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Abstract In video surveillance systems which incorporate stationary cam-
eras, the first phase of movement object detection is crucial for the correct
modelling of the behavior of these objects, as well as being the most complex
in terms of execution time. There are many algorithms that provide a reliable
and adequate segmentation mask, obtaining real-time ratios for reduced im-
age sizes. However, due to the increased performance of camera hardware, the
application of previous methods to sequences with higher resolutions (from
640x480 to 1920x1080) is not carried out in real time, compromising their use
in real video surveillance systems. In this paper we propose a methodology
to reduce the computational requirements of the algorithms, consisting of a
reduction of the input frame and, subsequently, an interpolation of the seg-
mentation mask of each method to recover the original frame size. In addition,
the viability of this meta-model is analyzed together with the different selected
algorithms, evaluating the quality of the resulting segmentation and its gain
in terms of computation time.

Keywords Foreground detection · video size downsampling · interpolation
techniques

1 Introduction

The detection of foreground objects in video sequences is a well-known issue. It
is a low level task of paramount importance in current automated video surveil-
lance systems which has been addressed by several works (Wren et al., 1997;
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López-Rubio et al., 2011; López-Rubio et al., 2018a). The advent of inexpen-
sive high resolution surveillance cameras provides higher quality video to be
supplied to the foreground detection algorithms. However, these algorithms are
typically heavy in computational load terms. Therefore, high resolution video
frames cannot be processed by many algorithms in real time, which hampers
their application to practical situations. This calls for methods to reduce the
computational complexity of foreground detection methods when they have to
process high resolution video frames.

A possible strategy to address this issue involves reducing the spatial reso-
lution of the incoming video data. Despite the information loss, if the quality of
the output of the foreground detection algorithm is similar and the final com-
plexity time is reduced, this input image size reduction is worthwhile. This
combination has already been considered in several previous papers, not only
in the field of foreground detection (Xue et al., 2013; Cvetkovic et al., 2006)
but also in a more general scope such as saliency detection (Lowe, 2004; Guan,
2010; Zhang et al., 2017; Yubing et al., 2011; Yan et al., 2013). However, in
previous literature the image downsampling is integrated into each proposed
method, but its effect has not been studied as a preprocessing method in the
field of foreground detection.

In our previous work we have studied the degradation of the performance
of foreground detection systems under noise conditions (López-Rubio et al.,
2018b); now we aim to study the effect of spatial resolution reduction in the
performance of the foreground detection algorithms. This way, we propose
a general methodology to reduce the computational requirements of a back-
ground model by downsampling the original input video frames. A subsequent
upsampling is carried out in order to yield a foreground mask of the same
size of the original frame. Furthermore, several relevant foreground detection
methods have been considered to carry out a systematic study of the influence
of the downsampling-upsampling strategy on this type of algorithms. These
selected algorithms stand out for their high impact and number of citations.
For example, Grimson (Stauffer and Grimson, 1999) has been one of the most
used methods in video surveillance in recent years and is a reference within
the existing bibliography. On the other hand, SuBSENSE (St-Charles et al.,
2014), LOBSTER (St-Charles and Bilodeau, 2014), and PAWCS (St-Charles
et al., 2016) are more recent and stand out for being the most effective in sev-
eral data sets. In addition, a public repository formed by 31 video sequences
with more than 88000 annotated frames has been analyzed, because it offers
a representative vision of the behavior of the selected foreground detection
algorithms by applying the proposed methodology in different categories. Our
proposal extends our earlier results (Molina-Cabello et al., 2016), which were
restricted to a particular background model.

The rest of the paper is organized as follows. Section 2 outlines the related
works in the field of background modelling, 3 sets out the methodology of this
approach by describing the probabilistic model applied to each tiling and how
to compute the foreground mask. Section 4 shows several experimental results
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over some well-known public video surveillance sequences and finally Section
5 concludes the article.

2 Related Works

The field of the foreground detection in video sequences, also called back-
ground modelling or background subtraction, has been widely studied by the
scientific community in recent years. Numerous works have been published in
the last two decades, highlighting the diversity of techniques applied to solve
a problem that is still considered open due to its difficulty. The key idea is
to distinguish between objects (or pixels) that are in motion from those that
belong to the background of the scene. Despite its simplicity from the hu-
man point of view, there are many key issues that make difficult to provide
an adequate foreground segmentation mask for each frame (Bouwmans, 2014;
Hu et al., 2004). The most traditional proposals have applied probabilistic
distributions for modelling the background of the scene, with satisfactory re-
sults in first generation video surveillance systems (Wren et al., 1997; Stauffer
and Grimson, 1999; Zivkovic, 2004). Progressively, more complex models have
been incorporated, such as kernel distributions (Elgammal et al., 2002; Mao
and Shi, 2005; Mao et al., 2012), self-organized neural networks (Maddalena
and Petrosino, 2008, 2012; López-Rubio et al., 2011) or algorithms for dimen-
sionality reduction (Javed et al., 2018). All of them try to generate a robust
background model that adapts to the scene and face the main issues that still
remain open.

Among them, it is worth noting the problem of illumination changes, both
gradual and sudden, that must be handled by any robust method of motion de-
tection. The use of different color spaces has been effective in reducing irregular
lighting variations and sudden changes in the brightness of scene (Yong-Beom
Lee et al., 2002). In addition, many works have shown that the use of color
spaces with less correlation between channels (Lab, Luv, HSV) has improved
background detection and reduced the influence of cast shadows by moving
objects (Benedek and Szirányi, 2007; López-Rubio and López-Rubio, 2015).
On the other hand, the combination of color and texture has also been used
in many proposals, since it is possible to extract robust information from the
input frames that is not sensitive to lighting variations (Shen et al., 2006).

A multiresolution method is considered in Wu et al. (2006) in order to
effectively determine an adaptive threshold with hysteresis to separate the
foreground from the background. A multiresolution strategy is also used in
Zhao and Taubin (2011) in order to progressively reduce the spatial resolution
of the incoming video, so that reliable background models can be learned
while the details of the scene are preserved in the higher resolution stages of
the multiresolution pipeline.

An approach which extracts some hundreds of clusters which are called
superpixels is proposed in Motamed (2017). Background models are learned
for such superpixels, which reduces the computational burden of adapting the
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models online. The technique is designed for underwater videos. Another pos-
sibility is explored in Mukherjee et al. (2013), where a wavelet multiresolution
decomposition of the incoming frame is carried out, followed by a modeling of
the wavelet coefficients by Gaussian Mixture Models (GMMs).

On the other hand, recent papers use local binary patterns (LBP) obtained
from the local neighborhood around each pixel. These patterns compare the
intensity in the current frame and in the background model. With its inclusion
as part of a foreground detection technique, the tolerance to lighting variations
and robustness in multimodal background regions and shadows has been im-
proved (Heikkilä and Pietikäinen, 2006). This idea has been extended in the
so-called LBSP (local binary similarity patterns) with very interesting results
in recent proposals (St-Charles et al., 2015; St-Charles et al., 2016).

