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Abstra
tIn this arti
le we provide an exa
t expression for 
omputing the auto
orrelation 
oeÆ
ient� and the auto
orrelation length ` of any arbitrary instan
e of the Quadrati
 AssignmentProblem (QAP) in polynomial time using its elementary lands
ape de
omposition. Wealso provide empiri
al eviden
e of the auto
orrelation length 
onje
ture in QAP and
ompute the parameters � and ` for the 137 instan
es of the QAPLIB. Our goal is tobetter 
hara
terize the diÆ
ulty of this important 
lass of problems to ease the futurede�nition of new optimization methods. Also, the advan
e that this represents helps to
onsolidate QAP as an interesting and now better understood problem.Keywords: Fitness lands
apes, elementary lands
apes, quadrati
 assignment problem,auto
orrelation 
oeÆ
ient, auto
orrelation length1. Introdu
tionA lands
ape for a 
ombinatorial optimization problem is a triple (X;N; f), wheref : X ! R is the obje
tive fun
tion to be minimized (or maximized) and the neighborhoodfun
tion N maps a solution x 2 X to the set of neighboring solutions. If y 2 N(x) theny is a neighbor of x. There is a espe
ial kind of lands
ape, 
alled elementary lands
ape,whi
h is of parti
ular interest in present resear
h due to their properties. They are
hara
terized by the Grover's wave equation [1℄:avgff(y)gy2N(x) = f(x) + kd �f � f(x)� (1)where d is the size of the neighborhood, jN(x)j, whi
h we assume the same for all thesolutions in the sear
h spa
e (regular neighborhood), f is the average solution evaluationover the entire sear
h spa
e, and k is a 
hara
teristi
 (problem-dependent) 
onstant. Ageneral lands
ape (X;N; f) 
an not always be said to be elementary, but even in this
ase it is possible to 
hara
terize the fun
tion f as a sum of elementary lands
apes [2℄,
alled the elementary 
omponents of the lands
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The Quadrati
 Assignment Problem (QAP) is a well-known NP-hard 
ombinatorialoptimization problem that is at the 
ore of many real-world optimization problems [3℄.A lot of resear
h has been devoted to analyze and solve the QAP itself, and in fa
tsome other problems 
an be formulated as spe
ial 
ases of the QAP, e.g., the TravelingSalesman Problem (TSP). Let P be a set of n fa
ilities and L a set of n lo
ations. Forea
h pair of lo
ations i and j, an arbitrary distan
e is spe
i�ed rij and for ea
h pair offa
ilities p and q, a 
ow is spe
i�ed wpq . The QAP 
onsists in assigning to ea
h lo
ationin L one fa
ility in P in su
h a way that the total 
ost of the assignment is minimized.Ea
h lo
ation 
an only 
ontain one fa
ility and all the fa
ilities must be assigned to onelo
ation. For ea
h pair of lo
ations the 
ost is 
omputed as the produ
t of the distan
ebetween the lo
ations and the 
ow asso
iated to the fa
ilities in the lo
ations. Thetotal 
ost is the sum of all the 
osts asso
iated to ea
h pair of lo
ations. One solutionto this problem is a bije
tion between L and P , that is, x : L ! P su
h that x isbije
tive. Without loss of generality, we 
an just assume that L = P = f1; 2; : : : ; ng andea
h solution x is a permutation in Sn, the set permutations of f1; 2; : : : ; ng. The 
ostfun
tion to be minimized 
an be formally de�ned as:f(x) = nXi;j=1 rijwx(i)x(j) (2)In [4, 5℄ the authors analyzed the QAP from the point of view of lands
apes the-ory [6℄ and they found the elementary lands
ape de
omposition of the problem usingthe methodology presented in [7℄, providing expressions for ea
h elementary 
omponent.In this paper we use the elementary de
omposition of the previous work to 
omputethe auto
orrelation length ` and the auto
orrelation 
oeÆ
ient � of any QAP instan
ein polynomial time (Se
tion 2). We also present in Se
tion 3 empiri
al eviden
e of theauto
orrelation length 
onje
ture [8℄, whi
h links these values to the number of lo
aloptima of a problem, and we numeri
ally 
ompute ` and � for the well-known publi
instan
es of the QAPLIB [9℄.2. Auto
orrelation of QAPLet us 
onsider an in�nite random walk fx0; x1; : : :g on the solution spa
e su
h thatxi+1 2 N(xi). The random walk auto
orrelation fun
tion r : N ! R is de�ned as [10℄:r(s) = hf(xt)f(xt+s)ix0;t � hf(xt)i2x0;thf(xt)2ix0;t � hf(xt)i2x0;t (3)where the subindi
es x0 and t indi
ate that the averages are 
omputed over all the start-ing solutions x0 and along the 
omplete random walk. The auto
orrelation 
oeÆ
ient� of a problem is a parameter proposed by Angel and Zissimopoulos [11℄ that gives ameasure of its ruggedness. It is de�ned after r(s) by � = (1� r(1))�1 [12℄. Another mea-sure of ruggedness is the auto
orrelation length ` [13℄ whose de�nition is ` =P1s=0 r(s).The auto
orrelation 
oeÆ
ient � for the QAP was exa
tly 
omputed by Angel and Zis-simopoulos in [14℄. However, re
ent results (see [4℄) suggest that the expression in [14℄
ould be invalid for some instan
es of the QAP. Using the lands
ape de
omposition of2



