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FOR THE ALZHEIMER’S DISEASE NEUROIMAGING INITIATIVE†

Computer aided diagnosis (CAD) constitutes an important tool for the early diagnosis of Alzheimer’s
Disease (AD), which, in turn, allows the application of treatments that can be simpler and more likely
to be effective. This paper explores the construction of classification methods based on deep learning
architectures applied on brain regions defined by the Automated Anatomical Labelling (AAL). Gray
Matter (GM) images from each brain area have been split into 3D patches according to the regions
defined by the AAL atlas and these patches are used to train different deep belief networks. An ensemble
of deep belief networks is then composed where the final prediction is determined by a voting scheme.
Two deep learning based structures and four different voting schemes are implemented and compared,
giving as a result a potent classification architecture where discriminative features are computed in
an unsupervised fashion. The resulting method has been evaluated using a large dataset from the

∗Department of Signal Theory, Communications and Networking. E.T.S. de Ingenieŕıas Informática y de Telecomunicación.
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Alzheimer’s disease Neuroimaging Initiative (ADNI). Classification results assessed by cross-validation
prove that the proposed method is not only valid for differentiate between controls (NC) and AD images,
but it also provides good performances when tested for the more challenging case of classifying Mild
Cognitive Impairment Subjects (MCI). In particular, the classification architecture provides accuracy
values up to 0.90 and AUC of 0.95 for NC/AD classification, 0.84 and AUC of 0.91 for stable MCI /AD
classification and 0.83 and AUC of 0.95 for NC/MCI converters classification.

Keywords: Deep Learning; Ensemble; Alzheimer’s Disease classification

1. Introduction

Alzheimer’s Disease (AD) is the most common cause

of dementia among older people and a third of young

people with dementia have AD, affecting 30 mil-

lion people worldwide. Due to the increasing life ex-

pectancy and the ageing of the population in devel-

oped nations, it is expected that AD will affect 60

million people worldwide over the next 50 years. It

is a slow neurodegenerative disease associated to the

production of β-amyloid peptide (Aβ) and its extra-

cellular deposition as well as the flame -shaped neu-

rofibrillary tangles of the microtubule binding pro-

tein tau.1 This causes the loss of nerve cells, whose

symptoms usually start with mild memory problems,

turning into severe brain damage in several years.

There is no cure for AD, and currently developed

drugs can only help to temporarily slow down the

progression of the disease.2 Thus, early diagnosis be-

comes the best way to have effective treatments.

Since the AD neurodegeneration process progres-

sively affects different brain functions,functional im-

ages such as Single Emission Computerized Tomog-

raphy (SPECT)3–5 or Positron Emission Tomogra-

phy (PET)6,7 have been extensively used in Com-

puter Aided Diagnosis systems.8 Other works present

different techniques that allow to discover alterations

in electroencephalography (EEG) patterns associ-

ated to AD9–11 that have been used for automated

diagnosis.9,12–15 For instance, in Ref. 16 and Ref. 17

a probabilistic neural network is used for classifica-

tion between NC and AD by means of conventional

and wavelet coherence-based features extracted from

EEG data.

AD also causes structural changes in the brain

and thus structural differences between controls and

AD patients can be revealed by analysis of Mag-

netic Resonance Images (MRI). In fact, MRI has

been used in many previous works for automatic di-

agnosis.18–21 These works use White Matter (WM)

or Grey Matter (GM) images on whole brain volume

to classify controls and AD images20,21 or to com-

pute Regions of Interest (ROI). Other approaches

define weak classifiers on small enough regions.22,23

Specifically, Ref. 22 uses an ensemble of sparse rep-

resentation classifiers (SRC) defined on equally-sized

patches extracted from the GM image. By contrast,

Ref. 23 uses an ensemble of Support Vector Machines

(SVM) to classify separately each area defined by

the Automated Anatomical Labelling Atlas (AAL).

Despite showing good classification results, both pro-

posals present different drawbacks. The former splits

the brain into equally-sized patches, and instead of

computing discriminative features, performs the clas-

sification directly using voxel values, in a similar way

to using Voxel-as-Features (VAF) method over small

regions, and therefore shares the curse of dimension-

ality problem. The latter extracts some first order

statistics from each brain area to be used as features,

not considering the spatial relationship among vox-

els. Moreover, these methods use supervised learning

for both, computing the statistical relevance of each

brain region and training the classifier, which could

be a problem whenever not all the training samples

are labelled, or the labels are not reliable enough to

use them as ground truth. This is a relatively com-

mon problem in AD labels, as they are assigned from

the Mini Mental State Examination (MMSE) score.

Additionally, there are works that show clear advan-

tages of using a reduced number of discriminative

features, such as eigenbrains-based methods,5 mul-

tivariate Gaussian methods,7 codebook based meth-

ods18 or SVM-based methods.24 Nevertheless, (e.g.

Ref.24) use a downsized cohort of subjects in the

study, complicating the estimation of the generaliza-

tion error. Specifically, we propose the use of deep

learning architectures to extract representative fea-

tures from each brain area defined by the AAL at-

las in an unsupervised manner, avoiding the need

for a ground truth at this stage. We implement and
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compare here different architectures to define ensem-

bles of Deep Belief Networks (DBN). Each brain area

has been split into small three-dimensional patches

which act as input samples of these DBNs. Different

voting schemes to combine the DBNs are analyzed,

and an alternative architecture where a SVM (Sup-

port Vector Machine) is used to fuse the DBN out-

comes is presented. An important aspect of the latter

is that each unit in the ensemble is responsible not

only of classifying the corresponding patch but also

of extracting representative features for the different

brain regions.

The organization of the rest of this paper is as

follows. Section 2 describes the database and the

methods used in this work. In particular, image pre-

processing and brain parcellation are explained in

subsection 2.2, while backgrounds in Deep Belief

Networks and Support Vector Classifiers (SVC) are

given in Section 2.3 and Section 2.4, respectively.

Section 3 shows details on the experiments performed

and the results obtained using patient data from

the ADNI database. In this Section, classification of

NC/AD subjects is performed, but also experiments

involving stable MCI /AD subjects and NC / MCI

converters are addressed to deal with early diagnosis.

Finally, the main conclusions are drawn in Section 4.

2. Materials and methods

2.1. Database

Data used in the preparation of this article were ob-

tained from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) database (adni.loni.usc.edu). The

ADNI was launched in 2003 as a public-private part-

nership, led by Principal Investigator Michael W.

Weiner, MD. The primary goal of ADNI has been

to test whether serial magnetic resonance imaging

(MRI), positron emission tomography (PET), other

biological markers, and clinical and neuropsycho-

logical assessment can be combined to measure the

progression of mild cognitive impairment (MCI) and

early Alzheimer’s disease (AD). For up-to-date in-

formation, see www.adni-info.org.

ADNI database collects a vast amount of MRI

and Positron Emission Tomography (PET) images,

as well as blood biomarkers and cerebrospinal fluid

analyses, for three groups of subjects: healthy in-

dividuals (Controls, NC), Alzheimer disease pa-

tients (AD) and patients suffering from mild cog-

nitive impairment symptoms (MCI). The database

that has been used in this work, contains 1075 T1-

weighted MRI images, comprising 229 NC, 401 MCI

(312 stable MCI and 86 progressive MCI) and 188

AD images. Specifically, we have used the database

ADNI1:Screening 1.5T (subjects who have a screen-

ing data). This database contains MRI data from 818

subjects and repeated scans in some cases. When

multiple scans of the same subject were available,

the first one was selected. As a result, 818 MR im-

ages were first selected for assessing our approach.

