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ABSTRACT

A robust foreground detection system is presented, which is resilient to noise in video sequences. The
proposed model divides each video frame in patches that are fed to a stacked denoising autoencoder,
which is responsible for the extraction of significant features from each image patch. After that, a
probabilistic model that is composed of a mixture of Gaussian distributions decides whether the given
feature vector describes a patch belonging to the background or the foreground. In order to test the
model robustness, several trials with noise of different types and intensities have been carried out.
A comparison with other ten state of the art foreground detection algorithms has been drawn. The
algorithms have been ranked according to the obtained results, and our proposal appears among the
first three positions in most case and its the one that best performs on average.
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1. Introduction

The detection of foreground objects is a hot topic which has
been studied in the field of computer vision research in recent
years. It is the first step to be carried out in video surveillance
systems, and its viability determines the outcome of the follow-
ing phases, from the tracking of detected objects to the object
interpretation inside the scene. Thus, poor detection of moving
objects means that their behaviour cannot be correctly ascer-
tained. Most of the used sequences to test object detection al-
gorithms are not entirely real and do not reflect the acquisition
problems of real fixed cameras, especially in outdoor scenes.
Camera jitter due to weather factors such as wind, loss of con-
nection and data transmission that generate corrupted image
blocks, or focusing problems that generate blurry images, are
relevant aspects that practical foreground detection algorithms
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must deal with. Hence, robustness should be a key feature of a
surveillance system which is designed to work continuously.

Most foreground detection algorithms model information at
the pixel level. Among them, we can find those that analyze
each pixel independently using its color intensity: Wren (Wren
et al. (1997)), Zivkovic (Zivkovic and van der Heijden (2006)),
KDE (Elgammal et al. (2000)) and CL-VID (López-Rubio et al.
(2018a)). These methods present some limitations, such as
their low tolerance to the appearance of noise (López-Rubio
et al. (2018b)). Other proposals such as SOBS (Maddalena and
Petrosino (2008)), SC-SOBS (Maddalena and Petrosino (2012))
and FSOM (López-Rubio et al. (2011)) use the information of
their neighbors to provide greater robustness in the segmen-
tation mask, greatly improving their noise resilience. On the
other hand, other more complex techniques like LOBSTER (St-
Charles and Bilodeau (2014)), SuBSENSE (St-Charles et al.
(2015)) or PAWCS (St-Charles et al. (2016)), represent the in-
formation of each pixel not only by its intensity, but also by
including texture patterns of the region to which they belong
(Local Binary Similarity Patterns, LBSP), thereby increasing
their noise robustness with regard to the previous ones. In the
field of detection, new techniques are based on either capturing
multiple view data latent structure (Wang et al. (2018)) or learn-
ing deep models. The latter have been successfully applied in
video surveillance, from convolutional neural networks that are
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able to recognize different versions of the same object obtained
from different cameras, problem known as re-identification (Wu
et al. (2018a,b,d, 2019b,a)), to deep recurrent neural networks
which manage to distinguish objects in an image with a high
level of detail (Wu et al. (2018c)).

In this work, the combination of deep learning techniques
and probabilistic modeling is proposed in order to detect fore-
ground objects. The main objective is to develop a method with
a higher robustness in presence of videos with noise, which im-
proves the quality of the foreground detection. The proposed
region-level based method divides each frame into patches,
which are processed by a previously trained stacked denoising
autoencoder that tries to generate noise-free regions. Next, the
output vector of the innermost layer of the encoder, i.e., the
representation of the input information in a space of reduced
dimension, is modeled by a mixture of Gaussian distributions
to determine whether the patch belongs to the foreground or
background. This approach has been compared with the pre-
viously cited pixel-level techniques for video sequences with
presence of noise, obtaining, on average, better segmentation
results despite having aggregate data (region vs. pixel).

