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Abstract. Many distributed systems (task scheduling, moving priori-
ties, changing mobile environments, ...) can be linked as Dynamic Opti-
mization Problems (DOPs), since they require to pursue an optimal value
that changes over time. Consequently, we have focused on the utilization
of Distributed Genetic Algorithms (dGAs), one of the domains still to be
investigated for DOPs. A dGA essentially decentralizes the population
in islands which cooperate through migrations of individuals. In this ar-
ticle, we analyze the effect of the migrants selection and replacement on
the performance of the dGA for DOPs. Quality and distance based cri-
teria are tested using a comprehensive set of benchmarks. Results show
the benefits and drawbacks of each setting in dynamic optimization.

1 Introduction

Dynamic Optimization Problems (DOPs) are important research challenges ap-
pearing in real life applications, many of them in fact linked to distributed sys-
tems like task scheduling, moving priorities, changing mobile environments, etc.
A DOP is actually a problem where the definition changes as the solving algo-
rithms is progressing. This forces the constant research in new techniques for
tracking the moving optima over time.

Several authors have proposed the use of multiple populations for solving
Dynamic Optimization Problems (DOPs) using Genetic Algorithms (GA) [4–
7], with the aim of tracking the optimum changes by specializing and pursuing
promising regions of the search space. However, one of the domains still to be
investigated is the utilization of Distributed Genetic Algorithms (dGAs) [2, 3],
characterized by decentralizing the population in demes, named islands, inde-
pendently evolving and communicating through migrations of individuals. Con-
versely, their use should be valuable for DOPs because of the natural diversity
enhancement and speciation-like features [2].

In this article, we study distinct migrants selection and replacement strate-
gies, based on both quality (fitness) and distance based criteria. Specifically, we
analyze how they affect the performance of a physically parallel dGA in a com-
prehensive set of DOP benchmarks. Results show the benefits and drawbacks of
each strategy for addressing distinct DOP features.
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The remainder of this paper is organized as follows. Section 2 provides a brief
background on DOP. Section 3 introduce the dGA model. Section 4 summarizes
the experimental design, and the obtained results are analyzed in Sections 5 and
Sections 6. Finally, conclusions and future works are stated in Section 7.

2 Dynamic Optimization Problems

An optimization problem in which environmental data, constraints and/or ob-
jectives change over time, is named Non-stationary, Time-variant or Dynamic
Optimization Problem [1]. In contrast to other types of uncertainty in real-world
optimization problems, in this domain the fitness function is deterministic at any
point in time, but is dependent on time t, i.e.,

F (X) = ft(X). (1)

Consequently, the algorithm for DOPs should be able to track the optimum
changes over time. The following features are commonly used in literature to
characterize DOPs:

– Change frequency: It determines how often the changes occurs. It is usu-
ally measured in number of generations between two consecutive changes.

– Change severity: It defines how different the fitness landscape is after a
change, the higher this value the more abrupt is the change.

– Cycle length, cycle accuracy (noise): They characterize cyclic environ-
ments, where a finite set of states recur over time. They denote how often
it takes to return to a previous state, and how close this return is to it,
respectively.

These features are used later in this article to build the set of DOP bench-
marks for analyzing the influence of the migration policies of dGAs for DOPs.

A few authors have previously studied the influence of the migration poli-
cies in stationary environments. Cantu-Paz [8] and Alba et al. [9] showed the
benefits of sending a random individual instead of the best individual. Cur-
rent multi-population approaches for DOPs have used migration policies. For
instance, Oppacher and Wineberg in [5], send the elite (best) individuals from
colonies subpopulations to a core subpopulation. Other policies used in litera-
ture involve a global knowledge of the entire population, like Ursem in [6], by
applying the hill-valley detection mechanism among the best individuals of each
subpopulation, named nation. Recently, Park et al. [7] have used two populations
with different evolutionary objectives and, given the inconvenience of normal mi-
grations, they applied crossbreeding as a means of information exchange.

However, to the best of our knowledge, no coherent and comprehensive study
has been accomplished regarding migrants selection and replacement in DOPs.
Our work is a contribution in this direction, with the aim at supporting the
design of new approaches for DOP based on dGA models.
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3 Distributed GA for DOPs

As aforementioned, the dGA [2], also known as island model, structures the
population in islands. Each island independently evolves, usually in parallel,
and communicates with the other ones through migration of individuals. The
pseudo-code for each island is shown in Alg. 1, which basically consists of a
standard GA with an additional communication step for migrations.

Algorithm 1 Pseudocode for an island evolution in a dGA model.

Initialize & evaluate the subpopulation
while not stop condition do

Select parents for reproduction
Apply crossover, mutation, and evaluation operators
Select new parents and replace the old subpopulation
if migration period is met then

Select outgoing migrants & send them to the neighbor islands
Select individuals to replace & replace them by the incoming migrants

end if

end while

As you can notice from Alg. 1, two essential parameters in the specification
of a dGA [2] are the criteria for selecting emigrants and for replacing existing
individuals in the target subpopulation by incoming migrants, often referred to
in the literature as the migration policy. The importance of understanding their
effects on the performance of the dGA has been previously reported for static
problems [8], but it gets even more important for DOPs. The reason is that
they control the convergence rate of the dGA. An excessively fast convergence
removes the ability to react after a change, while a very low one does not allow
for adaptation to the new environmental conditions.