However, as our study includes multimodal data

(i.e. MRI and PET images) and PET data are not

available for all patients, we have only selected those

patients having MRI and PET images simultane-

ously and taken on the same date. This way, 68

NC, 70 AD, 111 MCI and 26 Late MCI (LMCI pa-

tients) were selected. Demographic data of patients

in the multimodal database is summarized in Tab. 1.

Table 1. Demographic data of patients in the database

Diagnosis Number Age Gender MMSE
M/F

Control 68 75.81± 4.93 43/25 29.06± 1.08
MCI 111 76.39± 6.96 76/35 26.68± 2.16
AD 70 75.33± 7.17 46/24 22.84± 2.91
LMCI 26 73.06± 7.08 21/5 27.27± 1.89

In the ADNI2 database, MCI patients are split

into two subclasses: Late MCI (LMCI in Tab. 1) and

Early MCI (MCI in Tab. 1). Details regarding these

groups can be found at http://adni.loni.usc.edu/wp-

content/uploads/2008/07/adni2-procedures-

manual.pdf. Hereafter, we consider MCI patients

and these were taken into account when search-

ing for converters (MCI patients who converted to

AD within 2 years) in the ADNI database. It is

also important to highlight that clinical labels in

ADNI database are assigned according to MMSE

values and are not 100% accurate. In other words,

the presence/absence of AD pathology in controls

and MCI patients is not verified either with cere-

brospinal fluid or amyloid-PET biomarkers. This

could cause that some of the controls subjects are

in the asymptomatic stage of AD, or that neurode-
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generation/amyloid load is below the standardized

cut-off values in some of the MCI subjects. As a

result, the use of ADNI clinical labels could under-

estimate the classification performance.

It is worth noting that women are exposed to

a higher risk of AD and consequently, AD preva-

lence is higher in females.25 Gender correction in AD

prediction could improve the prediction of different

AD-related biomarkers.25,26 However, our work is fo-

cused on classification and previous works using MRI

have demonstrated that genders were not significant

predictors for the group separation.27–29

2.2. Image preprocessing and brain
parcellation

MRI and PET images from the ADNI database have

been spatially normalized according to the PET and

VBM-T1 templates, respectively, ensuring each im-

age voxel correspond to the same anatomical posi-

tion. After image registration, all the MRI images

from ADNI database were resized to 121x145x121

voxels with voxel-sizes of 1.5 mm (Sagittal) x 1.5

mm (coronal) x 1.5 mm (axial), and PET images

were resized to 79x95x68 voxels with voxel-size of

3 mm (Sagittal) x 3 mm (Coronal) x 3 mm (Ax-

ial). Subsequently, MRI and PET images are treated

differently. MRI images are segmented into White

Matter (WM) and Grey Matter (GM) tissues using

the VBM toolbox for SPM30,31 . This process, which

provides information about GM and WM tissue dis-

tributions, is guided by means of tissue probability

maps of GM, WM or cerebro-spinal fluid (CSF). A

nonlinear deformation field is estimated that best

overlays the tissue probability maps on the individ-

ual subjects’ images. The tissue probability maps

provided by the International Consortium for Brain

Mapping (ICBM) are derived from 452 T1-weighted

scans, which were aligned with an atlas space, cor-

rected for scan inhomogeneities, and classified into

GM, WM and CSF. The segmentation process pro-

duces values in the range [0, 1], which denotes the

membership probability to a specific tissue.

PET images, for their part, are also normalized in in-

tensity in order to compute comparable levels among

the images. Since the cerebellum is considered as a

constant activation region,32 intensity normalization

is performed by means of the mean cerebellum acti-

vation level, which is used as a normalization value.

More specifically, the normalization value applied to

each image is calculated as the mean of the 1% of

the voxels with a higher activation level in the cere-

bellum. This normalization method, which is com-

monly used in radiology,32,33 helps to homogenize

the activation levels making them comparable by us-

ing the same scale. It is important to mention that

studies combining FDG-PET and MRI data tend to

under- and over- estimate the tracer concentration if

partial volume correction (PVC) is not applied.34,35

However, PVC could also introduce an additional er-

ror depending on the anatomical position.36 On the

other hand, a recent work by Teipel et al.37 analyzes

the use of PVC in the classification methods and con-

cludes that PVC only provides a slight improvement

in the predictive performance of FDG-PET data. As

a consequence, since this work is focused on the clas-

sification methods, PVC has not been applied.

2.2.1. Voxel preselection

Voxel preselection has been applied to each image

modality separately to remove low significance voxels

and reduce the computational burden due to the high

dimensionality of the input space. This feature pre-

selection was performed by means of Welch’s t-test

hypothesis testing separately for each image type.

Welch’s t-test allows to test the difference be-

tween the means of two populations (e.g. NC and

AD) when the variances are unequal, and can be cal-

culated using the following expression

It =
IµNC − I

µ
AD√

IσNC
NNC

+
IσAD
NNC

(1)

where IµNC and IµAD are the mean images for NC and

AD respectively, IσNC and IσAD are the variance im-

ages, and NNC , NAD are the number of NC and AD

images respectively. Mean images IµNC and IµAD are

computed as

IµNC =
1

NNC

NNC∑
j=1

Ij IµAD =
1

NAD

NAD∑
j=1

Ij (2)

and variance images IσNC and IσAD are computed as

I
σ
NC=

1

NNC

NNC∑
j=1

(
Ij−IµNC

)2
I
σ
AD=

1

NAD

NAD∑
j=1

(
Ij−IµAD

)2
(3)

It represent the image composed by the t-value pro-

vided by Welch’s t-test for each image voxel, which is
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a significance measurement on the means difference.

Greater t-values correspond to lower p-values, where

p is the probability of observing the given value t, or

one more extreme, by chance if the null hypothesis,

which argues for equal means, is true. Hence, small

values of p lead to reject the null hypothesis. Thus,

depending on the threshold chosen for the p-values,

a different number of voxels will be selected. More

specifically, the lower the threshold for the p-values

the fewer voxels will be selected. In our case, only

those voxels of the training set with p-value ≤ 0.05

(5% significance level) have been selected to build

the ensembles.

2.2.2. Brain parcellation

A key aspect of this work consists in splitting the

brain into patches to be classified separately, and

therefore we use an atlas defining the different brain

regions. In particular, we have used the AAL atlas38

which defines 116 brain regions corresponding to dif-

ferent neuroanatomical areas.

PET and MRI atlases have been co-registered along

with the PET and MRI images respectively, so that

both atlas and images voxels correspond to the same

neuroanatomical position. This allows us to extract

the brain regions indicated in the atlas from the im-

ages, making it possible to process them separately.

Fig. 1 shows MRI and PET example images and the

corresponding atlases.

(a) (b)

(c) (d)

Fig. 1. MRI image (a), MRI atlas (b), (c) PET image
and (d) PET atlas (same slice is shown in MRI and PET
images).

