
1

Performance Analysis of the Multi-pass
Transformation for Complex 3d-Stencils on

GPUs
S. Tabik 1, L. F. Romero 1, E. L. Zapata 1

Abstract—Complex iterative 3d stencils based on a
series of multiple simpler stencils with different com-
putation intensities cannot be handled properly using
standard techniques on the GPU. This work demon-
strates that decomposing these kind of stencils into a
sequence of up to a specific number of simpler stencils
and further optimizing each individual kernel provides
the best overall performance. We focus on the family
of PDE-based denoising methods, which can be refor-
mulated as sequence of multiple stencils-based tasks.
The performance results and analysis show that there
exists an optimal level of splitting-coalescence of these
stencils-based tasks that reaches the best compromise
between better use of fast-memories and higher con-
currency.

Keywords— complex stencils, decomposing-
coalescing tasks, GPU accelerators, multi-pass
optimization.

I. Motivation and Related Works

THERE exists a large number of works that fo-
cuses on optimizing naive 2d and 3d stencil ker-

nels on multi-core and many-core systems. These
works can be divided into two classes. The first class
focuses on applying transformations such as ghost-
zone, time-tiling, or a mix of both [9], [7], [5]. While
the second category focuses on building auto-tuning
environments which determine the subset of opti-
mizations that improves the performance of the sten-
cil on each specific architecture [3].
Using ghost-zone optimization, which implies en-

larging the size of the halo and performing redun-
dant computation, reduces communications between
tiles on the GPU but only for iterative 2d stencils
with low computation intensity [7], [9]. Time tiling,
which consists of tiling the matrix along the time di-
mension, enhances data locality but again only for
simple memory-bound iterative 2-d stencil codes [5],
[9].
All these standard optimizations are essential to

improve the performance of very simple stencils but
they do not require or simply are not applicable to
complex stencils, such as iterative compute-intensive
3d-stencils.
On the other hand, the multi-pass optimization,

which consists of decomposing the CUDA-kernel into
multiple CUDA-kernels, has not been analyzed in a
wider context. There exist few works in the litera-
ture that employed this optimization to improve a
specific application. Indeed, none of them has an-
alyzed at what extent it is beneficial to the perfor-
mance for a whole family of algorithms. For instance,

1Dpto. de Arquitectura de Computadores, Univ. Malaga,
e-mail: stabik@uma.es

Lee et al. claimed that applying two-passes ap-
proach to a memory-bound neuroimaging algorithm
increases concurrency. While, Abdelfattah et al. [1]
used two-passes optimization to separate two stages
with different computation patterns in the symmet-
ric matrix-vector product code.

The main contributions of this work are: 1) Un-
derstanding when the multi-pass optimization can be
beneficial to complex stencils representative of PDE-
based denoising methods and 2) presenting an inter-
esting pattern of PDE-denoising methods that sub-
stantially helps optimizing them for both many and
multi-cores.

II. PDE-denoising methods: Complex
Stencils

Denoising algorithms are essential tools in im-
age processing in many bioimaging modalities. The
most sophisticated and powerful methods are those
that solve Partial Differential Equations (PDE). This
family of algorithms, like for instance the ones de-
scribed in [2], [4], [6], apply an iterative sequence
of mathematical kernels, formulated as stencils with
different computation intensity, where the input im-
age is partially or entirely read and updated several
times during each denoising iteration till obtaining
the final filtered 3d-image after a total number of
about 60 to 100 iterations.

A. A Case Study: Anisotropic Nonlinear Diffusion
Algorithm

For simplicity, let’s focus on a particular case
study, the Anisotropic Nonlinear Diffusion (AND)
algorithm to understand the features of the consid-
ered family of methods. AND-algorithm can be for-
mulated as a stream of four stages, where the noisy
image travels through these four methods of different
data dependencies, data access patterns and arith-
metic intensity. That is, each single iteration consists
of:

• First a Gaussian smoothing is applied to the ini-
tial 3d-image. Each pixel is updated using a con-
volution along the X-, Y- and Z-axes, i.e., using
the six nearest neighbors. The update of each
pixel needs 12 flops (6 reads+1 write). Which is
comparable to a 7-points stencil read from and
wrote to the 3d-image as shown in Figure 1(a).

