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Abstract

Lymphocystis disease virus (LCDV) is the causative agent of a well-known fish

viral disease that is characterized by hypertrophy of fibroblastic cells in the con-

nective tissue. This viral disease affects more than 125 wild and cultured species of

teleost fish from marine and freshwater environments and has a cosmopolitan

geographical distribution. In aquaculture systems, the prevalence of LCDV infec-

tion is very high, likely reflecting the horizontal transmission of this virus. The

incidence rate of the disease may reach 70%, causing significant economic losses

for the aquaculture industry. This review provides information on the taxonomy,

viral properties, epizootiology and pathogenesis, diagnostic methods and control

measures of LCDV infection in fish.

Key words: aquaculture, control measures, diagnostic methods, Lymphocystis disease virus,

pathogenesis.

Introduction

Large-scale aquaculture has been associated with environ-

mental and microbial concerns worldwide as a consequence

of its intensive culture and high-stocking density. Fish cul-

ture production mainly follows two procedures: (i) inte-

grated management of coastal zones, performed mainly

in marine and brackish waters using extensive and semi-

intensive procedures, and (ii) the intensive farming of

highly valuable fish and shellfish species, performed mostly

in tanks and cages. In recent years, modern aquaculture has

been characterized by a strong increase in production

output because of the application of innovative technolo-

gies in fish farms and the optimization of management

strategies. The potential of fish farming has been compro-

mised by the emergence of infectious pathologies, being the

most frequently reported of infectious in origin. Viruses are

a limiting factor for the expansion of aquaculture because

of the direct losses of fish production, costs derived from

reduced productivity and disease management, and loss of

export markets related to trade restrictions (Whittington &

Chong 2007; Renault 2009; Rigos & Katharios 2010).

Members of the Iridoviridae family have been described

as causal agents of high mortalities in a wide range of inver-

tebrate and lower vertebrate animals (Chinchar 2002).

According to the 9th Report of the International Commit-

tee on Taxonomy of Viruses, the family Iridoviridae is sub-

divided into five genera: Iridovirus, Chloriridovirus,

Ranavirus, Lymphocystivirus and Megalocytivirus (Jancovich

et al. 2012). Three genera, Lymphocystivirus, Megalocy-

tivirus and Ranavirus, have received attention due to the

economic losses caused to the aquaculture industry (Chao

et al. 2002; Dong et al. 2010; Whittington et al. 2010; Kut-

tichantran et al. 2012). Features that distinguish these gen-

era are GC content, nucleotide sequence, cytopathological

signs, the use of both host- and virus-encoded RNA poly-

merases and differences in the inferred amino acid

sequence of key genes such as ATPase, methyltransferase or

major capsid protein (MCP) (Sudthongkong et al. 2002;

Wang et al. 2003; Do et al. 2005; Williams et al. 2005; Kut-

tichantran et al. 2012; Chinchar & Waltzek 2014).

Lymphocystis disease (LCD) is a well-known fish viral

infection that is characterized by hypertrophy of fibroblas-

tic cells in the dermis connective tissue of affected fish,

occasionally proliferating as true epithelial tumours (Sa-

malecos 1986). This viral disease affects a wide variety of

freshwater, brackish and marine fish species. LCD was one

of the first fish viral diseases reported in the 19th century

(Wolf 1988), and its viral aetiology was demonstrated by

electron microscopy by Walker (1962) and the subsequent

virus isolation on BF-2 cell line by Wolf (1962). Although

this disease is rarely fatal, fish showing the characteristic

symptoms cannot be commercialized, causing important

economic losses (Masoero et al. 1986). The aetiological

agent of LCD is the lymphocystis disease virus (LCDV),

belonging to Lymphocystivirus genus, which includes one

species Lymphocystis disease virus 1 (LCDV-1) originally

isolated from the European flounder [Platichthys flesus
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(Linnaeus 1758)] and European plaice [Pleuronectes pla-

tessa (Linnaeus 1758)]; in addition, three virus candidates

are also included in this genus: LCDV-2, isolated from

common dab [Limanda limanda (Linnaeus 1758)]; LCDV-

C, isolated from Japanese flounder [Paralichthys olivaceus

(Temminck & Schlegel 1846)]; and LCDV-RF, isolated

from black rockfish [Sebastes schlegelii (Hilgendorf 1880)].

Lymphocystis disease virus-1 and related viruses are distin-

guished by host specificity, histopathology, viral protein

profiles and DNA sequences (Jancovich et al. 2012).

One of the distinctive features of the Iridoviridae family

is the presence of an MCP, which is the main structural

component of the viral particles. MCP comprises 40–45%
of the total viral polypeptides and has a molecular weight

of approximately 50 kDa (Fl€ugel 1985). The MCP gene has

been recognized as a suitable target on which to perform

phylogenetic studies of iridoviruses because it is relatively

conserved within the family (Tidona et al. 1998). On the

basis of the MCP gene sequence, nine genotypes of

Lymphocystivirus have been proposed to date: LCDV-1 as

genotype I; genotype II, consisting of Japanese flounder

(LCDV-C) isolates; genotype III, which includes black

rockfish (LCDV-RF) isolates; genotype IV, for cobia

[Rachycentron canadum (Linnaeus 1766)] and Japanese sea

bass [Lateolabrax japonicus (Cuvier 1828)] (LCDV-RC and

LCDV-SB, respectively) isolates; genotype V includes

painted glass fish [Parambassis baculis (Hamilton 1822)]

(LCDV-CB) isolates; genotype VI for gourami [Trichopodus

leerii (Bleeker 1852) and T. trichopterus (Pallas 1770)]

