pre-
diction time) are advisable for environments with low computational
capabilities.

7. Conclusions

This work has presented a framework for measuring KQIs in CG
services, in particular the input lag, the percent of session freezes or
the frame rate perceived by the user. The framework avoids the use of
expensive and complex setups involving high speed cameras by moni-
toring the user’s peripherals through their graphics driver. In addition,
an ML-based approach is presented. It facilitates the integration of
service information into network management tasks through regression
models. These are expected to be used in different parts of the service
architecture.

To this end, a comprehensive study of several ML techniques has
been carried out in order to estimate such KQIs from the session con-
figuration and from the network metrics. Traditional linear regression
was evaluated together with five of the most extended ML techniques
(i.e. KNR, SVR, KRR, RF and ANN) in terms of accuracy and predic-
tion time. The results have highlighted the good balance in terms of
accuracy and prediction time offered by RF and KNR. Likewise, others
such as ANN can be appropriated for some case, although they require
higher prediction time.

Obtaining KQIs from readily network metrics opens up a number
of possibilities for optimising service experience. On the one hand, ML
models could be run in the UE to enable autonomous selection of the
wireless network technology (e.g. WiFi, 4G or 5G). For example, the
UE could choose the best option to support service delivery based on
KQI requirements. Similarly, it could support streaming configuration
settings according to the current network conditions.

On the other hand, these models can be instantiated in the Op-
erational Support System (OSS) to enable network performance op-
timisation to guarantee the Service Level Agreement (SLA) based on
KQIs. Similarly, in OpenRAN network architectures, these models can
be hosted in the Radio Intelligent Controller (RIC) as part of an xApp.
This would support Radio Access Network (RAN) management in a
more effective way than over-provisioning resource approaches. For
11
example, network slicing scenarios could benefit from these estimates
to allocate resources to each slice.

Future works will focus on the development of network manage-
ment algorithms based on this approach. Likewise, these models are
expected to be improved with more information that affects the QoE of
the service, such as the device used or the type of game.

For all these reasons, this measuring and estimation approach could
be considered a powerful solution for supporting CG services in next-
generation mobile networks.
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