2. Methodology

Most previous approaches to background modeling in video
sequences model each pixel of the video frame separately. Our
model intends to model small patches of size N × N pixels,
so that for each incoming video frame an estimation is made
whether each patch belongs to the background of the scene. It
turns out that stacked denoising autoencoders might find diffi-
culties in modeling too small patches. Here we propose to over-
come this limitation by augmenting the N × N pixel patch by
M < N pixels in each direction (up, down, left and right), so that
an augmented patch of size (N + 2M)× (N + 2M) is supplied to
the autoencoder, while the decision whether the patch belongs
to the background only affects to the central N×N pixel section
of the augmented patch. In this way, the augmented patches
overlap with their neighbors, while the small patches do not.

Let X ∈ RH be an augmented patch of size H = 3 (N + 2M)2,
where tristimulus pixel color values are assumed. The patch is
processed by a stacked denoising autoencoder (Vincent et al.
(2010)):

X̃ = g ( f (X)) , f : RH → RL, g : RL → RH (1)

where X̃ ∈ RH is the reconstructed version of the input patch
X, f is the encoding part of the autoencoder, g is the decod-
ing part of the autoencoder, and L is the number of neurons of
the innermost layer of the neural architecture, i.e. the autoen-
coder reduces the high dimensional input of size H to a a low
dimensional set of features of size L with L < H.

An autoencoder is trained to minimize the reconstruction er-
ror E:

E =

R∑
i=1

∥∥∥X − X̃
∥∥∥2 (2)

where R is the overall number of patches existing in the training
data set. In an attempt to enforce the invariance of the autoen-
coder to the diverse scene conditions, the training set is not gen-
erated from the input video sequence but from the Tiny Images
data set (Torralba et al. (2008)) and comprises a huge amount
of generic natural image patches that may be corrupted.

A probabilistic model can be learned for the features which
are discovered by the autoencoder. This model aims to capture
the main characteristics of the probability distribution of the
feature vector v ∈ RL:

v = f (X) (3)

A probability model for p (v) must be chosen. Here we pro-
pose to assume that p (v) can be approximated by a probabilistic
mixture of two components:

p (v) = P (B) p (v | B) + P (F) p (v | F) (4)

where B stands for the background part of the scene, and F
stands for the foreground objects appearing in the scene.

We propose to model the probability distribution of the fea-
ture vectors v associated to foreground objects occurring at any
position in the video frame with a multivariate L-dimensional
Gaussian with diagonal covariance matrix. The parameters
of the Gaussian are the mean µ j = E

[
v j

]
and the variance

σ2
j = E

[(
v j − µ j

)2]
of each component of v. They are esti-

mated offline by considering all the R image patches that were
used to train the autoencoder:

µ j =
1
R

R∑
i=1

vi, j (5)

σ2
j =

1
R − 1

R∑
i=1

(
vi, j − µ j

)2
(6)

where vi, j stands for the j-th component of the i-th feature vec-
tor vi in the training set of the autoencoder.

Once the parameters of the Gaussian are estimated, the log
probability of observing v is given by:

log p (v | F) = −
L
2

log 2π−
L∑

j=1

logσ j−
1
2

L∑
j=1

(
v j − µ j

)2
σ2

j

(7)

Another specific probabilistic model at each patch of the
video frame is also learned. In this case, it models the feature
vectors representing the background of the scene which appear
in that patch. Here we assume that p (vk | B), where k is the
index of the patch of interest, can be approximated by a mul-
tivariate L-dimensional Gaussian with diagonal covariance ma-
trix. The parameters of the Gaussian are the mean µk, j = E

[
vk, j

]
and the variance σ2

k, j = E
[(

vk, j − µk, j

)2]
of each component of

vk.
The means µk, j and the variances σ2

k, j are estimated online
as the incoming video frames are processed. To this end,
the Robbins-Monro stochastic approximation algorithm is em-
ployed (Robbins and Monro, 1951). Initially, µk, j is set to the
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j component of the median reduced feature vector of the first
video frames, while the initial value for σ2

k, j is obtained as
shown in eq (8). Then the Gaussian distribution is updated as
follows:

µk, j,t+1 =
(
1 − αP

(
B | vk,t

))
µk, j,t + αP

(
B | vk,t

)
vk, j,t (8)

σ2
k, j,t+1 =

(
1 − αP

(
B | vk,t

))
σ2

k, j,t+

αP
(
B | vk,t

)
(vk, j,t − µk, j,t)2 (9)

where t is the time instant (the frame index), k is the index of
the patch of interest, µk, j,t and σk, j,t are the estimations of µk, j

and σk, j at time t, vk,t is the feature vector observed at time t in
patch k, and α is the step size.

Then the log probability of observing vk is given by:

log p (vk | B) =

−
L
2

log 2π −
L∑

j=1

logσk, j −
1
2

L∑
j=1

(
vk, j − µk, j

)2
σ2

k, j

(10)

The Bayes theorem can be employed to compute the proba-
bility that the observed feature vector vk belongs to the back-
ground of the scene:

P (B | vk) =

P (B) p (vk | B)
P (B) p (vk | B) + P (F) p (vk | F)

(11)

P (F | vk) = 1 − P (B | vk) (12)

where it can be assumed that the background and the fore-
ground are equally probable:

P (B) = P (F) =
1
2

(13)

Since (11) is prone to numerical overflows, it is rec-
ommended that the following formula is used whenever
log p (vk | B) ≥ log p (vk | F):

P (B | vk) =
1

1 + exp
(
log p (vk | F) − log p (vk | B)

) (14)

On the other hand, if log p (vk | B) < log p (vk | F), then the
following formula is recommended:

P (F | vk) =
1

1 + exp
(
log p (vk | B) − log p (vk | F)

) (15)

where log p (vk | B) is computed from (10) and log p (vk | F) is
computed from (7).

The computational complexity of the proposed method can
be obtained as follows. The input to the stacked denoising au-
toencoder has size H = 3 (N + 2M)2, which means that each
pixel window is processed by the autoencoder with complex-
ity O

(
N2
)
, since N > M. That is, the autoencoder processing

module is linear in the number of pixels, because the window
contains N × N pixels. The output of the encoding part of the

autoencoder has size L, and the subsequent probabilistic model
processes the L-dimensional feature vectors in O (L), because
diagonal covariance matrices are considered in the probabilistic
model. Therefore the probabilistic modeling module is also lin-
ear in the number of pixels, since L < H. That is, our proposal
has a computational complexity which is linear in the number
of pixels of the incoming video frame.

3. Experimental Results

3.1. Noise description
Our goal is to show the resilience to noise of our method,

as compared to others. In order to achieve this, original video
frame sequences have been altered with different types of noise
to generate new noisy sequences. The comparison must be as
fair as possible, thus, videos with noise are generated only once
and the same video is processed with all methods. The distinct
types of noise that have been considered are described below:

• Gaussian: the effect of Gaussian noise has been tested by
means of the addition of Gaussian noise with mean σ = 0,
σ = 0.1, σ = 0.2 and σ = 0.31 respectively to the original
video sequence.

• Mask: Black squares of different sizes have been inserted
in order to cover 20% of each frame. Four square sizes
have been used: 1x1 (black dots), 2x2, 3x3 and 4x4.

• Salt and pepper: Black and white pixels have been in-
serted. The probability for each one to appear is 10%.

• Uniform: Uniform noise ranging from -0.5 to 0.5 has been
added after normalizing image pixels to values in [0, 1].

• Compression: This noise has been simulated by forcing
the saving of the data set images with lower quality than
the originals. 1

3.2. Evaluation
As a measure to compare the performance from a quantitative

point of view, the well-known F-score (also noted as F-measure
or F1 score) has been considered. It is defined as a balanced
harmonic mean of precision and recall and provides values in
the interval [0, 1], where higher is better. F-score has been
calculated for each binary foreground mask (each segmented
frame) in the region of interest that is specified by ChangeDe-
tection.net. After that, for each method, the F-score values
for all the frames with foreground objects corresponding to the
same video have been averaged.