(LCDV-TL) isolates; genotype VII includes gilthead sea

bream [Sparus aurata (Linnaeus 1758)] and Senegalese sole

[Solea senegalensis (Kaup 1858)] (LCDV-SA and LCDV-

SSE, respectively) isolates; genotype VIII for a largemouth

bass [Micropterus salmoides (Lacep�ede 1802)] isolate (strain

Leetown NFH); and genotype IX, including an American

yellow perch [Perca flavescens (Mitchill 1814)] isolate (Kita-

mura et al. 2006a,b; Hossain et al. 2008; Kvitt et al. 2008;

Cano et al. 2010; Palmer et al. 2012). The genetic diversity

of LCDV has been related to the host fish species (Kitamura

et al. 2006a,b; Hossain et al. 2008). However, when study-

ing the evolutionary relationship of LCDV and its hosts,

Yan et al. (2011) did not obtain significant evidence of

cospeciation between LCDV genotypes and their host fish

species.

Viral characteristics

Virion structure

Lymphocystis disease viruses are large icosahedral viral par-

ticles that, depending on the host fish species, may vary in

size from 120 to 340 nm in diameter (Tidona & Darai

1999; Paperna et al. 2001). The virus consists of a bilaminar

capsid and a core that appears filamentous, displaying

helicoidal symmetry (Madeley et al. 1978; Samalecos 1986;

Heppell & Berthiaume 1992). The core is surrounded by a

membranous structure that is clearly demonstrated in

decaying virus (Smail & Munro 2001). Negative staining

electron images of decaying viruses show that the outer

electron-lucent layer of the capsid is composed of knobs,

possibly attached to the inner capsid layer by a fringe of fib-

ril-like external protrusions of 2.5 nm in length (Jancovich

et al. 2012). The treatment of LCD virions with papain

before staining revealed a capsomer lattice structure, pre-

sumably because the papain removed the outer capsid

(Samalecos 1986).

The virions are heat labile and can be inactivated by

ether, glycerol, 5-iododeoxyuridine and UV treatments

(Wolf 1988; Iwamoto et al. 2002). Freezing–thawing cycles

at �20°C may provoke a decrease in viral infectivity

(Wolf 1962). In contrast, the virions show stability to pH

6–9 and are resistant to ultrasonic treatment (Walker &

Hill 1980).

Chemical composition

Lymphocystis disease virions are composed of 42% pro-

teins, 17% lipids and 1.6% nucleic acids, with sugars most

likely representing a major portion of the remaining

unidentified components (Robin et al. 1983). SDS-PAGE

analysis revealed the presence of 33 structural polypeptides,

ranging from 4 to 220 kDa, in LCDV-1 virions isolated

directly from fish tumours (Fl€ugel et al. 1982). However,

purified virions obtained from other fish species showed a

different electrophoretic pattern of 23–31 polypeptides

ranging from 30 to 210 kDa (Robin et al. 1984; Garcia-

Rosado et al. 2004). A common characteristic of all LCDV

particles is the presence of an MCP of approximately

50 kDa composed of 459 amino acids, which represents up

to 45% of the total protein content (Fl€ugel et al. 1982;

Robin et al. 1986; Heppell & Berthiaume 1992). The MCP

is one of the antigenic proteins identified in LCDV that

immuno-reacted with Japanese flounder antisera from dis-

eased fish and also from formalin-inactivated LCDV-vacci-

nated fish (Jang et al. 2011). The enzymatic activities

associated with purified virions include a viral-encoded

ATP hydrolase, a protein kinase and a thymidine kinase

(Fl€ugel et al. 1982; Darai et al. 1983).

Several authors have reported the presence of carbohy-

drates in LCDV. Robin et al. (1986) showed the presence

of 10 glycoproteins in highly purified virus particles of an

LCDV strain originally isolated from largemouth bass. In

addition, Garcia-Rosado et al. (2004) reported the exis-

tence of 8 glycoproteins, with molecular weights ranging

from 76 to 210 kDa, in viral particles isolated from gilthead

sea bream. Six of these glycoproteins presented a high

content of mannose, and the other two contained a high
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proportion of sialic acid and N-acetylglucosamine,

respectively.

Although LCDV is a nonenveloped particle, it may con-

tain 5–17% lipids that are readily digested by a treatment

with phospholipase that has been described for other iri-

doviruses (Robin et al. 1983; Chinchar et al. 2005). These

phospholipids constitute an internal lipid membrane that

lies between the DNA core and the viral capsid. The origin

of the internal lipid membrane is unclear. The composition

of the internal lipid membrane suggests that this membrane

is not derived from host membranes but is rather produced

de novo. However, it has been suggested that the internal

lipid membrane is derived from fragments of the endoplas-

mic reticulum and plays a key role in virion assembly

(Jancovich et al. 2012).

The LCDV genome is a single linear double-stranded

DNA molecule of 102.6 kbp for LCDV-1 and 186.2 kbp for

LCDV-C (Jancovich et al. 2012). This genome is circularly

permuted, terminally redundant and heavily methylated

(22%), with a G+C content of 29.9% for LCDV-1 and

27.2% for LCDV-C (Darai et al. 1983; Wagner et al. 1985;

Tidona & Darai 1997a; Jancovich et al. 2012). In addition,

LCDV-1 DNA contains numerous short-direct, inverted

and palindromic repetitive sequence elements (Schnitzler

et al. 1987; Schnitzler & Darai 1989; Jancovich et al. 2012).

