
Red Swarm: Smart Mobility in Cities with EAs

Daniel H. Stolfi, Enrique Alba
LCC, University of Malaga

ETSI Informática, Campus de Teatinos
29071, Málaga, Spain

{dhstolfi,eat}@lcc.uma.es

ABSTRACT
This work presents an original approach to regulate traffic by
using an on-line system controlled by an EA. Our proposal
uses computational spots with WiFi connectivity located at
traffic lights (the Red Swarm), which are used to suggest
alternative individual routes to vehicles. An evolutionary
algorithm is also proposed in order to find a configuration
for the Red Swarm spots which reduces the travel time of the
vehicles and also prevents traffic jams. We solve real scenar-
ios in the city of Malaga (Spain), thus enriching the Open-
StreetMap info by adding traffic lights, sensors, routes and
vehicle flows. The result is then imported into the SUMO
traffic simulator to be used as a method for calculating the
fitness of solutions. Our results are competitive compared
to the common solutions from experts in terms of travel and
stop time, and also with respect to other similar proposals
but with the added value of solving a real, big instance.

Categories and Subject Descriptors
I.6.3 [Simulation and Modeling]: Applications

Keywords
Application, evolutionary algorithm, road traffic, smart city,
smart mobility, WiFi connections

1. INTRODUCTION
Nowadays, cities are evolving quickly. Most citizens are

living in, using the services of, or thinking about moving to
big cities, which is a new source of complex problems. Smart
Cities is a world initiative leading to better exploit on of the
resources in a city in order to offer higher level services to
people. Smart cities are related to sensing the city’s status
and acting in new intelligent ways at different levels: peo-
ple, government, cars, transport, communications, energy,
buildings, neighborhoods, resource storage, etc.

One of the headlines of the strategy Europe 2020 is the
reduction of greenhouse gas emissions by at least 20% com-

.

pared to 1990 levels, an increment of the share of renewable
energy sources in the final energy consumption to 20%, and
a 20% increase in energy efficiency [1].

We believe that proposals like the one described here are
directly related to the strategy Europe 2020 as well as to the
smart cities initiative because we focus on the reduction of
travel times, fuel consumption, and CO2 emissions. We do
so by reducing traffic jams so that the daily life of citizens
in a smartcity improves.

To do this, we take advantage of the existent infrastruc-
ture in cities, such as traffic lights, open WiFi network, etc.,
in order to deploy several spots as a part of a collective
system, called Red Swarm, each one placed in junctions
with traffic lights and with the purpose of redirecting traffic
based on each vehicle’s destination. New routes are con-
structed with paths between Red Swarm spots, which re-
lieve congested roads by distributing vehicles in alternative
itineraries. Drivers are informed of the reroute proposed by
using an On Board Unit (OBU) installed inside the vehi-
cle which communicates with the infrastructure (V2I - car
or smartphone to Red Swarm spot), by using the electronic
panels placed around the city, or by using a portable device
such as a smartphone or tablet.

Traffic optimization has always been a healthy line of re-
search; now, even more so, with the utilization of ICT. There
are solutions that focus on adjusting the traffic light cycles
by using Particle Swarm Optimization (PSO) [4], or by using
a Genetic Algorithm (GA) and a Cellular Automaton (CA)
based traffic simulator [9], or by using optical information
systems to calculate the size of the jam at the affected junc-
tion [7]. However, they do not modify the route of vehicles
in advance, allowing drivers to make intelligent decisions as
they move around the city.

In [3], bus lanes are opened when an additional traffic
demand is recognized and in [5], a solution based on virtual
police agents which are aware of the traffic conditions in
their vicinity is presented. The former, only adds new lanes
to existing roads and does not reroute vehicles while the
later changes routes based on local information.

Recently, an approach which uses periodically emitted
beacons to analyze the current traffic state via VANETs [6]
was presented. It depends on V2V communications and the
number of vehicles emitting beacons. Our proposal does not
rely on the number of vehicles with a communication device
to reroute them (off-line), although it is necessary to tell the
driver of the suggested new route to follow.

