

SECURWARE 2013

August 25-31, 2013, Barcelona, Spain

Secure Distributed System inspired by Ant Colonies for Road Traffic Management in Emergency Situations

A. Peinado, A. Ortiz-García, J. Munilla

E.T.S.Ingeniería de Telecomunicación Campus de Teatinos, 29071 Málaga

Contents

- VANETs and Road traffic management
- Model inspired by Ant colonies
- System proposed
- Prototype
- Security issues

Supported by TICs

- Cameras
- Sensors
- Screens and displays

Ingenieria de Comunicaciones

VANET

Vehicular Ad hoc NETwork

Road Traffic Management

V2I / I2V: Input to/Output from Central system

V2V: helps to propagate the signals – serves mainly for traffic security

Vehicular Ad hoc NETwork

Road Traffic Management

Emergency Situation

V2I / I2V : Dependence of energy supply

V2V: Usually relies on GPS, and provides mainly information for traffic security

Road Traffic Management system for Emergencies:

- Based completely on V2V communications
- Independent from central energy supply

Model inspired by Ant colonies

Ant Colonies

Model inspired by Ant colonies

Algorithm inspired on Ants Colonies

(Modifications applied to the Ant algorithm)

-ROUTE SELECTION

Vehicles takes the route with the lowest level of pheromones

-TRAIL GENERATION

Pheromones are produced in a discrete way

-PHEROMONES STORAGE

Pheromones are not stored in the road, but in the vehicles (distributed storage)

System proposed

-LOCATION SYSTEM

RFID

-CONTROL PLACES

The most significant nodes of the road.

ID_{loc}: Identification of the control place

-PHEROMONES GENERATION

Broadcast message: ID_{SVeh} and ID_{loc}

-DISAPPEARING EFFECT

The vehicles are not synchronized between them.

Local clock is used to reduce the level

-ROUTE SELECTION

Route is selected based on internal variables

Location system

System proposed

RFID Radio Frequency ID

Sistema de apoyo

Lector RFID

LF Pasive tags

General Features

Low cost

Low storage capacity

Low computational capacity

Ingenieria de Comunicaciones

Location system

RFID

Radio Frequency ID

VANET

Vehicular Ad hoc NETwork

Architecture Tag onboard Reader on the road

V2I

Location system

RFID

Radio Frequency ID

VANET

Vehicular Ad hoc NETwork

Architecture Reader onboard Tag on the road

12V

Tag RFID

Control places

Main crossroads are identified

Significant crossroads (nodes) are selected and pointed out by a RFID tag:

Information points, ID_{loc}: is assigned to points after the node.

Decission points: before the node.

RFID tag (decission point)

Ingenieria de Comunicaciones

Disappearing Effect

Vehicles decrease the content of the internal variables proportionally to the time elapsed

Vechicle are not synchronized between them.

They do not use global clock, but internal time reference

Location	Pherom.	Message arrival time
•••	•••	•••
ID _{loc1}	80	12:31:45
ID _{loc2}	65	13:23:07
		•••

Current internal time

13:35:02

 Δt : Current time – Arrival time

 γ : Decreasing coefficient

New Pher. Level = Pher. Level - $\Delta t \cdot \gamma$

Prototype

Real scenario:

Routes between two main hospitals in Málaga

- "Carlos Haya" University Regional Hospital

- "Virgen de la Victoria" University Clinical Hospital

Secure Distributed System inspired by Ant Colonies for **Road Traffic Management in Emergency Situations**

Control places

Prototype

Simplified scenario

RFID tag – Pheromones Generation places

RFID tag – Internal uses

Prototype

Security Issues

Security Issues

- Authentication is the main security mechanism
- Confidentiality is not necessary

Main threat

Security Issues Fraudulent messages: Authenticated messages with false content

Proposed Solution
Reputation lists and Data Aggregation

Msg is included in IRL

Msg is discarded

76

Ingenieria de Comunicaciones

Security Issues

Analysis of potential attacks

1.- False messages

Detected by means of usual auth mech. In VANETS

2.- False content (fraudulent messages)

Detected by IRL+Agg Sig

IMPLICIT SECURITY: The effect of one faked Msg is negligible

3.- False content flooding

Detected by IRL+Agg Sig. and the repetition frequency IMPLICIT SECURITY: The attacker must decrease the frequency of messages to avoid detection. Hence the effect is negligible

Security Issues

Analysis of potential attacks

4.- Conspiracy

Detected by IRL+Agg Sig.

IMPLICIT SECURITY: Many attackers are necessary. Hence the attack is not effective

5.- Discarding aggregated messages

IMPLICIT SECURITY:

If traffic density is low, the attack is not effective since the nodes are not saturated.

If traffic density is high, the attack is not effective since others vehicles will retransmit the same Msg.

SECURWARE 2013

August 25-31, 2013, Barcelona, Spain

THANK YOU FOR YOUR ATTENTION

Secure Distributed System inspired by Ant Colonies for Road Traffic Management in Emergency Situations

A. Peinado, A. Ortiz-García, J. Munilla

E.T.S.Ingeniería de Telecomunicación Campus de Teatinos, 29071 Málaga