Genome organization

Complete DNA sequences of LCDV-1 and LCDV-C have

been determined. The former encoded 195 potential open

reading frames (ORFs), whereas LCDV-C possesses 240

potential ORFs (Tidona & Darai 1997b; Zhang et al. 2004;

Jancovich et al. 2012). In LCDV-1, 108 largely nonoverlap-

ping ORFs are likely to represent viral genes, and 38 show

significant homology to proteins related to virus replication

and transcription, such as DNA polymerase (ORF 135R),

DNA polymerase processing factor (ORF 003L), DNA-

dependent RNA polymerases (ORF 016L, ORF 025L and

ORF 171R), DNA methyltransferase (ORF 005L), methyl-

sensitive restriction endonuclease with specificity for

CCGG target sites (ORF 178L), structure-specific endonu-

clease (ORF 191R), DNA-dependent ATPase (ORF 054R),

DNA puff protein homologue (ORF 108L), proteins

homologous to an early transcription factor subunit (ORF

132L), late promoter transactivator protein (ORF 032R),

dsRNA-specific ribonuclease (ORF 137R), thymidine

kinase (ORF 136R) and ribonucleoside-diphosphate reduc-

tases (ORF 027R and ORF 176L). In addition, other

putative gene products showed significant homology to

proteins involved in the virus–host interaction, including
an insulin-like growth factor, a tumour necrosis factor

receptor family, thioredoxin, cysteine proteinase, several

protein kinases, a tissue differentiation factor, a collagen

type IX homologue, b-hydroxy steroid dehydrogenase and

ATPase, to name a few ORFs (010L, 022R, 035L, 036R,

043R, 047L, 063L, 080R, 088R, 093R, 094R, 095L, 122R,

125R, 128L, 153L, 158L and 167L, respectively) (Fl€ugel

et al. 1982; Koonin 1993; M€uller et al. 1995; Tidona et al.

1996; Tidona & Darai 1997b; Sudthongkong et al. 2002;

Essbauer et al. 2004; Kim & Lee 2007; Pontejo et al. 2013).

In the case of LCDV-C, Zhang et al. (2004) reported the

presence of 240 potential ORFs and 176 nonoverlapping

putative viral genes. A search of the GenBank database

using the 176 individual putative genes revealed 103 homo-

logues to the corresponding ORFs of LCDV-1 and 73

potential genes that were not found in LCDV-1 or in other

iridoviruses. Among these 73 genes, eight genes contain

coding sequences of conserved domains of cellular proteins,

such as the caspase recruitment domain involved in apop-

totic signalling (ORF 002L), thymidylate synthase (ORF

011L), the tumour necrosis factor receptor domain (ORF

016L), site-specific recombinase (ORF 047R), reverse tran-

scriptase (ORF 051L), 7 transmembrane receptor (ORF

058L), the N-terminal domain of cell division protein 48

(ORF 209R) and collagen triple-helix repeat (ORF 216L).

The remaining 67 novel genes do not show any significant

homology with sequences in the public database.

Viral multiplication

The replication mechanism of LCDV has not been investi-

gated, but a model for Frog virus 3 (FV-3), a member of the

genus Ranavirus, has been proposed (Chinchar et al. 2009;

Jancovich et al. 2012). The cellular receptor(s) for FV3 is

unknown but viral entry is achieved by clathrin-mediated

endocytosis. In the case of LCDV-C, a 27.8-kDa protein

associated with beta-actin in the plasma membrane of

flounder gill cells has been identified as the virus receptor

(Wang et al. 2011a). Following uncoating, viral cores enter

the nucleus where first-stage DNA synthesis, and the syn-

thesis of immediate early (IE) and delayed early (DE) viral

transcripts, occurs. One or more virion-associated proteins

act as transactivators and redirect host RNA polymerase II

to synthesize IE and DE viral mRNAs using the methylated

viral genome as a template. The gene products encoded by

the IE and DE viral transcripts include both regulatory and

catalytic proteins. The viral DNA polymerase catalyses the

first round of viral DNA synthesis.

The newly synthesized viral DNA may serve as the tem-

plate for additional rounds of DNA replication and early

transcription, or it may be transported to the cytoplasm

where the second stage of viral DNA synthesis occurs. In

the cytoplasm, viral DNA is replicated as large, branched

concatemers that are processed to mature DNA during

DNA packaging. Viral DNA methylation also occurs in the

cytoplasm of the host cell; although its precise role is
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uncertain, it is hypothesised to protect viral DNA from

endonucleolytic attack. The transcription of late (L) viral

genes occurs in the cytoplasm, and full L gene transcription

requires prior DNA synthesis. Homologues of the two

largest subunits of RNA polymerase II are encoded by all

iridoviruses. Whether this viral DNA-dependent RNA

polymerase functions only in the cytoplasm to transcribe L

viral genes or whether it also plays a role in continued early

transcription has not yet been determined.

Virion formation occurs in the cytoplasm within mor-

phologically distinct areas named viral assembly sites.

Within these assembly sites, concatemeric viral DNA is

packaged into virions by a ‘headful’ mechanism that results

in the generation of circularly permuted and terminally

redundant genomes, similar to those reported in the T-even

Enterobacteria phages of the family Myoviridae. Following

assembly, virions accumulate in the cytoplasm within large

paracrystalline arrays or acquire an envelope by budding

from the plasma membrane.

Epizootiology of LCDV

Lymphocystis disease has been described in more than 125

species of fish from both marine and freshwater environ-

ments (Anders 1989; Marcogliese et al. 2001; Paperna

et al. 2001; Bunkley-Williams et al. 2002; Sheng et al.

2007a; Hossain et al. 2008; Xu et al. 2014; Huang et al.