The rest of this paper is organized as follows. In the next
section we introduce the System Architecture proposed in-

Figure 1: Component Schema of Red Swarm.

cluding the Evolutionary Algorithm and the steps taken to
define its parameters and also the Rerouting Algorithm used
in each Red Swarm spot. Section 3 presents the optimiza-
tion results as well as the comparative between the experts’
solution and the Red Swarm one, and finally in Section 4
conclusions and future work are given.

2. SYSTEM ARCHITECTURE
Our proposal, Red Swarm, is a computational system

which consists of:

1. Several Red Swarm spots distributed throughout the
city, installed at traffic lights which were chosen with
the aim of redirecting the traffic efficiently.

2. The Evolutionary Algorithm which obtains the config-
uration of each spot.

3. The Rerouting Algorithm which suggests alternative
routes based on the configuration of the system, so
that drivers can take one of these routes when they
enter the zone covered by a spot (WiFi)

In order to evaluate a configuration for the system we used
the traffic simulator SUMO (Simulator of Urban Mobility)
[2] in conjunction with TraCI (Traffic Control Interface) [10,
11]. SUMO is a microscopic traffic simulator which uses a
microscopic model of discrete time and continuous space.
Each moving vehicle implements the car-following model de-
veloped by Stefan Krauß in [8]. TraCI is an API which allows
an external source (the Rerouting Algorithm in our case) to
control SUMO as well as to obtain the state of the simulation
and change it properly.

Figure 1 presents a schema with the components of Red
Swarm. It shows the relation between the Evolutionary Al-
gorithm, the map of the city, the simulator SUMO, and the
configuration of the Red Swarm spots at design time. Dur-
ing execution time, the Rerouting Algorithm reads data from
the configuration while it exchanges information with vehi-
cles by using the Red Swarm spots. Each spot runs the same
rerouting algorithm but only uses the configuration portion
related to its own sensors.

2.1 Real Scenario
The scenario chosen is an area of the city of Malaga (in

Spain) which is well-known for suffering traffic congestion
at peak times, and it represents a typical challenge found
in most European cities (non linear streets). The area is
bordered to the north by Carreteŕıa Street, to the east by
Gutemberg Street, to the west by the Guadalmedina River,
and to the south by the Mediterranean Sea. In Figure 2

Figure 2: Malaga scenario for our smart mobility
proposal.

we show the map of the zone chosen, obtained from the
OpenStreetMap Project.

This zone contains eight inputs and eight outputs which
represent real streets of the urban area. As we stated before,
we used SUMO in order to simulate this vehicular environ-
ment by importing it from the project OpenStreetMap. This
technique could be applied to any other middle-sized city in
the world with little effort.

In order to implement the real model in SUMO, we had to
divide each Red Swarm spot into a number of sensors which
detect vehicles as they enter the area covered by the radio
link of the spot. The real system could have sensors freely
located or the detection could even be estimated off-line by
the traffic municipal service.

Then, we defined all possible journeys between inputs and
outputs from the zone in which vehicles follow the fastest
path. As a result, we had 64 itineraries available. Further-
more, we defined four different kinds of vehicles (sedan, van,
wagon, and transport), which are presented in Table 1 with
the purpose of analyzing a truly general scenario.

Table 1: Type and characteristics of vehicles.

Type
Arriving MaxSpd. Accel. Decel. Length

prob. (Km/h) (m/s2) (m/s2) (m)

sedan 0.50 160 0.9 5.0 3.8

van 0.25 100 0.8 4.5 4.2

wagon 0.15 50 0.7 4.0 4.3

transport 0.10 40 0.6 3.5 4.5

Finally, a problem instance was defined by different dis-
tributions of vehicle types, arriving time, arriving points
and destinations (flows). In the experiments conducted we
worked with three different instances. They were called
Sim1, Sim2, and Sim3.