Image interpolation techniques have also been applied effectively to im-
prove the efficiency and complexity of foreground detection techniques (Xue
et al., 2013). Among them, we can highlight the most usual ones such as bi-
linear or bicubic interpolation (Kok and Tam, 2019), which are used both for
downsampling and upsampling the image. In (Jiang et al., 2013), a set of fore-
ground sub-images, with different sizes and resolutions, has been considered
to reduce the computational cost and improve the pedestrian detector which
they propose. In the case of upsampling methods, super-resolution techniques
might be useful (Dong et al., 2015), although its temporal complexity makes
it currently unfeasible for real-time performance in foreground detection algo-
rithms.

Nowadays, the emergence of deep learning networks has allowed its appli-
cation in the field of foreground detection with more than satisfactory results
(Bouwmans et al., 2019; Babaee et al., 2018; Minematsu et al., 2018). How-
ever, most proposals involve supervised training using the segmentation mask
or ground truth of the scene in some frames, which differs from previous pa-
pers, which mostly have an unsupervised behavior. In this work we have only
used unsupervised models for the evaluation of the proposed strategy.

3 Methodology

Next we define our proposed method for background modeling of high reso-
lution video sequences. Let us consider a frame size of N ×M pixels, so that
the foreground object detection is meant to be carried out at such resolution.
In order to reduce the computational complexity of the background model
learning, we propose to maintain a model with a smaller spatial resolution. To
this end, let us consider a feature function which maps each point in the input
frame to a feature vector of size D:

ψ : [1, N ]× [1,M ]→ RD (1)

z = ψ (x) (2)
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where the values ψ are only known at the points with integer pixel coordinates,
x ∈ {1, ..., N} × {1, ...,M}.

In order to reduce the spatial resolution a downsampling procedure must
be carried out. This means that a background model is learned only at the
following coordinates:

H =

{(
1 + i

N − 1

n− 1
, 1 + j

M − 1

m− 1

)
| i ∈ {0, ..., n− 1} , j ∈ {0, ...,m− 1}

}
(3)

so that the background model contains n×m points, with n < N , m < M .
In order to estimate the feature vector at non integer pixel coordinates, an

interpolation procedure is required. The simplest one is the nearest neighbor
approach:

ψNN (x) = ψ (round (x)) (4)

where round is the rounding function, applied componentwise to the coordinate
vector x.

Another option is window averaging over blocks of size W ×W pixels:

ψAVG (x) =
1

W 2

∑
y∈N (x)

ψ (y) (5)

where N (x) stands for the block of size W ×W pixels which point x belongs
to.

Other options include bilinear and bicubic interpolation:

ψLIN (x) =
∑

p,q∈{0,1}

apqx
p
1x

q
2 (6)

ψCUB (x) =
∑

p,q∈{0,1,2,3}

bpqx
p
1x

q
2 (7)

where apq and bpq are suitable bilinear and bicubic interpolation coefficients,
respectively. More details can be found in (Keys, 1981; Press et al., 1992).

The estimate feature vectors at the points in H are then used to learn
the background model at those points. The background model outputs the
probabilities to belong to the background at those points:

ρ : [1, N ]× [1,M ]→ [0, 1] (8)

ρ (x) = P (Back | x) (9)

where ρ (x) stands for the probability to belong to the background at point x,
which is known for x ∈ H.
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Downsampling

Segmentation

Upsampling

Fig. 1 Schema of the proposed methodology. Given an input frame, a downsampling process
is carried out in order to obtain that frame resized with a lower frame size. After that, the
execution of a segmentation method provides a foreground mask with the same frame size
than the resized frame. Finally, an upsampling process resizes the foreground mask to achieve
the same frame size than the original input frame.

Finally, an upsampling procedure is carried out to estimate the values of
ρ (x) for integer pixel coordinates, x ∈ {1, ..., N}×{1, ...,M}. For this purpose,
bicubic interpolation is always used, since it yields the most accurate results:

ρCUB (x) =
∑

p,q∈{0,1,2,3}

cpqx
p
1x

q
2 (10)

where cpq are suitable bicubic interpolation coefficients. Please see (Keys, 1981;
Press et al., 1992) for more details. Other less detailed interpolation methods
like nearest neighbor and bilinear are not employed for the upsampling process
because the final upsampled foreground mask must have the highest possible
quality, and bicubic interpolation is the best option for this goal. The overall
results are less dependent on the exactness of the downsampling process, so
less detailed options like nearest neighbor and bilinear are considered.

Please note that our proposed procedure can be applied to any background
model learning algorithm. Therefore, a different foreground detection algo-
rithm is obtained by applying our proposal to each possible background model
learning method.

The operation of the proposed methodology is described in Figure 1. The
theoretical justification for our proposal can be outlined as follows. Natural
images and videos have a high spatial redundancy, i.e. the observed pixel values
are similar at nearby pixel locations most of the time. This means that the
downsampling process does not remove a large amount of color information, so
that the background models learned at a lower frame size are still relevant for
the original frame. Moreover, the downsampling combines the information of
neighboring pixels, which can have the beneficial side effect of removing some
of the noise of the original video frame.

4 Experimental results

The experiments that have been carried out and their results are presented in
this section. First of all, Subsection 4.1 details the software and the hardware
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used in the experiments and details the competitor methods. Then, Subsection
4.2 exhibits the tested video sequences. After that, the parameter selection is
described in Subsection 4.3. Finally the results are reported in Subsection 4.4.

4.1 Methods

Regarding to the proposed methodology, several downsampling methods are
considered, namely Nearest neighbor (NN), Bicubic interpolation (CUB), Bi-
linear interpolation (LIN) and Blockwise average (AVG). All of these methods
are implemented in Matlab.

To test our approach, some well-known unsupervised segmentation meth-
ods have been considered. These selected methods, which are representative
unsupervised algorithms with different kinds of background models, are: Wren
(Wren et al., 1997), Grimson (Stauffer and Grimson, 1999), Zivkovic (Zivkovic,
2004), SOBS (Maddalena and Petrosino, 2008), SOBS CF (Maddalena and
Petrosino, 2010), SuBSENSE (St-Charles et al., 2014), LOBSTER (St-Charles
and Bilodeau, 2014), PAWCS (St-Charles et al., 2016) and MFBM (López-
Rubio and López-Rubio, 2015). All (except MFBM1) are implemented in BGS
library2 (Sobral, 2013).

The reported experiments have been carried out on a 64-bit Personal Com-
puter with two Intel E5-2670 CPU with eight cores, 2.60 GHz per core, 32 GB
RAM and standard hardware. The implementation of our method does not
use any GPU resources, so it does not require any specific graphics hardware.