In this paper, we will focus on the criteria for selecting outgoing migrants
and selecting existing individuals, at the target subpopulation, for replacing with
incoming migrants. We test both quality (fitness) and distance based selection
methods, thus influencing the behavior of the dGA from the phenotype and
genotype, respectively. Table 1 shows the most representative strategies.

In particular, the most distant individuals are determined in the Hamming
space from the centroid of each deme. In the next section we describe the exper-
imental design used to accomplish this study.

4 Experimental Setup

Aiming to analyse the influence of the chosen migrants selection and replacement
criteria (see Table 1 from previous section) we use a canonical dGA consisting of
eight islands evolving homogenously. In every island, we use a simple generational
GA with 64 individuals, binary-tournament selection, one-point crossover (with
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Table 1: Migrants selection and replacement criteria
Migration policy Description

best− worst Good migrants replace poor individuals
best− random Good migrants replace random individuals
best− distant Good migrants replace distant individuals
random− worst Random migrants replace poor individuals
random− distant Random migrants replace distant individuals
worst− worst Poor migrants replace poor individuals
distance− distant Distant migrants replace the distant individuals

pX = 1.0), without mutation (to remove possible bias in the results). Migrations
occur synchronously on a unidirectional ring topology after every generation, and
the migration rate is 10%.

The behavior of algorithms is tested using four dynamic functions (Onemax,
Royal-Road, P-Peaks, and MMDP) built with the XOR-DOP benchmark genera-
tor [10], thus addressing different difficulties: epistasis, multimodality, and decep-
tion. We use binary strings of 100 bits, separated in 25 contiguous building blocks
(BBs) of 4 bits for the Royal-Road Problem, P = 50 peaks for the P-Peaks Prob-
lem instance, and a MMDP with k = 16 deceptive subproblems. OneMax and
Royal-Road are unimodal DOPs (only one suboptimal solution), while P-Peaks
and MMDP are multimodal DOPs (multiple suboptimal solutions). For each
problem instance, we also test distinct change modes (cyclic, cyclic with noise,
and random) and change severities (ρ ∈ {0.05, 0.1, 0.2, 0.5, 1.0}). The higher the
ρ value the severer the change; ρ = 1.0 means a random severity in the range
[0.01, 0.99]. For all DOP instances the change frequency is τ = 10 generations,
the cycle length is 5 changes, and the noise sums a severity of 0.05.

Algorithms and benchmarks were implemented in C++, using the MALLBA
library1. All experiments were performed in a PC with an Intel Core i7-720QM
processor at 1.60GHz, 4GB of RAM, and running GNU/Linux Ubuntu 12.4.

To describe the performance of algorithms we compute the mean accuracy

or relative error, i.e.:

Acc =
1

N

N∑

i=1

f(generation besti)−Mini

Maxi −Mini

(2)

where N is the total number of generations, and Maxi and Mini are the current
maximum and the minimum fitness values, respectively. High values of this met-
ric indicate a better adaptation of the algorithm to the changing optimum along
the run. In addition, we use the standard deviation (STD) in the Hamming space
of the solutions to determine the global (inter-deme) and local (intra-deme) geno-
typic diversity. In both cases, we average the results of over 100 independent runs
and evaluate the statistical significance. First, we use the Kolmogorov-Smirnov
test to check whether the data follow a normal distribution or not. If so, then
we do an ANOVA test to compare the means; otherwise Kruskal-Wallis test is

1 Online available at http://neo.lcc.uma.es/mallba/easy-mallba
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used to compare the medians. In each case, a level of confidence of 95 % is used.
In the next section we summarize and discuss the obtained results.

5 Influence of the Migration Policy on Accuracy

We begin by analyzing the influence of migrants selection and replacement on
the performance of the dGA model for dynamic environments. Our goal is to
show how different migration policies can help to reach a good balance be-
tween convergence (quickly adapt to the optimum movements) and the natural
speciation-like behavior (search multiple sub-optima at the same time). This
conclusion confirms the importance of tracking multiple suboptimal values on
dynamic optimization, since they are candidate optima after a change in the
environment, thereby underlining our interest on the dGA model for DOPs.

Table 2 summarizes the results for all DOPs, change modes (Cyclic, Cyclic
with Noise, and Random), and the five change severities tested. Since we are
interested in the effect of the migration policies, we have grouped results with
different change severities, accounting the number of experiments in which the
migration policy is statistically better than the rest (values range from 0 to 5).
A better value of this metric indicates a better adaptation to a wider range of
change severities.

Table 2: Number of experiments in which the migration policy is statistically
better than the rest. The best values are boldfaced.

