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Abstract

Many real problems require the examination of an exponential number of alternatives
in order to find the best choice. They are the so-called combinatorial optimization
problems. Besides, real problems usually involve the consideration of several conflicting
magnitudes. When multiple objectives must be simultaneously optimized, there is
generally not an optimal value satisfying the requirements for all the criteria at the
same time. Solving these multiobjective combinatorial problems commonly results in
a large set of Pareto-optimal solutions, which define the optimal tradeoffs between the
objectives under consideration.

One of most recurrent multiobjective problems is considered in this thesis: the
search for shortest paths in a graph, taking into account several objectives at the same
time. Many practical applications of multiobjective search in different domains can be
pointed out: routing in multimedia networks (Clímaco et al., 2003), satellite scheduling
(Gabrel & Vanderpooten, 2002), transportation problems (Pallottino & Scutellà, 1998),
routing in railway networks (Müller-Hannemann &Weihe, 2006), route planning in road
maps (Jozefowiez et al., 2008), robot surveillance (delle Fave et al., 2009) or domain
independent planning (Refanidis & Vlahavas, 2003).

Multiobjective route planning over realistic road maps has been considered as a po-
tential application scenario for the multiobjective algorithms and heuristics considered
in this thesis. Hazardous material transportation (Erkut et al., 2007), another related
multiobjective routing problem, has also been considered as an interesting potential
application scenario.

Single criterion shortest path methods are well known and have been widely studied.
Heuristic Search allows the reduction of the space and time requirements of these me-
thods, exploiting estimates of the actual distance to the goal. Multiobjective problems
are much more complex than their single-objective counterparts, and require specific
methods. These range from exact solution techniques to approximate ones, including
the metaheuristic approximate methods usually found in the literature. This thesis is
concerned with exact best-first algorithms, and particularly, with the use of heuristic
information to improve their performance.

This thesis contributes both formal and empirical analysis of algorithms and heuris-
tics for multiobjective search. The formal characterization of algorithms is important
for the field. However, empirical evaluation is also of great importance for the real
application of these methods. Several well known classes of problems have been used
to test their performance, including some realistic scenarios as described above.

The results of this thesis provide a better understanding of which of the available
methods are better in practical situations. Formal and empirical explanations of their
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xii Abstract

behaviour are presented. Heuristic search is shown to reduce considerably space and
time requirements in most situations. In particular, the first systematic results showing
the advantages of the application of precalculated multiobjective heuristics are pre-
sented. The thesis also contributes an improved method for heuristic precalculation,
and explores the convenience of more informed precalculated heuristics.
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Part I

Motivation and Fundamentals

This part introduces the motivation, goals, and contributions of this thesis. The fun-
damentals of multiobjective graph search are presented, and previous relevant works
are described in detail. In particular, the three algorithms analyzed in this thesis
(NAMOA∗, MOA∗ and TC) are described using a common framework. A review
of previous benchmarks on multiobjective search is conducted, and a set of relevant
problem classes and instances are identified for the empirical analysis performed in
subsequent chapters.

• Chapter 1 gives an overview of the contents, goals and contributions of this thesis.

• Chapter 2 presents the problem and the algorithms that will be subject of ana-
lysis.

• Chapter 3 details the empirical methods and benchmarks used.





Chapter 1

Introduction

The context of this thesis is a common problem in the fields of Artificial Intelligence
(AI) and Operational Research (OR). Shortest Path Problems appear in many everyday
life situations, e.g. in car navigation systems, which plan the optimal route between
some source and a specified destination point. Most available algorithms to solve
this problem usually optimize a single criterion. The development and analysis of
multiobjective shortest path algorithms is a relatively less explored area. The goal
of this thesis is to deepen our undertanding of the formal and empirical behaviour of
available exact multiobjective shortest path algorithms, with particular attention to
heuristic search techniques. We also seek to analyze the benefits of heuristic search
and to improve the performance of existing methods.

Section 1.1 introduces the motivation of this work. Scope and orientation are pre-
sented in section 1.2. The goals of this thesis are summarized in section 1.3. Contri-
butions are summarized in section 1.4. Related publications derived from this research
can be found in section 1.5. Finally, an outline of the structure of this thesis is presented
in section 1.6.

1.1 Motivation and Significance

Artificial Intelligence (AI) is one of the main branches of Computer Science (CS). Since
the establishment of AI as a formal discipline, many of the most difficult problems in CS
have been its subject of study. One recurrent problem in the AI literature is the Shortest
Path Problem (SP). A minimal cost route between two points in a network can be
obtained by algorithms like the one devised by Dijkstra (1959). Heuristic Search (HS)
is an AI subdiscipline aiming to obtain more efficient algorithms, exploiting specific
problem knowledge. An important reference is the A∗ algorithm (Hart et al., 1968),
that uses cost estimates to guide search to the goal, improving efficiency.

Realistic decision problems frequently involve the consideration of multiple criteria
at the same time. Figure 1.1 shows a sample scenario: planning a travel from Málaga to
Lisbon seeking to minimize both time and economic cost. Among all feasible routes only
a subset can be considered minimal in terms of both objectives. This is the so-called
Pareto set. An alternative is Pareto-optimal if it cannot be improved in one objective
without worsening some of the others, i.e. it represents an optimal tradeoff between the

3
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(a) Best route concerning time (b) Best route concerning economic cost

Figure 1.1: Screenshots from a sample route planning application, showing alternative
routes from Málaga to Lisbon.

objectives. The multiobjective search problem is known to be computationally more
complex than single-objective search. Several methods and algorithms for this problem
have been considered since the pioneering work of Hansen (1979).

In particular, several multiobjective heuristic search algorithms have been described
in the literature, namely MOA∗ (Stewart & White, 1991), NAMOA∗ (Mandow &
Pérez de la Cruz, 2005) and TC (Tung & Chew, 1992) algorithms. However, their
formal and empirical analysis is relatively unexplored when compared to analogous
single-objective algorithms.

Recent formal analyses have begun to clarify the benefits of heuristic information
in multiobjective search (Mandow & Pérez de la Cruz, 2010a). However, little expe-
rimental evaluation has been performed prior to this thesis to systematically compare
the performance of multiobjective heuristic search algorithms.

The main goal of this thesis is to deepen our understanding of the performance of
these algorithms. Research has been directed to complete formal analysis where needed,
and to evaluate empirically the performance of heuristic search in general and realistic
situations. In particular, the advantages of precalculated heuristics in multiobjective
search are analyzed, and improved methods for heuristic precalculation are provided.
The results obtained can be a useful guide for practitioners, and also point out clear
lines of future research.

Finally, empirical evaluation is performed in different kinds of settings. Randomly
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generated problems provide an important testbed to control problem parameters, like
solution depth or correlation between objectives. On the other hand, this thesis focuses
on realistic route planning scenarios. These have been the subject of considerable
research in the past few years for single-objective problems (Geisberger et al., 2008;
Bast et al., 2007; Bauer & Delling, 2009; Goldberg & Harrelson, 2005), and emerge as
an important potential area of application of multiobjective search.

1.2 Scope and Orientation

The boundaries of this doctoral dissertation are defined by the following terms:

Shortest path problems Problem instances involve the determination of shortest
paths in graphs.

Additive costs Arcs are labelled with costs representing magnitudes to be minimized.
The cost of a route between two nodes in a graph in terms of some magnitude
can be obtained adding the corresponding magnitude costs of all arcs in the path.

Multicriteria scenarios Vector costs are considered in order to handle multiple ob-
jectives at the same time. In general, practical analyses consider two objectives,
except for some simple scenarios where three objectives were considered.

Pareto optimality The scalar concept of minimum is no longer valid when multiple
criteria are considered. Solutions must satisfy that no other feasible alternative
can improve according to one objective whithout worsening at least one of the
others.

Best-first exact algorithms All the algorithms and heuristics evaluated aim at the
determination of the full Pareto-optimal set of solutions. Only best-first heuristic
search is considered.

Empirical approach The research was guided mainly by practical experimentation
with multiobjective heuristics and algorithms. Nevertheless, some theoretical
results have been developed when necessary in order to explain the observed
behaviour of algorithms, or complete previous formal analyses.

Tractable testbeds Even in simple biobjective problems, the number of Pareto-
optimal solution costs can grow exponentially with graph size. However, un-
der reasonable assumptions, the number of such solutions can be much smaller
in practice (Müller-Hannemann & Weihe, 2006; Mandow & Pérez de la Cruz,
2009). In particular, when costs are discrete and bounded, and graph size grows
polynomially with depth, the number of solutions can be shown to grow only
polynomially in the worst case. Only such kind of problems are considered as
testbeds for evaluation. Both randomly generated and realistic scenarios have
been considered. Different problem factors can be gradually controlled in ran-
domly generated problems. On the other hand, realistic scenarios evaluate more
accurately the potential of multiobjective search in practical situations.
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1.3 Research Goals

The main goals of this thesis can be summarized as follows:

Theoretical formalization One of the goals of this thesis is to complete the for-
mal analysis of the heuristic performance of MOA∗, following the recent formal
developments achieved for NAMOA∗. Additionally, some fundamental charac-
terization of the TC heuristics is provided.

Empirical evaluation A second goal is to perform a systematic comparison of al-
gorithms in order to determine which one performs better according to various
problem parameters, like solution depth or correlation between objectives. Addi-
tionally, we evaluate the performance of multiobjective search in realistic route
planning domains. In all cases, we seek a deep understanding of the causes of the
observed behaviours.

Effectiveness of heuristic search A third goal is to establish under which condi-
tions heuristic search can actually improve the performance of multiobjective
best-first algorithms from a practical point of view.

Improvements on current techniques A final goal is to use the knowledge gained
through the formal and empirical analysis to explore new ways to improve algo-
rithm performance. Special attention is paid to certain alternatives in algorithm
implementation, like the order of selection of alternatives for exploration.

1.4 Contributions of this Thesis

The main contributions of this thesis can be summarized as follows:

Analysis of MOA∗ The thesis completes previous formal analyses of MOA∗. Pre-
vious analyses were unable to establish clearly the importance of heuristic in-
formedness in algorithm performance. We show that the number of label ex-
pansions of MOA∗ can be much larger with heuristic search than with blind
search. In fact, performance can become worse even with the use of more in-
formed consistent heuristics. This phenomenon is formally related to the node
selection strategy used by MOA∗. In addition, empirical results show that this
situation can easily appear in practice. As a result, MOA∗ can be discarded in
general as a suitable alternative for multiobjective heuristic search.

Analysis of TC A simple characterization is provided to show that the precalculated
heuristic devised by Tung & Chew (1992) is consistent. This has been recently
identified as an important formal property for multiobjective heuristic search
(Mandow & Pérez de la Cruz, 2010a). Systematic empirical analyses show for the
first time that this heuristic can improve considerably the performance of both
TC and NAMOA∗ over blind search. However, TC was found to perform
somewhat worse than NAMOA∗ in spite of the use of an additional heuristic for
alternative selection. This phenomenon has been adequately explained: finding
solutions early can penalyze the time requirements of heuristic search.
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Analysis of NAMOA∗ The algorithm NAMOA∗ has been found the most effective
approach in most situations. However, certain situations have been identified
where heuristic search can represent an overhead in time performance. These
are the cases where the reduction of the number of alternatives considered does
not compensate for the time penalty of early solution determination inherent
to heuristic search. More precisely, this can be traced to the number of domi-
nance checks needed by the algorithm. Additionally, empirical evaluation sug-
gests that a linear selection rule significantly improves the time performance of
NAMOA∗ when compared to a traditional lexicographic one.

Precalculated heuristics The original precalculation method proposed by Tung &
Chew (1992) can be improved in several ways. The original method requires
the calculation of a one-to-all single-objective search for each objective under
consideration. We have shown how the formal properties of NAMOA∗ let us
bound the nodes that will be visited by NAMOA∗. This eliminates the need
to consider in the precalculation stage those that will never be reached in the
multiobjective search stage.

The original precalculated TC heuristic provides a single vector estimate for each
node. NAMOA∗ accepts general heuristic functions H(n) with multiple heuris-
tic vector estimates. A new calculation method, called KDLS, is presented in
this thesis. More informed, multiple vector, heuristic functions can be precalcu-
lated by KDLS. The precision of the new heuristic is determined by a parameter
k. Larger values of k result in more informed heuristics, but at the same time, re-
quire more precalculation effort. In general, better heuristics considerably reduce
the space requirements of NAMOA∗. However, time requirements are steadily
increased in random grids, and only the smallest values of k are competitive with
the original approach in this sense. Nevertheless, in route planning problems
multivalued heuristics can offer savings in both space and time requirements for
some instances.

Applications in realistic scenarios The application of NAMOA∗ with informed
heuristics has been shown to be competitive with state-of-the-art approaches to
multiobjective search. Several different testbeds have been considered for route
planning in road maps, a potential application area. Combinations of objec-
tives distance/time, and the more complex time/economic cost, have been solved
exactly with available resources over large road maps.

1.5 Related Publications

Several of the contributions presented in this thesis have been already published in
international peer-reviewed conferences and journals:

• Journals:

Machuca, E., Mandow, L., Pérez de la Cruz, J., & Ruiz-Sepulveda, A. (2012).
A comparison of heuristic best-first algorithms for bicriterion shortest path
problems. European Journal of Operational Research, 217(1), 44–53.
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Machuca, E. & Mandow, L. (2012). Multiobjective heuristic search in road maps.
Expert Systems with Applications, 39, 6435–6445.

• Conferences:

Machuca, E., Mandow, L., & Pérez de la Cruz, J. L. (2009). An evaluation of
heuristic functions for bicriterion shortest path problems. In L. Seabra Lopes,
N. Lau, P. Mariano, & L. Rocha (Eds.), New Trends in Artificial Intelligence.
Proceedings of EPIA’09 (pp. 205–216).: Universidade de Aveiro, Portugal.

Machuca, E., Mandow, L., Pérez de la Cruz, J. L., & Ruiz-Sepúlveda, A. (2010).
An empirical comparison of some multiobjective graph search algorithms. In
R. Dillmann, J. Beyerer, U. D. Hanebeck, & T. Schultz (Eds.), Advances in Ar-
tificial Intelligence (Proceedings of KI’2010, 33rd Annual German Conference
on AI, Karlsruhe, Germany, September 21-24), volume 6359 of Lecture Notes
in Computer Science (pp. 238–245). Springer.

Machuca, E. & Mandow, L. (2011). Multiobjective route planning with precal-
culated heuristics. In L. Antunes, H. Pinto, R. Prada, & P. Trigo (Eds.), Proc.
of the 15th Portuguese Conference on Artificial Intelligence (EPIA 2011) (pp.
98–107).

Machuca, E., Mandow, L., Pérez De La Cruz, J. L., & Iovanella, A. (2011). Heuris-
tic multiobjective search for hazmat transportation problems. In J. Lozano, J.
Gómez, & J. Moreno (Eds.), Advances in Artificial Intelligence (Proceedings of
the 14th international conference on Advances in Artificial Intelligence: Spa-
nish Association for Artificial Intelligence - CAEPIA’11), volume 7023 of Lec-
ture Notes in Computer Science (pp. 243–252). Berlin, Heidelberg: Springer-
Verlag.

• Doctoral Consortium:

Machuca, E. (2009). Heuristics in best-first algorithms for multiobjective short-
est path problems. In Doctoral Consortium, XIII Conference of the Spanish
Association for Artificial Intelligence (CAEPIA’09).

Machuca, E. (2011). An analysis of multiobjective search algorithms and heuris-
tics. In Doctoral Consortium, Proceedings of 22nd International Joint Confe-
rence on Artificial Intelligence (IJCAI’11), Barcelona, 15-22 July (pp. 2822–
2823).

1.6 Outline

This thesis is structured in eight chapters, grouped in three parts. The first part
comprises this introductory chapter, and chapters 2 and 3. Chapter 2 introduces the
reader to the fundamentals of multiobjective optimization, reviews the different kinds
of multiobjective search methods and presents the specific algorithms and heuristics
analyzed in this thesis under a common framework. Chapter 3 introduces the reader to
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the task of empirical evaluation of algorithms. A literature review of previous relevant
multiobjective benchmarks is presented. Finally, the different kinds of benchmark
problems used in the empirical evaluations of this thesis are described in detail.

The second part groups all contributions of this thesis. Formal properties of
MOA∗ and the TC heuristic are established in chapter 4. A class of problems is
devised to show that the complexity of MOA∗ can become worse with perfectly in-
formed heuristics when compared to blind search.

Chapter 5 performs a systematic evaluation and comparison of NAMOA∗, MOA∗,
and TC. In the first place, the use of heuristic information is evaluated against blind
search. Then, pair comparisons between the heuristic algorithms are performed. Some
previously unnoticed phenomena are properly analyzed and explained. Moreover, the
empirical results of MOA∗ confirm the bad results expected from the theoretical
analysis of chapter 4.

Chapter 6 exploits the result obtained in previous chapters to evaluate the per-
formance of multiobjective search in the domain of route planning in road maps. A
bounded procedure for the calculation of the TC heuristic is presented. General
time/distance and time/economic cost problem instances are evaluated. Additionally,
a set of hazardous material transportation problems is also considered.

Finally, chapter 7 explores the possibility of more informed precalculated heuristics,
extending the precalculation process of the TC heuristic to multiple-vector heuristic
estimates. The new heuristic is tested on a set of selected problem benchmarks.

Part three summarizes the main conclusions and future work in chapter 8.





Chapter 2

MultiObjective Graph Search:
Problems and Algorithms

This chapter introduces the main concepts that will be used throughout the rest of this
thesis. A definition of single-objective search problems and a brief review of relevant
search algorithms is presented in section 2.1. A description of the multiobjective short-
est path problem and basic multiobjective concepts follows in section 2.2. A review
of the relevant blind algorithmic approaches for multiobjective search can be found in
section 2.3. The heuristic algorithms analyzed in this thesis are described in section
2.4. Some formal properties about them and the heuristic functions used through most
of the chapters of this thesis are also presented in this section. This includes the con-
sideration of inconsistent heuristics in some detail. Finally, a review of relevant related
heuristic works and a summary on multiobjective algorithms and heuristics is located
at the end of the chapter.

2.1 Single-objective search

2.1.1 The Shortest Path Problem

The shortest path problem is probably one of the most studied problems by the Artifi-
cial Intelligence (AI) and Operational Research (OR) communities (Gallo & Pallottino,
1988; Cherkassky et al., 1996; Pearl, 1984). Many real problems can be modelled as
finding the shortest path between two nodes in a graph. Let us see a formal description
of the problem.

Let G be a locally finite labeled directed graph G = (N,A, c) with |N | nodes and
|A| arcs (n, n′) labeled with positive values ~c(n, n′) ∈ R, where n, n′ ∈ N .

Definition 2.1 A path P in (N,A) is a sequence 〈n1, n2, . . . , nl〉, where ni ∈ N, ∀i ∈
[1, l] and (nj , nj+1) ∈ A,∀j ∈ [1, l− 1]. The set of all possible paths in G is denoted by
P.

Definition 2.2 The cost of a path P is defined as the sum of the costs of its compo-

11
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nent arcs,

c(P ) =
∑

(n,n′)∈P

c(n, n′) (2.1)

Definition 2.3 Given a start node s ∈ N and a set of goal nodes Γ ⊆ N , the Shortest
Path problem (SP) consists of finding the path P ∈ P in G with the minimum cost
c(P ) from s to a goal node γ ∈ Γ.

2.1.2 Shortest path algorithms

Shortest path algorithms can be classified in terms of different parameters: best-
first/depth-first, blind/heuristic or exact/approximate, among others. A complete de-
scription and a classification of different strategies has been recently devised by Korf
(2010).

Best-first search is based in the principle of optimality stated by Bellman (1954).
This principle applied to shortest path problems means that every optimal path must
be composed by optimal subpaths. Thus, best-first algorithms achieve the optimal
solution choosing at each step the best promising alternative. Whenever more than one
path reaches the same node, the best one is preserved while the others are discarded
or pruned. Best-first search is a general strategy for solving shortest path problems
in graphs. The main drawback is that it can exhaust memory resources for many
problems, as all promising alternatives must be kept in memory.

On the contrary, depth-first search(Korf, 1985) only considers the best next
promising alternative, forgetting other feasible ones which can be in fact part of the
optimal path. Thus, the algorithm must backtrack to find the least cost solution path.
Depth-first search is generally applied when there are not enough space resources to
solve the problem and is specially adequate for solving tree problems.

Among the huge variety of algorithms solving the Shortest Path Problem, this
thesis deals with exact best-first search strategies for graphs. Dijkstra’s algorithm
(Dijkstra, 1959) is the most known blind algorithm in this sense for single-objective
shortest path problems. However, the reference algorithm for shortest paths in AI is
the A∗ algorithm (Hart et al., 1968; Pearl, 1984) which can be seen as a generalization
of Dijkstra’s algorithm that uses heuristic cost estimates of the distance to goal(s) to
improve search efficiency. The term heuristic search is used by the AI community for
techniques that exploit knowledge about the problem in order to accelerate the solution
of tough combinatorial problems.

A∗ and Dijkstra-like algorithms work in a similar way: several feasible alternatives
are evaluated at each step for the selection of the most promising one, according to a
characteristic evaluation function for each node n. Let g(n) denote the accrued cost of a
path from s to n, while the heuristic function h(n) an estimated cost of a solution from n
to a goal node γ. For blind labelling strategies like Dijkstra’s algorithm, the evaluation
function is f(n) = g(n), as h(n) = 0. Heuristic algorithms like A∗ incorporate with
h(n) an estimate of the distance to a goal node, i.e. for A∗ the evaluation function is
f(n) = g(n) + h(n) for each node n.

All these alternative costs from paths beginning in source node s are stored in a
search structure (usually a search tree for single-objective search) within labels.
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Definition 2.4 A label stands for the cost of a path found to a given node. In single-
objective algorithms each node n is labeled with a single-valued label, that stands for the
cost of the current best known path to n.

A reference to the ancestor(s) of the label can be included, in order to recover the
solution path, once the algorithm finishes. At each step a label from some node n is
selected for expansion, and all the possible extensions via outgoing arcs of node n
are generated and compared with actual stored labels in successor nodes. The label
stored for an adjacent node n′ is updated when the extension of the selected path
through some outgoing arc of n represent a least cost path to the node n′. Labels
of dominated paths reaching a given node are discarded or pruned by virtue of the
optimality principle (Bellman, 1954).

When a best-first strategy is used, the expanded label becomes permanent as the
least cost to the node has been found. Otherwise, this is not guaranteed until all nodes
have been examined, as the label can be corrected by a new better one. The former are
known as label-setting algorithms (Dijkstra, 1959) and the later as label-correcting
(Zhan & Noon, 2000).

This iterative node labelling process is repeated until the stopping criterion is ful-
filled. The optimal cost of the path can be found in the label of the goal node when
this is selected for expansion and the actual optimal path can be recovered tracing back
pointers to parents.

The labels still pending evaluation are typically stored in an OPEN queue. A
distinct set of CLOSED nodes can be used to store already evaluated alternatives,
in order to perform duplicate detection and recover the solution path. In Dijkstra’s
algorithm, each time a label is expanded, as best-first search is used, the optimal
shortest path distance from s to the node is found. In the case of A∗, the label will be
permanent and a node will not come back to OPEN queue under some assumptions
related to the heuristic function h(n).

2.1.2.1 Formal properties

Definition 2.5 Let h∗(n) be the actual optimal cost of a path from n to goal nodes
γ ∈ Γ. A heuristic function h(n) is optimistic when

h(n) ≤ h∗(n) ∀n ∈ N (2.2)

Definition 2.6 Let k(n, n′) denote the cost of an optimal path in G from a node n to
another node n′. A heuristic function h(n) is consistent when

h(n) + k(n, n′) ≤ h(n′) ∀n, n′ ∈ N (2.3)

Definition 2.7 Equivalently, a heuristic function h(n) is said to be monotone when

h(n) + c(n, n′) ≤ h(n′) ∀(n, n′) ∈ A (2.4)

Definition 2.8 A heuristic function h1(n) is said to be more informed than another
heuristic function h2(n) when both are optimistic and

h1(n) > h2(n) ∀n ∈ N ∧ n /∈ Γ (2.5)
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There is a strong relationship between the properties of h(n) and the efficiency and
quality of results produced by A∗ (Pearl, 1984).

Property 2.1 (Admissibility) When h(n) is a lower bound (optimistic) the search is
considered admissible, i.e. it is guaranteed to find an optimal solution if this solution
exists. A∗ is admissible even on infinite graphs with some additional assumptions:

∀n ∈ N, h(n) ≥ 0 (2.6)
∀(n, n′) ∈ A, c(n, n′) ≥ ε > 0

Property 2.2 (Efficiency) When ∀n ∈ N, h(n) = 0, A∗ is equivalent to Dijkstra’s
algorithm. When h(n) is consistent or monotone, A∗ requires in the worst case
O(|N |) iterations, storing O(|N |) nodes in memory. If the cost of the optimal solution
is denoted by c∗ = k(s, γ), A∗ will always expand for sure all labels with f(n) < c∗. For
those with f(n) = c∗, only those belonging to the returned optimal solution path will be
necessarily expanded. Given an optimistic heuristic function, more actual suboptimal
alternatives can be pushed out the search frontier f(n) = c∗ with more informed
heuristics, i.e. bigger values of h(n), reducing search effort.

Property 2.3 (Optimality) When the heuristic function h(n) is monotone, the
cost of a path found by the algorithm is known to be optimal and it is not necessary to
reopen nodes (an expanded node will not come back to OPEN). Moreover, A∗ is proven
to be optimal among the class of admissible best-first algorithms1 (Dechter & Pearl,
1985), both in the number of expanded nodes and in the number of necessary iterations
to find the solution. This means, that any expansion performed by the A∗ algorithm
must be also performed by another algorithm in this class to preserve admissibility.
Otherwise, there is no guarantee to find the optimal solution in all cases.

2.1.3 Application to route planning

Applied research in single-objective shortest paths includes the search for optimal routes
in real road networks with Dijkstra’s algorithm (Zhan & Noon, 1998), A∗ (Zeng &
Church, 2009) or even bidirectional A∗ (Klunder & Post, 2006). Efficient speedup
techniques have been recently devised for route planning in road maps (Schultes, 2008)
or train timetables (Schulz et al., 2000; Schulz, 2005).

In general, speedup techniques exploit information gathered in previous extensive
searches of the map. The challenge is to achieve fast shortest-path queries with practical
preprocessing time and memory. Two main categories can be found:

• Hierarchical techniques exploit the structure of the problem to prune unimportant
nodes (or arcs). The most fruitful hierarchical technique, namely contraction
hierarchies, is based in node contraction (Geisberger et al., 2008): nodes are
removed or contracted from the graph in some order while the shortest paths are
preserved with additional arcs called shortcuts. However multilevel graphs (Schulz
et al., 2002), routing based in transit-nodes (Bast et al., 2007) or customizable

1These are defined as the class of unidirectional search algorithms that begin on a start node s and
are guided by path-dependent evaluation functions (Dechter & Pearl, 1985)



2.2. MultiObjective Shortest Path Problems 15

route planning (Delling et al., 2011a) based in advanced partitioning techniques of
the graph like PUNCH (Delling et al., 2011b), have been also catalogued among
other speedup techniques as effective for an improvement in the preprocessing of
the graph or the time devoted to a query.

• Goal directed techniques compute distance bounds or make some preprocessing on
arcs to exclude those arcs that do not belong to an optimal path. SHARC (Bauer
& Delling, 2009) or ALT (Goldberg & Harrelson, 2005) belong to this category.
While the former precomputes arc-flags, the later precalculates optimal distances
to certain landmarks to provide distance bounds using the triangle inequality.

Both approaches, hierarchical and goal directed can be combined. A good overview
of the possibilities is described by Bauer et al. (2010b). Moreover, some of the vast
quantity of recent speedup techniques have been extended to other scenarios, like mobile
or dynamic routing (Sanders et al., 2008), time-dependent planning (Batz et al., 2009)
or multicriteria route planning (Geisberger et al., 2010; Delling & Wagner, 2009) for
example.

The actual performance of speedup techniques depends on some decisions, taking
into account the structural properties of the particular problem instance, e.g. the de-
cision on which node is to be contracted in contraction hierarchies. A recent work
established that the optimal adjustment for every instance in many recent techniques
(for example, the assignment of landmarks to a graph in the ALT technique) is NP-hard
(Bauer et al., 2010a). In practice, these adjustments are frequently settled experimen-
tally with heuristics. Besides, most of these techniques are based in bidirectional search,
in order to reduce time requirements.

A complete review of the literature on these techniques is out of the scope of this
thesis. Good overviews of this field can be found elsewhere (Schultes, 2008; Delling
et al., 2009; Bauer et al., 2010b).

Limited experiments have been performed on multiobjective route planning (Geis-
berger et al., 2010; Delling & Wagner, 2009). This will be used as one of the benchmark
problems used in this thesis (see chapter 3).

2.2 MultiObjective Shortest Path Problems

The Multiobjective Search Problem (MSP) is an extension of the Shortest Path Problem
where arcs are labelled with vector costs. Each component in a cost vector represents
a different relevant attribute to be minimized, e.g. distance, time, risk or monetary
cost. Bicriterion Shortest Path problems (BSP) are a particular class where only two
attributes are considered. These problems rarely have a single optimal solution. Most
frequently, a set of nondominated (Pareto-optimal) solutions can be found, each one
presenting a particular trade-off between the objectives under consideration. Multiple
techniques have been devised to solve multiobjective shortest path problems. Exact
methods find the set of all Pareto-optimal paths to the problem. The methods described
in this thesis fall into this category.
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Figure 2.1: Supported, nonsupported and dominated points in a biobjective cost space

2.2.1 Basic Multiobjective Concepts

Multiobjective search algorithms differ from their scalar counterparts in several ways.
First of all, the use of cost vectors in multiobjective problems induces only a partial
order relation.

Definition 2.9 Let us consider two q-dimensional vectors ~v,~v′ ∈ Rq. A partial order
relation ≺ denominated dominance is defined as follows,

∀~v,~v′ ∈ Rq, ~v ≺ ~v′ ⇔ ∀i (1 ≤ i ≤ q), vi ≤ v′i ∧ ~v 6= ~v′ (2.7)

where vi denotes the i-th component of vector ~v. Likewise, the symbol � denotes the
relation “dominates or equals”.

Now, given two q-dimensional vectors ~v and ~v′ (where q > 1), it is not always
possible to say that one is better than the another. For example in a bidimensional
cost space (see figure 2.1) a vector (4, 3) (point B) dominates (5, 6) and (6, 4) (points
F and G), but no dominance relation exists between (4, 3) and (1, 7) or (7, 1) (points
A and C). They are said to be nondominated.

Definition 2.10 Given a set of vectors X, we shall define nd(X) as the set of non-
dominated vectors in X, i. e.,

nd(X) = {~x ∈ X | @~y ∈ X, ~y ≺ ~x} (2.8)

In the example of figure 2.1 the set nd is {(1, 7), (4, 3), (7, 1)}. Sometimes it becomes
necessary to choose among nondominated vectors. Total orders can be defined in order
to rank vectors.

Definition 2.11 Let us consider two q-dimensional vectors ~v,~v′ ∈ Rq. A total order
relation ≺lex denominated lexicographic order is defined as follows,

~v ≺lex ~v′ ⇔ ∃j (1 ≤ j ≤ q), vj < v′j ∧ ∀i < j, vi = v′i (2.9)

where vi denotes the i-th component of vector ~v.
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Definition 2.12 Let us consider two q-dimensional vectors ~v,~v′ ∈ Rq. A total order
relation ≺lin denominated linear order is defined as follows,

~v ≺lin ~v′ ⇔
∑
i

vi <
∑
i

v′i , 1 ≤ i ≤ q (2.10)

where vi denotes the i-th component of vector ~v.

Definition 2.13 Let us consider two q-dimensional vectors ~v,~v′ ∈ Rq. A total order
relation ≺wlin denominated weighted linear order is defined as follows,

~v ≺wlin ~v′ ⇔
∑
i

λivi <
∑
i

λiv
′
i , 1 ≤ i ≤ q (2.11)

where vi, λi denote the i-th component of vectors ~v,~λ.

A useful property of the lexicographic, linear or weighted linear order is that their
optimum in a set of vectors is also a nondominated vector. The order relations defined
by ≺lex, ≺lin or ≺wlin are total orders. Now, given two q-dimensional vectors ~v and ~v′

(where q > 1), it is possible to say that one is better than the another. For example,
in a bidimensional cost space no dominance relation exists between (2, 3) and (4, 2).
However, (2, 3) ≺lex (4, 2) and (2, 3) ≺lin (4, 2) (as 2 + 3 < 4 + 2). Note that a derived
total order can not always rank among two q-dimensional vectors, e.g. we can not say
that (2, 3) ≺wlin (4, 2) for λ = (1, 2) (as 2 ∗ 1 + 3 ∗ 2 = 4 ∗ 1 + 2 ∗ 2). Some additional
tie-breaking rule must be used.

Definition 2.14 Let X be the set of feasible solutions to a problem and let fk : X → R
be k functions assigning a real value as image to a solution in X, being k = 1, 2, . . . , q.
A multiobjective problem in X can be formulated as a minimization problem,

min ~f(x) = (f1(x), f2(x), . . . , f q(x)) (2.12)
s.t. ~x ∈ X

The criteria to be minimized2 at the same time (called objectives) are usually
conflicting so that there does not exist ~x ∈ X optimal for the q dimensions. Thus, a
multiobjective problem has in general more than one nondominated solution, rather
than a single optimal solution. These are also called Pareto-optimal or efficient
solutions in the literature

Let XE be the set of efficient or Pareto-optimal solutions to the minimization pro-
blem of (2.12), and FE the set of nondominated image values on the objective space.
Among the set XE , we can distinguish two different kinds of nondominated solutions:

Supported These ones can be obtained as optimal solutions to a single-objective
weighted sum problem (WSP). For instance, for the biobjective case (i.e. q = 2),
where ~x = (x1, x2)

min
x∈X

λ1x1 + λ2x2 (2.13)

2Note that there is no loss of generality considering minimization as the maximization case can be
transformed to a minimization problem.
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for some ~λ = (λ1, λ2). The set of all supported solutions can be denoted by XS ,
and the set of nondominated image values by FS . For example, see figure 2.1,
where a sample bidimensional image space is depicted. Points A = (1, 7), B =
(4, 3) and C = (7, 1) represent supported solutions. The extreme nondominated
solutions are supported solutions that have the minimum possible value in at
least one of the objectives (points A and C).

Non-Supported All the Pareto-optimal solutions in a continuous linear space Rq are
supported. However, there can be remaining solutions, when dealing with discrete
spaces (see figure 2.1). These remaining solutions in XNS = XE\XS are called
non-supported solutions as they cannot be obtained with linear combinations
(WSPs). When solving a WSP, another supported solution will be found first,
regardless of the slope used (i.e. regardless of the value of ~λ). These solutions are
located in the interior of triangles formed by two adjacent supported solutions, as
depicted in figure 2.1. These areas are denominated by some authors as duality
gaps (see the thesis of Raith (2009) for further details). The set of nondominated
image values of XNS is denoted by FNS . These image values (points A, B and
C) dominate shaded areas in the figure, but not points D = (3, 6) or E = (6, 2).

Definition 2.15 Two feasible solutions ~x and ~x′ are called equivalent, denoted by
~x =≺ ~x

′, if their image values are the same, i.e. ~f(~x) = ~f(~x′).

Definition 2.16 A complete set XC ⊆ XE is a set of nondominated solutions whose
image values, denoted by FC form the minimal set of distinct nondominated ~f values,
such that

∀~x ∈ X\XE , ~x /∈ nd(X) ∨ ∃~x′ ∈ XC , ~x =≺ ~x
′ (2.14)

For instance, the set XE = {~x1, ~x2, ~x3, ~x4} denotes the set of all efficient or Pareto-
optimal solutions to a multiobjective problem. The nondominated image set FE =
{(1, 2), (2, 1)} has only two different vector values. A complete set XC = {~x1, ~x2}
could include all different nondominated image values as FC = FE . However, two
additional equivalent solutions can be found in XE , with ~x1 =≺ ~x3 and ~x2 =≺ ~x4.
A different set XNC = {~x1, ~x3} with nondominated image FNC = {(1, 2)} would not
include all nondominated solution values.

2.2.2 The Multiobjective Search Problem

Let G be a locally finite labeled directed graph G = (N,A,~c) with |N | nodes and |A|
arcs (n, n′) where n, n′ ∈ N , labeled with positive vectors ~c(n, n′) ∈ Rq. The concept
of path in multiobjective problems remains the same as for single-objective case (see
definition 2.1). However, the definition of the cost of a path for the multiobjective case
must take into account that arcs are labelled with vectors.

Definition 2.17 The cost of a path P in multiobjective problems is a q-dimensional
vector ~CP , and is defined as the sum of the costs of its arcs,

~CP = ~c(P ) =
∑

(n,n′)∈P

~c(n, n′) (2.15)
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Figure 2.2: A sample graph with some nondominated solution paths and equivalent
solutions

Let P be the set of all possible paths in G. The set of all possible costs ~CP of paths in
G will be denoted by CP.

Definition 2.18 Given a start node s ∈ N and a set of goal nodes Γ ⊆ N , let PsΓ be
the set of all paths PsΓ ∈ P joining s and nodes in Γ and let CsΓ be the set of all possible
costs ~CsΓ ∈ CP for paths in PsΓ. A multiobjective search problem (MSP) in G consists
of finding the set of all nondominated paths PE ∈ PsΓ in G such that ~c(PE) ∈ nd(CsΓ).

This means that we are looking for efficient paths PE in G such that

1. go from source node s to a node in Γ, i.e. PE ∈ PsΓ

2. their cost is nondominated with other costs from paths in PsΓ

The Multiobjective Shortest Path Problem is also a minimization problem and can
be formulated in a similar way to (2.12), 3

min~c(P ) = ~c(〈n1, n2, . . . , nl〉) (2.17)
s.t. P ∈ PsΓ

The Bicriterion Shortest Path Problem (BSP) is a particular case of MSP in which
q = 2, i. e., arc costs have two real components.

For graph search problems, the set X of feasible solutions to (2.13) is PsΓ the subset
of paths in P joining s and nodes in Γ the graph G, and the image function ~f to be
minimized from (2.12) is the cost of each feasible path PsΓ ∈ PsΓ, i.e ~f(x) = ~c(PsΓ).
For instance, see the path 〈ns, n5, n6, nt〉 from source node ns to goal node nt across

3It was denominated by Hansen (1979) for the bicriteria case, where arcs are labelled with costs
(c1(n, n

′), c2(n, n
′)), as MINSUM-MINSUM because it tries to find

min
∑

(n,n′)∈P

c1(n, n
′) ∧ min

∑
(n,n′)∈P

c2(n, n
′) (2.16)
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nodes n5 and n6 in figure 2.2. Arcs are labelled with biobjective costs ~c(n, n′) =
(c1(n, n′), c2(n, n′)) ∈ R2 in the graph. The cost of this path is obtained as the sum for
each component ci(n, n′) of the arcs traversed, 4

c(〈ns, n5, n6, nt〉) = c(〈ns, n5〉) + c(〈n5, n6〉) + c(〈n6, nt〉) =

= (5, 4) + (1, 2) + (3, 5) = (8, 15)

There can be multiple paths traversing the graph between a source node and a goal
node with the same cost ~c(P ), i.e. they are equivalent solutions. For instance, in the
figure 2.2 the paths P1 = 〈ns, n1, n2, nt〉 and P2 = 〈ns, n3, n2, nt〉 have the same cost,
i.e. c(P1) = c(P2) = (4, 6) or equivalently P1 =≺ P2.

Notice also, that many different non-dominated paths may reach every node. For
example, two different paths 〈ns, n5〉 and 〈ns, n3, n5〉 reach n5 with respective costs
(5, 4) and (4, 8), each one nondominated.

In the sample graph of figure 2.2, besides the former paths P1 and P2, we can
find another nondominated solution path P3 = 〈ns, n3, n4, nt〉 with c(P3) = (7, 4),
while the paths P4 = 〈ns, n5, n6, nt〉 or P5 = 〈ns, n3, n5, n6, nt〉 with respective costs
c(P4) = (9, 11) and c(P5) = (8, 15) are not efficient solution paths as their costs are
dominated, for example c(P3) ≺ c(P4) and c(P3) ≺ c(P5). A minimal complete set
of solutions could be the set of paths {P1, P3} or {P2, P3} whose nondominated costs
are the same, {(4, 6), (7, 4)}. In this thesis we consider only algorithms computing the
whole set of alternatives, i.e. all Pareto-optimal vector costs of nondominated solution
paths to the problem, e.g. the set of paths {P1, P2, P3} in the example.

Definition 2.18 deals with most usual MSPs, where the objective functions to be
minimized are of additive type 5 like in (2.15). Other related problems can be found in
the literature like bottleneck/minmax problems (de Lima Pinto et al., 2009; Iori et al.,
2010) or the analogous maxmin(Martins, 1984c; Gandibleux et al., 2006) formulated
for example as

min c(P ), c(P ) = max
(n,n′)∈P

{~c(n, n′)} (2.18)

A third category includes methods dedicated to combinatorial problems with non-
deterministic, fuzzy or imprecise values for arcs, which make use of multiobjective
shortest path techniques. A classification of all types of multiobjective problems and
techniques (including linear programming, metaheuristics or approximate approachs)
is out the scope of the thesis. See (Clímaco & Pascoal, 2012; Tarapata, 2007; Ehrgott &
Gandibleux, 2000, 2004; Ehrgott, 2005) for further details. Clímaco & Pascoal (2012)
give an overview of existing techniques for solving the Multiobjective Shortest Path
Problem and the Multicriteria Minimum Spanning Tree Problem. Tarapata (2007)
recently completed an interesting survey on the different methods of solving MSP pro-
blems. Ehrgott & Gandibleux (2000) performed a survey on the more general class of

4Notice that the operator ‘+’ denotes here the vectorial sum
5Applying logarithms, a reduction to (2.15) can be applied to multiplicative criteria

~c(P ) =
∏

(n,n′)∈P

~c(n, n′)
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MOCO problems, and annotated relevant bibliography on the topic. More recently, the
same authors (Ehrgott & Gandibleux, 2004) gave an overview on approximative solu-
tions to MOCO problems. Ehrgott (2005) recently published a complete book about
multicriteria optimization including linear programming techniques or a whole bunch
of metaheuristic methods (e.g. ant colonies or genetic algorithms among others).

2.2.3 About complexity of the Multiobjective Search Problem

The MSP problem and the most popular BSP problem for the simplest case of two ob-
jectives, have been studied since Hansen (1979) proved that the problem is intractable.
Hansen (1979) presented a family of sample graphs for the BSP case where the number
of efficient solutions grows exponentially with size of the graph.

Theorem 2.1 (Hansen, 1979, Theorem 1) In the worst case, the number of nondomi-
nated solution paths grows exponentially with solution depth (or equivalently with the
number of nodes in the graph) even for the two-objective case.

Moreover, Martins & Santos (1999) analyzed the behaviour respect of the number of
dominated paths. They proposed a similar analysis for an analogous family of graphs,
where all possible generated paths from source node s to a goal node γ are dominated,
except for a single nondominated path.

Theorem 2.2 (Martins & Santos, 1999, Section 5) In the worst case, the number
of dominated paths grows exponentially with solution depth (or equivalently with the
number of nodes in the graph) even for the two-objective case. 6

These results above are based in sample graphs showing the worst case scenario.
A theoretical proof on the complexity of the problem was given by Serafini (1986),
who transformed BSP into a Binary Knapsack Problem, identified before by Garey &
Johnson (1979) as NP-complete.

Theorem 2.3 (Serafini, 1986, Section 3) The Shortest Path Problem with nonnegative
costs is NP-complete.

However, not all multiobjective problems present this worst case difficulty (Müller-
Hannemann & Weihe, 2006, section 1). In polynomial state spaces with bounded
integer costs, this number is known to grow only polynomially with solution depth,
although still exponentially with the number of objectives in the worst case (Mandow
& Pérez de la Cruz, 2009, section 5). Besides these formal results, some complexity
properties about the problem have been also presented,

Theorem 2.4 (Martins & Santos, 1999, Theorem 6)The MSP problem is finite iff
there are no negative cycles for any of the objective functions

Theorem 2.5 (Martins & Santos, 1999, Theorem 5) The MSP problem is bounded iff
it is finite

6They also point out that for some modified graphs, the label-setting algorithm even determine an
exponential number of labels while no dominated labels would be determined with a label-correcting
algorithm (see section 2.3.2 for explanations of both types of algorithms).
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Theorem 2.6 (Martins & Santos, 1999) If all cycles in (N,A) are non-negative for
at least one of the objectives,

∀Pcycle ∈ P, ∃i ∈ [1 . . . q] | ci(Pcycle) > 0 (2.19)
Pcycle = 〈n1, . . . , nl〉

ci(Pcycle) =
∑

j∈[1,...l]

ci(nj)

then every efficient path is a loopless nondominated path and viceversa

The absence of negative cycles is the fundamental condition for the finiteness and
boundedness of the problem. Despite that, there is no easy way to identify the set
of nondominated paths. However we can take advantage of the Principle of Optima-
lity (Bellman, 1954) when choosing among potential nondominated alternatives. The
nonexistence of cycles is also a fundamental condition for optimality,

Theorem 2.7 (Martins & Santos, 1999, Theorem 6) The MSP problem satisfies the
optimality principle for shortest path problems, if there are no negative cycles in (N,A).

2.3 Blind MultiObjective Shortest Path Algorithms

Decision making is a cognitive process where a choice among several alternatives must
be taken. Decision making involves the consideration of some criteria (usually conflict-
ing) and the ranking of alternatives in terms of how attractive is the alternative for
the agents responsible for taking decisions. These are called decision makers (DM) and
the subfield of OR that considers multiple criteria in decision choices is called Multi-
criteria Decision Analysis (MDCA) or Multicriteria Decision Making (MDCM). There
are several multicriteria decision approaches: besides the consideration of all possible
alternatives, there are algorithms returning only best compromise solutions or some
based in utility functions for example.

According to the taxonomy of Cohon (1978, chapter 5), and recently suggested also
by (Clímaco & Pascoal, 2012), there are three types of multicriteria path algorithms:

1. Multiobjective Analysis include those for which there is no preference imposed
about any criterion to the DM (approaches for which there is an a posteriori
aggregation of preferences), i.e. these type of algorithms generate the whole set
of nondominated solutions. Labelling, ranking and two-phases methods lie under
this category

2. Interactive approaches are those for which there is a dialog of preferences with
the DM7.

3. A third category includes those for which there is an utility function with an
a priori articulation of preferences in the criteria (e.g. in a weighted form).
These algorithms can not obtain in general all nondominated solutions in discrete
problems (see section 2.2.1 about nonsupported solutions)

7Regarding interactive approaches, there is dialog phase, but we refer only to the calculation phase
with the term interactive approach
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A complete and recent survey on the literature of the exact algorithms in the three
categories can be found in (Clímaco & Pascoal, 2012). The algorithms described in this
thesis fall in the first category: algorithms where the full set of alternatives is considered
(a posteriori) using additive metrics and the full set of Pareto-optimal solutions is
returned. The next section describes the types of methods under this category that
have been applied to MSP problems.

2.3.1 A classification of blind MSP algorithms

Single-objective shortest path labelling algorithms are frequently classified into two
groups: label-setting and label-correcting. The same two categories are valid for the
multiobjective case. However, Skriver (2000) identifies two additional strategies in the
literature: ranking approaches (or K-th shortest paths) and two-phases approaches.
Recently Raith (2009); Clímaco & Pascoal (2012) suggested these four categories for
BSP problems. Both Clímaco & Pascoal (2012) and Raith (2009) reference to annotated
bibliography and give some sample code about each type of method. Three main type
of algorithms can be found then in exact a posteriori approaches:

Labelling methods MSP labelling algorithms work in a similar way to single-objective
counterparts. These algorithms run in an iterative way, and at each step select
a label for expansion 8 and generate new successor labels until a stopping cri-
terion is fulfilled. When this occurs, the labels at goal nodes represent optimal
costs of paths from source to goal nodes. This category includes label-setting and
label-correcting. These are further discussed in section 2.3.2.

Ranking methods These type of algorithms use a ranking method for listing paths
by non-decreasing order. In MSP, one of the objective functions to be minimized
has to be chosen as we have only a partial order, e.g. for the biobjective case,
search begins with the lexicographic shortest path respect to the first criterion,
and new paths are generated (and compared to existing solution paths) until
the mimimal value for the second criterion is reached, i.e. k-shortest paths are
generated between the two extreme solutions. These are further discussed in
section 2.3.3.

Two-phase methods These algorithms work in two differentiated phases. In phase 1,
the extreme supported efficient solutions are computed. In phase 2, the remaining
non-supported efficient solutions are computed with any enumerative approach
(e.g. labelling methods). Search with enumerative methods can be restricted to
small areas between duality gaps. A full description of the method can be found
in section 2.3.4

8Note that different notation is used by the different communities that have approached the shortest
path problem. While in the Algorithmic community we can find the terms settle a node and relax
an edge (e.g. (Bauer et al., 2010b)), the usual terms in Operations Research are scan a label or
merge/extend labels (e.g. (Raith, 2009)) for the usual terms in Artificial Intelligence, node selection or
node expansion (e.g. (Mandow & Pérez de la Cruz, 2010a)). The notation also changes vertices-edges
(G = (|V |, |E|)) for the terms nodes-arcs (G = (|N |, |A|)), Labels (L(i, j)) or distances (d(i, j)) for
accrued costs of paths (g(n)) or potentials (πi,j) for heuristic estimates (h(n)). We will use in this
thesis the Artificial Intelligence notation, that uses arcs and nodes, which are selected and expanded
based in an evaluation function f(n) = g(n) + h(n)
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Some other exact approaches can be found in the literature, like dynamic program-
ming, branch-and-bound, linear programming and other mathematical approaches, or
even some specifically designed algorithms. Some of them do not return all the nondo-
minated solutions (e.g. only supported solutions), some of them return only approx-
imate solutions or use a utility function. Only these three categories cited above are
discussed here.