4.2 Sequences

The ChangeDetection.net (CDnet) 2012 dataset (Goyette et al., 2012) has been
selected in order to test the proposal. It is composed by 31 videos organised
into categories (Baseline (B), Dynamic Background (DB), Camera Jitter (CJ),
Intermittent Object Motion (IOM), Shadow (S) and Thermal (TH)) in order
to cover a wide range of different difficulties. This dataset is available in its
website3.

Additionally, the CAMO UOW Dataset (Li et al., 2018) is used in the
experiments. This dataset is formed by 10 high resolution videos captured in
real scenes including both indoor and outdoor cases. 6 of its videos have a
framesize of 1600 1200 pixels and they are recorded in the grayscale format;
while the remaining 4 videos have a framesize of 1920 1080 pixels and they
are recorded in the RGB format. It can be downloaded in its website4.

1 http://www.lcc.uma.es/~ezeqlr/index-en.html
2 https://github.com/andrewssobral/bgslibrary
3 http://changedetection.net/
4 https://documents.uow.edu.au/~wanqing/#Datasets

http://www.lcc.uma.es/~ezeqlr/index-en.html
https://github.com/andrewssobral/bgslibrary
http://changedetection.net/
https://documents.uow.edu.au/~wanqing/#Datasets
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Parameter Values

Downsampling method = {NN, CUB, LIN, AVG}
Resize factor = {0.875, 0.75, 0.625, 0.5, 0.375, 0.25, 0.125}
Segmentation method = {MFBM, Wren, Grimson, Zivkovic, SOBS,

SOBS CF, SuBSENSE, LOBSTER, PAWCS}

Table 1 Considered parameter values which form the set of tuned configurations.

4.3 Parameter selection

The value of the different parameters of each competitor segmentation method
is those recommended by their authors or the default value presented in the
BGS library. Regarding to the parameters of the proposed approach, so that,
the downsampling method and the resize factor, we have considered a wide
range of values. These values are shown in Table 1. Additionally, we note as
ORIG (or resize factor equals 1) when our proposal is not applied, so that, the
considered frame size is the original size.

4.4 Results

The goal of this work is to study how the different downsampling methods
and the selected resize factor affect to the foreground mask generated by the
segmentation method. The employed memory and the execution time are also
studied.

4.4.1 CDnet 2012

This subsection depicts the obtained results considering the whole CDnet 2012
dataset.

First of all, we have compared of the results from a qualitative point of
view. Some of the obtained results are shown in Figures 2 and 3. The most
relevant information is that the lower the resize factor the lower the result is
detailed. It is shown how the detected foreground objects assume a squared
shape with a low resize factor, even they can be removed. However, the false
positives rate is reduced.

In addition, a comparison has been carried out from a quantitative point
of view. We have considered the F-measure (F-m) as the measure in order to
compare the quality of the foreground masks. This measure considers both the
precision (PR) and the recall (RC, also called sensitivity) which are computed
from the true positives (TP), false positives (FP) and false negatives (FN).
The F-measure is commonly used in literature and it provides a value in the
range between 0 and 1, where higher is better. Its definition is as follows:

F-measure = 2 ∗ PR ∗RC
PR+RC

(11)
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Fig. 2 Qualitative results for a benchmark scene corresponding to the frame 1642 of the
video Highway by applying the segmentation method SOBS CF.

Frame GT SOBS CF

(a) The raw frame, the Ground Truth (GT) mask and the out-
put foreground mask obtained by applying the segmentation method
SOBS CF (ORIG result), respectively.

0.875 0.75 0.625 0.5 0.375 0.25 0.125

NN

CUB

LIN

AVG

(b) Output masks generated by the approach after applying the segmentation method
SOBS CF considering the different tuned configurations for the downsampling method
(first column) and the resize factor parameter (first row).

where

RC =
TP

TP + FN
PR =

TP

TP + FP
(12)

Another considered measure in this study is the execution time. In this
case, we have used the frames per second rate (fps), which is a positive real
number, and higher is better. The maximum memory employed (in KBytes)
by each approach is also considered. It is a positive number where lower is
better.

Figure 4 shows the average F-measure achieved by each segmentation
method considering the different tuned configurations. It can be observed that
the conclusions of the qualitative comparison are further confirmed in this fig-
ure: the lower the resize factor the lower the foreground detection performance.
It is interesting to see how the quality of the result of several segmentation
methods degrades gently as the resize factor decreases. For example, this is
the case of the segmentation methods MFBM or Zivkovic. On the other hand,
other segmentation methods such as PAWCS or SuBSENSE are heavily af-
fected when a low resize factor is used.
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Fig. 3 Qualitative results for a benchmark scene corresponding to the frame 1642 of the
video Pedestrians by applying the segmentation method PAWCS.

Frame GT PAWCS

(a) The raw frame, the Ground Truth (GT) mask and the output fore-
ground mask obtained by applying the segmentation method PAWCS
(ORIG result), respectively.

0.875 0.75 0.625 0.5 0.375 0.25 0.125

NN

CUB

LIN

AVG

(b) Output masks generated by the approach after applying the segmentation method
PAWCS considering the different tuned configurations for the downsampling method (first
column) and the resize factor parameter (first row).

The average fps is shown in Figure 5. In general, the use of the downsampling-
upsampling process is faster than the traditional schema; only two methods
(Wren and Zivkovic) are slower by applying the proposed methodology. The
explanation of the behaviour of these two methods is that their complexity is
very low (and much lower than the other selected methods) so they are very
fast. Because of this, the reduction of the execution time of both methods
with the downsampled frames is not significant respecting to the ORIG exe-
cution time. However, the addition of the proposed downsampling-upsampling
methodology has a time consumption that increases the whole execution time
over the ORIG time. In addition, the lower the resize factor the faster the
proposal.

On the other hand, the average maximum memory used is reported in Fig-
ure 6. In general, ORIG configurations yield a better memory performance due
to the memory requirements of the downsampling process. Furthermore, from
a certain value of the resize factor parameter to lower values, the memory used
by all the segmentation methods remains constantly. Again, the downsampling
process fixes the memory used.
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Fig. 4 Average F-measure in the whole dataset for each method (the higher, the better).
Note that the values of each method are connected between them with lines to better
compare the results, but this does not mean that the results are related.
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In order to compare the quality of each considered downsampling method,
the average of the performance of all tested segmentation methods are depicted
in Figure 7. The best downsampling method according to its yielded F-measure
(top left image) is LIN, while NN obtains the worst F-measure performance.
Additionally, the use of a resize factor value lower than 0.5 provides similar
performances with LIN, CUB and AVG. Regarding to the fps measure (top
right image), LIN is the fastest, while CUB is the slowest. From the used
memory point of view, NN, LIN and CUB have a similar waste of memory.
On the other hand, AVG employs more memory when the value of the resize
factor parameter is high, while its memory requirements are similar when the
resize factor parameter is low.