• Then, the structure tensor, ST, of the obtained
3d smoothed image is calculated. Each pixel
of ST, which consists of a structure of 6 floats,

2

Y

Z

k-1

k

k+1

X

Y

Z

k-1

k

k+1

X

(a) (b)

Fig. 1. (a) 7-point stencil, i.e., each pixel needs 7 nearest neighbors including itself to be updated. (b) 19-point stencil, i.e.,
each pixel needs 19 nearest neighbors to be updated.

is calculated using its corresponding six nearest
neighbors from the smoothed image. The data
access pattern is a 7-points stencil read from the
3d-image of size Nx ·Ny ·Nz and wrote to ST of
size Nx ·Ny ·Nz · 6.

• Afterwards, the Diffusion Tensor, DT, is calcu-
lated. Each pixel of DT is calculated by cal-
culating the eigenvalues and eigenvectors of the
corresponding symmetric 3x3-matrix using the
iterative Jacobi method. The elements of the
symmetric 3x3-matrix are initialized using the
values of the corresponding ST pixel. This is
comparable to 1-point stencil read and wrote to
ST. This stage is clearly compute intensive.

• Finally, each pixel of the 3d-image is updated
using 7 neighbor points from ST and 19 neighbor
points from the 3d-image. Which is a multiple
7-points and 19-points stencil that reads data
from the 3d-image and ST and writes the result
in the 3d-image. Updating each pixel of the 3d-
image needs 26 reads, one write and 68 flops.

III. Splitting-Coalescence of Stencils on
GPU: Multi-pass Approach

Commonly, parallel computing PDE-based meth-
ods on clusters of muli-processors employs the SPMD
model, where each processor denoises its own 3d-
block of the image during the whole iterative process.
At the end of each iteration processors that work on
neighbor blocks intercommunicate their halos [10].

An intuitive CUDA implementation of this fam-
ily of methods can consider either encapsulating the
whole complex stencil into one pass or splitting it
into multiple passes. The performance of the one
kernel version can be delimited by the smaller size of
faster memory resources during the kernel execution
while the multiple kernels version may be penalized
by higher scheduling overheads and traffic between
off-chip and on-ship memories, which is necessary for
inter-kernels communication. However, more com-
binations can be also considered by merging differ-
ent successive stencils, 2’-passes and 3’-passes. One

of the objectives of this work is to analyze to what
extent one should split or coalesce these stencils to
obtain the best overall performance on GPU accel-
erators.

We developed six implementations of AND-
method by spiting it into one-, two-, three- and four
passes. Applying two- and three-passes optimization
has two possible versions. Stencil computation is
performed along the z-dimension using space-tiling.
First, the 2D tiles and necessary halos are loaded into
the shared memory, where each threadblock com-
putes its corresponding output 2D tile, similar to the
strategy employed in [8]. Here is a brief description
of each implementation.

• The 1-pass approach, encapsulates the whole
method, Gauss smoothing, structure tensor cal-
culation, diffusion tensor calculation and, the
PDE solution, i.e., Gauss+ST+DT+PDE, into
one pass. Updating one 2D tile of the output 3d-
image needs to upload to shared memory 4 tiles
from the original image (i.e., the corresponding
input tile + 3 halos) and 3 tiles of ST (i.e., the
corresponding ST tile to be calculated + 2 ST-
tile-halos). Recall that three tiles of the original
3d-image are required to compute one ST tile.
The 2d-tiles with Z = 0 and Z = Nz of the
output 3D-image and ST are calculated using a
mirroring operation of the 2D-plan with Z = 2
and Z = Nz − 2 respectively.

• The 2-passes implements Gauss+ST+DT in one
pass and PDE in a second pass. The first pass
updates each ST-tile using 1 tile of the input
3d-image; the halo pixels are uploaded into reg-
isters. The PDE pass needs one ST-tiles and 3
tiles of the input 3d-image; the halo pixels are
uploaded into registers.