Migration Onemax Royal-Road P-Peaks MMDP
policy Cy CyN Ra Cy CyN Ra Cy CyN Ra Cy CyN Ra Total

better-worst 3 1 1 3 0 0 2 0 0 0 0 0 10
better-rand 0 0 0 0 0 0 1 0 0 0 0 0 1
better-distant 0 4 4 0 4 4 0 0 0 0 0 0 16
rand-worst 4 3 2 3 2 2 3 1 1 0 0 0 19
rand-distant 1 4 4 0 4 4 0 0 0 0 0 0 17
worst-worst 5 4 2 5 4 2 5 5 5 5 5 5 52

distant-distant 0 3 4 0 4 4 0 0 0 0 0 0 15

You can notice from Table 2 that the worst-worst strategy (poor migrants
replace poor individuals) reaches the best accuracy level in a wide range of DOP
instances (52 of 60 problem instances), most notably in multimodal DOPs (P-
Peaks and MMDP) where the results are significantly better than the rest in all
cases. These problems consist of a large number of suboptimal solutions and
require not only to search for multiple candidate optima in the search space, but
also to pursue their movements. In this scenario, the worst-worst strategy pro-
motes an isolated evolution among islands, which becomes basins of attraction
for the low-quality migrants and, at the same time, prevents the best solution
from dominating the whole population.

However, we also notice that the fitness-based replacement (including the
worst-worst criteria) quickly degrades the accuracy of the algorithm when larger
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(a) Onemax: Cyclic with Noise
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(b) Onemax: Random (non-cyclic)

Fig. 1: Effect of the different migration policies in the performance of the dGA
for Onemax with Cyclic with Noise (a) and Random (b) change modes, and
severities (ρ = {0.05, 0.1, 0.2, 0.5, 1.0}).

movements of the optimum are considered (e.g., increasing the severity, including
noise, doing random changes). In these scenarios, replacing the most distant
individuals is many times a better migration policy, as you can observe in (see
Fig. 1) for the Onemax.

This good performance of distance-based replacement is due the enhancement
in the global diversity (low coupling among islands) and the speciation-like be-
havior of the dGA. The diversity enables the algorithm to react and adapt to
abrupt and discontinuous changes, while the speciation helps to store old optima
solutions that are useful to bias the search process in the future.

Therefore, in addition to the benefits of the worst-worst migration policy,
we underline that the replacement criterion is statistically significant and must
be taken into account when dealing with DOPs. This is an interesting finding,
since such parameter is often referred to as less important in the literature (see,
for example, [8] or [9]). In the next section we will deeply examine this issue by
analyzing the effect of the migration strategies on diversity.

6 Influence of the Migration Policy on Diversity

In this section, we analyze the influence of distinct migration policies on the
population diversity. For this purpose, we compute the standard deviation (STD)
among the individuals inside every island, and average the obtained values (intra-
deme diversity). We also compute the STD among the centroid individuals of the
islands (inter-deme diversity). Fig. 2 shows the obtained results for the MMDP
with random change mode and severity ρ = 0.5 (the same behavior has been
observed for the other problem instances).

You can notice from Fig. 2a that the distance-based replacement ensure a
high global (inter-deme) diversity. However, the frequent replacement of good
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(a) Inter-deme diversity
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(b) Intra-deme diversity

Fig. 2: Effect on the population diversity for the MMDP with random (Non-
cyclic) change mode and severity ρ = 0.5.

individuals, since they are far from the remainder members of the subpopula-
tion, reduce the local (intra-deme) diversity (see Fig. 2b). Consequently, each
island quickly converges to the local suboptima, and it is unable to track their
movements after a change.

The good performance previously noticed with this strategy (see Section 5)
was obtained for unimodal DOPs with high change severity, which is a hard
scenario to converge, and a rapid adaptation to the first stationary periods used
to succeed.

In addition, you can notice from Fig. 2b that the (worst-worst) migration
policy provides the best overall diversity. It also exhibits the loss of diversity
over time; however, this issue can be solved by considering mutation, or in-
corporating common dynamic optimization techniques like random-immigrants,
fitness sharing, etc.

7 Conclusions

In this paper, we have analyzed the influence of the migration selection and re-
placement criteria, two important parameters in the specification of dGA models,
for DOPs. We used a canonical version of the algorithm without mutation to
remove possible bias in the results and tested combinations of both quality and
distance-based migration policies. Finally, we used a comprehensive test environ-
ment based on real-world difficulties, with several change modes and severities.

On the one hand, results showed the benefits when both migrant selection
and replacement are chosen the least-fit individuals of each subpopulation. The
performance was notably better when addressing unimodal DOPs with small
changes. However, this migration policy also exhibits the loss of global diversity,
denoting unability to track the moving optima for a long time.

On the other hand, distance-based replacement strategies showed to be more
robust to track larger number of local optima, improving the speciation-feature
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of the population. However, it is not good to explore the changing landscape
efficiently, since it produces the early loss of local diversity.

In conclusion, we have shown how migration policies allow us to balance be-
tween search of optima solutions and track of environmental changes for adapting
to distinct dynamic optimization scenarios. In future works, we aim at develop-
ing adaptive or self-adaptive dGAs that exploit the main findings of this work
with respect to the migration policy, thus enhancing the local behavior of the
sub-populations with other techniques (random immigrants, fitness sharing, ...).
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