The results can be analyzed in more detail by selecting a particular video.
Table 2 exhibits the F-measure and fps performances yielded by different fore-
ground methods in the video PETS2006 from the category Baseline. This
category contains simple videos with no serious difficulties and the peculiarity
of this video is that its frame size is the highest of the CDnet 2012 dataset
(576x720 pixels). For each foreground method and resize factor, the mean per-
formance achieved by the downsampling methods is shown. The variation of
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Fig. 5 Average fps in the whole dataset for each method (the higher, the better). Note
that the values of each method are connected between them with lines to better compare
the results, but this does not mean that the results are related.
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F-measure and the variation of the fps yielded by each tuned configuration
(columns F-M Var and fps Var) have been calculated relative to the obtained
by the ORIG configuration. The definition of the variation (where the higher
the better) is as follows: given the performance values (for example, for the
execution time) achieved by ORIG and the tuned configuration pORIG and
pDSU , respectively, the variation is:

Variation = 100
pDSU − pORIG

pORIG
(13)

Note that a positive value for the variation indicates that the performance
of the tuned configuration is better than to the ORIG performance, while a
negative variation means a worse performance than the achieved by ORIG.

Most foreground algorithms improve their fps performance by employing
the proposed downsampling-upsampling methodology while they deteriorate
their F-measure. Additionally, the increase in fps is more pronounced than
the F-measure loss in the more recent algorithms such as PAWCS or LOB-
STER. This can be seen by observing the columns of the variation in Table
2. Again, it is interesting to observe the performance achieved by Wren and
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Fig. 6 Average maximum memory used (KBytes) in the whole dataset for each method
(the lower, the better). Note that the values of each method are connected between them
with lines to better compare the results, but this does not mean that the results are related.
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Zivkovic. The use of the proposed methodology affects negatively to their fps.
However, their F-measure is improved. As we have previously indicated, these
two foreground methods are not so complex. In addition, the false positives
rate is reduced when the proposed methodology is applied. This way, the
downsampling-upsampling strategy adopts a postprocessing technique role for
non complex foreground detection algorithms.

Moreover, Table 3 shows the total execution time and the execution time
per step (downsampling, segmentation and upsampling) yielded by different
foreground methods in the video PETS2006. As it was previously indicated,
the time reduction is heavily pronounced in the more recent algorithms such
as PAWCS or LOBSTER. It is interesting to observe how the lower the resize
factor, the higher the percentage of the downsampling step and the lower the
percentage of the segmentation step respecting to the whole execution time.

It must be highlighted that the execution time includes the time required
for the downsampling, plus the segmentation and upsampling times. The up-
sampling process is carried out in order to obtain a foreground mask with
the same size than the original input frame. Please note that the purpose of
this upsampling process is only to establish a fair comparison between the
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Method RF F-M F-M Var fps fps Var

MFBM ORIG 0.83 - 3.82 -
0.875 0.77 -7.35 3.93 2.72
0.750 0.77 -7.56 4.80 25.52
0.625 0.74 -11.40 7.65 100.05
0.500 0.72 -13.38 10.01 161.66
0.375 0.70 -16.23 15.09 294.50
0.250 0.62 -24.81 21.78 469.49
0.125 0.49 -41.17 29.63 674.72

Wren ORIG 0.65 - 50.71 -
0.875 0.74 13.12 18.61 -63.30
0.750 0.74 13.06 19.72 -61.10
0.625 0.76 15.54 22.92 -54.80
0.500 0.74 13.40 26.53 -47.67
0.375 0.70 7.49 31.86 -37.16
0.250 0.64 -1.89 35.15 -30.67
0.125 0.48 -26.38 34.84 -31.29

Grimson ORIG 0.55 - 12.96 -
0.875 0.56 1.07 9.65 -25.54
0.750 0.55 -0.62 11.07 -14.62
0.625 0.51 -7.19 15.38 18.62
0.500 0.49 -11.86 18.78 44.85
0.375 0.45 -18.84 24.87 91.90
0.250 0.39 -30.14 30.54 135.64
0.125 0.28 -48.48 32.91 153.90

Zivkovic ORIG 0.81 - 44.44 -
0.875 0.85 5.98 17.82 -59.91
0.750 0.85 5.21 19.32 -56.53
0.625 0.84 3.95 22.70 -48.93
0.500 0.82 1.54 26.27 -40.89
0.375 0.77 -4.47 31.63 -28.84
0.250 0.69 -14.31 33.77 -24.01
0.125 0.51 -36.12 34.30 -22.83

SOBS ORIG 0.85 - 18.15 -
0.875 0.80 -6.40 12.12 -33.24
0.750 0.78 -7.80 13.55 -25.36
0.625 0.72 -15.34 17.72 -2.40
0.500 0.68 -19.51 21.40 17.87
0.375 0.64 -24.83 27.43 51.12
0.250 0.53 -37.58 32.41 78.55
0.125 0.37 -55.99 34.05 87.57

SOBS CF ORIG 0.84 - 15.40 -
0.875 0.80 -4.45 10.74 -30.23
0.750 0.79 -6.24 12.07 -21.65
0.625 0.73 -12.48 16.45 6.84
0.500 0.71 -15.31 19.88 29.09
0.375 0.66 -20.82 26.31 70.87
0.250 0.57 -31.55 31.59 105.13
0.125 0.42 -50.23 33.67 118.67

SuBSENSE ORIG 0.95 - 1.38 -
0.875 0.91 -4.08 1.68 22.07
0.750 0.90 -5.79 2.14 55.04
0.625 0.84 -11.65 3.70 168.34
0.500 0.81 -15.22 4.98 261.35
0.375 0.76 -20.67 8.51 517.73
0.250 0.69 -28.13 14.37 943.43
0.125 0.18 -81.48 25.45 1747.69

LOBSTER ORIG 0.93 - 2.15 -
0.875 0.92 -1.01 2.45 14.19
0.750 0.91 -1.85 3.11 44.76
0.625 0.88 -5.28 5.23 143.59
0.500 0.86 -7.17 6.96 223.88
0.375 0.82 -11.67 11.14 418.47
0.250 0.72 -23.20 17.63 720.58
0.125 0.20 -78.94 28.07 1206.61

PAWCS ORIG 0.94 - 0.96 -
0.875 0.91 -3.16 1.20 24.94
0.750 0.90 -4.62 1.58 65.58
0.625 0.85 -9.63 2.93 205.75
0.500 0.82 -12.33 4.00 318.07
0.375 0.77 -17.89 7.08 640.16
0.250 0.67 -28.96 12.40 1195.71
0.125 0.19 -80.08 24.24 2433.81

Table 2 Average performances for each segmentation method in the video PETS2006 from
category Baseline. Each column shows the selected foreground method (Method), the applied
resize factor (RF), the F-measure (F-M), the variation of F-measure (F-M Var) respecting to
the obtained by ORIG, the fps and the variation of fps (fps Var) respecting to the obtained
by ORIG, respectively, where the higher the better. Each row shows the average performance
achieved by the downsampling methods.
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Method RF Total Time tD tS tU % tD % tS % tU