Although all regions defined by the atlas, com-

prised of brain regions and cerebellum regions, can

be used for classification, we have discarded cere-

bellum regions as these, according to medical liter-

ature,32,39,40 do not contain discriminant informa-

tion for the detection of the AD. Some works discard

even more brain areas (e.g. Ref. 41) neglecting their

influence in the Alzheimer’s disease, but we have pre-

ferred not to assume this and work with all the rest.

This way, as the cerebellum is split into 18 subre-

gions in the AAL atlas, our samples are composed of

voxels belonging to the 98 remaining areas.

2.3. Deep Belief Networks

A Deep Belief Network (DBN) can be seen as a neu-

ral network composed by multiple hidden layers with

connections between the layers but not between units

within each layer.42 The core idea is not new and it

was already used in multilayer perceptrons or multi-

layer back-propagation networks. The multilayer ar-

chitecture tries to mimic the bioinspired model, as

it is believed that human brain organizes the infor-

mation in a hierarchical fashion, from simpler con-

cepts to more abstract representations along with the

relationships between these layers. As a typical ex-

ample, visual cortex model is split into four areas:

retina (stores the raw pixels), V1 area (which com-

bines raw pixels and stores edges), V2 area (combin-

ing edges to form primitive shape detectors) and V4

area (storing higher level visual abstractions). Nev-

ertheless, the main drawback when using deep ar-

chitectures in the past stemmed from the training

process. In fact, until 2006, many researchers tried

to train deep architectures unsuccessfully, and as a

result, many of them abandoned the use of multi-

layer neural architectures in favour of Support Vec-

tor Machines (SVM).43 SVMs can be seen as a smart

type of perceptron which uses an optimization tech-

nique to compute the weight associated to each fea-

ture. This way, SVMs clearly outperformed the mul-

tilayer neural networks. However, since 2006, when

some specific training algorithms were devised,44–46

multilayer neural architectures have become popu-

lar again. These algorithms facilitate the construc-

tion of deep architectures while trained in an un-

supervised context, by using unsupervised networks

such as Restricted Boltzman Machines (RBM)47 or

autoencoders48 as single-layer building blocks. More

specifically, RBMs are the basic building block of

DBNs, as efficient algorithms have been devised to

train them unsupervisedly and efficiently.

A RBM is a specific type of Markov random field
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with a two-layer architecture that represents the den-

sity of the input data x ∈ {0, 1}d (also called visible

units) using binary latent variables h ∈ {0, 1}r (also

called hidden units). Its basic architecture is depicted

in Fig. 2, where ωij is the weight between the units

i and j. In RBM, units at one layer are connected

to all the units in the another layer without lateral

connections.

Fig. 2. Restricted Boltzman Machine Architecture

However, binary units provide a very poor repre-

sentation in the case of natural images, as the data

are real-valued. Fortunately, Ref. 49 generalized the

RBMs to exponential family distributions allowing

the use of real-valued data in the DBM learning pro-

cess. These are the so-called Gaussian RBM. Binary

units are replaced by linear units with independent

Gaussian noise. This way, the probability of the state

of a visible unit can be reconstructed given the state

of the hidden units.

Finally, it is worth noting that the sigmoid or logis-

tic function is used to estimate the activation of each

unit.

2.3.1. Unsupervised learning algorithm

A fast unsupervised learning method that starts set-

ting the visible units to a training vector was pro-

posed by Hinton,50 and called Contrastive Diver-

gence (CD). This method updates the weights ωij
by computing the error between the train data and

its reconstruction using the current state of the hid-

den units, without using data labels. Thus, the core

equation of the weight updating is

∆ωij = η (〈vihj〉data − 〈vihj〉rec) (4)

where η is the learning rate and 〈vihj〉rec is the re-

construction error.50 This way, the network trained

on a set of examples learns to probabilistically re-

construct the inputs by a learning process that is

addressed as an iterative minimization problem.

2.3.2. Deep Belief Networks

A Deep Belief Network (DBN) consists of an stack

of RBM layers, which are trained using the greedy

layer-wise algorithm proposed by Hinton et al.,42

which allows to train one RBM layer at a time. The

core idea of the greedy layer-wise algorithm is to start

to train the first RBM using the training data, and

continue training higher level RBMs using the cur-

rent state of the hidden layer at the previous level.

This process, sketched in Fig. 3, learns different levels

of features; low-level features are located at the bot-

tom (i.e. visible layer), corresponding to raw data,

while features encoding higher abstraction levels are

hierarchically computed at higher levels of the net-

work.

Fig. 3. Deep Belief Network

Following this scheme, RMBs are trained unsu-

pervisedly, as explained in the previous section (us-

ing the CD method), to minimize the reconstruction

error of the samples. Once this learning step has fin-

ished, a DBN can be further trained in a supervised

way to perform classification by means of backprop-

agation algorithms.51,52 This allows fine-tuning the

weights of the network in order to improve its dis-

criminative capabilities.

The network devised for this work includes a layer on

the top for the labels when used as a feedforward net-

work. Thus, the constructed network is trained using

the backpropagation algorithm and the gradient de-

scent method, which basically consists in computing

the error for each sample according to the training

labels and then backpropagating it to the first hidden

layer. The backpropagation algorithm applied to the

proposed network can be summarized as follows. Let

tk the target (desired) output of unit k, and yk the

actual output. The input layer is first feedforwarded
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layer wise to the output. Thus, the activation of the

neuron k at the output layer is computed using a

sigmoid activation function of the weighted sum:

yk = sigm

 rl∑
j=1

ωjkhj + θk

 (5)

where ωjk is the weight of the connection between

units j and k and θk is a bias term.

The total sum of squared error is computed from

the target activation tk as

ε =
∑
k

(tk − yk)2. (6)

Subsequently, the update rule for the weights

between the output layer and the top most hidden

layer can be written as

ωj,k(n+ 1) = ωj,k(n) + η · tk · δj (7)

where n is the epoch number, η the learning rate and

δj denotes the backpropagated error, computed as

δj = (tk − yk) · yk(1− tk), (8)

or as follows in the case that unit j belongs to a

hidden layer:

δj =

∑
j

δj · ωjk

 · yk · (1− yk) (9)

This process is repeated in subsequent epochs

until ε is below a predefined threshold (error toler-

ance).

2.3.3. Extracting Features using DBN

Although DBNs are usually used for classification,

in this work we have also focused on their abilities

as feature extractors. This is addressed by using the

activation of the RBM units at different levels as fea-

tures that represent different abstraction levels gen-

erated during the training process.

DBNs can be thus used to extract features in

an unsupervised way, due to the unsupervised train-

ing algorithms for RBMs. This approach has been

addressed in different works such as Ref. 53, where

the Sparse Encoding Symmetric Machine (SESM)

is proposed to produce sparse overcomplete rep-

resentations of the data. Moreover, unsupervised

feature learning is also addressed in Ref. 54 using

convolutional DBNs to learn feature representations

from unlabeled audio data, showing very good per-

formance for different audio classification tasks. In

addition, Ref. 55 uses deep autoencoders to extract

features from image and CSF biomarkers as well as

from MMSE data. Alternatively, supervised train-

ing can be used to fine-tune the features computed

at each layer by means of backpropagation which

aims to minimize the classification error, improv-

ing the representation capabilities of the features.