2015). The affected species belongs to evolutionarily

advanced orders of bony fish (teleosts), mainly including

the families Cichlidae, Osphronemidae, Centrarchidae,

Gobiidae, Chaetodontidae, Pomacentridae, Sciaenidae,

Serranidae and Pleuronectidae. To date, LCD has not been

reported in less-advanced fish orders, such as siluriformes,

cyprinids and salmonids.

The disease is cosmopolitan, being widely distributed in

all continents (Plumb 1993). In Europe, LCD is an endemic

disease in the North Sea and Mediterranean zones, affecting

both wild and cultured fish species, such as European

flounder, common dab, European plaice, grey gurnard

[Eutrigla gurnardus (Linnaeus 1758)], gilthead sea bream,

black spot sea bream [Pagellus bogaraveo (Br€unnich 1768)]

and Senegalese sole (Paperna et al. 1982; Anders 1989;

Basurco et al. 1990; Moate et al. 1992; Garcia-Rosado et al.

1999; Dethlefsen et al. 2000; Alonso et al. 2005). LCD is

also a common fish disease in Asian aquaculture, particu-

larly affecting Japanese flounder, black rockfish, cobia,

Japanese sea bass, Japanese amberjack [Seriola quinqueradi-

ata (Temmick & Schlegel 1845)], groupers [orange-spotted

grouper, Epinephelus coioides (Hamilton 1822), brown-

marbled grouper, E. fuscoguttatus (Forssk�al 1775) and giant

grouper, E. lanceolatus (Bloch 1790)], and red sea bream

[Pagrus major (Temmick & Schlegel 1843)], as well as orna-

mental aquarium fish species (Matsusato 1975; Tanaka

et al. 1984; Chen 1996; Park & Sohn 1996; Muroga 1997;

Chun 1998; Xu et al. 2000, 2014; Zhang 2002; Xing et al.

2006; Hossain et al. 2008; Huang et al. 2015).

Only a few studies have been conducted on the fate of

LCDV outside the host and whether it is able to remain

viable for an extended period of time in water or sediments.

However, it is classically assumed that viral transmission

occurs through the skin and gills of fish by direct contact or

by waterborne exposure (Wolf 1988; Bowser et al. 1999;

Kvitt et al. 2008). Trauma of the skin via handling or net-

ting, mating, parasitism and aggressive behaviour favour

viral transmission among fish (Wolf 1988; Plumb 1993;

Smail & Munro 2001). Sheng et al. (2007b) and Cano et al.

(2009a) reported the possible transmission of LCDV by

feeding in aquaculture facilities. The latter authors sug-

gested that artemia nauplii might act as a reservoir of

LCDV (Cano et al. 2009b). Later, these authors demon-

strated two mechanisms of LCDV transmission to gilthead

sea bream larvae: vertical transmission through eggs and

horizontal transmission via LCDV-positive rotifers (Cano

et al. 2013).

In aquaculture facilities, a high percentage of the fish

population could be infected by LCDV, likely reflecting the

ease of horizontal transmission, and viral infection inci-

dences up to 70% have been described (Paperna et al.

1982; Sano 1988; Matsuoka 1995; Xing et al. 2006). The

prevalence of LCD is affected by fish density, human

manipulation, low salinity, water temperature, reduced

oxygen conditions, nutritional deficiencies and chemical

and biological water pollution (Paperna et al. 1982; Bowser

et al. 1988, 1999; Berthiaume et al. 1993; Sindermann

1996; Vethaak & Jol 1996; Mellergaard & Nielsen 1997;

Austin 1999; Grygiel 1999; Kitamura et al. 2007). Hossain

et al. (2009) demonstrated the importance of temperature

on the persistence of LCDV in Japanese flounder epidermal

tissues. These authors found that lymphocystis cells

appeared on the skin and fins at 35 days post-challenge at

20°C, but no clinical signs were observed in the fish reared

at 10° and 30°C, although LCDV could be detected by

PCR. They concluded that at low temperatures, LCDV is

able to persist over a long period of time in the fish epider-

mis, producing a subclinical infection.

Disease features

The main characteristic of LCD is the appearance of small

cream-coloured nodular lesions on the fish skin and fins

(Colorni & Diamant 1995; Sarasquete et al. 1998). Each

nodule consists of an LCDV-infected cell, named lympho-

cyst or lymphocystis cell, of up to 1 mm in diameter

(Paperna et al. 1982). These hypertrophied cells may occur

singly or grouped in raspberry-like clusters of tumour

appearance. These cellular aggregates are usually whitish in
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colour, but when they cover epithelial tissue that is rich in

chromatophores, the chromatophores may render them

greyish or darker (Wolf 1988; Smail & Munro 2001). In

heavily affected fish, lymphocysts may cover the entire

body, spreading from the gills to the fins (Paperna et al.

1982; Fl€ugel 1985; Le Deuff & Renault 1993; Xing et al.

2006). Less frequently, they have also been described on

eyes, causing exophthalmia, and internally over the mesen-

teries, peritoneum and several internal organs (Huizinga &

Cosgrove 1973; Russell 1974; Dukes & Lawler 1975; Howse

et al. 1977; Wolf 1988; Colorni & Diamant 1995; Xing et al.

2006).

Diseased fish show low growth rates, which may be

caused by the anaemia generally associated with this disease

(Nishida et al. 1998; Iwamoto et al. 2002). Mortalities are

typically limited to those individuals whose swimming,

breathing or feeding is severely impaired by particularly

large and cumbersome growths of infected cells (Colorni &

Padros 2011). In fish farms, LCD outbreaks may favour

secondary bacterial infections, cannibalism and/or parasitic

infestations, factors that may increase mortality rates (Wil-

liams et al. 2005; Colorni & Padros 2011; Dezfuli et al.

2012; Haddad-Boubaker et al. 2013).

