
J. Favaro and M. Morisio (Eds.): ICSR 2013, LNCS 7925, pp. 326–342, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Composition and Self-Adaptation
of Service-Based Systems with Feature Models

Javier Cubo, Nadia Gamez, Lidia Fuentes, and Ernesto Pimentel

Dpto de Lenguajes y Ciencias de la Computación, Universidad de Málaga
{cubo,nadia,lff,ernesto}@lcc.uma.es

Abstract. The adoption of mechanisms for reusing software in pervasive
systems has not yet become standard practice. This is because the use of pre-
existing software requires the selection, composition and adaptation of
prefabricated software parts, as well as the management of some complex
problems such as guaranteeing high levels of efficiency and safety in critical
domains. In addition to the wide variety of services, pervasive systems are
composed of many networked heterogeneous devices with embedded software.
In this work, we promote the safe reuse of services in service-based systems
using two complementary technologies, Service-Oriented Architecture and
Software Product Lines. In order to do this, we extend both the service
discovery and composition processes defined in the DAMASCo framework,
which currently does not deal with the service variability that constitutes
pervasive systems. We use feature models to represent the variability and to
self-adapt the services during the composition in a safe way taking context
changes into consideration. We illustrate our proposal with a case study related
to the driving domain of an Intelligent Transportation System, handling the
context information of the environment.

Keywords: Service Composition, Self-Adaptation, Feature Models.

1 Introduction

Current pervasive systems are composed by a wide variety of services and devices.
To reduce effort and costs, these systems may be developed using existing
Commercial-Off-The-Shelf (COTS) components or (Web) services implemented by
different vendors. Technologies such as Service-Oriented Architecture (SOA) [1]
enable the building of fully working systems, as efficient as possible to improve the
software reusability. The adoption of mechanisms for reusing software in pervasive
systems has not yet become standard practice. This is because the use of pre-existing
software requires the selection, composition and adaptation of prefabricated software
parts. The discovery process aims to discover the most suitable services for a client
request. The adaptation process solves, as automatically as possible, mismatch cases
which may be given at the different interoperability levels among interfaces, while
services are composed. Moreover, reusing software in critical domains (medical,
automotive, aeronautics or security) is a difficult task, due to real complex problems
such as guaranteeing high levels of efficiency and safety. For instance, in particular,

 Composition and Self-Adaptation of Service-Based Systems with Feature Models 327

the driving domain within the Intelligent Transportation Systems1 (ITS) is a complex
and safety critical environment. ITS are comprised of autonomous vehicles that can
operate with minimum input from the driver. One of the critical aspects in this domain
is the driver’s interaction with the traffic environment. Therefore, these systems need
to be developed taking into account the variability of the complex driving domain,
which involves a dynamic adaptation to changing situations in the traffic
environment, in order to fit the driver’s safety and needs.

In addition to the wide variety of services (with different behaviours, components,
elements, etc.), pervasive systems are composed of many networked heterogeneous
devices (sensor nodes, smartphones, tablets, vehicles’ on-board computers, or devices
with RFIDs or cameras) with embedded software. Therefore, the heterogeneity can be
present at any level. This can be addressed by using Software Product Line (SPL)
engineering [2], which specifically focuses on variability management. SPLs aim to
provide techniques for creating infrastructures that allow the rapid and systematic
production of similar software systems, promoting the reuse of common core assets.

SOA and SPL approaches to software development share a common goal. They
both encourage an organization to reuse existing assets and capabilities, rather than
repeatedly redevelop them for new systems [3]. Then, we use these two
complementary technologies to promote the safe composition in service-based
systems. These systems have to be capable of handling changing situations during the
composition, called context changes. Context information plays an important role in
pervasive systems, to control their reaction depending on certain situations or to fit
the user’s needs. So, it is essential to manage contexts while composing services.

For this reason, as an initial attempt to solve these issues, we have developed and
validated with several examples, the DAMASCo framework [4] based on SOA, which
focuses on reusing services in pervasive systems accessed via their public interfaces,
by means of context-aware service discovery, composition and adaptation.

However, DAMASCo still has some limitations as regards the service composition,
since it does not take into account the variability of the services during the
composition, which may also be changing depending on the contexts. We therefore
need to address this new challenge of managing the variability of both services and
contexts during the service composition process at runtime.

Feature Models (FM) [5] have been widely adopted by the SPL community to
specify which elements, or features, of a family of products are common and which
are variable. Then, a feature model permits the specification of where the variability
is, independently of the core asset, and enables reasoning about all the different
possible configurations of a family (corresponding to a service family in our case).

Therefore, in order to overcome the current restrictions of DAMASCo, in this
work, as the main contribution, we propose to extend the DAMASCo framework with
feature models to handle the runtime composition by means of service family
discovery and self-adaptation when required. Thus, we use feature models to
represent the variability of the services and to enable the service composition to
dynamically reconfigure them when needed taking the context changes into account.
To this end, we make use of Dynamic Software Product Lines (DSPLs) [6, 7], an
emerging field that produces families of software products capable of adapting to

1 http://www.ewh.ieee.org/tc/its/ Accessed on 4 February 2013.