This approach, consisting in a classification DBN

with unsupervised pre-training is used in Ref. 56 to

classify audio data, showing that DBN computed

features from raw data performs similarly to MFCC-

based features. Nevertheless, Ref. 56 uses the DBN

as a classifier but not to extract features from a

specific layer. It is worth noting that features pro-

duced at different layers represent the data at differ-

ent abstraction levels and eventually have different

discriminative capabilities. Similarly, Ref. 57 uses

discriminative DBNs for visual data classification.

In this work we not only consider the use of a dis-

criminative DBN but also the features generated at

each DBN layer during the training stage, using a

SVM as classifier. The entire learning architecture is

shown in Fig. 4.

Fig. 4. Proposed architecture for a discriminative DBN

2.4. Support Vector Machines

Support Vector Machines (SVM) are a set of su-

pervised learning methods widely used for classifi-

cation and regression,43,58–60 designed to separate a
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set of binary-labelled data by means of a hyperplane.

Specifically, they use a smart optimization method to

compute the maximal margin hyperplane to achieve

maximum separation between classes, using a deci-

sion function in the form h : Rn −→ {±1}, corre-

sponding to n-dimensional training vectors and class

labels yi:

(f1, y1), (f2, y2), ..., (fs, ys) ∈ Rn × {±1} (10)

in such a way that g is able to correctly classify new

samples (f, y). Linear discriminant functions define

decision hyperplanes in a multidimensional feature

space:

g(f) = ωT f + υ0 (11)

where ω is the weight vector and υ0 is a bias (thresh-

old). This way, ωT f + υ0 ≥ 1 if class yi = +1 and

ωT f+υ0 ≤ 1 if class yi = −1, being the weight vector

ω orthogonal to the decision hyperplane. The opti-

mization task finds the unknown parameters ω and

υ0 which define the decision hyperplane that sepa-

rates the two classes optimally.

Additionally, a measure of the relative impor-

tance of each feature can be computed. In fact, let

Ns be the number of support vectors within the mar-

gin chosen during the training phase, the following

vector can be computed:

W =

Ns∑
j=1

yjλjfj (12)

where yj are the labels, λj are the corresponding La-

grangian parameters, which are also optimized dur-

ing the training phase, and fj the training samples.

The coordinate i of the vector W , Wi with 1 ≤ i ≤ n,

informs us about the relevance of the i-th dimension

of the feature vectors.61 More precisely, the higher

the |Wi|, the more the relevance of the i-th dimen-

sion in the feature vectors. By contrast, |Wi| = 0

indicates that the i-th feature does not have any in-

fluence in the classification process.

2.5. Ensemble of Deep Learning
Architectures

A combination of weak classifiers is generally con-

sidered to be more accurate than individual classi-

fiers.22,62 When the dimension of the feature space

is high, the use of weak classifiers fed with a reduced

number of features each can also help to avoid the

curse of dimensionality problem63,64 . Thus, the use

of weak classifiers have been previously used to lever-

age the performance in MRI classification problems.

For instance, in Ref. 22, weak Sparse Representa-

tion Classifiers (SRC) are defined using randomly

extracted 3D patches from GM MRI images. Then,

these classifiers are combined following a classical

rule based on the SRC residuals. In Ref. 65 an en-

semble of SVM classifiers is used over all the brain

ROI defined by an atlas. However, it is very impor-

tant that weak classifiers are properly combined to

take full advantage of the ensemble: different meth-

ods may be possible that can be more or less accu-

rate depending on the specific individual classifiers

and their decision boundaries.66 In this work we de-

fine an individual DBN for each brain region. Thus,

although DBNs cannot be considered as weak clas-

sifiers, the ensemble of DBNs aims to combine the

expertise of individual good classifiers, but special-

ized in separate domains (i.e. different brain areas).

One of the most popular techniques to combine the

classifiers in order to compose the ensemble is major-

ity voting. Nevertheless, this method does not weight

the individual decision of each classifier, considering

all of them equally relevant in the final prediction.

A more elaborated combination technique consists

in computing a relevance measure associated to each

classifier in order to weight the individual decisions.

A similar method is used in Ref.22, where the residu-

als are averaged so that SRCs providing higher resid-

uals have a lower weight in the final decision.

A different technique to combine the classifiers

consists in using a new classifier which is fed with

the outputs of individual classifiers67 . For instance,

when using a SVM to fuse all the classifiers, the su-

pervised optimization process executed on the train-

ing samples will compute the weights that determine

the relative importance of each classifier in the final

decision68,69 .

In this work two DBN-based classification meth-

ods have been implemented and compared. The first

of them is analyzed for four different voting schemes.

These schemes are described next.
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Fig. 5. Ensemble of DBN classifiers and voting stage. In this case, individual DBN are used as weak classifiers defined
for each brain region: a) training Phase, b) classification phase. The voter block implements one of the voting mechanisms
described in the text.

2.5.1. Ensemble of DBN classifiers plus
voting scheme (DBN-voting)

The first of the DBN-based classification method

consists of an ensemble of discriminative DBNs, in

which the top layer is composed of two neurons

(for the binary classification problem treated here)

in combination with a voting scheme. Four different

voting schemes have been compared:

• Majority Voting (MV). The classification out-

comes from each region are summed up, so that

each region contributes with one vote for a spe-

cific subject. The final prediction is determined as

the class with the higher number of votes.

• Weighted Voting (WV). We devised a method try-

ing to circumvent the problem that arises in ma-

jority voting, due to the fact that not all regions

have the same relevance in terms of their discrimi-

native power. This way, a two-sample Welch’s test

is used to rank the voxels in each region by means

of the p-value derived from the hypothesis test.

Consequently, the number of voxels in each region

with p-value < 0.01 (corresponding to 1% of sig-

nificance level) is computed, ranking the i-region

using the score:

SCi =
#voxelspi (PET ) + #voxelspi (GM)

#voxelsi
(13)

where #voxelspi (PET ) and #voxelspi (GM) corre-

spond to the number of voxels in the region i with

p-value < 0.01 for PET and MRI-GM images, re-

spectively. The scores computed by this method

are used to weight the votes from each region. Lat-

ter, the weighted votes of each region are summed

up and the final prediction is determined as the
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class with the highest overall score. If the p-value

used increases, more voxels are included for the

computation of the weights and the scheme ap-

proaches to the majority voting.

• Classifiers fusion using SVM. This method fuses

the elements of the ensemble through a SVM. This

way, a SVM is trained with the predictions of each

DBN. The support vector weights generated dur-

ing the training of the SVM will determine the

most relevant DBNs and indirectly weight the de-

cision of each individual classifier.

• Classifiers fusion using a DBN. In this case, a dis-

criminative DBN is trained with the classification

outcomes from the individual classifiers of the en-

semble.

Fig. 5 depicts the block diagram of the ensemble

of DBNs. The voter block represents one of the vot-

ing mechanisms described above. It is worth noting

that training samples are only required in the voter

block for weighted voting, as this weights each vote

by means of the discriminative power of the corre-

sponding region, computed by the Welch’s test on the

training samples. Specific details on the implemen-

tation of the weighted voting scheme are provided in

Section 3.2.

2.5.2. Extracting features using DBN
(FEDBN-SVM)

In our second approach we take a further step in or-

der to leverage the classification results provided by

the ensemble of DBN classifiers, and we use a differ-

ent implementation in which DBNs are not used as

weak classifies but as weak feature extractors. Hence-

forth, we will denote this architecture as FEDBN,

while the term DBN will be used to refer to the for-

mer one.