Lymphocystis disease is a chronic and self-limiting dis-

ease that, depending on the host fish species and environ-

mental conditions, may persist for a variable period of time

(Williams 1996). Thus, the LCD-associated lesions may be

evident for 1 year in cold-water fish, whereas they disap-

pear after several weeks in warm-water species (Paperna

et al. 1982; Gonzalez de Canales et al. 1996).

Lymphocystis disease virus infection has been described

in bluegill [Lepomis macrochirus (Rafinesque 1819)] (Dun-

bar & Wolf 1966) and European plaice (Roberts 1976).

Although the time course for the development and regres-

sion of lymphocysts is quite different in both fish species

(28 days at 25°C in bluegill compared to 3 months at 10°C
in plaice), certain definitive stages can be recognized:

1 Infected fibroblast-like cells cease dividing and increase

their size. These hypertrophied cells show basophilic

cytoplasms and develop prominent nuclei and nucleoli

(Fl€ugel 1985).

2 As the cell enlarges, cytoplasmic inclusions surrounded

by halo-like clear areas become evident. Electron micro-

scopy studies revealed that these areas are viral factories

(Spitzer et al. 1982).

3 During maturation, a hyaline capsule becomes clearly

demonstrable by haematoxylin–eosin staining (Peters &

Schmidt 1995). In gilthead sea bream the hyaline capsule

is composed of sulphate- and carboxyl-glycoproteins

(Gonzalez de Canales et al. 1996; Sarasquete et al. 1998).

4 Finally, lymphocysts reach a degenerative phase in which

nuclei and nucleoli appear condensed and poorly defined

(Smail & Munro 2001). Inclusions remain near the

periphery, and the hyaline capsule degenerates. Macro-

phages and phagocytic cells appear around the degener-

ated lymphocysts and may invade them. Lymphocysts

collapse may cause de novo infection of adjacent fibrob-

lasts. Viral shedding appears to occur only after lysis of

the lymphocysts.

Viral pathogenesis and host immunity

Data about LCDV pathogenesis are limited and are mainly

restricted to histopathological studies of skin lesions (Gon-

zalez de Canales et al. 1996; Sheng & Zhan 2004; Sheng

et al. 2007b). More recently, immunohistochemistry

(IHC), immunofluorescence (IF) or in situ hybridization

(ISH) techniques have been used to study the course of the

viral infection, as well as the LCDV tropism (Xing et al.

2006; Sheng et al. 2007b; Cano et al. 2009a, 2013). These

latter authors applied the IHC and ISH techniques for

LCDV detection in gilthead sea bream specimens from the

same population. Lymphocystis disease virus was detected

in all tested organs (skin/fin, gills, intestine, liver, spleen

and kidney), both in diseased and recovered fish. Fibrob-

lasts, hepatocytes and macrophages appear to be target cells

for virus replication. These results indicate that the virus

establishes a systemic infection in gilthead sea bream and

persists in fish for an unknown period after the disappear-

ance of clinical signs (Cano et al. 2009a).

The DNA microarray technology is a useful tool for

studying viral gene expression and allows the analysis of

complex transcriptional profiles of large DNA viruses. In

addition, this technique enables the characterization of

host gene expression in response to viral infections, pro-

viding a better understanding of the underlying patho-

genic mechanisms. The process of lymphocyst formation

has been investigated in experimentally infected Japanese

flounder, determining in parallel the viral genome

amount and the changes in fish gene expression (Iwakiri

et al. 2014). The LCDV genome was first detected from

the dorsal fins at 14 days post-infection (dpi), and the

amount of viral genomes gradually increased in syn-

chrony with lymphocyst development. The number of

host genes that change their expression levels increased

dramatically between 28 and 42 dpi. The results of the

microarray analysis suggested that apoptosis inhibition,

cell cycle arrest and alterations of collagen fibres may be

implicated in lymphocyst formation in Japanese flounder

fin cells.

The viral factors involved in lymphocyst formation are

currently unknown. However, at least two viral gene prod-

ucts encoded by LCDV-C, a G protein-coupled receptor

homologue (GPCR) and the thymidylate synthase (TS),

can mediate cellular transformation in vitro when expressed

in fish cell lines. GPCR inhibits cellular apoptosis in
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transient transfected fathead minnow (FHN) and

epithelioma papulosum cyprini (EPC) cells (Huang et al.

2007), whereas FHN cells constitutively expressing TS

showed a transformed phenotype (Zhao et al. 2008).

Little is known about immunity to LCDV, but there is

the suggestion that by replicating primarily in the skin,

LCDV is shielded from an antiviral response until late in

infection (Chinchar et al. 2009). The proliferation of

macrophages and epithelioid cells around lymphocysts in

the dermis has been described as an immune response in

several fish species (Roberts 1976; Colorni & Diamant

1995; Sheng et al. 2007b). Recently, Dezfuli et al. (2012)

demonstrated that piscidin 3-expressing acidophilic granu-

locytes, but not mast cells, are recruited and activated in

the dermis of gilthead sea bream in response to LCDV

infection. In addition, an enhanced phagocytic capability

was observed in head kidney cells from American plaice

[Hippoglossoides platessoides (Fabricius, 1780)] suffering

LCD (Marcogliese et al. 2001).

In Japanese flounder, the humoral immune response

was monitored by antibody titration in sera from appar-

ently healthy, lymphocystis diseased and recovered fish

from an aquaculture facility, and the recovered animals

showed the highest ELISA absorbance values (Nishida

et al. 1998). Lorenzen and Dixon (1991) reported an

increase in seroprevalence and antibody titres against

LCDV in wild European flounder populations. These find-

ings suggest that fish can recover from LCD and develop

acquired immunity.