In order to evaluate the overall performance and get a rank-
ing, the average F-score for all tested videos for each method
is calculated. Then, the sum of ranks for each method is com-
puted. The method which obtains the minimum sum is consid-
ered the best.

1The IMWRITE JPEG QUALITY parameter of the imwrite function from
OpenCV library for Python was used to alter saving quality. It accepts values
from 0 to 100 (the higher, the better quality) and its default value is 95. Se-
quences with values 10, 5 and 1 were generated.
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Fig. 1: Frame processing. For each NxN patch of the image a 2Mx2M margin is added. Then, these data X are inputted to the encoder and a feature vector v is
obtained. Finally, v is compared to the L-dimensional Gaussian model for that patch using Bayes’ Theorem and the probability of belonging to the foreground is
obtained.
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Fig. 2: Autoencoder structure with different innermost layer size (L).

3.3. Autoencoder architecture and parameter selection

We have created several architectures for the autoencoder by
changing the number of layers and their sizes. As a result, the
size of the encoder narrowest layer changes. This layer is cru-
cial, because it determines the feature vector size L that our
probabilistic model uses. Four autoencoder architectures with
L = 16, L = 32, L = 64 and L = 128 have been tested in an
attempt of knowing which feature vector size works better and
seems to represent more faithfully the significant features from
patches. We can observe those structures on Figure 2. In all
cases, the patch size has been 16x16, which is determined by
setting N = 8 and M = 4.

Table 1 on page 5 shows method average F-score with each
encoder for each sequence and noise type which we have tested.
We can observe that the method using an encoder with 16 as
narrowest layer size has much better results than any other

tested encoder (it has the best score in 23 out of 42 cases).
Therefore, and encoder with L = 16 is selected by default.
The first column shows the probabilistic model performance
when the patches are inputted directly to it and no autoencoder
is used as a previous step of the processing. It can be noted
that the results are clearly worse than those obtained by the
proposed method when video sequences are noisy. Therefore,
the autoencoder can be considered an essential part of the pre-
sented method and its effectiveness in finding significant fea-
tures which contribute to robustness seems to be beyond doubt.

After fixing the encoder output layer size to L = 16, α is the
only parameter which the user has to define. If it is set to a
small value then the training process is more likely to converge
to some of the minima. Thus, we have run our method with α ∈
{0.001, 0.005, 0.01, 0.05} for each video and the configuration
showing the best score has been selected.

3.4. Methods

Ten methods have been selected to make a performance com-
parison with our proposal. Seven of these methods, namely,
Wren (Wren et al. (1997)), Zivkovic (Zivkovic and van der Hei-
jden (2006)), SOBS (Maddalena and Petrosino (2008)), KDE
(Elgammal et al. (2000)), SuBSENSE (St-Charles et al. (2015)),
PAWCS (St-Charles et al. (2016)) and LOBSTER (St-Charles
and Bilodeau (2014)) have been obtained from BGS library
(Sobral and Bouwmans (2014))2. SC-SOBS executable has
been obtained from CVPRLAB web3 The proposed approach
has been implemented using Python. Specifically, the neu-
ral network implementation makes use of the high-level API
Keras4, which is based on TensorFlow5. The aforementioned
four autoencoder architectures have been trained and tested us-
ing the same 100,000 random images from Tiny Images data set
(Torralba et al. (2008)) 6. Since each image has 32x32 pixels,
we have divided each one to obtain four 16x16 images. We do
not use any additional post processing in any of the methods.

2https://github.com/andrewssobral/bgslibrary
3http://cvprlab.uniparthenope.it/index.php/code/moving-object-detection-

software-2.html. The selected parameters values are those indicated as default
by the authors or used by default in BGS library and CVPRLAB code.