328 J. Cubo et al.

requirements that change at runtime. Following this paradigm, the service
composition will be performed by selecting, at runtime, a specific configuration of the
service family adapted to the context requirements. To illustrate our proposal, we use
a case study related to the driving domain of an ITS, in which we compose pre-
existing services and adapt them to satisfy a client request.

The remainder of the paper is organized as follows. In Section 2, we show the
motivation behind our proposal, comparing it with related work. Section 3 presents
the DAMASCo framework as the background to our approach and explains how it is
extended with feature models. In Section 4, we define a mapping between the
intermediate interface model used by DAMASCo and the feature models, and we
apply our approach to a case study in the ITS domain. Section 5 presents a discussion
of how our proposal overcomes some limitations of DAMASCo related to the
variability of service-based systems. Finally, in Section 6 we outline some
conclusions and plans for future work.

2 Related Work

In the last times there have been several approaches [8,11,12,13,14,15,16,17,18] that
take advantage of using Dynamic Software Product Lines applied to Service Oriented
Architectures. The rationale behind this is twofold: (i) the loosing coupling in SOAs
can provide DSPLs with the technical underpinnings of flexible feature management;
(ii) DSPLs can provide the modeling framework to undersign a self-adaptative SOA-
based system by highlighting the relationships among its parts [8].

Following this convergence, in [8], with the purpose of reconfiguring service-
oriented systems at runtime, the authors use the Common Variability Language2
(CVL) to augment processes defined in the Business Process Execution Language
(BPEL) [9] with variability, which makes it possible to easily generate a DSPL and
they use a dynamic version of BPEL to manage and run it. Although this approach is
very focused on two particular languages (CVL and DyBPEL), the feasibility of
combining these two technologies is demonstrated. In our case, we exploit this
combination for managing not only the dynamic reconfiguration, but also the safe
composition and self-adaptation of services described using different business process
languages without the need for any knowledge of variability languages. This is an
important advantage because we define a mapping to automatically create the feature
model representing a family of services from a business process specification. Our
framework uses an intermediate interface model that can be generated from different
platforms such as BPEL or Windows Workflow Foundation, WF [10].

With a similar motivation as our approach with regard to the necessity of SOA-
based systems manage their inherent variability, in [11], SPL concepts to model SOA
systems as service families are used. As we propose, the modeling of the SOA
variability is performed by means of feature modeling and commonality/variability
analysis technique. Particularly, SoaML3 is extended with variability modeling
notation. The main benefit of this approach is that different service variants can be

2 http://www.omgwiki.org/variability/doku.php Accessed on 4 February 2013.
3 http://www.omg.org/spec/SoaML/ Accessed on 4 February 2013.

 Composition and Self-Adaptation of Service-Based Systems with Feature Models 329

explicitly modeled, thus maximizing their reusability. However, this is not used to
help the adaptation of the SOA systems at runtime. The authors study this task in [12],
in which a member of the architecture can be dynamically adapted to a different
member of the family at runtime. However, unlike our proposal, they do not deal with
the service composition nor provide an automatic mapping to avoid SPL non-
specialists have to handle with variability languages.

Montero et al. [13, 14] define a mapping between Feature Models and Business
Process Model Notation4 (BPMN) They provide a new semantic for feature models
[13] in order to automate the family engineering process, obtaining the structure of a
business process by means of model driven transformations. In [14], they propose the
product evolution model for modeling runtime variability in business-driven systems
to represent in which trigger events a business process evolves and how this evolution
is managed. We also define a mapping, but with a different goal. Thus, we focus on
representing the services, variability with feature models and using the DSPL
paradigm to reconfigure them in order to make the service composition possible, by
supporting the context changes.

Another approach that captures the variability in Business Process Modes is
Provop [15], a framework for modeling and managing large collections of business
process variants. In comparison to our proposal, they only mention allowing the
dynamic reconfiguration of process variants at runtime as a future challenge, while we
directly tackle this issue in this work.

In [16], the problem context-aware Dynamic Service-Oriented SPLs is tackled. The
goal of this work is to simultaneously define at the same time a service-oriented and
context-aware product derivation that monitors the context evolution in order to
dynamically integrate the appropriate assets inside a running system where, as we
propose, their target platforms follow the service-oriented approach. The authors
address the self-adaptation problem, but they do not consider the service composition.
In addition, as we have previously argued, our approach avoids forcing the definition
of the services using feature models, since we propose an automatic mapping for this.

Finally, there are several approaches that use feature models to deal with the
service composition [17, 18]. In [17] the matching between services during the
composition is performed with feature models. The authors use feature modeling
techniques to specify the variability of provided and required services, thus increasing
the flexibility of the matching process. They define a mapping, but unlike us they do
not provide any explanation of how the service self-adaptation process is performed.
White et al. [18] use feature models to derive a new and correct service composition
when a failure occurs. They demonstrate that leveraging feature models to
automatically derive new service compositions, when a dependent service fails, the
complexity of needing to model each individual error is eliminated. We also take
advantage of this benefit, not only for composing the services when an error occurs
but also for composing and self-adapting services that must work together correctly.