In FEDBN, voxels extracted from each region are

used as training samples for a DBN composing a

DBN-per-region structure. The activations of the

neurons in a hidden layer are then computed and

used as features. Finally, the features extracted from

each region are concatenated into a unique feature

vector to train a SVM. This way, the SVM will com-

pute the relative relevance of each feature during the

training stage and avoid the need of the voting phase.

The use of a DBN as a feature extractor is based on

the idea that it generates a different model in each

hidden layer, encoding the sample features in a dif-

ferent number of new features corresponding to the

activations of the neurons in each hidden layer. As

previously explained, hidden layers in DBNs repre-

sent features at different abstraction levels in such

a way that higher levels in the network represent

higher levels of abstraction (see Fig. 6). However,

there is no a priory way to determine the discrim-

inative capability of the features generated at each

layer, and the one providing the best performances

has to be determined by testing.

Fig. 6. Feature extraction from different levels of each
DBN

Fig. 7 shows the block diagram of the proposed

ensemble of DBNs, each of them extracting features

from a different brain region, according to the regions

defined by the AAL atlas, and fused by a SVM.

3. Results and discussion

In this section, classification outcomes using the pro-

posed classification methods are shown. These results

have been also compared with those obtained using

other methods. Classification results are assessed

by k-fold (k=10) cross-validation, namely stratified

cross validation, ensuring that each fold has roughly

equal size and roughly the same class proportions

as in the data manifold. To avoid double dipping,

training and testing subsets are disjoint sets and

thus they do not share any sample. This process is

repeated for the 10 folds and the results provided

here are computed as the average of 10 evaluations

throughout 10 folds. The main purpose of cross-

validation is to estimate the generalization error,

ensuring that similar results will be obtained on new

data (i.e. low generalization error). In practice, this
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Fig. 7. Block diagram of the proposed ensemble of DBNs for extracting features and classification. In this case, each
individual DBN extract features from a specific brain region: a) training Phase, b) classification phase.

error will always result in an overestimate of the true

prediction error, since the models obtained during

the training phase are not computed using all the

training set but k− 1 folds. This overestimation will

depend on the slope of the learning curve of the

classifier and reduces when k increases. Thus, the

leave-one-out cross-validation (k = N , with N the

number of available samples) has the lowest bias but

can have high variance because the training sets are

so similar to one another. Overall, five- or tenfold

cross-validation are recommended as a good com-

promise.

The first experiments, used also to validate and com-

pare different configurations sets, have consisted in

classifying between Controls and AD patients. Then,

we have addressed the much more challenging case

that involves the classification of mild cognitive im-

pairment patients (MCI).70 In particular, we have

performed classification experiments between stable

MCI (MCIs) and AD patients, and between con-

trols and MCI converters (MCIc). MCI converters

are patients who were diagnosed as MCI but finally

converted to AD in the term of 2 years, while Stable

MCI are those who remain MCI after this period.

The latter case, involving MCIc, deals directly with

early AD diagnosis, which constitutes the most rele-

vant issue in AD diagnosis due to its importance in

the treatment success.

This section compares the different classification

methods that have been implemented to determine

that which provides the best results.

3.1. Parameter set analysis for DBN

The performances of the DBN-based classification

methods will obviously depend on the performances



January 11, 2016 11:49 ws-ijns13tex˙R7-
jorgev2b˙aortiz˙no˙marks

12 Andrés Ortiz, Jorge Munilla, Juan M. Górriz, Javier Ramı́rez

of the DBNs. These, in turn, will depend on the used

parameter configuration. It is well-known that the

number of hidden layers and the number of neurons

have a direct influence on the representation capa-

bilities and the convergence of the network. Thus, to

increase the confidence in our comparisons, we have

carried out a previous analysis to determine some

optimal values for the number of layers and hidden

neurons of the deep learning networks.

Increasing the number of hidden layers implies

more epochs to converge and consequently a higher

training time48,51,71 . It has been also shown that,

in practice, structures composed of more than 3 hid-

den layers slightly increases the performance of the

network. Therefore, for this work, we have assumed

networks with 3 hidden layers.

Although a rough range of possible values could

be inferred from the characteristics of the input, the

specific number of neurons in the hidden layer has to

be determined by testing. To limit the number of pos-

sible solutions and since our objective is to compare

the representation capabilities at each layer, corre-

sponding to different abstraction levels for the same

number of features, we assume here that the three

layers are equally sized. Fig. 8 graphs the classifica-

tion accuracies for the DBN-SVM (SVM as voting

mechanisms) and FEDBN-SVM architectures where

different numbers of neurons are used. It seems that

400 hidden neurons per layer provide the best re-

sults. Consequently, networks with 400 units at each

hidden layers are considered hereafter in the experi-

ments.

The contrastive divergence method used to train

each RBM requires a certain number of iterations to

converge. This number of iterations has to be cho-

sen for a trade-off between representation error and

computing time while avoiding over-fitting the data,

which would decrease the generalization capabilities

of the network. Moreover, the supervised training

used to fine-tune the weights by back-propagation

has to be also stopped before over-fitting occurs.72 In

the experiments performed, we trained the network

across 20 and 200 epochs in the unsupervised (RBM

training) and supervised (backpropagation) stages.

Experiments conducted using 10 and 100 epochs (for

the unsupervised and supervised part, respectively)

provided lower accuracy values, while 30 and 300 it-

erations respectively, do not improve the accuracy.

As a conclusion, using more than 20 and 200 iter-

ations could tend to over-fit the data. Additionally,

the learning rates in both unsupervised and super-

vised stages control the portion of weight updating

during training. These were also tuned by experi-

mentation and we eventually used the values 0.1 and

0.01 for the unsupervised and supervised phases, re-

spectively. In general, lower learning rates tend to

increase the learning rate and the network could be

stuck in a local minima. On the contrary, higher

values speed up the training process but the net-

work may not converge. Experiments performed us-

ing 0.01 and 0.001 for the unsupervised and super-

vised stages respectively, slowed down the training

stage and slightly decreased the classification accu-

racy. Higher values tested (0.5 and 0.1) decreased

considerably the accuracy.

Fig. 8. Accuracy obtained for different number of units
in the hidden layer for both implementations, DBN-
SVM and FEDBN-SVM. The architecture used consists
of three equally sized hidden layers

In Table 2 we summarize the parameters used

to train the i-th component (DBN) of the ensem-

ble (1 ≤ i ≤ 98), corresponding to the i-th region,

including the learning rates used during the unsuper-

vised (RBM training) and supervised (backpropaga-

tion) phases. Note that the only difference between

the different DBNs is the number of neurons of the

input layer since this corresponds to the number of

preselected voxels of each region.

Additionally, when using the DBN as a feature

extractor (i.e. FEDBN-SVM), it is also important to

determine the layer providing the most discrimina-

tive features. As there is no way to know the discrim-
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inative power of the features at different levels a pri-

ori, different experiments were conducted to evaluate

these features. With this aim, different tests have

been carried out to compare the classification accu-

racies when features are extracted from the different

hidden layers: L1, L2 or L3. The results are collected

in Tab. 3.