the QAP we provide here a simple derivation for the expressions of � and `. First, let uspresent (without proof) the results of [5℄ that are relevant to our goal.Proposition 1 (De
omposition of the QAP). For the swap neighborhood, the fun
tionf de�ned in (2) 
an be written as the sum of at most three elementary lands
apes with
onstants k1 = 2n, k2 = 2(n � 1), and k3 = n: f = f
1 + f
2 + f
3. The elementary
omponents 
an be de�ned asf
1 = nXi; j; p; q = 1i 6= j; p 6= q  ijpq 
1(i;j);(p;q)2n (4)f
2 = nXi; j; p; q = 1i 6= j; p 6= q  ijpq 
2(i;j);(p;q)2(n� 2) (5)f
3 = nXi; j; p; q = 1i 6= j; p 6= q  ijpq 
3(i;j);(p;q)n(n� 2) + nXi;p=1 iipp '(i;i);(p;p) (6)where  ijpq = rijwpq , '(i;i);(p;p) is the fun
tion de�ned using the Krone
ker's delta by'(i;i);(p;p)(x) = Æpx(i), and the 
 fun
tions are parti
ular 
ases of the parameterized �fun
tions de�ned as:��;�;
;";�(i;j);(p;q)(x) =8>>>><>>>>: � if x(i) = p ^ x(j) = q� if x(i) = q ^ x(j) = p
 if x(i) = p� x(j) = q" if x(i) = q � x(j) = p� if x(i) 6= p; q ^ x(j) 6= p; q (7)The de�nition of the 
 fun
tions is as follows: 
1(i;j);(p;q) = �n�3;1�n;�2;0;�1(i;j);(p;q) , 
2(i;j);(p;q) =�n�3;n�3;0;0;1(i;j);(p;q) , and 
3(i;j);(p;q) = �2n�3;1;n�2;0;�1(i;j);(p;q) .Proof. See [5℄ for the proof.Proposition 2 (Auto
orrelation measures). The auto
orrelation 
oeÆ
ient �, the au-to
orrelation length `, and the auto
orrelation fun
tion r(s) 
an be 
omputed from thea
tual problem data (instan
e) using the expressions:� = �W1 4n� 1 +W2 4n +W3 2n� 1��1 = n(n� 1)2n(1 +W1) + 2W2(n� 2) (8)` = d�W12n + W22(n� 1) + W3n � = W1(1� n) +W2(2� n) + 2(n� 1)4 (9)r(s) =W1�1� 4n� 1�s +W2�1� 4n�s +W3 �1� 2n� 1�s (10)where the 
oeÆ
ients Wi for i = 1; 2; 3 are de�ned byWi = f2
i � f
i2f2 � f2 (11)3