2.2 Evolutionary Algorithm
As this is a very complex problem, the technique devel-

oped for obtaining a configuration for the group of spots
placed in the scenario was based on an Evolutionary Al-
gorithm. By using it we were able to explore the solution
space, looking to improve the current traffic flow in the city.

2.2.1 Representation
The structure defined, which contains the configuration of

each input to a Red Swarm spot (sensors) and the destina-
tions of the vehicles, is illustrated in Figure 3.

Figure 3: Problem representation.

If we look at the sensor S1 for example, it contains all
the possible destinations defined for the city (D1 to D8),
and each destination contains all the probabilities for all the
routes which start in S1. For the routes of D1 in S1, there
are RK1 different paths, some of them to the rest of sensors
and others to D1 itself. Therefore, for the routes of D2 in
S1, there are RK2 different paths, and so on. Consequently,
the solution vector contains all the probabilities associated
with routes from sensors to other sensors and from sensors to
destinations, arranged in blocks. In the scenario described,
the solution vector is made up of 1119 probabilities values,
which denotes the extreme complexity of this problem.

As presented in Equation 1, the result of the summation
of the probabilities for the routes inside a destination block
have to be equal to 1.0. Note that the subindex N identifies
the sensor, the subindex M identifies the destination, and
the subindex Ri, i ∈ [1−KN,M] identifies the different KN,M

routes starting with the sensor SN and belonging to the
destination block DM .

PSNDM = PN,M,R1 + · · ·+ PN,M,RKN,M

=

KN,M∑
i=1

PN,M,Ri = 1.0 (1)

2.2.2 Fitness Function
In order to evaluate each individual, we define the fitness

function presented in Equation 2 which is done by the addi-
tion of three terms.

F = α1(N − ntrips) + α2

∑
ttrip
N

+ α3

∑
tdelay
N

(2)

The first one represents the penalization for the vehicles
which are still in the city when the simulation is over. There,
N is the total number of vehicles in the scenario (800 in this
case), ntrips is the number of vehicles which complete their
trip during the simulation, and α1 is the weight of this term
in the fitness function.

The second term represents the average travel time for the
vehicles which complete the journey, being ttrip the travel
time of each one. The third term is the average time spent
by each vehicle waiting to enter the area because of red lights
or traffic jams. This time is called tdelay in the equation.

Finally, α2 and α3 are the weights applied to the average
travel time and to the average delay time, respectively. All
values involved in the calculation of the fitness function are
obtained from the results of the simulation run in SUMO

when it is configured with the Red Swarm spots or with the
experts’ algorithm.

2.2.3 Recombination Operator
We propose two different recombination operators: Sensor

Recombination and Destination Recombination. The first
one consists of a two-point recombination which selects a
range of sensors and their configurations from two individ-
uals and exchanges them. As a consequence, the offspring
obtained preserve part of their original sensor configuration
and get a new configuration for only some of them, as de-
picted in Figure 4. Additionally, the initial position and
the range of sensors are randomly chosen. Note that all
the random selections made by the operators (recombina-
tion and mutation) are based on the uniform distribution
implemented by the pseudo-random number generator in-
cluded in the programming language, Python.

Figure 4: Sensor Crossover.

The second one, the Destination Crossover, preserves the
configuration of the sensors along the routes that are be-
ing crossed, the exact opposite of what the other operator
does. This behavior keeps the routes of each destination
block unaltered after the crossing operation. Therefore, the
offspring will be composed by complete routes obtained from
both parents after the recombination.

2.2.4 Mutation Operators
We also propose several mutation operators. Each op-

erator makes changes to the probabilities of the routes for
sensors and destinations so that vehicles would take differ-
ent routes when the Red Swarm spots are configured with
different individuals. In this approach, we assigned proba-
bilities equal to either 0 or 1, keeping only one route active
in a destination block.

The ADOS operator (All Destinations - One Sensor) mod-
ifies the probabilities for all routes and all destinations in one
sensor. Note that the sensor is randomly chosen, as depicted
in Figure 6(a), where all routes for all destinations in S2 are
modified (shown in dark). This operator makes a number of
changes to the status vector but it only affects one sensor.