2.3.2 MSP Labelling algorithms

In general, labelling algorithms for the MSP problem are generalizations of the single-
objective case. The main difference lies in the existence of more than one nondominated
path to every node starting in node s, as more than one objective function implies that
the optimal cost can not be the same for all of them. The central concept remains the
same:

Definition 2.19 A multiobjective label stands for the cost of a path found to a given
node. In multiobjective search algorithms, each node n can be labeled with a set of
vector-valued labels, which stand for the nondominated costs of paths currently found
to n.

Like in the single-objective case, there are two types of multiobjective labelling
algorithms, label-setting and label-correcting. Three main issues characterize differences
between both type of algorithms:

Label updating Label-setting algorithms follow a best-first selection policy. There-
fore, they guarantee that any label selected for expansion is optimal. Label-
correcting algorithms follow different selection policies (e.g. FIFO). Therefore,
suboptimal labels may be selected for expansion. Later on, if better labels are
found to the same node, the suboptimal labels are eliminated or corrected by the
new better ones.

Convergence to optimal solution(s) Single-objective label-setting algorithms stop
once the label of the goal node is selected. In multiobjective problems as soon
as the set of selected goal labels dominates all other unexplored labels. Label-
correcting algorithms need to explore the graph until no unexplored labels remain.

Successor(s) generation There are two basic selection policies: label-selection and
node-selection. When only one label at a particular node is expanded, we have a
label-selection method. On the contrary, if all labels found at that node are si-
multaneously expanded, a node-selection method is used. In any case, each path
represented by a label is extended following all outgoing arcs of that node. Both
in label-setting and in label-correcting, new labels generated must be compared to
previous labels stored in the node. The dominance test and/or merge with exist-
ing labels is an expensive process of labelling algorithms and must be considered
for a careful study in computational comparisons9. Obviously, node-selection in
label-setting does not guarantee that all expanded labels are Pareto-optimal.

9For biobjective cases the dominance test can take advantage of the fact that labels can be totally
ordered, reducing the number of necessary operations to determine whether a new label is nondomi-
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For the original proposals of multiobjective labelling, see (Hansen, 1979; Martins,
1984b) for label-setting and (Vincke, 1974; Brumbaugh-Smith & Shier, 1989) for label-
correcting. Several analyses have tried to determine the best alternative among blind
labelling multiobjective algorithms (Skriver & Andersen, 2000; Guerriero & Musmanno,
2001; Paixão & Santos, 2007; Raith & Ehrgott, 2009; Raith, 2009). The results point
out to label-correcting with node-selection as the best approach, but not for all instances
of problems, where label-setting with label-selection performs better.

2.3.3 MSP Ranking algorithms

Among the first to present multiobjective ranking approaches, were Clímaco & Martins
(1981, 1982). Single-objective ranking or k-best algorithms generates solution paths
one after another with non-decreasing values for a minimization problem, until the kth

solutions is found. Two adaptations are necessary for multiobjective problems:

1. An order must be imposed about costs in a multiobjective space to rank solutions,
either with a partial order (e.g. lexicographic order) or with a weighted sum
problem. More details about the two approaches can be found on the thesis of
Raith (2009, Section 1.3.1)

2. The ranking process can not be stopped in multiobjective problems until all
efficient solutions are guaranteed to be found. The value of k is not clear a priori

Whenever the ranking algorithm returns a new solution, it must be compared to existing
nondominated solutions, as in the labelling approaches. New solutions can be used to
improve bounds on the weighted sum value used for ranking.

A general MSP algorithm was devised by Azevedo & Martins (1991), according to
a lexicographic objective. For problems with more than two objectives, the dominance
tests must take into account previously ranked solutions (Clímaco & Martins, 1981).
The original proposal of this type of method is based on (Martins, 1984a). The ranking
process depends on the number of nondominated solutions. In the worst case, an
exponential number of paths are listed, although Müller-Hannemann & Weihe (2006)
show that in practical applications it is not a problem. According to the classification
proposed by Clímaco & Pascoal (2012), ranking methods can be classified into three
categories:

Deletion algorithms After computing a shortest path, a new graph is built avoiding
the construction of the former path. An iterative procedure lists paths by order
of cost. See for instance (Martins et al., 2001)

Labelling algorithms If the graph does not contain negative cycles, the optimality
principle can be used to rank paths, storing the k best labels. See for instance
(Martins et al., 2000; Guerriero et al., 2001)

nated with existing labels, e.g. with a lexicographic order, we can rank solutions in order of the first
objective and we know that a label is dominated if the value of the second objective exceeds that value
for the best efficient solution for the first objective. However, for the general MSP case, we have to com-
pare the cost of the label with all efficient paths obtained before. For instance, (3,3,3),(8,1,7),(6,4,2)
are all nondominated and each one is minimal for one different objective. A total order like ≺lex can
rank vectors using a fixed preference among objectives but it is not possible to obtain bounds on the
other objectives like in biobjective case.
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Deviation algorithms They are based on the idea that a suboptimal path has a
common part with an efficient path plus a deviation arc. Based on the assumption
that the part from the tail of a deviation arc up to terminal node t is also common,
and the fact that we can obtain in advance shortest paths from all nodes to t,
new candidate paths can be generated simply changing the deviation arc. See for
instance (Martins et al., 2007)

A review of the literature and a detailed explanation on ranking approaches can be
found in (Clímaco & Pascoal, 2012; Martins et al., 2007).

Several analyses have identified multiobjective ranking approaches as not competi-
tive with label-setting and label-correcting methods, e.g. Huarng et al. (1996); Skriver
& Andersen (2000); Raith & Ehrgott (2009). However, recent improvements (Paixão &
Santos, 2008) have shown that multiobjective deviation algorithms can be significantly
faster for some types of problems with few Pareto-optimal solutions.

2.3.4 MSP Two-Phase algorithms

The third alternative approach is the Two-Phase Method. It has been applied to BSP
problems by Mote et al. (1991); Raith & Ehrgott (2009); Raith (2009). In phase 1, sup-
ported solutions can be easily computed with weighted sum problems (see (2.13)). The
remaining efficient solutions can be obtained with the enumerative methods described
above.

Supported efficient solutions can be quickly obtained in phase 1, as the derived
single-objective problem can be solved with well known algorithms, faster than a mul-
tiobjective approach. Enumerative methods can be applied in phase 2 in an effective
way, because we are restricting their search area to small triangles between supported
solutions (see section 2.2.1). The information gathered in phase 1 can be exploited
as well to derive bounds. The method may lead to obtain all nondominated solutions
faster than a purely enumerative approach. Depending on the approach used in phase
1, a initialization phase can be necessary, to obtain extreme points of the Pareto front,
e.g. in the biobjective case the lexicographic optimum regarding the first objective or
the second objective.

A complete computational study has been recently presented by (Raith & Ehrgott,
2009; Raith, 2009), where all the known solution approaches for BSP are compared on
different testsets, even realistic scenarios. Several alternatives are analyzed for each
one of the two phases:

Initialization phase Single-objective label-setting, label-correcting and network sim-
plex algorithms are implemented. FIFO approach seemed the most efficient for
label-correcting while DIKBD (Dijkstra with double bucket) for label-setting.

Phase 1 Three different approaches are used: label-setting and label-correcting algo-
rithms (the same from initialization phase) to solve WSP instances arising from
a dichotomic approach, and a modified parametric network simplex approach for
the multiobjective case.

Phase 2 Three different approaches are applied here: biobjective label-setting and
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label-correcting10, and a near-shortest path adapted from Carlyle & Wood (2005)
in lieu of ranking approaches11

They analyzed the best approach for each phase. The Two-Phase method was found
superior than a pure label-setting or label-correcting only for some types of problems
(actually with few Pareto-optimal solutions).

2.4 Heuristic MultiObjective Shortest Path Algorithms

This thesis is mainly concerned with heuristic search algorithms for multiobjective pro-
blems. Over the years, three different extensions of the label-setting (best-first) heuris-
tic search algorithm A∗ to the multiobjective case have been proposed: MOA∗ (Stew-
art & White, 1991), NAMOA∗ (Mandow & Pérez de la Cruz, 2005) and TC algorithm
(Tung & Chew, 1988, 1992).

Stewart &White (1991) proposedMOA∗ (MultiObjectiveA∗), a direct extension of
A∗ to heuristic multiobjective search. The operation of the algorithm preserves similar
node expansion principles. However, MOA∗ does not share all the formal properties
of A∗. Therefore, a new algorithm was recently devised (Mandow & Pérez de la Cruz,
2005), namely NAMOA∗ (New Approach to MultiObjective A∗), following a single
path expansion policy, that preserves the good formal properties of A∗. The algorithm
proposed by (Tung & Chew, 1988, 1992) (called hereafter TC) follows a similar strategy
to NAMOA∗. The authors also proposed several multiobjective heuristic functions,
discussed later.

Obviously, these are best-first label-setting algorithms. While NAMOA∗ and
MOA∗ accept both blind and heuristic search, TC algorithm was devised only for
heuristic search. This section describes the three algorithms in detail, highlighting their
differences.

2.4.1 The algorithm NAMOA∗

The pseudocode for NAMOA∗ is shown in table 2.1, slightly adapted from (Mandow
& Pérez de la Cruz, 2010a). The algorithm uses a label-selection strategy. Analogously
to A∗, it uses a list of OPEN labels to control the search, and builds a search graph
SG rooted at the start node s to record all the interesting paths found. New nodes
and labelled arcs (pointers) are added to SG at step 5. At each iteration, SG contains
the set of all nodes visited by the algorithm, and all nondominated paths found to such
nodes with arcs reversed. With this information, given a node and one of its associated
costs, it is possible to trace back the path(s) that reach the node from s with that
particular cost.

10It is important to note that the original formulation from two phase method is modified in the
sense that the label-correcting and label-setting algorithms for phase 2 are not run for every triangle
as they detected that is quite inefficient. Thus, they run label-correcting or label-setting just once,
but discarding labels that are not in any of the areas defined by two consecutive supported solutions.
Bounds from phase 1 are also exploited

11The justification is made in the sense that “the cost of finding paths in order of their lengths is
quite high”(Huarng et al., 1996; Skriver, 2000). Thus, a purely k-shortest path approach seems to be
inefficient, and only paths with a maximal deviation from optimal path length are generated
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We shall denote by ~g(P ) the cost vector of each individual path P ∈ PsΓ stored in
the search graph. For each node n in SG, the sets Gcl(n) and Gop(n) denote the sets
of nondominated cost vectors (labels) of paths reaching n that have and have not been
explored yet respectively (i.e. closed and open). Each cost vector in these sets labels
one or more arcs in the graph from n to its parents. If a vector is eliminated from this
sets (pruned or filtered), so are its associated labelled pointers.

A set H(n) of vector heuristic estimates ~hn = ~h(Pnγ) is used for each node. These
estimate cost vectors of paths from n to each goal node γ ∈ Γ. Therefore, for each
path Psn from s to n with cost ~g(Psn) = ~gn, there will be a set of heuristic evaluation
vectors, F (Psn). This function is the analogue in NAMOA∗ to f(n) in A∗,

F (Psn) = F (n,~gn) = nd{~fP | ~fn = ~gn + ~hn ∧ ~hn ∈ H(n)} (2.20)

The set H(n) is usually composed of a single element and hence also the set F (n).
The OPEN list consists of a set of tuples, or partial solution paths, that can be

further explored. For each node n and each label ~g ∈ Gop(n), there is a corresponding
tuple (n,~g, F (n,~g)) in OPEN . Therefore, each such tuple stands for a single label of
node n. Initially, (s,~gs, F (s,~gs)) is the only tuple/label in OPEN , where s is the start
node, and ~gs = ~0. At each iteration, the algorithm considers in step 5 the expansion
of a tuple from OPEN with a nondominated vector value ~fx ∈ F (x,~gx) of some node
x. This nondominated path is selected in step 3,

PATH SELECTION in heuristic NAMOA∗: Select for expansion an alternative
(n,~gn, {~f}) from OPEN such that @(n′, ~gn′ , {~f ′}) ∈ OPEN with ~f ′ ≺ ~f

This rule is also valid for blind search, assuming that ~hx = ~0 for all ~gx ∈ Gop(x),
but it could be stated also as,

PATH SELECTION in blind NAMOA∗: Select for expansion an alternative (n,~gn, {~g})
from OPEN such that @(n′, ~gn′ , {~g′}) ∈ OPEN with ~g′ ≺ ~g

When several paths reach the same node, dominated ones are discarded. This
process (step 5(c)i) is called pruning :

• New paths found to a known node n are pruned if their cost is dominated by
some vector in Gop(n) or Gcl(n).

• If the new path is not dominated, it is included in Gop(n), pruning vectors in
Gop(n) and Gcl(n) dominated by the new path’s cost 12.

Once a solution is found its cost is kept in a set called COSTS, with all nondomi-
nated solution costs found to the moment. Each new alternative selected for expansion
is checked against COSTS. If the estimated cost of an alternative is found to be domi-
nated by the cost of a solution (step 4), then it can be safely discarded (this operation

12If the heuristic function H(n) satisfies the so-called consistency property, then all labels expanded
byNAMOA∗ are known to be nondominated. In such cases, all labels in theGcl(n) sets are permanent
and can never be pruned (see Mandow & Pérez de la Cruz (2010a) for details). All heuristics considered
in the following sections are consistent.
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1. CREATE:

—An empty search graph SG, and place s as its root.

—Two empty sets Gcl(s) and Gop(s), and insert ~gs = ~0 in Gop(s).

—A list of alternatives, OPEN = {(s,~gs, F (s,~gs)) }.

—Two empty sets, GOALN , COSTS.

2. CHECK TERMINATION.

— If OPEN is empty, then backtrack in SG from the nodes in GOALN and
return the set of solution paths with costs in COSTS.

3. PATH SELECTION.

— Select an alternative (n,~gn, Fn) from OPEN with ~fn ∈ Fn nondominated in
OPEN , i.e. for all (n′, ~gn′ , F

′
n) ∈ OPEN it does not exist ~f ′n ∈ F ′n such that

~f ′n ≺ ~fn.

— Delete (n,~gn, Fn) from OPEN , and move ~gn from Gop(n) to Gcl(n).

4. SOLUTION RECORDING. If n is a goal node, then

—Include n in GOALN and ~gn in COSTS.

—For all alternatives (x, gx, Fx) in OPEN , eliminate from Fx all vectors domi-
nated by ~gn (FILTERING) .

—Eliminate from OPEN all alternatives (x,~gx, Fx) such that Fx is empty.

—Go back to step 2.

5. PATH EXPANSION: If n is not a goal node, then for all successors nodes m of
n that do not produce cycles in SG do:

(a) Calculate the cost of the new path found to m: ~gm = ~gn + ~c(n,m).

(b) If m is a new node (i.e. is not already in SG)

i. Calculate Fm = F (m,~gm) FILTERING estimates dominated by
COSTS.

ii. If Fm is not empty, put (m,~gm, Fm) in OPEN , put m in SG with a
pointer to n labelled by ~gm, and create Gop(m) = {~gm} and Gcl(m) = ∅.

iii. Go to step 2.

(c) else (m is not a new node),
—If ~gm ∈ Gop(m) or ~gm ∈ Gcl(m): create a new pointer in SG from m to n
labelled with ~gm, and go to step 2.
—If ~gm is nondominated by any cost vectors in Gop(m)∪Gcl(m) (a path to
m with new cost has been found), then:

i. PRUNE from Gop(m) and Gcl(m) vectors dominated by ~gm.
ii. Calculate Fm = F (m,~gm) FILTERING estimates dominated by

COSTS.
iii. If Fm is empty eliminate stored alternatives (m,~gm, Fm) for node m

from OPEN

iv. If Fm is not empty, put (m,~gm, Fm) in OPEN , include ~gm in Gop(m),
and create a new pointer in SG from m to n labelled by ~gm.

v. Go to step 2.

—Otherwise: go to step 2.

Table 2.1: The NAMOA∗ algorithm.
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is called filtering). The set COSTS is also used to filter new dominated alternatives
found to a node (steps 5(b)i, 5(c)ii) when generating succesors.

Each time a new goal node is found, it is included in the set GOALN . Once
the OPEN list becomes empty, the set of all nondominated solution paths can be
recovered from the information gathered in the search graph SG, and the sets COSTS
and GOALN (step 2).

2.4.2 The algorithm MOA∗

A pseudocode for MOA∗ slightly adapted from the original description is shown in
table 2.2. Some similarities with NAMOA∗ have been highlighted with capitals. An
important difference between MOA∗ and NAMOA∗ is that the former follows a
node-selection strategy. A single set G(n) stores all nondominated labels found to any
node n. Therefore, the set F (n) is defined as,

F (n) = nd{~fn | ~fn = ~gn + ~hn ∧ ~gn ∈ G(n) ∧ ~hn ∈ H(n)} (2.21)

Multiple paths with the same cost can reach a node. Thus, multiple backpointers
to ancestors are needed for each label. A different LABEL(m,n) set is used for each
ancestor n of node m. Let ANCS(m) be the set of ancestors of node m. Then, for
succesor node m

G(m) = nd({∪LABEL(m,n), ∀n ∈ ANCS(m)}) (2.22)

The OPEN set is a list of nodes. At each iteration, an open node n with a vector in
F (n) that is not dominated by any vector in the F (n′) set of other nodes n′ in OPEN
is selected for expansion (step 6) and the node is moved to the set CLOSED. This
node is selected in step 3,

NODE SELECTION in heuristic MOA∗: Select for expansion an alternative (node)
(n,G(n), F (n)) fromOPEN having a vector value ~f such that @(n′, G(n′), F (n′)) ∈
OPEN with a f ′ ∈ F (n′) | ~f ′ ≺ ~f

This rule is also valid for blind search as in the case of NAMOA∗, assuming that
~hx = ~0 for all ~gx ∈ G(x), but it could be stated also as,

NODE SELECTION in blind MOA∗: Select for expansion an alternative (node)
(n,G(n), F (n)) fromOPEN having a vector value ~g such that @(n′, G(n′), G(n′)) ∈
OPEN with a g′ ∈ G(n′) | ~g′ ≺ ~g

In MOA∗ all paths (labels) reaching a node n are expanded simultaneously once
it is selected. Therefore, all labels found to a single node at a given time are either
simultaneously open or closed. When new nondominated labels are found to a closed
node m and included in G(m), the node is put back into OPEN , with all its associated
labels.

Additional differences with NAMOA∗ must be pointed out. The filtering and
pruning processes are slightly different,
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1. CREATE:

—A list of alternatives, OPEN , with the start node s.

—An empty set, CLOSED.

—Two empty sets, GOALN , COSTS.

2. CALCULATE the set ND of nodes n in OPEN such that at least one estimate
~f ∈ F (n) is not dominated by the estimates of other open nodes or by any
solution cost of COSTS (“FILTERING”).

3. CHECK TERMINATION. If ND is empty, then

—Terminate returning the set of solution paths that reach nodes in SOLN with
costs in COSTS.

else NODE SELECTION

—Choose a node n from ND using a domain-specific heuristic, breaking ties in
favour of goal nodes, and move n from OPEN to CLOSED.

4. Do bookkeeping to maintain accrued costs and node selection function values.

5. SOLUTION RECORDING. If n is solution node, then

—Include n in GOALN and its current costs into COSTS.

—Remove dominated costs from COSTS.

—Go back to step 2.

6. NODE EXPANSION. If n is not solution node, expand n and examine its suc-
cessors. For all successors nodes m of n do:

(a) If m is a newly generated node, then

i. Establish a pointer from m to n.
ii. Set G(m) = LABEL(m,n).
iii. Compute F (m).
iv. Add m to OPEN .

(b) Otherwise, m is not new, so do the following,

i. If any potentially nondominated paths to m have been discovered, then,
for each one, do the following.
—Ensure that its cost is in LABEL(m,n), and therefore in G(m).
—If a new cost was added to G(m) then, PRUNE from LABEL(m,n)
dominated costs, and if m was in CLOSED, then move it to OPEN .
—Recompute F (m).

7. Go back to step 2.

Table 2.2: The MOA∗ algorithm.
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• Each time a new nondominated path (label) is found to a node n, MOA∗ does
not clearly specify that possibly dominated labels should be removed 13 (pruned)
from G(n) (step 6(b)i).

• In any case, the dominated labels are not removed from OPEN (step 6(b)i).
Moreover, in a later step of execution (step 2), the set ND must be calculated
because dominated alternatives are not really filtered but kept in OPEN list
among other nondominated ones.

• The set COSTS is not either adequately used by MOA∗ to filter unpromising
labels (step 6(a)iii) like in NAMOA∗ (steps 5(b)i,5(c)ii) . Moreover, the recal-
culation of F (m) was not indicated in the original description of MOA∗ (step
6(b)i).

2.4.3 The algorithm TC

A pseudocode for TC slightly adapted from the original description is shown in table
2.3. Some similarities with NAMOA∗ have been highlighted with capitals. TC em-
ploys a label-selection strategy. Therefore, separate Gop(n) and Gcl(n) sets of labels
are considered14 like in NAMOA∗. The OPEN list consists of all tuples (n,~gn) such
that ~gn ∈ Gop(n). These are ranked for selection according to a scalar value

fn = f(n,~gn) =
∑
i

gi(Psn) + hmix(n) (2.23)

where gi(Psn) is the i-th component in ~gn. The scalar heuristic values hmix(n) are
precalculated prior to the execution of TC. The precalculation procedure is explained
in the section 2.4.4. Notice that, since hmix(n) is not used to discard alternatives, it
does not influence the number of paths considered, only the order in which they are
selected for expansion.

At each iteration, the algorithm considers in step 5 the expansion of a tuple from
OPEN with a nondominated vector value ~fx ∈ F (x,~gx) of some node x. This nondo-
minated path is selected in step 3 according to the associated scalar value fx described
in (2.23),

PATH SELECTION in heuristic TC: Select for expansion an alternative (scalar)
(n,~gn, {f}) from OPEN such that @(n′, ~gn′ , {f ′}) ∈ OPEN with f ′ < f , i.e.
with hmix(n′) +

∑
i gi(Psn′) < hmix(n) +

∑
i gi(Psn)

TC uses vectorial heuristic estimates ~hTC(n) to calculate the associated vectorial
~fn values, which are used to discard (filter) alternatives. These vector estimates are
precalculated also prior to execution of the TC algorithm, according to the procedure
explained in section 2.4.4. In TC algorithm, the evaluation function used for filtering
for each label ~gn ∈ Gop(n) is just a single vector defined as

~fn = ~f(n,~gn) = ~gn + ~hTC(n) (2.24)
13The dominated labels are removed from LABEL set but the removal from G(n) is ambiguously

described in MOA∗
14In the TC algorithm Gop(n) is called L(n), and Gcl(n) is referred to as ‘permanent labels’
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1. CALCULATE ~hTC , hmix for each node n, applying Dijkstra’s algorithm on a
graph with arcs reversed.

2. CREATE:

—Two empty sets Gcl(s) and Gop(s), and insert ~gs = ~0 in Gop(s) with F (s,~gs)) =
{hmix(s)}.
—A list of alternatives, OPEN = {(s,~gs, F (s,~gs)) }.

—An empty set COSTS.

3. CHECK TERMINATION. If OPEN is empty, then

—Terminate the execution

else PATH SELECTION.

— Select an alternative (n,~gn, Fn) from OPEN with fn ∈ Fn minimal in OPEN ,
i.e. for all (n′, ~gn′ , F

′
n) ∈ OPEN it does not exist f ′n ∈ F ′n such that f ′n < fn,

where ∀x, fx =
∑

i gi(Psx) + hmix(x). Ties are broken arbitrarily.

— Delete (n,~gn, Fn) from OPEN , and move ~gn from Gop(n) to Gcl(n).

— If n is a goal node, go to step 6. Otherwise, go to step 4

4. SUCCESSORS GENERATION. If n is not a goal node, then for all successors
nodes m of n that do not produce cycles in SG do:

— FILTER alternatives from a node m dominated by COSTS, i.e. those for
which exists some ~gn′ ∈ COSTS such that ~fm ≺ ~gn′ , where ~fm = ~gm +~c(n,m) +
~hTC(m).

—If all alternatives are filtered go to step 3. Otherwise, go to step 5

5. PATH EXPANSION: If n is not a goal node, then for all successor nodes m of n
not filtered in step 4 do:

— Calculate the cost of the new path found to m: ~gm = ~gn + ~c(n,m).

— Calculate Fm = F (m,~gm) = {fm}, where a single scalar value fm is calculated
for each gm as fm = f(m,~gm) =

∑
i gi(Psm) + hmix(m)

— Create a new pointer from m to n labelled by ~gm.

— Put (m,~gm, Fm) in OPEN , and create Gop(m) = {~gm} and Gcl(m) = ∅.
— Go to step 3

6. SOLUTION RECORDING. If n is a goal node, then

—Include ~gn if it is nondominated in COSTS, i.e. for all ~gn′ ∈ COSTS it does
not exist such ~gn′ that ~gn′ ≺ ~gn.
— Trace back from (n,~gn, Fn) and return the solution path

— Go to step 3

Table 2.3: The TC algorithm.
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Therefore, for each path Psn from s to n with cost ~g(Psn) = ~gn, there will be a
set F1(Psn) with a single scalar value fn calculated as described in (2.23), used for
selection from OPEN queue, analogue to NAMOA∗, but also a different set F2(Psn)
with a single vector value ~fn calculated as described in (2.24), used only for filtering,
as ~hTC is used only in this sense.

TC presents two additional differences with NAMOA∗,

• Regarding filtering, TC discards all newly generated labels whose ~f(n,~gn) value
is dominated by the current vectors in COSTS (step 4). However, when a new
solution cost ~c ∗ = ~gγ is discovered, it is not used to filter dominated labels
already in SG neither in OPEN (step 6).

• Regarding pruning, each time a new nondominated path (label) is found to a
node n, the algorithm TC does not specify that possibly dominated labels in
Gop(n) should be removed (step 5) .

Note also that the original description of TC algorithm only considers the complete
set of Pareto-optimal solutions and traces back the solution path individually for each
solution found. However, in this thesis a version of TC returning the whole Pareto set
when the algorithm finishes is considered, analogously to MOA∗ and NAMOA∗.

2.4.4 Heuristic functions

Heuristic functions do not appear explicitly in the pseudocode in tables 2.1, 2.2, 2.3.
However, there are several points where heuristic functions are implicitly invoked:

• PATH or NODE SELECTION: Step 3 in NAMOA∗, step 2 in MOA∗ or step 3
in TC. Usually the node (path) selected from OPEN is nondominated according
to certain heuristic function.

• SOLUTION RECORDING (filtering): step 4 in NAMOA∗. All alternatives
(x,~gx, Fx), such that all vectors in Fx are dominated by the cost ~gn of a newly
found solution, are eliminated from OPEN. These elements ~fx ∈ Fx are calculated
according to certain heuristic function, as ~fx = ~gx + ~hx. Thus, the heuristic
function also plays a role at this step.

• PATH EXPANSION (filtering): Step 5(b)i and 5(c)ii in NAMOA∗, or step 4
in TC. These are new occurrences of filtering when performing the step PATH
EXPANSION in NAMOA∗ or the step SUCCESSORS GENERATION in TC.
Filtering of new dominated alternatives depends on the vectors ~fx ∈ Fx and hence
on the values of the heuristic function 15.

When no heuristic information is available, the trivial heuristic function is given by
~h0(n) = ~0, for all nodes n. Both MOA∗ and NAMOA∗ can be used for blind search
with this heuristic, while TC was devised only for heuristic search16.

15 Notice that the original algorithm proposed by Tung & Chew (1992) does not perform all the
filtering operations performed by NAMOA∗, or performs them in a different way (see section 2.4.3)

16A “blind” version of TC algorithm will be further introduced when needed in chapter 5
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Tung & Chew (1992) proposed two nontrivial heuristic functions that are well
defined for every multiobjective path problem. The first heuristic 17 is defined as,
~hTC(n) = (c∗1(n), c∗2(n), . . . c∗q(n)), where c∗i (n) is the optimal scalar cost of a path from
n to the goal, considering only the i-th cost component. These values are precalculated
for each component by reversing all arcs in the graph, originally labelled with vector
cost ~c(n, n′) = (c1, c2, . . . cq), labelling them with scalar costs ci(n′, n) = ci and apply-
ing Dijkstra’s algorithm to find the shortest path from the goal node to all other nodes
in the reversed graph, once for each scalar cost. Ties are broken by a lexicographic
order, taking into account the other cost components.

The second heuristic 18 proposed by Tung & Chew (1992) is called in this thesis
hmix and is defined in a similar way. Each arc (n, n′) in the original graph, labelled
with vector cost ~c(n, n′) = (c1, c2, . . . cq), is reversed and labelled with a scalar cost
cmix(n′, n) =

∑
i ci(n, n

′). The heuristic values hmix(n) are calculated then applying
Dijkstra’s algorithm to this reversed graph, as the cost of the shortest path from the
goal node to all other nodes.

The experiments described in the next chapters compare the performance of blind
and heuristic versions of NAMOA∗, MOA∗ and TC. In the case of NAMOA∗ and
MOA∗, blind search amounts to using a zero heuristic, ∀n H0(n) = {~h0(n)} = {~0},
while in TC a “blind” version can be easily derived with hmix(n) = 0. Heuristic search
is evaluated with ∀n H(n) = {~hTC(n)}, where ~hTC is as defined in this section.

2.4.5 Formal properties

Let us denote by H∗(n) the set of costs of all nondominated paths from node n to goal
nodes, ~h∗n = ~g(Pnγ) for some γ ∈ Γ. We say that a heuristic function H(n) is optimistic
if,

∀~h∗n ∈ H∗(n) ∃~hn ∈ H(n) | ~hn � ~h∗n (2.25)

Let us denote by C∗ the set of all nondominated solution costs ~c ∗. Whenever H(n)
is optimistic, NAMOA∗ is guaranteed to terminate with the set of all nondominated
solution paths P ∗ (admissibility), with ~g(P ∗) = ~c ∗ for some ~c ∗ ∈ C∗. Additionally,
related to the efficiency of the algorithm, the use of good heuristic cost estimates can
help us to filter candidate paths, reducing the number of alternatives that need to be
considered during search.

A well designed systematic procedure to obtain a fully informed optimistic heuris-
tic was proposed by Tung & Chew (1988, 1992). The proposed heuristics are general
and can be used by NAMOA∗, which accepts any such multiobjective heuristic func-
tions. These two heuristic functions have been described in section 2.4.4. A formal
characterization of these heuristic functions can be found in chapter 4.

Formal developments (Mandow & Pérez de la Cruz, 2006, 2010a) show that algo-
rithm NAMOA∗ is optimal over the class of admissible multiobjective search al-
gorithms when heuristics are monotone. In other words, no algorithm in this class
equipped with the same heuristic information can skip the expansion of a path ex-
panded by NAMOA∗ without compromising its admissibility.

17Tung & Chew (1992) called this heuristic ~q(n, n′).
18Tung & Chew (1992) called this heuristic with the somewhat confusing name h∗(n, n′).
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If the heuristic function H(n) satisfies the so-called consistency property, then
all labels expanded by NAMOA∗ are known to be nondominated. In such cases, all
labels in the Gcl(n) sets are permanent and can never be pruned (see Mandow & Pérez
de la Cruz (2010a) for details).

This is not the case for MOA∗, where an additional set CLOSED is used. As all
labels from a node are expanded simultaneously and some of them can be suboptimal,
the node can be put back later again in OPEN . A family of sample graphs was
introduced by Mandow & Pérez de la Cruz (2010b), where this reexpansion of nodes
can lead blindMOA∗ to perform a number of label expansions that grows exponentially
with the size of the problem, while linearly in blind NAMOA∗.

The path expansion, filtering and pruning processes have been not formally studied
for TC. Chapter 4 takes up this issue.

Most of the experiments and results described in this thesis involve consistent
heuristics (see section 2.4.4). Chapter 7 studies the application of inconsistent heuris-
tics to multiobjective search. The first direct consequence is that expanded labels can
no more considered as permanent, i.e. an unknown number of suboptimal labels can
be expanded. The next section introduces an algorithmic improvement to deal with
inconsistent heuristics.

2.4.6 Multiobjective Pathmax and NAMOA∗∗

Extensions of A∗ to deal with inconsistent heuristics have been studied and analyzed
over the years. The pathmax rule (Mérõ, 1984) is one of such improvements. Incon-
sistency can make the sequence of f(n) values along a path to be not monotonically
nondecreasing. This can lead the algorithm to unnecessary node reexpansions, i.e. to
the expansion of suboptimal paths for certain nodes. Pathmax uses the information
available along nodes in known paths to force consistency at least with the information
previously presented by ancestors of a given node n. The single-objective version of
pathmax can be stated as follows,

Definition 2.20 (Mérõ, 1984) Single-objective pathmax. Replace the evaluation
function f(n) = g(n) + h(n) for each node n with

f(n) = max{g(n′) + h(n′) | n′ is on the current path to n} (2.26)

Of course, the pathmax rule does not completely prevent node reexpansion (Felner
et al., 2011). In the case of A∗ the advantage of consistent heuristics is that a node
removed from the OPEN queue will never be reopened. With pathmax, the f values
never decrease along traversed paths, as the pathmax rule corrects inconsistent values.
However, f values can still be non-monotonic for paths that have not been examined
yet (Nilsson, 1998, p.153)(Zhou & Hansen, 2002).

The pathmax rule has been successfully extended to the multiobjective case.

Definition 2.21 (Dasgupta et al., 1995, Section 3.1) Multiobjective pathmax. Let
us assume q objectives. Each heuristic cost ~h(n) belonging to H(n) is a vector ~h(n) =
(h1(n), . . . , hq(n)), where hi(n) are domain specific heuristics. When each successor m
of a node n is generated, the basic heuristic evaluation function is used to evaluate the
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heuristics at the node m. But before each heuristic is entered in H(m), pathmax is
applied as follows:

• For each heuristic vector ~h(n) in H(n)

– For each heuristic vector ~h(m) evaluated at node m

∗ Create a new vector ~h′(m) such that for each dimension k:

h′k(m) = max{hk(m), hk(n)− ck(n,m)} (2.27)

where ~c(n,m) is the cost of the arc from n to m.
∗ Put ~h′(m) in H(m) and remove dominated heuristics, if any.

Some formal properties were also proven by Dasgupta et al. (1995).

Theorem 2.8 (Dasgupta et al., 1995, Theorem 3) The set of heuristics generated by
(2.27) with multiobjective pathmax remain admissible.

Theorem 2.9 (Dasgupta et al., 1995, Theorem 4) Any node expanded by an admissible
best-first search algorithm A using multiobjective pathmax is also expanded by A without
using pathmax.

Thus, pathmax can be used in the same way as in the scalar case. However, it
plays a more significant role in partial order search. Dasgupta et al. (1995) proved that
the set of nodes expanded by an admissible best-first algorithm using multiobjective
pathmax can be reduced in general.

Theorem 2.10 (Dasgupta et al., 1995, Observation 5) There are problem instances
where an admissible best-first search algorithm that does not use pathmax will have
to expand an arbitrarily large number of nodes which will not be expanded if it uses
pathmax.

The example provided by Dasgupta et al. (1995) in figure 2.3 shows that the subtree
under n5 will be expanded without pathmax. Only one vector in each H(n) was
considered for simplicity. Nodes n2 and n3 will be necessarily expanded as the single
vector in F (n3) = {(2, 14)} dominates the single vector in F (n4) = {(3, 12)}. But
the expansion of n5 depends on whether pathmax is used or not. If pathmax is not
used, F (n5) = {(4, 9)} whose single vector is nondominated with F (n4). However, if
multiobjective pathmax is used, then H(n5) = {(max{2, (1−1)},max{7, (13−1)})} =
{(2, 12)} and hence F (n5) = {(4, 14)} whose single vector is dominated by the single
vector in F (n4). Thus, the solution cost F (n4) = {(3, 12)} is found and this one will
filter the unique value in F (n5), avoiding the expansion of n5. In this case the solution
path to n4 does not a contain a fully informed non-goal node in any objective.

The theorem show that pathmax rule has a greater significance in multiobjective
frameworks. However, it is commonly believed that pathmax definitely corrects pro-
blems derived from inconsistency.

Corolary 2.1 The pathmax rule does not make the F function monotonic.
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Figure 2.3: The advantage of multiobjective pathmax (Dasgupta et al., 1999)

An analogous example to the one provided by Felner et al. (2011, section 5.2),
illustrating that reexpansion can not be avoided by pathmax, can be found for the
multiobjective case. In the multiobjective case, no reexpansions are performed with
admissible heuristics, but in some cases dominated paths may not be skipped with
inconsistent heuristics, as the example shows. For simplicity the example uses H(n)
and F (n) sets with a single element. Figure 2.4 shows an isolated part of a bigger graph
where the heuristic is admissible but inconsistent. The heuristic values for all nodes are
always a lower bound of the cost (50,100) of the unique nondominated solution path
in this part of the graph, namely P ∗sγ = 〈s, n1, n3, γ〉. But the heuristic is inconsistent
(e.g. (1, 1) ∈ H(n3), (48, 98) ∈ H(n1)) and therefore the ~f vectors non-monotonic (e.g.
~f ∈ F (n3), ~f ′ ∈ F (n1), and ~f ≺ ~f ′).

Without pathmax, the path P ′sn3
= 〈s, n2, n3〉 will be expanded and the ~f value

of node n3 will be (11,21). Then, all paths in the subtree under node n3 with values
dominating the cost of the optimal path (50,100) will be expanded, because (11, 21) ≺
(49, 99). The path with ~f value (49,99) of node n1 will be expanded after. This example
shows that a dominated path P ′sn3

= 〈s, n2, n3〉 with a ~g cost (10,20) (dominated by
another optimal nondominated cost (2,2) to n3) is inserted in Gcl(n3), namely the path
P ′′sn3

= 〈s, n1, n3〉.
However, with multiobjective pathmax the path P ′′sn3

will be expanded first than
P ′sn3

because the ~f ∈ F (n3) will be updated to (49,99) as H(n3) = {(max{1, (48 −
1)},max{1, (98− 1)})} = {(47, 97)}. This will cause the expansion of P ∗sγ before P ′sn3

,
and then the solution (50,100) will filter the cost of the path P ′sn3

with Gop = {(10, 20)}
and H(n3) = {(47, 97)}, and thus F (n3) = (57, 117).
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Figure 2.4: Multiobjective pathmax can not avoid the expansion of some dominated
paths

Felner et al. (2011) presented BMPX, a bidirectional version of pathmax, where
heuristic cost values are propagated even to nodes that are not ancestors, as a partial
solution for the single-objective case. The extension of BMPX to the multiobjective
case deserves attention in the future.

Dasgupta et al. (1999) presented an extension of MOA∗ called MOA∗∗ using
multiobjective pathmax. In the same context, a pathmax version of NAMOA∗, named
NAMOA∗∗, was described by Mandow & Pérez de la Cruz (2010a). However, this
algorithm has never been evaluated in practice. The algorithm NAMOA∗∗ is the
same algorithm described in table 2.1 of chapter 2, where the heuristic functions H(n)
are updated with multiobjective pathmax as indicated by definition 2.21.

2.4.7 Related Work

The general paradigm of multicriteria heuristic search was considered by (Mandow &
Pérez de la Cruz, 2003). Multiobjective heuristic search is considered only as one of the
possible categories. In this field, other multiobjective heuristic strategies are possible,
for example when the calculation of all nondominated solutions is sometimes unne-
cessary. An adjustment of preferences is made a priori resulting in best-compromise
solutions.

The method Best Compromise A∗ (namely BCA∗) is based in multiobjective
A∗ search, but the ordering of labels is based in an aggregation function, for example
the Tchebycheff norm. BCA∗ explores first the labels potentially best according to the
actual preferences considered. Futtersack & Perny (2000) proposed a modification of
MOA∗ while Galand & Perny (2006) of NAMOA∗ to handle this situation. The
later also compared a kA∗ scalarization strategy derived from k-best paths algorithms.
Some other possible aggregation functions are studied in the thesis of Galand (2008).

Some improvements over BCA∗ include some changes on the aggregation functions
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used (Sauvanet & Néron, 2010). An application to realistic scenarios can be found in
the thesis of Sauvanet (2011). Another alternative ordering of labels, given as

∑
iwivi

for ~v = (v1, v2, . . . , vq) and
∑

iwi = 1, is the operator OWA (Ordered Weight Average)
that lets us obtain well-ballanced solutions (Galand & Spanjaard, 2007). The Choquet
Integral constitutes a more general method; the Tchebycheff norm or OWA operator
are only particular cases. The costs are aggregated using weighting functions defined
on every subset of criteria (Galand et al., 2010).

Besides, Dasgupta et al. (1999) developed some modifications of the MOA∗ algo-
rithm for extended scenarios, for instance when limited memory is available (algorithm
MOMA∗) or the heuristics are not consistent (algorithm MOA∗∗). The extension
of the pathmax rule to multiobjective heuristic search was applied in the later case
(Dasgupta et al., 1995).

In the field of depth-first multiobjective best first search, Harikumar & Kumar
(1996) presented an iterative deepening approach for multiobjective heuristic search,
IDMOA∗, extending the single-objective algorithm IDA∗ (Korf, 1985), with a run
for each single objective. Coego et al. (2009, 2012) recently devised a new algorithm
PIDMOA∗ which performs a real multiobjective A∗ search with a multiobjective
threshold, that takes into account solutions already found.

Other related multicriteria approaches include near admissible algorithms (Perny
& Spanjaard, 2008), multiobjective frontier search techniques (Mandow & Pérez de la
Cruz, 2007, 2008, 2009, 2010c) which allow dramatic reductions on space requirements,
the investigation of alternative linear aggregate orderings for multiobjective labelling
methods (Iori et al., 2010) or recent computational studies comparing the performance
of MOA∗ both with several runs of A∗ for planning domains (Bryce, 2012) and an
approximated version of A∗ (namely LDA∗) for grid maps of games (Bayili & Polat,
2011).

2.4.8 Summary

This chapter provides an overview on the field and delimits the frame where the al-
gorithms studied in this thesis work. The three algorithms NAMOA∗, MOA∗ and
TC have been properly described, as well as general well defined multiobjective heuris-
tic functions. The case of inconsistent heuristics is also considered in some detail, with
the pathmax rule and algorithm NAMOA∗∗.

However, the stage of formal and empirical development varies from one algorithm
to another. While formal developments are complete in NAMOA∗ (Mandow & Pérez
de la Cruz, 2005, 2006, 2010a), some questions still lacked adequate characterization
for MOA∗ before this thesis. In the case of TC, formal proofs were not even properly
completed.

Regarding empirical evaluation, only limited experiments withMOA∗ andNAMOA∗

were performed for square grids with Manhattan distance (Mandow & Pérez de la Cruz,
2005). Both MOA∗ and TC were not empirically tested by their authors.

This thesis completes the formal developments ofMOA∗ and gives a formal frame-
work to TC. Regarding empirical evaluation, comprehensive analysis will be presented
both for blind and heuristic search using these three algorithms.



Chapter 3

Evaluating the Performance of
Multiobjective Search

This chapter reviews the relevant literature on the experimental evaluation of multiob-
jective search algorithms and gives a detailed explanation of the problem sets used in
this thesis. Several standard tools and benchmarks have been proposed in the litera-
ture (Klingman et al., 1974; Skriver & Andersen, 2000; Schultes, 2005; Santos, 2007b).
While some authors test their algorithms on artificial problems (Skriver & Andersen,
2000) it is becoming frequent to provide evaluations also on realistic scenarios (Raith,
2009; Sauvanet, 2011). Both present different advantages.

The chapter is organized as follows: first, a summary of related work and previous
test sets used by authors on multiobjective search can be found in section 3.1. Section
3.2 describes artificial and realistic scenarios used for testing the algorithms analyzed
in this thesis. Section 3.3 address the problem of how to evaluate the performance
of multiobjective search, i.e. which measures are important when comparing different
approaches or algorithms.

3.1 Antecedents

Empirical evaluation of algorithms (Johnson, 2002) is a standard practice in Computer
Science and Artificial Intelligence. Empirical evaluation allows the comparison of al-
gorithms in extensive and varied cases where formal analyses are not possible. The
main methodological principle is reproducibility, which should guarantee that other
researchers can perform the same evaluations. In order to make evaluations of new al-
gorithms in an easier way, many fields have developed standard problem benchmarks.
This allows quicker comparison of the pros and cons of new alternatives against inter-
esting problem sets.

Empirical evaluation has to be performed with certain care in order to make com-
parisons as fair as possible. Evaluations can depend on many practical issues like data
structures, their implementation, the programming language used, or even the hard-
ware where the programs are finally run. When comparing two similar algorithms it is
desirable that they share as much code as possible.

Generally, the development of good widely available benchmarks problems in a
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particular field is accompanied of rapid development of that field. Many interesting
problem sets have been defined for single-objective, e.g. Korf’s problem suite for the
15-puzzle (Korf, 1985) or Baldur’s Gate game maps 1.

In particular, the “9th DIMACS Implementation Challenge: Shortest Path”2) pre-
sented an extensive set of maps and problems for route planning. They are usually
taken as standard benchmarks for authors who want to test algorithms in a category,
e.g. DIMACS or Europe maps by the community involved on route planning algorithms
for road maps (Delling et al., 2009; Bauer et al., 2010b; Bast et al., 2007; Delling et al.,
2011a).

Formal analyses on single-objective search algorithms generally focus on the num-
ber of iterations or nodes expanded as a measure of performance and graph shape as
a measure of problem difficulty. Empirical analyses on time performance take into
account other implementation aspects like for example the use of heaps to implement
OPEN lists.

Regarding multiobjective search, algorithm performance is related to a number of
distinct problem factors, like graph shape, solution depth, number of objectives and
correlation between objectives. The number of nodes expanded is no longer a conclusive
performance measure. The accrued number of individual labels simultaneously stored
by the algorithm or the actual account of dominance tests or merge operations are
more influential factors on the performance of multiobjective algorithms.

Although there is not a clearly established and widely accepted set of problem
benchmarks for multiobjective algorithms, many empirical evaluations have been per-
formed over the years in this field.

3.1.1 Multiobjective Blind Search

Korf et al. (2005); Zhou & Hansen (2006) give a good overview of some benchmarks
used to evaluate recent techniques. Several authors have proposed different sets of
problems for the empirical evaluation of multiobjective search.

A brief summary of different random instances proposed for blind multiobjective
search follows.

A Random graphs: NETGEN
One of the earliest methods to generate random graphs found in the literature is NET-
GEN (Klingman et al., 1974). This program generates first a connected skeleton. Then,
in a second phase, additional arcs are randomly added. Arc cost values are generated
in the range [1,100] but the maximum cost is assigned to a percentage of the skeleton
arcs (specified as input parameter) in order to prevent the use of all arcs from the
skeleton and have more difficult problems to solve. Several authors have extended the
NETGEN generator to multiobjective settings.

Huarng et al. (1996) used for their computational evaluation small random graphs
with up to 200 nodes (and no more than 25 Pareto-optimal solutions) that were ge-
nerated with a modified NETGEN program, with two random costs independently
generated in the range [1,200].

1http://www.movingai.com/benchmarks/
2http://www.dis.uniroma1.it/~challenge9/

http://www.movingai.com/benchmarks/
http://www.dis.uniroma1.it/~challenge9/
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Skriver & Andersen (2000) used an extended NETGEN program to test their algo-
rithm with random graphs and concluded that the networks generated contained few
Pareto-optimal solutions (for 100 nodes and 900 arcs, no more than 7.5 on average).
The efficient paths seem not to be “spread out through the network”. This is attributed
to a deterministic generation of a Hamiltonian cycle to ensure connectedness, and as
a result the existence of only some few more alternative nondominated subpaths, that
share some part of this central path from the source to the goal node.

Guerriero & Musmanno (2001) used also random graphs built with a modified
version of NETGEN. The inputs were the number of objectives (2,3, or 4), the number
of arcs and nodes (up to 40,000 nodes and 100,000 arcs) and the density of arcs (1.5 to
30). Contrarily to the argument of Skriver & Andersen (2000), the number of Pareto-
optimal paths in these problems is very high, from 3,351 for the simplest biobjective
network with 500 nodes up to 156,264 and 465,347 efficient paths for the hardest
configurations with 40,000 nodes for two and four objectives, respectively.

Guerriero et al. (2001) also generated NETGEN problems with a number of arcs
fixed to 1,000,000. The number of nodes goes from 10,000 to 22,360. Arc costs values
are integers in the range [1,1000] chosen from an uniform distribution.

Guerriero et al. (2001) also introduced additional NETGEN cases. Fully dense
problems were built in such a way that all possible arcs are included (i.e. all nodes
fully connected). The number of nodes is 200, 400, 600, 800, or 1,000 with a total
number of arcs up to 999,000 in the case of graphs with 1,000 nodes. Arc costs values
are integers in the range [1,1000] chosen from an uniform distribution as for the other
random graphs.

B Random graphs: NETMAKER
The relatively small number of Pareto-optimal paths obtained by the NETGEN pro-
gram is an argument against this random problem generator given by some authors.

Skriver & Andersen (2000) proposed a new random generator, NETMAKER. Given
a number of nodes, the program first builds a Hamiltonian cycle as NETGEN. However,
the generation of additional arcs in the second phase is not completely random but
based in two input parameters: an interval of random outgoing edges allowed for each
node (branching factor) and a second interval that specifies which nodes are allowed
to be reached from a particular node with those outgoing edges (interval length). For
example, with branching factor in the range [1,3] and interval length 2 ∗ max, from
node 10, it is randomly chosen that 1 to 3 outgoing edges are added, connecting node
10 to nodes in the range 10± (2∗3), i.e. from node 4 to node 16. This method achieves
a wider spread of Pareto-optimal paths along the graph.

They generated networks from 100 to 500 nodes and intervals [1,3], [2,4], and [7,15]
were used for the branching factor (i.e. up to 500 ∗ 15 = 7, 500 arcs). Two objectives
negatively correlated were used (one cost is in the range [1,33] while the another in
[67,100]), in order to obtain more Pareto-optimal solutions as well.

Raith & Ehrgott (2009) argued also that networks generated with NETGEN had a
small number of Pareto-optimal solutions and used NETMAKER to generate random
graphs. They used as input parameters: a number of nodes of 3,000, 7,000, 14,000, or
21,000, a branching factor interval of [1,20], [5,15], or [10,40], and an interval length
Inode of 20 or 50. The interval length is defined in the way that only nodes i±d Inode

2 e are
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allowed to be connected with node i. Several improvements were devised by Raith &
Ehrgott (2009), like penalizing arc costs in the Hamiltonian cycle. Nevertheless, these
graphs generated with NETMAKER with up to 21,000 nodes and up to 21, 000 ∗ 40 =
840, 0000 arcs have only 17 nondominated solutions at most. These same random
graphs were used in the thesis of Raith (2009).