Proof. A proof for (8) and (11) 
an be found in [5℄. Equation (9) is justi�ed in [13℄ and(10) is proven in [2℄. We also used the fa
t that W1+W2+W3 = 1 to remove W3 in theexpressions for � and `.As a 
onsequen
e, we only need to 
ompute W1 and W2 to obtain � and `. Thus, weprovide in this paper some propositions that allow us to eÆ
iently 
ompute W1 and W2.A

ording to (11) we need to 
ompute f2, f2, f2
1, f
12, f2
2, and f
22. Let us start withf
1 and f
2.Proposition 3. Two expressions for f
1 and f
2 are:f
1 = �rtwt2n (12)f
2 = rtwt(n� 3)2(n� 1)(n� 2) ; (13)where rt and wt are de�ned as:rt = nXi; j = 1i 6= j rij ; wt = nXp; q = 1p 6= q wpq (14)Proof. The average value of 
1 and 
2 is 
1 = �1, and 
2 = (n� 3)=(n� 1) [4℄. Usingthese average values we 
an 
ompute f
1 and f
2 with the help of (4) and (5) as:f
1 = �12n nXi; j; p; q = 1i 6= j; p 6= q  ijpq ; f
2 = n� 32(n� 1)(n� 2) nXi; j; p; q = 1i 6= j; p 6= q  ijpq (15)Taking into a

ount that  ijpq = rijwpq and using the notation rt, wt de�ned abovewe 
an transform (15) in (12) and (13).Both expressions (12) and (13) 
an be 
omputed in O(n2). Before giving an expressionfor f let us �rst introdu
e a new fun
tion tn de�ned as:tn : P(f1; : : : ; ng2) ! NQ 7! tn(Q) = Xx2Sn Y(i;p)2Q Æpx(i) (16)This fun
tion will be useful later in the 
omputation of f , f2, f2
1, and f2
2. A

ordingto its de�nition, the evaluation of tn is not eÆ
ient sin
e it requires a summation overall the permutations in Sn. However, we 
an simplify the expression of tn to make the
omputation more eÆ
ient as the following proposition states.Proposition 4. The fun
tion tn satis�es the following equality:tn(Q) = � (n� jQj)! if jQ1j = jQ2j = jQj0 otherwise ; (17)where Q1 (Q2) denotes the set of all the �rst (se
ond) elements of the pairs in Q.4



Proof. The fun
tion tn is, in fa
t, a 
ounting fun
tion that is 
ounting the number ofelements in Sn that ful�ll the 
ondition V(i;p)2Q x(i) = p. Now, we must observe thatif we �nd two pairs (i; p) and (j; q) in Q su
h that i = j and p 6= q, then the value oftn(Q) must be zero be
ause it is not possible to satisfy at the same time x(i) = p andx(j) = q. We 
an 
hara
terize this situation using the 
ondition jQ1j 6= jQj. That is, ifthe number of pairs in Q is not equal to the number of �rst elements of these pairs, thenthere exist in Q at least two pairs of the form (i; p) and (i; q) with p 6= q and tn(Q) = 0.For the same reason, t(Q) = 0 if jQ2j 6= jQj. If jQj = jQ1j = jQ2j then the pairs in Q �xthe value for jQj 
omponents of the solution ve
tor and the number of solutions in Snwith the �xed 
omponents is tn(Q) = (n� jQj)!.On
e we have de�ned the tn fun
tion and we know an eÆ
ient way of 
omputing itwe 
an provide an expression for f .Proposition 5. An expression for f is:f = rtwtn(n� 1) + rdwdn (18)where rd =Pni=1 rii and wd =Pnp=1 wpp.Proof. Using the de�nition of f and tn we 
an write:f = 1jSnj nXi;j;p;q=1 ijpq  Xx2Sn Æpx(i)Æqx(j)! = 1n! nXi;j;p;q=1 ijpq tn(f(i; p); (j; q)g) (19)If we take into a