• The 2’-passes implements Gauss+ST in one pass
and DT+PDE in a second pass. The first pass
updates each ST tile using one tile of the input
3d-image; the halo pixels are uploaded into reg-
isters. The DT+PDE pass needs 3 ST-tiles and
4 tiles of the input 3d-image.

3

Imgi

NxNyNz

Imgi+1

NxNyNzST PDE
ST
NxNyNz*6

Imgi

NxNyNz Gauss DT
ST
NxNyNz*6

Fig. 2. Pattern of one AND-method iteration: A sequence of four stencil-based stages (in pink color). Gauss() smooths the
image, ST() computes the structure tensor, DT() computes the diffusion tensor and PDE() update the image

• The 3-passes version implements Gauss+ST in
a first pass, DT in a second pass and, PDE in a
third pass. The first pass needs to upload into
shared memory one 2D-tile of the input image
and one tile of its corresponding ST tile; the halo
pixels are uploaded into registers.

• The 3’-passes approach implements Gauss in a
first pass, ST+DT in a second pass and, PDE
in a third pass. The ST+DT pass needs one tile
of 3d-image and one ST-tile.

• Finally, the 4-passes version implements each
single stage into one single kernel. Gauss pass
needs one 2D-tile of the input image. ST pass
needs one tile of ST and one tile of the 3D-image.
DT pass needs only to update one ST tile.

IV. Experimental Results and Discussion

This section provides and discusses the perfor-
mance results of the AND-complex stencil when
decomposed into one, two, three and four sim-
pler stencils, each pass is encapsulated into one
CUDA kernel, and its comparison with the Pthreads-
implementation described in [10]. The evaluations
of the CUDA-implementations, written in CUDA
C v4.0, were carried out on a single Fermi C2070,
with 14 multiprocessors, 448 cores, 48 Kb of shared
memory, 32768 registers per block and 1.25 GB of
DRAM. While the Pthreads-implementation of the
code was executed on 8-core Intel X7550 Beckton us-
ing 8threads. The Pthreads-implementation is used
only for comparison purposes .

Figure 3 (a) shows the speedup of the different
CUDA-passes implementations (i.e., 1-, 2-, 2’, 3-, 3’-
and 4-passes codes) with respect to the Pthreads-
implementation for three 3d-images of sizes 128 ×
128 × 128, 256 × 256 × 256 and, 512 × 512 × 512.
The found optimal thread-block sizes for the CUDA-
codes are 4 × 32, 8 × 32, 16 × 64, 16 × 16, 16 × 64
and, 16× 64 respectively.

Analyzing the speedup from the 1-pass to the 4-
pass versions shows that the 3-passes version, which
implements Gauss+ST, DT and PDE into one pass
each one, is the fastest version over all the im-
plementations providing a speedup with respect to
Pthreads-implementation of up to 290 for the smaller
size and 55 for the larger image. In addition, Fig-
ure 4(a),(b),(c) shows that the 3-passes version over-

comes all the passes versions for the three image sizes
by up to 160× and 40× for the smaller and larger im-
age respectively.

A further analysis of registers and shared memory
utilization and performance profiling of each pass of
the six codes are provided in Table 1 and 2 respec-
tively. Examining the results of the 3-passes code
and comparing it with the other versions shows that
implementing DT into an independent kernel allows
this pass reaching an optimal utilization of on-ship
and off-ship memories. In particular, it has a better
registers and shared memory utilization, i.e., it ap-
plies less stress on this fast memories, from 63 (which
is the maximum number of registers that can be used
per threads) to 42, in comparison with the pass that
merges ST+DT from the 3’-passes version and the
one that merges DT+PDE in the 2’-passes version.
In addition, implementing DT into one pass reaches
a better use of off-ship memories by showing bet-
ter L1 and L2 hit rates. Moreover, in this 3-passes
version DT reaches a higher concurrency, i.e., higher
number of active warps per cycle from 15 to 22 when
comparing 3’-passes version versus the 3-passes one
from Table 2. Notice that DT represents more than
40% of the total runtime of all the implementations
and therefore increasing its performance affects the
overall performance.