There are also an increasing number of studies on the

in vivo modulation of innate immunogenes expression after

LCDV infection. These include the IRF-3 (interferon regu-

latory factor 3), IRF-7, IRF-8 and IRF-9 in Japanese floun-

der (Hu et al. 2010, 2011, 2013, 2014), and the STAT2

(signal transducer and activator of transcription2) and

STAT3 in turbot (Wang et al. 2011b, 2013). All of them are

upregulated shortly after infection, which demonstrates

their role in the antiviral response of the host. The anti-

LCDV activity of two of the gilthead sea bream Mx proteins

(SauMx1 and SauMx2) has been demonstrated in vitro

using three clonal populations of transfected CHSE-214,

which stably express each of the SauMx proteins (Fernan-

dez-Trujillo et al. 2013).

The recent identification of a single major genetic locus

controlling susceptibility to LCDV infection in Japanese

flounder opens the way to selective breeding programs

designed to develop flounder populations that are highly

resistant to LCD (Fuji et al. 2006, 2007). More recently,

Hwang et al. (2011) demonstrated that TLR-2 (Toll-like

receptor 2) mapped with the previously reported

microsatellite marker that is associated with LCDV resis-

tance, suggesting a relationship between host immune

response and disease resistance.

Diagnostic methods

Although LCDV infections are generally benign and self-

limiting, there are commercial concerns due to market

rejection caused by the warty appearance of infected ani-

mals. For this reason, the development of rapid and sensi-

tive diagnostic tools is very important for controlling the

spread of this viral disease. Rapid diagnostic methods are

required during the course of an outbreak, whereas highly

sensitive methods are required to detect subclinical viral

infections in carrier fish (Sanz & Coll 1992).

Classically, the diagnosis of LCDV has been based on the

observation of disease symptoms. However, the develop-

ment of rapid and specific diagnostic tools to control the

viral dissemination in fish farms is highly advised because

neither effective treatments nor commercially available vac-

cines currently exist. At present, the only feasible measures

for disease prevention in aquaculture systems are general

prophylactic practices, such as the exhaustive control of the

fish to be introduced into the aquaculture system, the use

of effective decontamination methods to prevent viral

transmission from asymptomatic brood stock to larvae and

the supply of virus–free live food (Anders 1989; Yoshimizu

2009).

Virus isolation in cell cultures

The official method for diagnosis of fish viruses, established

by the World Organization for Animal Health (OIE), is

based on virus isolation using susceptible cell lines and fur-

ther confirmation by serological or molecular techniques

(OIE 2014). Although this procedure is widely accepted

and currently used to validate other diagnostic methods, it

is time-consuming, and its effectiveness largely depends on

the cell line used.

Lymphocystis disease virus is not readily propagated in

cell culture and showed a narrow host cell range; therefore,

virus isolation usually requires homologous cell lines. The

first report of LCDV isolation was from bluegill using a fry

cell line (BF-2), although these viruses can also propagate

onto a largemouth bass cell line (LBF-1) (Wolf et al. 1966).

Bejar et al. (1997) developed a fin-derived cell line from

gilthead sea bream (SAF-1) that supports the replication of

LCDV isolated from this fish species (Perez-Prieto et al.

1999), as well as from European flounder, common dab

and European plaice (Alonso et al. 2007). Some LCDV gilt-

head sea bream isolates also replicate to a lesser extent on

BF-2 cells (Garcia-Rosado et al. 1999; Alonso et al. 2007).

The cytopathic effects (CPE) caused by LCDV on SAF-1

cells are similar to those reported on BF-2 cells, consisting

in cellular rounding and the enlargement and presence of

cytoplasmatic inclusions that become evident after 3–
10 days of incubation (Garcia-Rosado et al. 1999).
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Iwamoto et al. (2002) tested 39 fish cell lines to propagate

LCDV isolated from Japanese flounder, and only a homolo-

gous cell line (HINAE) exhibited CPE after 6–9 days of

incubation. Similarly, Zhang et al. (2003) tested 13 fish cell

lines for isolation of LCDV, recording viral replication only

on two of them (GCO and GCK cell lines) derived from the

grass carp [Ctenopharyngodon idella (Valenciennes 1844)].

Nevertheless, CPE characteristics induced by LCDV-C in

these cell lines are markedly different from those previously

described. LCDV-C can also be propagated onto the FG-

9307 cell line, derived from Japanese flounder gill tissue,

but in this case, the virus induced apoptotic cell death (Hu

et al. 2004).

In the years since 2010, several studies have been per-

formed to obtain effective cell lines for LCDV in vitro prop-

agation and vaccine development. Researchers at the

Chinese Academy of Fisheries Sciences (Qingdao, China)

have established at least seven cell lines that have proven to

be susceptible to LCDV-C and turbot reddish body iri-

dovirus (TRBIV). The cell lines derived from different fish

species, such as turbot [Scophthalmus maximus (Linnaeus

1758)], half smooth tongue sole [Cynoglossus semilaevis

(G€unther 1873)], brown-marbled grouper and stone floun-

der [Kareius bicoloratus (Basilewsky 1855)] (Wei et al.

2009, 2010; Sha et al. 2010; Wang et al. 2010; Xu et al.

2011a; Zhang et al. 2011; Zheng et al. 2012).

Serological techniques

Serological techniques are usually performed for viral iden-

tification after virus isolation on cell culture, or, alterna-

tively, they can be used as diagnostic tools for direct viral

detection in fish tissues (Sanz & Coll 1992). These tech-

niques can also be applied to determine the presence of

antibodies against a particular pathogen in the serum of

fish (Hattenberger-Baudouy et al. 1995; LaPatra 1996).