In summary, we take the demonstrated advantages of combining SOA and DSPL
technologies by extending the DAMASCo framework with feature models, in order to
manage the service variability during the discovery and composition of a service and
to self-adapt the services when the context changing situations require it.

4 http://www.omg.org/spec/BPMN/ Accessed on 4 February 2013.

330 J. Cubo et al.

3 Our Approach

In this section, we first present the DAMASCo framework as the foundation of our
approach which will then be described. It consists of extending this framework with
feature models to support service composition whilst managing the variability safely.

3.1 Background: Service Reuse with DAMASCo

DAMASCo focuses on discovery, composition, adaptation and monitoring related to
context-aware pervasive systems, where devices and applications dynamically find
and use components and services from their environment.

It is based on SOA, the foal of which is to achieve loose coupling among
interacting services, which is necessary and beneficial to the industry. However, SOA
needs to be more agile and easier to model and reuse service applications. Modeling
techniques, designing architectures, and implementing tools to support adaptation of
the dynamic aspects in these systems represent new challenges in this research field.
To address this, DAMASCo uses a model-based service-oriented architecture
approach that makes the design, development and deployment of processes more
agile. We focus on pervasive systems, such as ITS domain systems, composed of a
service repository, users (clients requesting services), and a shared domain ontology.

DAMASCo adopts an expressive and user-friendly graphical notation based on
transition systems, which reduces the complexity of modeling services. In addition, to
discovering services, in DAMASCo, operation profiles of a signature refer to OWL-S
concepts with their arguments and associated semantics. Once services have been
discovered, in the case there are mismatch problems, an adaptor to solve problems is
automatically generated using software adaptation. An adaptor is a third-party service
in charge of coordinating services involved in the system. The whole process consists
of a set of processes constituting the DAMASCo architecture, as shown in Fig. 1. The
elements of DAMASCo have been implemented in Python as a set of tools which
generate a framework integrated in the toolbox ITACA5.

Service Interfaces. Each interface in DAMASCo is made up of a context profile, a
signature, and a protocol specified as a transition system. At the user level, client and
service interfaces can be specified by using: (i) context information in XML files for
context profiles; we assume context information is inferred by means of the client’s
requests, in such a way that as a change occurs the new value of the context attribute
is automatically sent to the corresponding service; (ii) WSDL6 descriptions are used
for describing the signatures in service-oriented platforms; and (iii) business
processes defined in industrial platforms, as BPEL processes or WF workflows, for
protocols that define service behavior. We consider clients and services implemented
as business processes which provide the WSDL and protocol descriptions.

5 Accessible at http://itaca.gisum.uma.es
6 http://www.w3.org/TR/wsdl Accessed on 4 February 2013.

 Composition and Self-Adaptation of Service-Based Systems with Feature Models 331

Model Transformation. First, interface specifications, which have not been
previously transformed by the framework, are abstracted (Fig. 1, tag A). Context-
Aware Symbolic Transition Systems (CA-STSs) are extracted from the BPEL
services or WF workflows, which implement the client(s) and services, through our
model transformation process [19]. We have defined CA-STS as an extension of
Labelled Transition Systems (LTS) [20]. These intermediate models are graphical
user-friendly, and CA-STS permits capturing contexts and their changes at runtime.

Semantic-Based Service Discovery. Then, a service discovery process (Fig. 1, tag B)
finds out services satisfying the client’s request, i.e., with compatible capabilities to
the client requirements based on similar contexts, semantic matching of signature, and
behavioural compatibility. Our process identifies mismatch situations using
ontologies and synchronous product [20] to determine if adaptation is required or not.

Composition and Adaptation. If adaptation is not required, then the services of the
systems are already deployed without having to adapt them, only performing the
composition of them. Otherwise, a full service composition and adaptation process is
executed (Fig. 1, tag C). Thus, an adaptation contract to solve mismatch problems is
automatically obtained, and a CA-STS adaptor specification is generated [19]. Next,
the corresponding BPEL or WF adaptor service is obtained from the CA-STS adaptor
specification using our model transformation process (Fig. 1, tag D). Finally, the
whole system is deployed, allowing the client and services to interact via the adaptor.

However, DAMASCo does not take into account the possible variability of the
services when the matching is performed, nor the variability in the context changes.
Therefore, to make our approach more useful, we propose extending DAMASCo by
managing the service variability with feature models to safely handle the variability in
the composition and self-adaptation of the services at runtime.

Fig. 1. DAMASCo framework architecture

332 J. Cubo et al.

3.2 Adding Feature Models to Support Safe Composition

Here, we explain how we integrate the feature models into DAMASCo, as shown in
Fig. 2, in order to deal with the variability of the services during the composition.
First though we briefly describe some necessary concepts of feature models.