Notice from Table 1 and 2 that merging ST with
GAUSS does not affect the concurrency of ST pass.
This means that the overhead produced by separat-
ing ST and GAUSS into two different passes is higher
than the fact of sharing the same fast memories.

On the other hand, the performance of the PDE
pass is limited by registers as can be seen from Ta-
ble 1 and it provides better performance when it does
not have to share fast memories.

In summary and from a programming point of
view, an effective use of the multi-pass approach as
we learnt from the considered case study consists of
1) implementing stencils limited by registers into one
pass, 2) merging stencils that have the same data ac-
cess pattern and use the same data structures into
one pass and 3) implementing the most time con-
suming stencils with high concurrency grad into one
pass because merging it with passes with different
data utilization penalizes its concurrency.

4

TABLE I

Registers and shmem utilization per thread (estimated using nvcc 4.0) for 256×256×256 3D-image

1-pass 2-passes 2’-passes 3-passes 3’-passes 4-passes

Reg count 63 63,59 39,63 39,42,63 26,61,63 26,38,42,63
shmem 29736 41616,32376 9080,29728 9080,7776,11664 1304,9072,11664 4632,32368,27744,41616
(bytes)

0

50

100

150

200

250

1-pass 2-pass 2'-pass 3-pass 3'-pass 4-pass

sp
e

e
d

u
p

 (
T

P
th

re
a

d
s/

T
C

U
D

A
)

128x128x128

256x256x256

512x512x512

0,E+00

5,E+08

1,E+09

2,E+09

2,E+09

3,E+09

3,E+09

#
p
ix
e
ls
/s

128x128x128

256x256x256

512x512x512

(a) (b)

Fig. 3. (a) Speedup of the 1-, 2-, 2’- 3-, 3’- and 4- passes CUDA-versions (on Tesla C5070) with respect to the Pthreads-version
(on a 8-core Intel X7550 Beckton) for three 3d-image sizes, 128× 128× 128, 256× 256× 256 and, 512× 512× 512. (b) The
number of processed pixels per second by the Pthreads- and CUDA-, 1-, 2-, 2’- 3-, 3’- and 4- passes versions respectively.

4x 3x

160x 158x

66x

1

51

101

151

2-pass 2'-pass 3-pass 3'-pass 4-pass

T
1
-p
a
ss
/T

i-
p
a
ss

128x128x128

4x
2x

50x

37x 38x

1

11

21

31

41

2-pass 2'-pass 3-pass 3'-pass 4-pass

T
1
-p
a
ss
/T

i-
p
a
ss 256x256x256

(a) (b)

4x 2x

40x

32x 32x

1

11

21

31

41

2-pass 2'-pass 3-pass 3'-pass 4-pass

T
1
-p
a
ss
/T

i-
p
a
ss

512x512x512

(c)

Fig. 4. (a) Speedup of 2-, 3-, 3’- and 4- passes versions with respect to the 1-pass implementation, on Tesla C5070, for three
3d-image sizes, (a) 128× 128× 128, (b) 256× 256× 256 and, (c)512× 512× 512.

V. Conclusions

This paper characterizes PDE-denoising images to
make their CUDA-parallel implementation as effi-
cient as possible with less programming efforts. We
showed that 1) implementing register limited sten-

cils into one single pass, 2) merging stencils that use
the same data structure and data access into one
pass and 3) implementing time consuming stencils
with high concurrency into one pass improves sub-
stantially the performance of complex stencils that
are initially bounded by registers and shared mem-

5

TABLE II

One(Gauss+ST+DT+PDE), two(Gauss+ST+DT PDE), three’(Gauss+ST, DT, PDE) and (Gauss, ST+DT, PDE)

and, four-passes(Gauss, ST, DT, PDE) for a 256×256×256 3D-image and a fix thread-block 16×16

time active warps/ L1 gld IPC inst/ L2 glb mem read L2 glb mem write
(%) active cycles hit rate byte throughput throughput