The MDOS operator (Multiple Destination - One Sensor)
changes all the routes for a few destination blocks in one
sensor. The sensor and the destination blocks are randomly
selected. As Figure 6(b) shows, this operator on average
modifies fewer routes than the previous one but more than
the next one. In this example, routes of blocks D2 and D8

in S2 are modified. The destination blocks whose routes are
changed are shown in a dark color.

The next operator, called ODOS (One Destination - One
Sensor), makes the least number of changes of the status
vector with respect to ADOS and MDOS. It selects only a
random sensor and a random destination block and changes
the routes associated with them. In Figure 6(c), we can
observe that S2 and D2 have been selected as the target of
the mutation operator.

The last two operators, ASMD (All Sensors - Multiple
Destinations) and ASOD (All Sensors - One Destination),

Figure 5: Destination Crossover.

(a) ADOS: All Destinations - One Sensor

(b) MDOS: Multiple Destination - One Sensor

(c) ODOS: One Destination - One Sensor

(d) ASMD: All Sensors - Multiple Destinations

(e) ASOD: All Sensors - One Destination

Figure 6: Mutation Operators.

make changes to each flow individually. In the example pre-
sented in Figure 6(d) we can see how the routes in D2 and
D8 are modified in all sensors, while in Figure 6(e), only D2

is modified in all the sensors. Note that the selection of the
destination blocks is made according to a uniform distribu-
tion of probability as in the rest of the operators.

2.2.5 Parameterization
First of all we need to evaluate the instances to know how

long it takes for vehicles to complete their itineraries, and
obtain a fitness value for each one in order to compare them
with the solutions that we later calculate.

We worked with three different simulations called EXP1,
EXP2, and EXP3, corresponding with the simulations in
which routes are defined by using the experts’ algorithm,
run in the scenarios sim1, sim2 and sim3 respectively.

As stated before, we assigned 100 vehicles to each one of
the eight flows to obtain the values presented in Table 2.
Vehicles arrived in the scenario in the first 100 seconds and
after 1500 seconds all the vehicles had left the city, as de-
picted in Figure 7. Based on this value, we set the maximum
simulation time to 1800 seconds (30 minutes), in order not

Figure 7: Vehicles in the city during the first 1800
seconds.

to excessively penalize solutions which last for more than
the longest time spent in the EXPx simulations, but which
could have a lower than average travel time.

Table 2: Results produced by the experts’ algo-
rithm.

Metric EXP1 EXP2 EXP3

Trips Completed 800 800 800

Simulation Time (s) 1283 1253 1385

Minimum Fitness 532.9 530.8 549.0

The parameters for the Evolutionary Algorithm imple-
mented are presented in Table 3. We worked with a pop-
ulation of ten individuals and in each new generation, two
new descendants were created (crossover probability equal to
1.00), in order to implement a (10+2)-EA algorithm. Then,
three in four descendants were mutated (mutation proba-
bility equal to 0.75) to provide genetic variety and finally,
the new generation was updated following an elitist strategy.
The algorithm was executed for 5000 generations to achieve
each solution.

Additionally, α1 was set to 900 (half of the simulation
time), and α2 and α3 were set to one. By using these values,
we penalized vehicles which did not finish their itinerary (α1)
and therefore were still stuck on their journey through the
city when the simulation ended. Moreover, we assigned the

Table 3: Parameters of the Evolutionary Algorithm.

Simulation Time (s) 1800

Population Size 10

Offspring Size 2

Crossover Probability 1.00

Mutation Probability 0.75

Number of Generations 5000

(α1, α2, α3) (900, 1, 1)

same weight to the travel time (α2) and to the delay time
(α3) because they are equally important for us.

Once the algorithm had been configured, we evaluated the
proposed operators. The results are reported in Table 4.

Table 4: Evaluation of operators.