4https://keras.io/
5https://www.tensorflow.org/
6http://groups.csail.mit.edu/vision/TinyImages/
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Table 1: Proposed method version comparison with different noises. The score shows the average F-score through α value.

Average F-score with no noise for each video
no autoencoder L=16 L=32 L=64 L=128

overpass 0.391 ± 0.19 0.375 ± 0.19 0.353 ± 0.19 0.380 ± 0.19 0.277 ± 0.17
pedestrians 0.367 ± 0.20 0.477 ± 0.11 0.436 ± 0.11 0.465 ± 0.11 0.485 ± 0.12
canoe 0.321 ± 0.14 0.707 ± 0.14 0.342 ± 0.18 0.428 ± 0.22 0.377 ± 0.19
port-17fps 0.091 ± 0.14 0.108 ± 0.14 0.113 ± 0.14 0.118 ± 0.14 0.077 ± 0.08
boats 0.432 ± 0.19 0.548 ± 0.10 0.522 ± 0.12 0.510 ± 0.11 0.459 ± 0.10
fountain01 0.159 ± 0.15 0.190 ± 0.16 0.191 ± 0.17 0.244 ± 0.19 0.286 ± 0.17
fountain02 0.215 ± 0.21 0.469 ± 0.18 0.411 ± 0.20 0.493 ± 0.19 0.535 ± 0.17

Average F-score for each video with Gaussian noises
no autoencoder L=16 L=32 L=64 L=128

overpass 0.350 ± 0.22 0.499 ± 0.21 0.474 ± 0.20 0.465 ± 0.19 0.397 ± 0.20
pedestrians 0.401 ± 0.22 0.524 ± 0.10 0.471 ± 0.15 0.491 ± 0.15 0.507 ± 0.11
canoe 0.258 ± 0.13 0.625 ± 0.16 0.301 ± 0.16 0.383 ± 0.18 0.356 ± 0.17
port-17fps 0.090 ± 0.14 0.125 ± 0.15 0.130 ± 0.15 0.140 ± 0.15 0.086 ± 0.10
boats 0.108 ± 0.09 0.520 ± 0.14 0.466 ± 0.17 0.433 ± 0.15 0.409 ± 0.10
fountain01 0.079 ± 0.12 0.190 ± 0.17 0.223 ± 0.20 0.237 ± 0.21 0.217 ± 0.15
fountain02 0.141 ± 0.16 0.487 ± 0.17 0.426 ± 0.20 0.448 ± 0.20 0.426 ± 0.18

Average F-score for each video with mask noises
no autoencoder L=16 L=32 L=64 L=128

overpass 0.408 ± 0.22 0.411 ± 0.23 0.439 ± 0.22 0.417 ± 0.22 0.323 ± 0.21
pedestrians 0.218 ± 0.17 0.288 ± 0.08 0.359 ± 0.13 0.356 ± 0.13 0.201 ± 0.08
canoe 0.166 ± 0.09 0.418 ± 0.19 0.274 ± 0.16 0.249 ± 0.14 0.286 ± 0.15
port-17fps 0.082 ± 0.14 0.063 ± 0.08 0.080 ± 0.10 0.065 ± 0.08 0.021 ± 0.03
boats 0.032 ± 0.05 0.228 ± 0.12 0.216 ± 0.12 0.171 ± 0.11 0.112 ± 0.05
fountain01 0.111 ± 0.16 0.098 ± 0.11 0.122 ± 0.14 0.118 ± 0.14 0.054 ± 0.06
fountain02 0.074 ± 0.10 0.288 ± 0.14 0.256 ± 0.15 0.199 ± 0.12 0.090 ± 0.06