Formally, a Feature Model [5] is a hierarchical decomposition of features to
specify which elements of a family of products are common, which are variable and
the reasons why they are variable, i.e., whether they are alternative or optional
elements. Furthermore, apart from the relationship between the features in the
diagram (called tree constraints), a feature dependency analysis can identify
dependencies between features (called cross-tree constraints). Examples of such
dependencies are the mutual dependency and mutual exclusion relationships. A
feature model configuration is the selection of a set of features belonging to
the feature model. A configuration is valid if all the features are contained in the
configuration, and the non-selection of all other specific features is allowed by the
feature model [21]. Thus, a valid configuration must satisfy the tree and cross-tree
constraints. In our case, every valid configuration represents a potential service, but
only a subset of all these possibilities are already deployed in the service repository.

Fig. 2. FM-DAMASCo framework architecture

Firstly, in addition to the BPEL/WF service descriptions, we have a feature model
for each service that describes its variability, i.e., the service family. Then, each
business process corresponds with a valid configuration of the feature model that
represents it, i.e., a specific product of the service family. These feature models can be
designed by a user developer. Nevertheless, if we do not want to force them to have
all the services represented by feature models, we can automatically generate the
feature model that contains the variability corresponding to a specific service instance
using the mapping that we will describe in Section 4. We focus on the representation
of the service variability with respect to the context, for instance, a navigation service

 Composition and Self-Adaptation of Service-Based Systems with Feature Models 333

family may have traffic management as an optional feature, and so, this feature can be
selected in a configuration where road traffic information at real time has to be
considered as part of the context.

After a client executes a request, both the DAMASCo model transformation and
the semantic-based service discovery process (Fig. 2, tags A and B) are activated. The
semantic discovery, as previously described, tries to find the proper services for the
client’s request. However, due to the high variability of the services, it is possible that
although a service instance of the repository matches the request, a small variation of
a service could be enough to match exactly. For example, let us imagine there is no
deployed navigation service with a traffic monitoring component, but there is a traffic
feature in the navigation service family. In this case we need to incorporate a new
process to the DAMASCo framework, that we call service family discovery (Fig. 2,
tag E). We use the feature models to find a new matching, regarding the features that
may suit a certain context. If the family discovery process finds the service family
with the adequate feature for the context, a new valid configuration of that family
containing this feature is automatically created by our feature modeling tool, Hydra7.
We want to highlight the new configuration is valid, so, both tree and cross-tree
constraints specifying restrictions between the components and context are satisfied.
Hydra cannot create a configuration that does not satisfy the restrictions, so the
reconfiguration is done safely, as invalid configurations are not possible.

Once the configuration representing the particular services is automatically
generated by Hydra, the new service self-adaptation process added to DAMASCo
(Fig. 2, tag F) is executed. Then, the CA-STS (intermediate interface model)
corresponding with this feature model configuration is automatically created using the
mapping defined in Section 4. Finally, this new CA-STS interface is transformed into
a WF/BPEL process, following the procedure explained in Section 3.1, which is
composed with the other services to satisfy the request.

4 Self-Adaptation Using Feature Models

To illustrate our proposal, we firstly present a driving domain scenario of an ITS. We
assume some services have been implemented, and we manage the service
composition handling the changing situations of the environment. Secondly, we
define a mapping to generate the correspondences between the CA-STS model
representing a service interface and the feature model of a service family. Lastly, we
apply the mapping and the self-adaptation process to our case study.

4.1 Case Study: A Driving Domain

Our example consists of a driver and a service repository, whose services may be
composed to get a specific purpose. The driver can perform a navigation request, and
depending on context and service variations, the system must be adapted to work
correctly in any situation. Services such as message console, on-board entertainment,
navigation, maps, traffic management, weather information, or POI notifications, are

7 Accessible at http://caosd.lcc.uma.es/spl/hydra

334 J. Cubo et al.

some of the applications in vehicles [22]. In our driving scenario, we have
implemented (in BPEL and WF) the following services: message console, navigation,
maps and traffic services. Figure 3 shows the transition systems (represented with our
CA-STS interface model) corresponding to the implemented services, obtained
through the model transformation process (see Figure 1), in which we have abstracted
parameters to simplify the interfaces.

The driver uses the message console to request the navigation to a specific
destination, which in turn interacts with the navigation service that is in charge, using
the maps service, of calculating the route to the destination. The context information
detailed in the context profile of each service means the service requires such
contexts, and they have to be considered during the composition of the system at
runtime. For example, the message console service automatically obtains both the
location and the language of the driver (loc and lang contexts) from the GPS and on-
board computer settings, respectively. On the other side, the driver will indicate the
context info related to the route type (route context), as well as whether he/she wants
to avoid the toll road or not (toll context) and with traffic monitoring or not (traffic
context). These driver preferences may change at runtime. Default values for these
contexts are used if the driver does not specify them. DAMASCo performs the
composition process of this scenario, in which CA-STS service interfaces are
synchronised through an adaptation process that solve any mismatch problems during
the composition. As explained in Section 3, we use a semantic-based discovery that
uses an ontology to search services that match with the client’s request. We have
generated a driving domain ontology for our example using Protégé 4.0.2.