Table 2. DBN Parameters. voxelsi refers to voxels of re-
gion i

Parameter Value

# hidden layers 3
# neurons per hidden layer 400
DBNi Structure voxelsi-400-400-400-2
Unsupervised training epochs 20
Supervised training epochs 200
Unsupervised learning rate 0.1
Backpropagation learning rate 0.01

Although L1, L2 and L3 seem to provide rep-

resentative features, we consider the use of L2 fea-

tures as it provides the best performance in terms of

AUC metric, measured for a 5% of significance level,

which measures the robustness of the classifier taking

into account not only the accuracy but also sensitiv-

ity and specificity. Consequently, features extracted

from hidden layer 2 are used hereafter.

Table 3. Accuracy, Sensitivity and Specificity obtained with
features extracted from different layers, corresponding to
NC/AD classification with FEDBN-SVM. AUC values are
computed for a 5% of significance level (p < 0.05).

Layer Accuracy Sensitivity Specificity AUC

L1 0.88 ± 0.08 0.84 ± 0.10 0.94 ± 0.17 0.94
L2 0.90 ± 0.09 0.86 ± 0.12 0.94 ± 0.10 0.95
L3 0.87 ± 0.09 0.79 ± 0.17 0.96 ± 0.10 0.94

3.2. Voting Methods comparison

This section compares the voting methods described

in Section 2.5. Experiments combining the architec-

ture DBN with the four different voting schemes are

carried out. Table 4 shows the results of these exper-

iments. As previously explained, the DBN voter case

consists in fusing the decisions given by the individ-

ual classifiers67 composing the ensemble by means

of another DBN. In this case, by experimentation, a

98-100-100-100-2 network structure was selected.

Table 4. Comparison of Voting methods. Results
in this Table refers to NC/AD classification us-
ing an ensemble of DBN classifiers. AUC val-
ues are computed for 5% of significance level.

Voting Method Accuracy AUC

Majority Voting (MV) 0.85±0.05 0.83
Weighted voting (WV) 0.86±0.06 0.85
DBN voter (DBN-DBN) 0.78±0.06 0.78
SVM voter (DBN-SVM) 0.90±0.08 0.90

Statistical significance test of the results aim-

ing to state the best-performing method is addressed

by ANOVA73 analysis using the accuracy values.

This revealed that null hypothesis (H0) can be re-

jected, which means that at least one group mean

differs from the rest. A multiple comparison test was

eventually performed to identify these differences by

means of the 95% confidence intervals. Consequently,

DBN-SVM method outperforms the MV and DBN

methods (confidence intervals of [-0.17, -0.06] and [-

0.11,-0.02], respectively). At the same time, the su-

periority of the DBN-SVM method over the WV

method cannot be statistically assessed at 5% of sig-

nificance (confidence interval of [-0.10,-0.01]). How-

ever, as SVM voting method provides a higher AUC

computed for 5% of significance level, it can be re-

garded as superior to the other methods.

3.3. Classification Experiments

Once the best-performing architectures have been

determined, we have carried out the previously de-

scribed classification experiments between the dif-

ferent subject groups. Tab. 5 shows the classifica-

tion outcomes obtained for different classification ap-

proaches for NC/AD classification. In the first three

rows, the Voxel as Features (VAF) method,74 which

considers individual voxels as different features, is

shown. For VAF experiments we used a linear SVM

trained with GM, PET and GM+PET data. Al-

though SVMs are less prone to suffer from this is-

sue than other classifiers,43 the main drawback of

this method is the curse of dimensionality problem.

Thus, dimensionality of raw data used in VAF ex-

periments was reduced by means of Principal Com-
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ponent Analysis (PCA)75,76 to 10 principal compo-

nents (under PCA PET+GM row in Tab. 5). Fur-

thermore, an ensemble of linear SVMs, labelled as

SVM-e, is included for comparison. In SVM-e each

SVM acts as a weak classifier being trained with vox-

els from one brain region, and then, a new linear

SVM is trained using the outputs of each individual

SVM composing the ensemble to deliver the final de-

cision. Finally, the last two rows correspond to the

proposed DBN-based classification architectures de-

fined in the previous sections. That is, DBN with the

four different voting mechanisms, and FEDBN-SVM,

where DBNs are not used as classifiers but as fea-

ture extractors from each brain region, which allows

defining a new space composed of the concatenated

features extracted by each DBN. These are then used

to train a linear SVM.

Classification performance is assessed by mea-

suring the accuracy, sensitivity and specificity for

each method as this is a widely accepted method

to evaluate the classification performance66,77,78 and

to estimate the generalizaton error.66 Moreover, the

ROC curve which graphically shows the ability to

discriminate between different classes79 is also pro-

vided along with the AUC (Area Under Roc Curve)

metric measured for a 5% of significance level, which

can be defined as the probability of the classifier to

rank a randomly chosen positive sample higher than

a randomly chosen negative sample.79,80 Thus, AUC

values fall in the [0,1] range, where 1 indicates per-

fect discrimination between classes, 0.5 indicates no

ability to discriminate (random classifier) and 0 in-

dicates that negative data are always ranked higher

than positive data.66,78,79

In addition, the Receiver Operating Curve

(ROC)79 computed for the best-performing classi-

fication alternatives are also shown in Figure 9,

providing AUC values of 0.95, 0.94, 0.94 and 0.79

for FEDBN-SVM, SVM-e, DBN-SVM and VAF

PET+GM methods, respectively. AUC values in the

Tab. 5 are computed for a significance level of 5%

(p < 0.05) in all cases. Thus, it can be observed that

FEDBN-SVM shows best results that the rest of clas-

sification approaches.

3.4. Ranking ROIs

The proposed methods where a SVM is used to com-

pose the ensemble, also allow us to rank atlas ROIs

according to their relative discriminant capabilities.

In fact, as explained in Section 2.4, a weighted sum

vector W of the Ns support vectors can be com-

puted. This vector gives us information about the

relative importance of each feature.

Fig. 9. ROC curves for different NC/AD classification
methods.

For the FEDBN-SVM, the selected architecture

consists of 400 units at each RBM layer, and there-

fore 400 features are extracted for each region (in-

cluding MRI and PET information). The SVM which

fuses the features generated in each DBN to compose

the ensemble is thus fed with 400*98 features. The

SVM then computes 400*98 weights, and the weight

of the k-th region can be defined as the sum of all the

weights of the features corresponding to that region:

W k =
1

400

400∑
i=1

|wk,i| (14)

where wk,i is the SVM weight corresponding to the

activation of the neuron i in the region k. These

values can be normalized by dividing them by the

maximum W k
max for 1 ≤ k ≤ 98, so that all the

values are in the range [0,1].

For NC/AD classification, Figure 10 and 11 il-

lustrate the computed relative importance of the

ROIs in the axial and coronal planes, and the most

discriminative brain regions, respectively. These se-

lected regions are according to the medical bibliog-

raphy.
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Table 5. Accuracy, Sensitivity, Specificity and Area Under ROC Curve (AUC) for different classification
methods. These results correspond to NC/AD classification. AUC values are computed for a significance level
of 5% (p < 0.05).