MFBM ORIG 313.78 0.00 313.78 0.00 0.00 100.00 0.00
0.875 307.70 35.68 258.53 13.49 11.60 84.02 4.38
0.750 260.34 33.61 211.42 15.30 12.91 81.21 5.88
0.625 161.06 33.96 114.02 13.08 21.09 70.80 8.12
0.500 120.81 31.21 79.57 10.03 25.84 65.86 8.30
0.375 81.38 27.80 45.00 8.57 34.17 55.30 10.53
0.250 56.08 25.73 21.66 8.69 45.88 38.62 15.50
0.125 41.69 27.00 7.22 7.47 64.77 17.31 17.92

Wren ORIG 23.67 0.00 23.67 0.00 0.00 100.00 0.00
0.875 67.04 35.68 17.90 13.46 53.22 26.70 20.08
0.750 63.56 33.61 15.07 14.88 52.88 23.71 23.41
0.625 55.21 33.96 8.28 12.97 61.52 15.00 23.49
0.500 47.34 31.21 6.42 9.71 65.93 13.55 20.52
0.375 40.47 27.80 4.05 8.62 68.70 10.01 21.30
0.250 36.03 25.73 2.52 7.78 71.41 7.00 21.59
0.125 35.99 27.00 1.84 7.14 75.03 5.12 19.85

Grimson ORIG 92.58 0.00 92.58 0.00 0.00 100.00 0.00
0.875 125.74 35.68 76.26 13.80 28.38 60.65 10.98
0.750 111.77 33.61 63.21 14.94 30.07 56.56 13.37
0.625 80.22 33.96 33.70 12.56 42.33 42.01 15.66
0.500 65.37 31.21 24.65 9.51 47.75 37.71 14.54
0.375 50.47 27.80 14.00 8.67 55.09 27.74 17.17
0.250 40.78 25.73 7.15 7.91 63.09 17.52 19.39
0.125 37.79 27.00 2.88 7.90 71.46 7.63 20.92

Zivkovic ORIG 27.00 0.00 27.00 0.00 0.00 100.00 0.00
0.875 69.79 35.68 20.49 13.61 51.13 29.36 19.51
0.750 65.36 33.61 17.00 14.75 51.43 26.00 22.57
0.625 55.58 33.96 9.39 12.23 61.10 16.89 22.01
0.500 47.99 31.21 7.19 9.60 65.03 14.97 20.00
0.375 40.77 27.80 4.33 8.63 68.20 10.63 21.17
0.250 37.83 25.73 3.04 9.07 68.01 8.02 23.97
0.125 37.05 27.00 1.61 8.43 72.89 4.34 22.77

SOBS ORIG 66.11 0.00 66.11 0.00 0.00 100.00 0.00
0.875 100.61 35.68 51.91 13.02 35.47 51.60 12.94
0.750 91.22 33.61 42.78 14.83 36.85 46.90 16.26
0.625 70.16 33.96 23.37 12.82 48.41 33.32 18.28
0.500 57.92 31.21 17.20 9.51 53.89 29.69 16.42
0.375 46.30 27.80 10.08 8.42 60.05 21.78 18.18
0.250 38.69 25.73 4.99 7.97 66.50 12.89 20.61
0.125 36.63 27.00 2.51 7.12 73.72 6.84 19.44

SOBS CF ORIG 77.93 0.00 77.93 0.00 0.00 100.00 0.00
0.875 113.34 35.68 64.64 13.01 31.48 57.04 11.48
0.750 102.23 33.61 53.56 15.06 32.88 52.39 14.73
0.625 75.44 33.96 29.19 12.29 45.02 38.70 16.29
0.500 61.96 31.21 21.21 9.54 50.37 34.23 15.39
0.375 48.05 27.80 11.89 8.35 57.87 24.75 17.39
0.250 39.58 25.73 6.08 7.77 65.00 15.36 19.64
0.125 37.14 27.00 2.82 7.32 72.70 7.58 19.71

SuBSENSE ORIG 871.22 0.00 871.22 0.00 0.00 100.00 0.00
0.875 720.05 35.68 668.67 15.70 4.96 92.86 2.18
0.750 589.96 33.61 541.50 14.85 5.70 91.79 2.52
0.625 335.22 33.96 288.47 12.79 10.13 86.05 3.82
0.500 241.61 31.21 201.05 9.34 12.92 83.21 3.87
0.375 143.34 27.80 107.03 8.51 19.40 74.67 5.93
0.250 84.33 25.73 50.82 7.78 30.51 60.26 9.22
0.125 48.42 27.00 13.35 8.06 55.77 27.58 16.65

LOBSTER ORIG 558.64 0.00 558.64 0.00 0.00 100.00 0.00
0.875 492.44 35.68 443.61 13.15 7.25 90.08 2.67
0.750 402.24 33.61 353.43 15.21 8.36 87.86 3.78
0.625 235.63 33.96 189.32 12.34 14.41 80.35 5.24
0.500 172.90 31.21 132.20 9.49 18.05 76.46 5.49
0.375 109.54 27.80 73.23 8.50 25.38 66.86 7.76
0.250 69.00 25.73 35.23 8.04 37.29 51.06 11.65
0.125 43.92 27.00 9.83 7.09 61.48 22.38 16.14

PAWCS ORIG 1254.13 0.00 1254.13 0.00 0.00 100.00 0.00
0.875 1016.73 35.68 967.67 13.38 3.51 95.17 1.32
0.750 824.41 33.61 776.28 14.52 4.08 94.16 1.76
0.625 426.39 33.96 380.22 12.20 7.96 89.17 2.86
0.500 300.23 31.21 259.64 9.38 10.40 86.48 3.13
0.375 172.13 27.80 135.99 8.33 16.15 79.00 4.84
0.250 97.45 25.73 63.88 7.84 26.40 65.55 8.05
0.125 50.50 27.00 16.44 7.06 53.47 32.56 13.97

Table 3 Average performances for each segmentation method in the video PETS2006 from
category Baseline. Each column shows the selected foreground method (Method), the ap-
plied resize factor (RF), the total execution time (Time, in seconds, where the lower the
better), the execution time of each step (in seconds, downsampling tD, segmentation tS
and upsampling tU , where the lower the better) and its relation in percentage to the total
execution time (%tD, %tS and %tU ), respectively. Each row shows the average performance
achieved by the downsampling methods.
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Fig. 7 Average performance of all considered segmentation methods in the whole dataset
for each downsampling method. Note that the values of each method are connected together
with lines to better compare the results, but this does not mean that the results are related.
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groundtruth frame provided by the CDnet dataset and the foreground mask
generated by each segmentation method. Thus, the upsampling method could
be removed from the proposed methodology in order to obtain a faster system.