ount that tn 
an only take two di�erent values, we 
an rewrite theprevious expression as:f = (n� 2)!n! nXi; j; p; q = 1i 6= j; p 6= q  ijpq + (n� 1)!n! nXi;p=1 iipp = rtwtn(n� 1) + rdwdn (20)With the help of the fun
tion tn we 
an also provide an expression for f2.Proposition 6. An expression for f2 is:f2 = 1n! nXi;j;p;q=1 nXi0;j0;p0;q0=1 ijpq i0j0p0q0 tn (f(i; p); (j; q); (i0; p0); (j0; q0)g) (21)whi
h 
an be 
omputed in O(n8).Proof. Using the de�nition of f we 
an write:f2 = 1jSnj Xx2Sn0� nXi;j;p;q=1 ijpqÆpx(i)Æqx(j)1A2 = 1n! Xx2Sn nXi;j;p;q=1 nXi0;j0;p0;q0=1 ijpq i0j0p0q0Æpx(i)Æqx(j)Æp0x(i0)Æq0x(j0)(22)whi
h 
an be transformed into (21) by 
ommuting the sums and using the de�nition oftn. 5



The 
omputation of f2
1, f2
2 requires a more 
omplex treatment. We present theirexpressions in the followingProposition 7. Two expressions for f2
1 and f2
2 are:f2
1 = 14n2 � n! nXi; j; p; q = 1i 6= j; p 6= q nXi0; j0; p0; q0 = 1i0 6= j0; p0 6= q0 ijpq i0j0p0q0  7Xm=1 7Xm0=1 

1m 

1m0tn �vi;j;p;qm [ vi0;j0;p0;q0m0 �! (23)f2
2 = 14(n� 2)2 � n! nXi; j; p; q = 1i 6= j; p 6= q nXi0; j0; p0; q0 = 1i0 6= j0; p0 6= q0 ijpq i0j0p0q0  7Xm=1 7Xm0=1 

2m 

2m0tn �vi;j;p;qm [ vi0;j0;p0;q0m0 �!(24)where the 7-dimensional parameterized ve
tors v 2 �P(N2 )�7 and 
 2 R7 are given inTable 1 and 

1 and 

2 denote the 
 ve
tors whose parameters �; �; 
; "; � are those of
1 and 
2, respe
tively, that is, 

1 = 
n�3;1�n;�2;0;�1 and 

2 = 
n�3;n�3;0;0;1.Component (m) vi;j;p;q 
�;�;
;";�1 ; �2 f(i; p)g (
 � �)3 f(i; q)g ("� �)4 f(j; q)g (
 � �)5 f(j; p)g ("� �)6 f(i; p); (j; q)g (�� 2
 + �)7 f(i; q); (j; p)g (� � 2"+ �)Table 1: Content of the ve
tors vi;j;p;q and 
�;�;
;";� .Proof. After the de�nition of f
1 and f
2 we 
an write:f2
1 = 14n2 � n! nXi; j; p; q = 1i 6= j; p 6= q nXi0; j0; p0; q0 = 1i0 6= j0; p0 6= q0 ijpq i0j0p0q0  Xx2Sn
1(i;j);(p;q)(x)
1(i0 ;j0);(p0;q0)(x)! (25)f2
2 = 14(n� 2)2 � n! nXi; j; p; q = 1i 6= j; p 6= q nXi0; j0; p0; q0 = 1i0 6= j0; p0 6= q0 ijpq i0j0p0q0  Xx2Sn
2(i;j);(p;q)(x)
2(i0 ;j0);(p0;q0)(x)!(26)In this 
ase it is not so simple to write the inner summation as a fun
tion of tn. Wewill write the 
 fun
tions as linear 
ombinations of Krone
ker's deltas using the de�nitionof the 
 fun
tions and the following 
hara
terization of the � fun
tions, whi
h 
an beeasily obtained after (7):
6