Several serological techniques, such as indirect

immunofluorescence, flow cytometry and immunoblot,

have been used for LCDV detection in cell culture (Garcia-

Rosado et al. 2002; Cano et al. 2006). Among these, the

immunoblot assay using an antiserum against a 60-kDa

viral protein showed the highest sensitivity (32 ng mL�1 of

purified LCDV), allowing the detection of viral antigens in

SAF-1 cells inoculated with 10 TCID50 per mL at 5 days

post-inoculation (p.i.). Virus detection by CPE develop-

ment in the same cells (recorded at 14 days p.i.) was only

possible with inoculation titres above 102 TCID50 per mL.

This immunoblot assay also proved to be effective for

LCDV diagnosis in gilthead sea bream tissue homogenates,

from both diseased and asymptomatic fish, although a pre-

vious amplification step in cell culture was required for

asymptomatic samples (Cano et al. 2006).

Cheng et al. (2006) developed a panel of five monoclonal

antibodies (MAb) to LCDV that have been applied for

LCDV diagnosis in Japanese flounder using enzyme-linked

immunosorbent assay (ELISA) and immunoblot (Xing

et al. 2006). More recently, these MAbs have been used for

the development of two rapid detection tools: a gold

immunochromatographic test strip (Sheng et al. 2012) and

an antibody microarray (Sheng et al. 2013). The sensitivity

of both methods (1 and 0.55 lg mL�1 of purified LCDV,

respectively) makes them suitable for detecting LCDV anti-

gens in asymptomatic fish, as has been demonstrated by

these authors. Moreover, the test strip allows on-site detec-

tion of LCDV without requiring specialized equipment or

personnel.

The date, the detection of fish antibodies against a virus

has not been accepted as a routine screening method for

assessing the viral status of fish populations because of gaps

in the knowledge on the serological response of fish to virus

infections (LaPatra 1996). However, antibody detection can

be used at the population level as an indicator of previous

exposure to the virus (Hattenberger-Baudouy et al. 1995).

The ELISA technique has been used to determine both the

seroprevalence of the LCDV, as well as the determination

of specific antibody titre, in several wild European flounder

populations (Lorenzen & Dixon 1991; Dixon et al. 1996)

and in cultured Japanese flounder (Nishida et al. 1998).

PCR-based techniques

New sanitary regulations for fish have been implemented,

which include sampling for the detection of asymptomatic

LCDV carriers; therefore, it is necessary to develop molecu-

lar tools for diagnostic purposes (OIE 2014).

Polymerase chain reaction (PCR) is a rapid, sensitive and

highly specific technique for detecting iridoviral infections

(Mao et al. 1997; Grizzle et al. 2003). In the case of LCDV,

several PCR techniques based on the sequences of MCP-

coding genes have been developed in recent years. Using

this technique, Cano et al. (2007) successfully detected

LCDV from different marine fish species (European floun-

der, common dab, European plaice and gilthead sea bream)

collected from both northern and southern Europe. PCR

combined with blot hybridization was shown to be ade-

quate for virus detection in tissue homogenates of asymp-

tomatic gilthead sea bream carriers (Cano et al. 2007,

2009a). Similar PCR-based assays have been developed by

other authors to detect LCDV in other fish species such as

the Japanese flounder, black rockfish, turbot, redwing sea

robin [Lepidotrigla microptera (G€unther 1873)] and white-

spotted puffer [Arothrom hispidus (Linnaeus 1758)] (Xing

et al. 2006; Hossain et al. 2007; Sheng et al. 2007a; Zhan

et al. 2010).
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The aforementioned studies have demonstrated the

applicability of the PCR-based methods to detect LCDV in

asymptomatic carriers, but they do not provide quantita-

tive results that can be useful in epidemiological and

pathological studies. Based on competitive PCR technol-

ogy, Zan et al. (2007) established a semiquantitative

method for LCDV detection in Japanese flounder tissues.

Real-time PCR is a powerful technique that has been used

for the detection and quantification of several viral fish

pathogens, including different iridoviruses (Wang et al.

2006; Pallister et al. 2007; Gias et al. 2011), showing better

sensitivity than conventional PCR. Regarding LCDV, Pal-

mer et al. (2012) developed a real-time PCR assay using

fluorogenic primers, which proved to be reliable in the

detection and quantification of subclinically infected yel-

low perch. More recently, a new real-time PCR assay has

been developed and applied for viral quantification in dis-

eased and asymptomatic gilthead sea bream (Ciulli et al.

2015).

Loop-mediated isothermal amplification

Loop-mediated isothermal amplification (LAMP) is a tech-

nique in which DNA is quickly amplified under isothermal

conditions with high specificity and sensitivity (Notomi

et al. 2000). Loop-mediated isothermal amplification-

mediated diagnosis has been successfully used for the detec-

tion of viral pathogens in the aquaculture industry,

including several iridoviruses (Caipang et al. 2004; Mao

et al. 2008; Zhang et al. 2009; Ding et al. 2010; Sung et al.

2010; Min et al. 2013). Li et al. (2010) developed and eval-

uated a LAMP assay for the rapid detection of LCDV from

both diseased and apparently healthy Japanese founders.

The assay was found to be very specific because no cross-re-

activity was obtained using other iridoviruses, and its

detection limit was similar to that of real-time quantitative

PCR. Due to LAMP amplifies under isothermal conditions

(between 63 and 65°C), a thermal cycler is not required. In

addition, LAMP products can be detected visually using

several fluorescent dyes that bind to dsDNA, such as SYBR

Green, calcein or ethidium bromide, or using the formation

of a white precipitate, magnesium pyrophosphate, as a by-

product of the amplification reaction. Therefore, LAMP

can be widely used for viral diagnosis, particularly in

resource-limited settings.