In addition, it should be pointed out the high number of experiments that
we have run: each segmentation method (we have selected 9) has been exe-
cuted 28 times according to the different tuned configurations (4 downsampling
methods and 7 different values for the resize factor parameter) across the whole
CDnet 2012 dataset (which is formed by 31 videos).

4.4.2 Baseline and Baseline High Resolution

Moreover, we have studied in more detail the results obtained by considering
only those videos that belong to the category Baseline.

As it can be observed in Figure 8, the F-measure performance is higher
than the presented in the whole dataset, the fps remains practically with the
same performance while the memory employed by all tested configurations is
lower.

However, the issue of the CDnet 2012 dataset videos is that their frame sizes
are quite smaller than the size of the frames which belong to high resolution
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Fig. 8 Average performances in the category Baseline for each segmentation method. First
row exhibits the F-measure and the fps (the higher, the better), while second row shows the
maximum memory used (in KBytes, where the lower the better). Note that the values of
each method are connected between them with lines to better compare the results, but this
does not mean that the results are related.
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videos. In order to carry out the proposed methodology with larger frame size
videos, we have built a high resolution version of the videos which compose
the Baseline category. The high resolution frames corresponding to the input
and the groundtruth videos are obtained by employing a superresolution (SR)
method. The selected SR method is those presented in (López-Rubio, 2016).
The four Baseline High Resolution videos generated after the application of the
SR process are: Highway (1440x1920 pixels), Office (1280x1920), pedestrians
(1280x1920) and PETS2006 (1536x1920).

The average performances of the experiments that we have carried out are
shown in Figure 9. It is remarkable to see how our proposal, in general, yields a
similar performance than ORIG. Regarding to the fps measure, in this case we
do not have included the upsampling execution time. In general, the proposal
obtains a lower execution time than ORIG. Nevertheless, the proposal wastes
a higher quantity of memory than ORIG due to the effort that it employs in
the downsampling process.

An overview of the performance of each segmentation method according
to its F-measure and its frame rate can be observed in Figure 10. The figure
shows how our methodology is able to improve the frames per second rate for
almost all tested methods (all but Wren and Zivkovic) and F-measure is also
improved for PAWCS, LOBSTER, SuBSENSE, Zivkovic, Wren and MFBM
methods.
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Fig. 9 Average performances in the category Baseline High Resolution for each segmenta-
tion method. First row exhibits the F-measure and the fps (the higher, the better), while
second row shows the maximum memory used (in KBytes, where the lower the better). Note
that the values of each method are connected between them with lines to better compare
the results, but this does not mean that the results are related.
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A comparison of these obtained results in the category Baseline High Res-
olution with the results of the category Baseline is done. It can be said that a
high resolution frame can be downsampled by using the proposed methodol-
ogy and the quality of the generated foreground mask will be similar to ORIG
except for the smallest resize factors, where the proposal offers a poor perfor-
mance. The obtained fps rate depends on the foreground detection algorithm.
For the simplest foreground detection algorithms, like Wren and Zivkovic, the
downsampled fps is lower (worse) when the original input frame is high reso-
lution format. Even though the segmentation method receives a resized frame
as input and it takes a low execution time, the downsampling process needs
a large amount of computation time to reduce the size of the high resolution
frame, as compared to the execution time of those simple foreground segmen-
tation algorithms. On the other hand, for the more complex and more accurate
foreground segmentation methods like SuBSENSE and PAWCS, our downsam-
pling proposal yields a higher (better) fps than processing the original video
frames. This is because these more complex foreground segmentation methods
require a much higher computational load than the downsampling procedure.
In terms of the used memory, it can be said that the downsampling process
requires a large amount of memory.

It is interesting to go deeper into this comparison between the categories
Baseline and Baseline High Resolution. According to the results obtained and
the subsequent analysis in the CDnet 2012 dataset comparative, we have ex-
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Fig. 10 Average performance for Baseline High Resolution with each segmentation method
(better while closer to the upper right corner). Horizontal axis shows F-measure and vertical
axis shows the frame rate. Each symbol form represents a segmentation method. There are
as many symbols with the same form as configurations of our proposal (different resize
factors). Symbols with red color represents the performance of the ORIG configuration (raw
segmentation method).
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amined the performances of foreground detection methods PAWCS, MFBM
(both methods with a high complexity) and Wren (low complexity). Figures
12, 13 and 14 report their F-measure and execution time performances. In
Figures 12 and 13 it can be observed how the use of the proposed method-
ology does not require heavy computations, and how the overall CPU time
is reduced drastically. Although the F-measure is heavily affected in the cat-
egory Baseline according as the applied downsampling, the performances of
both methods remain similar in Baseline High Resolution to the obtained in
Baseline by ORIG. On the other hand, a foreground method with low complex-
ity such as Wren does not improve its execution time by using the proposed
methodology. This behavior is shown in Figure 14.

4.4.3 CAMO UOW

This subsection depicts the obtained results considering the whole CAMO UOW
dataset, which is composed by high resolution videos.

The experiments carried out with this dataset are quite similar to the
obtained ones in the previous subsection with the other high resolution videos
considered.

Figure 11 reports the average F-measure and fps performances of each
method in CAMO UOW dataset. Most foreground algorithms enhance their
fps performance when they apply the downsampling-upsampling strategy;
however, the F-measure remains with practically the same performance than
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Fig. 11 Average performance for CAMO UOW with each segmentation method (better
while closer to the upper right corner). Horizontal axis shows F-measure and vertical axis
shows the frame rate. Each symbol form represents a segmentation method. There are
as many symbols with the same form as configurations of our proposal (different resize
factors). Symbols with red color represents the performance of the ORIG configuration (raw
segmentation method).
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ORIG. The symbols of a segmentation method can be considered as a Pareto
front. Thus, it is possible to observe that for some methods such as MFBM,
Wren or PAWCS, the original performance (in red) is dominated by some
Pareto front symbols, which implies that our proposal clearly improves the
performance in high resolution videos. These performances can be analyzed
in more detail as it was done in previous subsections. For example, Tables 4
and 5 report the F-measure and fps performances and execution time of each
step of the applied methodology for each foreground method when video10 is
carried out, respectively. As it can be observed, the execution time of recent
foreground algorithms is strongly reduced.

Additionally, Figure 15 exhibits a comparison between a high complexity
foreground method (MFBM in left column) and a low complexity method
(Wren in right column) in the CAMO UOW dataset. It can be observed how
the high complexity method is benefited by the application of the proposed
methodology. The reduction of its execution time is drastically pronounced
while its accuracy is very similar to ORIG. Nevertheless, the CPU time is not
enhanced when the strategy is applied to a low complexity method.