��;�;
;";�(i;j);(p;q)(x) = �Æpx(i)Æqx(j) + �Æqx(i)Æpx(j) + 
(Æpx(i) � Æqx(j))2++ "(Æqx(i) � Æpx(j))2 + �(1� Æpx(i))(1� Æqx(i))(1� Æpx(j))(1� Æqx(j)) == (
 � �)(Æpx(i) + Æqx(j)) + ("� �)(Æqx(i) + Æpx(j))++ Æpx(i)Æqx(j)(�� 2
 + �) + Æqx(i)Æpx(j)(� � 2"+ �) + � (27)Thus, ��;�;
;";�(i;j);(p;q) is a sum of six terms with Æ and one 
onstant, and the summationXx2Sn ��;�;
;";�(i;j);(p;q)(x)��;�;
;";�(i0 ;j0);(p0;q0)(x) (28)
an be written as a weighted sum of 49 tn terms. In order to write this summationin a 
ompa
t way we de�ne one ve
tor denoted with vi;j;p;q 
ontaining the sets to be
onsidered in the tn terms and a ve
tor 
�;�;
;";� 
ontaining the 
oeÆ
ients for the tnterms. The 
ontent of the previous ve
tors is shown in Table 1. Using v and 
 we 
anwrite the summation of the produ
t of � fun
tions in the following way:Xx2Sn ��;�;
;";�(i;j);(p;q)(x)��;�;
;";�(i0 ;j0);(p0;q0)(x) = 7Xm=1 7Xm0=1 
�;�;
;";�m 
�;�;
;";�m0 tn �vi;j;p;qm [ vi0;j0;p0;q0m0 �(29)and using the previous equality in (25) and (26) we obtain (23) and (24).Now we have eÆ
ient expressions for 
omputing f , f2, f
1, f2
1, f
2, and f2
2. With thisexpressions we are in 
onditions of eÆ
iently 
omputing the auto
orrelation measures �and `. This result is summarized in the followingTheorem 1 (EÆ
ient 
omputation of � and `). In the QAP, the values of � and ` relatedto the swap neighborhood and de�ned by� = n(n� 1)2n(1 +W1) + 2W2(n� 2) [eq: (8)℄` = W1(1� n) +W2(2� n) + 2(n� 1)4 [eq: (9)℄
an be 
omputed in polynomial time over the size of the problem n using equations (12),(13), (18), (21), (23), and (24).Proof. After 
omputing f , f
1, f
2, f2, f2
1, and f2
2 using the equations (18), (12), (13),(21), (23), and (24) we should 
ompute W1 and W2 using equation (11). Then, theauto
orrelation 
oeÆ
ient � 
an be obtained with (8) and ` 
an be 
omputed with (9).None of the previous equations requires more than eight nested summations over n and,thus, the 
omputation 
an be done in O(n8).We have gone one step further and we have expanded the expressions for f2, f2
1,and f2
2 in order to make a more eÆ
ient 
omputation. The result is a O(n2) algorithm(whi
h we omit due to spa
e 
onstraints) to 
ompute ` and �. It is not diÆ
ult toprove that su
h algorithm is optimal in 
omplexity, sin
e the data of a QAP instan
e is
omposed of 2n2 numbers whi
h have to be taken into a