Operators Avg. StdDev. Min. Conver.

Sensor: ADOS 3557.9 11403.5 555.8 93.8%

Sensor: MDOS 5057.4 9660.2 551.1 93.8%

Sensor: ODOS 6732.9 16455.4 548.4 81.3%

Sensor: ADOS-ODOS 1066.2 2901.1 512.7 94.6%

Sensor: ADOS-MDOS 1329.6 2908.2 516.0 100.0%

Dest.: ADOS 2347.5 6744.8 548.0 100.0%

Dest.: ODOS 803.5 700.8 555.9 100.0%

Dest.: ASMD 36199.5 18174.6 13309.0 87.5%

Dest.: ASOD 5273.9 16606.8 576.2 100.0%

Dest.: ADOS-ODOS 906.9 1758.6 518.8 90.0%

Dest.: ASMD-ASOD 5101.2 11110.6 591.9 43.3%

Note that we also tested combined mutation operators
within the algorithm because they allowed us to get better
results by using a faster mutation operator at the beginning
of the execution, and then switching to a slower one when
the fitness of the best individual is lower than a threshold.
The value of the threshold was empirically set to 1000.

Based on the data in Table 4 we selected the Sensor Cross-
over as the recombination operator, while for the mutation
operators we decided to start with ADOS and later change
to ODOS. This combination was selected because it pro-
duced the best minimum value in spite of the fact that the
average and the convergence percentage (Conver.) were not
the best of the comparative.

Using the first mutation operator (ADOS) we quickly ex-
plore the data space. Then, when all the vehicles have
finished their itineraries within the simulation time (which
makes the best fitness of the population fall below the thresh-
old value), we switch to the second one (ODOS).

By using the ODOS mutation, the search space is carefully
explored by mutating only the probability of the routes in-
cluded in just one destination block in one sensor. This only
affects a small proportion of the Red Swarm spots, allowing
the improvement of the solution in small steps.

2.3 Rerouting Algorithm
When a vehicle enters the simulation, SUMO assigns one

of the eight destinations available as well as the correspond-
ing route to it. Later, when the vehicle enters the coverage
area of the Red Swarm spot (in the simulation it is detected
by a sensor), the Rerouting Algorithm presented in Algo-
rithm 1, is executed.

Algorithm 1 Rerouting Algorithm.

procedure Rerouting(vehicle)
currentRoad← getRoad(vehicle)
if isDestination(currentRoad) then

newroute← currentRoad
else

routes← getDestinationRoutes(currentRoad)
if routes = [] then

routes← getSensorRoutes(currentRoad)
newroute← getRouteByProbability(routes)

end if
end if
setNewRoute(newroute, vehicle)

end procedure

First, the current road is obtained from the vehicle and
the destination is checked because if the vehicle is on the
last road of its itinerary, no rerouting is done. Otherwise,
all the routes from the current road to the destination of the
vehicle are obtained from the configuration.

Then, if there are no routes to the destination (it is not
reachable from the current position), the algorithm will ob-
tain all routes from the current road to the rest of sensors.

Next, one of the routes from the current road to another
road containing a sensor is chosen taking into account the
probability stored in the configuration.

Finally, the route of the vehicle is changed to the new one
and the process ends.

2.4 Experimental Settings
To optimize each traffic distribution we carried out 35 in-

dependent runs on the cluster belonging to the NEO (Net-
working and Emerging Optimization) group, consisting of
16 nodes, each equipped with an Intel Core2 Quad CPU
(Q9400) @ 2.66GHz and 3.5 GB of RAM, running GNU/-
Linux 3.2.0-34. By using this hardware, each new generation
took about 15 seconds to be calculated, and each execution
of the algorithm lasted about 22 hours, having spent about
9 days of computation on the whole optimization process.

3. ANALYSIS OF RESULTS
Table 5 presents the number of trips completed (# Trips

Comp.), the total simulation time (Total Time), and the
minimum fitness value (Min. Fitness) for the scenarios which
are routed according to experts’ criteria implemented in
SUMO. These results were achieved by optimizing the three
scenarios separately.