5 Conclusions

In this paper a metamodel for the enhancement of motion detection algo-
rithms is presented, with the aim of improving execution in real time for high
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Method RF F-M F-M Var fps fps Var

MFBM 1.000 0.37 - 0.80 -
0.875 0.37 1.32 0.85 6.07
0.750 0.38 2.87 1.04 29.90
0.625 0.39 6.09 1.66 106.95
0.500 0.40 7.91 2.18 172.10
0.375 0.41 11.12 3.37 320.44
0.250 0.42 14.76 4.87 508.15
0.125 0.43 16.26 6.28 683.49

Wren 1.000 0.46 - 8.52 -
0.875 0.46 1.11 4.32 -49.32
0.750 0.46 1.20 4.84 -43.24
0.625 0.46 1.81 5.14 -39.72
0.500 0.47 2.05 6.08 -28.61
0.375 0.46 1.74 7.78 -8.75
0.250 0.46 1.85 8.60 0.89
0.125 0.46 0.51 8.21 -3.69

Grimson 1.000 0.42 - 2.91 -
0.875 0.40 -2.95 2.36 -18.68
0.750 0.40 -3.22 2.72 -6.31
0.625 0.40 -4.79 3.53 21.53
0.500 0.39 -5.33 4.35 49.81
0.375 0.39 -5.95 5.99 106.08
0.250 0.38 -7.71 7.27 150.09
0.125 0.37 -10.90 7.81 168.79

Zivkovic 1.000 0.47 - 7.48 -
0.875 0.47 -0.10 3.99 -46.60
0.750 0.47 -0.07 4.58 -38.76
0.625 0.47 0.07 4.86 -35.00
0.500 0.47 0.41 5.88 -21.43
0.375 0.47 0.57 7.29 -2.50
0.250 0.47 0.26 8.34 11.42
0.125 0.47 -1.27 8.06 7.69

SOBS 1.000 0.45 - 3.20 -
0.875 0.44 -0.75 2.63 -17.65
0.750 0.44 -0.85 3.08 -3.49
0.625 0.44 -1.47 3.92 22.66
0.500 0.44 -1.70 4.86 52.23
0.375 0.44 -2.16 6.53 104.51
0.250 0.43 -3.36 7.79 143.70
0.125 0.42 -6.00 8.12 154.14

SOBS CF 1.000 0.45 - 2.54 -
0.875 0.45 -0.39 2.27 -10.82
0.750 0.45 -0.44 2.65 4.17
0.625 0.45 -0.78 3.63 42.80
0.500 0.45 -0.91 4.42 73.75
0.375 0.45 -1.40 5.95 134.22
0.250 0.44 -2.45 7.50 194.96
0.125 0.43 -4.45 7.83 208.22

SuBSENSE 1.000 0.50 - 0.28 -
0.875 0.50 0.06 0.34 22.50
0.750 0.50 0.00 0.43 56.62
0.625 0.50 -0.34 0.72 162.52
0.500 0.49 -0.67 0.98 254.65
0.375 0.49 -1.43 1.66 504.40
0.250 0.48 -2.96 3.00 989.23
0.125 0.46 -7.09 5.67 1960.47

LOBSTER 1.000 0.49 - 0.41 -
0.875 0.49 0.32 0.49 19.70
0.750 0.49 0.41 0.63 52.68
0.625 0.49 0.57 1.04 153.16
0.500 0.49 0.48 1.39 237.85
0.375 0.49 -0.51 2.32 463.02
0.250 0.48 -1.29 3.83 829.99
0.125 0.46 -5.37 6.20 1407.72

PAWCS 1.000 0.49 - 0.11 -
0.875 0.48 -0.85 0.14 30.85
0.750 0.49 -0.33 0.24 122.22
0.625 0.49 0.81 0.51 381.99
0.500 0.49 -0.10 0.69 550.70
0.375 0.49 -0.05 1.32 1140.17
0.250 0.48 -0.73 2.38 2131.97
0.125 0.46 -5.11 4.87 4457.29

Table 4 Average performances for each segmentation method in the video10 from
CAMO UOW. Each column shows the selected foreground method (Method), the applied
resize factor (RF), the F-measure (F-M), the variation of F-measure (F-M Var) respect-
ing to the obtained by ORIG, the fps and the variation of fps (fps Var) respecting to the
obtained by ORIG, respectively, where the higher the better. Each row shows the average
performance achieved by the downsampling methods.
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Method RF Total Time tD tS tU %tD %tS %tU

MFBM 1.000 574.02 0.00 574.02 0.00 0.00 100.00 0.00
0.875 544.21 60.55 459.24 24.42 11.13 84.39 4.49
0.750 473.84 56.59 394.91 22.34 11.94 83.34 4.71
0.625 282.73 62.10 197.01 23.62 21.96 69.68 8.36
0.500 212.94 53.60 136.95 22.39 25.17 64.32 10.51
0.375 140.19 45.73 72.58 21.88 32.62 51.77 15.61
0.250 96.77 43.74 33.74 19.28 45.20 34.87 19.93
0.125 76.78 49.78 9.26 17.74 64.84 12.06 23.11

Wren 1.000 53.99 0.00 53.99 0.00 0.00 100.00 0.00
0.875 114.17 60.55 31.50 22.12 53.04 27.59 19.37
0.750 103.85 56.59 25.94 21.32 54.49 24.98 20.53
0.625 92.11 62.10 14.93 15.08 67.42 16.21 16.37
0.500 81.19 53.60 11.14 16.46 66.02 13.72 20.27
0.375 63.90 45.73 6.71 11.46 71.57 10.50 17.93
0.250 57.34 43.74 3.69 9.91 76.28 6.43 17.29
0.125 60.26 49.78 1.54 8.93 82.61 2.56 14.82

Grimson 1.000 158.29 0.00 158.29 0.00 0.00 100.00 0.00
0.875 199.51 60.55 115.81 23.15 30.35 58.05 11.60
0.750 175.66 56.59 97.94 21.12 32.22 55.76 12.03
0.625 132.09 62.10 53.73 16.26 47.01 40.68 12.31
0.500 109.15 53.60 37.74 17.82 49.10 34.57 16.32
0.375 80.43 45.73 20.71 13.99 56.86 25.74 17.40
0.250 66.72 43.74 10.77 12.21 65.56 16.15 18.30
0.125 64.01 49.78 3.50 10.72 77.77 5.47 16.75

Zivkovic 1.000 61.49 0.00 61.49 0.00 0.00 100.00 0.00
0.875 120.98 60.55 37.58 22.85 50.05 31.07 18.89
0.750 107.57 56.59 30.94 20.04 52.61 28.76 18.63
0.625 96.80 62.10 17.92 16.78 64.15 18.51 17.33
0.500 84.06 53.60 13.34 17.12 63.76 15.87 20.37
0.375 67.37 45.73 7.14 14.50 67.88 10.60 21.52
0.250 58.85 43.74 4.02 11.09 74.32 6.84 18.84
0.125 61.52 49.78 1.91 9.83 80.92 3.10 15.98