C Other random graphs
Clímaco & Martins (1982) used random graphs to test their algorithm. Only the
number of nodes is used as input. The result is a graph where each node is the tail
of lambda arcs with λ ∈ [1, 10]. The head of each arc is randomly selected from
the set nodes that exclude parallel arcs and arcs from a node to itself. Two costs
are independently generated in the range [1,100] for each arc. These random graphs
were small (up to 500 nodes and no more than 2,500 arcs) and had a few number of
Pareto-optimal paths (no more than 13).

An early work from Nance et al. (1987) uses parametric random graphs where they
varied parameters like the number of “links” (branching factor). However, there was no
random generator publicly available and the graphs produced were small-sized.

Brumbaugh-Smith & Shier (1989) used random graphs of 100 and 250 nodes where
the number of arcs is varied from 300 to 1,900, with less than 700 Pareto-optimal solu-
tions in the worst case. The importance of this experimental study is the introduction
of a correlation ρ between randomly generated components of the vector costs, with
values for ρ in the range [-1,1]. Some of the chosen values were very near to -1, in order
to study difficult cases.

Mote et al. (1991) considered random graphs with 1,000 nodes and several configu-
rations of number of arcs (3,000,5000,or 1,000) and correlation between the two cost
values (0.0, 0.5, 0.8). These two positively correlated values are integers in the range
[1,200].

Iori et al. (2010) worked also with random graphs, on the basis of the benchmark
from Gandibleux et al. (2006). A rooted tree is generated and random arcs are added
until a desired density is reached. Random costs in different ranges for min-max pro-
blems are generated for nine pairs of combinations of node-density: 50,100 or 200 nodes
with a density of 5%,10% or 20%. Three classes of ranges for cost values are used, from
[1,100] up to [1,1000000] in some cases.

Random graphs have been also used in other contexts like time-dependent bicriteria
scenarios (Hamacher et al., 2006) or tricriteria MinMax problems (Gandibleux et al.,
2006; de Lima Pinto et al., 2009). In the first case, extending the NETGEN generator
with time horizons, the authors have tested with up to 1000 nodes and branching
factors of 2,4,6 and 8. In the second case, the work of de Lima Pinto et al. (2009)
introduced random graphs of up to 5,000 nodes and 24,995,000 arcs, varying density
(number of arcs) and intervals of the cost integer range values (from [1,5] to [1,70] for
two objectives and fixing the third to [1,10000]). However, there were no more than
458 nondominated solutions for the largest size (5,000 nodes and 24,995,000 arcs).

Martins (1984c) also used random graphs with 25 and 50 nodes and different ranges
in the costs generation (from [1,10] to [1,5000]) for special bicriterion path problems,
where at least one objective is MaxMin.
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Also in the context of blind multiobjective search, extensive datasets with random
graphs have been used to test ranking algorithms. Martins et al. (2007) proposed a
standard benchmark to test labelling algorithms with several classes of problems by the
combination of three factors: number of nodes, density of nodes (equal to vary number
of arcs) and number of objectives (from 2 up to 10). The general random graphs include
the combination of the three factors with up to 15,000 nodes. The largest number of
criteria (10) was considered only for random graphs with up to 5,000 nodes and 30,000
arcs.

They also generate fully connected graphs (“complete networks”) of up to 120 nodes
with density of arcs fixed to the number of nodes minus 1 (i.e. all nodes connected
with each other). The number of Pareto-optimal solutions published for each class of
graph shows that while in random graphs it is under 200 solutions, complete graphs
have several hundreds with far fewer nodes. In the largest number of criteria (8) for
this type, more than 1,700 nondominated solutions are found while only a little more
than a hundred in general random graphs.

The same set of instances was used in a twin paper (Paixão & Santos, 2007).
The testsets are extended with larger instances, and are divided into small and large
datasets. The first are used to discard the low performance labelling alternatives, while
the second type are used to identify the most efficient alternatives. Costs were in the
range [1,1000]. Paixão & Santos (2008) worked with the same set of instances from
(Martins et al., 2007).

Caramia et al. (2010) analyzed multiobjective hazardous material transportation
problems. They generated random graph instances obtained with the random generator
sprand.exe from the “9th DIMACS Implementation Challenge: Shortest Paths”. Three
objective values were randomly generated in the range [1,100] . Node and density are
varied, where the bigger problems have 300 nodes and 31,365 arcs with no more than
160 Pareto-optimal solutions.

Galand et al. (2010) also used random graphs in the context of blind labelling
Choquet-based optimization. They generated 50 different instances for each size (1,000,
2,000, 3,000, and 4,000 nodes) and number of criteria (2, 3, 5 , and 10).

D Grids: GRIDGEN
Bertsekas (1991) devised for the single-objective case a random grid generator with
a connected “skeleton” (guaranteeing problem feasibility) and additional arcs between
random starting and ending nodes. These random generator GRIDGEN was extended
by Bertsekas et al. (1996), fixing the number of arcs to 1,000,000 and the total number
of additional arcs to approximately 2, 3, 4, or 5 times the number of grid arcs.

Guerriero & Musmanno (2001) extended this random generator to the multiobjec-
tive case (2, 3, or 4 objectives). Both rectangular and square grids of different shapes,
with up to 625 nodes and 2400 arcs were generated, reaching in this case to more than
2 millions of nondominated solutions for some configuration. For biobjective square or
rectangular grids, a little more than 20000 Pareto-optimal paths can be found in the
hardest configuration.

Square grids problems from Guerriero et al. (2001) are generated with the GRID-
GEN generator in the way of Bertsekas et al. (1996). The number of arcs for these grid
problems is fixed at 1,000,000, while the number of nodes is set in such a way that the
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ratio additional/total arcs is an integer in the range [3,7].
However, Guerriero et al. (2001) extended the testset with additional cases, fol-

lowing Bertsekas et al. (1996). Euclidean grids problems are generated in a similar
way, but the additional arcs have a cost equal to the euclidean distance between the
two nodes. Arc costs values are integers in the range [1,1000] chosen from an uniform
distribution for both cases.

E Other Grids
Mote et al. (1991) also used grids of 400 nodes, where two different parameters are var-
ied: different shapes (different side lenghts and three different number of arcs, namely
1,430, 1,500, 1,520) and correlation between cost values (0.0, 0.5,and 0.8). The two
correlated values are in the range [1,100] for these grids.

Murthy & Olson (1994) used some of these grid networks with 400 nodes, and
some more with other shapes and 900 nodes and up to 3,500 arcs for an interactive
multiobjective procedure. The range of cost values is augmented up to [1,1000] and
more than a hundred of Pareto-optimal solutions can be found. They stated that “grid
networks are particularly hard problems“.

Martins et al. (2007) also used their own set of square grids. They varied some
parameters as explained before for random graphs, but grids have density fixed to
approximately 4 (i.e. square grids with 4 vicinity), therefore varying only the number
of nodes (up to 144) and the number of criteria (2 to 10). The largest number of criteria
(10) was considered only for grids of up to 100 nodes. Vector costs were randomly
generated in the range [1,1000]. The number of Pareto-optimal solutions in these grids
is far higher than in the random graphs generated by the same authors, with more than
20,000 Pareto-optimal solutions for the larger instances.

Raith & Ehrgott (2009); Raith (2009) also proposed grid networks of two types:
square grids of up to 40,000 nodes and near 160,000 arcs (with no more than 300
hundred nondominated solutions) and grids with different shapes of approximately
4,900 nodes and 19,000 arcs (with more than hundreds of solutions, even more than
1,500 for some cases). It is important to note that the larger number of Pareto-optimal
solution paths appears in the narrower grids, where one dimension is far smaller than
the other.

Caramia et al. (2010) also used random square grids applied to hazardous material
transportation problems. They were obtained with the random generator spgrid.exe
from the “9th DIMACS Implementation Challenge: Shortest Paths”. Three objective
values were randomly generated in the range [1,100]. Search was conducted from one
corner to the opposite corner and the square grids had no more than 400 nodes. Nev-
ertheless, more than 800 Pareto-optimal solutions can be found.

F Other empirical test sets: realistic scenarios
Several authors have used problems from the route planning domain over the years
(Bertsekas et al., 1996; Zhan & Noon, 1998). Benchmarks from the “9th DIMACS
Implementation Challenge: Shortest Paths”3 have been widely used for single-objective
shortest path computations (Bauer et al., 2010b). These comprise several sets of road

3http://www.dis.uniroma1.it/~challenge9/download.shtml

http://www.dis.uniroma1.it/~challenge9/download.shtml


3.1. Antecedents 47

maps of different sizes obtained from the real road network of the U.S.A. Two different
cost values are available for each arc: time and distance. DIMACS maps are discussed
in detail in section 3.2.3. Little experimentation has been carried out to extend these
realistic scenarios to multiobjective cost-valued maps.

Raith & Ehrgott (2009); Raith (2009) also used in their computational studies road
maps generated from DIMACS benchmarks 4. The original maps were modified to
include a Hamiltonian cycle and two cost values for each arc (see section 3.2.4). The
road networks used are relatively large (more than 300,000 nodes and approximately
1,200,000 arcs for the New Jersey map), but with few Pareto-optimal solution costs (no
more than 22). The thesis of Raith (2009) extends these cases to a realistic scenario:
biobjective cyclist route choices on small maps of Auckland (New Zealand).

Caramia et al. (2010) used also road networks for the evaluation of their algorithm
in the context of hazardous material transportation problems. A map from the italian
region of Lazio is used, with 331 nodes and 441 arcs.

An application to realistic scenarios can also be found in the thesis of Sauvanet
(2011). Three different maps with sizes in a similar range to the three presented by
Raith & Ehrgott (2009); Raith (2009) have been used for multiobjective cyclist route
planning. Two maps from Paris and Berlin were obtained from OpenStreetMap 5

while the third is from San Francisco Bay and was obtained from TIGER/line R© data
(Topologically Integrated Geographic Encoding and Referencing system) of the U.S.
Census Bureau. The first has no more than 200 Pareto-optimal solution paths, the
second one no more than 300 and the third from USA with a shaped mesh grid of
almost 175,000 nodes and 436,000 arcs has no more than 600 nondominated solutions.

3.1.2 Multiobjective Heuristic Search

Empirical evaluations of multiobjective heuristic labelling algorithms have been rela-
tively scarce. To the author’s knowledge, no previous systematic evaluation of the
TC algorithm has been performed. The original papers (Tung & Chew, 1988, 1992)
tested the algorithm only over hand-made examples.

The same applies to MOA∗ (Stewart & White, 1991). Little experimental evalua-
tion related toMOA∗ has been found before the description of NAMOA∗ (Mandow &
Pérez de la Cruz, 2005). The depth-first version ofMOA∗, namely IDMOA∗ (Hariku-
mar & Kumar, 1996), was evaluated only over simple problems in the circuit partition-
ing domain (Harikumar & Kumar, 1997). Dasgupta et al. (1999) also applied some of
their extensions of MOA∗ (e.g limited memory requirements or inconsistent heuris-
tics), like MOA∗∗, only over simple problem instances of different domains, like Oper-
ator Scheduling or Log Cutting. Even other recent approaches which are not complete,
like the algorithm of Hallam et al. (2001) used only simple problems. More recent mul-
tiobjective developments have included more detailed empirical tests. Random graphs,
random grids and road networks have been also proposed for multiobjective heuristic
search.

4Files in DIMACS format are not publicly available over the Internet, but were obtained from the
authors

5http://www.openstreetmap.org/

http://www.openstreetmap.org/
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A Random graphs
Random graphs have been used for OWA∗ (Galand & Spanjaard, 2007) with cost
values in the range [1,100]. The number of nodes varies from 1,000 (with 190,000 arcs)
to 3,000 (with 2,000,000 arcs).

BCA∗ has been evaluated by (Galand & Perny, 2006) with randomly created graphs
where the inputs are the number of nodes and the number of criteria. The number of
nodes ranges from 200 (with 7,500 arcs) to 1,000 (with 200,000 arcs). The number of
criteria evaluated are 5, 10, or 20.

An approximated version of MOA∗ (Perny & Spanjaard, 2008) has been also eval-
uated with random graphs. The input parameters were the number of nodes (1,000,
2,000, and 3,000) and the number of objectives (2,5 or 10). Cost values were in the
range [1,100].

B Hansen-like graphs
BCA∗ was evaluated with graphs similar to those described by Hansen (1979). These
graphs have 2 ∗ p+ 1 nodes and 3p arcs, with p ∈ [5, 12].

Best compromise solutions with BCA∗ were analyzed also by (Galand & Perny,
2006) with Hansen-like graphs containing 21, 25, 29, and 33 nodes.

C Random grids
Random square grids have been used by Mandow and Pérez de la Cruz to evaluate
NAMOA∗ against frontier search NAMOA∗ (Mandow & Pérez de la Cruz, 2007) or
MOA∗ (Mandow & Pérez de la Cruz, 2005). Search was conducted from one corner of
the grid to the opposite corner. Grid sizes varied from 101× 101 (Mandow & Pérez de
la Cruz, 2007) up to 400×400 in some cases (Mandow & Pérez de la Cruz, 2008). Cost
values were in general in the range [1,10] but different ranges between [1,2] and [1,15]
were evaluated by (Mandow & Pérez de la Cruz, 2010b). Most instances were bicriteria
grids. Three objective cost vectors were used in (Mandow & Pérez de la Cruz, 2005,
2009).

Besides, MOA∗ has been recently compared to LDA∗, an approximated version of
A∗, on maze-like grid maps with size up to 96× 96 for games (Bayili & Polat, 2011).

D Road networks
BCA∗ has been also evaluated by Sauvanet & Néron (2010) on a moderated size map
from Berlin of 77,940 nodes and 228,462 arcs. Two values are used for the costs: travel
distance (in meters) and insecurity (distance× insecurity of the road). They tested 4
groups of 20 instance problems with different ranges of Pareto-optimal solutions. The
hardest 20 instances contain from 200 to 600 efficient solutions.

Two additional maps are used by the thesis of Sauvanet (2011) from Paris (29,086
nodes and 64,358 arcs) and San Francisco Bay area (174,975 nodes and 435,959 arcs)
to test multiobjective cyclist route planning with BCA∗ algorithm. Four categories of
difficulty analogous to those presented in (Sauvanet & Néron, 2010) are found in the ins-
tances used by Sauvanet (2011). The hardest instances have up to 600 Pareto-optimal
solutions for the map of San Francisco and 300 for the map of Paris. Three objectives
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have been also tested for some instances of the Berlin map, adding as objective the
effort made by the cyclist (e.g. due to a slope).

3.1.3 Summary

Three main types of test sets have been proposed in the literature: random graphs,
grids and realistic maps. Under the first category, several generators have been used:
NETGEN, sprand or NETMAKER. But they seem not to be able to generate the
difficult problems represented by grid classes. Only fully connected graphs can be
roughly compared.

For grids, several shapes and sizes have been investigated. It is important to note
that in these sets of problems searching from one corner to the opposite can be consi-
dered as the norm. GRIDGEN or spgrid are common generators.

In the case of realistic scenarios, only relatively small-sized maps have been used,
when compared to single-objective search. The main reason is that multiobjective
search takes a long time to solve big road map problems due to the inherent complexity
of the problem.

In the following section some empirical benchmarks used in this thesis are presented,
inspired in the typical cases found in the literature. Additionaly, new scenarios are
investigated.

3.2 Test Sets used in this Thesis

This thesis presents a combination of randomly generated graphs and realistic route
planning problems for experimental evaluation. Each one is adequate to evaluate dif-
ferent aspects of the algorithms and heuristics analyzed in this thesis. This section
gives a detailed explanation of the characteristics of each one of the datasets used.

Artificially generated environments, like random grids, allow the controlled eval-
uation of performance with respect to different parameters, like number of nodes or
correlation between objectives. On the contrary, realistic scenarios come with an im-
plicit set of fixed parameters, e.g. the number of edges in a road map (like the number
of cities connected to Malaga) can not be changed. However, the evaluation of an
algorithm with well known datasets (usually large size maps) allows the simulation of
performance under realistic conditions.

3.2.1 Artificial Problems: Random Grids

Random graphs are one the most recurrent test sets in the literature. However, gradual
increase in problem difficulty is more controversial to calibrate than in grids, as several
parameters have to be settled, like branching factor, number of arcs, and the set of nodes
allowed to be connected by outgoing arcs to a particular node. Square grids with a fixed
vicinity are easier to understand and the difficulty can be gradually increased only by
increasing size. Besides, a computational study from Paixão & Santos (2008) reveals
that for similar configurations, random grids have a large number of nondominated
paths and Pareto-optimal solutions.
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Random grids are common in the literature (Raith & Ehrgott, 2009; Guerriero &
Musmanno, 2001) and at the same time realistic for certain applications like pathfind-
ing in games (Bayili & Polat, 2011). In this thesis, random bidimensional square grids
without obstacles are the main artificial testbed for heuristic search algorithms pre-
sented in chapter 2. Nevertheless, a smaller set of random graphs is also considered
(see section 3.2.2).

The random grids presented in this section are designed to allow the controlled
evaluation of performance with respect to solution depth and correlation between ob-
jectives. For this purpose, square grids of varying size have been randomly generated.
A vicinity of four neighbours was used. Bidimensional costs (c1

ij , c
2
ij) were considered

for each arc from i to j. Cost values were integers calculated randomly in the range
[1, 10] using the scheme proposed by Mote et al. (1991). A positive association between
arc costs is introduced using a correlation multiplier, 0 ≤ ρ ≤ 1. The first integer arc
cost c1

ij is randomly generated using a uniform distribution in the range specified. The
second arc cost is generated in the same range as

c2
ij = ρ× c1

ij + (1− ρ)× c2∗
ij (3.1)

where c2∗
ij is another integer randomly generated using a uniform distribution in

the same range. However, this procedure does not cover the cases where there exists
a negative association between arc costs, i.e. −1 ≤ ρ ≤ 0. In order to consider these
cases, the following additional formula has been applied,

c2
ij = 1 + (cmax − (|ρ| × c1

ij + (1− |ρ|)× c2∗
ij )) (3.2)

where cmax is the maximum value in the cost range (in the examples presented
cmax = 10). The values of c2

ij were rounded to the nearest integer in all cases.
The values of ρ considered in the experiments performed in this thesis were 0.8,

0.4, 0, -0.4, and -0.8. Notice that ρ = 1 implies that c1
ij = c2

ij , i.e. a single objective
problem. Decreasing values of ρ yield progressively more difficult problems, where c1

ij

differs more and more from c2
ij . When ρ = −1 the randomness is partially lost, since

both vector components follow a linear rule c2
ij = 1 + cmax − c1

ij .
Two different classes of problem instances are considered, presenting quite different

characteristics and difficulty.

3.2.1.1 Class I Square Grids

Let s be the number of nodes in each of the dimensions in the grid. In the first class (I),
problems were generated searching from one corner (the upper left) of the grid (0, 0),
to the opposite (s− 1, s− 1) (down right). Solution depth is d = 2s− 2 in this case.

For class I, a problem set was generated with sizes s varying from 10 to 100 in steps
of 10, and 10 problems for each size. Therefore, solution depth varies from 20 to 200
in steps of 20. The total number of instance problems generated for this case is 500,
i.e. 100 for each value of ρ. Nodes are connected in both directions. Thus, the total
number of nodes and arcs for the larger size grids (100 × 100) is 10,000 and 39,600
respectively. The average number of Pareto-optimal solution paths for the ten larger
problems (100 × 100) for each correlation is 8.6, 96.2, 274.7, 435.6 and 772.3 in order
of decreasing value of ρ.
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3.2.1.2 Class II Square Grids

In the second class (II), the size was set to s = 2d + 1, with the start node at (d, d),
and the goal node (in the middle) at (d/2, d/2) , i.e. placing the goal node at depth d
from start node (i.e. at a 1/4 of a corner).

For class II, d varies from 10 to 100 in steps of 10 with 10 problems for each size.
The total number of instance problems generated for this case is 500, i.e. 100 for each
value of ρ. Nodes are connected in both directions. Thus, the total number of nodes
and arcs for the largest-sized grids (200× 200) is 40,000 and 159,200 respectively. The
average number of Pareto-optimal solution paths for the ten larger problems (200×200)
for each correlation is 5, 43.6, 124.8, 192.5 and 376.4 in order of decreasing value of ρ.

Notice that in class II test problems the goal node is not placed as deep as in class
I. However, class II problems present their own difficulty since search is generally not
constrained by grid boundaries.

3.2.2 Artificial problems: Random graphs

In addition to random grids, this thesis considers also a set of random graph problems
with three objectives used in the work of Caramia et al. (2010).

These random graphs6 allow the evaluation of performance depending on number
of nodes n, arc density d and number of objectives k. Different problem sets are
considered with a number n of nodes equal to 100, 200 and 300. For each of these
sizes, density values d were set to 0.2, 0.5 or 0.7. Each arc is labelled with a vector
of three costs. Each one is an integer value in the range [1,100]. These problem sets
were originally generated with a random graph generator (sprand.exe) from the 9th
DIMACS Implementation Challenge on Shortest Paths7.

For the evaluation of biobjective random graphs, two of these three arc costs were
selected by pairs, using the same configuration of node-density. Three additional ana-
logous sets of instances were derived from the original set of problems with three objec-
tives. The computation of Pearson’s correlation coefficient over pairs of two objectives
is displayed in table 3.1. In general, these three objectives are linearly uncorrelated,
resulting in moderately difficult multiobjective problems.

Source and goal nodes were set for all instances to nodes 1 and n, respectively. Ten
different random instances are available for each of the nine combinations of n and d.
Thus, the total number of problem instances for each category is 90, in total 360 pro-
blem instances. These four sets of instance problems let us evaluate the performance of
algorithms when considering the simultaneous optimization of two objectives compared
to three objectives at the same time. The biggest instances (n = 300, d = 0.7) have
on average 26,423 arcs. The average number of Pareto-optimal paths for these ten
hardest problem instances is 71.20 for the three objectives configuration, and 12.10,
12.30, 11.70 for the combinations of objectives (1,2), (1,3), and (2,3), respectively.

6The set of random graph files was kindly provided by Antonio Iovanella
7http://www.dis.uniroma1.it/~challenge9/

http://www.dis.uniroma1.it/~challenge9/
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Objectives ρ

1,2 0.01
1,3 0.01
2,3 -0.09

Table 3.1: Correlation between pairs of objectives for random graphs problems.

3.2.3 Realistic Route planning problems: 9th DIMACS challenge
maps

In this thesis, route planning has been selected as a realistic domain for the application
of multiobjective heuristic search. Route planning is a current research area with great
practical importance, where graph search algorithms are put on test. Road maps can
be defined as graphs where arcs represent roads, and nodes represent road junctions.
Formal and empirical evaluation of search algorithms on road maps has a long tradition
(Pearl, 1984, section 5.3) (Zhan & Noon, 1998). However, little work has been carried
out on multiobjective route planning.

The main testbed used in this thesis for the domain of route planning comprise pro-
blems over maps from the “9th DIMACS Implementation Challenge: Shortest Paths”.
These are publicly available and include two objectives: time and distance. This sce-
nario has been extended in this thesis, as explained below. Additionally, other realistic
maps have been considered (see sections 3.2.4 and 3.2.5).

A set of twelve road maps of increasing size was prepared as part of the Challenge
for benchmarking of algorithms 8. These include arcs representing road segments, and
nodes representing road junctions. Coordinates (longitude and latitude) are provided
for each node. The data were originally taken from the 2000 U.S. Census Bureau’s
TIGER/Line R© files (Topologically Integrated Geographic Encoding and Referencing
system).

Two sets of realistic multiobjective road map problems were built from the original
data:

• The first set of problems includes as objectives the time and distance values
provided in the files of the challenge.

• The another set of problems includes as objectives the time and economic cost.
The former is taken directly from the files of the challenge while the latter is built
specifically for this thesis.

Particularly, four maps from the DIMACS map set were selected in the first case
(time vs distance): New York City, San Francisco Bay, Colorado and Florida. Some
information about these maps is presented in table 3.2. A sample rendering of the New
York city map is shown in figure 3.1. A set of 50 problems were generated for each
map, selecting random start and goal nodes using a uniform distribution.

According to the information provided by the Challenge organizers, arcs are labelled
with two different cost values: physical distance (c1) and travel times (c2). These are

8http://www.dis.uniroma1.it/~challenge9/download.shtml#benchmark

http://www.dis.uniroma1.it/~challenge9/download.shtml#benchmark
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Figure 3.1: Rendering of the New York City map.

the two objectives to be minimized by multiobjective search in the first problem set,
and shall be grouped in a vector cost ~c = (c1, c2). The cost of a path is calculated as
the sum of the costs of its component arcs. Each arc cost is defined as follows,

• Original arc distances were calculated as the so-called great circle distance be-
tween its nodes. This is the shortest distance taking into account the Earth’s
curvature and average radius. Physical distance values are integers obtained
from the original distances using the formula c1 = (int)(distance × 10 + 0.5),
i.e. the original distance data were multiplied by 10, and truncated after adding
0.5. This means that each arc cost represent decimeters and that each arc can
accumulate, in the worst case, an error of 0.5 units.

• Travel time values are calculated as the integer part of the original distance
divided by an average speed factor that depends on road category, i.e. c2 =
(int)(distance/factor). There are four such categories, obtained from the TIGER/-
Line data, with associated factors 1.0 (A - primary highway), 0.8 (B - primary
road), 0.6 (C - secondary and connecting road), and 0.4 (D - local, neighborhood,
and rural road).

Travel time, distance or economic cost are frequent objectives to be minimized, and
most current road planners offer the opportunity to optimize each of them individually.
While most current road planners optimize distance or time, it is interesting the op-
portunity to evaluate other factors. While these two seem highly correlated, both are
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Name Location Nodes Arcs ρ Avg. |C∗|
NY New York City 264,346 730,100 0.96 198.62
BAY San Francisco Bay 321,270 794,830 0.98 118.82
COL Colorado 435,666 1,042,400 0.98 426.62
FL Florida 1,070,376 2,712,798 0.97 738.76

Table 3.2: Road networks from DIMACS challenge (time/distance).

Name Location Nodes Arcs ρ Avg. |C∗|
NY2 New York City 264,346 730,100 0.16 2086.6

Table 3.3: Road network from DIMACS challenge with modified objectives (time/eco-
nomic cost).

conflicting with economic cost. Thus, an alternative case was also considered. Two ob-
jectives are optimized simultaneously: travel time, and economic cost, which includes
fuel cost and highway tolls.

The economic cost attribute is not available for DIMACS maps. A realistic cost
value was calculated for the problems in this thesis according to the following consi-
derations,

• Travel cost results from the addition of fuel cost and tolls.

• All roads type A are set to pay a toll of 1.86 cents per Kilometer (3 cents per
mile). All other roads are toll-free. A rendering of the roads type A of the map
is shown in figure 3.2.

• Fuel cost depends on fuel price, fuel efficiency and travelled distance.

• Road type. Fuel efficiency depends on road type, and particularly on its allowed
maximum speed. We associate current speed limits in the NY City area to every
TIGER/Line road type as shown in table 3.4. Road types were calculated using
the physical distance, travel time, and time factors information.

• Fuel efficiency. Fuel efficiency is usually measured in miles per gallon (mpg)
or litres per 100 kilometer (l/100Km). Fuel efficiency depends heavily on travel
speed and vehicle type (and also on the particular model and production year).
Instead of conducting our experiments for a particular car model, we used general
gas mileage values provided by a standard chart from the U.S. Department of
Energy 9. These values are shown in table 3.4. This chart reflects the fact that,
in general, maximum fuel efficiency is usually achieved at speeds in the range
80-90 Km/h (50-55 mph).

• Fuel price. The price of fuel was set to a current value in the New York City area
of 375 cents/gallon (99 cents/litre).

9http://www.fueleconomy.gov/feg/drivehabits.shtml

http://www.fueleconomy.gov/feg/drivehabits.shtml
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Figure 3.2: Rendering of primary (toll) highways of the New York City map.

Road type Limit (mph) Limit (Km/h) mpg l/100Km
A 65 105 27 8.71
B 55 89 30 7.84
C 50 80 30 7.84
D 30 48 29 8.11

Table 3.4: Speed limits and fuel efficiency values associated to each road type.

• In summary, fuel cost in cents was calculated for each arc in the graph according
to the fuel spent travelling its distance with its assigned general fuel efficiency
rate.

While these calculated costs may not reflect precisely actual travel costs, they are
sufficiently realistic for experimentation purposes 10. The computation of Pearson’s
coefficient over the two objectives gives a value of 0.16, i.e. the objectives are not
linearly correlated. This is therefore a moderately difficult multiobjective problem.

A set of 20 different route planning problems were defined over this modified map of
New York, selecting random origin and destination nodes using an uniform distribution.

10A file in DIMACS format with the calculated travel costs is available from the author
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Name Location Nodes Arcs ρ Avg. |C∗|
DC Washington D.C. 9,559 39,377 0.99 3.33
RI Rhode Island 53,658 192,084 0.99 9.44
NJ New Jersey 330,386 1,202,458 0.99 10.66

Table 3.5: Modified Road networks from Tiger/Line Files of DIMACS challenge.

3.2.4 Realistic Route planning problems: modified DIMACS maps

A set of random route planning problems in road maps was proposed by Raith &
Ehrgott (2009) 11 and later used in the thesis of Raith (2009). These comprise nine
random problem instances for each one of three different maps: Washington D.C. (DC),
with 9,599 nodes; Rhode Island (RI), with 53,658 nodes; and New Jersey (NJ) with
330,386 nodes. Two objectives were considered by Raith & Ehrgott (2009): travel time
and physical distance.

The maps files were taken from the assembly of Tiger/Line R© data of (U.S. Census
Bureau, 2002) made by Schultes (2005) for the DIMACS challenge 12, and were slightly
modified:

• The original data arcs were duplicated to obtain an undirected graph.

• These maps represent cuts of a real U.S. map. Each map corresponds to a different
state. Therefore, there is no guarantee that all nodes are connected and some
arcs can contain the value (0,0). A Hamiltonian cycle with “high” cost values
(10,000) for both time and distance was added in order to ensure connectedness
(specially in the case of RI map).

In this thesis, some adaptations were performed over these files prepared by Raith
& Ehrgott (2009). In particular, arcs with values (0,0) should be in general avoided.
Preliminary tests showed that the arcs with cost (10000,10000) in the Hamiltonian
cycle and some of the arcs with cost (0,0) can influence the number of Pareto-optimal
solution paths. In order to obtain the same number of efficient solutions reported
by Raith & Ehrgott (2009); Raith (2009), we remove only arcs with cost (0, 0) when
the origin and destination node is the same13. Besides, the additional arcs from the
Hamiltonian cycle with values (10000,10000) were also preserved in the data files used
in this thesis.

More information about the maps can be found in table 3.5. The computation of
Pearson’s coefficient over the two objectives gives a value of ρ = 0.99 for all maps, i.e.
there is a strong linear correlation between both objectives.

11The road maps problem set and data files were kindly provided by Andrea Raith
12http://www.dis.uniroma1.it/~challenge9/data/tiger/
13There are some remaining cycles in the maps between two nodes, represented by two reciprocal

arcs of cost (0, 0). Therefore, the actual number of arcs in the data files used in this thesis is slightly
different from the numbers presented by Raith & Ehrgott (2009) and shown in table 3.5. However,
results are not affected by this particular detail.

http://www.dis.uniroma1.it/~challenge9/data/tiger/
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Figure 3.3: Geo-referenced graph of the Lazio region in Italy.

3.2.5 Realistic Hazmat Transportation Problems

Hazardous material transportation (hazmat) is another important practical problem
recurrently found in the literature on shortest paths. The selection of optimal routes
inherently involves the consideration of multiple conflicting objectives. These include
the minimization of risk (e.g. the exposure of the population to hazardous substances
in case of accident), transportation cost, time, or distance.

In this thesis, a set of 50 problem instances with random source and destination
nodes was generated over a real road network of the Italian region of Lazio used by
Caramia et al. (2010). Figure 3.3 shows a rendering of the map with its 311 (geore-
ferred) nodes and 879 arcs. Each arc is labelled with a vector of three costs, which
represent values of distance (in meters), time (in seconds) and societal risk (defined
as the “product between the population inside the impact zone and the incident prob-
ability”) obtained from data in the original files of Caramia et al. (2010) 14. Three
additional road networks were derived, each one with a different combination of pair of
objectives. The same set of source and destination nodes was used. The computation
of Pearson’s correlation coefficient over pairs of two objectives can be observed in table
3.6.

3.2.6 Significance of the test sets

For grid problems, the grid sizes and number of Pareto-optimal solution paths are in the
range of test instances of (Raith & Ehrgott, 2009; Caramia et al., 2010) and (Martins

14The data files were kindly provided by Antonio Iovanella
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Name Objectives Nodes Arcs ρ Avg. |C∗|
Lazio Time, distance & societal risk 311 879 3.96

Time & distance 311 879 0.99 1.06
Time & societal risk 311 879 -0.18 3.92
Distance & societal risk 311 879 -0.18 3.36

Table 3.6: Road networks for hazmat problems.

et al., 2007; Paixão & Santos, 2007) (in the biobjective case) for example. However,
larger number of nodes and arcs and a higher number of nondominated solutions have
been used by some authors (for example with more than two criteria (Martins et al.,
2007; Paixão & Santos, 2007).

For random graphs, the parameters evaluated (number of nodes, density, range of
cost values and number of criteria) are only in the range of some papers. There are
authors who have used larger random graphs with higher number of nodes, arcs and
Pareto-optimal paths (de Lima Pinto et al., 2009; Guerriero et al., 2001) or even a
larger number of criteria (Martins et al., 2007; Paixão & Santos, 2007). However, the
set of problems is enough for the experimentation purposes: the selected random graphs
are used only to compare the impact on the algorithm performance of the number of
criteria.

For realistic test sets several different scenarios have been included: large sized
multiobjective road maps, difficult multiobjective problems by uncorrelated objectives
and hazmat problems with more than two objectives. The combination of all these
scenarios and the dimension of parameters evaluated are enough to be significant test
cases to the date of presentation of these results.

3.3 Performance Evaluation of Multiobjective Search

In the experiments presented in this thesis we try to characterize the performance of
the algorithms with respect to a number of problem dependent factors. These include
solution depth, correlation between objectives (Mote et al., 1991; Brumbaugh-Smith &
Shier, 1989), or the presence/absence of heuristic information.

It is important to note that in multiobjective search algorithms, the number of nodes
considered is no more a significant performance measure. Most analyses concentrate
on the number of iterations or distinct labels expanded by the algorithm. However,
formal analyses (Stewart & White, 1991; Mandow & Pérez de la Cruz, 2010a) do not
characterize whether differences in the number of expansions are significant for time
performance in practice.

Thus, recent experimental evaluations in the multiobjective field (Raith & Ehrgott,
2009; Sauvanet & Néron, 2010) include both space and time performance in the com-
parison of algorithms. Moreover, the nature of the problem may require the observation
of some other dimension, as the study from Iori et al. (2010) suggests for the blind case,
where the number of comparisons performed by the algorithms are considered as well.

Besides problem dependent factors, there are also other implementation dependent
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issues, most notably the selection strategy for OPEN alternatives. Among different
possibilities, lexicographic order is the most usual one, but other are possible, e.g.
linear rules like those explained in section 2.2.1 or the one explained in section 2.4.3
for TC algorithm. The evaluation of alternative orders has been recently considered
(Iori et al., 2010) as an important performance issue. Additionally, in the literature,
several authors have analyzed different strategies for the management of the OPEN
alternatives (Brumbaugh-Smith & Shier, 1989; Guerriero & Musmanno, 2001; Paixão
& Santos, 2007).

Some other particular details of the implementation are important as well for the
comparison of time performance,

• Architecture of the machine where the test is run, e.g. type of machine/server,
multicore, multithread, etc.

• Speed of the processor, and number of simultaneous thread executions

• Amount of physical memory available (in Gigabytes) in the system and the
amount of memory available to the program

• Programming language used, e.g. LISP or C++. The 9th DIMACS implemen-
tation challenge suggested the use of a public reference code and the publication
of the set of instances considered, in order to be able to use the very same set
of instances and a public code as benchmarking reference. Some authors have
followed this suggestion15. The set of instance problems used in this thesis will
be then publicly available 16

• Implementation of the OPEN queue, e.g. whether a binary heap is used or not,
or whether only the current best cost estimate of each node was kept in OPEN
at each iteration, as suggested by Mandow & Pérez de la Cruz (2005)

• Implementation of the Gop (and Gcl), e.g. whether sets were ordered (or not)
according to their respective linear evaluation functions like in TC algorithm or
whether these sets were implemented as unordered lists or another data structure

• The implementation of “merge” and “prune” operations, i.e. the strategies used
for the comparison of new alternatives against known labels of the node (Skriver
& Andersen, 2000; Raith, 2009; Iori et al., 2010)

• The particular instances and/or source/goal nodes used. Paixão & Santos (2007)
remark that a statistical analysis performed by (Santos et al., 2005) suggests that
a minimum number of 50 instances should be taken for each class of graph tested

Concerning to the practical implementation of algorithms in this thesis,

• The algorithms NAMOA∗,MOA∗ and TC were implemented to share as much
code as possible. The programming language used is ANSI Common Lisp. Each
problem instance was solved using an individual process with a single thread.

15For example, a public reference code and the set of test instances used by Martins et al. (2007)
are publicly available at http://www.mat.uc.pt/~zeluis/INVESTIG/MSPP/mspp.htm

16 http://alef.iaia.lcc.uma.es/projects/alef-public/wiki

http://www.mat.uc.pt/~zeluis/INVESTIG/MSPP/mspp.htm
http://alef.iaia.lcc.uma.es/projects/alef-public/wiki
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• The OPEN lists were implemented as binary heaps but only the current best
cost estimate of each node was kept in OPEN at each iteration, as suggested by
Mandow & Pérez de la Cruz (2005)

• Unless explicitly noted, lexicographic order was used to choose among nondo-
minated open alternatives in NAMOA∗ and MOA∗ (see sections 2.4.1 and
2.4.2)

• The Gop sets for NAMOA∗ and G sets for MOA∗ were also lexicographically
ordered (unless explicitly noted)

• TC use the heuristic rule described in (2.23), see section 2.4.3

• The Gop sets for TC were ordered according to the linear evaluation function
described by (2.23) in section 2.4.3



Part II

Formal & Empirical Analyses

This second part comprises both formal and empirical analyses performed through
this research work, and contains all the contributions of this thesis. On the one hand,
formal analyses sum up the previous theoretical results found for the three algorithms,
and completes the characterization of MOA∗ and ~hTC heuristic. On the other hand,
empirical analyses comprise the evaluation of existing algorithms with known heuristics,
and the development of improvements over algorithms and heuristics.

• Chapter 4 analyzes the theoretical performance of NAMOA∗, MOA∗ and TC.
The chapter formally proves a worse behaviour of MOA∗ with perfect heuristic
information when compared to blind search. The heuristic function ~hTC is
also formally shown in this chapter to be consistent and therefore relevant for
multiobjective search.

• Chapter 5 empirically tests the actual performance of the three algorithms over
several benchmarks previously described in chapter 3, both in the case of blind
search and heuristic search, providing a better understanding of the best alter-
native.

• Chapter 6 provides a bounded calculation method for the ~hTC heuristic which
saves precomputation effort. Besides, multiobjective heuristic search is evaluated
on potential realistic scenarios, like route planning in road maps and hazmat
problems.

• Chapter 7 develops more informed heuristics by using multiple heuristic esti-
mates. A new precalculation method is presented and a comprehensive empirical
evaluation is provided.





Chapter 4

Formal Analysis on Multiobjective
Algorithms

4.1 Introduction

The A∗ algorithm (Hart et al., 1968) is a heuristic shortest path algorithm with
important formal properties. Particularly, the algorithm is admissible when provided
with optimistic heuristic cost estimates. When these estimates are also consistent, more
informed heuristics always result in equally or more efficient search (Pearl, 1984). In
the absence of heuristic information (uninformed search), A∗ performs like Dijkstra’s
algorithm.

Moreover, when the heuristics are monotone, the A∗ algorithm is optimal in the
number of steps to reach the solution. Any algorithm in its class must expand at least
the same labels. The properties of A∗ are summarized in section 2.1.2.1.

Three multiobjective counterparts to A∗ have been presented in section 2.4, namely
MOA∗, NAMOA∗ and TC algorithms. Their differences mainly lie in their label
selection procedure and filtering/pruning processes. While MOA∗ maintains a list of
open nodes, similar to A∗, TC and NAMOA∗ maintain a list of open labels, and
select them individually. When a node is selected in MOA∗, all labels associated to
that node are considered for expansion. NAMOA∗ accept any selection procedure of
nondominated alternatives while TC has a particular scalar selection rule.

These three algorithms have reached different degrees of formal characterization,

Admissibility Theoretical proofs on the admissibility of search were presented for
MOA∗ (Stewart & White, 1991), and recently also for NAMOA∗ (Mandow &
Pérez de la Cruz, 2006, 2010a). On the contrary, no theoretical proofs on the
admissibility of TC were presented by Tung & Chew (1988, 1992), but a simple
justification.

Optimality A recent formal analysis argued that a relevant measure in the effi-
ciency of multiobjective search is the number of explored labels, and showed
that NAMOA∗ is optimal according to this measure when used with consistent
heuristics (Mandow & Pérez de la Cruz, 2010a). The same result does not apply
to MOA∗, even nor to TC algorithm. TC shares with NAMOA∗ a label-
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selection strategy. However, none of the paths expanded by NAMOA∗ can be
avoided in an admissible search.

Efficiency In the case of NAMOA∗, it has been shown that the use of more informed
consistent heuristics results in an equal or smaller number of label expansion
operations by the algorithm (Mandow & Pérez de la Cruz, 2010a). This result
is analogous to the properties of A∗. However, regarding MOA∗ no equivalent
result has ever been presented. In fact, section 4.3 shows that this property
does not hold in general for MOA∗. A class of problem instances is described
in section 4.4 where the performance of MOA∗ (measured by the number of
expanded labels) can degrade considerably with more informed heuristics. A
similar result was recently presented for the blind case (H(n) = ~0, ∀n ∈ N) for
an analogous family of instance problems (Mandow & Pérez de la Cruz, 2010b).
Regarding TC algorithm, the authors did not devise it for blind search. The
precalculated heuristic multiobjective function introduced by (Tung & Chew,
1992) is analytically examined in section 4.7. The performance of this heuristic
algorithm is expected to be similar to NAMOA∗ heuristic version. However,
some details in its conception (see section 2.4.3) are revealed to cause a worse
performance than NAMOA∗.

This chapter is organized as follows. Section 4.2 recalls formal aspects ofNAMOA∗.
The same properties are analyzed for the case of MOA∗ in section 4.3 and the formal
characterization of this algorithm is completed in the subsequent sections. A class of
simple multiobjective search problems is presented in section 4.4. The performance of
MOA∗ over this class of problems is analyzed for the blind and perfectly informed
cases in sections 4.5 and 4.6 respectively. The second part of the chapter, section 4.7,
involves the study of TC algorithm and its original heuristic function. The chapter is
concluded by a discussion.

4.2 Formal characterization of NAMOA∗

4.2.1 Admissibility

The algorithm A∗ is said to be admissible under reasonable conditions (see section
2.1.2.1), as it finds the optimal solution whenever a solution exists. For multiobjective
search, the concept must be generalized.

Definition 4.1 (Mandow & Pérez de la Cruz, 2006, p. 184) A heuristic function H(n)
is said to be admissible when for all nondominated solutions P ∗ = (s = n0, n1, . . . , ni,
ni+1, . . . , nl = γl), being γl ∈ Γ, and for all subpaths P ∗i = (n0, . . . , ni) of P ∗ the
following holds,

∃~h ∈ H(ni) | ~g(P ∗i ) + ~h � ~g(P ∗) (4.1)

Property 4.1 (Admissibility) When the graph G = (N,A) is locally finite and H(n)
is a lower bound (admissible) the search is considered admissible, i.e. it is guaranteed
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to find all nondominated optimal solutions, or does not terminate if there are infi-
nite solutions. NAMOA∗ is admissible even on infinite graphs with some additional
assumptions:

∀n ∈ N ∧ ∀~h = (h1, . . . , hq) ∈ H(n), ∀k ∈ [1, q], hk(n) ≥ 0 (4.2)
∀(n, n′) ∈ A,∧∀~c(n, n′) ∈ ~c, ∀k ∈ [1, q], ck(n, n

′) ≥ ε > 0

These property of NAMOA∗ relies on these assumptions and the following theo-
retical results:

Theorem 4.1 (Mandow & Pérez de la Cruz, 2010a, Theorem 4.2) For each nondo-
minated solution path P ∗ = (s, n1, . . . , ni, ni+1 . . . γ) with cost ~g(P ∗) = ~c ∗, there is
always before its discovery a subpath P ∗i = (s, n1, . . . , ni) of P ∗ such that:

a) P ∗i is recorded in SG

b) ~g(P ∗i ) ∈ Gop(ni)

c) ∃~f ∈ F (P ∗i ) | ~f � ~c ∗

Theorem 4.2 (Mandow & Pérez de la Cruz, 2010a, Theorem 4.3) If there is at least
a solution path P ∗, the algorithm terminates even on infinite graphs.

Corolary 4.1 (Mandow & Pérez de la Cruz, 2010a, Corollary 4.4) Whenever there is
at least a solution path P ∗, the set of nondominated solution costs C∗ is finite.

Lemma 4.1 (Mandow & Pérez de la Cruz, 2010a, Lemma 4.5) Each path P ∈ Psn
selected from OPEN for expansion satisfies upon selection that,

∃~h ∈ H(n) | @~c ∗ ∈ C∗, ~c ∗ ≺ ~g(P ) + ~h (4.3)

Theorem 4.3 (Mandow & Pérez de la Cruz, 2010a, Theorem 4.6) A dominated solu-
tion can never be selected for expansion.

Corolary 4.2 (Mandow & Pérez de la Cruz, 2010a, Corollary 4.7) The set of found
solution COSTS is at any time a subset of the set of all nondominated solution costs,
i.e. COSTS ⊆ C∗

Corolary 4.3 (Mandow & Pérez de la Cruz, 2010a, Corollary 4.7) For each path P in
SG whose evaluation vectors are dominated by some solution cost ~c ∗ ∈ C∗, i.e.

∀~f ∈ F (P ), ∃~c ∗ ∈ C∗ | ~c ∗ ≺ ~f (4.4)

none of its possible extensions will be generated and stored in SG.

Theorem 4.4 (Mandow & Pérez de la Cruz, 2010a, Theorem 4.9) Since NAMOA∗ sa-
tisfies all the above conditions, NAMOA∗ is admissible.
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4.2.2 Efficiency of heuristics

For the single objective case, Pearl (1984, pp.79-85) analyzed the effect of heuristic
information on the efficiency of A∗. For the multiobjective case, the nature of multiob-
jective problems must be taken into account in order to make a parallel analysis. Some
generalizations must be made,

Definition 4.2 (Mandow & Pérez de la Cruz, 2010a, Definition 5.1) A path P = (s =
n0, n1, n2, . . . , nk) is said to be C-bounded with respect to H(n) (or C(H)-bounded) if
for all subpaths Pi = (n0, n1, . . . , ni) of P it holds that,

∃~h ∈ H(ni) | @~c ∈ C, ~c ≺ ~g(Pi) + ~h (4.5)

By definition, a C∗-bounded path will never be filtered (see Lemma 4.1 and Theorem
4.3). Therefore, such paths will be selected for expansion or pruned.

Definition 4.3 (Mandow & Pérez de la Cruz, 2010a, Definition 5.6) A multiobjective
heuristic function H(n) is consistent if for all pairs of nodes n, n′ in the graph, for
all nondominated path between them P = (n, . . . , n′), and for all heuristic cost vector
~h′ ∈ H(n′), the following condition holds,

∃~h ∈ H(n) | ~h � ~c(P ) + ~h′ (4.6)

Definition 4.4 (Mandow & Pérez de la Cruz, 2010a, Definition 5.7) A multiobjec-
tive heuristic function H(n) is monotone when for all arcs (n, n′) in the graph, the
following condition holds,

∀~h′ ∈ H(n′) ∃~h ∈ H(n) | ~h � ~c(n, n′) + ~h′ (4.7)

The consistency and monotonicity properties are equivalent conditions for H(n)
(Stewart & White, 1991, Lemma 18). When the H(n) function is monotone then it is
also admissible (Stewart & White, 1991, Lemma 19).

Theorem 4.5 (Mandow & Pérez de la Cruz, 2010a, Theorem 5.9) If H(n) is con-
sistent, then a necessary and sufficient condition for NAMOA to select some path
P = (s, . . . , n) for expansion is that:

a) P be a nondominated path from s to n

b) P be C∗-bounded

Definition 4.5 A heuristic function H2(n) is said to be at least as informed as
other H1(n) when both are admissible and for all nodes n,

∀~h2 ∈ H2(n) ∃~h1 ∈ H1(n) | ~h1 � ~h2 (4.8)

Theorem 4.6 (Mandow & Pérez de la Cruz, 2010a, Theorem 5.10) Let H1(n) and
H2(n) be two admissible heuristics for the same problem. Let H2(n) be additionally
monotone. Let NAMOA∗1 and NAMOA∗2 be two versions of NAMOA∗ that differ
only in the use of different heuristic functions H1(n) and H2(n) respectively. If H2(n)
is at least as informed as H1(n), then all paths selected for expansion by NAMOA∗2
will also be selected for expansion by NAMOA∗1.



4.2. Formal characterization of NAMOA∗ 67

Property 4.2 (Efficiency) When ∀n ∈ N, H(n) = {~0}, NAMOA∗ is analogous
to the blind algorithm of Martins (1984c) or Raith (2009). When H(n) is consistent
or monotone, only the strictly necessary C∗-bounded paths will be expanded, and the
pruning of those C∗-bounded paths not belonging to nondominated solutions will be
maximal, analogously to the single-objective case. If the costs of some optimal solution
is denoted by vectors ~c ∗, NAMOA∗ will always expand for sure all labels with some
~f(n) ≺ ~c ∗. Given consistent heuristic functions, more actual suboptimal alternatives
can be pushed out the frontiers ~f(n) = ~c ∗ for all ~c ∗ (i.e. out of F (n) = C∗, the Pareto-
frontier of efficient optimal solutions) with more informed heuristics, reducing search
effort.