Average F-score for each video with salt and pepper noise
no autoencoder L=16 L=32 L=64 L=128

overpass 0.024 ± 0.05 0.391 ± 0.21 0.331 ± 0.18 0.275 ± 0.18 0.258 ± 0.20
pedestrians 0.178 ± 0.21 0.484 ± 0.15 0.319 ± 0.21 0.422 ± 0.18 0.322 ± 0.12
canoe 0.130 ± 0.07 0.280 ± 0.15 0.149 ± 0.11 0.187 ± 0.12 0.100 ± 0.06
port-17fps 0.037 ± 0.10 0.105 ± 0.14 0.113 ± 0.15 0.084 ± 0.12 0.024 ± 0.04
boats 0.003 ± 0.01 0.250 ± 0.16 0.198 ± 0.15 0.182 ± 0.13 0.235 ± 0.10
fountain01 0.000 ± 0.00 0.133 ± 0.17 0.095 ± 0.14 0.079 ± 0.12 0.064 ± 0.07
fountain02 0.006 ± 0.02 0.284 ± 0.19 0.212 ± 0.20 0.173 ± 0.16 0.125 ± 0.09

Average F-score for each video with uniform noise
no autoencoder L=16 L=32 L=64 L=128

overpass 0.252 ± 0.20 0.512 ± 0.21 0.443 ± 0.20 0.422 ± 0.19 0.338 ± 0.20
pedestrians 0.378 ± 0.24 0.526 ± 0.10 0.422 ± 0.19 0.434 ± 0.19 0.437 ± 0.13
canoe 0.181 ± 0.10 0.534 ± 0.19 0.246 ± 0.14 0.311 ± 0.16 0.295 ± 0.15
port-17fps 0.071 ± 0.13 0.130 ± 0.15 0.135 ± 0.16 0.140 ± 0.16 0.069 ± 0.09
boats 0.012 ± 0.03 0.455 ± 0.18 0.412 ± 0.20 0.341 ± 0.18 0.318 ± 0.11
fountain01 0.021 ± 0.06 0.177 ± 0.18 0.190 ± 0.21 0.178 ± 0.20 0.115 ± 0.13
fountain02 0.034 ± 0.09 0.471 ± 0.18 0.383 ± 0.21 0.379 ± 0.22 0.278 ± 0.16

Average F-score for each video with compression noise levels
no autoencoder L=16 L=32 L=64 L=128

overpass 0.237 ± 0.17 0.317 ± 0.18 0.289 ± 0.18 0.280 ± 0.18 0.239 ± 0.17
pedestrians 0.360 ± 0.20 0.445 ± 0.12 0.398 ± 0.12 0.417 ± 0.12 0.447 ± 0.13
canoe 0.294 ± 0.16 0.653 ± 0.17 0.328 ± 0.21 0.406 ± 0.24 0.368 ± 0.20
port-17fps 0.074 ± 0.13 0.098 ± 0.14 0.101 ± 0.14 0.108 ± 0.14 0.069 ± 0.09
boats 0.342 ± 0.14 0.474 ± 0.11 0.518 ± 0.12 0.500 ± 0.11 0.427 ± 0.10
fountain01 0.071 ± 0.10 0.161 ± 0.15 0.159 ± 0.16 0.171 ± 0.16 0.228 ± 0.16
fountain02 0.136 ± 0.18 0.446 ± 0.18 0.394 ± 0.21 0.430 ± 0.20 0.472 ± 0.20
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3.5. Video Sequences

A set of video sequences have been selected from the 2014
dataset (Goyette et al. (2012)) of the ChangeDetection.net web-
site7. Five of the selected scenes are from Dynamic Background
category, one from Low Frame Rate category and another one
from the Baseline one. Canoe exhibits a river with water and
forest background where a canoe goes across (320x240 pixels
and 1189 frames). Fountain01 shows a fountain with various
vertical water springs next to a road (432x288 pixels and 1184
frames), whereas a road behind a fountain that spits water out
(432x288 pixels and 1499 frames) is displayed in Fountain02.
Boats shows a river next to a road. Two boats cross through the
river while various vehicles move on the road (320x240 pixels
and 7999 frames). Overpass shows a bridge traversed by a man
with a river, forest and a road behind (320x240 pixels and 3000
frames). Port 0 17fps is a low frame rate video that exhibits a
dock with boats constantly moving, water and clouds as back-
ground and some persons and boats crossing from time to time
as foreground (640x480 pixels and 3000 frames). Pedestrians
is a baseline video where several people walk over a pavement
next to grass with sun and shadows (360x240 pixels and 1099
frames).