Table 5: Comparison between the experts’ algo-
rithm and Red Swarm.

Metric
Experts’ algorithm Red Swarm

Sim1 Sim2 Sim3 Sim1 Sim2 Sim3

Trips Comp. 800 800 800 800 800 800

Total Time (s) 1283 1253 1385 1154 1201 1194

Min. Fitness 532.9 530.8 549.0 512.7 530.2 513.0

With this data, we conducted the robustness test by ap-
plying the three best available solutions (belonging to the
three traffic distributions) to the other simulations in order
to discover which one was the most robust. That is, Sim1

was simulated with the configuration of the solutions sol2
and sol3 ; Sim2, with the configuration of sol1 and sol3 ;
and finally, Sim3, with sol1 and sol2.

Table 6 demonstrates the improvement of using sol1 to
configure the second simulation instead of using sol2. Al-
though sol3 is a better configuration than sol1 for Sim3,
the average value achieved by sol1 is the best of the three.
These results encouraged us to select sol1 as the most robust
solution to configure the Red Swarm spots.

Table 6: Minimum fitnesses obtained from the ro-
bustness test.

Red Swarm
Expert

sol1 sol2 sol3

Sim1 512.7 552.2 546.9 532.9

Sim2 523.5 530.1 555.4 530.8

Sim3 533.3 546.4 513.0 549.0

Average 523.2 542.9 538.4 537.6

In tables 7 and 8 we present the best results achieved
with the aim of optimizing the traffic in the city center of
Malaga. The average values of waiting time and travel time
for all Red Swarm simulations are lower than the experts’
solution. There are values such us the initial delay and route
length which were not improved by our Red Swarm system,
especially the latter as it is not included in the fitness func-
tion. Initial delays are higher (avg. 2.3%) mainly due to
the traffic lights situated near the input streets where the
vehicles arriving still need to be rerouted by a Red Swarm
spot. Route lengths are also longer (avg. 5.3%) because we
were rerouting vehicles via roads which are not part of the
best path selected by the experts.

However, we achieved a maximum improvement of 20.2%
in the average waiting time and 5.3% in the average travel
time. So, it seems that experts just take into consideration
the traveled distance, while the time is much better if we
want to consider the comfort of reduced waiting at traffic
lights and at traffic jams, and the reduced gas emissions
thanks to this (continuous driving).

The distribution of the results is demonstrated in Figure 8
where the improvement achieved is presented in four box
plots. Note that waiting times and travel times present lower
values for R-S than the experts’ solution.

Furthermore, we compare the total time needed by the
vehicles to leave the city when we increment the number of
arrivals in each input, in steps of 80 vehicles (ten per input).
Figure 9 indicates how the Red Swarm system is actually an
effective solution when the number of vehicles is higher than
a certain value. So, when the number of vehicles in the area
being studied is above 360 (400, 540) the utilization of our
Red Swarm is profitable for the city. This number of cars
is of course realistic for this part of the city (many more
in general), thus explaining why the town hall is currently
interested in a prototype.

Finally, we compare our proposal with the best configu-
ration obtained from the execution against the RANDOM
algorithm, which randomly looks for solutions during a time
equivalent to that spent by the Evolutionary Algorithm we
used. The results obtained by using a random search show
a highly negative impact on the quality of solutions: cars
are not advised of useful routes to their destinations. Many
vehicles even remain in the system at the end of the pe-

(a) Initial delay (b) Waiting time

(c) Travel time (d) Route length

Figure 8: Box plot representation of the distribution
of the results for the experts’ solution (EXP) and
the Red Swarm (R-S).

(a) Sim1 (b) Sim2

(c) Sim3

Figure 9: Exit Time vs Number of Vehicles. Note
that the vertical line indicates the lowest number of
vehicles, from which the optimization is effective.

riod studied (63 vehicles for Sim1, 90 for Sim2, and 152 for
Sim3). The reader might be thinking why we are report-
ing the behavior of a pure random algorithm: the reason is
to perform a sanity check on the validity of our EA. It is

Table 7: Metrics of experts’ solution, Red Swarm, and RANDOM.