4.2.3 Optimality

For the single objective case, there is no optimal algorithm in the number of expansion
operations (Mérõ, 1984) nor in the distinct nodes expanded (Dechter & Pearl, 1985).
However, A∗ is shown to be optimal over admissible algorithms by both measures
when applied with consistent heuristics.

For multiobjective problems, the set of expanded nodes is no longer a significant
measure. There can be many different nondominated paths thay may reach each node
in the graph. Thus, the analysis has to be made in terms of the number of path
expansions (Mandow & Pérez de la Cruz, 2010a).

Let Mad be the class of admissible multiobjective search algorithms. These are
compared in terms of path expansions of previously generated paths emanating from
source node s. This excludes other strategies like bidirectional search. Each instance
problem can be defined by a cuadruple I = (G, s,Γ, H). Let also PC∗ be the set of
paths expanded by NAMOA∗.

Definition 4.6 (Mandow & Pérez de la Cruz, 2010a, Definition 6.1) An algorithm
A ∈ Mad is said to dominate another algorithm B ∈ Mad when for every instance I,
the set PA of expanded paths by A is a subset of the set PB of expanded paths by B, i.e.
PA ⊆ PB.

Definition 4.7 (Mandow & Pérez de la Cruz, 2010a, Definition 6.2) An algorithm
A is optimal over Mad when dominates every algorithm B ∈ Mad. Algorithm A is
nondominated over Mad if no member of Mad dominates A.

Theorem 4.7 (Mandow & Pérez de la Cruz, 2010a, Theorem 6.4) Any algorithm
A ∈ Mad expands for each instance I all paths in PC∗, when the heuristic evaluation
functions H(n) are consistent.

Property 4.3 (Optimality) When the heuristic evaluation functions H(n) aremono-
tone, the cost of a path found by the algorithm is known to be optimal and the label
(path) found is consider permanent and does not need to be reopened. NAMOA∗ is
then optimal among the class of admissible best-first algorithms Mad.
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4.3 Formal characterization of MOA∗

4.3.1 Admissibility

Analogous assumptions were made by Stewart & White (1991) to the characteristics
of the graph G, the cost vectors ~c(n, n′) and the heuristic functions H(n).

Property 4.4 (Admissibility) When the graph G = (N,A) is locally finite, the costs
vectors are positive and bounded, there are no cyclic paths and H(n) is a lower bound
(admissible), the search withMOA∗ is considered admissible, even on infinite graphs.

This property relies on some analogous theoretical results to those presented for
NAMOA∗.

Definition 4.8 (Stewart & White, 1991, p. 789) Let P∗sn be the set of all efficient
paths between s and node n. The set of all nondominated path costs between s and node
n, G∗(n) is such that

G∗(n) = {c(P ) | P ∈ P∗sn} = nd{c(P ) | P ∈ Psn} (4.9)

Lemma 4.2 (Stewart & White, 1991, Lemma 12) For each non-dominated solution
path P ∗ = (s, n1, . . . , ni, ni+1 . . . γ) with cost ~g(P ∗) = ~c ∗, there is always before its
discovery a subpath P ∗i = (s, n1, . . . , ni) of P ∗ such that:

a) P ∗i is recorded in SG

b) ~g(P ∗i ) ∈ G(ni)

c) c(P ∗) ∈ G∗(n)

Theorem 4.8 (Stewart & White, 1991, Theorem 2) If there is at least a solution path
P ∗, the algorithm is complete and returns a solution path.

Corolary 4.4 (Stewart & White, 1991, Corollary 1) Whenever each solution path
P ∗ is finite, the set of nondominated solution costs C∗ is finite. Moreover, the sets
H∗(n), G∗(n), F ∗(n),P∗sΓ are also finite.

Lemma 4.3 (Stewart & White, 1991, Lemma 14) Each node selected from OPEN for
expansion by MOA∗satisfies upon selection that,

∃~f ∈ F (n) | @~c ∗ ∈ C∗, ~c ∗ ≺ ~f (4.10)

Theorem 4.9 (Stewart & White, 1991, Theorem 7) Each node selected from OPEN
for expansion by MOA∗satisfies upon selection that,

∃(~g ∈ G∗(n) ∧ ~h ∈ H(n)) | @~c ∗ ∈ C∗, ~c ∗ ≺ ~g + ~h (4.11)

Lemma 4.4 (Stewart & White, 1991, Lemma 15) A dominated solution can never be
selected for expansion.
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Theorem 4.10 (Stewart & White, 1991, Theorem 3) MOA∗ is admissible whenever
the set of heuristics H(n) is an admissible set of heuristics.

These properties are analogous to those found in NAMOA∗. However, some extra
operations are carried out byMOA∗, and some properties analogous to those of A∗ are
not found inMOA∗. In particular, corollaries 4.2 and 4.3 do not apply toMOA∗. This
implies that the set of solutions found so far (the set COSTS), and the sets of paths
recorded in SG (i.e. the sets G(n)) can contain at some particular stage of execution
some dominated members.

4.3.2 Optimality

The theorem 4.5 establishes the optimality of NAMOA∗ among Mad over problems
with consistent heuristics. No algorithm can skip a path expanded by NAMOA∗ with-
out compromising admissibility. As the corollaries 4.2 and 4.3 do not apply to MOA∗,
the set of paths expanded by NAMOA∗ is always a subset of those expanded by
MOA∗, which is dominated by NAMOA∗.

4.3.3 Efficiency of heuristics

The analysis of Stewart & White (1991) established some properties of MOA∗ in ana-
logy to those of A∗. Some definitions are equivalent to those described forNAMOA∗ in
section 4.2.2.

Definition 4.9 (Stewart & White, 1991, p. 804) A path P = (s = n0, n1, n2, . . . , nk)
is said to be C-nondominated with respect to H(n) if for all nodes ni in P exists a
path Pi = (n0, n1, . . . , ni) such that,

∃~h ∈ H(ni) | @~c ∈ C, ~c ≺ ~c(Pi) + ~h (4.12)

Definition 4.10 (Stewart & White, 1991, p. 806) A set of heuristic functions is said
to be consistent with respect to the associated cost and preference structure if for all
pairs of nodes n, n′ in the graph such that n′ ∈ {N\s} and n ∈ ANCS(n′), and for
all nondominated path between them P = (n, . . . , n′), and for all heuristic cost vector
~h′ ∈ H(n′), the following condition holds,

∀∃~h ∈ H(n) | ~h � ~c(P ) + ~h′ (4.13)

Definition 4.11 (Stewart & White, 1991, p. 806) A set of heuristic functions is said
to be monotone with respect to the associated cost and preference structure when for
all pairs of nodes n, n′ in the graph such that n′ ∈ {N\s} and n ∈ ANCS(n′), the
following condition holds,

∀~h′ ∈ H(n′) ∃~h ∈ H(n) | ~h � ~c(n, n′) + ~h′ (4.14)

Lemma 4.5 (Stewart & White, 1991, Lemma 18) A set of heuristic functions is con-
sistent if and only if it is monotone.
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Lemma 4.6 (Stewart & White, 1991, Lemma 19) A monotone set of heuristic func-
tions is also admissible.

Theorem 4.11 (Stewart & White, 1991, Theorem 7) If H(n) is monotone, then a
necessary and sufficient condition for MOA∗ to select some node n for expansion
is that:

a) exists a nondominated path P from s to n, i.e. P ∈ G∗(n)

b) P be C∗-bounded

This theorem is analogous to the Theorem 4.5 presented for NAMOA∗. The ne-
cessary and sufficient condition for node expansion in MOA∗ is the existence of some
C∗-bounded nondominated path to the node. But there can be multiple dominated
paths also in the node. These conditions do not prevent that they are expanded by
MOA∗, even with monotone heuristics. Moreover, the conditions for NAMOA∗ pre-
cise which C∗-bounded paths are inevitably expanded and which not.

Definition 4.12 (Stewart & White, 1991, p. 802) A heuristic function H2(n) is said
to be at least as informed as other H1(n) when both are admissible and for all nodes
n,

∀~h2 ∈ H2(n) ∃~h1 ∈ H1(n) | ~h1 � ~h2 (4.15)

Theorem 4.12 (Stewart & White, 1991, Theorem 4) Let MOA∗1 and MOA∗2 be two
versions of MOA∗ that differ only in the use of different heuristic functions H1(n)
and H2(n) respectively. If H2(n) is at least as informed as H1(n), then MOA∗2 is
nondominated with respect to MOA∗1.

In such case, when two consistent functions H, H ′ are considered, if H is at least
as informed at H ′, it was proven that the set of nodes expanded by MOA∗ with H
is a subset of those expanded with H ′ (Stewart & White, 1991, Theorem 4, p. 805).
However, the authors recognized that nodes may be reopened even when the heuristic
function is consistent (Stewart & White, 1991, p. 806), and that the set of expanded
nodes is not a significant measure in the analysis of the performance of MOA∗. The
theorem 4.12 can not tell how many times a node will be expanded with each heuristic.

An analysis on the number of label expansions is more adequate for multiobjec-
tive algorithms. Mandow & Pérez de la Cruz (2010a) analyzed the performance of
NAMOA∗ in this sense and found that when the heuristic functions are consistent,
each label is expanded by NAMOA∗ only once. Additionally, the set of labels ex-
panded by NAMOA∗ with H is a subset of those expanded with H ′ (Theorem 4.6).
The following sections show that this stronger result is not true in general for MOA∗.

4.4 A class of multiobjective search problems

Let us consider a family of graphs with a regular structure in levels described by the
following rules,

• The graph has n levels.
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Figure 4.1: Graph MC(2)

• Each level i has 3 nodes, named ia (up), ib (left), ic (right).

• The source node is 1a, and the graph has exactly 3n + 1 nodes including a goal
node (n+ 1)a.

• The graph has 4n arcs,

– For each level i, there are two arcs ia � ib, ib � (i + 1)a labelled with a
cost vector (1, 2).

– For each level i, there are two arcs ia � ic, ic � (i + 1)a labelled with a
cost vector (2, 1).

We shall refer to these graphs asMC (multiobjective chain) graphs, and asMC(n)
to the MC graph with n levels. Graph MC(2) is shown in figure 4.1.

Notice that the number of distinct paths in a MC graph reaching the goal node
grows exponentially with n. However, the number of distinct costs of paths grows only
linearly.

Lemma 4.7 Let the only cost of node 1a be (0, 0). For a MC graph, the set of distinct
cost vectors of paths reaching node ia is,

2(l + (i− 1), 2(i− 1)− l),∀l, 0 ≤ l < i

The combination of two (1, 2) vector costs or two (2, 1) vector costs at each level, i.e.
2i ∗ (1, 2) + 2(n− i) ∗ (2, 1), ∀i, 0 ≤ i ≤ n gives the former linear combination of costs.

Lemma 4.8 All the solution paths in a MC graph are nondominated.

In fact, from Lemma 4.7 it is obvious that all possible costs of paths reaching every
node are nondominated (see figure 4.2).
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Figure 4.2: Nondominated costs of paths in Graph MC(2)

Theorem 4.13 The minimum number of label expansions performed by any admissible
multiobjective algorithm on a MC(n) graph is given by the expression 1

3
∑

1≤i≤n
i =

3n(n+ 1)

2
= Θ(n2).

The result follows from the fact that an admissible algorithm will need to consider
all labels of all nodes, since all paths in aMC graph are nondominated by construction.

4.4.1 Examples

Two sample runs of MOA∗ for H(n) = {~0} (uninformed case) and H(n) = H∗(n)
(perfect information) are provided in tables 4.1 and 4.3 respectively. The node with
the best lexicographic nondominated alternative fron ND is selected for expansion at
each iteration. It is marked with ← among all open nodes shown in column n. In the
heuristic case, further ties are solved by selecting the node with lower level (breadth-
first). Values of G(n) include all nondominated costs from generated paths to the node.
New discovered paths are indicated in bold face for G(n). Values of F (n) are the same
as G(n) in blind search, while they include the estimations in table 4.2 for the heuristic
case. The last column amounts to the number of expanded labels, i.e. the cardinality
of G(n) at the moment of the node expansion.

We can observe in the uninformed case that ia nodes from level k + 1 are not
expanded until nodes ib, ic from upper level k have been expanded. However, providing
MOA∗ with perfect heuristic information lets us see that ia, ib nodes are selected for
expansion each time a new nondominated path is found to the node, while ic (right)
nodes are selected only when all nodes of upper levels have been expanded. The
selection of a ic (right) node triggers the reexpansion of all left and central nodes of
subsequent levels.

In the presented example, breaking ties in favour of a deeper node (upper level)
would even lead to a worse performance of heuristic MOA∗, with 12 iterations and

1We consider that labels at the goal node are selected but not expanded, i.e. their successor nodes
and costs do not need to be calculated. Nevertheless, this does not change the overall result.
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It n G(n) F (n) Lab exp
1 1a ← ((0, 0)) ((0, 0)) 1
2 1b ← ((1,2)) ((1, 2)) 1

1c ((2,1)) ((2, 1))

3 1c ← ((2, 1)) ((2, 1)) 1
2a ((2,4)) ((2, 4))

4 2a ← ((2, 4)(4,2)) ((2, 4)(4, 2)) 2
5 2b ← ((3,6)(5,4)) ((3, 6)(5, 4)) 2

2c ((4,5)(6,3)) ((4, 5)(6, 3))

6 2c ← ((4, 5)(6, 3)) ((4, 5)(6, 3)) 2
3a ((4,8)(6,6)) ((4, 8)(6, 6))

7 3a ← ((4, 8)(6, 6)(8,4)) ((4, 8)(6, 6)(8, 4)) 3

Table 4.1: Trace of uninformed MOA∗ for the MC(2) graph. Contents of the OPEN
list are displayed for each iteration.

i ia ib ic
1 ((4,8),(6,6),(8,4)) ((3,6),(5,4)) ((4,5),(6,3))
2 ((2,4),(4,2)) ((1,2)) ((2,1))
3 ((0,0)) - -

Table 4.2: Sets of heuristic cost values returned by heuristic function H(n) = H∗(n)
for all nodes in graph MC(2).

20 label expansions. This simple example suffices to prove that heuristic (informed)
MOA∗ can perform more label expansions than blind (uninformed) MOA∗. The
performance of the algorithm for general MC(n) graphs in the uninformed case is
studied in section 4.5. Section 4.6 analyzes the heuristic case showing that, using
perfect information, MOA∗ can perform orders of magnitude worse than uninformed
search.

4.5 Performance of uninformed MOA∗

This section characterizes the number of label expansions performed by uninformed
MOA∗ on anMC(n) graph. Throughout this section we assume that ∀n H(n) = {~0},
and that the node with the lexicographic optimum among evaluation values in ND is
selected for expansion at each iteration.

Lemma 4.9 When MOA∗ selects for expansion node (k + 1)a,

• it has already expanded all nondominated labels of all nodes at level k

• it has permanently closed all the nodes at all levels j ≤ k, i.e. they are closed and
will never again be put back into OPEN .

• it is the only open node, and all nondominated labels to (k + 1)a have been gene-
rated.
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It n G(n) F (n) Lab exp
1 1a ← ((0, 0)) ((4, 8)(6, 6)(8, 4))) 1
2 1b ← ((1,2)) ((4, 8)(6, 6))) 1

1c ((2,1)) ((6, 6)(8, 4))

3 1c ((2, 1)) ((6, 6)(8, 4))
2a ← ((2,4)) ((4, 8)(6, 6))) 1

4 1c ((2, 1)) ((6, 6)(8, 4))
2b ← ((3,6)) ((4, 8)) 1
2c ((4,5)) ((6, 6))

5 1c ((2, 1)) ((6, 6)(8, 4))
2c ((4, 5)) ((6, 6))
3a ← ((4,8)) ((4, 8)) 1

6 1c ← ((2, 1)) ((6, 6)(8, 4)) 1
2c ((4, 5)) ((6, 6))

7 2c ((4, 5)) ((6, 6)(8, 4))
2a ← ((2, 4)(4,2)) ((4, 8)(6, 6)(8, 4))) 2

8 2c ((4, 5)(6,3)) ((6, 6)(8, 4))
2b ← ((3, 6)(5,4)) ((4, 8)(6, 6)) 2

9 2c ((4, 5)(6, 3)) ((6, 6)(8, 4))
3a ← ((4, 8)(6,6)) ((4, 8)(6, 6)) 2

10 2c ← ((4, 5)(6, 3)) ((6, 6)(8, 4)) 2
11 3a ← ((4, 8)(6, 6)(8,4)) ((4, 8)(6, 6)(8, 4)) 3

Table 4.3: Sample run of heuristic MOA∗ with H(n) = H∗(n) for MC(2) graph.
Contents of the OPEN list are displayed for each iteration. The lexicographic optimum
among F (n) values responsible for selection is underlined.

Proof. By induction on the number of levels in the graph.
Base case: i=1. The expansion of 1a generates one label (1, 2) to 1b, and one label
(2, 1) to 1c. Node 1b is lexicographically better than 1c. Its expansion generates a label
with cost (2, 4) to 2a. However, node 1c is still lexicographically better. It is expanded
and generates a second label (4, 2) to node 2a. Now, it is the turn of 2a for expansion.
Since all nodes in level 1 are closed, and no more paths reach these nodes, they will
never be put back into OPEN .
Hypothesis. Let us assume that it is the turn of (i + 1)a for expansion, that it is
the only open node, that all nondominated labels to (i+ 1)a have been generated, and
that ia, ib, ic are now permanently closed and all their nondominated labels have been
expanded.
Induction step. From Lemma 4.7, there are i + 1 possible nondominated labels
reaching (i+ 1)a, given by {2(l + i, 2i− l),∀l, 0 ≤ l < i+ 1}

Upon expansion of (i + 1)a, its successors (i + 1)b and (i + 1)c are generated and
opened with the following costs,

F ((i+ 1)b) = G((i+ 1)b) = {2(l + i, 2i− l) + (1, 2), 0 ≤ l ≤ i}

F ((i+ 1)c) = G((i+ 1)c) = {2(l + i, 2i− l) + (2, 1), 0 ≤ l ≤ i}

Since F ((i + 1)b) is lexicographically better, it is considered before for expansion, ge-
nerating and opening (i+ 2)a with,

LABEL((i+ 2)a, (i+ 1)b) = {2(l + i, 2i− l) + (2, 4), 0 ≤ l ≤ i}
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and
F ((i+ 2)a) = G((i+ 2)a) = LABEL((i+ 2)a, (i+ 1)b)

Since the new node is lexicographically worse than (i + 1)c, this will be expanded
next, generating an additional set of labels to (i+ 2)a option,

LABEL((i+ 2)a, (i+ 1)c) = {2(l + i, 2i− l) + (4, 2), 0 ≤ l ≤ i}

and therefore,

F ((i+2)a) = G((i+2)a) = {LABEL((i+2)a, (i+1)b)∪ LABEL((i+2)a, (i+1)c)}

which is from Lemma 4.7 the set of all labels reaching (i+ 2)a,

F ((i+ 2)a) = {2(l + (i+ 1), 2(i+ 1)− l),∀l, 0 ≤ l < i+ 2}

Since (i + 2)a is the only open node and there are no paths leading back to nodes
in previous levels, the result holds.

Theorem 4.14 The number of label expansions performed by uninformed MOA∗ on
a MC(n) graph is

3
∑

1≤i≤n
i =

3n(n+ 1)

2
= Θ(n2)

This follows from Lemma 4.9 since each node at level i is expanded only once, and
at that time its i+ 1 labels have already been found. Therefore, from Theorem 4.13 it
follows that uninformed MOA∗ perfoms optimally in MC(n) graphs in terms of label
expansions, when nodes are selected lexicographically for expansion.

4.6 Performance of MOA∗ with perfect heuristic informa-
tion

Let us now consider the performance of MOA∗ over MC graphs using perfect infor-
mation. Throughout this section we shall assume that the heuristic function returns
for each node the set of actual nondominated costs of paths from that node to the goal,
i.e. ∀n H(n) = H∗(n). By definition, this heuristic is admissible and consistent. A
lexicographic order will be used for selection an expansion and nodes. In case of further
ties the node at the lower level i will be selected (breadth-first tie-break rule).

Let us consider now the set of solution costs described in Lemma 4.7 ordered lexi-
cographically for the goal node (n+ 1)a. We shall say that the lexicographic optimum
solution cost corresponds to the first element in the set, the second best to the second
element, and the i-th best to the i-th element.

Lemma 4.10 For MC graphs with perfect heuristic information, when MOA∗ ex-
pands for the first time the k-th solution label,

1. All nodes ia, ib are closed.
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2. All nodes ic with i ≤ k are closed.

3. All nodes ia, ib with i ≤ k, and ic with i < k will not be reopened (are permanently
closed).

4. All nodes ic with i ≥ k are opened and have not been expanded yet.

5. The next node selected for expansion is kc and will reopen (k + 1)a (except when
k = n+ 1, since search is terminated).

Proof. By induction on the number of solutions.
Base case (k=1) All nodes ia, ib are traversed by the solution path with the lexico-
graphic optimum cost. All nodes ic are traversed, in the best case, by a path including
exactly two arcs with cost (2, 1) and 2n − 2 arcs with cost (1, 2), which is the second
best among solution costs in lexicographic order. Let us denote by ~f∗1 the lexicographic
optimum solution cost, and by ~f∗2 the cost of the second best lexicographic solution
cost.

MOA∗ will start expanding nodes in the sequence 1a1b2a2b . . . nanb(n+1)a finding
the first solution, and expanding a single label for each node. For all nodes n in this
set, F (n) = {~f∗1}. All nodes ic are now open, and ∀i F (ic) = {~f∗2}. No new paths
reach 1a or 1b, so they are permanently closed. Since, by assumption, ties are broken
in favor of shallower nodes, node 1c will be the next to be selected for expansion. This
will generate a path with a new cost (2, 4) to node 2a, which will be added to G(2a)
causing this node to be reopened with two labels.
Hypothesis Let us assume the property holds after the k-th solution has been found.
Induction step Node kc will be the next to be selected for expansion. Since all nodes
above kc are permanently closed, all nondominated labels to kc have been found. Its
expansion will generate a new label to node (k+1)a, in particular the one corresponding
to a path that reaches that node through the sequence 1a1c2a2c . . . kc(k + 1)a, i.e. the
addition of 2k arcs with cost (2, 1). This will be added to G((k + 1)a) which will
be placed back into OPEN with all its labels. Now, all nondominated labels to node
(k + 1)a have been found. Since ~f∗1 ∈ F ((k + 1)a), this will trigger the reexpansion
of the sequence of nodes (k + 1)a(k + 1)b(k + 2)a(k + 2)b . . . (n + 1)a, each one with
n+1 labels. Note that the new label is unavoidably propagated through this sequence,
reopening nodes in turn. Each time a node in this sequence is selected for expansion,
the next is reopened and selected, since for all nodes n in this sequence ~f∗1 ∈ F (n).
At this point, the (k+1)-th solution is found, and the lemma holds.

Lemma 4.11 When MOA* is applied to a MC graph with perfect heuristic infor-
mation, nodes are selected lexicographically, and additional ties are broken using the
breadth-first rule, each node ia, ib is expanded exactly i times, while nodes ic are ex-
panded exactly one time.

This follows from Lemma 4.10, since each node ia ib is expanded to find the first
solution, and then reopened and expanded once more after the expansion of each jc
with j < i. On the other hand, the ic nodes are expanded only once, since at the time
of their expansion all shallower nodes are permanently closed.
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Theorem 4.15 When MOA∗ is applied to a MC graph with perfect heuristic infor-
mation, nodes are selected lexicographically, and additional ties are broken using the
breadth-first rule, the total number of label expansions is

n(n+ 1)(2n+ 7)

6
= Θ(n3)

Proof. The total number of individual labels expanded by MOA∗ sums up,

1. expansions corresponding to ic (right) nodes, i.e.,∑
1≤i≤n

i =
n(n+ 1)

2
. (4.16)

2. expansions corresponding to ia (up) and ib (left) nodes, i.e,

2
∑

1≤i≤n

∑
1≤j≤i

j = 2
∑

1≤i≤n

i(i+ 1)

2
=

=
∑

1≤i≤n
i(i+ 1) =

∑
1≤i≤n

i2 +
∑

1≤i≤n
i

that is,
n(n+ 1)(2n+ 1)

6
+
n(n+ 1)

2
(4.17)

Finally, the sum of equations (4.16) and (4.17) gives the desired result,

n(n+ 1)(2n+ 7)

6
= Θ(n3)

A comparison of this result with Theorem 4.14 indicates that the number of label
expansions performed by MOA∗ on MC graphs is clearly worse with perfect heuristic
information than with uninformed search.

The formal analysis presented above covers two extreme cases: uninformed search,
and search with perfect heuristic information. Figure 4.3 displays the number of label
expansions in a MC(10) graph with different degrees of heuristic precision. In particu-
lar, vector estimates in H∗(n) were multiplied by a constant k ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}.
Results show that rather than improve, the number of label expansions actually grows
with improved heuristic precision. The figure additionally shows the results obtained
with a “depth-first” tie breaking rule. As noted in section 4.4.1, performance is even
worse with that rule.

4.6.1 Summary

The first part of the chapter considers the theoretical performance of multiobjective
heuristic best-first algorithms and specially concentrates on the performance of the
MOA∗ multiobjective heuristic search algorithm. Results show that, in general, perfor-
mance does not improve with heuristic information (a key result of A∗ or NAMOA∗).
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Figure 4.3: Label expansions of MOA∗ in graph MC(10) for different degrees of
heuristic precision. Nodes are selected lexicographically, and values are shown for two
different tie breaking rules.

A class of problems is presented (multiobjective chain graphs) where the use of per-
fect heuristic information (a trivially consistent informed heuristic) does not result in
a reduction in the number of label expansions performed by the algorithm. In fact,
the number of such expansions grows substantially as heuristic information improves,
when compared to uninformed search.

Multiobjective chain graphs (MC) formalize a common situation in practical multi-
objective search, a sequence of nodes traversed by at least two conflicting paths. Nodes
can be closed and remain far behind the search frontier awaiting reexpansion for a
long time. Consider the case of some solution path n1, n2, ...nk quickly found by the
algorithm. If a new nondominated label is found to some node ni, then the node would
be reopened and automatically selected for expansion, since it was already found best
among OPEN nodes in previous iterations. This produces a cascading effect prompt-
ing the reopening and expansion of all nodes in the sequence ni, ni+1, ...nk. In fact, the
better the heuristic estimates, the deeper a node can remain behind the search frontier
before it is reexpanded and, in consequence, the worse the cascading effect.

The formal analysis has revealed that the number of nondominated labels in MC
graphs grows quadratically with graph size, and that uninformedMOA∗ expands each
label exactly once. However, when MOA∗ is combined with H∗, the best possible
heuristic, the number of such expansions can grow cubically.

Previous results (Mandow & Pérez de la Cruz, 2010a) showed NAMOA∗ to do-
minate MOA∗ in terms of label expansions. A simple example was presented where
MOA∗ performed more label expansions than NAMOA∗. The analysis presented in
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this chapter further shows that the performance of MOA∗ is not in general asymptot-
ically similar to that of NAMOA∗, even in simple common situations.

4.7 Formal characterization of TC

The algorithm presented by Tung & Chew (1988, 1992) is a best-first label-setting
heuristic algorithm similar to NAMOA∗. Differences can be found in the filter-
ing/pruning processes, as explained in section 2.4.3. Besides, a particular rule is fol-
lowed for the selection of promising paths at each iteration. However, this does not
affect the set of expanded labels (but only the order in which they are selected) and
TC shares with NAMOA∗ the same path expansion policy. Therefore, some prop-
erties are also common to TC algorithm and do not need to be recalled. There is no
need to reformulate theorems in terms of the TC algorithm. Nevertheless, it is impor-
tant to note that NAMOA∗ has been shown to be optimal along its class (Theorem
4.7). This means that the expected performance for TC will be always lower than in
NAMOA∗.

While the scalar heuristic hmix of the particular selection rule of TC can not
be used in general (e.g. for pruning/filtering with COSTS), the application of the
~hTC heuristic functions can be introduced in sets H(n) without problems and deserve
special investigation. These are well designed general heuristics that can be used by
multiobjective heuristic algorithms like NAMOA∗ in their H(n) functions in order to
improve performance.

However, Tung & Chew (1992) did not specified whether these heuristics were either
consistent or monotone. The second part of this chapter is devoted to the study of these
heuristics functions and their formal properties, in order to proof the actual interest of
their application to real problems.

4.8 Monotonicity of ~hTC

A formal proof on the admissibility and monotonicity of ~hTC heuristic should guarantee
that results obtained with its application are expected to be correct and all nondomina-
ted optimal solution paths are guaranteed to be found with NAMOA∗. Monotonicity
is a stronger constraint than admissibility. Besides, we know by Theorem 4.10 that if
the ~hTC heuristic is proven to be monotone, then it is trivially admissible. Therefore,
only proofs about monotonicity of the ~hTC heuristic function are presented in this
section.

The formal proofs presented for the heuristic ~hTC in this section are based on some
basic assumptions/conditions:

• The graph G is locally finite

• It is possible to reverse each arc of the graph and search from a terminal node γ
to node s following the arcs in the optimal paths on inverse direction, i.e. arcs
are bidirectional

• The costs of an arc remain the same when the graph is reversed, i.e. the cost of a
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path P = {n, . . . , n′} in G is the same than the cost of the path P rev = {n′, . . . , n}
in a reversed graph Grev.

The simple biobjective case (q = 2) is managed on these formal proofs for costs
structure, i.e. the cost of an arc between nodes n, n′ is a vector with two components
~c(n, n′) = (c1(n, n′), c2(n, n′)). The general case for more than two objectives can be
easily extrapolated.

Definition 4.13 (Definition (10) Tung & Chew, 1992) Let qi(n, n′) be the minimum
cost for the objective i among all paths joining nodes n and n′,

qi(n, n
′) = min ci(Pnn′) (4.18)

The minimum cost qi(n, γ) has been informally presented in section 2.4.4 as c∗i (n).
The TC algorithm uses a single vector heuristic ~hTC , i.e. this means that ∀n H(n) =
{~hTC(n)}. This vectorial heuristic can be defined for the bicriteria case as

~hTC(n) = (q1(n, γ), q2(n, γ)) = (min c1(Pnγ),min c2(Pnγ)) (4.19)

Theorem 4.16 The heuristic function ~hTC is monotone.

Proof. Monotonicity implies that the heuristic function ~hTC must satisfy that

∀(n, n′), ~hTC(n) � ~c(n, n′) + ~hTC(n′) (4.20)

Let us assume first that node n′ is a direct successor of node n and that node n′

belongs to an optimal path from n to γ regarding the first objective. Let us denote this
path by P ∗1nγ = (n, n′, n′′, . . . , nk, γ). By definition (2.15), the cost of this path is

c(P ∗1nγ) = ~c(n, n′) + ~c(n′, n′′) + . . .+ ~c(nk, γ)

and regarding the first objective,

c1(P ∗1nγ) = c1(n, n′) + c1(n′, n′′) + . . .+ c1(nk, γ)

By the definition of optimal path (regarding the first objective) the cost of P ∗1nγ is

c1(P ∗1nγ) = min c1(Pnγ)

and that is by the definition of ~hTC the first objective in (4.19)

min c1(Pnγ) = q1(n, γ)

Thus, q1(n, γ) = c1(P ∗1nγ) , that is,

q1(n, γ) = c1(n, n′) + c1(n′, n′′) + . . .+ c1(nk, γ)

and as we assume that node n′ belongs to an optimal path from n to γ regarding
the first objective,
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q1(n, γ) = c1(n, n′) + min c1(Pnγ)

that is, the result proofs the theorem for the first objective,

q1(n, γ) = c1(n, n′) + q1(n′, γ)

Analogously, for the second objective the proof is similar and

q2(n, γ) = c2(n, n′) + q2(n′, γ)

Let us assume now that node n′ is a direct successor of node n and that the node
n′ does not belong to any optimal path from n to γ regarding the first objective. Let
us denote again by P ∗1nγ = (n, n′∗, n′′∗, . . . , nk∗, γ) this optimal path regarding the first
objective. However, we can find a path P ′n′γ = (n′, n′′, . . . , nk, γ) that is optimal for
the first objective from n′ to γ.

By definition of ~hTC the first objective of the heuristic vector is

q1(n, γ) = min c1(Pnγ) = c1(P ∗1nγ)

and by definition, this path has the minimal cost among all paths in the graph
(regarding the first objective),

c1(P ∗1nγ) ≤ c1(Pnγ), ∀Pnγ ∈ Pnγ , Pnγ 6= P ∗1nγ

It is true also for P ′n′γ ,

c1(P ∗1nγ) ≤ c1(n, n′) + c1(P ′n′γ)

We assume that path P ′n′γ is the minimal regarding the first objective from n′ to γ,

c1(P ∗1nγ) ≤ c1(n, n′) + min c1(Pn′,γ)

and that means that this result proves the theorem for the first objective also,

q1(n, γ) = c1(P ∗1nγ) ≤ c1(n, n′) + q1(n′, γ)

Analogously, for the second objective the proof is similar and

q2(n, γ) ≤ c2(n, n′) + q2(n′, γ)

Therefore, in both cases

∀(n, n′), ~q(n, γ) � ~c(n, n′) + ~q(n′, γ) (4.21)

q.e.d.
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4.9 Discussion

The results presented in sections 4.5, 4.6 complete the formal study of MOA∗. Impor-
tant properties were presented for this algorithm by Stewart & White (1991), similar
to those found in A∗. However, this chapter confirms what the authors recognize, that
monotonicity and consistency are not as important forMOA∗ as in the single-objective
case. This chapter has shown that more informed heuristics may not lead MOA∗ to
an improved performance, as it happens to NAMOA∗.

These important theoretical results do not completely settle the question of which
algorithm is better in practice. Regarding uninformed (blind) search, the adequacy of
node selection strategies has been investigated by other authors for the case of unin-
formed label correcting algorithms (Guerriero & Musmanno, 2001; Raith & Ehrgott,
2009). Despite theoretical expected performance is lower inMOA∗ than in NAMOA∗,
a empirical study should confirm whether in fact this occurs in all situations. Ap-
parently, the node-selection strategy in MOA∗, can compensate in some particular
situations for the additional number of labels considered.

Besides, the TC heuristics have not been evaluated in practice. It is expected
that the performance of NAMOA∗ may benefit from the use of these consistent well
informed heuristics. The chapter 5 presents a detailed empirical analysis of the three
algorithms with both blind search and using the TC heuristics for the heuristic case.



Chapter 5

Empirical Analysis on
Multiobjective Algorithms

This chapter takes up the task of evaluating TC, MOA∗ and NAMOA∗ algorithms
over artificially generated grid problems as described in section 3.2.1. This allows
the evaluation of the algorithms in terms of solution depth and correlation between
objectives. Two different scenarios were considered for grid problems. In the first one,
search is constrained by grid boundaries (class I grid problems) and in the second one
no such constraint exists (class II grid problems). Performance is also evaluated over a
realistic scenario, modified DIMACS road maps described in section 3.2.4.

Prior to this research no systematic evaluation and comparison of multiobjective
heuristic search algorithms had been performed. This is one of the contributions of
this thesis.

The empirical evaluation draws a clear picture on the performance of each algo-
rithm, resulting in NAMOA∗ as the best choice in general. Several phenomena pre-
viously unnoticed in the literature are also described and analyzed in this chapter:

• The performance ofMOA∗ is found to degrade considerably with better heuristic
information, which confirms in practice the bad results for this algorithm obtained
in the formal analysis of chapter 4

• Finding solutions in early stages of multiobjective search is found to degrade
the performance of all algorithms, but specially in the case of TC, which uses a
particular heuristic in label selection (see section 2.4.3)

• The use of heuristic information does not always result in improved performance
in certain classes of problems (class I grid problems)

These results have been reported at the European Journal of Operational Research
(Machuca et al., 2012) and at the national portuguese and german AI conferences
(namely EPIA and KI conferences, respectively). Preliminary results of the evaluation
of NAMOA∗ and TC algorithm over class I grids with ρ = 0 were presented in
EPIA’2009 (Machuca et al., 2009). The results presented in this chapter for blind
MOA∗ and NAMOA∗ with class I and class II grids can be found also in the
proceedings of KI’2010 (Machuca et al., 2010).

83
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The chapter is organized as follows. Section 5.1 describes the application of blind
multiobjective search techniques on grid problems. Section 5.2 is devoted to the applica-
tion of heuristic multiobjective algorithms on grid problems. Pair-by-pair comparisons
of the three algorithms can be found in this section, as well as a blind vs heuristic search
analysis. The phenomena related above are adequately explained in sections 5.3 and
5.4, respectively where the time performance of heuristic MOA∗ on the one hand and
heuristic NAMOA∗ and TC on the other hand are analyzed. An analysis of these
heuristic algorithms on modified road maps is also contained in this chapter in section
5.5. Finally some conclusions about this empirical study can be found at the end of
the chapter.

5.1 Blind multiobjective search on grid problems

This section deals with the two algorithmsMOA∗ and NAMOA∗. Algorithm TC was
not devised to work in absence of heuristic information. Performance of both algorithms
is compared over sets of randomly generated bicriterion grids, which allows to control
difficulty through solution depth and correlation between objectives.

A detailed description of algorithms MOA∗ and NAMOA∗ was presented in
chapter 2 (sections 2.4.2 and 2.4.1 respectively). The analysis in this section allows the
comparison of the main difference between both algorithms: MOA∗ is built around
the idea of node selection and expansion, while NAMOA∗ is built around the idea of
path selection and expansion. The selection and expansion policy of MOA∗ may seem
more efficient at first sight, however it has a major drawback, since each time a new
nondominated path is found to a closed node, the whole node needs to be put back
into the open list.

Square grids of varying size were randomly generated as described in chapter 3. A
vicinity of four neighbours was used. Only two costs (c1

ij , c
2
ij) were considered for each

arc from i to j. The values of these objectives were calculated in the range [1, 10] using
various correlation values, as described in section 3.2.1: ρ ∈ { 0.8, 0.4, 0, -0.4, -0.8}.

Two different classes of problem instances (class I and class II) were used (see
section 3.2.1 for further description). The algorithms were implemented in Lisp using
LispWorks Professional 5.01, and run on a HP Proliant D160 G5 server with 2 Intel
Xeon QuadCore 4572 @ 3GHz processors and 18 Gb of RAM under Windows Server
2008 (32-bit).

5.1.1 Results

Let tMOA and tNAMOA be the time taken to solve a problem byMOA∗ and NAMOA∗

respectively. Let also vMOA and vNAMOA be the maximum number of cost vectors
stored by both algorithms when solving a problem.

For class I problems, no significant difference was found regarding memory require-
ments, regardless of correlation values. The hardests problems took about 3, 35 × 106

cost vectors. The relative performance in time tMOA/tNAMOA is presented in figure
5.1(a) as a function of solution depth d. The hardest problems took about 2303 s
(MOA∗ with d = 160) and 1590 s (NAMOA∗ with d = 200). A time-out of 3600 s
(1 h) was set for the resolution of each problem.
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Values are shown for all correlation ratios and averaged over ten problems generated
for each depth, in all reported results in this analysis.

Figure 5.1(b) presents the relative space requirements vMOA/vNAMOA against so-
lution depth d, for class II problems. The hardests problems took about 2, 99 × 106

cost vectors (NAMOA∗) and 3, 84× 106 cost vectors (MOA∗).
Relative time performance tMOA/tNAMOA of the algorithms is presented in figure

5.1(c) as a function of solution depth d, for class II problems. The hardest problems
took about 2531 s (MOA∗ with d = 90) and 1496 s (NAMOA∗ with d = 100). The
same time-out of 3600 s was set for the resolution of each problem.

5.1.2 Analysis on Class I problems

In this class, memory requirements of both algorithms were very similar, in fact indis-
tinguishable in a graphical plot. This is due to the fact that both algorithms need to
search virtually all nodes in this class. However, important differences in time require-
ments can be appreciated in figure 5.1(a).

In order to characterize the evolution of the relative performance of the algorithms,
a statistical regression analysis has been carried out. Let us hypothesize by the obser-
vation of figure 5.1(a), that the relative difference of performance decreases following
the rule 1 , rp = α∗sβ , where rp = tMOA/tNAMOA is the dependent variable to adjust,
denoting the relative performance of the algorithms, and s is the independent variable,
representing the size of the problem 2.

Applying logarithms on both sides, the formula would be transformed into log rp =
logα + β ∗ log s . With this model we can calculate a lineal regression adjustment,
assuming by dependent/independent variables the logarithms of the original variables.

Several indicators can be presented to test the precision of this model. Table 5.1(a)
summarizes some of these indicators for each correlation. The R values represent the
gain that can be obtained when predicting the dependent variable from the knowledge of
the value from the independent one. Values of R close to 1 indicate the model is a good
approximation. The Durbin-Watson (D-W) indicator measures the independence of
consecutive errors in the adjustment. Values close to 2 indicate errors are uncorrelated,
and therefore, a good adjustment of the model.

Values presented in table 5.1(a) indicate that the adjustment of the model is good
enough to explain the behaviour, specially for correlation 0 and below. The more
complex the problem (i.e. negative correlation) the better the adjustment is.

Bad results on correlation 0.4 are related to the change of tendency in the difference
in relative performance. MOA∗ is clearly faster for problems with correlations 0.8 and
0.4. However, for problems with lower correlation MOA∗ is faster only with smaller
solution depth. As solution depth increases, NAMOA∗ is clearly better than MOA∗.

The estimated parameter values α and β are shown 3 in figure 5.2(a), for different

1Several rules have been tested, but only results concerned with this rule are presented, as it was
the best fit

2Notice that depth of the solution could have been used as independent variable, and the results
would be only affected by a constant factor

3Logarithm of α should be applied over all values reported. However, results would only be affected
by a constant factor
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(a) Relative time performance in class I problems
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(b) Relative memory requirements in class II problems
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(c) Relative time performance in class II problems

Figure 5.1: Relative performance between MOA∗ and NAMOA∗ on class I/II grid
problems with different correlation values (blind search)
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Table 5.1: Estimated parameter values for the model rp = α ∗ sβ and indicators in the
statistical analysis of the relative performance between MOA∗ and NAMOA∗ on
class I/II grid problems with different correlation values (blind search)

(a) Indicators for time, class I

Correlation α β R R2 D-W
0.8 0.265 -0.319 0.705 0.497 1.784
0.4 -0.405 0.153 0.352 0.124 0.430
0 -0.868 0.588 0.913 0.833 1.522

-0.4 -0.938 0.678 0.947 0.897 2.199
-0.8 -0.815 0.726 0.973 0.947 2.068

(b) Indicators for memory, class II

Correlation α β R R2 D-W
0.8 0.032 -0.001 0.035 0.001 1.948
0.4 0.253 -0.086 0.833 0.694 1.762
0 0.493 -0.188 0.936 0.877 1.963

-0.4 0.518 -0.208 0.930 0.864 1.316
-0.8 0.580 -0.245 0.922 0.849 2.065

(c) Indicators for time, class II

Correlation α β R R2 D-W
0.8 0.321 -0.269 0.822 0.676 2.230
0.4 -0.161 -0.007 0.033 0.001 1.114
0 -0.376 0.218 0.692 0.479 1.777

-0.4 -0.509 0.311 0.801 0.642 1.361
-0.8 -0.487 0.394 0.804 0.647 2.108
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(b) Parameters for memory, class II
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(c) Parameters for time, class II

Figure 5.2: Estimated parameter values for the model rp = α ∗ sβ in the statistical
analysis of the relative performance betweenMOA∗ and NAMOA∗ on class I/II grid
problems with different correlation values (blind search)
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correlations. Notice that the horizontal axis presents correlation values from lower to
higher, i.e. the average number of nondominated paths to node (difficulty) follow an
inverse rule. The lower the correlation, the more complex the problem is and more
the value of α increases and β decreases. This means that MOA∗ behaves better for
positive correlations, though NAMOA∗ is better for 0 or negative correlations.

5.1.3 Analysis on Class II problems

For class II problems, a different result can be observed. Figure 5.1(b) shows that
relative space requirements vMOA/vNAMOA are reduced as solution depth d increases.
For easier problems MOA∗ behaves even nearly two times worse. But additional
effort tends to only a 15%-25% overhead approximately in the more difficult problems.
This is actually smaller than originally expected, given that MOA∗ can consider for
expansion many dominated paths during search.

An analogous statistical analysis has been carried out for this case. The parameters
and indicators can be found in table 5.1(b). The adjustment is good enough to say
that the relative difference in space requirements ofMOA∗ with respect to NAMOA∗,
decreases in an inverse rule to that shown before. The value for R in the case ρ = 0.8
can not be representative because differences between algorithms are minimal due to
the simplicity of problems. The evolution of parameters α and β can be found in figure
5.2(b). Now, the value of α increases with problem difficulty (correlation) and the value
of β decreases. This means that the relative space overhead of MOA∗ approaches a
constant ratio for difficult problems (i.e. higher solution depth) in all correlations
considered.

In the case of time requirements, the analysis is similar to that found for class I
problems. Figure 5.1(c) shows the same behaviour, though the difference is not as big
for complex problems. Notice that the results presented include problems only half as
deep as those from class I. Search in class II problems is more complex since it is not
limited by grid boundaries. The adjustment to the same rule used in section 5.1.2 is not
as good as that observed for class I problems (see table 5.1(c)). However, it is sufficient
to draw the same conclusions as in the corner to corner grids. The same observation
can be applied to R from correlation 0.4 as in that case.

5.1.4 Summary

This section has analyzed the relative performance of MOA∗ and NAMOA∗. Blind
search was considered over sets of randomly generated square grids with two objectives
and bounded integer cost values.

As expected from previous formal analyses, NAMOA∗ is never beaten byMOA∗ in
space requirements. In class I problems both algorithms have very similar space require-
ments, while in class II problems, the overhead of MOA∗ is found (counterintuitively)
to be relatively small, and is well approximated by a polynomial law for uncorrelated
objectives.

In problems with high correlation between objectives the selection and expan-
sion scheme of MOA∗ results in a faster algorithm. In class II problems there is a
speed/memory trade-off between MOA∗ and NAMOA∗ for high correlations. In the
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most difficult problems (uncorrelated objectives and deep solutions) NAMOA∗ clearly
outperforms MOA∗ in time though there is not as much difference in memory. The
time overhead of MOA* for uncorrelated objectives is also well approximated by a
polynomial law.

5.2 Heuristic multiobjective search on grid problems

This section considers the three multiobjective counterparts 4 of A∗, namelyNAMOA∗,
MOA∗, and TC algorithm. A detailed description of these algorithms was presented
in section 2.4. Some details about the implementation can be found in section 3.3.

The experiments presented in this section analyze the impact of heuristic informa-
tion over the sets of random class I/II grid problems previously used. In the case of
NAMOA∗ and MOA∗, blind search amounts to using a zero heuristic, ∀n H0(n) =
{~h0(n)} = {~0}, while heuristic search is evaluated with, ∀n HTC(n) = {~hTC(n)}. Al-
gorithm TC always runs with the precalculated heuristics hmix and ~hTC . These two
heuristic functions were described in section 2.4.4.

Results show that, contrary to what was previously believed, use of heuristic in-
formation does not always result in improved performance. An additional analysis is
carried out to determine which algorithm performs better in practice. Results show
NAMOA∗ to be faster than MOA∗ for harder problems and, regrettably, an impor-
tant degradation in time performance in MOA∗ with heuristic information, in accor-
dance with the formal analysis presented in chapter 4. Finally, the analysis is concluded
with a comparison of the relative performance of TC and heuristic NAMOA∗.

The algorithms tested in this section were implemented in Common Lisp using
LispWorks Professional 5.01, and run on a HP Proliant DL160 G5 server with 2 Intel
Xeon QuadCore 4572 @ 3GHz processors and 18 Gb of RAM, under Windows Server
2008 (32-bit).

5.2.1 Efficiency of Heuristic search

The experiments in this section try to analyze whether the use of heuristic information
has a real impact in the space and time efficiency of NAMOA∗ and MOA∗. In this
analysis, blind search is compared to heuristic search. Algorithm TC is not considered
in this analysis, since it is designed to operate only with heuristic information.

5.2.1.1 Results

Regarding class I problems, space and time requirements for various correlations of
blind and heuristic NAMOA∗ are shown in figures 5.3(a) and 5.3(b) respectively.
Likewise, space and time requirements for blind and heuristic MOA∗ are shown in
figures 5.4(a) and 5.4(b).

Regarding class II problems, space and time requirements of blind and heuristic
NAMOA∗ for various correlations are shown in figures 5.5(a) and 5.5(b) respectively.
Likewise, space and time requirements ofMOA∗ are shown in figures 5.6(a) and 5.6(b).

4Recall that NAMOA∗ and MOA∗ accept both blind and heuristic search, while TC algorithm
was devised only for heuristic search.
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Figures 5.3(a), 5.3(b), 5.4(a), 5.4(b), 5.5(a), 5.5(b), 5.6(a), and 5.6(b) show absolute
performance values for the algorithms. Results are displayed only for certain correlation
values. These were selected to show trends in behavior and at the same time allow
clear simultaneous display at the given graphic scales of each figure. In section 5.2.2
the relative performance of the heuristic algorithms is analyzed and figures displaying
values for all correlations considered are presented.

Values are averaged over ten problems generated for each depth, in all reported
results hereafter. Notice that averages for certain depths, where at least one problem
exceeded a one-hour runtime limit, are not displayed.

5.2.1.2 Analysis on Class I problems

Regarding space requirements, heuristic NAMOA∗ presents some savings over its
blind counterpart. However, this advantage decreases with lower correlation, and space
requirements are almost the same for ρ = −0.8. The same behavior is observed when
comparing blind and heuristic MOA∗.

Regarding time requirements, the analysis of NAMOA∗ shows that with high cor-
relation (ρ = 0.4) heuristic search is somewhat faster than blind search. The advantage
is lost with ρ = 0 and, surprisingly, blind search is clearly faster with ρ = −0.4. This
phenomenon is analyzed and discussed in 5.4.