(%) (Gb/s) (Gb/s)

1-pass:
Gauss+ST+DT+PDE 83,71 7,98 85,28 0,47 3,52 16,4 16,47

2-passess:
Gauss+ST+DT 44,64 16,02 46,24 0,84 1,34 67,69 84,3

PDE 7,95 16,46 86,39 1,06 4,51 47,16 9,79

2’-passess:
Gauss+ST 2,56 16,79 66,18 0,36 1,53 9,20 52,78
DT+PDE 80,11 4,21 84,36 0,55 13,81 5,24 5,25

3-passes:
Gauss+ST 9,8 23,74 69,82 0,37 1,52 9,18 53,42

DT 47,3 22,04 72,46 0,67 1,23 70,36 67,75
PDE 6.08 14,89 86,42 1 4,65 45,61 9,81

3’-passes:
Gauss 1,44 31,81 69,47 1,15 2,06 84,11 52,87

ST+DT 43,76 15,92 40,92 0,83 1,33 68,17 84,66
PDE 7,76 15,58 86,26 1,05 4,64 45,74 9,85

4-passes:
Gauss 1,06 30,34 68,29 1,13 2,03 83,60 52,66
ST 9,49 23,70 67,26 0,33 1,43 8,91 51,87
DT 44,5 22,59 72,59 0,67 1,22 70,54 67,81
PDE 5,7 16,51 85,69 1,13 4,89 45,64 9,83

ory. We also proposed a way of systematizing the
application of this optimization to diminish the pro-
gramming time and effort.

References

[1] Dongarra J. Keyes D. Abdelfattah, A. and H. Ltaief. Op-
timizing memory-bound numerical kernels on gpu hard-
ware accelerators, 10th international meeting on high-
performance computing for computational science (vec-
par 2012), riken advanced institute for computational sci-
ence (aics), kobe, japan, july 17th-20th. 2012.

[2] D. Barash. Fundamental relationship between bilateral
filtering, adaptive smoothing, and the nonlinear diffusion
equation. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 2002.

[3] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter,
L. Oliker, D. Patterson, J. Shalf, and K. Yelick. Sten-
cil computation optimization and auto-tuning on state-
of-the-art multicore architectures. In Proceedings of the
2008 ACM/IEEE conference on Supercomputing, SC ’08,
2008.

[4] J.J. Fernandez. Tomobflow: feature-preserving noise fil-
tering for electron tomography. doi:10.1186/1471-2105-
10-178. 2009.

[5] J. Holewinski, L. Pouchet, and P. P. Sadayappan. High-
performance code generation for stencil computations on
gpu architectures. In Proceedings of the 26th ACM inter-
national conference on Supercomputing, ICS ’12, pages
311–320. ACM, 2012.

[6] S. Li J.J. Fernandez. Anisotropic nonlinear filtering of
cellular structures in cryo-electron tomography. Com-
puting in Science & Engineering, 7(5):5461, 2005.

[7] J. Meng and K. Skadron. Performance modeling and
automatic ghost zone optimization for iterative stencil
loops on gpus. In Proceedings of the 23rd international
conference on Supercomputing, ICS ’09, pages 256–265,
New York, NY, USA, 2009. ACM.

[8] P. Micikevicius. 3d finite difference computation on gpus
using cuda. In Proceedings of 2nd Workshop on Gen-
eral Purpose Processing on Graphics Processing Units,
GPGPU-2, pages 79–84, 2009.

[9] G. Rivera and Chau-Wen Tseng. Tiling optimiza-
tions for 3d scientific computations. In Supercomputing,
ACM/IEEE 2000 Conference, page 32, 2000.

[10] S. Tabik, E. M. Garzón, I. Garćıa, and J. J. Fernández.
High performance noise reduction for biomedical multi-
dimensional data. Digit. Signal Process., 17(4):724–736,
July 2007.