ount in order to 
ompute theauto
orrelation measures. 7



3. Auto
orrelation length 
onje
tureThe auto
orrelation length is spe
ially important in optimization be
ause of the au-to
orrelation length 
onje
ture, whi
h 
laims that in many lands
apes the number of lo
aloptima M 
an be estimated by the expression M � jXjjX(x0;`)j [8℄, where X(x0; `) is theset of solutions rea
hable from x0 in ` (the auto
orrelation length) or less lo
al move-ments (jumps between neighbors). The previous expression is not an equation, but anapproximation. It 
an be useful to 
ompare the estimated number of lo
al optima in twoinstan
es of the same problem. In e�e
t, for a given problem in whi
h the 
onje
ture isappli
able, the higher the value of ` (or �) the lower the number of lo
al optima. In alands
ape with a low number of lo
al optima, a lo
al sear
h strategy 
an a priori �ndthe global optimum using less steps. This phenomenon has been empiri
ally observedfor the Quadrati
 Assignment Problem (QAP) by Angel and Zissimopoulos in [14℄.In order to 
he
k the auto
orrelation length 
onje
ture in the QAP we have generated4000 random instan
es of QAP with sizes varying between n = 4 and n = 11 (500 for ea
hvalue of n) using a random generator where the elements of the matri
es are uniformlysele
ted from the range [0,99℄. For ea
h instan
e we 
omputed the auto
orrelation length` using (9) and the number of lo
al optima (minima) by 
omplete enumeration of thesear
h spa
e. We 
omputed the Spearman 
orrelation 
oeÆ
ient � of the number of lo
aloptima and ` for the instan
es of the same size. The results are shown in Table 2. We 
anobserve an inverse 
orrelation (around �0:3) between the number of lo
al optima and theauto
orrelation length. Although this fa
t is in agreement with the auto
orrelation length
onje
ture, the 
orrelation 
oeÆ
ient is low. However, Angel and Zissimopoulos [14℄ useda simulated annealing algorithm based on the swap neighborhood and reported a betterperforman
e of the algorithm as the auto
orrelation length in
reased. Assuming thatthe number of lo
al optima is a parameter with an important in
uen
e on the sear
h, we
on
lude that even in problems in whi
h the number of lo
al optima is lowly 
orrelatedwith ` (like QAP) the auto
orrelation measures (� and `) 
an be useful as estimators ofthe performan
e of lo
al sear
h algorithms.n 4 5 6 7 8 9 10 11� �0:3256 �0:2317 �0:2126 �0:3195 �0:3032 �0:2943 �0:2131 �0:1640Table 2: Spearman 
orrelation 
oeÆ
ient � for the number of lo
al optima and the auto
orrelationlength.In Figure 1 we plot the number of lo
al optima against the auto
orrelation length `for all the instan
es of size n = 10. We 
an observe a slight trend: as the auto
orrelationlength in
reases the number of lo
al optima de
reases. The trend is the same in all theinstan
es with di�erent sizes (we omit their plots).In a se
ond experiment we 
he
k that the auto
orrelation measures provided by theelementary lands
ape de
omposition are the same as the ones 
omputed using statisti
almethods. For this experiment we have 
hosen six instan
es of the QAPLIB [9℄: two small,two medium and two large instan
es. For ea
h instan
e we have generated one randomwalk of length 1 000 000 and we have 
omputed the r(s) values for s 2 [0; 49℄. Thispro
ess has been repeated 100 times and we have 
omputed the average value for the100 independent runs. The results empiri
ally obtained and those theoreti
ally predi
tedwith (10) 
an be found in Table 3 (only for s 2 [1; 6℄). We 
an observe a great mat
hing8
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`Figure 1: Number of lo
al optima against the auto
orrelation length ` for random instan
es of QAPwith n = 10.between the empiri
al and the theoreti
al value, as expe
ted. The advantage of thetheoreti
al approa
h is that it is mu
h faster. The experimental results of Table 3 wereobtained after 157 783 se
onds of 
omputation (more than 43 hours). However, the exa
tvalues were obtained evaluating Equation (10) in 0:4 se
onds, near half a million timesfaster.Finally, we have 
omputed the values of � and ` for the 137 QAP instan
es found inthe QAPLIB database [9℄. The results, shown in Table 4 in alphabeti
al order, 
ould behelpful for future investigations on the QAP. In the table we 
an observe some interestingbehaviours, like that of the es
 instan
es, whi
h have always a value of n=4 for � and `.This happens be
ause in those instan
es W1 = W3 = 0 and W2 = 1, that is, they areelementary lands
apes with k = 2(n � 1). All the elementary lands
apes have a valuefor the auto
orrelation measures that does not depend on the instan
e data, but only onthe problem size. In the 
ase of es
16f, the obje
tive fun
tion is a 
onstant, that is, ittakes the same value for every solution and the auto
orrelation measures make no sense.We should also noti
e that the value of ` and � depend on n, the size of the probleminstan
e. In e�e
t, the values are bounded (see [4℄) byn� 14 � �; ` � n� 12 (30)Thus, the values of � and ` usually in
rease with the problem size n. As a 
onse-quen
e, the auto
orrelation length 
onje
ture 
an be applied only when the 
omparisonis performed over instan
es with the same size n and, in general, it is not true thatthe higher the value of ` the easier to solve the instan
e, sin
e the largest instan
es areusually the most diÆ
ult ones and have the highest value for ` (and �). A good indi
ator9