The same behavior is found in the time performance of blind and heuristic MOA∗.
However, heuristic MOA∗ performs worse than blind MOA∗ in all correlation values
analyzed, in accordance to the formal analysis presented in chapter 4.

This results indicate that, for certain classes of problems, heuristic search can be
of no advantage or even worse than blind search when time performance is considered.

5.2.1.3 Analysis on Class II problems

Regarding space requirements, heuristic NAMOA∗ shows almost an order of mag-
nitude in savings compared to blind search. Savings are important in all correlations
analyzed. The same behavior can be observed when comparing heuristic and blind
MOA∗.

Regarding time requirements, heuristic NAMOA∗ also shows a very important
saving compared to blind NAMOA∗ with both positive and negative correlations.
Surprisingly, the behavior of heuristic MOA∗ does not show much improvement with
values of ρ = 0.8 or ρ = 0.4. For values of ρ = 0 or smaller, the situation gets worse,
and heuristic MOA∗ is clearly outperformed by blind MOA∗. This phenomenon is
further analyzed and discussed in section 5.3.

The time performance of heuristic MOA∗ in both class I and class II problems
clearly questions the use of accurate heuristic information to improve its efficiency. To
the author’s knowledge, this counter-intuitive result has not been previously reported
in the literature.

5.2.2 Heuristic search, MOA∗ vs NAMOA∗

The results presented in section 5.1 showed blind MOA∗ to be faster than blind
NAMOA∗ only under limited circumstances. The results presented in section 5.2.1



92 Chapter 5. Empirical Analysis on Multiobjective Algorithms

20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

A
vg

. M
ax

. n
um

be
r 

of
 s

im
ul

ta
ne

ou
sl

y 
st

or
ed

 c
os

t v
ec

to
rs

Depth of solution

 

 

Blind 0.4
Heuristic 0.4
Blind −0.4
Heuristic −0.4
Blind −0.8
Heuristic −0.8

(a) Space requirements for correlation values 0.4,-0.4,-0.8

20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

A
vg

. T
im

e 
(s

ec
on

ds
)

Depth of solution

 

 

Blind 0.4
Heuristic 0.4
Blind 0
Heuristic 0
Blind −0.4
Heuristic −0.4

(b) Time requirements for correlation values 0.4,0,-0.4

Figure 5.3: Performance of blind and heuristic NAMOA∗ search on class I grid pro-
blems. Average values over ten problems generated for each depth.
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Figure 5.5: Performance of blind and heuristic NAMOA∗ search on class II grid
problems. Average values over ten problems generated for each depth.
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Figure 5.6: Performance of blind and heuristicMOA∗ search on class II grid problems.
Average values over ten problems generated for each depth.
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have shown heuristicMOA∗ to perform worse than blindMOA∗ in time requirements
for both class I and class II problems. This section analyzes the relative performance
of both MOA∗ and NAMOA∗ using the heuristic HTC to see if MOA∗ is still
competitive for some problem set.

5.2.2.1 Results

Let tMOA and tNAMOA be the time taken to solve a problem byMOA∗ and NAMOA∗

respectively. Let also vMOA and vNAMOA be the maximum number of cost vectors stored
by both algorithms when solving a problem. We shall denote by rv = vMOA/vNAMOA

and rt = tMOA/tNAMOA the ratios of performance of MOA∗ against NAMOA∗ in
space and time respectively.

Regarding the resolution of class I problems with heuristic algorithms, relative space
(100× rv) and time (100× rt) requirements as a function of solution depth d are shown
for both algorithms in figures 5.7(a) and 5.7(b) respectively. Notice that all figures in
this section show the ratios of performance as percentages.

Figure 5.8(a) presents the relative space requirements 100 × rv against solution
depth d, for class II problems. Relative time performance 100× rt of the algorithms is
presented in figure 5.8(b) as a function of solution depth d.

5.2.2.2 Analysis on Class I problems

Regarding space requirements, heuristicMOA∗ is clearly more demanding than heuris-
ticNAMOA∗. Differences tend to reduce as problem difficulty increases (more negative
correlation ratio and larger d). Only in the case of ρ = 0.8 (easier problems),MOA∗ is
increasingly worse.

Regarding time requirements, important differences can be appreciated in the per-
formance of both algorithms. The performance ofMOA∗ is similar to that ofNAMOA∗

only for ρ = 0.8. For lower values of ρ, heuristic MOA∗ is grossly outperformed by
heuristic NAMOA∗ reaching overheads of more than 5000% in problems with solution
depth 60 and ρ = −0.8. Recall that problems with deeper solutions in the smaller cor-
relations are not shown, since the runtime of MOA∗ exceeds the one-hour time limit
established in the experiments.

5.2.2.3 Analysis on Class II problems

The relative performance of the heuristic algorithms for class II problems is quite similar
to the one observed for class I ones.

MOA∗ demands more space, but approaches the performance of NAMOA∗ for
ρ ≤ 0.4 as solution depth d increases. The relative space overhead of MOA∗ ap-
proaches a constant ratio for difficult problems (i.e. higher solution depth and negative
correlation).

Regarding time requirements, the analysis is similar to that found for class I pro-
blems, though the difference is somewhat smaller for complex problems.
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Figure 5.7: Relative performance between MOA∗ and NAMOA∗ on class I grid
problems with different correlation values (heuristic search)
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Figure 5.8: Relative performance between MOA∗ and NAMOA∗ on class II grid
problems with different correlation values (heuristic search)
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5.2.3 Heuristic search, TC vs NAMOA∗

The results presented in section 5.2.2 show that heuristic MOA∗ is not competitive
with heuristic NAMOA∗ in most cases. This section compares the relative perfor-
mance of algorithm TC (which by definition uses the heuristics HTC and hmix) when
compared to NAMOA∗ with heuristic HTC .

5.2.3.1 Results

The performance of algorithms TC and heuristic NAMOA∗ is quite similar for both
classes of problems. Results for space and time in class I problems are presented in
figures 5.9(a) and 5.9(b) respectively. Analogous results for class II problems are shown
in figures 5.10(a) and 5.10(b). Since performance measures are very similar, absolute
values are presented in all cases, i.e. maximum number of cost vectors simultaneously
stored in the search graph as a measure of space requirements, and runtime in seconds
as a measure of time requirements.

5.2.3.2 Analysis

Regarding space requirements, figures 5.9(a) and 5.10(a) show that the performance
of both algorithms is very similar for both classes of problems and for all correlations.
This is quite reasonable to expect, since both algorithms follow a path (label) selection
procedure, and use the same heuristic HTC for filtering. However, as explained in
section 2.4.3, a slightly different filtering policy is applied in TC when a new solution
cost is discovered.

Regarding time requirements, the same effects can be observed for both classes of
problems. Performance is indistinguishable for ρ = 0.4. However, for lower correlations
NAMOA∗ performs clearly better. Both algorithms explore virtually the same set of
paths (except for those not pruned by TC as explained in section 2.4.3) and therefore
perform virtually the same number of iterations. One would expect a better perfor-
mance of TC respect to NAMOA∗, as the accurate hmix heuristic used by TC directs
search more quickly to solutions. However, TC is found to be slower than heuristic
NAMOA∗. This phenomenon is further analyzed and discussed in 5.4.

5.2.4 Time devoted to precalculation of heuristics

It is important to note that time results shown in this section do not include time
devoted to the precalculation of heuristics. Several reasons justify this decision:

• When heuristic search is compared, the same time requirements apply for the
precalculation of ~hTC to MOA∗ and NAMOA∗. TC takes a little more time
as it must calculate in addition hmix values. This additional time is not significant
for class I, but it can represent 2-3 s more in the largest problems for class II5

• These time requirements for heuristics precalculation are not significant compared
to total execution time in grid problems, and do not change the results of relative

5Note that the size of the grid is half depth in class I than in class II, and hence precalculation
times are smaller for class I.
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Figure 5.9: Performance of TC and heuristic NAMOA∗ search on class I grid pro-
blems. Average values over ten problems generated for each depth.
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Figure 5.10: Performance of TC and heuristic NAMOA∗ search on class II grid
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performance when comparing two algorithms

• Moreover, precalculation time is not influenced by the correlation between objec-
tives, as only one objective is optimized on each Dijkstra’s run. Thus, heuristics
precalculation time is the same regardless of the difficulty of the problems due to
ρ

• Finally, the calculation method can be optimized, as it is shown in chapter 6.

Average time requirements for precalculation of heuristics are shown for each size
in class I and class II problems on figures 5.11(a) and 5.11(b), respectively. These
results indicate that the single objective search runs used to precompute the heuristic
values have much smaller time requirements than bicriterion search. As the difficulty
of the problem increases, the precalculation time becomes less significant compared to
the time invested by the multiobjective search stage. However, it can be significant in
some cases for class II problems, and must be improved. It is not worth calculating
some heuristic values, as many nodes in class II problems will not be examined. This
is further explained in chapter 6.

5.2.5 Summary

Table 5.2 summarizes the main results and ideas discussed in previous sections on the
performance of the three algorithms analyzed.

The first round of experiments considered the impact of heuristic information in
NAMOA∗ and MOA∗. Results show that heuristic search can save space in both
classes of problems and for all correlations, except for ρ = −0.8 and class I problems,
where only a very small difference is appreciated. Savings were specially significant for
class II problems. Relative performance showed NAMOA∗ to perform better than
MOA∗, though the space overhead in MOA∗ seems to approach a constant ratio with
higher solution depth.

The convenience of heuristic search in terms of time requirements is not so clear.
MOA∗ was found to perform consistently worse with heuristic information, except
for class II problems and ρ = 0.8. NAMOA∗ performed clearly better with heuristic
information for class II problems, but worse for class I problems with ρ < 0. We
can conclude that the use of the HTC heuristic in NAMOA∗ always offers the best
advantages in space savings, but time performance depends on the characteristics of
the problem at hand.

The comparison of search with HTC in NAMOA∗ and MOA∗ showed that, as
could be expected from previous theoretical results, the former has lower space require-
ments. MOA∗ was found to approach a similar performance for lower correlations and
increasing solution depth. However, time performance of heuristic MOA∗ was found
to be surprisingly bad, even when compared to blind MOA∗. Only for values of high
correlation (ρ = 0.8) MOA∗ shows a competitive performance with NAMOA∗.

Finally, the comparison between TC (using HTC and hmix) and NAMOA∗ (using
HTC) found small differences in space requirements, with some advantage forNAMOA∗.
TC performed worse in time requirements for decreasing values of ρ and increasing
solution depth. In particular, the use of the accurate hmix heuristic in TC seems to
work against the time performance of the algorithm.
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(b) Time requirements for heuristics precalculation on class II problems.

Figure 5.11: Time devoted to heuristics precalculation by TC and heuristic
NAMOA∗/ MOA∗ on class I/II grid problems. Average values over ten problems
generated for each depth.
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Memory Time
Comparison Class I Class II Class I Class II
Blind/Heuristic
Search

MOA∗&
NAMOA∗ heuris-
tic are better,
but differences
decrease as ρ
decreases

MOA∗&
NAMOA∗ heuris-
tic clearly better
for all values of
ρ, reductions up
to 10-20 times

MOA∗ heuris-
tic much worse
than blind
MOA∗ with all
values of ρ

MOA∗ heuristic
worse than blind
MOA∗ for ρ ≤ 0

For ρ = −0.8, no
significant differ-
ences

NAMOA∗ heuris-
tic faster for
ρ ≥ 0, and blind
faster for ρ ≤ 0

NAMOA∗ heuris-
tic always clearly
better than blind
NAMOA∗

Heuristic
MOA∗/NAMOA∗

MOA∗ becomes decreasingly
worse for ρ < 0.8, tending to re-
duce difference with decreasing ρ
and increasing depth

MOA∗ worse for ρ < 0.8, tends
to rapidly increase difference with
decreasing ρ and increasing depth,
specially for ρ ≤ 0 and class I pro-
blems

NAMOA∗ clearly better for ρ =
0.8

Heuristic
NAMOA∗/TC

TC worse, but little differences
with NAMOA∗

TC worse, increasing differences
with decreasing ρ and increasing
depth, specially in class I problems
up to 20-25% with ρ ≤ −0.4 and
depth 200

Table 5.2: Summary of results from the empirical analyses on the performance of
NAMOA∗, MOA∗ and TC
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In summary, there are classes of problems in which heuristic NAMOA∗ can provide
important reductions in time and space requirements over blind search. This is the case
of class II problems. In these problems search spans from the center of a grid outwards.
Most paths are unlikely to be constrained by grid boundaries. Therefore, the use of
heuristic estimates helps to filter large portions of the search space that are not aimed
in the direction of the goal node.

The experiments revealed also two cases where the time performance of heuristic
search was found worse than that of blind search,

• Heuristic NAMOA∗ and TC clearly take more time than blind search in many
class I problems. Section 5.4 analyzes the time performance of the algorithms
in terms of the number of dominance checks, following a methodology similar to
the one proposed by Iori et al. (2010). The use of good heuristic cost estimates
directs search quickly towards the goal. In the scalar optimization performed by
A∗, this helps to find an optimal solution earlier, considerably reducing search
effort (Pearl, 1984). However, multiobjective search must find all nondominated
solutions, and terminates only when the OPEN list is empty, i.e. when all
alternatives have been either selected, pruned or filtered. Finding solutions at
the earlier stages of search has the undesired side effect of increasing the effort
needed for filtering checks. The effect is worse for TC, which is guided earlier to
solutions by an extra heuristic hmix.

Therefore, there are situations in which the number of paths filtered with the help
of heuristics is not enough to compensate for the extra effort in filtering checks.
This is the case of class I problems, where search is performed from one corner of
a grid to the opposite. Paths are constrained by grid boundaries, and most aim
approximately in the direction of the goal node. Therefore, the use of heuristics
filters only a small amount of them. As it turns out, the number of filtered paths
decreases rapidly with decreasing correlation.

• The same phenomenon described above for NAMOA∗ and TC applies to
MOA∗ as well. However, an additional phenomenon degraded substantially
the performance of MOA∗ in our experiments for all but the simpler problems.
This is discussed in section 5.3. The analysis reveals that reexpansions of already
expanded labels are clearly responsible for the very bad behavior observed for
heuristic MOA∗, in accordance to the formal analysis presented in chapter 4.
These were triggered by the combination of accurate heuristics with the node
selection policy.

5.3 Analysis on the time performance of heuristic MOA∗

The time performance results presented in sections 5.2.1 and 5.2.2 clearly question the
idea that heuristic information improves search efficiency in MOA∗. This section ana-
lyzes in detail a particular problem instance in order to provide better insight into the
performance of the algorithm and explain its behavior. This empirical result confirms
the formal analysis presented in chapter 4. The instance chosen is a 80 × 80 class II
grid problem with ρ = 0.
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Recall that no admissible algorithm equipped with the same consistent heuristic
information can skip the expansion of a label expanded by NAMOA∗. When com-
pared to NAMOA∗, MOA∗ can be shown to perform three kinds of label expansions
(Mandow & Pérez de la Cruz, 2005),

1. Necessary label expansions, i.e. at least the labels expanded by NAMOA∗ on
the same problems will be necessarily expanded once.

2. Redundant label expansions, i.e. reexpansions of necessary labels due to node
reopenings.

3. Superfluous label expansions, i.e. expansions or reexpansions of labels that will
never be considered by NAMOA∗ when solving the same problem. These
generally correspond to nondominated labels that are nevertheless filtered by
NAMOA∗ (i.e. dominated by some solution path).

Figures 5.12(a) and 5.12(b) show the total number of label expansions for each
node in the sample grid of blind and heuristic NAMOA∗ respectively. Recall that
the start node is (40, 40), and the goal node (20, 20). These figures provide a graphical
explanation for the good performance of NAMOA∗ in class II problems. While the
explored portion of the grid grows approximately circular in blind search, the use of
the HTC heuristic aims search precisely towards the goal, constraining the explored
portion to approximately a square defined by the start and goal nodes.

Notice also that, as could be expected, the number of (nondominated) labels con-
sidered per node grows with node depth.

Figures 5.13(a) and 5.13(b) show the total number of labels expanded for each node
by MOA∗ with blind and heuristic search respectively. Notice that while the explored
portion of the graph is the same as with NAMOA∗ equipped with the same heuristic
information, the number of redundant and superfluous label expansions makes the total
number of expansions per node much higher in MOA∗.

5.3.1 Performance of blind MOA∗

Let us analyze first the case of blindMOA∗. Figures 5.12(a) and 5.13(a) show the total
number of label expansions per node ofNAMOA∗ andMOA∗respectively. Notice that
vertical scales are different (the range in figure 5.12(a) is 120 and in figure 5.13(a) is
2000).

The hypothesis proposed here is that blind MOA∗ incurs in a time overhead over
blind NAMOA∗ mainly due to the expansion of superfluous labels in the deeper nodes
considered during search.

Figure 5.14 displays the number of superfluous labels expansions performed by
MOA∗ for each node (vertical scale is 120). This number is summarized and compared
to the total number of label expansions of MOA∗ in figure 5.15(a). Expansions are
averaged for all nodes at the same depth and displayed as a function of depth. This
clearly shows that almost all label expansions performed by MOA∗ in the search
frontier are superfluous, and account for much of the search effort performed by the
algorithm. This effect is accentuated by the fact that the number of nodes considered at



5.3. Analysis on the time performance of heuristic MOA∗ 107

0

20

40

60

80
0 10 20 30 40 50 60 70 80

0

20

40

60

80

100

120

(a) Blind NAMOA∗

0

20

40

60

800 10 20 30 40 50 60 70 80

0

20

40

60

80

100

120

(b) Heuristic NAMOA∗

Figure 5.12: Number of label expansions per node performed by blind and heuristic
NAMOA∗ in a sample 80× 80 class II grid problem with ρ = 0. Start node is (40, 40)
and goal node is (20, 20).
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Figure 5.13: Number of label expansions per node performed by blind and heuristic
MOA∗ in a sample 80 × 80 class II grid problem with ρ = 0. Start node is (40, 40)
and goal node is (20, 20).
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Figure 5.14: Number of superfluous label expansions per node performed by blind
MOA∗ in a sample 80× 80 class II grid problem with ρ = 0.

a given depth grows steadily with depth. Figure 5.15(b) compares the average number
of necessary and non-superfluous (necessary plus redundant) expansions performed by
MOA∗ for each node depth. This clearly suggests also that redundant expansions (i.e.
reexpansion of necessary labels), while significant, are not fundamental for the time
overhead incurred by blind MOA∗. In fact, these sharply decrease as the goal depth
(40) is reached.

These results support the hypothesis that the node selection and expansion strategy
performed by MOA∗ leads the algorithm to an unnecessary expansion of many labels
in frontier nodes that will later be filtered by the algorithm. The same effect was
observed in other randomly selected problem instances.

5.3.2 Performance of heuristic MOA∗

A comparison of figures 5.12(b) and 5.13(b) reveals that a new additional effect must
be boosting the number of label expansions performed by heuristicMOA∗. Notice that
vertical scales are different (the range in figure 5.12(b) is 120 and in figure 5.13(b) is
2000).

Figure 5.16 shows the number of superfluous label expansions by heuristic MOA∗.
While there is a similar effect to that observed in the frontier of blind MOA∗, the
largest counts of label expansions occur in nodes deep inside the explored area of the
graph. Notice also that, in this case, only a few deep nodes are considered, and that
most are mid-distance from the start to the goal.

The hypothesis in this case is that, as search is constrained by accurate heuristics
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Figure 5.15: Averages of different classes of label expansions per node depth performed
by blind MOA∗ in a sample 80× 80 class II grid problem with ρ = 0.



5.4. Analysis on the time performance of heuristic NAMOA∗ and TC 111

to narrow areas of the graph, the same nodes are explored and reopened again and
again, producing a large number of redundant label expansions, as in the case formally
analyzed in chapter 4 (see specially section 4.6).

Figure 5.17(a) compares the average number of superfluous expansions per node
with the total number of label expansions. While the first magnitude is significant,
it accounts only for half of the expansions even at the deeper nodes. Figure 5.17(b)
compares the average number of necessary and non-superfluous (necessary plus redun-
dant) expansions performed by MOA∗ for each node depth. This clearly supports the
hypothesis that redundant expansions are responsible for the important time overhead
of MOA∗.

To gain further insight into the performance of blind and heuristic MOA∗ it is
interesting to recall the effects of G(n) and H(n) on heuristic search 6. The former
adds a breadth-first component to search. Without H(n), blind MOA∗ reduces to a
purely breadth-first (uniform cost) search. Although MOA∗ cannot guarantee that
upon expansion all nondominated labels to a given node have been found, it is unlikely
that any node will remain for a long time far behind the search frontier awaiting
reexpansion. Thus, the search frontier advances more or less uniformly closing nodes
definitively shortly after their first expansion.

The use of H(n) introduces some sort of depth-first behaviour in the operation of
MOA∗. In fact, the sole use of H(n), an estimate of the proximity to the goal, could
be misleading in many cases for the algorithm. It is the balance of G(n) and H(n) that
guarantees at the same time that search is aimed in the right direction, and that all
nondominated solutions are found.

However, the experiments performed with heuristic MOA∗ confirm that the com-
bination of the node selection strategy with the depth-first component of H(n) plays
against the time efficiency of the algorithm, as formally shown for a particular case in
chapter 4.

5.4 Analysis on the time performance of heuristic NAMOA∗

and TC

This section gives an explanation to the bad time performance of heuristic search in
NAMOA∗ and TC in two different scenarios,

1. Those cases where the time performance of heuristic NAMOA∗ and TC was
found to be worse than that of blind NAMOA∗ (see section 5.2.1.2)

2. Those where TC performed worse than heuristic NAMOA∗ (see section 5.2.3.2)

Our hypothesis is that better informed heuristics lead the algorithms more quickly
to solutions. Since each new candidate path needs to be checked for dominance against
the cost of already found solutions (filtering), this slows down the algorithms as more
and more (filtering) dominance checks need to be performed.

6see (Pearl, 1984, sec 3.2.1) for a similar description pertaining to A∗. However, the adverse effect
described here forMOA∗ does not appear in A∗, since the latter terminates as soon as a first solution
is found.
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Figure 5.16: Number of superfluous label expansions per node performed by heuristic
MOA∗ in a sample 80× 80 class II grid problem with ρ = 0.

5.4.1 Analysis on the number of dominance checks

This section describes the experiments conducted to confirm this hypothesis. In par-
ticular, the number of dominance checks due to pruning and filtering was counted for
all problem classes, correlations, and depths reported in previous sections.

Regarding time requirements of NAMOA∗ in class I problems, figure 5.18(b) shows
that, for any given correlation, the number of pruning dominance checks of blind search
is always larger than those of heuristic search. This is in accordance with the larger
number of paths explored by blind search. However, figure 5.18(a) clearly shows that,
for any given correlation, the number of filtering dominance checks is larger in heuristic
search than in blind search. Since heuristic NAMOA∗ explores less paths than blind
NAMOA∗, the additional number of filtering dominance checks must be due to the
fact that solutions are found much earlier in the former case. Notice also that, in
absolute terms, the number of filtering dominance checks is always much larger than
the number of pruning dominance checks in the heuristic searches.

This confirms the hypothesis that finding solutions early has the undesired side
effect of boosting the number of dominance checks needed for filtering, slowing down
the speed of search. In summary, in class I problems the reduction in the number
of iterations (alternatives considered) achieved by heuristic search does not always
compensate the increase in dominance checks per iteration when compared to blind
search.

Figure 5.19 compares the number of dominance checks of TC and heuristicNAMOA∗
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Figure 5.17: Averages of different classes of label expansions per node depth performed
by heuristic MOA∗ in a sample 80× 80 class II grid problem with ρ = 0.
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for class I problems. Figure 5.19(a) clearly shows that the number of filtering dominance
check is even greater for TC than for heuristic NAMOA∗. This can be attributed
to the accurate heuristic used for label selection in TC, which guides the algorithm to
solutions even at earlier stages of the search. Pruning dominance checks also grow, but
to a lesser extent. This can be attributed to the particular filtering strategy of TC (see
section 2.4.3).

Figure 5.20 shows the percentage of filtering dominance checks among all (pruning
and filtering) dominance checks for class I problems and ρ = 0. While filtering checks
account in average only for 42.84% of the total in blind NAMOA∗, these raise to
81.12% in heuristic NAMOA∗, and 87.44% in TC. Values of ρ = 0.4 and ρ = −0.4
change the figures to 18.27% and 52.55% for blind NAMOA∗, but the percentages in
the heuristic searches vary less than 2% (not shown for clarity).

Again, similar percentages were found for class II problems, though in these pro-
blems the extra effort due to the increase in filtering dominance checks is more than
compensated by the reduction in the number of alternatives considered.

Regarding the operation of MOA∗ in class I problems, the number of filtering
dominance checks also increases with heuristic search, but so does even in larger pro-
portion the number of pruning checks (see figures 5.21(a), 5.21(b)). Therefore, the
general bad performance of heuristic MOA∗, which extends even to class II problems,
must be due to a different cause. This have been analyzed in section 5.3.

5.4.2 Disadvantages of more informed heuristics

Search time cannot be easily extrapolated from the number of iterations. This is due
to the fact that in bicriteria search, label expansion is by no means an atomic constant-
time operation. Bicriteria search algorithms share with scalar ones a variability in time
per iteration due to the need to sort open alternatives. In bicriteria search the number
of open alternatives is low at the beginning and end of the search, and high some time
in between. Additionally, each new label selected for expansion generates a number of
successor labels that need to be checked for dominance with the labels in the Gop(n)
and Gcl(n) sets of the destination node n, as well as the set of nondominated labels
found to the goal nodes (i.e. those kept in the COSTS set). Particularly, the size of
COSTS can grow rapidly with solution depth. To further validate our hypothesis, this
was analyzed for one particular class I problem of size 100× 100 for the case of ρ = 0.

In order to evaluate the impact of the hmix heuristic, we shall consider an additional
“blind” selection rule, in addition to those rules used in previous sections:

PATH SELECTION in TC with blind selection: Select for expansion an alter-
native label (n,~gn, {g}) from OPEN such that @(n′, ~gn′ , {g′}) ∈ OPEN with∑

i gi(Psn′) <
∑

i gi(Psn)

It is easy to prove that minimizing
∑

i gi(Psn) yields a nondominated ~f (just con-
sider that ~h0(n) is used for selection). The Gop sets are ordered in this case according
to this blind linear evaluation function. Table 5.3 sums up the features of all the
algorithms evaluated in this chapter.

The algorithms were implemented in this case using the LispWorks Professional
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Figure 5.18: Dominance checks performed by blind and heuristic NAMOA∗ search
for class I grid problems. Average values over ten problems generated for each depth.
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Figure 5.19: Dominance checks performed by TC and heuristic NAMOA∗ search for
class I grid problems. Average values over ten problems generated for each depth.
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Figure 5.21: Dominance checks performed by blind and heuristic MOA∗ search for
class I grid problems. Average values over ten problems generated for each depth.
Values are not displayed when at least one problem exceeded a 1h runtime limit.
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Algorithm Selection rule Additional selection rule Filtering criteria
Blind NAMOA∗ best ~g lex order ~g dominated
Heuristic NAMOA∗ best ~g + ~h lex order ~g + ~h dominated
Blind MOA∗ node with best ~g lex order {~g} dominated
Heuristic MOA∗ node with best ~g + ~h lex order {~g + ~h} dominated
TC with blind selection best

∑
i gi ~g + ~h dominated

TC with heuristic selection best hmix +
∑

i gi ~g + ~h dominated

Table 5.3: Algorithms evaluated in the empirical analyses performed on chapter 5.

5.01 programming environment, and were run on a Windows XP 32-bit platform, with
an Intel Core2 Quad Q9550 at 2.8Ghz, and 4Gb of RAM.

Figure 5.22(a) shows that both TC with blind selection and blind NAMOA∗ per-
formed the same number of iterations in this problem. However, TC with blind
selection performed a roughly constant number of iterations per second and abruptly
slowed down at the end, while blind NAMOA∗ slowed down more gradually and fi-
nally took more time to finish. Notice that TC with heuristic selection and heuristic
NAMOA∗ performed less iterations than the previous algorithms, but required more
time per iteration from the beginning, specially TC with heuristic selection. The result
is that these algorithms were slower while solving the same problem instance. Similar
behaviour was found in other cases analyzed.

The explanation of this behavior can be found in figure 5.22(b). All algorithms
found the same number of solutions. However, TC with blind selection found the
solutions in the final seconds of search, coincidentally with the abrupt descent of itera-
tions per second observed in figure 5.22(a). In a similar way, blind NAMOA∗ found
solutions more gradually but also in the final search stage, resulting in the second
fastest alternative. Heuristic NAMOA∗ found solutions even faster and was therefore
slower. Finally, TC with heuristic selection found solutions very quickly and was the
slowest algorithm.

Figure 5.23 shows the time taken by each algorithm to find the first solution as a
function of solution depth averaged for all problem sets. Again, TC with blind selection
is the algorithm that starts to find solutions later, followed by blind NAMOA∗. Both
heuristic NAMOA∗ and TC with heuristic selection find solutions very early and
appear undistinguishable at this scale.

5.5 Heuristic multiobjective search on modified DIMACS
road maps

This chapter is concluded with an analysis of the three algorithms over a set of realistic
route planning problems in road maps proposed by Raith & Ehrgott (2009). These
three road maps (DC, RI and NJ) have been previously described in section 3.2.4.
Two objectives linearly correlated (ρ = 0.99) were considered: travel time and physical
distance.
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Figure 5.22: Analysis on the time performance of TC and NAMOA∗ on a sample
100× 100 class I grid problem with ρ = 0.
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Figure 5.23: Time requirements for NAMOA∗ and TC to reach the first solution on
class I problems with ρ = 0, averaged over ten problem generated for each depth.

5.5.1 Results

Results presented in this section are the average values of ten different runs for each
problem. A runtime limit of one hour was set. Figures 5.24(a), 5.24(b), 5.25(a),
5.25(b), 5.26(a), 5.26(b) show only results for problem instances which do not exceed
the runtime limit of 1-h. Values are presented in a logarithmic scale for the ordinate
axis. Problem instances in the abscissa axis are ordered by increasing value of ordinate
for blind MOA∗ (the slowest algorithm).

5.5.2 Analysis

The performance of the algorithms over this problem set is in general consistent with
the results presented for class II problems and high correlation between objectives (see
section 5.2.5).

The analysis of space requirements shows that,

• HeuristicMOA∗ and heuristic NAMOA∗ achieve important reductions in space
requirements over all problem instances when compared to blind searches.

• A comparison of heuristic NAMOA∗ with heuristic MOA∗ confirms that space
requirements are always smaller with the former.

• The requirements of TC are in general between those of the other heuristic
algorithms, and closer to the figures of NAMOA∗.
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Figure 5.24: Performance of blind and heuristic search on DC road map problems.
Average values over ten runs for each problem instance.
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Figure 5.25: Performance of blind and heuristic search on RI road map problems.
Average values over ten runs for each problem instance.
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Figure 5.26: Performance of blind and heuristic search on NJ road map problems.
Average values over ten runs for each problem instance. Values exceeding a 1h time
limit are not displayed.
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Map NAMOA∗ / MOA∗ TC

DC 0.55 0.75
RI 3.27 4.77
NJ 24.95 37.48

Table 5.4: Average heuristics precalculation time (in seconds) for modified DIMACS
road networks.

The analysis of time requirements shows that,

• Heuristic MOA∗ and heuristic NAMOA∗ perform faster than their blind coun-
terparts respectively.

• Heuristic NAMOA∗ was faster on average than heuristic MOA∗. This is spe-
cially true on the problems in the larger NJ map, mainly due to the poor perfor-
mance of MOA∗ in instances NJ3, NJ6 and NJ9.

• The difference between heuristic NAMOA∗ and TC is very small. On average,
NAMOA∗ was slightly faster in DC, TC slightly faster in RI, and virtually the
same in NJ. In general, the problems are relatively easy for heuristic search, and
each instance is typically solved in less than a second by these algorithms.

5.5.3 Time devoted to precalculation of heuristics

It is important to note also that, as in section 5.2, time results shown in this section do
not include time devoted to precalculation of heuristics. Precalculation time require-
ments observed for all instance problems are very similar for the three maps. Average
values for the nine problems on each set are presented in table 5.4.

These values are larger in most cases than biobjetive stage search time requirements,
as these road map problems correspond to the same range of easy grid problems, e.g.
those with small solution depth. Thus, precalculation time was not added to results.
In the case of TC, the hmix values must be calculated in addition, resulting in a worse
total execution time than heuristic NAMOA∗ in all the road map problems analyzed.

Besides, as it was previously pointed out for grids, the precalculation procedure can
be greatly improved because the heuristic values of many nodes are not used and do
not need to be precalculated. The chapter 6 presents a bounded calculation method
for ~hTC heuristic.

5.6 Conclusions

This chapter presents the first systematic comparison of the space and time perfor-
mance of the three different multiobjective heuristic best-first (label setting) search
algorithms NAMOA∗, MOA∗ and TC, using lexicographic order in the selection of
nondominated alternatives, and applying the accurate general heuristic HTC proposed
by Tung & Chew (1992) also to MOA∗ and NAMOA∗. Pair-by-pair comparisons
through extensive evaluations over different test domains have been performed.
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As expected from previous theoretical results, NAMOA∗ presents the best space
performance. Additionally, several interesting phenomena were observed. In the first
place, the use of heuristic information in selection strategies can deteriorate time per-
formance. This effect was found to increase with decreasing correlation. In particular
the very accurate heuristic selection strategy used by TC was found to work against
its time performance. The node selection strategy of MOA∗ was also found to be
specially penalized in time performance by the use of the HTC heuristic. Therefore,
we can conclude that heuristic NAMOA∗ performs better than the other algorithms
in most cases, and specially for the hardest problems, i.e. those with deeper solutions
and negative correlation between objectives.

In summary, the following conclusions can be drawn:

• Blind MOA∗ can be faster than blind NAMOA∗ in certain cases (very high
correlation or very small solution depth). Otherwise, blind NAMOA∗ outper-
forms blind MOA∗. The memory overhead in MOA∗ was found to stabilize
around 15-25% in the worst cases analyzed.

• The use of heuristic information can result in important savings in time and space
in NAMOA∗. However, in particular cases like class I grid problems with low
correlation, the advantage in space can be minimal and time performance can
degrade. In those cases the reduction in the number of labels explored does not
seem to compensate the time overhead of finding solutions earlier.

• The use of heuristic information saves space in MOA∗, but regrettably degrades
considerably time performance in all cases. To the author’s knowledge, this result
had never been reported in the literature. This empirical finding is in accordance
with the formal analysis presented in chapter 4.

• NAMOA∗ performs somewhat better than TC. Space requirements are similar
but the hmix heuristic penalyzes the time performance in TC.

• Heuristic NAMOA∗ performs better than the other algorithms in most cases,
specially for the hardest problems (i.e. deeper solutions and negative correlation
between objectives).

• The speed of the algorithms was found to be related to the discovery of non-
dominated solutions. Those algorithms that found solutions later in the search
performed consistently faster. In this sense, the use of a specialized selection
heuristic in TC with heuristic selection was found to work against the time
efficiency of the algorithm.

• The results indicate that the order of selection among nondominated open la-
bels is an important element in time efficiency and suggest that the investigation
of alternative orderings that combine heuristic search and delayed expansion of
solutions could lead to more efficient algorithms. This is analyzed in the next
chapter, where linear order is evaluated for NAMOA∗, and compared to lexico-
graphic order.
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• The experiments confirmed that the time needed to calculate the heuristics is
not significant compared to total execution time for class I problems. However,
it must be improved for class II problems as it can represent a significant time
for some instance problems.

• The road map problems analyzed in this chapter have similar time requirements
to grid problems with smaller solution depth. Large size realistic road maps,
analogous to difficult class II problems, are used in chapter 6, where an improved
calculation method for heuristics is also tested.





Chapter 6

Multiobjective Heuristic Search in
Road Maps

The heuristic function ~hTC proposed by Tung & Chew (1992) has been shown to pay
off during the multiobjective search stage in many cases. In particular, heuristic search
seems to be very effective on the modified road maps proposed by Raith & Ehrgott
(2009). However, the total execution time including the precalculation of heuristics
questions the application of this heuristic for some road map problems. The heuristic
values are precalculated for all nodes in the map, even for those that are never explored
in multiobjective search. Thus, the heuristic precalculation procedure can be improved
for many cases. In this chapter a bounded precalculation procedure is presented. The
heuristic is successfully applied to realistic large sized road maps.

Besides, the empirical study has confirmed that NAMOA∗ has the lowest memory
requirements among the algorithms analyzed. The formal analysis performed in chap-
ter 4 shows a degradation in time for MOA∗, and the empirical analysis performed in
chapter 5 confirms that MOA∗ is not competitive in time. TC shows a somewhat
worse performance than NAMOA∗ for many problems, as expected from formal anal-
yses. But for the modified road maps tested in the last chapter, it is unclear which
algorithm has the best time performance in practice. Moreover, TC presents a linear
selection rule while NAMOA∗ has been applied with lexicographic selection. A fair
comparison between both algorithms should consider the application of linear aggre-
gate rules in the selection of nondominated open alternatives. This is analyzed also in
this chapter.

An additional related scenario is analyzed as well: hazardous material transporta-
tion (hazmat) problems. Random graphs and road maps with three objectives allow
the evaluation of the relative performance compared to two objectives.

The chapter is organized as follows: first, a summary of related work and previous
results in single and multiobjective search on route planning problems can be found in
section 6.1. Later, section 6.2 describes some heuristics useful for multiobjective route
planning. An improved procedure for the calculation of the ~hTC heuristic is described.
Sections 6.3 and 6.4 show the application of these heuristics to large size road map
problems from the “9th DIMACS Implementation Challenge: Shortest Paths”. The
former experiments minimize both time and physical distance. The latter present a
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more realistic and difficult scenario where time and economical cost are simultaneously
optimized. Moreover, the application of linear orderings is also evaluated in section
6.4. The chapter is concluded with the consideration of another realistic road map
scenario in section 6.5: hazmat problems. Some conclusions are drawn at the end of
the chapter.

The results presented in this chapter have appeared in Expert Systems with Appli-
cations: An International Journal (Machuca & Mandow, 2012), the national portuguese
AI conference EPIA’2011 (Machuca & Mandow, 2011) and the national spanish AI con-
ference CAEPIA’2011 (Machuca et al., 2011).

6.1 Multiobjective Route Planning

Some objections to the application of exact heuristic search techniques to large size
realistic problems have been made in the past. Several authors have pointed out that
particular classes of multiobjective search problems do not exhibit exponential worst-
case behavior (Müller-Hannemann & Weihe, 2006; Mandow & Pérez de la Cruz, 2009).
In particular, in polynomial state spaces with bounded integer costs and a fixed number
of objectives, the number of nondominated solutions can be shown to grow only poly-
nomially with goal depth in the worst case (Mandow & Pérez de la Cruz, 2009). Since
road maps are generally defined over a surface, the number of nodes typically grows
quadratically with node depth in the worst case, assuming node density is locally upper
bounded by some value. Therefore, as long as the number of objectives is fixed and arc
costs are bounded and integer, the problem becomes formally tractable. The empirical
evaluation of the last chapter has shown that the precalculated multiobjective heuristic
~hTC can be very beneficial in practice, justifying the use of precalculated heuristics.

Applications of multiobjective search in road maps range from off-line planning of
routes for hazardous material (hazmat) transportation (Erkut et al., 2007; Dell‘Olmo
et al., 2005; Caramia et al., 2010) to route search in car navigation systems (Kanoh,
2007; Kanoh & Hara, 2008; Kim et al., 2009; Schultes, 2008; Delling et al., 2009). An
overview of multiobjective routing problems can be found in (Jozefowiez et al., 2008).
However, most previous applications of multiobjective search have involved approxi-
mation schemes or relatively small sized problems. This chapter presents the successful
application of multiobjective heuristic search to large size realistic multiobjective road
map search problems.

6.1.1 Single-objective Route Planning Algorithms

Route planning in road maps is a current research topic among transportation problems.
Current techniques generally rely on exhaustive precalculations that can be later used to
speed up route queries. Travel time, distance or economic cost are frequent objectives
to be minimized, and most current road planners offer the opportunity to optimize
each of them individually. Most recent contributions concentrate on single objective
problem formulations (Schultes, 2008; Delling et al., 2009).

Pearl (Pearl, 1984, sec 5.3) presented a formal analysis on the relative performance
of Dijkstra’s and the A∗ algorithm (using an Euclidean distance heuristic) on road
maps with randomly distributed cities and uniform density. Some other empirical
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studies were performed with real road networks using A∗ in the past (Zhan & Noon,
1998). New techniques have been developed in the recent years to further improve
search efficiency, like precomputing distance bounds (Goldberg & Harrelson, 2005) or
the use of bidirectional A∗ (Nannicini et al., 2008).

But most of the recent works concentrate on a variety of speed up techniques for
Dijkstra’s algorithm. A brief description of these techniques can be found in section
2.1.3. In general, speed up techniques exploit information gathered in previous exten-
sive searches of the road map. The challenge is to achieve fast shortest-path queries
with practical preprocessing time and memory. A recent work established that the
optimal adjustment in many recent techniques (for example, the assignment of land-
marks to a graph in the ALT technique cited above) is NP-hard (Bauer et al., 2010a).
In practice, these adjustments are frequently settled experimentally.

6.1.2 Multiobjective Route Planning Algorithms

Multiobjective search in road maps is a relatively unexplored area when compared to
single-objective search. Limited experiments with multiobjective genetic algorithms in
dynamic networks for car navigation are described in (Kanoh, 2007; Kanoh & Hara,
2008; Kim et al., 2009). These involve search in networks with hundreds or a few thou-
sand nodes and three or four objectives. Martins’ multiobjective search algorithm has
been applied to route planning of hazardous materials in networks with a few hundreds
of nodes with two (Dell‘Olmo et al., 2005) and three objectives (Caramia et al., 2010).
A typical objective in these applications is the minimization of risk, frequently comple-
mented with the minimization of time and/or distance. An overview of the application
of multiobjective route planning to hazardous material transportation can be found in
(Erkut et al., 2007). Some attempts have been made to extend speed up techniques
typically used with single-objective route planning to the multiobjective case. Delling
and Wagner (Delling & Wagner, 2009) extended the single-objective SHARC (Short-
cuts + ARC-flags) technique to be used with Martins blind multiobjective label-setting
algorithm. Reports on the exact solution of problems with two objectives and networks
of up to 77,740 nodes are presented. An approximation technique is successfully used to
search much larger networks, where the extensive multiobjective preprocessing searches
are not practical (Delling & Wagner, 2009).

Finally, Raith & Ehrgott (2009) compared a number of blind multiobjective search
algorithms on different test cases, including modified road networks of up to 330,386
nodes and two objectives (time and distance). The analysis concluded that a two-phase
method combining two multiobjective label-setting searches provided the best results
in these networks.

Regarding multiobjective heuristic search, a partial analysis with modified DIMACS
road maps was presented in section 5.5. To the author’s knowledge, before this thesis
no previous results on the application of heuristic multiobjective search to road maps
had been reported. The combination of NAMOA∗ with the ~hTC heuristic on a set
of random problems obtained from realistic road networks of up to 1,070,376 nodes is
tested in the next section. A more efficient calculation method for the ~hTC heuristic
is also described.
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6.2 Heuristics for Multiobjective Route Planning

The experiments described in the following sections use the NAMOA∗ and TC al-
gorithms to solve problems over the road networks described in section 3.2.3. The
efficiency of these algorithms can be improved using an optimistic and well informed
heuristic function H(n) to estimate path costs (see section 2.4.4). If the estimates
are lower bounds, then the algorithms are guaranteed to terminate with the set of all
nondominated solutions. In general, concerning to consistent heuristics, more precise
estimates should result in more efficient search. Therefore, finding accurate heuristic
estimates is a central issue in multiobjective heuristic search.

Several cost functions will be considered in this chapter: time, distance, economic
cost, and societal risk. Different lower bounds can be devised to estimate physical
distances and travel times. All the multiobjective heuristic functions considered in this
section return a single vector estimate that lower bounds all nondominated solution
paths emanating from a given node, i.e. H(n) = {~h(n)}. Therefore, we shall refer to
the multiobjective heuristic function for simplicity as ~h(n). The basic approach is to
use ~h0(n) = (0, 0) which amounts to uninformed or blind search. Two well informed
heuristic functions are used as well: a classical distance heuristic, namely ~hcd(n), and
the same heuristic function used in the previous chapter, namely ~hTC(n).

6.2.1 Corrected great circle distance heuristic

Let us consider first an estimate for physical distance. Euclidean distance is a simple
way to estimate distances between nodes in a planar surface. However, this measure
presents several drawbacks for the maps considered in this study. In the first place,
node positions are described through longitude and latitude, and not by coordinates in a
plane. Secondly, arc distances are calculated in the maps using the great circle distance
as explained in section 3.2.3. Finally, arc distances in the maps are truncated and paths
frequently accumulate errors (up to 0.5 units per arc). Therefore, the straightforward
calculation of Euclidean or great circle distances between nodes can easily overestimate
optimal distances calculated using map data. This yields both measures inadmissible
and inconsistent in general.

Nevertheless, great circle distances can be corrected subtracting the maximum pos-
sible error to obtain an admissible heuristic. Let n be some node, and γ the destination
node. Let d(n) be the great circle distance between n and γ, and d∗(n) the actual opti-
mal physical distance of a path joining both nodes. Let us further assume this optimal
path actually joins both nodes following a circular line over the Earth’s surface. Ideally,
the equality d(n) = d∗(n) should hold. However, due to truncations in physical dis-
tance, d(n) will in general overestimate d∗(n). The worst overestimate would occur if
the path were made up of a large number of cocircular arcs, each one accumulating a
maximum truncation error of 0.5 units.

The cumulative error in this case can be upper bounded as follows. Let us group
all the arcs in the graph in disjoint categories such that each category groups all arcs
with the same physical distance, and there are Ni arcs of physical distance Li for each
category i. Let us further assume that ∀i < j Li < Lj . The truncation error e(n) of
a straight path joining n with γ is upper bounded as e(n) = 0.5 × N(n) where N(n)
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is the maximum number of map arcs that can be concatenated to reach a distance of
d(n), i.e. N1 arcs of length L1 plus N2 arcs of length L2, etc. More precisely, let us
define ai as the cumulative physical distance of all arcs in the graph up to category i,

ai =
i∑

j=0

Nj × Lj (6.1)

and let k be a value such that,

ak ≤ d(n) < ak+1 (6.2)

then,

N(n) =

k∑
j=0

Nj + dd(n)− ak
Lk+1

e (6.3)

The corrected distance value hcd(n) = d(n) − e(n) is always a lower bound of
the optimal physical distance calculated in the maps from n to the goal. A test over
10000 randomly chosen pairs of nodes in each map revealed that the average error e(n)
subtracted in the heuristic calculations is just 0.67% of the great circle distance. In
consequence, the estimate preserves most of the precision of great circle distances, while
guaranteeing at the same time the admissible (optimistic) values needed by NAMOA∗.

Notice that the ai, Ni and Li values can be easily precalculated for each map and
are problem independent. Therefore, the calculation of heuristic estimates is quite
efficient.

Regarding travel time, the optimistic estimate is to assume that the corrected great
circle distance can be traversed at the maximum speed, i.e. a time estimate is calculated
dividing by the largest factor, which is 1.0 in the DIMACS maps. Since hcd(n) is a lower
bound on the physical distance of optimal paths from n to the goal, then hcd(n)/1.0 is
also a lower bound on travel time.

In consequence, the corrected distances multiobjective heuristic estimate is defined
as ~hcd(n) = (hcd(n), hcd(n)). This heuristic function has been defined for obtaining
a (distance,time) estimate, as it will be applied only in that scenario. In the case of
economic cost, similar assumptions could be made to obtain a lower bound, but only
the ~hTC heuristic will be used in that scenario in this chapter.

6.2.2 Bounded calculation for the TC heuristic

The TC heuristic is defined as ~htc(n) = (c∗1(n), c∗2(n)) for the two objectives case,
where c∗i (n) is the optimal cost of a path from n to the goal, considering only the i-th
cost component. These values are precalculated for each component by reversing all
arcs in the graph, and applying Dijkstra’s algorithm to find the shortest path from the
goal node to all other nodes in the graph.

Notice that the TC heuristic estimates are trivially more accurate than those
described in section 6.2.1. However, TC estimates depend on the goal node and
generally need to be precalculated for each problem instance. The calculation procedure
is also much more costly computationally.
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The preprocessing described above calculates estimates for all nodes in the graph
(see section 2.4.4). It is obvious that many problem instances require the examination
of fewer nodes.

Let C∗ be the set of nondominated solution costs for a given problem. It can be
shown that NAMOA∗ will never consider for expansion paths whose estimates are
dominated by some vector in C∗ (Lemma 4.1). This property can be conveniently used
to limit the number of nodes examined in the precalculation of the heuristic values. Let
us denote by c∗1, c∗2 the optimal solutions for the single objective under consideration.
Let c′2 be the minimum value of the second objective among all solution paths attaining
c∗1, and c′1 the minimum value in the first objective among those paths attaining c∗2 in
the second one.

Figure 6.1 displays these values in a biobjective cost space. All nondominated
solution costs to a problem ~c ∗ ∈ C∗ lie by definition in rectangle A defined by the two
extreme points 1 (c∗1, c

′
2) and (c′1, c

∗
2) .

Lemma 4.1 implies that NAMOA∗ will never consider for expansion paths in rect-
angle C, with costs dominated by (c′1, c

′
2), since these can never lead to nondominated

solutions. Therefore, heuristic estimates for nodes n with optimal costs c∗1(n) > c′1 and
c∗2(n) > c′2 do not need to be calculated (i.e. they could be set to infinity).

The following three-stage calculation procedure is proposed,

1. Reverse all arcs in the graph, and apply a modified Dijkstra’s algorithm to find
the shortest path from the goal node to other nodes in the graph. The modified
Dijkstra’s algorithm minimizes c1 values, but in case of ties, prefers paths with
smaller value of c2, i.e. optimizes using a total lexicographic order 2 defined by
(c1(n), c2(n)). Pause search as soon as the start node is selected for expansion.
This will provide the optimal lexicographic cost (c∗1, c

′
2).