3.6. Results

The quantitative results of each method on the previous se-
quences affected by noise are displayed in tables from 2 to 3. It
can be observed that our approach is able to deal with Gaussian
noise without too much loss, leading to the best performance in
5 of 13 tests. The mask noise includes an additional difficulty,
specially when the square size grows. On average the other
methods deal with it better, although the proposed one is the
best with 1x1 square mask noise and reaches the third position
with squares of size 2x2 and 4x4. With respect to uniform and
salt and pepper noises, the results show that our method perfor-
mance is, on average, the highest one. Although our proposal is
not the best for the compression noise, the final accuracy is be-
tween the best three techniques with similar results to the best
approach (SUBSENSE).

4. Discussion

First, it can be said that the intrinsic dimension of the patches
is near to 16, in view of the results reported in Table 1. This im-
plies that we managed to reduce patches of 16x16 pixels, in
total 256 values, down to 16 values, leaving only 6.25% of the
input information. The performance achieved when that feature
vector size is selected is the best in most cases. An architecture
with more neurons in the last encoder layer determines a feature
vector with more components, which makes the task of estimat-
ing the probability density harder. In addition to that, some of
those extra components, if not all, could be representing irrele-
vant characteristics derived from the effect of noise.

Zivkovic, KDE and Wren seem to be immune to square size
in mask noise, because they do not take into account pixel

7http://changedetection.net/

neighborhood information. Therefore, only the percentage of
erroneous pixels affects them. The other methods, including
the proposed one, present worse performance when the size of
the square is higher. As the input to our system is composed
of patches, bigger squares can make the patches differ greatly
from the original ones, thus, making the probabilistic model to
classify them incorrectly. Even though the presented algorithm
is more sensitive to mask noise than to other types of noise, it is
ranked among the first four positions according to its F − score
value in that case.

Focusing on the ranking score, we can observe that, apart
from our method, LOBSTER, PAWCS and SuBSENSE achieve
good performance as well. Each one of them works well with
a particular kind of noise. SuBSENSE behaves very well with
compression noise but suffers a fall in performance with salt-
pepper and in a minor degree with mask noise. LOBSTER
works fine on average, being mostly affected by Gaussian and
Uniform noise. PAWCS excels at images with Gaussian, salt-
pepper and uniform noise, but its performance decays when
mask or compression noise is present. On the other hand,
our method shows a more robust behavior on average. It also
reaches the top of the rank in most of the tests, despite the fact
that it is a region-level based method, thus, having less training
samples from which to extract information than the competing
methods.

From a qualitative point of view (Figure 3), the effect of
noise addition results in the appearance of many more FP pix-
els (spurious foreground objects), except for our method and
PAWCS, or in the loss of foreground objects, as happens with
SubSENSE.

5. Conclusions

Noise resilience is an essential feature a segmentation algo-
rithm must exhibit, due to the fact that a video sequence ac-
quired by a real camera is influenced by multiple conditions that
may affect the quality of the images. Therefore, an algorithm
able to precisely detect foreground objects in noisy images is a
key part in a video surveillance system, making the task of sub-
sequent processes easier and allowing the overall system per-
formance to remain high.

This paper presents a robust foreground detection method
that combines a stacked denoising autoencoder with a proba-
bilistic model consisting of a mixture of Gaussians. Tests on
seven different images, affected by noise of distinct type and in-
tensity, have been carried out. The proposal has been compared
with other ten segmentation algorithms and a ranking has been
made according to the yielded F − score value. Not only does
the proposed method show a high performance on average, but
it can also be claimed the best one regarding the sum of ranks.
Hence, the suitability of our approach has been experimentally
validated.
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