Fig. 3. Interface models of the driver request and the services for the driving domain scenario

Once DAMASCo performs the composition, it can control dynamic context
changes, by capturing and handling such changes, and it simulates the dynamic
update of the environment according to the context changes at runtime. Now, let us
imagine the driver decides that the route be calculated avoiding any possible traffic
problems at runtime. Therefore, in this case the traffic context needs to be considered
in the services participating in the composition. In addition, the semantic discovery
process cannot find a navigation service which checks the traffic management.
Therefore, the FM-DAMASCo uses the discovery family process, which finds a

 Composition and Self-Adaptation of Service-Based Systems with Feature Models 335

feature traffic, among the navigation service family, and the self-adaptation of the
navigation service for adding this feature to it. This will be explained in Section 4.3,
but first, we present the mapping between CA-STS models and feature models.

4.2 Mapping between Interface Models and Feature Models

In order to avoid new feature models having to be defined for services already
deployed in a specific pervasive system, we define a mapping between the CA-STS
interface model and the feature model (Table 1). This mapping allows the automatic
generation of the feature model that corresponds with a service defined in BPEL or
WF. Then, we also use the model transformation between WF/BPEL and CA-STS. As
shown in Table 1, for each service we create a new feature model with the service
name as the root feature. This root feature has two mandatory children: protocol and
context. The context feature has all the context items defined in the context profile as
optional children. They will be the contexts that may be considered during the service
execution. The protocol will contain as children, the features with the ordered
message names according to the message sequence defined in the corresponding CA-
STS. Then, for every message, which implies a transition in the CA-STS model, a
new mandatory feature message must be added as a child of the protocol feature.

Table 1. Mapping between CA-STS Model and the Feature Model of the service family

CA-STS Interface Model Feature Model

Finally, we map the alternative sequences (such as ifelse or pick activities in BPEL
or WF) represented in the CA-STS interface as different branches or transitions. Since
these alternatives will send or receive several messages depending on different values
of data, we add a mandatory child of the protocol feature that will contain alternative
XOR features for every message. Furthermore, we must add a cross-tree constraint
with a mutual dependency of the value that implies a message (e.g., Value1 implies
Message1). In addition, if this data coincides with a context item, then we add the
values as alternative XOR features of the data context.

Apart from the purpose of using the mapping to represent the services without
a previous correspondence with a feature model, this mapping is also used to help
the self-adaptation of services when required during the composition. Following the
DSPL paradigm, the runtime self-adaptation can be defined in terms of replacing the

336 J. Cubo et al.

current feature model configuration for a new configuration adapted to the current
requirements. As described in Section 3.2, in the case that the semantic discovery
process does not find the service instance that matches with the client request, the
service family discovery will try to find, from among the family, a variation of the
existent services that better fits the request. Then, in our approach, applying the DSPL
paradigm for self-adaptation during composition also means having to replace a
feature model configuration with another one. In this case, we replace the
configuration representing the service which better matches with the request with
another configuration with a small variation to exactly match the request.

Therefore, our process uses both configurations (the previous and the new one
[23, 24]), the feature model, the CA-STS interface of the service that fits better, and
the mapping to automatically create the new CA-STS which represents the adapted
service. In the next section, we detail this process and the mapping over our example.

4.3 Applying our Approach in ITS

Figure 4 shows the feature model of the navigation service. As defined in the mapping
it is composed of the protocol and context features. The protocol contains the
mandatory features that have to be in all the navigation services (the ones that appear
in the navigation service of Figure 3) and several optional features, such as the traffic
management or the point of interest (POI) alerts. Furthermore, some features have
several XOR alternative children, like the type of route to be calculated (fast, short or
optimized route). The context contains all the possible (optional features) context
items that the navigation system may consider, such as location, traffic, weather, and
so on. For the sake of simplicity, we have only represented (in Figure 4) the possible
context values for the type of route context to calculate the route according to the
driver preferences, and for the traffic context to indicate whether the driver requires
traffic monitoring (traffic true) or not (traffic false).

As explained in the mapping definition, there are also dependencies between the
context values and the alternative features in the protocol. For instance, Fast implies
FastRoute means that if the context feature Fast is selected in a valid feature model
configuration, then the protocol message feature FastRoute must also be selected. In
this way, we avoid creating invalid configurations where the context variations are not
satisfied by the protocol. This is verified every time we create a new configuration
during the self-adaptation process in order to carry out a safe reconfiguration.