Disease control and prevention

Viral disease prevention and control rely on the application

of specific prophylactic measures (i.e. vaccination) or, alter-

natively, on the use of general control strategies, such as

improved husbandry and water quality, better nutrition

and lower stocking densities (OIE 2014).

Control of LCDV in intensive culture operations would

demand scrupulous disinfection procedures at all stages of

production, screening and quarantine of each fish lot to be

introduced, and treatment of raw sea water used in the fish

facility (Bowden et al. 1995). However, only a few studies

have been performed on physical and chemical treatments

against LCDV. Havikrishnan et al. (2010c) used a bath

treatment with formalin, hydrogen peroxide and Jenoclean

for LCDV-infected Japanese flounder. The authors con-

cluded that these chemical agents enhanced the fish innate

immune response and increased the fish resistance to the

disease. However, these treatments cannot be systematically

applied in aquaculture practice. For this reason, these

authors evaluated the effect of herbal extracts and probi-

otics added to the fish diet in the course of LCDV infection

in Japanese flounder, concluding that they act as immunos-

timulants that reduce the incidence of LCD (Havikrishnan

et al. 2010a,b).

Although there is no commercial vaccine available for

LCDV infection, both inactivated and genetically engi-

neered vaccines targeting LCDV have been designed and

evaluated in recent years. Formalin- and heat-inactivated

LCDVs were used as vaccines and proved to have a protec-

tive effect in Japanese flounder (Yoshimizu & Iwamoto

2001; Xu et al. 2011b). Nevertheless, its use is hampered by

the necessity to obtain large amounts of purified virus

particles directly from diseased fish lesions.

DNA vaccination is based on the administration of plas-

mid DNA (pDNA) encoding a protective antigen, rather

than the antigen itself. The subsequent expression of the

antigen by cells in the vaccinated hosts triggers the host

immune response. A single intramuscular injection of low

amounts of DNA induces rapid and long protection in fish

against economically important viruses affecting aquacul-

ture production (Lorenzen & LaPatra 2005). Zheng et al.

(2006) designed a DNA vaccine against LCDV composed

of a plasmid containing a 0.6-kbp fragment of the MCP

gene of LCDV-C. The expression of several immune-re-

lated genes significantly increased after vaccination, and

specific anti-LCDV immunoglobulins were also detected in

the sera of vaccinated fish (Zheng et al. 2010). In addition,

this vaccine induced effective protection against LCD in

Japanese flounder after intramuscular injection (Zheng

et al. 2011).

Oral DNA-based immunotherapy is a new strategy for

fish immunization in intensive culture. However, the rate

of degradation of DNA vaccines by nucleases and acidic

conditions in the fish gastrointestinal tract may reduce vac-

cine efficiency. To avoid this, the vaccine DNA can be

delivered encapsulated in micro- or nanoparticles that pre-

vent its degradation. Microspheres of alginate, chitosan and

poly/DL-lactide-co-glycolide (PLGA) were tested by Tian

et al. (2008a,b,c) for oral delivery of the LCDV pDNA
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vaccine cited above. Following immunization, the authors

detected transgene expression in several organs from fish

vaccinated with encapsulated pDNA. The encapsulated vac-

cine also induced higher levels of antibodies compared to

control fish vaccinated with naked pDNA. Later, Tian and

Yu (2011) demonstrated a significant increase in resistance

to LCDV infection after oral administration of the pDNA

vaccine encapsulated into PLGA nanoparticles.

Remarks and future perspectives

Aquaculture now accounts for almost 50% of fish con-

sumed by humans, and it continues to be a fast-growing

animal-food-producing sector. However, the growth rates

for aquaculture production have recently started slowing,

reflecting the impacts of a wide range of factors, with biose-

curity risks being the most significant. These biosecurity

risks include the spread of transboundary aquatic animal

diseases, risks derived from the use of veterinary medical

products, biological invasion of species from human-

assisted introductions and climate change consequences

(Hine et al. 2012). To solve these problems, the FAO

(2010) has proposed a regulatory instrument governing

biosecurity, including the FAO/WHO Codex Alimentarius

Commission (concerned with food safety), the World

Organization for Animal Health (OIE) (concerned with

animal life and health) and the International Plant Protec-

tion Convention (concerned with plant life and health).

The rise of novel systems of intensive aquaculture,

increased global movement of aquatic animals and their

products, and several sources of anthropogenic stress to

aquatic ecosystems have led to the emergence of many new

diseases of fish, including those of viral origin (Walker &

Winton 2010). The case of LCDV is of great interest

because these viruses become a threat to aquaculture prac-

tice and are the source of important economic losses. Sev-

eral studies have been performed on this virus focussing

both on its molecular biology and pathogenesis, but more

studies are needed to understand the mechanisms of LCDV

infection and to establish disease control measures. The

development of rapid, sensitive and suitable on-site diag-

nostic methods will be essential for the early detection of

LCDV at the fish farm. Gene microarray technology will

advance our understanding of both LCDV pathogenesis

and cultured fish immunity to this virus. However, the

main focus should be on the control of LCD. Interfering

RNA (iRNA)-based gene therapies appear to be a promis-

ing approach to silence viral gene expression and to inhibit

viral transcription in fish. Finally, other approaches will be

improving of disease resistance by selective breeding and/or

transgenic fish production. This will require the identifica-

tion of the genetic loci linked to LCD resistance in com-

mercial fish species susceptible to this viral disease, as it has

been previously carried out for Japanese flounder (Fuji

et al. 2006, 2007).
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