Metric
Experts’ solution Red Swarm RANDOM

Sim1 Sim2 Sim3 Sim1 Sim2 Sim3 Sim1 Sim2 Sim3

Trips Completed 800 800 800 800 800 800 737 710 648

Total Time (s) 1283 1253 1385 1154 1164 1206 1800 1800 1800

Minimum Fitness 532.9 530.8 549.0 512.7 523.5 533.3 57459.5 81797.6 137547.3

Table 8: Results of experts’ solution and Red Swarm.

Metric
Experts’ algorithm Red Swarm Rate

Avg. StdDev. Median Avg. StdDev. Median (Avg.)

sim1

Initial delay (s) 123.0 103.1 92.0 123.4 104.1 95.0 0.3%

Waiting time (s) 151.8 130.3 121.0 128.6 106.4 112.0 -18.0%

Travel time (s) 409.9 237.8 389.5 389.2 214.2 383.5 -5.3%

Route length (m) 1491.4 767.6 1577.1 1565.4 853.6 1595.5 4.7%

sim2

Initial delay (s) 124.7 102.5 96.5 127.8 104.8 98.0 2.4%

Waiting time (s) 146.3 127.4 113.0 129.1 98.1 110.0 -13.3%

Travel time (s) 406.1 234.1 388.0 395.7 213.8 377.0 -2.6%

Route length (m) 1477.7 777.9 1570.2 1566.3 845.9 1593.0 5.7%

sim3

Initial delay (s) 127.0 107.3 94.0 132.7 111.2 98.5 4.3%

Waiting time (s) 161.2 153.3 114.0 134.1 110.9 112.5 -20.2%

Travel time (s) 422.0 260.3 392.5 400.6 213.7 405.0 -5.3%

Route length (m) 1506.9 753.9 1598.0 1594.8 834.3 1803.9 5.5%

quite common for researchers to not carry out such a sanity
check, reporting results of algorithms that can be beaten by
random search. We simply do not want this to happen here,
and that is why we include its numerical results.

Data from the RANDOM executions are presented in Ta-
ble 7. While in Figure 10 the graphs of the number of ve-
hicles in the city vs. the total time for the three executions
are illustrated.

The main reason for such a poor performance of RAN-
DOM is that there were a number of vehicles moving in
circles around the city because the Red Swarm spots did
not reroute them properly towards their destination due to
a suboptimal configuration.

In Figure 11 we show two photorealistic snapshots ex-
ported from SUMO to Google EarthTM. The first one shows
the path followed by a vehicle routed by the experts’ algo-
rithm and the second one presents the new route set by the
Red Swarm spot placed at the junction in the center of the
figure. This behavior is repeated each time a vehicle arrives
in the surrounding area of a Red Swarm spot and the new
route will depend on the destination of each vehicle as well
as the configuration of the spot.

4. CONCLUSIONS
In this paper, we have presented an innovative approach

for preventing traffic jams. The results confirm that road
traffic can be improved by using our proposal, especially
in high density conditions (e.g. peak times, construction,
accidents reducing the available streets, etc.). Although the
average travel time was only 5.3% better than the solution
of the experts, we lowered the waiting time of the vehicles
by 20.2%. That means that drivers are wasting less time

(a) Sim1 (b) Sim2

(c) Sim3

Figure 10: Traffic Density for experts’ algorithm
(EXP), RANDOM (RND), and Red Swarm (R-S).

(about 23 second less on average) waiting at a red light and
in each traffic jam.

As a matter for future work, we plan to expand the size
of the analyzed region as well as include a larger number of

Figure 11: Route computed by experts’ algorithm vs. route computed using Red Swarm.

Red Swarm spots which will also provide more alternative
routes between each other.