Fig. 4. Feature Model for the navigation service

 Composition and Self-Adaptation of Service-Based Systems with Feature Models 337

The self-adaptation of the navigation service to include the traffic management is
depicted in Figure 5. Firstly, the navigation feature model configuration represents the
corresponding navigation service shown in Figure 3. This configuration does not
consider the traffic monitoring in its context, so the protocol calculates the route
without taking traffic incidences into account. Furthermore, other contexts (such as
the notification of nearing points of interest and the calculation of the route taking
into account weather warnings) are not considered in this configuration, so their
correspondent optional features are removed. In the case that the driver wants to
incorporate the traffic context into the navigation service, this service can be adapted
as that context and feature are contemplated in the navigation family (Figure 4). At
feature model level, this adaptation consists of adding the optional features (and its
children) related to the traffic not selected in the previous configuration, in a new
configuration, as observed in the navigation feature model adapted configuration
(shown in green in Figure 5). Then, our self-adaptation process uses the CA-STS
interface of the previous navigation service, the navigation FM configuration, the
navigation FM adapted configuration, and the mapping to automatically generate the
CA-STS interface model of the navigation service adapted, which already consider
the traffic management (corresponding to the part of the CA-STS interface in green,
surrounded by a dashed blue circle in Figure 5). The adapted navigation service will
be composed with the rest of the services of our driving scenario, including the traffic
service in the composition, in the same way as explained in Section 4.1. With this
application, we illustrate how by using our approach we obtain a safe reuse based on a
self-adaptation of the navigation service, with the purpose of fulfilling a request that a
priori would have not been satisfied by any other existing service of the repository.

Fig. 5. Self-Adaptation of the navigation service

338 J. Cubo et al.

5 Discussion

In this section, we discuss (i) the benefits and drawbacks, (ii) the main contributions
for the ITS domain, and (iii) other possible applications of our approach.

Benefits and Drawbacks. The main benefit of our proposal is that, using the SPL
approach, we can significantly increase the number of client requests satisfied in a
repository with a relatively small number of services deployed. For instance, in our
navigation service family we have three optional features (Figure 3) in the protocol.
This means that these features can be present or not in a service valid configuration.
Selecting or unselecting these three optional features we have a total of 23=8 valid
configurations, i.e., 8 different services for this family. So, although there will be
deployed, e.g., 2-3 different navigation service instances in the repository, with our
approach we can carry out 8 different kinds of requests for this service. These
numbers are only considering the optional features of a family. But if we consider the
variable (OR and XOR) features, the number of configurations increases greatly.
Table 2 shows the number of possible valid configurations with respect to the number
of family services for a specific domain and considering the average of the variable
parts per service. Thus, 10 services working together could satisfy (210-1)=1023
different potential client requests. Nevertheless, if as we propose in this work, instead
of 10 single services we have 10 service families with an average of 23=8 possible
configurations per service, then we can satisfy 8*1023=8184 requests. Then, using
our approach, in this small service repository with a few members per family, we will
increase the number of possible requests satisfied by more than 7000. Furthermore, a
real repository for a specific domain (e.g., the driving domain) can have 20 services
with an average of 6 variations (optional and alternative features) per service. In this
case, we have a total number of 1280 possible valid configurations and the number of
possible client requests satisfied by these configurations increases exponentially.

Table 2. Number of possible valid services configuration

Service Families Variations per Service Valid Configurations

10 3 80

10 6 640

20 6 1280

30 10 30270

Obviously, this entails an aggregate cost, as to set up a SPL infrastructure may
require great effort and the designing of 20 service families is a non-trivial task.
Although the defined mapping can be used to automatically create a feature model
from an interface model, this will represent a single service and not a whole family.
Then, the variability must be added to the feature model by hand. However, though
the definition of the service families may have an initial cost, as soon as individual
services start to be automatically adapted in order to satisfy different client requests,
which would otherwise require the implementation of new services, this initial effort

 Composition and Self-Adaptation of Service-Based Systems with Feature Models 339

becomes cost-effective. Therefore, the adoption of the SPL approach is justified in
repositories where the number of services and possible variants per service is not very
small. For instance, for 10 services with 3 variations per service, we can satisfy more
than 7000 requests more than in the case of 10 single services. However, if we have a
repository with 3 services and 2 variations per service, we only satisfy 5 requests
more using our approach. In this case, the effort to build the family is not rewarded.
Another example which involves a greater cost that provided benefits is in static
environments where not many client requests are made during the system execution.
In this case, it is pointless to have big service families with configurations that will
never be used. We must therefore look for a compromise between the repository size
and the necessity of defining the service families considering the benefits obtained.

Finally, we wish to stress that the service family discovery process is performed at
family level not at configuration level. Therefore, in order to search for matches, the
process does not have to look for the thousands of .xml files representing all the
configurations (30270 in the case of 30 services), but only in the 30 .xml files
representing the families, which is a fast task for current computers.