Instan
es r(1) r(2) r(3) r(4) r(5) r(6)tai10a E 0.624255 0.393489 0.250810 0.161890 0.106102 0.070590T 0.624380 0.393590 0.250903 0.162013 0.106129 0.070617es
16a E 0.749984 0.562424 0.421759 0.316365 0.237300 0.177939T 0.750000 0.562500 0.421875 0.316406 0.237305 0.177979es
64a E 0.937402 0.878700 0.823668 0.772063 0.723672 0.678292T 0.937500 0.878906 0.823975 0.772476 0.724196 0.678934lipa70a E 0.943369 0.890041 0.839723 0.792267 0.747507 0.705296T 0.943479 0.890170 0.839890 0.792466 0.747735 0.705545tho150 E 0.975680 0.951974 0.928863 0.906338 0.884384 0.862981T 0.975722 0.952060 0.928997 0.906518 0.884607 0.863251tai256
 E 0.984364 0.968983 0.953843 0.938935 0.924256 0.909805T 0.984375 0.968994 0.953854 0.938950 0.924279 0.909837Table 3: Experimental (E) and exa
t (T) values for the auto
orrelation fun
tion r(s) in six instan
es ofthe QAPLIB (s from 1 to 6).Instan
e � ` Instan
e � ` Instan
e � ` Instan
e � `bur26a 11.825 12.130 es
32b 8.000 8.000 nug16a 4.475 4.796 tai100b 35.472 39.613bur26b 11.727 12.073 es
32
 8.000 8.000 nug16b 4.472 4.792 tai10a 2.662 2.774bur26
 12.109 12.291 es
32d 8.000 8.000 nug17 4.836 5.220 tai10b 3.002 3.253bur26d 12.050 12.258 es
32e 8.000 8.000 nug18 5.111 5.516 tai12a 3.419 3.674bur26e 12.032 12.248 es
32f 8.000 8.000 nug20 5.800 6.311 tai12b 3.358 3.586bur26f 11.962 12.208 es
32g 8.000 8.000 nug21 6.218 6.807 tai150b 40.458 42.947bur26g 12.323 12.407 es
32h 8.000 8.000 nug22 6.751 7.446 tai15a 3.858 3.946bur26h 12.296 12.392 es
64a 16.000 16.000 nug24 7.067 7.737 tai15b 7.000 7.000
hr12a 3.096 3.171 had12 3.743 4.092 nug25 7.308 7.987 tai17a 4.402 4.526
hr12b 3.201 3.346 had14 4.319 4.732 nug27 8.023 8.813 tai20a 5.211 5.385
hr12
 3.044 3.079 had16 4.405 4.690 nug28 8.181 8.949 tai20b 6.866 7.582
hr15a 3.917 4.049 had18 5.084 5.477 nug30 8.613 9.373 tai256
 64.000 64.000
hr15b 4.126 4.388 had20 5.830 6.352 rou12 3.158 3.275 tai25a 6.373 6.482
hr15
 3.843 3.920 kra30a 9.131 10.089 rou15 3.927 4.066 tai25b 6.896 7.374
hr18a 4.585 4.658 kra30b 9.086 10.031 rou20 5.354 5.628 tai30a 7.779 8.021
hr18b 4.632 4.742 kra32 9.848 10.908 s
r12 3.407 3.657 tai30b 7.599 7.689
hr20a 5.105 5.195 lipa20a 5.072 5.135 s
r15 4.303 4.650 tai35a 8.922 9.077
hr20b 5.035 5.067 lipa20b 5.196 5.358 s
r20 5.514 5.885 tai35b 9.382 9.895
hr20
 5.260 5.469 lipa30a 7.622 7.732 sko100a 27.800 29.985 tai40a 10.216 10.413