For preliminary results for our future work, we have tested
Red Swarm in 30 extra scenarios, different from the ones
analyzed here. Our proposal not only has worked in all these
scenarios but has also outperformed the experts’ solution in
20 of them (66.7%).

Red Swarm will not only provide alternative routes for
every single car in the city, but will also be able to collect
information from the cars (in an anonymous way) permitting
local authorities to better know the on-line and historical
data of the city to actually help the evolution to a modern
smart city.

We are also working on reducing green house emissions.
As road traffic is one of the main sources of pollution, in
future work we will include metrics of pollutant emissions
and fuel consumption as SUMO implements them.

5. ACKNOWLEDGMENTS
Authors acknowledge funds from the Ministry of Economy

and Competitiveness and FEDER under contract TIN2011-
28194 (roadME http://roadme.lcc.uma.es).

6. REFERENCES
[1] Communication From the Commission - Europe 2020.

Technical report, 2010. A strategy for smart,
sustainable and inclusive growth.

[2] M. Behrisch, L. Bieker, J. Erdmann, and
D. Krajzewicz. SUMO - Simulation of Urban
MObility: An Overview. In SIMUL 2011, The Third
International Conference on Advances in System
Simulation, pages 63–68, October 2011.

[3] L. Bieker and D. Krajzewicz. Evaluation of opening
bus lanes for private traffic triggered via V2X
communication. In Integrated and Sustainable
Transportation System (FISTS), 2011 IEEE Forum
on, pages 48–53. IEEE, 2011.

[4] J. Garcia-Nieto, E. Alba, and A. Olivera. Enhancing
the urban road traffic with Swarm Intelligence: A case

study of Córdoba city downtown. In Intelligent
Systems Design and Applications (ISDA), 2011 11th
International Conference on, pages 368–373. IEEE,
2011.

[5] A. Gomez, G. Diaz, and K. Boussetta. How Virtual
Police Agents can help in the traffic guidance? In
Wireless Communications and Networking Conference

Workshops (WCNCW), 2012 IEEE, pages 360–364.
IEEE, 2012.

[6] F. Knorr, D. Baselt, M. Schreckenberg, and
M. Mauve. Reducing Traffic Jams via VANETs.
Vehicular Technology, IEEE Transactions on,
61(8):3490–3498, oct. 2012.

[7] D. Krajzewicz, E. Brockfeld, J. Mikat, J. Ringel,
C. Rössel, W. Tuchscheerer, P. Wagner, and
R. Wösler. Simulation of modern traffic lights control
systems using the open source traffic simulation
SUMO. In Proceedings of the 3rd industrial simulation
conference, pages 299–302, 2005.

[8] S. Krauß. Microscopic modeling of traffic flow:
Investigation of collision free vehicle dynamics. PhD
thesis, Universitat zu Koln., 1998.

[9] J. Sánchez, M. Galán, and E. Rubio. Applying a
traffic lights evolutionary optimization technique to a
real case: “Las Ramblas” area in Santa Cruz de
Tenerife. Evolutionary Computation, IEEE
Transactions on, 12(1):25–40, 2008.

[10] A. Wegener, H. Hellbrück, C. Wewetzer, and
A. Lubke. VANET Simulation Environment with
Feedback Loop and its Application to Traffic Light
Assistance. In GLOBECOM Workshops, 2008 IEEE,
pages 1–7. IEEE, 2008.

[11] A. Wegener, M. Piórkowski, M. Raya, H. Hellbrück,
S. Fischer, and J. Hubaux. TraCI: an interface for
coupling road traffic and network simulators. In
Proceedings of the 11th communications and
networking simulation symposium, pages 155–163.
ACM, 2008.

	Introduction
	System Architecture
	Real Scenario
	Evolutionary Algorithm
	Representation
	Fitness Function
	Recombination Operator
	Mutation Operators
	Parameterization

	Rerouting Algorithm
	Experimental Settings

	Analysis of Results
	Conclusions
	Acknowledgments
	References