2. Reverse all arcs in the graph, and apply a modified Dijkstra’s algorithm to find the
shortest path from the goal node to other nodes in the graph using a lexicographic
order defined by (c2(n), c1(n)). Stop search as soon as a node n selected for
expansion satisfies c2(n) > c′2. Notice that the start node will be selected at some
time during this search, and labelled with the optimal lexicographic cost (c′1, c

∗
2).

3. Resume the search paused in stage 1, and stop as soon as a node n selected for
expansion satisfies c1(n) > c′1.

Notice that this procedure calculates exactly the same heuristic values of the TC
heuristic, except for those nodes that will never be considered by NAMOA∗ (i.e.
those with estimates outside rectangle A figure 6.1). These missing values can be set
to infinity.

1Note that the TC heuristic estimate for the start node is (c∗1, c
∗
2), which trivially dominates all

points in rectangle A
2A detailed analysis of such algorithm can be found elsewhere (Mandow & Pérez de la Cruz, 2003)
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Figure 6.1: A typical Pareto-front in cost space

6.3 Route Planning: Time vs. Distance

The experiments described in this section have been performed over the DIMACS road
map problems described in section 3.2.3. The performance of NAMOA∗ with different
heuristic functions has been analyzed over 200 random problems in four road maps of
increasing size with two objectives: time and physical distance. More information
about these maps can be found in table 3.2. Fifty random problem instances were
generated for each one of the road maps. Each problem instance was solved 5 times
with each heuristic. Average time values are presented in the results.

The heuristics under evaluation are blind search (~h0), corrected great circle dis-
tance (~hcd), and Tung & Chew heuristic (~hTC) with both the original method and the
improved calculation method. Time values presented for NAMOA∗ with ~hTC in-
clude heuristic precalculation time plus multiobjective search time. For each problem
instance the Tung & Chew heuristic was precalculated 10 times using the method of
choice (see section 6.2.2). Average precalculation values are added in the results to
NAMOA∗ as heuristic precalculation time when these heuristics were applied.

The algorithms were implemented in ANSI Common Lisp using LispWorks 6.0
Enterprise 64 bits, and run on a Sun Fire X4140 server with 2 six-core AMD Opteron
2435 @ 2.60GHz processors and 64 Gb of DDR2 RAM, under Windows Server 2008
R2 Enterprise (64-bits).

The time requirements of NAMOA∗ for the NY, BAY, COL and FLA maps are
presented in figures 6.2, 6.3, 6.4, 6.5 respectively. The abscissa axis x shows problem
indexes for each instance in the 50 problem set for each map. Instances are ordered ac-
cording to increasing time taken by NAMOA∗ with heuristic ~hTC calculated using the
bounded method. The value for ordinate y (time in seconds) is shown in a logarithmic
scale.
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Figure 6.2: Time requirements for NAMOA∗ with blind and heuristic search in NY
map
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Figure 6.3: Time requirements for NAMOA∗ with blind and heuristic search in BAY
map
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Heuristic NY BAY COL FLA
h0 17 12 30 37
hcd 3 1 13 23
htc 0 0 2 7

Table 6.1: Number of road map problem instances that could not be solved in 1h by
NAMOA∗ with lexicographic selection

ID # NY38 BAY6 BAY23 BAY48 COL5 COL23 FLA32 FLA41,45 FLA48
~h0 0 3 2 0 0 0 0 0 4
~hcd 1 5 5 1 1 0 3 0 5
~htc 5 5 5 5 5 1 5 3 5

Table 6.2: Number of successful executions for road map problem instances that ex-
ceeded at least once, but not always, the time limit with NAMOA∗ and lexicographic
selection

For practical reasons, instances were solved each time with a one-hour time limit.
For certain instances, none of the five executions performed with a given heuristic
where able to solve the problem within the time limit. In such cases, values are not
displayed in the figures for that particular heuristic. Table 6.1 shows the number
of problem instances that were unsolvable within the time limit for each map and
heuristic. In a few instance-heuristic combinations only some of the five executions
exceeded the time limit. Therefore, these seem to require an average time very close
to the limit. Averages presented for these instance-heuristic combinations take into
account only successful executions. Table 6.2 lists these particular instances, and how
many successful executions were run within the time limit for each heuristic.

6.3.1 Problem data

Tables 6.3, 6.4, 6.5, 6.6 display the experimental data shown in figures 6.2, 6.3, 6.4, 6.5
respectively. Additional information is presented for each problem instance, like source
and destination identifiers in the DIMACS challenge maps, multiobjective search time
of NAMOA∗ (without precalculation time) for the ~hTC heuristic, and the number of
different nondominated solution cost vectors |C∗|. Average search times for the different
heuristics are in seconds. Times for problem instances that could not complete all 5
runs within the one-hour time limit are averaged only over successful runs and are
marked with underlined text.

6.3.2 Blind search vs. Heuristic search

The results presented in section 6.3 show that the heuristic approaches (~hcd, ~hTC)
clearly outperform blind search (~h0), both in the number of instances solved (see table
6.1), and in run time (see figures 6.2, 6.3, 6.4, 6.5). Blind search was not able to solve
the full instance set for any of the maps within the time limit, and performed rather
poorly failing in 30 and 37 cases out of 50 in the COL and FLA maps respectively.
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Prob Source Goal th0 thcd thtc(o) thtc(b) tnamoa |C*|
1 33502 163335 2279.89 91.22 12.43 9.22 0.85 45
2 198561 195430 1.73 0.70 12.47 0.34 0.04 12
3 40851 4310 - 2408.30 528.29 525.87 515.72 344
4 19103 95503 670.30 15.53 12.53 4.98 0.24 24
5 65190 57030 0.28 0.02 11.95 0.09 0.02 1
6 172882 189944 548.33 181.62 45.52 44.17 32.87 163
7 181176 151910 764.42 277.22 92.99 89.46 80.06 308
8 177414 103345 - 334.00 30.56 30.72 18.66 122
9 186166 71968 - 3252.33 862.23 862.22 850.69 487
10 50616 76333 - 180.79 12.75 7.27 1.04 31
11 56699 159358 2992.14 1031.99 118.74 114.02 106.95 401
12 103987 175817 - 672.40 79.80 77.33 67.92 213
13 75533 165171 - 1198.00 128.96 129.05 117.45 245
14 191865 72103 - 1364.85 127.17 128.17 115.90 346
15 35170 237017 1932.06 60.71 12.66 5.31 0.82 26
16 207442 156433 613.34 71.63 23.96 15.08 12.44 69
17 62306 134007 3211.47 294.02 22.60 22.05 10.22 78
18 58427 135252 2104.84 424.20 77.26 76.63 64.46 242
19 91985 200812 2484.05 433.97 98.17 97.36 85.71 241
20 242644 163590 1385.60 145.47 15.16 12.83 3.78 156
21 40180 100359 225.49 26.11 14.07 5.54 2.32 77
22 38497 207344 2340.13 534.32 202.15 199.53 190.24 465
23 180834 83150 - - 1947.98 1948.15 1936.36 814
24 129948 7003 2324.38 503.12 137.47 135.24 125.34 234
25 259195 173121 - 404.64 14.40 12.87 2.09 72
26 147806 136543 1541.13 337.06 69.30 63.93 55.57 371
27 179874 57536 - - 1495.45 1495.73 1483.94 643
28 189934 31336 3327.36 416.25 29.56 25.34 17.02 169
29 138263 253856 7.58 1.02 12.69 0.64 0.04 11
30 246144 166336 625.33 32.43 13.43 6.84 1.00 65
31 25610 143842 627.76 88.28 16.76 10.71 4.21 86
32 228779 167251 - 372.19 19.49 18.60 8.03 162
33 78936 34136 - 535.16 39.74 39.86 27.58 111
34 124173 138439 2924.85 463.34 110.40 108.12 96.66 295
35 260563 233292 78.90 11.46 12.98 3.51 0.36 36
36 193168 66816 - 1127.19 95.75 94.74 83.40 280
37 29432 29834 2080.89 212.23 26.54 20.50 13.57 131
38 193241 144927 - 3586.53 208.97 209.09 196.63 787
39 161522 171446 14.66 2.75 11.37 0.80 0.02 1
40 176910 109129 3160.91 261.96 22.42 23.21 10.45 164
41 251416 53900 835.19 111.63 22.52 19.09 9.11 106
42 201505 262626 - 71.97 14.11 7.32 1.61 48
43 86937 190907 - - 1389.32 1389.98 1377.66 632
44 35252 18638 20.72 2.16 12.66 1.53 0.03 4
45 92562 65120 - 452.98 35.23 33.85 23.14 202
46 230423 2724 244.50 26.75 13.50 4.78 1.11 66
47 17285 92411 342.28 22.80 13.79 3.35 0.90 17
48 177037 199832 54.72 11.47 12.55 5.44 0.07 8
49 68330 206280 2130.97 665.56 115.93 114.12 102.93 270
50 61414 50367 147.27 19.25 13.89 11.32 1.47 50

Table 6.3: Data from NY map problems
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Prob Source Goal th0 thcd thtc(o) thtc(b) tnamoa |C*|
1 217950 116998 - - 1489.11 1489.03 1474.76 812
2 251602 34430 44.11 11.74 15.12 4.50 0.29 9
3 98882 122447 - 315.91 31.53 31.16 17.05 207
4 52642 224747 2725.53 202.15 17.23 11.38 3.59 43
5 139849 299950 504.02 159.59 15.41 12.53 1.06 46
6 227292 149896 3219.98 1302.36 180.20 180.24 166.23 374
7 184605 142630 80.72 7.19 14.34 4.65 0.98 27
8 61991 285138 - 1887.31 135.24 129.96 120.68 436
9 157468 111871 44.19 18.13 15.25 2.93 0.46 18
10 8057 53146 29.85 2.73 14.02 1.18 0.04 9
11 63481 317962 3535.25 44.44 14.75 10.07 1.37 34
12 100852 32440 1139.09 234.63 16.21 15.48 2.74 45
13 88253 223600 1281.66 219.04 16.80 12.39 2.85 51
14 256221 137112 - 2899.57 328.21 329.05 314.01 445
15 296236 87228 0.25 0.13 14.58 0.12 0.00 1
16 79044 118604 38.27 12.16 13.84 2.71 0.03 3
17 101931 260608 2823.59 817.16 42.73 41.23 29.33 137
18 151143 33304 - 1528.02 137.36 137.21 123.21 353
19 252289 254898 2.20 0.95 14.55 1.27 0.04 9
20 168761 275306 1450.15 102.30 15.48 8.38 0.75 42
21 151157 220839 1965.79 464.95 77.32 76.09 62.89 203
22 50213 139654 3205.05 234.38 17.97 10.72 3.10 27
23 6574 319340 3556.67 463.61 19.93 12.59 5.34 104
24 299482 198914 1487.94 29.64 14.28 8.76 0.27 16
25 319552 169293 438.47 46.49 15.33 10.27 0.63 25
26 214934 40905 534.58 182.76 38.23 35.90 22.60 61
27 41820 197615 754.82 263.92 30.99 24.91 16.85 175
28 88417 292062 5.65 2.23 15.27 1.40 0.02 2
29 190939 185572 1756.89 249.12 20.43 19.25 6.12 64
30 132185 126599 8.46 3.18 15.17 1.65 0.10 16
31 307539 72237 368.20 88.17 21.12 19.52 5.79 53
32 167018 129836 - 399.18 17.31 12.02 2.90 77
33 199994 273242 - 350.16 17.90 13.91 3.74 89
34 76122 222337 2068.02 203.48 17.89 12.13 4.03 35
35 60060 15213 47.29 7.60 15.46 5.48 0.77 42
36 35111 110152 - 1184.39 30.28 26.94 15.36 196
37 250483 268079 1285.62 249.11 18.30 13.77 3.00 145
38 177519 38511 1477.15 204.66 16.73 12.33 2.08 82
39 50330 193990 1040.35 329.55 30.82 23.37 16.44 144
40 132178 166402 - 432.11 31.56 30.44 16.94 133
41 193656 269296 1470.89 216.88 17.01 12.78 2.47 64
42 174698 73496 11.64 8.02 14.70 1.38 0.07 7
43 224414 285621 2796.62 1048.87 41.75 41.72 27.35 164
44 304900 212465 - 940.88 55.73 54.15 41.57 167
45 103114 109425 840.32 47.95 14.71 6.54 0.56 32
46 226489 314957 - 830.48 37.56 37.67 23.42 87
47 183973 310416 67.22 6.70 14.56 1.49 0.03 3
48 261308 150051 - 3329.43 409.74 409.49 395.36 499
49 70155 317172 - 97.18 16.86 13.39 2.68 75
50 118218 48399 717.68 222.91 15.90 16.43 1.27 53

Table 6.4: Data from BAY map problems
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Prob Source Goal th0 thcd thtc(o) thtc(b) tnamoa |C*|
1 186399 206453 442.16 30.01 19.62 8.41 0.92 59
2 106474 399484 595.76 146.04 19.48 3.62 0.12 8
3 219775 41597 - 2166.09 23.30 12.33 3.98 134
4 240731 182571 - - 471.60 470.38 451.03 655
5 417012 345347 - 3530.80 2555.49 2552.26 2536.21 544
6 218133 101499 31.42 8.99 18.89 1.79 0.50 33
7 82209 119557 - 2008.11 126.56 124.35 107.79 241
8 93458 188506 1598.14 202.76 26.64 23.17 7.08 106
9 342828 9384 2124.14 505.43 71.07 64.82 52.32 324
10 173475 148741 - - 783.07 782.61 764.60 1214
11 368975 307038 - - 2149.43 2146.99 2130.25 1332
12 266403 288429 - 1084.79 247.95 239.11 229.84 477
13 39969 357717 - 856.05 58.79 55.57 40.22 506
14 311623 141945 - - 2817.74 2817.19 2798.52 2028
15 192685 230403 - 526.20 36.01 31.58 16.36 221
16 242487 387257 61.86 33.47 19.14 4.12 0.46 29
17 260867 187773 3007.22 753.24 43.19 33.29 24.96 194
18 345397 57539 - 229.62 22.35 15.84 2.75 125
19 98052 233707 3206.37 650.37 37.10 27.72 17.92 81
20 16974 272085 - - - - - -
21 373200 393176 - 1706.76 43.06 33.73 23.16 200
22 82255 231704 - - 348.15 346.69 329.30 295
23 170699 374715 - - 3570.71 3568.19 3551.32 1831
24 344226 41837 - 295.06 32.87 18.98 14.69 253
25 311543 79737 - - 659.86 658.47 639.73 1119
26 233022 342755 - - 313.39 313.15 293.43 715
27 287214 273946 - 2090.95 87.99 81.49 69.55 394
28 105391 434721 - 1546.68 295.80 287.43 275.79 407
29 261648 309214 - 2225.72 147.10 138.76 128.19 368
30 277313 107050 2764.01 420.47 23.47 21.63 4.70 70
31 38771 199544 2389.27 349.98 19.50 9.85 0.66 30
32 253430 282880 - 2680.23 41.35 38.61 22.66 178
33 175642 183753 121.57 36.06 19.31 8.86 0.11 6
34 313912 290255 2220.55 438.62 47.34 40.90 28.13 374
35 32506 97065 - - 546.07 543.17 527.08 388
36 384664 320926 - 497.01 38.95 32.90 20.51 158
37 220613 381762 - 1665.09 23.98 15.88 5.00 169
38 276063 158585 146.34 54.17 29.91 26.57 10.75 89
39 104682 393819 - - 1105.07 1102.20 1086.65 1272
40 6425 183698 1012.25 542.74 37.47 24.73 17.67 164
41 185170 419257 1959.44 503.84 20.50 10.15 1.12 49
42 299734 236575 - - - - - -
43 6364 172422 - 907.95 23.35 14.01 4.83 105
44 108080 330816 882.63 355.54 34.19 22.60 15.38 119
45 60885 371450 1473.93 373.38 50.37 42.11 32.20 80
46 355708 233614 290.35 111.46 30.46 21.14 11.23 384
47 114038 221082 36.88 18.25 18.99 4.01 0.08 18
48 258459 178122 - - 317.94 314.05 298.18 546
49 431418 72100 18.34 8.40 20.98 3.36 0.34 42
50 296685 11132 - 892.32 33.53 32.07 14.66 245

Table 6.5: Data from COL map problems
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Prob Source Goal th0 thcd thtc(o) thtc(b) tnamoa |C*|
1 361739 698672 - 1103.68 53.47 21.61 7.95 186
2 686602 27291 - - - - - -
3 546667 1044042 - 2604.01 72.01 41.77 27.97 305
4 115105 421966 - - 99.17 96.59 54.27 298
5 742805 335320 - - 808.83 804.18 764.49 1187
6 88673 333047 - - 1168.53 1163.91 1121.30 803
7 766579 263017 - 2567.95 149.87 125.11 103.42 280
8 28100 848660 - - 835.81 835.32 790.38 779
9 134765 11866 - - 290.13 279.88 243.91 612
10 158576 949455 2151.40 132.54 47.58 15.50 1.90 13
11 659282 327441 421.83 72.46 49.25 18.53 3.25 83
12 539004 639594 - 169.07 47.31 10.02 1.52 34
13 489044 463492 - - 137.97 127.43 91.18 290
14 192295 127144 - - - - - -
15 481860 1046443 1912.12 456.51 56.81 19.87 10.29 145
16 273776 154436 3375.94 721.89 62.01 50.86 13.97 117
17 946451 513773 - 2023.97 89.21 62.32 43.00 269
18 90921 359195 - - 1162.02 1160.10 1115.85 848
19 783218 996886 - - 406.23 388.91 360.44 517
20 1052751 190896 - - - - - -
21 646797 149214 - 3321.75 103.10 104.12 58.34 182
22 398569 982263 739.69 189.77 52.85 18.25 5.94 222
23 809772 870827 - - 887.27 871.37 843.37 605
24 635036 38956 - - - - - -
25 234560 955775 2275.86 210.93 50.14 23.02 2.94 56
26 274945 143720 - - - - - -
27 716892 344531 - - 761.94 756.30 715.94 1063
28 516174 154020 - 1419.68 88.40 68.99 41.82 247
29 129998 118211 - 536.97 60.84 32.44 16.36 109
30 905861 756883 56.46 53.19 50.82 9.08 3.87 144
31 41614 404340 296.99 42.90 49.53 5.53 1.60 9
32 933700 561390 - 3566.71 48.41 28.18 1.42 8
33 237886 310889 - - 877.19 864.33 829.91 824
34 257739 652062 69.65 34.88 48.35 2.86 1.53 21
35 478200 1062969 1885.46 855.62 172.31 134.38 125.32 656
36 173720 246425 - - 51.84 22.18 7.63 161
37 43974 803673 - 3449.18 75.92 56.61 29.53 214
38 382275 1044332 - 1715.21 86.79 68.37 41.86 310
39 462808 85391 2012.71 148.33 46.82 13.72 2.46 67
40 643063 593489 - - - - - -
41 310505 612278 - - 3248.15 3237.24 3203.14 1168
42 818016 667330 - 2327.15 101.68 74.78 55.41 264
43 257389 17759 - - 915.11 916.32 870.24 570
44 16738 751658 - - 276.51 269.02 232.90 371
45 401809 616933 - - 3341.79 3341.38 3298.90 1217
46 364903 404709 - 3411.00 135.65 119.92 89.59 188
47 624617 364615 - - - - - -
48 472495 193187 3353.50 277.91 52.87 26.99 9.56 94
49 131865 294161 416.87 67.16 48.70 10.91 3.87 120
50 363001 263258 - 2011.66 221.10 195.72 175.66 216

Table 6.6: Data from FLA map problems
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Heuristic
Map ~hcd ~hTC(orig) ~hTC(bounded)

NY 6.20 29.19 33.50
BAY 6.07 49.77 74.37
COL 4.40 40.13 60.52
FLA 5.41 18.18 45.05
Overall 5.52 34.32 53.36

Table 6.7: Speedup of heuristic NAMOA∗ with lexicographic selection with respect
to NAMOA∗ with ~h0

Regarding run time, blind search was beaten in all instances by ~hcd and ~hTC with
the improved calculation method. However, blind search was able to beat ~hTC with
the original method in 9 of the easiest instances (3 in NY, 5 in BAY, and 1 in COL).
This was due to the constant overhead in the heuristic precalculation for this method,
regardless of problem difficulty.

For the subset of problem instances that could be solved by blind search 3, the
overall average speedup of heuristic search was 5.52 for ~hcd, and 34.32 and 53.36 for
~hTC with the original and improved methods respectively. In the case of ~hTC the
speedup was much larger for BAY and COL maps than for the NY and FLA ones (see
table 6.7).

6.3.3 Performance of heuristic search

Regarding the relative performance of the heuristic approaches, table 6.1 shows that
~hcd, although consistently better than ~h0, is clearly outperformed by ~hTC in terms of
the number of solved instances. In fact, ~hTC could solve the complete sets for NY
and BAY within the time limit, and failed only for 2 and 7 problems in COL and FLA
respectively.

Time performance with the improved method for ~hTC outperformed ~hcd in all
cases, except for two simple instances (NY 5 and BAY 19), where the overhead of
precalculation did not compensate for the very small search effort needed. In fact, even
for these instances, NAMOA∗ performed less iterations with ~hTC than with ~hcd.
However, ~hcd was able to beat ~hTC with the original calculation method in 22 of the
simpler problem instances. Once again, this was due to the constant overhead in the
heuristic precalculation for this method, regardless of problem difficulty.

For the set of problem instances 4 that could be solved by ~hcd, the overall average
speedup of ~hTC was 11.20 and 14.49 with the original and improved methods respec-
tively (see table 6.8). More precisely, the speedup of ~hTC (improved method) over ~hcd
is of 5.94, 12.44, 17.09, and 22.48 for the NY, BAY, COL, and FLA maps, indicating
that the Tung-Chew heuristic becomes increasingly better than corrected great circle
distance for larger maps. This is probably related not only with graph size, but with
the fact that the larger graphs have also larger physical extension.

3Instances that could not be solved in all five runs within the 1h time limit by ~h0 are not considered.
4Instances that could not be solved in all five runs within the 1h time limit by ~hcd are not considered.
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NAMOA∗ with
Map ~hTC(orig) ~hTC(bounded)

NY 5.59 5.94
BAY 10.53 12.44
COL 14.24 17.09
FLA 14.43 22.48
Overall 11.20 14.49

Table 6.8: Speedup of heuristic NAMOA∗ with lexicographic selection and heuristic
~hTC with respect to ~hcd

These results confirm that more accurate heuristic estimates result in improved
time performance with ~hTC , since ~hTC is trivially more informed than ~hcd.

6.3.4 Effectiveness of the Tung & Chew heuristic

The results presented in section 6.3.3 clearly indicate that ~hTC is by far the best
heuristic among the alternatives considered. Search time taken by NAMOA∗ with
this heuristic is much smaller than with hcd, the second best alternative (see tables 6.3,
6.4, 6.5, 6.6).

The experiments also clarify the adequacy of heuristics precalculated through search
in multiobjective problems. Even when the time taken in the precalculations is added to
the search time of NAMOA∗, this alternative remains very competitive. The original
calculation method calls for a one-to-all search of shortest paths for each objective under
consideration. This implies an overhead of about 10 seconds in the NY and BAY maps,
and of 11 and 14 seconds in COL and FLA respectively. However, the formal properties
of NAMOA∗ allow us to bound the number of nodes whose heuristic needs to be
precalculated. With this bounded calculation method ~hTC was beaten by hcd only in
two simple cases, NY 5 and BAY 19. In NY 5 the precalculations took 2,729 iterations,
while NAMOA∗ took only 21 and 61 iterations with ~hTC and hcd respectively. In
BAY 19, the precalculations took 40,790 iterations, while NAMOA∗ performed 613
and 6,446 iterations with ~hTC and hcd respectively.

Figure 6.6 shows the total number of iterations performed by the original TC heuris-
tic calculation and the new bounded method in the case of NY map for the 50 ran-
domly chosen problems. Similar values are obtained for the other maps. The original
TC method made exactly the same effort for all problems (i.e. all the nodes in the
graph were explored twice). The bounded method can improve efficiency in many
cases, though in difficult problems, where source and destination nodes are far apart,
it is necessary to calculate heuristic values for all nodes in the graph regardless of the
calculation method.

Among the alternatives considered in this analysis, the ~hTC heuristic with the
bounded calculation method is clearly the option of choice for multiobjective search in
road maps.
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Figure 6.6: Iterations performed by NAMOA∗ with the original and bounded methods
for the TC heuristic on NY problem instances.
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ID # COL20 COL42 FLA2 FLA14 FLA20 FLA24 FLA26 FLA40 FLA47
~hTC(bounded) 4,026 12,783 12,578 140,212 58,246 78,422 13,531 144,834 19,504

Table 6.9: Run time (in seconds) for problem instances run without time limit with
NAMOA∗ and bounded ~hTC

6.3.5 Difficult problem instances

A set of nine problem instances could not be solved within the time limit regardless of
the heuristic function. These problem instances were solved once without time limits
with the ~hTC heuristic with bounded calculation, which is identified in the analyses as
the most effective alternative. All of them could be solved with the available resources.
Table 6.9 shows the time taken to solve each instance. The hardest one, FLA 40, was
solved in about 40 hours and 14 minutes.

6.3.6 Summary

This section has reported the successful application of exact multiobjective techniques
to search in large size realistic road maps. Road map data were obtained from the 9th
DIMACS implementation challenge on shortest paths, as explained in section 3.2.3.

The NAMOA∗ multiobjective heuristic search algorithm has been tested with
a heuristic precalculated with search (~hTC), a classical distance heuristic (~hcd, cor-
rected great circle distance) and without heuristic information (~h0, blind search). In
addition to the original calculation method for the ~hTC heuristic, a new bounded
calculation method is proposed. This method takes advantage of formal properties of
the NAMOA∗ algorithm to reduce the precalculation effort. All the heuristics and
precalculation methods considered were run on a set of 200 random problems defined
over four different maps.

Results show that the combination of NAMOA∗ with the ~hTC heuristic is a
competitive approach in the solution of biobjective search problems. Furthermore, the
time devoted to heuristic precalculations has been found to pay off, greatly reducing
multiobjective search effort. Additionally, the new bounded calculation method for the
~hTC heuristic has been found to be more efficient in practice than the original method,
significantly reducing precalculations in many problem instances.

The ~hTC heuristic with the new bounded calculation method was found to clearly
outperform a classical distance heuristic and blind search, both in the number of solved
problems and in time performance. The overall speedup of the ~hTC heuristic with
bounded calculation in the experiments is 53.56 and 14.49 when compared to blind
search and the distance heuristic respectively.

The approach described in this section could solve random problem instances in
realistic road maps of up to 1,070,376 nodes and 2,712,798 arcs. Most instances could
be solved within a one-hour time limit and the hardest one was solved in over 40 hours,
which is reasonable for off-line route planning applications.

The road maps used in this section are not comparable in size to those used for
single-objective testbeds, but enough large for multiobjective search to represent diffi-
cult problem instances in many cases. However, the high positive correlation presented
between time and physical distance (ρ near 1) gives us an analogous scenario to that
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of the modified road maps shown in section 5.5, i.e. the performance is comparable
to the case of class II grids with ρ = 0.8 (see table 5.2). More realistic scenarios (e.g.
uncorrelated objectives) should be investigated despite its difficulty for multiobjective
search. This is analyzed in the next section.

Moreover, different orderings among nondominated open alternatives should be
investigated as suggested by Iori et al. (2010) (see section 5.4.2). Besides, TC presents
a linear heuristic selection rule described in section 2.4.3. The next section makes a
fair comparison on the performance of NAMOA∗ (with linear selection) and TC over
these realistic maps with uncorrelated objectives.

6.4 Route Planning: Time vs. Economic Cost

This section evaluates the application of multiobjective heuristic search to the road
map of the New York City area with 264,346 nodes and 730,100 arcs (see table 3.3).
Two objectives are optimized simultaneously: travel time, and economic cost, which
includes fuel cost and highway tolls. The travel cost attribute was calculated from
available information of DIMACS challenge, as described in section 3.2.3. Unlike the
problems analyzed in section 6.3, the objectives are not linearly correlated (ρ = 0.16).
This is therefore a difficult multiobjective problem. Figures 3.2 and 3.1 display the set
of toll highways, and all roads in the map respectively. A set of 20 route planning pro-
blems were generated selecting random origin and destination nodes using an uniform
distribution.

Regarding the algorithms, two heuristic multiobjective search algorithms are eval-
uated, NAMOA∗ and TC. In order to guarantee that all nondominated solutions are
found, multiobjective algorithms need to select at each iteration an open label with
a nondominated heuristic evaluation. NAMOA∗ accepts any of such schemes, like
lexicographic or linear order (see section 2.2.1). TC uses a special linear selection rule
that adds the particular precalculated heuristic estimate hmix to the components of
each label evaluation vector (see section 2.4.3 for details).

The efficiency of multiobjective search algorithms is known to depend on the par-
ticular label selection strategy. A recent analysis on uninformed multiobjective search
has suggested that a linear aggregation rule is more effective than a lexicographic one
(Iori et al., 2010). To the author’s knowledge, no analogous study had been reported
on heuristic multiobjective algorithms.

In order to evaluate the impact of a linear evaluation rule, we shall consider two
additional selection rules for NAMOA∗, in addition to the rules used in previous
sections and chapters:

PATH SELECTION in NAMOA∗ with heuristic linear selection:
Select for expansion an alternative (n,~gn, {f}) with minimal scalar value f from
OPEN, i.e. a label such that @(n′, ~gn′ , {f ′}) ∈ OPEN with f ′ < f , namely∑

i

hi(n
′) +

∑
i

gi(Psn′) <
∑
i

hi(n) +
∑
i

gi(Psn) (6.4)

This rule is also valid for blind search, assuming that ~h0 is used for all ~gx ∈ Gop(x),
but it could be stated also as,
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PATH SELECTION in NAMOA∗ with blind linear selection:
Select for expansion an alternative (n,~gn, {g}) with minimal scalar value g from
OPEN, i.e. a label such that @(n′, ~gn′ , {g′}) ∈ OPEN with

∑
i gi(Psn′) <∑

i gi(Psn)

NAMOA∗ is evaluated with both a lexicographic and a linear selection rules.
The TC algorithm was run using its special linear selection rule, as required in the
original description of the algorithm. The Gop sets were ordered according to the
same particular rule used for selection. Additionally, the precalculated multiobjective
heuristic ~hTC proposed by Tung & Chew (1992) is used in both algorithms, and its
performance compared to blind search (~h0). A classical distance heuristic like ~hcd is
not considered, as ~hTC has been shown to be significantly better.

The algorithms were implemented in ANSI Common Lisp using LispWorks 6.0
Enterprise 64 bits, and run on a Sun Fire X4140 server with 2 six-core AMD Opteron
2435 @ 2.60GHz processors and 64 Gb of DDR2 RAM, under Windows Server 2008 R2
Enterprise (64-bits). Table 6.10 sums up the features of all the algorithms evaluated
in this section.

Algorithm Selection rule Additional selection rule Filtering criteria
Blind NAMOA-LEX best ~g lex order ~g dominated
NAMOA-LEX best ~g + ~h lex order ~g + ~h dominated
Blind NAMOA-LIN best

∑
i gi ~g dominated

NAMOA-LIN best
∑

i gi +
∑

i hi ~g + ~h dominated
TC with heuristic selection best hmix +

∑
i gi ~g + ~h dominated

Table 6.10: Algorithms evaluated for road map problem instances with time vs. eco-
nomic cost (NY2 map).

6.4.1 Results

Figure 6.7 shows the time requirements for the five algorithmic instances under con-
sideration, i.e. blind and heuristic NAMOA∗ with lexicographic selection (NAMOA-
LEX ), blind and heuristicNAMOA∗ with linear selection (NAMOA-LIN ), and TC al-
gorithm. The abscissa axis x shows problem indexes for each instance in the 20 problem
set. Instances are ordered according to increasing time taken by NAMOA-LIN with
heuristic. The value for ordinate y (time in seconds) is shown in a logarithmic scale.

Time values for each algorithmic instance and the heuristic precomputation time,
for both NAMOA∗ and TC approaches, are presented also in table 6.11. Additional
information, like source and destination nodes for each problem instance, along with
the number of distinct Pareto-optimal solutions |C∗| for each instance is also presented
in this table.

For practical reasons, instances were solved with a twelve-hour time limit. In the
case that an algorithm could not solve an instance, values are not displayed in the figure
(and as a result in table 6.11) for that particular heuristic-algorithm combination. In
addition, values under 1 second obtained by the heuristic algorithms TC, NAMOA-LIN
and NAMOA-LEX in problem instances NY2 15 and NY2 3 are not displayed for the
sake of clarity in figure 6.7.
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Figure 6.7: Time requirements for NAMOA∗ with blind and heuristic search and
TC with heuristic selection in NY2 map
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Problem Information Heuristic algorithms Blind algorithms Heu. precomp.
Id Source Goal |C*| tLIN tLEX tTC tLIN tLEX tNAMOA tTC

1 256042 202263 1089 455.54 894.03 964.43 5752.88 7827.09 14.52 16.40
2 124324 261253 1469 23733.43 32828.91 37572.79 - - 14.79 16.43
3 182612 181891 16 0.14 0.16 0.22 4.48 5.54 13.93 17.94
4 121393 176780 5121 - - - - - - -
5 231474 180640 2451 15874.99 29829.76 30969.30 - - 15.52 17.74
6 114871 76041 1502 5676.02 11097.60 10240.98 - - 14.60 16.99
7 245379 233193 272 119.97 119.31 125.58 9242.08 8777.86 12.93 16.25
8 175518 82191 7391 - - - - - - -
9 188151 178586 919 3202.78 5511.78 4366.34 - - 11.31 17.83
10 101251 25656 774 650.82 1500.74 813.86 11668.67 18349.15 14.98 17.94
11 17791 251420 631 347.29 590.54 479.17 21075.36 27970.64 12.54 17.11
12 53355 242716 1573 19029.05 26662.83 31949.90 - - 12.42 18.11
13 31657 208961 3046 20565.00 40542.49 - - - 13.35 18.22
14 162004 68204 2957 25284.55 40720.64 - - - 14.18 16.41
15 176111 178359 1 0.02 0.02 0.01 74.22 100.75 14.02 16.80
16 102756 261577 2034 7285.45 14800.00 14170.77 - - 13.20 18.63
17 128414 202886 1724 12887.40 21050.46 19440.64 - - 13.45 18.35
18 65899 51303 1276 1177.79 2279.47 2000.18 18809.62 21156.51 14.71 19.27
19 70307 181121 4224 - - - - - - -
20 208578 106079 3262 - - - - - - -

Table 6.11: Data from NY2 map problems

Algorithm # of instances
Blind NAMOA-LEX 13

NAMOA-LEX 4
Blind NAMOA-LIN 13

NAMOA-LIN 4
TC algorithm 6

Table 6.12: Number of instances from NY2 map not solved in 12h

Heuristic NAMOA∗ with a linear selection rule is clearly the best option. It
is worth noting that the special selection heuristic used by the TC algorithm does
not seem to provide any practical advantage. This confirms our previous analysis
which suggested that using additional heuristic information in label selection can in
fact degrade time performance (see section 5.4.2).

Table 6.12 shows the number of problem instances that were unsolvable within the
time limit for each algorithm. A set of 4 problem instances could not be solved within
the time limit regardless of the algorithm. These problem instances were solved without
time limit with heuristic NAMOA-LIN, which is identified in the analyses as the most
effective alternative. All of them could be solved with the available resources. Table
6.13 shows the time taken to solve each of these instances. The hardest one, NY2 4,
was solved in about 127 hours.

Table 6.14 shows in the two columns the average speedup ofNAMOA∗ with respect
to TC algorithm and blind search, for each one of the two strategies used for selection,
LEX and LIN. The results presented in figure 6.7 indicate that the linear strategy is the
most suitable one for all cases, with a speedup of 1.55 over TC algorithm, and of 693
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Prob. ID Time (seconds) Time (hours)
NY2 20 47,640.3 13.2
NY2 19 128,984.3 35.8
NY2 8 421,416.6 117.1
NY2 4 458,006.3 127.2

Table 6.13: Time requirements for heuristic NAMOA-LIN on NY2 problem instances
run without time limit

NAMOA-LEX NAMOA-LIN
TC 0.9767 1.5579
Blind 926.1803 693.5811

Table 6.14: Average speedup of heuristic NAMOA∗ over TC and blind NAMOA∗ for
NY2 problem instances solved within runtime limit

over blindNAMOA∗ with linear selection. Additionally, with heuristicNAMOA∗ the
speedup of linear versus lexicographic selection was 1.66. With uninformed NAMOA∗,
the speedup of linear versus lexicographic was 1.27. Only the problems that could be
solved within the runtime limit were taken into account for the average speedups.

6.4.2 Summary

This section presents a realistic analysis of heuristic search algorithms for multiobjec-
tive route planning problems. The analysis involves the consideration of two linearly
uncorrelated objectives (travel time and travel cost) defined over a relatively large road
map, with 264,346 nodes and 730,100 arcs.

The analysis confirms that uninformed search algorithms are in general not practical
for this kind of problems. This is a serious objection for approaches that rely on
extensive uninformed precalculations.

Regarding heuristic search approaches, two algorithms were analyzed, TC and
NAMOA∗. The latter was tested with lexicographic and linear selection rules. The
analysis confirms that the linear selection rule is more efficient than the lexicographic
one. However, the special heuristic linear selection used by TC algorithm was found
to perform worse. In fact, this strategy is even worse than heuristic lexicographic
NAMOA∗ for the hardest problems, confirming the analysis in chapter 5.

While heuristic NAMOA∗ with linear selection was able to find the exact solutions
to all tested problems with the available resources, current time requirements of this
kind of search are only reasonable for off-line route planning applications.

Average precalculation values are not added to time results of NAMOA∗ or
TC when the heuristic ~hTC was applied. While these times are not significant
compared to total execution time, there can be some easy problems where the to-
tal execution time of blind search is lower, like NY2 3. This is not a serious problem
as the bounded calculation method proposed in section 6.2.2 can be used to reduce
heuristics precomputation time. The heuristics precomputation is shown to pay-off in
most cases with dramatic time reductions.
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The next section further investigates multiobjective search on hazmat transporta-
tion problems. The development of more efficient heuristics is analyzed in chapter
7.

6.5 Hazmat Transportation Problems

The problem of hazardous material (hazmat) transportation is currently an active re-
search topic (Erkut et al., 2007). The search for alternative routes that minimize the
risk of exposure of the population to hazardous substances can avoid bigger disasters
in case of an accident. This involve the consideration of several aspects at the same
time, like the transportation time, distance and cost besides risk. Multiobjective ana-
lysis (Ehrgott, 2005) becomes then an important tool in hazmat tranportation decision
making.

In the literature, the performance of blind search multiobjective techniques has
been widely analyzed (Caramia et al., 2010). In this section, multiobjective heuristic
search algorithms have been applied to the hazmat tranportation problem. The use of
an informed multiobjective heuristic function can significantly improve the efficiency of
these problems. In order to evaluate this, test problems with two and three objectives
were defined over random graphs and over a real road map. The experiments performed
in this section report a substantial improvement over blind multiobjective search.

6.5.1 Hazmat route planning

The majority of the study on hazmat transportation deals with two related subjects:
the evaluation of the risk for the population and the environment affected by the
hazmat shipments, and the selection of a set of alternative paths to service the haz-
mat shipments. Erkut et al. (2007) in their survey on hazmat transportation classify
routing hazmat shipments into local and global route planning problems. In the local
route planning problems, one is concerned with finding route(s) between a given origin-
destination pair for a given hazmat, transport mode, and vehicle type. In the global
route planning problem, in general, we have to find a set of paths to route hazmat
shipments from distinct origins to different destinations.

There are many papers in the open literature addressing the hazmat local route
planning problem (Abkowitz & Cheng, 1988; Kara et al., 2003; Erkut & Verter, 1998;
Erkut & Ingolfsson, 2005). Even if hazmat route planning is intrinsically a multi-
objective problem only few papers address it by means of multi-objective optimization
approaches, e.g. (Cox, 1984; Wijeratne et al., 1993). Recently, Caramia et al. (2010)
proposed an algorithm for hazmat shipments that selects k representative paths among
the set of efficient paths, with respect to the minimization of length, time (cost) and
risk; in particular, the selection is made by choosing paths with high spatial dissimi-
larity. The approach followed in our analysis is similar to the first phase of Caramia
et al. (2010), consisting of finding the whole set of Pareto-optimal paths that minimize
distance, time and societal risk.
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6.5.2 Results

Multiobjective heuristic search is evaluated in this section on two different sets of
problems. The first is a set of problems over random graphs with three objectives
used in the work of Caramia et al. (2010), that were described in section 3.2.2. The
second is a set of randomly generated pairs of nodes over a real road network with
three objectives from the region of Lazio in Italy. This road network was also used by
Caramia et al. (2010), and was described in section 3.2.5. The experiments reported
in this section evaluate the performance of blind and heuristic NAMOA∗ with two
or three objectives and lexicographic order. Two objectives are derived as described in
sections 3.2.2 and 3.2.5.

Regarding the algorithms, NAMOA∗ was run twice for each problem instance:
once without heuristic information (~h0) and the second one using the precalculated
~hTC heuristic. The algorithms were implemented using LispWorks Professional. The
random graph problems were run on a Windows 64-bit platform, with an Intel Core2
Quad Q9550 at 2.8Ghz, and 4Gb of RAM, and the simpler Lazio map problems on a
Windows 32-bit platform, with an Intel Pentium IV and 256Mb of RAM.

6.5.3 Random graphs

Minimum, maximum and average time in seconds over the ten problems for each set
of random graphs with 3 objectives were calculated. These are shown in table 6.15 for
blind and heuristic search. The table also reports for each set the minimum, maximum
and average cardinality of the set of Pareto-optimal solution costs |C∗|.

Problem class |C∗| Time Blind (Seconds) Time Heu. (Seconds)
n d Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.
100 0.20 4 13.80 24 0.02 0.05 0.09 0.00 0.01 0.02
100 0.50 10 26.90 69 0.14 0.20 0.45 0.01 0.05 0.17
100 0.70 17 34.50 71 0.13 0.36 0.64 0.01 0.11 0.36
200 0.20 13 26.50 51 0.16 0.35 0.75 0.02 0.07 0.17
200 0.50 16 40.20 52 0.58 1.18 1.53 0.17 0.32 0.42
200 0.70 23 46.60 72 0.97 1.85 2.70 0.11 0.57 0.94
300 0.20 21 34.20 58 0.64 0.93 1.73 0.08 0.18 0.42
300 0.50 42 62.60 87 2.75 3.76 4.95 0.83 1.07 1.53
300 0.70 37 71.20 105 4.15 6.14 8.85 1.19 1.92 3.14

Table 6.15: Average results on random graphs with 3 objectives for blind and heuristic
search with NAMOA∗

Analogously, two-objective search has been evaluated for all pairs of objectives.
Results for blind and heuristic search with the combination (1,2) can be found in table
6.16. The combination (1,3) is summarized for blind and heuristic search in table 6.17,
while the results for blind and heuristic search with the last combination (2,3) can be
found in table 6.18.
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Problem class |C∗| Time Blind (Seconds) Time Heu. (Seconds)
n d Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.
100 0.20 2 4.80 7 0.00 0.02 0.03 0.00 0.00 0.02
100 0.50 5 8.60 15 0.03 0.06 0.13 0.00 0.02 0.03
100 0.70 4 9.20 13 0.03 0.09 0.14 0.02 0.03 0.06
200 0.20 3 8.60 16 0.03 0.11 0.17 0.00 0.02 0.05
200 0.50 5 8.70 13 0.16 0.24 0.33 0.01 0.05 0.08
200 0.70 7 10.30 15 0.27 0.35 0.42 0.05 0.08 0.14
300 0.20 6 10.70 15 0.09 0.25 0.41 0.01 0.04 0.09
300 0.50 6 12.30 20 0.44 0.66 1.03 0.06 0.15 0.30
300 0.70 7 12.10 16 0.56 0.90 1.17 0.08 0.19 0.41

Table 6.16: Average results on random graphs with objectives 1,2 for blind and heuristic
search with NAMOA∗

Problem class |C∗| Time Blind (Seconds) Time Heu. (Seconds)
n d Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.
100 0.20 1 4.80 7 0.00 0.02 0.05 0.00 0.01 0.02
100 0.50 4 8.00 16 0.02 0.05 0.09 0.00 0.01 0.03
100 0.70 5 9.10 13 0.03 0.08 0.13 0.00 0.02 0.05
200 0.20 5 7.80 13 0.03 0.09 0.16 0.00 0.01 0.03
200 0.50 5 9.10 19 0.13 0.22 0.39 0.01 0.04 0.13
200 0.70 7 9.10 13 0.22 0.31 0.45 0.03 0.06 0.09
300 0.20 6 9.90 17 0.09 0.22 0.33 0.01 0.05 0.11
300 0.50 9 11.80 16 0.33 0.62 1.01 0.05 0.14 0.25
300 0.70 7 12.30 16 0.59 0.92 1.25 0.11 0.21 0.44

Table 6.17: Average results on random graphs with objectives 1,3 for blind and heuristic
search with NAMOA∗

Problem class |C∗| Time Blind (Seconds) Time Heu. (Seconds)
n d Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.
100 0.20 3 5.70 9 0.00 0.02 0.03 0.00 0.01 0.02
100 0.50 3 8.30 12 0.03 0.06 0.08 0.00 0.02 0.03
100 0.70 7 10.40 15 0.06 0.09 0.13 0.00 0.03 0.08
200 0.20 3 7.80 11 0.05 0.09 0.16 0.00 0.02 0.03
200 0.50 6 10.00 17 0.11 0.25 0.47 0.02 0.07 0.14
200 0.70 4 9.80 21 0.11 0.35 0.62 0.01 0.09 0.20
300 0.20 5 10.00 14 0.14 0.23 0.33 0.00 0.04 0.06
300 0.50 5 11.70 17 0.30 0.64 0.98 0.05 0.13 0.30
300 0.70 8 11.70 20 0.61 0.89 1.59 0.08 0.18 0.33

Table 6.18: Average results on random graphs with objectives 2,3 for blind and heuristic
search with NAMOA∗

6.5.4 Lazio map

Minimum, maximum and average time in seconds over the 50 problems generated
for the Lazio map can be found in table 6.19 for blind and heuristic search. The table
reports also for each of the combination of objectives (i.e. time, distance & societal risk;
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time & distance; time & societal risk; distance & societal risk) the minimum, maximum
and average cardinality of the |C∗| set of Pareto-optimal solution costs reported by the
algorithm, as done with the random graphs.

Problem class |C∗| Time Blind (Seconds) Time Heu. (Seconds)
Obj. Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.

Time, distance & societal risk 1 3.96 20 0.00 0.17 0.77 0.00 0.02 0.17
Time & distance 1 1.06 2 0.00 0.03 0.07 0.00 0.01 0.02

Time & societal risk 1 3.92 18 0.00 0.17 0.73 0.00 0.03 0.15
Distance & societal risk 1 3.36 14 0.00 0.14 0.63 0.00 0.02 0.11

Table 6.19: Average results on Lazio map for blind and heuristic search with NAMOA∗

6.5.5 Discussion

The observation of tables 6.15, 6.16, 6.17, 6.18 and 6.19 shows that heuristic estimates
led the search more quickly to optimal solutions in all cases presented in this section.
In the class of random graphs, NAMOA∗ combined with ~hTC heuristic is always
several times faster on average than blind search (from 3.95 times in biobjective (1,3)
to 4.87 times in (2,3) combination).

The tables also show that time devoted to find a shortest path in a graph increases
with the density and the number of nodes of the graph.

Considering random graphs, all the biobjective pairs (1,2), (1,3) and (2,3) (tables
6.16, 6.17, and 6.18) present very similar results. On the other hand, time is greater
for three objective problems (table 6.15).

Regarding the Lazio map problems, the analysis shows a different behaviour. As
seen in table 6.19 biobjective problems for the pair (time & distance) are easier, while
biobjective problems for the pairs (time & societal risk) and (distance & societal risk)
are more difficult. Perhaps surprisingly, three-objective problems have no additional
difficulty over biobjective problems (time & societal risk) and (distance & societal risk).

The explanation of this phenomenon can be found in the analysis of correlation
between costs. In the case of random costs, the correlation is very low for every pair
of objectives; therefore, for the same density and size, difficulty is similar for any two
objectives, and greater for the set of three objectives.

However, correlation between objectives in Lazio maps depends on the pair consi-
dered (table 3.6). Time and distance are highly correlated (ρ ≈ 1), but societal risk
is not linearly correlated with any of them (ρ ≈ 0). Therefore the number of Pareto-
optimal solutions is not affected by considering distance objective if time objective has
been considered, and vice-versa.

In the work of Caramia et al. (2010) similar information is shown only for blind
search (Martins’ algorithm) over the three-objective case in the random graph set.
Solution times are faster in the results presented in this section even for blindNAMOA∗

search. These differences can be attributed to different pruning and implementation
schemes.
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6.5.6 Summary

This section has presented an analysis of blind and heuristic search for multiobjective
hazmat transportation problems. The analysis involves the consideration of two and
three objectives over two classes of problems: random graphs and hazmat transporta-
tion problems defined over a real map from the Lazio region in Italy (in this case, the
objectives involved are distance, travel time and societal risk).

Concerning the use of heuristics, heuristic estimates allowed faster searches for all
cases presented. As expected, problem difficulty increases with graph size and node
density. But these results also show the importance of correlation between objectives
in the cases considered. The number of Pareto-optimal paths falls as the correlation
between objectives increases. Thus, the time needed to solve a multiobjective problem
depends on the specific nature of arc costs. In problems with relatively uncorrelated
objectives the number of Pareto-optimal paths increases with the number of objectives
under consideration, while the addition of highly correlated objectives does not degrade
the performance of the search.

6.6 Conclusions

A number of techniques have proven very effective in real-time single-objective route
planning applications, like search in car navigation systems. The extension of these
techniques to multiobjective settings is an important area of research. However, the
results presented in this chapter suggest that techniques based in extensive blind mul-
tiobjective precalculations are likely to experience practical difficulties in large maps,
as already noted by Delling & Wagner (2009).

From the systematic evaluation of several parameters performed in this chapter,
some conclusions about multiobjective heuristic search algorithms can be drawn,

• The TC algorithm is shown to be consistently worse in time performance under
similar conditions to NAMOA∗ for realistic problems, confirming the results
over grid problems. Besides, it is important to recall that algorithm TC may not
remove some dominated members from OPEN and introduce some dominated
members in COSTS (see section 2.4.3). Therefore, NAMOA∗ emerges as the
state-of-art multiobjective heuristic search algorithm.