Method Accuracy Sensitivity Specificity AUC

VAF PET 0.85 ± 0.09 0.89 ± 0.13 0.81 ± 0.12 0.91
VAF GM 0.82 ± 0.12 0.82 ± 0.18 0.81 ± 0.14 0.91
VAF PET+GM 0.86 ± 0.11 0.85 ± 0.13 0.87 ± 0.16 0.88
PCA PET+GM 0.87 ± 0.10 0.85 ± 0.15 0.90 ± 0.10 0.79
SVM-e 0.88 ± 0.08 0.84 ± 0.13 0.92 ± 0.11 0.94
DBN-MV 0.84 ± 0.07 0.80 ± 0.14 0.88 ± 0.09 0.84
DBN-WV 0.87 ± 0.09 0.84 ± 0.16 0.90 ± 0.12 0.87
DBN-SVM 0.88 ± 0.08 0.87 ± 0.14 0.90 ± 0.12 0.93
DBN-DBN 0.78 ± 0.05 0.99 ± 0.05 0.57 ± 0.16 0.77
FEDBN-SVM L2 0.90 ± 0.09 0.86 ± 0.12 0.94 ± 0.10 0.95

(a) (b)

Fig. 10. ROIs computed for NC/AD in the axial (a) and coronal (b) planes. Relative importance is shown in the colorbar
(red colour indicates the most discriminative regions).

3.5. Classification of MCI subjects

In this section, we address the more complex problem

of MCI/AD classification. As previously explained,

MCI can be considered as an intermediate state be-

tween controls and AD patients, and not all MCI

subjects have to develop AD necessarily. Those MCI

whose diagnostic changed to AD, according to the

MMSE value, within the next two years after be-

ing diagnosed as MCI are labelled as MCI convert-

ers. Otherwise, they are considered stable MCI. The

differences, functional and structural, between the

groups are here much more subtle.

3.5.1. MCIs/AD Classification

We first tackle the MCIs/AD classification issue.

This is possible since ADNI database provides infor-

mation to identify these patients in the MCI cohort.

Indeed, Tab. 6 shows the demographic data of the

MCI patients in the database when MCIs and MCIc

subjects are differentiated.
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(a) (b) (c)

Fig. 11. Most discriminative brain regions for NC/AD classification, identified in axial (a), coronal (b) and sagittal
(c) planes. Sorted by discriminative capability, (38) Right Hippocampus, (90) Right Inferior temporal Gyrus, (37) Left
Hippocampus, (85) Left Middle Temporal gyrus, (86) Right Middle Temporal gyrus, (89) Inferior Temporal gyrus, (40)
Right ParaHippocampal gyrus, (39) Left ParaHippocampal gyrus, (42) Right Amygdala, (41) Left Amygdala.

Table 6. Demographic data of MCIs and MCIc in the
ADNI database

Diag. Num. Age Gender MMSE
M/F

MCIs 64 76.46± 6.56 45/19 14.73± 12.58
MCIc 39 77.02± 7.06 25/14 17.05± 12.41

We apply the the same classification and anal-

ysis methods that those described for NC/AD sub-

jects. Tab. 7 shows the classification performances

obtained for the different classification approaches.

The results obtained shows that using the raw voxels

as features (VAF approach) and a unique classifier is

not enough to differentiate between MCIs and AD

subjects due to the subtle differences between them.

Nevertheless, alternatives using ensembles of classi-

fiers clearly outperform the VAF approach. Specif-

ically, the ensemble of SVMs provides similar per-

formances to those provided by the FEDBN-SVM

proposal.

In the same way as for NC/AD, Fig. 12 shows

the ROC curves corresponding to the best perform-

ing approaches, i.e. FEDBN-SVM, SVM-e, DBN-

SVM and VAF PET+GM, according to the AUC

value computed from the ROC curve for a 5% of sig-

nificance level (p < 0.05).

ROIs computed for the case of MCIs/AD clas-

sification are shown in Fig. 13. Different layers in

the axial and coronal planes are depicted to indi-

cate the most discriminative regions. More in par-

ticular, the top ten most discriminative regions cor-

respond to (according to the AAL atlas notation):

Left Angular Gyrus (65), Right Angular Gyrus (66),

Posterior Cingulate Gyrus (35), Left Amygdala (41),

Left Hippocampus (37), Right Hippocampus (38),

Parahippocampal gyrus (39), Left Inferior Parietal,

but supramarginal and Angular Gyri (61), Right

Posterior Cingulate Gyrus (36), Left Precuneus (67).

Structure or functionality associated to these regions

appear in medical literature to be affected in differ-

ent stages of the AD development.32,39,40 Note that

ROIs appear at different layers, making it difficult to

provide a figure similar to Fig. 11.

Fig. 12. ROC curves for different MCIs/AD classifica-
tion methods.

3.5.2. NC/MCIc Classification: early AD
diagnosis

A further step towards early AD diagnosis involves

differentiating between controls and patients who

converted to AD (MCIc) in subsequent evaluations.

For NC/MCIc classification, Tab. 8 collects the

classification results obtained for the different ap-
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Table 7. Accuracy, Sensitivity, Specificity and Area Under ROC Curve (AUC) for different classification
methods. These results correspond to stable MCIs/AD classification. AUC values are computed for a signif-
icance level of 5% (p < 0.05).

Method Accuracy Sensitivity Specificity AUC

VAF PET 0.65 ± 0.13 0.67 ± 0.17 0.63 ± 0.17 0.72
VAF GM 0.55 ± 0.08 0.53 ± 0.14 0.57 ± 0.13 0.58
VAF PET+GM 0.66 ± 0.11 0.64 ± 0.19 0.69 ± 0.13 0.66
PCA PET+GM 0.70 ± 0.09 0.72 ± 0.11 0.69 ± 0.15 0.77
SVM-e 0.84 ± 0.10 0.80± 0.15 0.88 ± 0.14 0.91
DBN-MV 0.84 ± 0.12 0.83 ± 0.18 0.86 ± 0.13 0.84
DBN-WV 0.84 ± 0.10 0.82 ± 0.15 0.85 ± 0.15 0.80
DBN-SVM 0.86 ± 0.08 0.90 ± 0.12 0.81 ± 0.14 0.85
DBN-DBN 0.69 ± 0.12 1.00 ± 0.05 0.35 ± 0.20 0.67
FEDBN-SVM L2 0.84 ± 0.09 0.79 ± 0.12 0.89 ± 0.12 0.90

(a) (b)

Fig. 13. ROIs computed for MCIs/AD in the axial (a) and coronal (b) planes. Relative importance is shown in the
colorbar (red colour indicates the most discriminative regions). These regions include Left Angular Gyrus (65), Right An-
gular Gyrus (66), Posterior Cingulate Gyrus (35), Left Amygdala (41), Left Hippocampus (37), Right Hippocampus (38),
Parahippocampal gyrus (39), Left Inferior Parietal, bu supramarginal and Angular Gyri (61), Right Posterior Cingulate
Gyrus (36), Left Precuneus (67) as most discriminative

proaches, while Fig. 14 shows the ROC curve for

the best performing ones. The top ten most discrim-

inative ROIs in this case are: Left Amygdala (41),

Right Parahippocampal gyrus (40), Right Amygdala

(42), Right Hippocampus (38), Right Angular Gyrus

(66), Left Hippocampus (37), Left Parahippocampal

Gyrus (39), Right Gyrus Rectus (28), Left Temporal

Pole: middle Temporal Gyrus (87), Middle Temporal

Gyrus (86). In general, as previously commented, in-

formation for AD diagnosis is available in GM due to

the atrophy produced by GM shrinkage at the time

brain ventricles grow larger. By contrast, only mild

brain changes are present in MCI patients and there-

fore most information is contained in PET data.