SOBS 1.000 143.96 0.00 143.96 0.00 0.00 100.00 0.00
0.875 179.84 60.55 100.91 18.39 33.67 56.11 10.22
0.750 155.31 56.59 81.66 17.06 36.44 52.58 10.98
0.625 119.71 62.10 43.56 14.05 51.88 36.39 11.74
0.500 99.21 53.60 31.44 14.17 54.02 31.69 14.28
0.375 74.99 45.73 17.72 11.53 60.99 23.63 15.38
0.250 62.81 43.74 8.91 10.16 69.64 14.18 16.18
0.125 61.52 49.78 3.13 8.61 80.91 5.10 13.99

SOBS CF 1.000 181.00 0.00 181.00 0.00 0.00 100.00 0.00
0.875 205.41 60.55 126.88 17.98 29.48 61.77 8.75
0.750 177.98 56.59 104.31 17.08 31.80 58.61 9.60
0.625 128.76 62.10 53.33 13.33 48.23 41.42 10.35
0.500 108.12 53.60 39.07 15.46 49.57 36.13 14.30
0.375 81.67 45.73 23.01 12.93 56.00 28.17 15.83
0.250 64.91 43.74 10.96 10.21 67.39 16.88 15.73
0.125 62.76 49.78 3.98 9.00 79.32 6.34 14.34

SuBSENSE 1.000 1671.67 0.00 1671.67 0.00 0.00 100.00 0.00
0.875 1380.24 60.55 1300.80 18.90 4.39 94.24 1.37
0.750 1124.91 56.59 1049.31 19.00 5.03 93.28 1.69
0.625 651.31 62.10 574.78 14.43 9.53 88.25 2.22
0.500 472.19 53.60 403.42 15.17 11.35 85.44 3.21
0.375 281.16 45.73 222.97 12.46 16.27 79.30 4.43
0.250 154.45 43.74 101.16 9.55 28.32 65.50 6.18
0.125 83.85 49.78 25.81 8.26 59.37 30.78 9.85

LOBSTER 1.000 1118.18 0.00 1118.18 0.00 0.00 100.00 0.00
0.875 942.54 60.55 863.32 18.66 6.42 91.60 1.98
0.750 765.14 56.59 690.32 18.23 7.40 90.22 2.38
0.625 453.94 62.10 377.86 13.98 13.68 83.24 3.08
0.500 332.11 53.60 264.32 14.19 16.14 79.59 4.27
0.375 202.72 45.73 145.32 11.67 22.56 71.69 5.75
0.250 122.21 43.74 68.14 10.33 35.79 55.76 8.46
0.125 78.13 49.78 17.78 10.56 63.72 22.76 13.52

PAWCS 1.000 4307.61 0.00 4307.61 0.00 0.00 100.00 0.00
0.875 3418.49 60.55 3325.39 32.55 1.77 97.28 0.95
0.750 2324.85 56.59 2236.90 31.35 2.43 96.22 1.35
0.625 940.73 62.10 852.79 25.84 6.60 90.65 2.75
0.500 664.37 53.60 585.12 25.65 8.07 88.07 3.86
0.375 353.84 45.73 288.71 19.40 12.93 81.59 5.48
0.250 193.69 43.74 132.88 17.08 22.58 68.60 8.82
0.125 96.72 49.78 33.02 13.93 51.47 34.14 14.40

Table 5 Average performances for each segmentation method in the video10 from
CAMO UOW. Each column shows the selected foreground method (Method), the applied
resize factor (RF), the total execution time (Time, in seconds, where the lower the better),
the execution time of each step (in seconds, downsampling tD, segmentation tS and upsam-
pling tU , where the lower the better) and its relation in percentage to the total execution
time (%tD, %tS and %tU ), respectively. Each row shows the average performance achieved
by the downsampling methods.
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resolution videos with the minimum possible loss of quality. It consists in ap-
plying a downsampling technique, applying the foreground detection model,
to later interpolate the segmentation output to the original size. Some of the
most recent techniques of foreground detection with stationary cameras have
been compared, along with some downsampling algorithms. Thus, it is possi-
ble to observe some stability of the F-measure, with reductions of up to 25%
in the size of the scene (0.75 as a resize factor). Furthermore, depending on
the downsampling method, it is possible to maintain the same efficiency in
most motion detection methods with resizing factors of 0.5 (50% of the size
of the scene), as observed in the NN and LIN downsampling methods. Except
for a couple of methods in which the application of the metamodel does not
yield any improvement (Wren and Zivkovic), in the remaining ones a decrease
in the execution time with limited losses in the segmentation effectiveness is
found. On the other hand, the increase of the frame rate in the case of high
resolution videos could be considered limited (less than 10 fps), although it
should be taken into account that we start from frame rates that are in the
range of 0 to 3 fps. In general, it can be concluded that this proposal is really
interesting when the analyzed videos are high resolution, since the increase
in fps is relevant and the quality of the segmentation (F-Measure) is hardly
affected.
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Fig. 12 Average performances for foreground method PAWCS in categories Baseline and
Baseline High Resolution. First column shows category Baseline while second column shows
category Baseline High Resolution. Each row exhibits the video Highway, Office, Pedestrians
and PETS2006, respectively. Each chart reports execution time (in seconds, in stacked bars
to represent the downsampling, segmentation and upsampling steps, where the lower the
better) and F-measure (line, the higher the better) performances per tuned configuration.
Note that the values of the F-measure are connected between them with lines to better
compare the results, but this does not mean that the results are related.
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Fig. 13 Average performances for foreground method MFBM in categories Baseline and
Baseline High Resolution. First column shows category Baseline while second column shows
category Baseline High Resolution. Each row exhibits the video Highway, Office, Pedestrians
and PETS2006, respectively. Each chart reports execution time (in seconds, in stacked bars
to represent the downsampling, segmentation and upsampling steps, where the lower the
better) and F-measure (line, the higher the better) performances per tuned configuration.
Note that the values of the F-measure are connected between them with lines to better
compare the results, but this does not mean that the results are related.
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Fig. 14 Average performances for foreground method Wren in categories Baseline and
Baseline High Resolution. First column shows category Baseline while second column shows
category Baseline High Resolution. Each row exhibits the video Highway, Office, Pedestrians
and PETS2006, respectively. Each chart reports execution time (in seconds, in stacked bars
to represent the downsampling, segmentation and upsampling steps, where the lower the
better) and F-measure (line, the higher the better) performances per tuned configuration.
Note that the values of the F-measure are connected between them with lines to better
compare the results, but this does not mean that the results are related.
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Fig. 15 Average performances for foreground method MFBM and Wren in video7, video8,
video9 and video10 from CAMO UOW dataset. First column shows method MFBM while
second column shows method Wren. Each row exhibits a video (all shown videos have
a 1920x1080 resolution). Each chart reports execution time (in seconds, in stacked bars
to represent the downsampling, segmentation and upsampling steps, where the lower the
better) and F-measure (line, the higher the better) performances per tuned configuration.
Note that the values of the F-measure are connected between them with lines to better
compare the results, but this does not mean that the results are related.
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