• This chapter has reported the successful application of NAMOA∗ to random
problem instances in large sized realistic road maps. In addition, difficult mul-
tiobjective problems over realistic road maps with uncorrelated objectives have
been also considered. However, time requirements are only reasonable for off-line
route planning applications.

• An improved method of calculation for the ~hTC heuristic has been presented in
this chapter. This method takes advantage of formal properties of theNAMOA∗ al-
gorithm to reduce the precalculation effort, significantly reducing precalculations
in many problem instances. The combination of NAMOA∗ and ~hTC heuris-
tic with the new bounded calculation method was found to clearly outperform a
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classical distance heuristic and blind search, both in the number of solved pro-
blems and in time performance.

• Linear ordering in NAMOA∗ seems to combine heuristic search and delayed
expansion of solutions, leading to a more efficient algorithm. Only the linear
selection rule will be considered for NAMOA∗ in the next chapter.

• The impact of the ~hTC heuristic in other practical problem domains has been
also investigated. The application of the ~hTC heuristic to hazardous material
transportation problems has outperformed previous blind approaches.

• Finally, the impact of the number of objectives in the performance of the algo-
rithm is evaluated with a comparison between NAMOA∗ with two and three
objectives. The number of Pareto-optimal paths falls as the correlation between
objectives increases. Thus, the time needed to solve a multiobjective problem
depends on the specific nature of arc costs. In problems with relatively uncorre-
lated objectives the number of Pareto-optimal paths increases with the number of
objectives under consideration, while the addition of highly correlated objectives
does not degrade the performance of the search.

The use of precalculated heuristics in multiobjective search is a rather unexplored
area that deserves formal and practical developments. The applications described in
this chapter could clearly benefit from more informed precalculated heuristics. Chapter
7 explores this possibility, with more efficient heuristics for multiobjective search.





Chapter 7

Multivalued Heuristics for
Multiobjective Heuristic Search

The results presented in previous chapters reveal that NAMOA∗ is the algorithm with
better formal properties and better empirical behaviour in general. The experimental
analyses also confirms that a linear selection rule is better than a lexicographic one.

The multiobjective heuristic function ~hTC has been shown to be very effective for
all domains tested in this thesis, reducing time as well as space requirements in most
cases. Furthermore, a new improved calculation method has been presented in the
previous chapter. In realistic scenarios, the use of this heuristic in NAMOA∗ achieved
significant improvements in performance over a classical distance heuristic and was also
found to outperform blind search in difficult instances. However, even with an informed
heuristic like ~hTC , the multiobjective search stage can take a long time.

Moreover, the full potential of multiobjective heuristic search has not been com-
pletely explored, since ~hTC provides only a single heuristic vector for each node. The
heuristic algorithm NAMOA∗ is not limited to single-valued heuristics. To the au-
thor’s knowledge, using H(n) sets with multiple heuristic vectors in multiobjective
search algorithms has not been evaluated to date.

This chapter investigates more informed heuristics. From a formal point of view, a
more informed heuristic will reduce the number of explored alternatives. This chapter
develops a precalculation method for more precise heuristic evaluations, and analyzes
the cost-effectiveness of precalculations in terms of space and time. The informedness
of H(n) reflects the amount and quality of available heuristic information.

Section 7.1 gives an informal example of how to improve the ~hTC heuristic. A
precalculation method for an improved heuristic function is proposed in section 7.2.
The generation process is shown over a small sample graph. The properties of this
improved heuristic function are also analyzed. This section also shows that these im-
proved estimates can be inconsistent in general. The results of the application of this
new heuristic to NAMOA∗∗ with linear selection can be found in the section 7.3.
The analysis shows that the new heuristic achieves dramatic reductions in the number
of alternatives considered and as a result in the number of cost vectors stored in the
search graph, improving space requirements. Nevertheless, time performance is shown
to be improved only under certain circumstances, which are analyzed in section 7.4.
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Some conclusions of this study are drawn at the end of the chapter, suggesting future
improvements.

7.1 Improving the ~hTC heuristic

A common framework to obtain a heuristic function for a particular problem is the
relaxation of some constraints related to that problem (Pearl, 1984; Felner et al., 2011).
The accurate heuristic proposed by Tung & Chew (1992) is based on precalculations.
These reduce the problem to a set of simpler single objective searches. Let us recall
that ~hTC obtains for each node lower bounds c∗i for each objective i with single-
objective Dijkstra’s searches from γ to all other nodes in a reversed graph (see section
2.4.4). In the biobjective case, two values are obtained for each node, representing
the two lexicographic optimal solutions priorizing first objective (c∗1, c

′
2) and second

objective (c′1, c
∗
2) respectively (points B and C in the figure 7.1). The bounded procedure

presented in chapter 6 lets us discard the calculation of some values for those nodes
that will surely not be examined in the multiobjective search stage, while providing
the same heuristic information for the others.

For example, vector (c∗1, c
∗
2) for some node n (point A in figure 7.1) is derived in

~hTC as lower bound for the cost of all nondominated paths reaching γ from n. More
details about ~hTC can be found in sections 2.4.4 and 4.8. Let us assume an additional
Pareto-optimal solution cost is known. An heuristic function H(n) more informed
than HTC(n) = {~hTC(n)} can be obtained.

Given that a new optimal cost is available, e.g. point D with cost (c′′1, c
′′
2), the same

strategy followed by Tung & Chew can be applied to points B,D and to points D,C.
Lower bounds on each objective are used again to build an optimistic heuristic value.
Therefore, two new heuristic vectors (c∗1, c

′′
2) and (c′′1, c

∗
2) can be derived (points E,F).

These two heuristic vector values are also optimistic and can replace the ~hTC estimate
(point A), as they are more informed. Given additional optimal solution costs, heuris-
tic estimates could be further improved. The next section presents a procedure that
systematically applies this idea.

7.2 KDLS, a new precalculation method for multiobjective
heuristics

In this section, we generalize the procedure informally described in the previous section
to obtain new heuristic estimates from known Pareto-optimal costs. The procedure
obtains these costs through one-to-all 1 single-objective searches on a reversed graph,
where the start node is γ. For each single objective search, the original costs of arcs
are replaced by some linear weighted combination. Then Dijkstra’s algorithm is run
on the new graph.

In discrete problems, only supported solutions can be obtained optimizing a linear
weighted combination of costs, regardless of the slope used (see section 2.2.1). Figure
7.2 reflects this situation. A different scheme (e.g. a multiobjective stage) must be

1The nodes visited by this procedure can be bounded as explained in Chapter 6.



7.2. KDLS, a new precalculation method for multiobjective heuristics 163

 

c1 
 c1

*
 

AA  

 c1
’
 

 c2
’
 

 c2
*
 

BB  

CC  

DD  EE  

FF  

 c1
’’
 

 c2
’’
 

c2 

Figure 7.1: Improving ~hTC with two more informed estimates for some node n

used to obtain solutions lying inside the nondominated triangles formed by adjacent
supported solutions. Thus, there is a limitation in the number of Pareto-optimal costs
and hence in the number of heuristic values that can be obtained for each particular
problem with this procedure.

A dichotomic search procedure has been devised to obtain these new heuristic es-
timates. This is similar to the systematic dichotomic search method described for the
first phase in the blind two-phase multiobjective search method suggested by Raith
(2009, pp. 33-39), that eventually obtains all supported solutions to the multiobjective
problem. In our case, the procedure is used to obtain heuristic values, and hence it
is not restricted to one-to-one searches. The procedure is called KDLS, standing for
“k-dichotomic linear searches”, as k levels of splitting processes are performed. Let us
call Hk

KDLS the heuristic functions obtained by this procedure with parameter k.

Definition 7.1 Let us denote by rn the number of supported solutions to the biobjective
problem of finding a shortest path from node γ to node n in a reversed graph. Let us
assume solutions are ordered lexicographically, priorizing the first objective. The cost
of the i-th supported solution to this problem is denoted 2 by ~q i(n), where ~q i(n) ≺LEX
~q j(n),∀i < j. Let us denote ~q i(n) = (q i

1 (n), q i
2 (n)), or where there is no ambiguity

regarding node n as ~q i = (q i
1 , q

i
2 )

This means that we have ~q 1(n), ~q 2(n), . . . , ~q rn(n) supported Pareto-optimal so-
lution costs for each node n. They are stored for each node n by KDLS procedure
in sets SUPS(n). The extreme solution costs ~q 1(n), ~q rn(n) are those calculated
by the precalculation procedure of Tung & Chew (1992) and previously denoted by

2Let us recall that ~qi(n, n′) was defined by Tung & Chew (1992) as the minimal cost for objective
i among paths between n and n′, see definition 4.13. In the terminology used in this chapter, we will
omit the second parameter as all Pareto-optimal costs from each node are referred to goal node γ.
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Figure 7.2: Non-supported solutions can not be found solving weighted sum problems

(c∗1(n), c′2(n)), and (c′1(n), c∗2(n)) in chapter 6. Thus, ~hTC(n) = (q1
1(n), qrn2 (n)), as

it can be seen in figure 7.3(a). These two extreme supported solutions are the ini-
tial members of sets SUPS before running the dichotomic procedure, i.e. initially
SUPS(n) = {q1

1(n), qrn2 (n)}.

Definition 7.2 Let ~c1(n, n′) and ~c2(n, n′) be the two cost functions under considera-
tion. Let ~q i(s) and ~q j(s) be two known supported solution costs of paths from γ to s,
such that ~q i(s) ≺LEX ~q j(s), and no intermediate solution cost is known.

Let us define Gij as a graph with the same nodes as G, but all arcs reversed. For
all arcs (n, n′) of the original graph G, the vector costs ~c(n, n′) = (c1(n, n′), c2(n, n′))
are replaced by a scalar linear combination of both objectives c ij(n′, n) = λij1 c1(n, n′) +

λij2 c2(n, n′).
The weights ~λij = (λij1 , λ

ij
2 ) used by KDLS for searching in interval [~q i(s), ~q j(s)]

are given by the linear combinations

λij1 = qi2 − q
j
2 (7.1)

λij2 = qj1 − q
i
1

These weights are devised to obtain the supported solution cost with maximal
distance to the line joining ~q i(s) and ~q j(s) (Raith, 2009, pp. 33-39), i.e. the slope is
chosen in order to obtain the nearest (supported) point from the Pareto front of node
s that can be obtained with linear combinations, as shown in figure 7.4.

The procedure performs on each general step of a dichotomic level k a (bounded)
Dijkstra search from γ to s in the reversed graph Gij , trying to find a new supported
solution in an interval [~q i(s), ~q j(s)], with i < j. This also gives us minimal distances
~q 1(n), ~q 2(n), . . . , ~q rn(n) to all interesting nodes, which can be used to construct more
informed heuristic values for every node.

Let n be a node selected for expansion and gij(n) = λij1 g1(n)+λij2 g2(n) be the scalar
cost of a path Pγn when running Dijkstra’s algorithm on graph Gij , representing a



7.2. KDLS, a new precalculation method for multiobjective heuristics 165

 

 

 

 

 

qq
11
((nn))  

qq
rr

nn((nn))  

 (a) Initially SUPS(n) = {~q 1(n), ~q rn(n)}

 

 

 

 

 

qq
pp
((nn))  

qq
mm

((nn))  

qq
ll
((nn))  

 (b) A new solution cost ~q p(n) is added to SUPS(n) =
{. . . , ~q l(n), ⇓ , ~q m(n), . . .}

 

 

 

 

 

qq
pp
((nn))  

qq
mm

((nn))  

qq
ll
((nn))  

hhllpp((nn))  

hhppmm((nn))  

 (c) Two new heuristic values are obtained

Figure 7.3: Visual description of KDLS procedure
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 Figure 7.4: A new solution is found in interval [C,B] while no more supported solutions
are found in interval [A,C]

Pareto-optimal supported solution reaching n, with vectorial cost ~g(n) = (g1(n), g2(n))
(see figure 7.3(b)).

Let us denote by ~q p(n) = ~g(n) the cost of this new nondominated solution cost to
n, and let ~q l(n), ~q m(n) be the costs immediately before and after in lexicographical
order in SUPS(n).

When this cost ~q p(n) is new, it can be added to SUPS(n), as shown in figure
7.3(b). Let us consider now the analogous situation for node s. Let ~q h(s) be the new
solution cost. When ~q h(s) = ~q i(s) or ~q h(s) = ~q j(s), no new supported solutions can
be found the interval [~q i(s), ~q j(s)]. Otherwise, it is possible to further continue the
search for new supported solutions in the intervals [~q i(s), ~q h(s)] and [~q h(s), ~q j(s)]
(i.e. with a higher dichotomic level k+ 1). Initially, the level k = 1 corresponds to the
search in the initial interval [~q 1(s), ~q rs(s)].

The heuristic proposed by Tung & Chew (1992) is only a particular case, where in
the biobjective case λij1 = 1 and λij2 = 0 (and viceversa) are used to optimize the first
objective (or respectively the second). The precalculation terminates as soon as these
extreme supported solutions are found. Thus, level k = 0 denotes the initial search for
the two extreme solutions ~q 1(n), ~q rn(n) in KDLS (i.e. the usual construction for
the ~hTC heuristic, with no dichotomic linear searches).

KDLS terminates as soon as all searches up to level k have been completed or no
more intervals remain to be examined. Once all relevant intervals have been examined,
the sets SUPS(n) are processed to obtain the heuristic functions Hk

KDLS(n) for each
node (see figure 7.3(c)).

The detailed procedure for two objectives is shown in table 7.1. As for the bounded
procedure described in section 6.2.2, some improvements over the calculation method
are proposed:
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• INITIALIZATION:

— Create I = {}
— Perform two reverse Dijsktra’s searches from γ to determine the subset of
nodes that will be considered (SN ⊆ N), as well as extreme solutions to them
~q 1(n) and ~q rn(n), ∀n ∈ SN
— Create ∀n ∈ SN, SUPS(n) = {~q 1(n), ~q rn(n)}, Hk

KDLS(n) = {}
— Invoke KDLS with initial interval I = {[~q 1(s), ~q rs(s)]} and parameter k

• KDLS(I, k)

1. CHECK TERMINATION:
— IF I = {} goto HEURISTIC CONSTRUCTION

2. INTERVAL SELECTION:
— SELECT an interval [~q i(s), ~q j(s)] from I with level kij

3. CALCULATE WEIGHTS ~λij = (λij1 , λ
ij
2 ) as

λij1 = qi2 − q
j
2 (7.2)

λij2 = qj1 − q
i
1

4. CREATE REVERSED GRAPH Gij : arcs (n, n′) are reversed and original
costs ~c(n, n′) = (c1(n, n′), c2(n, n′)) are replaced by

c ij(n′, n) = λij1 c1(n, n′) + λij2 c2(n, n′) (7.3)

5. RUN BOUNDED DIJKSTRA search on Gij from γ to all nodes in SN

6. STORING NEW SUPPORTED SOLUTIONS:
— ∀n ∈ SN , IF a new supported solution ~q p(n) = (qp1 , q

p
2) is found, STORE

~q p(n) in SUPS(n)

— IF (a new supported solution ~q h(s) is found for s) and (kij < k ∨ k =∞),
THEN STORE in set I two new subintervals [~q i(s), ~q h(s)], [~q h(s), ~q j(s)]
with level kij + 1

— Go to step 1

• HEURISTIC CONSTRUCTION:

— ∀n ∈ SN , process each two consecutive supported solutions ~q i(n) =
(q i

1 (n), q i
2 (n)), and ~q j(n) = (q j

1 (n), q j
2 (n)) in SUPS(n) to obtain a new candi-

date estimate ~hij(n) = (hij1 (n), hij2 (n)) as follows,

hij1 (n) = qi1 hij2 (n) = qj2 (7.4)

— IF ~hij(n) /∈ Hk
KDLS(n) THEN store it in Hk

KDLS(n)

— Return the sets Hk
KDLS

Table 7.1: Precalculation of HKDLS for bicriteria search by KDLS procedure.
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1. Labels in Dijkstra’s searches can be discarded in step 5 if any of the following
holds,

λij1 g1(n) > qj1 (7.5)

λij2 g2(n) > qi2

This result is a direct consequence from the formal properties of NAMOA∗,
which have been previously presented, as it will surely not expand labels that are
not C∗-bounded.

2. Step 5 can be improved as suggested by Raith (2009, pp.29-30). An upper bound
based in the nadir point (qj1, q

i
2) can be used, i.e. we can discard labels with,

λij1 g1(n) + λij2 g2(n) > qj1 + qi2 (7.6)

7.2.1 Example

Let us consider the sample graph of figure 7.5(a). The first step is to reverse all arcs
for the initialization phase (figure 7.5(b)). The two extreme solutions between γ and
all other nodes are obtained. For example, regarding node s, extreme solutions are
given by path 〈γ, 2, s〉 with cost ~q 1(s) = (2, 10) (see figure 7.6(a)), and path 〈γ, 3, s〉
with cost ~q rs(s) = (10, 2) (see figure 7.6(b)). Numbers above nodes represent the g(n)
value obtained by Dijkstra’s algorithm.

Figure 7.8 displays the set of nondominated solutions from γ to s. The extreme
solution costs are ~q 1(s) and ~q 3(s). In this case, rs = 3, there is only an additional
supported solution from γ to s, the path 〈γ, s〉, with cost ~q 2(s) = (5, 5). There are two
additional nondominated paths, 〈γ, 2, 1, s〉 and 〈γ, 3, 1, s〉, with costs (3,9) and (9,3),
paths but they are not supported points.

Procedure KDLS is called with I = {[(2, 10), (10, 2)]}. Let us assume also that
k =∞. The weights ~λ13 for the first linear search can be calculated as

λ13
1 = q1

2 − q3
2 = 10− 2 = 8 (7.7)

λ13
2 = q3

1 − q1
1 = 10− 2 = 8

The original graph is transformed into the graph of figure 7.7(a). The result of
applying Dijkstra’s algorithm on this graph G13 is shown in figure 7.7(b). Let us
assume that we solve ties on scalar values with lexicographic order on the original costs
of arcs. The path 〈γ, s〉, gives an additional supported solution cost in the interval
I13 = [(2, 10), (10, 2)]. The cost of this path ~q 2(s) = (5, 5) is the unique additional
supported solution cost in the graph, as its linear weighted combination value (80) is
lower than the cost of any other sum of costs of arcs.

The interval I13 is then split, i.e. I = {[(2, 10), (5, 5)], [(5, 5), (10, 2)]}. Two addi-
tional linear searches in intervals I12 = [(2, 10), (5, 5)], I23 = [(5, 5), (10, 2)] must be
performed, but none of them provide new additional supported points, as shown in
figure 7.8 and table 7.2. The corresponding figures of Dijkstra’s execution are omitted.
The last phase of KDLS calculates heuristic values H∞KDLS from sets SUPS(n),
which are shown in table 7.2. New supported points are shown in bold face.
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(a) Sample biobjective graph

(b) Sample graph with reversed arcs

Figure 7.5: Sample graph for KDLS procedure: initialization



170 Chapter 7. Multivalued Heuristics for Multiobjective Heuristic Search

(a) Search tree for the first extreme solution

(b) Search tree for the second extreme solution

Figure 7.6: Sample graph for KDLS procedure: searching for extreme solution costs
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(a) Reversed graph G13

(b) Search tree for G13

Figure 7.7: Sample graph for KDLS procedure: searching for supported solution costs
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Figure 7.8: Sample graph forKDLS procedure: supported and non-supported solution
costs

Node 3 Node 2 Node 1 Node s
SUPS(n) search lex. 1 (2,1) (1,2) (2,8) (2,10))
SUPS(n) search lex. 2 (2,1) (1,2) (2,8),(8,2) (2,10),(10,2)
SUPS(n) search lin. I13 (2,1) (1,2) (2,8),(8,2) (2,10),(5,5),(10,2)
SUPS(n) search lin. I12 (2,1) (1,2) (2,8),(8,2) (2,10),(5,5),(10,2)
SUPS(n) search lin. I23 (2,1) (1,2) (2,8),(8,2) (2,10),(5,5),(10,2)
H∞KDLS(n) (2,1) (1,2) (2,2) (2,5),(5,2)

Table 7.2: Sample graph for KDLS procedure: sets of stored supported solutions and
heuristic values H∞KDLS returned
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7.2.2 Properties

When k =∞, the termination criterion for KDLS uses the source node s as reference.
Maybe more heuristic values could be found for other nodes, but we propose to stop
at the moment that all supported solutions from γ to s have been found.

Theorem 7.1 The total number of single-objective searches performed by KDLS pro-
cedure, with parameter k, is at most 2k + 1. Thus, the maximum number of heuristic
vector values obtained with KDLS for node s is at most 2k.

Each time a new supported solution is found, two new subproblems arise. The
total number of searches performed in the dichotomic process is then at most 2k − 1,
as each time 2 new unexplored subintervals can be generated. The extreme solutions
require two additional single-objective searches, and hence the total number of searches
performed is at most 2k + 1. Regarding the number of heuristic vector values obtained
by KDLS, each time a new supported solution is found two new heuristic values can
be obtained (see figure 7.1). Concatenating the split intervals, it is easy to see that a
maximum of 2k possible heuristic values can be obtained with (a maximum of) 2k − 1
supported solutions (see figure 7.3(c)).

When the process is carried to the limit (i.e. k =∞), a maximal subset of H∗ set
is found, constructed from all supported solutions. For k = ∞, the procedure stops
when all supported solutions from γ to s have been found. Thus, the precalculation
procedure in that case can be computationally intensive as the number of supported
solutions depends on the nature of the problem and it can be high for large or complex
problem instances. The determination of a good value for k is analyzed in section 7.4.

Corolary 7.1 KDLS terminates in a finite number of steps.

It is obvious from theorem 7.1 that, in the case k 6= ∞, the number of searches
(and hence the number of heuristic vectors obtained) is bounded by an integer. In the
case k =∞, the number of solutions that can be found with linear combinations is also
bounded, as only supported solutions can be reached. Thus, the procedure terminates
at some point returning the sets Hk

KDLS .

Theorem 7.2 The heuristic function Hk
KDLS obtained with KDLS is admissible.

The proof is quite simple, since for any two supported solutions consecutive in
lexicographic order ~q i(n), ~q j(n), the heuristic vector ~hij(n) obtained from them do-
minates all vectors dominated by ~q i(n), ~q j(n), as well as the rectangle defined by
them, including the duality gap. This can be easily seen in figures 7.3(c) or 7.8, where
the heuristic values generated are in the lower left corner of a rectangle, dominating all
supported and non-supported solutions that will be found later.

Theorem 7.3 Let Hk
KDLS(n) be the heuristic function obtained for node n by proce-

dure KDLS with parameter k. Let k1>k2>0 be two values for this parameter in the
precalculation performed by KDLS for the same node. Then, the heuristic function
Hk1
KDLS(n) is at least as informed than Hk2

KDLS(n).
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It is obvious, that with larger values of k, at least the same number of supported
solutions are found, and hence at least the same or a higher number of possible heuristic
values are available for each node. By the construction procedure of KDLS, new
triangles result in heuristic values with a higher value for at least one of the objectives,
and thus the heuristic function Hk

KDLS(n) is more informed with larger values for k.

Corolary 7.2 Increasing values of k lead to at least equally or more informed heuris-
tics.

This is quite straightforward, since further searches could find new supported so-
lutions, and this would replace one heuristic vector by two others dominated by the
original one (see figure 7.1).

Theorem 7.4 The heuristic function Hk
KDLS obtained with KDLS can be in general

inconsistent.

It is enough to present a counterexample to the (equivalent) monotonicity property
(see definition 4.11), i.e. some case where for some arc (n, n′) between two adjacent
nodes n, n′,

∃~h′ ∈ H(n′) ∀~h ∈ H(n) | ~h � ~c(n, n′) + ~h′ (7.8)

Let us consider the example presented in section 7.2.1 and heuristic H∞KDLS . We
can observe the heuristic values obtained for nodes s and 1 in table 7.2. Given that
H∞KDLS(s) = {(2, 5), (5, 2)}, H∞KDLS(1) = {(2, 2)}, and ~c(s, 1) = (1, 1), we have that
for (2,2)

(2, 5) � (2, 2) + (1, 1)

(5, 2) � (2, 2) + (1, 1)

Theorem 7.4 is of great formal importance. When heuristics are inconsistent, there
is no guarantee that a label expanded by NAMOA∗ is permanent and will not be
later pruned. Theorem 4.5 (see section 4.2.2) states that NAMOA∗ with consistent
heuristics will only expand C∗-bounded paths, but also states that, as a necessary
condition, these paths must be nondominated. Let us recall the following important
theorems that apply to this situation:

Theorem 7.5 (Mandow & Pérez de la Cruz, 2010a, Theorem 5.2) A sufficient condi-
tion for NAMOA∗ to select a path P = (s, . . . , n) for expansion is that:

a) P be a nondominated path from s to n

b) P be C∗-bounded

Theorem 7.6 (Mandow & Pérez de la Cruz, 2010a, Theorem 5.3) A necessary con-
dition for NAMOA∗ to select a path P = (s, . . . , n) for expansion is that P be C∗-
bounded.

This means that all paths bounded by C∗ could be expanded by NAMOA∗ whether
they are nondominated or not. The sequence of heuristics calculated with KDLS pro-
cedure is increasingly more informed (see definition 4.5), for larger values of k. However,
more informed but inconsistent heuristics do not guarantee a reduction in search effort.
All we can expect is stated by the next theorem.
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Theorem 7.7 (Mandow & Pérez de la Cruz, 2010a, Theorem 5.5) Let H1(n) and
H2(n) be two admissible heuristics for the same problem. Let NAMOA∗1 and NAMOA∗2
be two versions of algorithm NAMOA∗ that differ only in the use of heuristic func-
tions H1(n) and H2(n) respectively. If H2(n) is at least as informed as H1(n), then
all nondominated and C∗(H2)-bounded paths selected for expansion by NAMOA∗2 will
also be selected by NAMOA∗1.

As explained in section 2.4.6, the number of dominated labels explored can be
reduced using multiobjective pathmax. Therefore, all experiments with HKDLS have
been run with algorithm NAMOA∗∗.

7.3 Results

This section reports experimental results on the evaluation ofNAMOA∗∗ , the pathmax
version of NAMOA∗, with HKDLS . Two problem domains with two objectives are
evaluated: class II grids and route planning in road networks. In the case of class
II grids (see section 3.2.1.2), graph size (or equivalently, solution depth) is gradually
incremented. Additionally, correlation between objectives is set to -0.8, -0.4, 0, 0.4, or
0.8. The route planning problem set is the one defined in section 3.2.3 over the NY2

map. The objectives in this map have an overall correlation ratio ρ = 0.16.
The purpose of these experiments is to evaluate the impact of HKDLS in perfor-

mance as a function of k, i.e. H(n) = Hk
KDLS(n) with k ∈ [1, 5]. Two additional

alternatives are considered: H(n) = H0
KDLS(n) (i.e. H(n) = {~hTC(n)}, k = 0) and

H(n) = H∞KDLS(n) (i.e. k =∞). The bounding improvements in the precalculation of
heuristics described by (7.5) and (7.6) have been also applied. The heuristic values are
also strengthened in run time through the application of the multiobjective pathmax
rule, described in definition 2.21.

In these experiments NAMOA∗∗ is run with a linear selection rule, which provided
the best results with consistent heuristics. The same order was applied to Gop sets. The
algorithm was implemented in ANSI Common Lisp using LispWorks 6.0 Enterprise 64
bits, and run on a Sun Fire X4140 server with 2 six-core AMD Opteron 2435 @ 2.60GHz
processors and 64 Gb of DDR2 RAM, under Windows Server 2008 R2 Enterprise (64-
bits).

7.3.1 Results on grids

The space and time requirements of NAMOA∗∗ with HKDLS , k ∈ [0, 5] and k = ∞,
for the case of class II problem instances are presented in figures 7.9(a), 7.9(b) (for
the case of ρ=0.8), figures 7.10(a), 7.10(b) (for the case of ρ=0.4), figures 7.11(a) and
7.11(b) (for the case of ρ = 0), figures 7.12(a), 7.12(b) (for the case of ρ=-0.4), and
figures 7.13(a), 7.13(b) (for the case of ρ=-0.8), respectively. Values are averaged over
ten problems generated for each depth, in all reported results hereafter. Time results
presented in this section show total time including heuristic precalculations.
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Figure 7.9: Space and time requirements for NAMOA∗∗ with Hk
KDLS on class II grid

problems with ρ =0.8. Average values over ten random problems generated for each
depth.
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(a) Space requirements for correlation value 0.4
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(b) Time requirements for correlation value 0.4

Figure 7.10: Space and time requirements for NAMOA∗∗ with Hk
KDLS on class II

grid problems with ρ =0.4. Average values over ten random problems generated for
each depth.
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(a) Space requirements for correlation value 0
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(b) Time requirements for correlation value 0

Figure 7.11: Space and time requirements for NAMOA∗∗ with Hk
KDLS on class II

grid problems with ρ = 0. Average values over ten random problems generated for each
depth.
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(a) Space requirements for correlation value -0.4
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(b) Time requirements for correlation value -0.4

Figure 7.12: Space and time requirements for NAMOA∗∗ with Hk
KDLS on class II

grid problems with ρ =-0.4. Average values over ten random problems generated for
each depth.
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(a) Space requirements for correlation value -0.8
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(b) Time requirements for correlation value -0.8

Figure 7.13: Space and time requirements for NAMOA∗∗ with Hk
KDLS on class II

grid problems with ρ =-0.8. Average values over ten random problems generated for
each depth.
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7.3.2 Results on road maps

The algorithm NAMOA∗∗ was also evaluated on a realistic scenario. Space require-
ments for the 20 problem instances of NY2 map are shown in figure 7.14. The abscissa
axis x shows problem indexes for each instance in the problem set. Instances are or-
dered according to increasing number of stored cost vectors needed byNAMOA∗∗ with
heuristic H∞KDLS . The value for ordinate y (the number of simultaneously stored cost
vectors) is shown in a logarithmic scale.

Time requirements for the same problem instances are shown in figure 7.15. The
value for ordinate y (time in seconds) is also shown in a logarithmic scale. This time, ins-
tances are ordered by increasing time needed byNAMOA∗∗ with heuristicH0

KDLS (i.e.
~hTC), which was identified as the fastest alternative in general over class II grid pro-
blems. For practical reasons, instances were solved with a twelve-hour time limit. In
those cases where the heuristic could not solve an instance, values are not displayed
for that particular heuristic. In addition, values obtained for problem instances NY2

15 and NY2 3 were very small and outside the displayed scale.

7.4 Analysis

7.4.1 Analysis on space requirements

A Grids
A great reduction in space requirements can be achieved with Hk

KDLS for all values of
k > 0, when compared to ~hTC . This can be observed for all values of ρ (figures 7.10(a),
7.11(a), 7.12(a), and 7.13(a)), except in the simpler case of ρ=0.8, (figure 7.9(a)).
Results for k = 5 and k =∞ appear indistinguishable at this scale for all correlations.
The first conclusion is that there are diminishing returns to precalculations beyond
k = 5, i.e. at most 32 heuristic cost vectors in H(n). The relative gain between k = 5
and k =∞ is really small in general.

Let us analyze in some detail the ratio of space requirements with Hk
KDLS for dif-

ferent values of k respect to the optimal space requirements. These are measured as
the space required to store a completelly labeled solution graph (i.e. one in which
every node belonging to a nondominated solution is labeled with optimal costs to the
source and goal nodes). Let vNAMOAk

be the maximum number of cost vectors simul-
taneously stored by NAMOA∗∗ with Hk

KDLS , and let vNAMOAsol
be the strictly nece-

ssary cost vectors belonging to solution paths to the problem instance. We shall denote
by rvsolk = vNAMOAk

/vNAMOAsol
the ratio of cost vectors stored by NAMOA∗∗ with

Hk
KDLS compared to size of the solution graph. The relative ratio rvsolk is shown for

the different values of k in figures 7.16(a), 7.17(a), 7.18(a), 7.19(a), and 7.20(a).
For example, let us consider figure 7.18(a) in some detail (i.e. ρ=0). The ratio for

k = 0 (i.e. ~hTC) is on average somewhat below 12 for the most difficult problems (i.e.
deeper solution), while that for k =∞ is nearly 4.

The second conclusion is that the ratio rvsolk grows more slowly with solution depth
for higher values of k.

From figure 7.18(a), it is also obvious that the different values of k considerably
reduce the space requirements over ~hTC (i.e. k = 0). The reduction steadily increases
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with solution depth. For example, for k = ∞ the ratio of reduction over k = 0 is
approximately 3 for the problems with deeper solution.

B Road maps
Considering the number of label expansions, these problems are around two orders of
magnitude more difficult than the random grid problems. The biggest grids have 40,000
nodes and 159,200 arcs and can have on average 124.8 Pareto-optimal solution costs
for ρ=0, while the NY2 map has 264,346 nodes and 730,100 arcs with an average of
2086.6 Pareto-optimal solution costs per problem instance.

A great reduction in space requirements can be achieved with Hk
KDLS for all values

of k > 0, when compared to ~hTC (figure 7.14). Results for k = 5 and k = ∞ are
very similar again for almost all problems. The conclusion that there are diminishing
returns to precalculations beyond k = 5 still holds for these problems. The relative
gain between k = 5 and k =∞ is again small in general.

Figure 7.21 shows the relative space requirements rvsolk for each value of k compared
to solution graph size for the route planning problem instances. The abscissa axis x
shows problem indexes for each instance in the problem set. Instances are ordered by
increasing size of solution graph.

In this domain, the ratios vary widely for small values of k in some instances. In
general, for higher values of k (i.e. k > 3) the ratio is below 30, while for k = 0, it can
reach much higher values. For example, intance NY2 12 presents a ratio close to 140
for k = 0. The explanation is that the solution graph size is relatively small for this
problem, compared to the search graph size. This can be attributed to the irregularities
in the internal structure of road maps.

Regarding the comparison between multivalued heuristics with ~hTC some instances
exhibit a reduction similar to that obtained for difficult random grid instances with
ρ = 0, e.g. for k =∞, instance NY2 11 improves over ~hTC by a factor of 2.71. Other
instances show higher improvements, like NY2 2 (with 3.5), NY2 16 (with 3.9), NY2

12 (with 5.25) and NY2 17 (with 5.92). The conclusion is that multivalued heuristics
can provide significant savings in space requirements over ~hTC .

7.4.2 Analysis on time requirements

A Grids
Figures 7.9(b), 7.10(b), 7.11(b), 7.12(b), and 7.13(b) show that the absolute time re-
quirements of NAMOA∗∗ with Hk

KDLS increase with k in grid problems. This indi-
cates that the reduction in space requirements come with a price in terms of run time.
Nevertheless, the worst time requirements achieved by multivalued heuristics are still
much smaller than those of blind search.

We can analyze the ratio of time taken by multivalued heuristics compared to ~hTC .
Let tNAMOAk

be the total time (including heuristics precalculation) taken to solve a
problem by NAMOA∗∗ with Hk

KDLS . We shall denote by rt0k = tNAMOAk
/tNAMOA0

the ratios of performance in time from NAMOA∗∗ with Hk
KDLS against H0

KDLS (i.e.
equivalent to ~hTC). The relative ratio rt0k is shown for the different values of ρ in figures
7.16(b), 7.17(b), 7.18(b), 7.19(b), and 7.20(b).
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Figure 7.16: Class II grid problems with ρ =0.8. Average values over ten problems
generated for each depth. (a) Space requirements forNAMOA∗∗ withHk

KDLS relative
to graph solution size. (b) Time requirements for NAMOA∗∗ with Hk

KDLS relative
to NAMOA∗∗ with H0

KDLS .
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(a) Relative space requirements rvsolk for correlation value 0.4
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(b) Relative time requirements rt0k for correlation value 0.4

Figure 7.17: Class II grid problems with ρ =0.4. Average values over ten problems
generated for each depth. (a) Space requirements forNAMOA∗∗ withHk

KDLS relative
to graph solution size. (b) Time requirements for NAMOA∗∗ with Hk

KDLS relative
to NAMOA∗∗ with H0

KDLS .
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(a) Relative space requirements rvsolk for correlation value 0
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(b) Relative time requirements rt0k for correlation value 0

Figure 7.18: Class II grid problems with ρ =0. Average values over ten problems
generated for each depth. (a) Space requirements forNAMOA∗∗ withHk

KDLS relative
to graph solution size. (b) Time requirements for NAMOA∗∗ with Hk

KDLS relative
to NAMOA∗∗ with H0

KDLS .
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(a) Relative space requirements rvsolk for correlation value -0.4
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(b) Relative time requirements rt0k for correlation value -0.4

Figure 7.19: Class II grid problems with ρ =-0.4. Average values over ten problems
generated for each depth. (a) Space requirements forNAMOA∗∗ withHk

KDLS relative
to graph solution size. (b) Time requirements for NAMOA∗∗ with Hk

KDLS relative
to NAMOA∗∗ with H0

KDLS .
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(a) Relative space requirements rvsolk for correlation value -0.8
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(b) Relative time requirements rt0k for correlation value -0.8

Figure 7.20: Class II grid problems with ρ =-0.8. Average values over ten problems
generated for each depth. (a) Space requirements forNAMOA∗∗ withHk

KDLS relative
to graph solution size. (b) Time requirements for NAMOA∗∗ with Hk

KDLS relative
to NAMOA∗∗ with H0

KDLS .
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Figure 7.21: Ratio rvsolk of space requirements for NAMOA∗∗ in NY2 map, relative to
solution graph size. Problem instances are ordered by increasing size of solution graph.
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For example, let us consider in detail the case ρ = 0 (figure 7.18(b)). Only k = 1
or k = 2 are competitive in time for difficult problems with ~hTC offering significative
space reductions for a small increase in run time.

A similar scenario appears for other correlation values, except the extreme values
0.8 and −0.8. For ρ = 0.8 the precalculation of heuristics does not compensate, since
it does not provide a significant space reduction. For ρ = −0.8, k = 2 already requires
50% more time than ~hTC , though still offering some reduction in space.

It is interesting to analyze the source of this increase in time requirements for
multivalued heuristics. Let us consider first the ratio of time due to the precalculation
procedure compared to total time invested by NAMOA∗∗. Figure 7.22(a) shows the
absolute time invested in the precalculation of theHKDLS heuristics. Let tKDLSk

be the
time taken by KDLS procedure to precompute the heuristic HKDLS for each node.
We shall denote by rthk = tKDLSk

/tNAMOAk
the ratio of precalculation time compared

to overall run time of NAMOA∗∗ with Hk
KDLS (including both precalculation, and

multiobjective search). The values of rthk as a function of solution depth d for class
II problems with ρ = 0 are shown in figure 7.22(b). Notice that this figure shows the
ratios of performance as percentages.

For shallower solutions, the ratio is very high, and gradually decreases with solution
depth. This figure also shows that while ~hTC (k = 0) represents only about 20% of
time for the problems with deeper solutions, H∞KDLS can take about 70% of the time
requirements for NAMOA∗∗.

B Road maps
In the case of NY2 map, figure 7.15 shows that in some cases, larger values of k increase
run time, while in others, some reduction for certain values of k can be achieved.

Figure 7.23 shows the ratios rt0k of time performance for NAMOA∗∗ with Hk
KDLS

against H0
KDLS (equivalent to ~hTC). Instances are ordered by increasing time needed

by NAMOA∗∗ with heuristic H0
KDLS (i.e. ~hTC).

The time behavior of multivalued heuristics varies widely for different instances:

• In relatively easy instances for ~hTC , like NY2 7, NY2 11, NY2 1, or even NY2 6,
time requirements increase considerably with k.

• For relatively difficult instances, like NY2 16, NY2 17 or NY2 14, almost all values
of k reduce time requirements.

• However, for other hard instances, like NY2 5, or NY2 13, higher values of k
increase run time.

The conclusion is that multivalued heuristics can provide savings in both space
and time for some hard problem instances. However, the relative benefits are difficult
to anticipate. Once again, this can be attributed to the irregularities in the internal
structure of road maps.

7.4.3 Influence of k in heuristic performance

In this section, we analyze the influence of multivalued heuristics in search performance,
with special attention to time requirements. Previous analyses have shown that mul-
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(a) Time requirements for Hk
KDLS precalculation
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(b) Relative time requirements rthk for correlation value 0

Figure 7.22: Time requirements for heuristics precalculation with KDLS procedure
on class II grid problems with ρ = 0. Average values over ten problems generated for
each depth.
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Figure 7.24: Time requirements for the multiobjective search phase ofNAMOA∗∗ with
Hk
KDLS in class II grid problems with ρ = 0

tivalued heuristics can increase time requirements in random grids and certain route
planning instances. This could be attributed to a number of causes:

• A strong search effort in heuristic precalculation.

• A stronger search effort in the multiobjective search stage, in turn due to:

– The expansion of a large number of dominated labels due to heuristic incon-
sistency.

– A time overhead due to pruning dominance checks.

– A time overhead due to filtering dominance checks.

Our hypothesis is that both precalculation time and multiobjective search time are
partly responsible for the increase in run time. Let us consider these in turn.

Regarding precalculation effort, absolute times for ρ = 0 (figure 7.22(a)) reveal that
for k ≤ 4 precalculation time is below the overall time of search with ~hTC in figure
7.11(b) (including precalculation and multiobjective search). This means that for the
grid problems considered, we can not expect time improvements for larger values of k.
However, the heuristic precision gained with values of 1 ≤ k ≤ 4 is not paying off with a
significative reduction in multiobjective run time. However, this could be a lesser evil,
since precalculation times could be partially reduced running precalculation searches
in parallel.

Regarding multiobjective search effort, figure 7.24 shows time taken by the multi-
objective search phase for different values of k in the same set of problems (i.e. ρ = 0).
All values of k > 0 require less time than ~hTC . However, the trend is not strictly
decreasing with higher k, but slightly increases after reaching a minimum for k = 3.
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It. Exp. Lab. Dom. lab. Filt. op. Pruning Op.
KDLS ∞ 20,032 19,910 995 10,852,007 607,446
KDLS 5 20,473 20,351 1,442 9,909,402 624,844
KDLS 4 21,410 21,288 692 9,180,564 665,090
KDLS 3 24,397 24,275 827 7,785,417 763,354
KDLS 2 30,116 29,994 1,040 6,487,609 1,015,308
KDLS 1 44,099 43,977 2,002 3,561,514 1,636,976
KDLS 0 62,055 61,933 0 2,136,028 2,524,910

Table 7.3: Analysis of dominance checks on a sample 200 × 200 class II grid problem
instance with ρ = 0. Start node is (100,100) and goal node is (50,50).

A first hypothesis to the increase in overall time requirements could be that a large
number of dominated labels is being expanded due to heuristic inconsistency. Table 7.3
displays relevant information regarding the resolution of one of the hardest class II grid
problems with ρ = 0 for different values of k. The first column displays the number
of iterations, and the second the number of label expansions (excluding the iterations
due to goal labels). Both decrease steadily for higher values of k.

Figure 7.25(a) shows a visual representation of the search space explored by running
NAMOA∗∗ with H0

KDLS , while figure 7.25(b) shows the behaviour with H
5
KDLS . The

number of label expansions per node are depicted for our sample problem. The search
with ~hTC is directed to the solution but the heuristic information available with k = 0
is not able to discard many labels. Nevertheless, providing a multivalued heuristic like
H5
KDLS allows to discard much more labels.
The third column of table 7.3 further displays the total number of dominated label

expansions, which can be attributed exclusively to the inconsistency of Hk
KDLS . All

these considerations clearly confirm that heuristic inconsistency is not an important
concern in this case.

A second hypothesis could be that the extra dominated labels are increasing the
number of pruning dominance checks. Again, the last column of table 7.3 suggests this
is not a real cause of concern.

Finally, we could expect a time overhead due to an increase in filtering dominance
checks. This hypothesis is supported by the great increase in filtering checks reported
in the fourth column of table 7.3 for increasing values of k. This could be due to a
double case. On one hand, the increase in the cardinality of H(n) would result in an
increase in the cardinality of the F (n) sets, that need to be filtered each time a new
solution is found. On the other hand, the improved heuristics could be leading the
algorithm much quicker to solutions, boosting an effect similar to the one described in
previous chapters.

Let us now consider the cardinality of Hk
KDLS . Figure 7.26 shows the set of Pareto-

optimal costs for the same sample problem. This would be the value of H∗(s) = C∗.
The figure also shows the different heuristic vectors obtained for Hk

KDLS for this node.
Several phenomena can be observed. In the first place, the heuristic generated for k = 5
is almost the same as the one for k =∞. In the second place, the number of supported
solutions obtained with k = ∞ (23) is quite low compared to the actual cardinality
of the set C∗ (121). Nevertheless, the approximations obtained with k ≥ 4 are pretty
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(a) Number of label expansions for NAMOA∗∗ with H0
KDLS

(b) Number of label expansions for NAMOA∗∗ with H5
KDLS

Figure 7.25: Number of label expansions of NAMOA∗∗ using HKDLS heuristics on
a sample 200× 200 class II grid problem instance with ρ = 0. Start node is (100,100)
and goal node is (50,50).
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C∗ KDLS ∞ KDLS 5 KDLS 4 KDLS 3 KDLS 2 KDLS 1 KDLS 0
Prob. 91 105 25 25 15 8 4 2 1
Prob. 92 143 20 20 15 8 4 2 1
Prob. 93 147 24 23 16 8 4 2 1
Prob. 94 100 23 23 16 8 4 2 1
Prob. 95 140 27 26 16 8 4 2 1
Prob. 96 106 18 18 15 8 4 2 1
Prob. 97 132 22 22 15 8 4 2 1
Prob. 98 129 23 23 16 8 4 2 1
Prob. 99 125 29 27 16 8 4 2 1
Prob. 100 121 23 22 15 8 4 2 1

Table 7.4: Size of C∗ set and number of heuristic vectors obtained for start node
(100,100) by KDLS for the ten largest class II grid problem instances of size 200×200.

good. This is confirmed also by the results in table 7.4.
Figure 7.27(a) shows the distribution of the number of heuristic values in H(n) for

all nodes in this sample problem for k = 5. While this value can be high, search is
constrained to a small strip of nodes aimed to the goal (see figure 7.25(b)). For these
relevant nodes, the cardinality of H(n) quickly decreases.

Figure 7.27(b) displays the product of the number of nondominated labels consi-
dered by k = 5 for each node by the cardinality of the heuristic set for that node. This
is an upper bound on the cardinality of the F (n) sets. This reveals an increase in the
size of this sets, though only moderately significant (over 300 up to approx. 600) only
for nodes at mid distance from source to goal.

Finally, figure 7.28 also confirms that in general NAMOA∗∗ with Hk
KDLS finds

solutions faster for higher values of k.
In conclusion, the increase in the time performance ofNAMOA∗∗ can be attributed

to a combination of all these factors.

7.5 Conclusions

In this chapter the use of multiple heuristic vector values in H(n) has been investi-
gated. A heuristic precalculation procedure named KDLS has been proposed. The
procedure is parameterized with a value k and generates the ~hTC heuristic as a base
case (k = 0). Larger values of k generate equally or more informed heuristics. The
procedure performs single-objective searches in a reversed graph to determine a subset
of supported nondominated solutions from the goal node to other nodes. Heuristic vec-
tors are then generated from these nondominated solutions. In the best case (k =∞)
the procedure terminates when all supported nondominated solutions to the start node
have been generated.

Several properties of the heuristics Hk
KDLS generated by KDLS have been ana-

lyzed. The heuristics are admissible, but can be inconsistent in general. This leads us
to use NAMOA∗∗, the multiobjective pathmax version of NAMOA∗, as the multiob-
jective algorithm of choice.

The effectiveness of NAMOA∗∗ with Hk
KDLS has been investigated for two dif-

ferent domains: random grids and route planning problems in road maps.
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Figure 7.26: Heuristic vectors obtained for start node (100,100) by KDLS on a sample
class II grid problem instance of size 200× 200
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(a) Heuristic vectors obtained by KDLS with k = 5 for all nodes

(b) Number of vectors in F (n) for KDLS with k = 5 for all nodes

Figure 7.27: Number of vectors inH(n) and F (n) forNAMOA∗∗ usingHKDLS heuris-
tics on a sample 200 × 200 class II grid problem instance with ρ = 0. Start node is
(100,100) and goal node is (50,50).
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Figure 7.28: Time to find the first solution for NAMOA∗∗ with Hk
KDLS in class II

grid problems with ρ = 0

Results indicate that important space savings can be achieved by Hk
KDLS over ~hTC .

The improvement is higher as the difficulty of the problem increases in both domains.
However, it is observed that in the route planning domain, more difficult problems do
not necessarily result in larger solution graphs. This is attributed to the particular
structure of the road map. In most cases analyzed, results for values of k = 5 and
k =∞ are very similar.

Regarding time requirements, run time increases in general for larger values of k
in random grids, while results are mixed for route planning instances. This can be
attributed again to the particular topology of road maps. In general, values of k = 1
or k = 2 offer a significant reduction in space requirements with low time overhead (or
even a certain speedup in some route planning instances).

A deeper analysis on the time requirements of NAMOA∗∗ with Hk
KDLS reveal that

the increase in time can be due to a number of causes. Interestingly, the inconsistency of
heuristic information does not seem to result in a significant number of dominated label
expansions. However, though multiobjective search time can be reduced for any value of
k, this is not proportional to the reduction observed in the number of iterations or label
expansions. This is due to an increase in the number of filtering dominance checks. The
main causes for this increase point to a faster determination of nondominated solutions,
and to an increase in the number of vectors in the F (n) sets that need to be checked.
Due to this reasons, the time devoted by KDLS to increase the precision of heuristics
does not seem to be compensated by a significant reduction in multiobjective search
time. However, this opens up the interesting possibility of paralellizing the independent
single-objective searches performed by KDLS.

At the same time, the effectiveness observed in Hk
KDLS to obtain initial solutions

suggests that combining precalculated heuristics with other multicriteria approaches
that search for a single nondominated solution, like compromise search, could be a
very fruitful line of future research.



Part III

Conclusions

This third part reviews the goals of this thesis, summarizes the conclusions drawn from
formal and empirical analyses and collects the original contributions of this research
work. Some lines for future improvements are also suggested.