In this case, the superiority of the FEDBN-SVM

method can be stated according to the AUC value

computed for 5% of significance level, showing that

FEDBN-SVM classifier is more robust than the other

approaches, as it provides the highest AUC value.

3.6. Comparison with other published
alternatives

Finally, this section compares the FEDBN-SVM with

other classification methods published in the liter-



January 11, 2016 11:49 ws-ijns13tex˙R7-
jorgev2b˙aortiz˙no˙marks

18 Andrés Ortiz, Jorge Munilla, Juan M. Górriz, Javier Ramı́rez

Table 8. Accuracy, Sensitivity, Specificity and Area Under ROC Curve (AUC) for different classification
methods. These results correspond to NC/MCI converter classification. AUC values are computed for a
significance level of 5% (p < 0.05).

Method Accuracy Sensitivity Specificity AUC

VAF PET 0.72 ± 0.14 0.79 ± 0.18 0.62 ± 0.21 0.84
VAF GM 0.63 ± 0.15 0.83 ± 0.18 0.35 ± 0.17 0.65
VAF PET+GM 0.71 ± 0.13 0.86 ± 0.18 0.48 ± 0.13 0.75
PCA PET+GM 0.71 ± 0.19 0.68 ± 0.19 0.75 ± 0.24 0.80
SVM-e 0.83 ± 0.07 0.81 ± 0.13 0.85 ± 0.12 0.94
DBN-MV 0.83 ± 0.11 0.66 ± 0.23 0.95 ± 0.09 0.80
DBN-WV 0.82 ± 0.10 0.60 ± 0.15 0.90 ± 0.15 0.77
DBN-SVM 0.85 ± 0.14 0.69 ± 0.28 0.96 ± 0.08 0.83
DBN-DBN 0.73 ± 0.12 0.95 ± 0.05 0.55 ± 0.21 0.77
FEDBN-SVM L2 0.83 ± 0.14 0.67 ± 0.26 0.95 ± 0.09 0.95

ature. Although these comparisons are always ar-

guable as a means to identify the best option, since

it is almost impossible to replicate the same initial

conditions (i.e. input data), they can help to deter-

mine if our proposal is consistent with the state of

the art. With this aim, Tab. 10 compares the perfor-

mances of FEDBN-SVM with others reported in the

bibliography. According to these data, FEDBN-SVM

outperforms slightly previous results, which, at least,

indicates that this proposal must be considered as a

serious classification alternative. In addition, works

such as Ref. 55 propose the use of deep autoencoders

to learn features from image, CSF biomarkers and

MMSE data. However, it is worth noting that using

MMSE results along with the labels could boost the

classification performance, as ADNI labels are based

on these MMSE values. On the contrary, our pro-

posal tries to exploit all the information contained in

the image data by computing specific features from

each brain region by individual DBN-based feature

extractors that are eventually combined in an ensem-

ble.

On the other hand, we show results obtained us-

ing the FEDBN-SVM method when classifying be-

tween MCIs and MCIc. At the same time, we also

provide CN vs. MCIs classification results for com-

pleteness. The classification performances using all

the groups exposed in this work are summarized in

Tab.9.

Fig. 14. ROC curves for different NC/MCIc classifica-
tion methods.

4. Conclusions

Comment 8.1 This paper presents a method for AD and early

AD diagnosis by fusing functional and structural

imaging data based on the use of the Deep Learning

paradigm, and more specifically, Deep Belief Net-

works (DBN). A set of DBNs is trained using data

from each brain region, according to the AAL atlas,

composing an ensemble of DBNs. This concept is

used to implement and compare two different DBN-

based alternatives: DBN-voter and FEDBN-SVM.

The first consists in the use of an ensemble of DBNs

classifiers, while the latter is based on the use of

DBNs as feature extractors, making use of their ca-

pability of representing the information at different

abstraction layers.

Four different methods to fuse the decisions of
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Table 9. Classification performance of FEDBN-SVM approach for different groups

Method Subjects (NC/AD) Acc Sens Spec AUC

CN / AD 68/70 0.90 ± 0.09 0.86±0.12 0.94±0.10 0.95
CN / MCIc 68/39 0.83 ± 0.14 0.67 ± 0.26 0.95 ± 0.09 0.95
CN / MCIs 68/64 0.80 ± 0.12 0.60 ± 0.20 0.90 ± 0.10 0.84
MCIs / AD 64/70 0.84 ± 0.10 0.79 ± 0.12 0.89 ± 0.12 0.90
MCIs / MCIc 64/39 0.78 ± 0.10 0.61 ± 0.15 0.88 ± 0.13 0.82

Table 10. Comparison of NC / AD classification results reported in the
literature using MRI image data from the ADNI database

Method Subjects (NC/AD) Acc Sens Spec

VAF(GM)/(LP) Boosting81 183/172 0.82 0.85 0.80

VAF(GM)/SVM21 162/137 0.88 0.91 0.95

93 ROI (GM)82 52/51 0.86 0.86 0.86

VAF(GM)/SRC-ensemble22 228/198 0.90 0.86 0.94
FEDBN-SVM 68/70 0.90 0.86 0.94

(a) (b)

Fig. 15. ROIs computed for NC/MCIc in the axial (a) and coronal (b) planes. Relative importance is shown in the
colorbar (red colour indicates the most discriminative regions).

the individual classifiers in the DBN method have

been analyzed, and our experiments showed that the

best results are obtained with the SVM voter; i.e.

DBN-SVM. The best classification outcomes have

been, however, obtained using DBNs as feature ex-

tractors; i.e. with FEDBN-SVM. It provides higher

classification performances in terms of AUC than

using discriminative DBNs as classifiers. In order to

compare it with other ensemble alternatives, differ-

ent options have been implemented. For the different

classification experiments, FEDBN-SVM proposal

outperforms the VAF technique and the results ob-

tained using PCA to reduce the feature space, and

offers similar performances to those provided by an

ensemble of linear SVMs (SVM-e).

Classification experiments using different groups

of subjects have been carried out. Firstly, exper-

iments using the FEDBN-SVM between Controls

and AD patients reported an accuracy of 0.90±0.09
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and an AUC of 0.95. The proposed classification ap-

proach also allowed devising a method to determine

the most discriminative ROIs, by using the SVM

weights computed during the optimization process

that defined the hyperplane; regions associated to

AD such as the Hippocampus, the Temporal Gyrus

and the Parahippocampal gyrus are pointed out as

discriminative by our method, which is according

to the medical literature. Next, taking advantage

of the possibilities of the ADNI database to iden-

tify MCIs and MCIc, regions allowing to differenti-

ate between stable MCIs and AD patients, such as

Angular gyrus, Posterior cingulate gyrus, Parahip-

pocampal gyrus and the Hippocampus, were also de-

termined. Finally, classification experiments between

NC and MCIc (early AD diagnosis) were performed.

The classification outcome in this case reported ac-

curacy of 0.84±0.14 and AUC of 0.95. Two facts

were corroborated. First, the classification perfor-

mance for NC/MCIc is higher than for MCIs/AD,

and second, the regions involved in early AD diag-

nosis (NC/MCIc case) include regions computed as

discriminative for NC/AD but with different relative

importance.
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González, F. Segovia, R. Chaves, P. Padilla and
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