Contributions in the ITS Domain. Traditionally, when a vehicle is designed and
manufactured, it is given a specific set of hardware and software components. This is
a disadvantage in case new applications have to be incorporated to the vehicle,
reducing the cost-effectiveness of the implementation and maintenance of vehicular
software. For this reason, AUTOSAR8 (AUTomotive Open System ARchitecture) is a
worldwide development cooperation of car manufacturers, suppliers and other
companies such as software industry. The main purpose is to provide a basic
infrastructure to help develop vehicular software. Nevertheless, AUTOSAR currently
only delivers the standard specifications not an implementation of the basic software.

Aspects such as electronic tolling, road safety, the user interface, and the provision
of information to the driver, are crucial in the vehicular environment. In order to
achieve these objectives, it is essential to develop a correct architecture for the
definition of services. Some work [25] has already been worked on the creation of a
service-oriented architecture for an on-board computer, by using the composition as
OSGi technology and the development of system management information through
web and distributed environments. In addition, techniques to address the variability of
the complex driving domain have to be considered, allowing the adaptation to
changing situations in traffic environments and to meet the drivers’ safety and needs.

The generation of an architecture and the implementation of the services is beyond
of scope of this work. Our proposal is complementary to these two different efforts
(work in [25] and the AUTOSAR initiative), since we tackle the reuse and
maintenance of previously implemented services with the main goal of facilitating the
handling the variability, in this case, of the driving domain. And we do this by means
of self-adaptation mechanisms based on SOA and SPL paradigms.

Other Applications. In this work, we have focused on applying the DSPL approach
to self-adapt the services when is required during the context-aware composition. But,
as we have mentioned, other applications can be also tackled with our approach, such

8 http://www.autosar.org/ Accessed on 4 February 2013.

340 J. Cubo et al.

as service dynamic reconfiguration or evolution. On the one hand, ITS domain is an
example of systems that should be able to adapt their devices to some context changes
with minimum human intervention, and so a given kind of dynamic self-adaptation is
necessary to adapt them to context changes, such as network degradation or sudden
events. In this sense, DAMASCo uses the DSPL approach by replacing the current
FM configuration for a new one adapted to the context change, as explained in [26].
On the other hand, ITS is also an outstanding example of a modern system that is in
permanent evolution, as new devices, technologies or facilities continuously appear.
This means it is desirable to have a mechanism that helps with the propagation of
evolution changes in deployed systems. For this task, DAMASCo will use the results
of our previous work for managing the evolution of product families [23, 24] and
together with the mapping it will be able to evolve with new components of services
already deployed. With these two applications, apart from the context-aware
composition, we demonstrate the wide range of applicability of our approach based on
SOA and SPL technologies working together.

6 Conclusions

In this paper, we have illustrated the need to handle the variability during the service
composition in pervasive systems. Our proposal to address this challenge is based on
both SOA and DSPL paradigms. Thus, we extend our DAMASCo framework with
feature models to represent the variability and to dynamically reconfigure services in
a safe way according to context change situations. Specifically, we have developed
two new processes in DAMASCo: a service family discovery and a self-adaptation
mechanism, which have been described throughout the paper. We have implemented
our approach in a scenario of the ITS domain, and we have discussed the benefits,
drawbacks, contributions, and other possible applications it could have.

As regards future work, we are currently working on the other two applications we
discussed in the previous section. We plan to define a model-driven process to switch
from one running service configuration to another by executing a plan in DAMASCo
in order to self-adapt the services to context changes at runtime. In addition, to
perform evolution we need to define how modifying or aggregating new behaviour
(not previously contemplated for the family) into already existing services.

Acknowledgements. Work partially supported by the projects TIN2008-05932,
TIN2008-01942, TIN2012-35669, TIN2012-34840 and CSD2007-0004 funded by
Spanish Ministry of Economy and Competitiveness and FEDER; P09-TIC-05231 and
P11-TIC-7659 funded by Andalusian Government; and FP7-317731 funded by EU.

References

1. Erl, T.: Service-Oriented Architecture (SOA): Concepts, Technology, and Design.
Prentice-Hall, Englewood Cliffs (2005)

2. Pohl, K., Böckle, G., Linden, F.: Software Product Line Engineering – Foundations,
Principles, and Technique. Springer, Heidelberg (2005)

 Composition and Self-Adaptation of Service-Based Systems with Feature Models 341

3. Krut, R., Cohen, S.: Service-Oriented Architectures and Software Product Lines - Putting
Both Together. In: Proc. of SPLC 2008, p. 383. IEEE Computer Soc., Los Alamitos (2008)

4. Cubo, J., Pimentel, E.: DAMASCo: A Framework for the Automatic Composition of
Component-Based and Service-Oriented Architectures. In: Crnkovic, I., Gruhn, V., Book,
M. (eds.) ECSA 2011. LNCS, vol. 6903, pp. 388–404. Springer, Heidelberg (2011)

5. Lee, K., Kang, K.C., Lee, J.: Concepts and Guidelines of Feature Modeling for Product
Line Software Engineering. In: Gacek, C. (ed.) ICSR 2002. LNCS, vol. 2319, pp. 62–77.
Springer, Heidelberg (2002)