• Chapter 8 sums up the conclusions gathered from this research work and suggests
future lines of research





Chapter 8

Conclusions and Future Work

Many important optimization problems involve the consideration of multiple objectives
at the same time. In this thesis we have considered the Multiobjective Shortest Path
Problem, which is inherently a difficult problem to solve. The development of efficient
techniques is of practical importance for current research in Artificial Intelligence and
Operational Research.

Several algorithms for solving this type of problems have been proposed in the past
thirty years. This thesis is concerned with exact techniques. In particular, we deal with
best-first graph search algorithms that incorporate heuristic information to improve
performance. This has been a very fruitful alternative in single-objective search, and
can be reasonably expected to provide also good results in multiobjective search. The
three main algorithms proposed in this sense are NAMOA∗, MOA∗, and the one by
Tung and Chew (TC).

The general goal of this thesis is to deepen our understanding of multiobjective
search and to complete an empirical and formal characterization of these algorithms.
Empirical analyses have been performed over sets of randomly generated grid problems,
as well as on realistic route planning scenarios. The former allow the evaluation of
the algorithms under controlled conditions (like solution depth, or correlation between
objectives), while the latter provides a necessary link to potential practical applications.

In summary, this thesis contributes the first systematic evaluation of heuristic mul-
tiobjective graph search algorithms. A first important conclusion is that MOA∗ is
not, in general, a reliable heuristic search algorithm, since its time performance can
degrade considerably with more informed heuristic information. A second conclusion
is that, except in particular cases, both heuristic algorithms NAMOA∗ and TC can
outperform blind search in terms of space and time requirements. In particular, the
precalculated heuristic ~hTC proposed for TC can be also applied to NAMOA∗. Be-
tween both algorithms, NAMOA∗ seems to perform better in spite of the additional
specialized label selection heuristic used by TC. In general, finding solutions early is
found to work against the time efficiency of multiobjective heuristic search. Two im-
provements have been proposed regarding the application of precalculated heuristics
to NAMOA∗. The first is a bounded calculation procedure for ~hTC , that reduces the
search effort of the precalculation stage. The second one is a procedure that calcu-
lates more informed precalculated heuristics. Our analysis reveals that these always
reduce significantly the space needs, but the management of additional heuristic esti-

203
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mates can increase search time over ~hTC in certain cases, although remaining still very
competitive with blind search. Finally, the evaluations performed in this thesis reveal
that multiobjective heuristic search can be currently applied to offline route planning
applications over relatively large road maps.

The rest of this chapter presents a more detailed description of the conclusions, and
points out future lines of improvement.

8.1 Conclusions

The main conclusions of this research can be summarized as follows:

1. Analysis of MOA∗.

Prior to this research, only a very limited empirical comparison between algo-
rithms MOA∗ and NAMOA∗ had been performed. This suggested MOA∗ to
be slightly faster at the expense of more space needs in simple problems. How-
ever, the systematic empirical evaluation presented in previous chapters reveals
a quite different situation for much harder problems. When equipped with the
powerful ~hTC heuristic, the space requirements ofMOA∗ appear to be bounded
by a constant factor over those of NAMOA∗. However, time requirements are
clearly worse than even those of blindMOA∗. To our knowledge, this unexpected
result had never been previously reported in the literature. A deep empirical and
formal analysis has been performed to explain this behavior. In particular, a class
of biobjective problems has been presented were the number of label expansions
performed by MOA∗ with perfect heuristic information grows cubically with
solution depth, compared to a quadratic performance of NAMOA∗ under ana-
logous conditions. This behavior has been formally related to the node-selection
strategy used byMOA∗. In general, and contrary to what could be expected, the
time requirements of MOA∗ can become increasingly worse with more informed
heuristics. Our analyses found MOA∗ to be competitive only for simple blind
search problems.

2. Analysis of TC and the ~hTC precalculated heuristic.

This thesis provides also the first systematic analysis of the TC algorithm, as
well as of its companion precalculated heuristic ~hTC . This heuristic includes
a single vector estimate for each node, and can be also applied to algorithms
MOA∗ and NAMOA∗. The first conclusion is that ~hTC is a really powerful
heuristic that drastically reduces the number of labels examined by TC. In gen-
eral, the precalculation effort of ~hTC is more than compensated by the reduction
in multiobjective search effort, except in the simpler problems. This behavior
over simple problems is due to the fact that ~hTC has to be computed over the
whole graph, regardless of the choice of initial and goal nodes.

At the same time, the second specialized heuristic for label selection used by
TC was found to lead the algorithm quickly to solutions. However, this was
found to have the undesirable effect of slowing down algorithm performance,
since each new label selected for expansion needs to be checked for dominance
against the set of already found solutions.
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Finally, a simple proof was presented to show that the ~hTC heuristic is consistent.

3. Analysis of NAMOA∗.

The analyses in this thesis reveal NAMOA∗ to be the most space efficient
algorithm among those considered. This is in accordance with previous formal
results. In fact, the use of NAMOA∗ in combination with the ~hTC heuristic has
been shown to beat TC for a small but significant margin in almost all situations
considered, both in terms of space and time.

4. Label selection strategies.

In the first place, as mentioned above, our analysis lead to the conclusion that
label selection is a superior strategy for heuristic multiobjective search when
compared to node selection.

Regarding label selection, our analyses additionally reveal that the order of label
selection in multiobjective search can have important influence in time perfor-
mance. In particular, the heuristic label selection rule of algorithm TC was
found to make it slower. Regarding NAMOA∗ a linear aggregate selection rule
was found to be faster than the usual lexicographic selection rule. This is in ac-
cordance to similar tests performed over blind search. Our analysis traces down
the cause of this behavior to the speed with which the algorithm finds the set of
Pareto-optimal solutions. Finding solutions early slows down the algorithm.

5. Improved calculation of ~hTC .

The formal properties of NAMOA∗ and, more precisely, the bounds on the set of
nodes explored by the algorithm, allow us to devise a more efficient precalculation
procedure for the ~hTC heuristic. The new procedure avoids the need to examine
all nodes in the graph in the precalculation stage. This makes the technique
potentially useful for infinite graphs, and renders heuristic search generally more
efficient than blind search also in the simpler problem instances.

6. Better informed heuristics: procedure KDLS.

The successful application of NAMOA∗ with ~hTC to randomly generated pro-
blems as well as to realistic road maps lead us to investigate the possibility of
more informed multivalued precalculated heuristics.

A precalculation procedure (KDLS) has been proposed. This is parameterized
with a value k, such that the larger k, the more informed the resulting heuristic.
The procedure calculates a subset (in the extreme, the full set) of nondominated
supported solutions through a set of single-objective searches. These are then
used to generate an admissible set of heuristic estimates for all nodes that will
be potentially visited later by NAMOA∗ .

Our analysis reveals in the first place that such precalculated heuristic will be ad-
missible but inconsistent in general. This appears to be a handicap, since consis-
tency is an important formal property for algorithm efficiency in NAMOA∗ just
as it is for A∗. However, our experience reveals that the search overhead induced
by inconsistency is quite small, and is in fact compensated by the reduction in
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label expansions achieved by the heuristic. The goodness of the heuristic func-
tion calculated by KDLS has been evaluated with algorithm NAMOA∗∗, which
incorporates the pathmax strategy to NAMOA∗.

The new heuristic can significantly reduce the number of labels explored by
NAMOA∗∗ and, in consequence, the space requirements of the algorithm. Re-
grettably, the management of multiple heuristic evaluations for each label can re-
sult in a time overhead for multiobjective search when compared to ~hTC , although
still very competitive with blind search. In random grids, only for small values
of k the algorithm is competitive in time with the new heuristic when compared
to ~hTC , while providing important additional space savings. In route planning
problems in road maps, analogous space reductions are obtained. Larger values
of k increase over the run time with ~hTC only in some cases, while in others,
some reduction for certain values of k can be achieved in this scenario.

7. Significance of multiobjective heuristic search.

Finally, the evaluations performed in this thesis lead us to conclude that heuristic
search (in particular, the combination of NAMOA∗ with precalculated heuris-
tics) makes multiobjective analysis practical for offline route planning applica-
tions. Random problems from road maps of increasing size up to 1,070,376 nodes
and 2,712,798 arcs have been solved with reasonable resources. On the contrary,
blind search techniques were clearly outperformed, and could solve only a subset
of the easier problem instances.

8.2 Future Work

This research has clarified several pending issues in multiobjective heuristic search but,
at the same time, has raised new questions and future lines of research. In particular,
we believe the following issues deserve further investigation:

• This research has highlighted the importance of the label selection rule in time
performance. The determination of an optimal label selection rule, or at least,
when a given rule is better than others is therefore an important issue for further
research.

• This research has also shown that using more precise heuristics will lead faster to
solutions, increasing the number of dominance checks. This is even more impor-
tant in the case of the heuristic functions obtained withKDLS. The development
of efficient specialized data structures and procedures for dominance test could
lead to important improvements in algorithm efficiency. In a similar way, the
development of a lazy strategy in the calculation of the F (n) sets could also lead
to performance improvements when multiple vector estimates are available.

• With the rapid proliferation of multicore machines, research in parallelization is
gaining much interest. Regarding this thesis, the heuristic precalculation method
proposed in the KDLS procedure seems a good candidate for parallelization. In-
teresting works in this sense are (Di Stefano et al., 2006; Tsaggouris & Zaroliagis,
2009).
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• The performance of NAMOA∗∗ with Hk
KDLS heuristic functions should be com-

pared against multiobjective vector frontier search, which has achieved very low
space requirements at the cost of increasing time requirements. One important
disadvantage of vector frontier search is that it is currently a blind search strat-
egy. The combination of vector frontier search with heuristic search could result
in a very powerful multiobjective search algorithm.

• This thesis deals with the multiobjective decision problem. Finding the set of
all nondominated solutions gives rise to a number of efficiency problems, since
any new label selected for expansion need to be checked against the set of all
previously found solutions. However, there are other multicriteria techniques
that seek a single Pareto-optimal solution, like compromise search (Galand, 2008;
Sauvanet, 2011). The research in multiobjective heuristic search performed in this
thesis could be extended to other multicriteria decision rules.

• Regarding the application of multiobjective heuristic search to route planning pro-
blems, there are also many possibilities for further improvements. For example,
hierarchical single-objective techniques could be generalized to the multiobjective
case in order to reduce the size of the graph to be searched. Multilevel graphs
(Schulz et al., 2002) represent an interesting approach in this sense. Another
example are contraction hierarchies (Geisberger et al., 2008), which could be also
extended to multiobjective settings. This technique requires bidirectional search.
Thus, in order to combine NAMOA∗ with contraction hierarchies, multiobjec-
tive bidirectional search should be additionally investigated.

• The extension of bidirectional multiobjective pathmax techniques to multiobjec-
tive search could be also investigated, as in the case of a recent single-objective
search study (Felner et al., 2011).

• Finally, the identification of other potential domains of application for multiob-
jective search algorithms is also an important line of research.
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Appendix A

Resumen

Muchos problemas reales requieren examinar un número exponencial de alternativas
para encontrar la elección óptima. A este tipo de problemas se les llama de opti-
mización combinatoria. Además, en problemas reales normalmente se evalúan múltiples
magnitudes que presentan conflicto entre ellas. Cuando se optimizan múltiples obje-
tivos simultáneamente, generalmente no existe un valor óptimo que satisfaga al mismo
tiempo los requisitos para todos los criterios. Solucionar estos problemas combinatorios
multiobjetivo deriva comúnmente en un gran conjunto de soluciones Pareto-óptimas,
que definen los balances óptimos entre los objetivos considerados.

En esta tesis se considera uno de los problemas multiobjetivo más recurrentes: la
búsqueda de caminos más cortos en un grafo, teniendo en cuenta múltiples objetivos
al mismo tiempo. Se pueden señalar muchas aplicaciones prácticas de la búsqueda
multiobjetivo en diferentes dominios: enrutamiento en redes multimedia (Clímaco
et al., 2003), programación de satélites (Gabrel & Vanderpooten, 2002), problemas de
transporte (Pallottino & Scutellà, 1998), enrutamiento en redes de ferrocarril (Müller-
Hannemann & Weihe, 2006), planificación de rutas en redes de carreteras (Jozefowiez
et al., 2008), vigilancia con robots (delle Fave et al., 2009) o planificación independiente
del dominio (Refanidis & Vlahavas, 2003).

La planificación de rutas multiobjetivo sobre mapas de carretera realistas ha sido
considerada como un escenario de aplicación potencial para los algoritmos y heurísticos
multiobjetivo considerados en esta tesis. El transporte de materias peligrosas (Erkut
et al., 2007), otro problema de enrutamiento multiobjetivo relacionado, ha sido también
considerado como un escenario de aplicación potencial interesante.

Los métodos de optimización de un solo criterio son bien conocidos y han sido am-
pliamente estudiados. La Búsqueda Heurística permite la reducción de los requisitos
de espacio y tiempo de estos métodos, explotando el uso de estimaciones de la distan-
cia real al objetivo. Los problemas multiobjetivo son bastante más complejos que sus
equivalentes de un solo objetivo y requieren métodos específicos. Éstos, van desde técni-
cas de solución exactas a otras aproximadas, que incluyen los métodos metaheurísticos
aproximados comúnmente encontrados en la literatura. Esta tesis se ocupa de algorit-
mos exactos primero-el-mejor y, en particular, del uso de información heurística para
mejorar su rendimiento.

Esta tesis contribuye análisis tanto formales como empíricos de algoritmos y heurís-
ticos para búsqueda multiobjetivo. La caracterización formal de estos algoritmos es
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importante para el campo. Sin embargo, la evaluación empírica es también de gran im-
portancia para la aplicación real de estos métodos. Se han utilizado diversas clases de
problemas bien conocidos para probar su rendimiento, incluyendo escenarios realistas
como los descritos más arriba.

Los resultados de esta tesis proporcionan una mejor comprensión de qué métodos de
los disponibles son mejores en situaciones prácticas. Se presentan explicaciones formales
y empíricas acerca de su comportamiento. Se muestra que la búsqueda heurística reduce
considerablemente los requisitos de espacio y tiempo en la mayoría de las ocasiones.
En particular, se presentan los primeros resultados sistemáticos mostrando las ventajas
de la aplicación de heurísticos multiobjetivo precalculados. Esta tesis también aporta
un método mejorado para el precálculo de los heurísticos, y explora la conveniencia de
heurísticos precalculados más informados.

Los objetivos de la tesis se presentan en la sección A.1. Las contribuciones están
resumidas en la sección A.2. Se puede encontrar un resumen de los capítulos de la tesis
en la sección A.3. La sección A.4 resume las conclusiones extraídas de este trabajo
de investigación. Finalmente, se proponen líneas de investigación futuras en la sección
A.5.

A.1 Objetivos

La investigación realizada en esta tesis persigue varios objetivos:

Formalización teórica Uno de los objetivos de esta tesis es completar los análisis
formales del rendimiento heurístico de MOA∗, siguiendo los desarrollos formales
recientes obtenidos para NAMOA∗. Además, se proporciona una caracterización
de los heurísticos TC.

Evaluación empírica Un segundo objetivo es realizar una comparación sistemática
de los algoritmos en orden a determinar cuál se comporta mejor de acuerdo a
distintos parámetros del problema, como la profundidad de la solución o la co-
rrelación entre objetivos. Además, se evalúa el rendimiento de la búsqueda mul-
tiobjetivo en dominios realistas de planificación de rutas. En cualquiera de los
casos, se busca un entendimiento profundo de las causas de los comportamientos
observados.

Efectividad de la búsqueda heurística Un tercer objetivo es establecer bajo qué
condiciones la búsqueda heurística puede realmente mejorar el rendimiento de
algoritmos primer-el-mejor multiobjetivo desde un punto de vista práctico.

Mejora de las técnicas conocidas Finalmente, otro objetivo consiste en el uso del
conocimiento adquirido a través de los análisis formales y empíricos para explorar
nuevas vías de mejora en el rendimiento de los algoritmos. Se presta especial
atención a ciertas alternativas en la implementación del algoritmo, como el orden
de selección de alternativas para la exploración.
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A.2 Contribuciones

Análisis de MOA∗ Esta tesis completa los análisis formales previos de MOA∗. Los
análisis previos fueron incapaces de establecer claramente la importancia de heurís-
ticos informados en el rendimiento del algoritmo. Se muestra que el número de
expansiones de etiquetas deMOA∗ puede ser mucho mayor con búsqueda heurís-
tica que con búsqueda ciega. De hecho, el rendimiento puede llegar a ser peor
cuando se usan heurísticos consistentes más informados. Este fenómeno está rela-
cionado formalmente con la estrategia de selección de nodos usada por MOA∗.
Además, los resultados empíricos muestran que la situación puede aparecer fá-
cilmente en la práctica. Como consecuencia, MOA∗ puede ser descartado en
general como alternativa adecuada para la búsqueda heurística multiobjetivo.

Análisis de TC Se proporciona una caracterización simple para mostrar que el heurís-
tico precalculado ideado por Tung & Chew (1992) es consistente. La consis-
tencia se ha identificado recientemente como una importante propiedad formal
para la búsqueda heurística multiobjetivo (Mandow & Pérez de la Cruz, 2010a).
Análisis empíricos sistemáticos muestran por primera vez que este heurístico
puede mejorar considerablemente el rendimiento de ambos algoritmos TC y
NAMOA∗ sobre la búsqueda ciega. Sin embargo, TC se comporta algo peor
que NAMOA∗ a pesar del uso de un heurístico adicional para la selección de
alternativas. Este fenómeno ha sido adecuadamente explicado: encontrar las
soluciones pronto puede penalizar en tiempo a la búsqueda heurística.

Análisis de NAMOA∗ Se ha encontrado que el algoritmo NAMOA∗ es la aproxi-
mación más efectiva en la mayoría de las situaciones. Sin embargo, en ciertas
situaciones se ha identificado que la búsqueda heurística puede representar una
sobrecarga en el rendimiento en términos de tiempo. Son los casos en que la
reducción del número de alternativas consideradas no compensa la penalización
de tiempo asociada a encontrar pronto las soluciones, inherente a la búsqueda
heurística. Más concretamente, esto se debe al número de chequeos de dominan-
cia necesitados por el algoritmo. Además, las evaluaciones empíricas sugieren que
una regla de selección lineal mejora significativamente el rendimiento en tiempo
de NAMOA∗ cuando se compara con la tradicional lexicográfica.

Heurísticos precalculados El método de precálculo originalmente propuesto por
Tung & Chew (1992) puede ser mejorado en varias maneras. El método original
requiere el cálculo de una búsqueda uno-a-todos de un solo objetivo para cada ob-
jetivo considerado. Mostramos cómo las propiedades formales de NAMOA∗ per-
miten acotar los nodos que serán visitados por NAMOA∗. Esto elimina la necesi-
dad de considerar en la fase de precálculo aquellos que nunca van a ser alcanzados
en la fase de búsqueda multiobjetivo.

El heurístico precalculado TC original proporciona una sola estimación vectorial
para cada nodo. NAMOA∗ acepta funciones heurísticas H(n) generales con
múltiples estimaciones vectoriales. Se presenta en esta tesis un nuevo método de
calculo, llamado KDLS. Se pueden precalcular funciones heurísticas más infor-
madas, con múltiples vectores, con KDLS. La precisión de este nuevo heurístico
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está determinada por un parámetro k. Valores de k más grandes producen heurís-
ticos más informados pero, al mismo tiempo, requieren más esfuerzo de precálculo.
En general, mejores heurísticos reducen considerablemente los requisitos de es-
pacio de NAMOA∗. Sin embargo, los requisitos de tiempo se incrementan de
forma uniforme en mallas aleatorias, y sólo para los valores de k más pequeños
son competitivos con el enfoque original en este sentido. No obstante, en proble-
mas de planificación de rutas los heurísticos multivaluados pueden ofrecer ahorro
tanto en tiempo como en espacio para algunas instancias.

Aplicaciones en escenarios realistas La aplicación de NAMOA∗ con heurísticos
informados ha demostrado ser competitiva con las aproximaciones del estado del
arte en búsqueda multiobjetivo. Se han considerado diferentes bancos de prueba
para planificación de rutas en mapas de carreteras, un área de aplicación poten-
cial. Se han resuelto de forma exacta con los recursos disponibles las combina-
ciones de objetivos tiempo/distancia y la más compleja tiempo/coste económico
sobre mapas de carreteras grandes.

A.3 Resumen de los capítulos de la Tesis

A.3.1 Búsqueda Multiobjetivo en Grafos: Problemas y Algoritmos

El capítulo 2 proporciona una visión general del campo y delimita el marco en el que se
mueven los algoritmos estudiados en esta tesis. Posteriormente, se describen adecuada-
mente los tres algoritmos NAMOA∗, MOA∗ y TC, así como funciones heurísticas
multiobjetivo generales bien definidas, propuestas por Tung & Chew (1992). El caso
de heurísticos inconsistentes es también tratado con cierto detalle, con la regla pathmax
y el algoritmo NAMOA∗∗.

El estado de desarrollo formal y empírico varía de uno a otro algoritmo. Mientras
el desarrollo formal de NAMOA∗ se había completado (Mandow & Pérez de la Cruz,
2005, 2006, 2010a), algunas cuestiones todavía requerían adecuada caracterización en
el caso de MOA∗ antes de esta tesis. En el caso de TC, no se completaron nunca
demostraciones formales adecuadas.

Con respecto a la evaluación empírica, sólo se habían realizado previamente ex-
perimentos limitados sobre mallas cuadradas usando la distancia de Manhattan con
MOA∗ y NAMOA∗ (Mandow & Pérez de la Cruz, 2005). Los algoritmos MOA∗ y
TC nunca fueron probados empíricamente por sus respectivos autores.

Esta tesis completa los desarrollos formales de MOA∗ y proporciona un marco
formal también para TC. Con respecto a la evaluación empírica, se presentan análisis
exhaustivos en capítulos posteriores, para los tres algoritmos tanto con búsqueda ciega
como con búsqueda heurística.

A.3.2 Evaluación del Rendimiento de la Búsqueda Multiobjetivo

La primera parte del capítulo corresponde a una revisión de la literatura sobre bancos
de prueba multiobjetivo. Tres tipos de bancos de pruebas han sido propuestos en la
literatura: grafos aleatorios, mallas y mapas realistas.
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La segunda parte del capítulo presenta los bancos de pruebas empíricos que se han
usado en esta tesis, inspirados en los casos típicos encontrados en la literatura. Además,
se han investigado nuevos escenarios.

Esta tesis usa una combinación de grafos generados aleatoriamente y de problemas
realistas de planificación de rutas en la evaluación empírica. Cada uno es adecuado
para evaluar diferentes aspectos de los algoritmos y heurísticos analizados en esta tesis.
Esta parte del capítulo da una explicación detallada de las características de cada uno
de los conjuntos de datos usados.

Los entornos generados artificialmente, como las mallas aleatorias, permiten la eval-
uación controlada del rendimiento con respecto a diferentes parámetros, como el número
de nodos o la correlación entre objetivos. Se han usado dos clases de mallas: las del
primer tipo son similares a las descritas en la literatura donde se busca de esquina a
esquina, mientras que en el segundo tipo la búsqueda se comienza en el centro de la
malla, por lo que presentan su propia dificultad al no estar la búsqueda restringida por
los límites de la malla.

Para los conjuntos de datos realistas, se han incluido diferentes escenarios: mapas
de carreteras multiobjetivo de gran tamaño, problemas multiobjetivo difíciles mediante
objetivos no correlacionados y problemas de transporte de materias peligrosas (hazmat)
con más de dos objetivos. La combinación de todos estos escenarios y la dimensión
de los parámetros evaluados son suficientes para considerar los casos de prueba como
signicativos entre los disponibles hasta el momento de presentación de estos resultados.

Además de factores dependientes del problema, hay otros factores dependientes
de la implementación, destacando entre ellos la estrategia de selección de alternativas
abiertas. Entre las diferentes posibilidades, el orden lexicográfico es el más usual,
pero existen otras alternativas, por ejemplo reglas lineales como la explicada en la
sección 2.2.1 o la usada por el algoritmo TC (ver sección 2.4.3). La evaluación de
órdenes alternativos ha sido considerada recientemente por Iori et al. (2010) como un
detalle importante que afecta al rendimiento. Además, en la literatura, algunos otros
autores han analizado diferentes estrategias para el manejo de las alternativas abiertas
(Brumbaugh-Smith & Shier, 1989; Guerriero & Musmanno, 2001; Paixão & Santos,
2007). También se comentan en este capítulo otros detalles singulares con respecto a la
implementación que son considerados importantes a la hora de comparar el rendimiento
en tiempo de los algoritmos.

A.3.3 Análisis Formal de Algoritmos Multiobjetivo

Este capítulo aborda el análisis formal de los tres algoritmos heurísticos multiobje-
tivo presentados en el capítulo 2. Los resultados presentados en las secciones 4.5, 4.6
completan el estudio formal del algoritmo MOA∗. Stewart & White (1991) presen-
taron importantes propiedades para este algoritmo, similares a las encontradas para
A∗. Sin embargo, este capítulo confirma algo que los autores mismos reconocieron, que
la monotonicidad y consistencia no son tan importantes para MOA∗ como en el caso
de un solo objetivo. Este capítulo muestra que heurísticos más informados no llevan
a un rendimiento mejor en MOA∗, aunque sean consistentes, tal como sí ocurre en
NAMOA∗.

Estos resultados teóricos son importantes pero no responden completamente a la
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cuestión de qué algoritmo es mejor en la práctica. Conforme a la búsqueda ciega, se
ha estudiado por otros autores la conveniencia de estrategias de selección de nodos en
el caso de algoritmos de corrección de etiquetas (label-correcting) ciegos (Guerriero &
Musmanno, 2001; Raith & Ehrgott, 2009). A pesar de que téoricamente se espera que
el rendimiento obtenido en MOA∗ debe ser menor que el obtenido para NAMOA∗,
este punto tiene que ser confirmado por un estudio empírico que confirme en efecto
si esto ocurre en todas las situaciones. Aparentemente, la estrategia de selección de
nodos de MOA∗ puede compensar en algunas situaciones particulares con respecto al
número mayor de etiquetas consideradas.

Además, los heurísticos TC no han sido evaluados en la práctica. Este capítulo ha
demostrado formalmente que el heurístico ~hTC presentado por Tung & Chew (1992)
es consistente, por lo que se espera que el rendimiento de NAMOA∗ pueda verse
beneficiado por el uso de estos heurísticos consistentes que están bien informados. El
capítulo 5 presenta un análisis empírico detallado de los tres algoritmos, tanto con
búsqueda ciega como con los heurísticos TC en el caso heurístico.

A.3.4 Análisis Empírico de Algoritmos Multiobjetivo

Este capítulo presenta la primera comparación sistemática en términos de espacio y
tiempo de los tres algoritmos de búsqueda heurística multiobjetivo primero el mejor
(label setting) NAMOA∗, MOA∗ y TC, usando orden lexicográfico en la selección de
alternativas no dominadas, y aplicando el preciso heurístico HTC propuesto por Tung
& Chew (1992) también a MOA∗ y NAMOA∗. Se han realizado comparaciones por
pares a través de amplias evaluaciones sobre diferentes dominios de prueba.

Tal como se esperaba de los análisis téoricos, NAMOA∗ presenta mejor rendimiento
en términos de espacio. Además, se han observado diversos fenómenos que no habían
sido previamente señalados en la literatura. En primer lugar, el uso de información
heurística en las estrategias de selección puede deteriorar el rendimiento en términos
de tiempo. Este efecto incrementa con el grado de correlación entre objetivos. En
particular, la precisa estrategia heurística usada por TC parece jugar en contra de
su rendimiento en tiempo. La estrategia de selección de nodos de MOA∗ se ve es-
pecialmente penalizada en tiempo por el uso del heurístico HTC . Por tanto, podemos
concluir que NAMOA∗ se comporta mejor que los otros algoritmos en la mayoría de
los casos, especialmente para los problemas más difíciles, aquellos con soluciones más
profundas y correlación negativa entre los objetivos.

En resumen, pueden extraerse algunas conclusiones del análisis empírico:

• MOA∗ ciego puede ser más rápido que NAMOA∗ ciego en algunos casos (alta
correlación o profundidad de solución pequeña). En otro caso, NAMOA∗ ciego
supera ampliamente a MOA∗ ciego. La sobrecarga en memoria de MOA∗ se
estabiliza en torno a un 15-25% en los peores casos analizados.

• El uso de información heurística puede derivar en ahorros importantes en cuanto
a espacio y tiempo en NAMOA∗. Sin embargo, en algunos casos concretos como
problemas de mallas clase I (búsqueda de esquina a esquina) con baja correla-
ción, la ventaja en espacio puede ser mínima y el rendimiento en tiempo puede
degradarse. En esos casos, la reducción en el número de etiquetas exploradas no
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parece compensar la sobrecarga en tiempo asociada a encontrar las soluciones
antes.

• El uso de información heurística ahorra espacio enMOA∗, pero degrada conside-
rablemente el rendimiento en tiempo en todos los casos. Según el conocimiento
del autor, este resultado no había sido señalado nunca antes en la literatura, pero
está de acuerdo con el análisis formal presentado en el capítulo 4.

• NAMOA∗ se comporta algo mejor que TC. Los requisitos de espacio son si-
milares pero el heurístico particular hmix penaliza el rendimiento en tiempo del
algoritmo TC.

• NAMOA∗ heurístico se comporta mejor que los otros algoritmos en la mayoría
de los casos, especialmente para los problemas más complicados (aquellos con
soluciones más profundas y correlación negativa entre objetivos)

• Se ha descubierto que la velocidad de los algoritmos está relacionada con el ritmo
de descubrimiento de soluciones no dominadas. Los algoritmos que encuentran
las soluciones más tarde se comportan sistemáticamente de forma más rápida.
En este sentido, el uso de una estrategia heurística especializada en el algoritmo
TC juega en contra de la eficiencia temporal del algoritmo.

• Los resultados indican que el orden de selección entre etiquetas no dominadas
abiertas es un elemento importante en la eficiencia temporal, y sugieren que la
investigación de ordenes alternativos que combinen la búsqueda heúristica y la
expansión retardada de soluciones podría llevar a algoritmos más eficientes. Esto
se analiza en el siguiente capítulo, donde el orden lineal es evaluado enNAMOA∗,
y comparado con el orden lexicográfico.

• Los experimentos confirman que el tiempo necesario para calcular los heurísticos
no es significativo comparado con el tiempo de ejecución total en el caso de
problemas clase I. Sin embargo, debe ser mejorado en el caso de problemas clase
II, ya que puede representar un tiempo significativo para algunas instancias de
problemas.

• Los problemas sobre mapas de carreteras analizados en este capítulo tienen re-
quisitos de tiempo similares a problemas sobre mallas con menor profundidad de
solución. En el capítulo 6 se usan mapas de carreteras de gran tamaño, análogos
en dificultad a los problemas clase II. Para la búsqueda multiobjetivo en estos
mapas, se hace necesaria una mejora en el método de cálculo de los heurísticos.

A.3.5 Búsqueda Heurística Multiobjetivo en Mapas de Carreteras

Una serie de técnicas han demostrado ser muy efectivas en aplicaciones de planificación
de rutas en tiempo real para el caso de un solo objetivo, como la búsqueda en sistemas
de navegación para coches. La extensión de estas técnicas a entornos multiobjetivo es
un área importante de investigación. Sin embargo, los resultados presentados en este
capítulo sugieren que las técnicas multiobjetivo ciegas basadas en extensos precálculos
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es probable que experimenten dificultades prácticas en grandes mapas, como ya fue
indicado por Delling & Wagner (2009).

De la evaluación sistemática de varios parámetros realizada en este capítulo, pueden
extraerse algunas conclusiones sobre los algoritmos de búsqueda heurística multiobje-
tivo,

• El algoritmo TC demuestra ser constantemente peor en tiempo bajo similares
condiciones que NAMOA∗ en problemas realistas, confirmando los resultados
sobre problemas en mallas. Además, es importante recalcar que el algoritmo
TC puede que no elimine algunos miembros dominados de OPEN (ABIERTOS)
e introducir algunos en COSTS (ver sección 2.4.3). Por tanto, NAMOA∗ emerge
como el algoritmo heurístico multiobjetivo del estado del arte.

• Este capítulo informe sobre la aplicación con éxito de NAMOA∗ a instancias de
problemas aleatorias en mapas de carreteras realistas de gran tamaño. Además,
se han considerado problemas multiobjetivo difíciles sobre mapas de carreteras
realistas con objetivos no correlacionados. Sin embargo, los requisitos de tiempo
son sólo razonables para aplicaciones de planificación de rutas offline.

• Se ha presentado en este capítulo un método mejorado para el cálculo del heurís-
tico ~hTC . Este método aprovecha las propiedades formales de NAMOA∗ para
reducir el esfuerzo del precálculo, reduciendo significativamente los precálculos
en muchas de las instancias de problema. La combinación de NAMOA∗ y el
heurístico ~hTC con el nuevo método de cálculo acotado, claramente supera de
forma amplia a un heurístico de distancia clásico y a la búsqueda ciega, tanto en
el número de problemas resueltos como en el rendimiento obtenido en tiempo.

• El orden lineal en NAMOA∗ parece combinar la búsqueda heurística y la ex-
pansión retardada de soluciones, llevando a un algoritmo más eficiente. La regla
de selección lineal es considerada en los sucesivos capítulos para NAMOA∗.

• Se ha investigado el impacto del heurístico ~hTC en otros dominios de problemas
prácticos. La aplicación del heurístico ~hTC a los problemas de tranporte de
materias peligrosas ha superado ampliamente a aproximaciones previas ciegas.

• Finalmente, el impacto en el número de objetivos en el rendimiento de los al-
goritmos se ha evaluado con una comparación entre NAMOA∗ con dos obje-
tivos y tres objetivos. El número de caminos Pareto-óptimos cae a medida que
la correlación entre objetivos aumenta. Por tanto, el tiempo necesario para re-
solver un problema multiobjetivo depende de la naturaleza específica de los costes
en los arcos. En problemas con objetivos relativamente no correlacionados, el
número de caminos Pareto-óptimos incrementa con el número de objetivos con-
siderados, mientras que añadir objetivos altamente correlacionados no degrada el
rendimiento de la búsqueda.

El uso de heurísticos precalculados en la búsqueda multiobjetivo es un área no
suficientemente explorada que necesita desarollos formales y prácticos. Las aplica-
ciones descritas en este capítulo podrían beneficiarse de heurísticos precalculados más
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informados. El capítulo 7 explora esta posibilidad, con heurísticos más eficientes para
búsqueda multiobjetivo.

A.3.6 Heurísticos Multivaluados para Búsqueda Heurística Multiob-
jetivo

En este capítulo, se ha investigado el uso de múltiples valores vectoriales heurísticos en
H(n). Se ha propuesto un procedimiento de precálculo de heurísticos llamado KDLS.
El procedimiento está parametrizado con un valor k y genera el heurístico ~hTC como
caso base (k = 0). Valores más grandes de k generan heurísticos igual o mejor infor-
mados. El procedimiento realiza búsquedas de un solo objetivo en un grafo invertido
para determinar un subconjunto de las soluciones soportadas no dominadas del nodo
objetivo a los otros nodos. Los vectores heurísticos se generan a partir de estas solu-
ciones no dominadas. En el mejor caso (k = ∞), el procedimiento termina cuando se
han generado todas las soluciones soportadas no dominadas al nodo de inicio.

Varias propiedades de los heurísticos Hk
KDLS generados por KDLS han sido

analizadas. Los heurísticos son admisibles pero, en general, pueden ser inconsistentes.
Esto nos lleva a usar NAMOA∗∗, la version de NAMOA∗ con pathmax multiobjetivo,
como el algoritmo multiobjetivo a elegir.

Se ha investigado la efectividad de NAMOA∗∗ con Hk
KDLS para diferentes do-

minios: mallas aleatorias y problemas de planificación de rutas en mapas de carreteras.
Los resultados indican que se pueden conseguir importantes ahorros de espacio con

Hk
KDLS con respecto a ~hTC . La mejora es mayor a medida que la dificultad del pro-

blema incrementa en ambos dominios. Sin embargo, se observa que, en el dominio de
planificación de rutas, problemas más difíciles no necesariamente producen grafos solu-
ción más grandes. Esto es atribuido a la estructura particular del mapa de carreteras.
En la mayoría de casos analizados, los resultados son muy similares para valores de
k = 5 y k =∞.

Respecto a los requisitos de tiempo, el tiempo de ejecución aumenta en general
para valores más grandes de k en mallas aleatorias, mientras que los resultados están
mezclados para instancias de planificación de rutas. Esto es atribuido de nuevo a la
topología particular de los mapas de carreteras. En general, los valores k = 1 o k = 2
ofrecen una reducción significativa en los requisitos de espacio con una sobrecarga de
tiempo pequeña (o incluso una cierta aceleración en algunas instancias de planificación
de rutas).

Un análisis más profundo en los requisitos de tiempo deNAMOA∗∗ conHk
KDLS re-

vela que el incremento en tiempo puede ser debido a una serie de causas. En referencia
a esto, la inconsistencia en la información heurística no parece producir un número
significativo de expansiones de etiquetas dominadas. Sin embargo, aunque el tiempo
de búsqueda multiobjetivo puede ser reducido para cualquier valor de k, no es propor-
cional a la reducción observada en el número de iteraciones o expansiones de etiquetas.
Esto es debido a un incremento en el número de chequeos de dominancia debidos a
filtrado. Las causas principales de este incremento apuntan a una determinación más
rápida de las soluciones no dominadas, y a un incremento en el número de vectores en
los conjuntos F (n) que necesitan ser chequeados. Debido a estas razones, el tiempo
dedicado por KDLS a incrementar la precisión de los heurísticos no parece compensar
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con una reducción significativa en el tiempo de búsqueda multiobjetivo. Sin embargo,
esto abre la interesante posibilidad de paralelizar las búsquedas de un solo objetivo
independientes realizadas por KDLS.

Al mismo tiempo, la efectividad observada en Hk
KDLS para obtener las soluciones

iniciales sugiere que combinar heurísticos precalculados con otras aproximaciones mul-
ticriterio que buscan una sola solución no dominada, como la búsqueda compromiso,
puede constituir una línea futura de investigación muy fructífera.

A.4 Conclusiones

De la investigación realizada en esta tesis se pueden extraer una serie de conclusiones:

1. Análisis de MOA∗.

Antes de este trabajo de investigación, sólo se había realizado una comparación
empírica muy limitada de los algoritmos MOA∗ y NAMOA∗. Ésta, sugería que
MOA∗ era ligeramente más rápido en problemas simples a cambio de mayores
requisitos de espacio. Sin embargo, la evaluación empírica sistemática, llevada a
cabo en capítulos anteriores, revela una situación muy diferente para problemas
más difíciles. Cuando está equipado con el potente heurístico ~hTC , los requisitos
de MOA∗ parecen estar acotados por un factor constante respecto a aquellos de
NAMOA∗. Sin embargo, los requisitos de tiempo son claramente peores incluso
que los de la búsqueda ciega conMOA∗. Según nuestro conocimiento, estos resul-
tados inesperados no habían sido señalados nunca previamente en la literatura. Se
ha realizado un análisis profundo, tanto formal como empírico, para explicar este
comportamiento. En particular, se presenta una clase de problemas biobjetivo
donde el número de expansiones de etiquetas realizadas porMOA∗ con informa-
ción heurística perfecta crece de forma cúbica con la profundidad de la solución
cuando, en condiciones análogas, crece sólo de forma cuadrática en NAMOA∗.
Este comportamiento ha sido relacionado formalmente con la estrategia de selec-
ción de nodos usada por MOA∗. En general, y contrariamente a lo que podría
esperarse, los requisitos de tiempo de MOA∗ pueden ser cada vez peores con
heurísticos más informados. Los análisis encuentran que MOA∗ sólo es compet-
itivo para problemas de búsqueda simples con búsqueda ciega.

2. Análisis de TC y el heurístico precalculado ~hTC .

Esta tesis proporciona también el primer análisis sistemático del algoritmo TC,
así como de su heurístico compañero precalculado ~hTC . Este heurístico incluye
una estimación de un sólo vector para cada nodo, y puede ser aplicado también
a los algoritmos MOA∗ y NAMOA∗. La primera conclusión es que ~hTC es
realmente un heurístico potente que reduce drásticamente el número de etiquetas
examinadas por TC. En general, el esfuerzo de precálculo de ~hTC está más que
compensado por la reducción en el esfuerzo de la búsqueda multiobjetivo, excepto
para problemas simples. Este comportamiento sobre problemas simples, es debido
al hecho de que ~hTC debe ser calculado sobre el grafo entero, independientemente
de la elección de nodos inicial y final.
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Al mismo tiempo, se ha encontrado que el segundo heurístico usado por TC, es-
pecializado para selección de etiquetas, lleva al algoritmo rápidamente a las solu-
ciones. Sin embargo, esto tiene el efecto no deseado de ralentizar el rendimiento
del algoritmo, ya que cada nueva etiqueta seleccionada para expansión debe ser
chequeada para ver si es dominada por alguna de las soluciones ya encontradas.
Finalmente, se presenta una simple demostración de que el heurístico ~hTC es
consistente.

3. Análisis de NAMOA∗.

Los análisis de esta tesis revelan que NAMOA∗ es el algoritmo más eficiente
en términos de espacio entre los considerados. Esto está en concordancia con
resultados formales previos. De hecho, el uso de NAMOA∗ en combinación con
el heurístico ~hTC derrota al algoritmo TC por un pequeño pero significativo
margen en casi todas las situaciones consideradas, tanto en términos de espacio
como de tiempo.

4. Estrategias de selección de etiquetas.

En primer lugar, como se menciona más arriba, los análisis llevan a la conclusión
de que la selección de etiquetas es una estrategia mejor que la selección de nodos
para la búsqueda multiobjetivo heurística.

Con respecto a la selección de etiquetas, nuestros análisis revelan además que
el orden de selección en la búsqueda multiobjetivo puede tener una influencia
importante en el rendimiento en términos de tiempo. En particular, la regla
de selección de etiquetas del algoritmo TC lo hace más lento. Con respecto a
NAMOA∗, se ha encontrado que una regla de selección lineal es más rápida que
la usual regla de selección lexicográfica. Esto está de acuerdo con tests similares
realizados sobre búsqueda ciega. Nuestros análisis indican que la causa de este
comportamiento está relacionada con la velocidad con que el algoritmo encuentra
el conjunto de soluciones Pareto-óptimas. Encontrar pronto las soluciones hace
más lento al algoritmo.

5. Cálculo mejorado de ~hTC .

Las propiedades formales de NAMOA∗ y, más concretamente, las cotas a los
nodos explorados por el algoritmo, nos permiten idear un procedimiento de precál-
culo del heurístico ~hTC más eficiente. El nuevo procedimiento evita la necesidad
de examinar todos los nodos del grafo en la fase de precálculo. Esto hace la
técnica potencialmente útil para grafos infinitos, y hace la búsqueda heurística
generalmente más eficiente que la búsqueda ciega también en las instancias de
problema más sencillas.

6. Mejores heurísticos precalculados: procedimiento KDLS.

La aplicación con éxito de NAMOA∗ con ~hTC a problemas generados aleatoria-
mente así como mapas de carreteras realistas, nos lleva a investigar la posibilidad
de heurísticos precalculados multivaluados más informados.

Se ha propuesto un procedimiento de precálculo (KDLS). Esta parámetrizado
con un valor k, tal que a mayor k, más informado es el heurístico resultante.
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El procedimiento calcula un conjunto (en el extremo, el conjunto completo) de
soluciones soportadas no dominadas a través de un conjunto de búsquedas de
un solo objetivo. Éstas, son usadas para generar un conjunto de estimaciones
heurísticas admisibles para todos los nodos que serán potencialmente visitados
después por NAMOA∗.

Nuestros análisis revelan, en primer lugar, que tal heurístico precalculado será
admisible pero inconsistente en general. Esto parece un handicap, pues la con-
sistencia es una importante propiedad formal para la eficiencia del algoritmo
NAMOA∗, como lo es en el caso de A∗. Sin embargo, la experiencia revela
que la sobrecarga en la búsqueda inducida por la inconsistencia es realmente pe-
queña, y de hecho es compensada por la reducción en el número de expansiones
conseguida por el heurístico. La bondad de las funciones heurísticas calculadas
por KDLS ha sido evaluada con el algoritmo NAMOA∗∗, que incorpora la
estrategia pathmax al algoritmo NAMOA∗.

Este nuevo heurístico puede reducir significativamente el número de etiquetas
exploradas por NAMOA∗∗ y, en consecuencia, los requisitos de espacio del al-
goritmo. Desafortunadamente, el manejo de múltiples evaluaciones heurísticas
para cada etiqueta puede resultar en una sobrecarga de tiempo para la búsqueda
multiobjetivo cuando se compara con ~hTC , aunque todavía muy competitiva con
respecto a la búsqueda ciega. En mallas aleatorias, sólo para valores de k pe-
queños el algoritmo es competitivo en tiempo con el nuevo heurístico comparado
con ~hTC , aunque proporciona importantes ahorros adicionales de espacio. En pro-
blemas de planificación de rutas en mapas de carreteras, se obtienen reducciones
de espacio similares. Mayores valores de k incrementan el tiempo de ejecución
con respecto a ~hTC en algunos casos, aunque en otros se puede obtener reducción
en tiempo también para ciertos valores de k en este escenario.

7. Importancia de la búsqueda heurística multiobjetivo.

Finalmente, las evaluaciones realizadas en esta tesis llevan a la conclusión de que
la búsqueda heurística (en particular la combinación de NAMOA∗ con heurís-
ticos precalculados) hace el análisis multiobjetivo práctico para aplicaciones de
planificación de rutas offline. Se han resuelto, con recursos razonables, proble-
mas aleatorios sobre mapas de carreteras de hasta 1,070,376 de nodos y 2,712,798
de arcos. Por el contrario, las técnicas de búsqueda ciega son claramente so-
brepasadas, y pudieron resolver sólamente un subconjunto de las instancias de
problemas más fáciles.

A.5 Trabajo Futuro

Esta investigación ha clarificado varios problemas pendientes en la búsqueda heurís-
tica multiobjetivo pero, al mismo tiempo, ha planteado nuevas preguntas y futuras
líneas de investigación. En particular, creemos que los siguientes asuntos merecen ser
investigados después de esta tesis:

• Esta investigación ha señalado la importancia de la regla de selección de etiquetas
en el rendimiento del algoritmo en términos de tiempo. La determinación de una
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regla de selección de etiquetas óptima, o al menos, de cuándo una regla dada es
mejor que las otras es por tanto un tema importante de investigación futura.

• Esta investigación también ha mostrado que el uso de heurísticos más precisos
puede llevar más rápidamente a las soluciones, incrementando el número de
chequeos de dominancia. Esto es incluso más importante en el caso de las fun-
ciones heurísticas obtenidas con KDLS. El desarrollo de estructuras de datos
especializadas y procedimientos para chequeo de dominancia eficientes puede lle-
var a importantes mejoras en el rendimiento del algoritmo. De manera similar,
el desarrollo de una estrategia perezosa en el cálculo de los conjuntos F (n) puede
llevar a mejoras en el rendimiento, cuando hay disponibles múltiples estimaciones
heurísticas.

• Con la rápida proliferación de máquinas multiprocesador, la investigación en para-
lelización está ganando interés. Con respecto a esta tesis, el método de precálculo
de heurísticos propuesto en el procedimiento KDLS parece un buen candidato
para paralelización. Existen trabajos interesantes en este sentido como (Di Ste-
fano et al., 2006; Tsaggouris & Zaroliagis, 2009).

• El rendimiento de NAMOA∗∗ con las funciones heurísticas Hk
KDLS debería ser

comparado con el de la búsqueda frontera vectorial multiobjetivo, que consigue
requisitos de espacio muy pequeños a costa de un incremento en los requisitos
de tiempo. Una desventaja importante de la búsqueda frontera vectorial es que
actualmente es una estrategia de búsqueda ciega. La combinación de búsqueda
frontera vectorial con búsqueda heurística podría resultar en un algoritmo muy
potente.

• Esta tesis trata con problemas de decisión multiobjetivo. Encontrar el conjunto
de todas las soluciones no dominadas da lugar a problemas de eficiencia, dado
que cada nueva etiqueta seleccionada para expansión necesita ser chequeada con-
tra el conjunto de todas las soluciones previamente encontradas. Sin embargo,
existen otras técnicas multicriterio que buscan una sola solución Pareto-óptima,
como la búsqueda de soluciones compromiso (Galand, 2008; Sauvanet, 2011). La
investigación en búsqueda heurística multiobjetivo realizada en esta tesis podría
ser extendida a otras reglas de decisión multicriterio.

• Con respecto a la aplicación de búsqueda heurística multiobjetivo a problemas de
planificación de rutas, existen también muchas posibilidades de mejoras posterio-
res. Por ejemplo, se podrían generalizar las ténicas jerárquicas de un solo objetivo
al caso multiobjetivo para reducir el tamaño del grafo en el que se busca. Los
grafos multinivel (Schulz et al., 2002) representan un aproximación interesante
en este sentido. Otro ejemplo son las jerarquías de contracción (Geisberger et al.,
2008), que también podrían ser extendidas a entornos multiobjetivo. Esta téc-
nica requiere búsqueda bidireccional. Por tanto, para combinar NAMOA∗ con
las jerarquías de contracción, además debería investigarse la búsqueda heurística
bidireccional multiobjetivo.

• La extensión de técnicas pathmax bidireccionales al caso de búsqueda multiobje-
tivo podría ser también investigada, como en el caso de un reciente estudio para
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el caso de un solo objetivo (Felner et al., 2011).

• Finalmente, la identificación de otros dominios potenciales de aplicación para
algoritmos de búsqueda multiobjetivo es una importante línea de investigación.
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Y por fin...
«Bien está lo que bien acaba»

Palabras que dan nombre a una obra
«All’s Well That Ends Well»

que en castellano sería
«A buen fin no hay mal principio»

(William Shakespeare, 1623)

«El Séptimo día Dios tuvo terminado su trabajo,
y descansó en ese día de todo lo que había hecho.

Bendijo Dios el Séptimo día y lo hizo santo,
porque ese día descansó de sus trabajos

después de toda esta creación que había hecho»
(Génesis 2,2-3)
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