hr22a 5.763 5.980 lipa30b 7.652 7.787 sko100b 28.106 30.470 tai40b 10.583 11.074
hr22b 5.672 5.819 lipa40a 10.154 10.295 sko100
 27.548 29.578 tai50a 12.675 12.839
hr25a 6.490 6.693 lipa40b 10.355 10.669 sko100d 27.535 29.557 tai50b 12.824 13.119els19 5.178 5.494 lipa50a 12.684 12.855 sko100e 27.600 29.663 tai60a 15.292 15.563es
128 32.000 32.000 lipa50b 12.854 13.174 sko100f 27.346 29.247 tai60b 17.837 19.691es
16a 4.000 4.000 lipa60a 15.111 15.217 sko42 11.559 12.378 tai64
 16.000 16.000es
16b 4.000 4.000 lipa60b 15.124 15.243 sko49 13.413 14.331 tai80a 20.214 20.419es
16
 4.000 4.000 lipa70a 17.693 17.876 sko56 15.598 16.817 tai80b 24.021 26.612es
16d 4.000 4.000 lipa70b 17.785 18.052 sko64 17.504 18.706 tho150 41.190 44.174es
16e 4.000 4.000 lipa80a 20.102 20.201 sko72 19.929 21.436 tho30 8.326 8.938es
16f � � lipa80b 20.191 20.373 sko81 22.739 24.629 tho40 11.492 12.531es
16g 4.000 4.000 lipa90a 22.610 22.716 sko90 25.046 27.024 wil100 28.362 30.868es
16h 4.000 4.000 lipa90b 22.733 22.957 ste36a 10.954 12.122 wil50 13.832 14.860es
16i 4.000 4.000 nug12 3.135 3.237 ste36b 11.821 13.177es
16j 4.000 4.000 nug14 3.892 4.155 ste36
 11.270 12.525es
32a 8.000 8.000 nug15 4.029 4.234 tai100a 25.195 25.383Table 4: Auto
orrelation 
oeÆ
ient � and auto
orrelation length ` for the 137 instan
es of the QAPLIB.of the diÆ
ulty of an instan
e 
ould be the pair (n, `).10



4. Con
lusionsIn this arti
le we give an optimal way of exa
tly 
omputing the auto
orrelation mea-sures � and ` for the QAP. These two parameters are important to better 
hara
terizeQAP and to guide pra
titioners in the relative diÆ
ulty of the existing problem instan
es.These results 
an be automati
ally applied to all the subproblems of QAP, like de TSP.The main 
ontributions of this work are:� An exa
t expression for 
omputing the auto
orrelation 
oeÆ
ient � and the auto-
orrelation length ` of the QAP in polynomial time.� Empiri
al eviden
e of the auto
orrelation length 
onje
ture in pra
ti
e for the QAP,by using arbitrarily generated instan
es.� The numeri
al value of � and ` for all the instan
es in the QAPLIB database.As a future work we plan to obtain exa
t expressions for the auto
orrelation measuresin other problems, and study the a
tual pra
ti
al appli
ations of the information obtainedfrom them.A
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