6. Hallsteinsen, et al.: Dynamic Software Product Lines. Computer 41(4), 93–95 (2008)
7. Shen, L., Peng, X., Liu, J., Zhao, W.: Towards Feature-Oriented Variability

Reconfiguration in Dynamic Software Product Lines. In: Schmid, K. (ed.) ICSR 2011.
LNCS, vol. 6727, pp. 52–68. Springer, Heidelberg (2011)

8. Baresi, L., Guinea, S., Pasquale, L.: Service-Oriented Dynamic Software Product Lines.
Computer 45(10), 42–48 (2012)

9. Andrews, T., et al.: Business Process Execution Language for Web Services (WSBPEL).
Systems, IBM, Microsoft, SAP AG, and Siebel Systems (2005)

10. Scribner, K.: Microsoft Windows Workflow Foundation: Step by Step. Microsoft (2007)
11. Abu-Matar, M., Gomaa, H.: Variability Modeling for Service Oriented Product Line

Architectures. In: Proc. of SPLC 2011, pp. 110–119. IEEE Computer Soc., Los Alamitos
(2008)

12. Gomaa, H., Hashimoto, K.: Dynamic Software Adaptation for Service-Oriented Product
Lines. In: Proc. of SPLC Workshops 2011. ACM (2011)

13. Montero, I., Pena, J., Ruiz-Cortes, A.: From Feature Models to Business Processes. In:
Proc. of SCC 2008, pp. 605–608. IEEE Computer Soc., Los Alamitos (2008)

14. Montero, I., Peña, J., Ruiz-Cortes, A.: Representing Runtime Variability in Business-
Driven Development Systems. In: Proc. of ICCBSS 2008, February 25-29, p. 241. IEEE
Computer Soc., Los Alamitos (2008)

15. Hallerbach, A., Bauer, T., Reichert, M.: Capturing Variability in Business Process Models:
The Provop Approach. Journal of Software Maintenance and Evolution: Research and
Practice 22(6-7), 519–546 (2010)

16. Parra, C., Blanc, X., Duchien, L.: Context Awareness for Dynamic Service-Oriented
Product Lines. In: Proc. of SPLC 2009, pp. 131–140 (2009)

17. Naeem, M., Heckel, R.: Towards Matching of Service Feature Models based on Linear
Logic. In: Proc. of the 1st Workshop on Services, Clouds, and Alternative Design
Strategies for Variant-Rich Software Systems (SCArVeS) Co-Located with SPLC 2011
(2011)

18. White, J., Strowd, H.D., Schmidt, D.C.: Creating Self-Healing Service Compositions with
Feature Models and Microrebooting. Int. Journal of Business Process Integration and
Management 4(1), 35–46 (2008)

19. Cubo, J., Canal, C., Pimentel, E.: Context-Aware Composition and Adaptation Based on
Model Transformation. Journal of Universal Computer Science 17(15), 777–806 (2011)

20. Arnold, A.: Finite Transition Systems. International Series in Computer Science. Prentice-
Hall, Englewood Cliffs (1994)

21. Batory, D.: Feature Models, Grammars, and Propositional Formulas. In: Obbink, H., Pohl,
K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005)

22. Lee, J., Kotonya, G., Robinson, D.: A Negotiation Framework for Service-Oriented
Product Line Development. In: Edwards, S.H., Kulczycki, G. (eds.) ICSR 2009. LNCS,
vol. 5791, pp. 269–277. Springer, Heidelberg (2009)

342 J. Cubo et al.

23. Gamez, N., Fuentes, L.: Software Product Line Evolution with Cardinality-Based Feature
Models. In: Schmid, K. (ed.) ICSR 2011. LNCS, vol. 6727, pp. 102–118. Springer,
Heidelberg (2011)

24. Gamez, N., Fuente, L.: Architectural Evolution of FamiWare using Cardinality-Based
Feature Models. Journal of Information and Software Technology 55(3), 563–580 (2013)

25. Santa, J., Úbeda, B., Gómez-Skarmeta, A.F.: A Multiplatform OSGi Based Architecture
for Developing Road Vehicle Services. In: Proc. of CCNC 2007, pp. 706–710. IEEE
Computer Soc., Los Alamitos (2007)

26. Gamez, N., Fuentes, L., Aragüez, M.A.: Autonomic Computing Driven by Feature Models
and Architecture in FamiWare. In: Crnkovic, I., Gruhn, V., Book, M. (eds.) ECSA 2011.
LNCS, vol. 6903, pp. 164–179. Springer, Heidelberg (2011)

	Composition and Self-Adaptation of Service-Based Systems with Feature Models
	1 Introduction
	2 Related Work
	3 Our Approach
	3.1 Background: Service Reuse with DAMASCo
	3.2 Adding Feature Models to Support Safe Composition

	4 Self-Adaptation Using Feature Models
	4.1 Case Study: A Driving Domain
	4.2 Mapping between Interface Models and Feature Models
	4.3 Applying our Approach in ITS

	5 Discussion
	6 Conclusions
	References

